Tandem Synthesis of Photoactive Benzodifuran Moietie Organic Networks

Angewandte Chemie - International Edition 52, 6228-6232

DOI: 10.1002/anie.201300655

Citation Report

#	Article	IF	CITATIONS
1	Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. Macromolecules, 2013, 46, 8779-8783.	2.2	184
2	Microporous Organic Network Hollow Spheres: Useful Templates for Nanoparticulate Co ₃ O ₄ Hollow Oxidation Catalysts. Journal of the American Chemical Society, 2013, 135, 19115-19118.	6.6	188
3	Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Science and Technology of Advanced Materials, 2014, 15, 044201.	2.8	111
4	Insights into the Asymmetric Heterogeneous Catalysis in Porous Organic Polymers: Constructing A TADDOLâ€Embedded Chiral Catalyst for Studying the Structure–Activity Relationship [[] []] . Chemistry - A European Journal, 2014, 20, 11019-11028.	1.7	46
5	Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water. Chemical Communications, 2014, 50, 14885-14888.	2.2	19
6	Porous Polyurea Network Showing Aggregation Induced White Light Emission, Applications as Biosensor and Scaffold for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22569-22576.	4.0	49
7	Constructing hybrid porous polymers from cubic octavinylsilsequioxane and planar halogenated benzene. Polymer Chemistry, 2014, 5, 3634-3642.	1.9	46
8	Metal–Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline Inner Porosity. Journal of the American Chemical Society, 2014, 136, 6786-6789.	6.6	200
9	Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. Journal of Materials Chemistry A, 2014, 2, 7656.	5.2	60
10	Network formation mechanisms in conjugated microporous polymers. Polymer Chemistry, 2014, 5, 6325-6333.	1.9	61
11	Structural insights into the functional origin of conjugated microporous polymers: geometry-management of porosity and electronic properties. Chemical Communications, 2014, 50, 2781.	2.2	30
12	Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chemical Communications, 2014, 50, 4788-4790.	2.2	229
13	Porous Polymers Based on Aryleneethynylene Building Blocks. Macromolecular Rapid Communications, 2014, 35, 1466-1496.	2.0	58
14	Fe3O4 nanosphere@microporous organic networks: enhanced anode performances in lithium ion batteries through carbonization. Chemical Communications, 2014, 50, 7723.	2.2	57
15	Efficient Fixation of CO ₂ by a Zincâ€Coordinated Conjugated Microporous Polymer. ChemSusChem, 2014, 7, 2110-2114.	3.6	101
16	Molecular Structural Design of Conjugated Microporous Poly(Benzooxadiazole) Networks for Enhanced Photocatalytic Activity with Visible Light. Advanced Materials, 2015, 27, 6265-6270.	11.1	242
17	Conjugated Microporous Poly(Benzochalcogenadiazole)s for Photocatalytic Oxidative Coupling of Amines under Visible Light. ChemSusChem, 2015, 8, 3459-3464.	3.6	77
18	Template synthesis of hollow MoS ₂ â€"carbon nanocomposites using microporous organic polymers and their lithium storage properties. Nanoscale, 2015, 7, 11280-11285.	2.8	38

#	ARTICLE	IF	CITATIONS
19	Carbazolic Porous Organic Framework as an Efficient, Metal-Free Visible-Light Photocatalyst for Organic Synthesis. ACS Catalysis, 2015, 5, 2250-2254.	5.5	234
20	Hollow Microporous Organic Networks Bearing Triphenylamines and Anthraquinones: Diffusion Pathway Effect in Visible Light-Driven Oxidative Coupling of Benzylamines. ACS Macro Letters, 2015, 4, 669-672.	2.3	68
21	Design and fabrication of mesoporous heterogeneous basic catalysts. Chemical Society Reviews, 2015, 44, 5092-5147.	18.7	323
22	Hollow and sulfonated microporous organic polymers: versatile platforms for non-covalent fixation of molecular photocatalysts. RSC Advances, 2015, 5, 47270-47274.	1.7	29
23	Factors Influencing the Regioselectivity of the Oxidation of Asymmetric Secondary Amines with Singlet Oxygen. Chemistry - A European Journal, 2015, 21, 6528-6534.	1.7	50
24	Pyrene-Based Porous Organic Polymers as Efficient Catalytic Support for the Synthesis of Biodiesels at Room Temperature. ACS Sustainable Chemistry and Engineering, 2015, 3, 1715-1723.	3.2	80
25	Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chemical Communications, 2015, 51, 11814-11817.	2.2	25
26	Bioinspired Organocatalytic Aerobic C–H Oxidation of Amines with an <i>ortho</i> -Quinone Catalyst. Organic Letters, 2015, 17, 1469-1472.	2.4	84
27	Engineering of Sn–porphyrin networks on the silica surface: sensing of nitrophenols in water. Chemical Communications, 2015, 51, 8781-8784.	2.2	30
28	Main-Chain Organic Frameworks with Advanced Catalytic Functionalities. ACS Catalysis, 2015, 5, 2681-2691.	5.5	86
30	Conjugated microporous polymers with chiral BINAP ligand built-in as efficient catalysts for asymmetric hydrogenation. Catalysis Science and Technology, 2015, 5, 2585-2589.	2.1	40
31	Insights into the low surface area of conjugated microporous polymers and methodological suggestion for the enhancement of porosity. Polymer Chemistry, 2015, 6, 7363-7367.	1.9	29
32	Recent Advances in Aerobic Oxidation of Alcohols and Amines to Imines. ACS Catalysis, 2015, 5, 5851-5876.	5.5	431
33	Magnetically Separable Microporous Fe–Porphyrin Networks for Catalytic Carbene Insertion into N–H Bonds. ACS Catalysis, 2015, 5, 350-355.	5.5	67
34	Enhanced visible light promoted antibacterial efficiency of conjugated microporous polymer nanoparticles via molecular doping. Journal of Materials Chemistry B, 2016, 4, 5112-5118.	2.9	65
35	Synthesis and Catalytic Properties of New Metalloporphyrinâ€Based Porous Organic Framework Materials with Single and Accessible Sites. ChemCatChem, 2016, 8, 2393-2400.	1.8	26
36	Konstruktionsprinzip niedermolekularer organischer Halbleiter f $\tilde{A}^{1/4}$ r metallfreie Photokatalyse mit sichtbarem Licht. Angewandte Chemie, 2016, 128, 9935-9940.	1.6	21
37	Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers. ACS Catalysis, 2016, 6, 3594-3599.	5.5	195

3

#	ARTICLE	IF	CITATIONS
38	Modulating the Photocatalytic Activity of Graphene Quantum Dots via Atomic Tailoring for Highly Enhanced Photocatalysis under Visible Light. Advanced Functional Materials, 2016, 26, 8211-8219.	7.8	106
39	Oxygen-mediated formation of MoS _x -doped hollow carbon dots for visible light-driven photocatalysis. Journal of Materials Chemistry A, 2016, 4, 14796-14803.	5.2	33
40	Photocatalytic H2 Evolution by Pt-Loaded 9,9′-Spirobifluorene-Based Conjugated Microporous Polymers under Visible-Light Irradiation. Bulletin of the Chemical Society of Japan, 2016, 89, 887-891.	2.0	14
41	Structural Design Principle of Smallâ€Molecule Organic Semiconductors for Metalâ€Free, Visibleâ€Lightâ€Promoted Photocatalysis. Angewandte Chemie - International Edition, 2016, 55, 9783-9787.	7.2	92
42	Conjugated porous polymers for photocatalytic applications. Journal of Materials Chemistry A, 2016, 4, 18677-18686.	5.2	134
43	New Synthesis of Tetrahydrobenzodifurans by Iterative Coupling of Quinone Monoacetals with Alkene Nucleophiles. Heterocycles, 2016, 93, 295.	0.4	3
44	Tandem generation of isocoumarins in hollow microporous organic networks: nitrophenol sensing based on visible light. Journal of Materials Chemistry A, 2016, 4, 8010-8014.	5. 2	34
45	Water Compatible Conjugated Microporous Polyazulene Networks as Visible‣ight Photocatalysts in Aqueous Medium. ChemCatChem, 2016, 8, 694-698.	1.8	44
46	Photocatalytic Selective Bromination of Electron-Rich Aromatic Compounds Using Microporous Organic Polymers with Visible Light. ACS Catalysis, 2016, 6, 1113-1121.	5 . 5	133
47	Visible-Light-Driven Oxidative Coupling Reactions of Amines by Photoactive WS ₂ Nanosheets. ACS Catalysis, 2016, 6, 2754-2759.	5.5	152
48	Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(<scp>iii</scp>) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis. Polymer Chemistry, 2016, 7, 2299-2307.	1.9	62
49	Synthesis and photoluminescence properties of star-shaped 2,3,6,7-tetrasubstituted benzo[1,2-b:4,5-b′]difurans. Dyes and Pigments, 2016, 129, 199-208.	2.0	6
50	Conjugated porous polymers as precursors for electrocatalysts and storage electrode materials. Chemical Communications, 2016, 52, 316-318.	2.2	40
51	A fixed-bed photoreactor using conjugated nanoporous polymer-coated glass fibers for visible light-promoted continuous photoredox reactions. Journal of Materials Chemistry A, 2017, 5, 3792-3797.	5.2	45
52	Light-induced synthesis of triazine N-oxide-based cross-linked polymers for effective photocatalytic degradation of methyl orange. RSC Advances, 2017, 7, 9309-9315.	1.7	4
53	Robust porous organic polymers as efficient heterogeneous organo-photocatalysts for aerobic oxidation reactions. Journal of Materials Chemistry A, 2017, 5, 8697-8704.	5.2	96
54	Porous conjugated polymer via metal-free synthesis for visible light-promoted oxidative hydroxylation of arylboronic acids. Polymer, 2017, 126, 291-295.	1.8	42
55	A Conjugated Microporous Polymer for Palladiumâ€Free, Visible Lightâ€Promoted Photocatalytic Stilleâ€√ype Coupling Reactions. Advanced Science, 2017, 4, 1700101.	5. 6	51

#	Article	IF	CITATIONS
56	Photocatalytic Regioselective and Stereoselective $[2+2]$ Cycloaddition of Styrene Derivatives Using a Heterogeneous Organic Photocatalyst. ACS Catalysis, 2017, 7, 3097-3101.	5.5	80
57	Formation of Cyclic Carbonates from CO ₂ and Epoxides Catalyzed by a Cobaltâ€Coordinated Conjugated Microporous Polymer. ChemCatChem, 2017, 9, 2584-2587.	1.8	21
58	Visible and near infrared light active photocatalysis based on conjugated polymers. Journal of Industrial and Engineering Chemistry, 2017, 51, 27-43.	2.9	73
59	Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A, 2017, 5, 22933-22938.	5.2	176
60	A nanoporous graphene analog for superfast heavy metal removal and continuous-flow visible-light photoredox catalysis. Journal of Materials Chemistry A, 2017, 5, 20180-20187.	5.2	30
61	Sustainable Nanoporous Benzoxazole Networks as Metalâ€Free Catalysts for Oneâ€Pot Oxidative Selfâ€Coupling of Amines by Air Oxygen. Advanced Sustainable Systems, 2017, 1, 1700089.	2.7	7
62	Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework. ACS Catalysis, 2017, 7, 5438-5442.	5.5	261
63	Pyrazine Radical Cations as a Catalyst for the Aerobic Oxidation of Amines. European Journal of Organic Chemistry, 2017, 2017, 5391-5398.	1.2	13
64	Metal-free one-pot synthesis of benzofurans with ynones and quinones through aza-Michael/Michael/annulation sequence. Tetrahedron, 2017, 73, 7282-7290.	1.0	15
65	Eosin Y dye-based porous organic polymers for highly efficient heterogeneous photocatalytic dehydrogenative coupling reaction. RSC Advances, 2017, 7, 408-414.	1.7	55
66	"Greener―and modular synthesis of triazine-based conjugated porous polymers <i>via</i> direct arylation polymerization: structure–function relationship and photocatalytic application. Polymer Chemistry, 2018, 9, 1972-1982.	1.9	43
67	Engineered synthesis of hierarchical porous organic polymers for visible light and natural sunlight induced rapid degradation of azo, thiazine and fluorescein based dyes in a unique mechanistic pathway. Applied Catalysis B: Environmental, 2018, 227, 102-113.	10.8	79
68	Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations. ACS Catalysis, 2018, 8, 5313-5322.	5.5	113
69	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	6.6	555
70	Conjugated Microporous Polymers with Immobilized TiO ₂ Nanoparticles for Enhanced Visible Light Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700234.	1.2	38
71	Micro/mesoporous conjugated fluorinated iron-porphyrin polymer: porosity and heterogeneous catalyst for oxidation. Advanced Composites and Hybrid Materials, 2018, 1, 696-704.	9.9	9
72	Skeleton Carbonylation of Conjugated Microporous Polymers by Osmium Catalysis for Amine-Rich Functionalization. ACS Macro Letters, 2018, 7, 1353-1358.	2.3	23
73	Mixedâ€Phase 2Dâ€MoS ₂ as an Effective Photocatalyst for Selective Aerobic Oxidative Coupling of Amines under Visibleâ€Light Irradiation. Chemistry - A European Journal, 2018, 24, 13871-13878.	1.7	45

#	ARTICLE	IF	Citations
74	Electron donor-free photoredox catalysis via an electron transfer cascade by cooperative organic photocatalysts. Catalysis Science and Technology, 2018, 8, 3539-3547.	2.1	13
75	Designing conjugated microporous polymers for visible light-promoted photocatalytic carbon–carbon double bond cleavage in aqueous medium. Journal of Materials Chemistry A, 2018, 6, 22145-22151.	5.2	54
76	Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. ACS Catalysis, 2018, 8, 6751-6759.	5.5	106
77	AIEE Active Nanoassemblies of Pyrazine Based Organic Photosensitizers as Efficient Metal-Free Supramolecular Photoredox Catalytic Systems. Scientific Reports, 2019, 9, 11142.	1.6	15
78	Conjugated mesoporous polyazobenzene–Pd(II) composite: A potential catalyst for visible-light-induced Sonogashira coupling. Journal of Catalysis, 2019, 377, 183-189.	3.1	19
79	Porous organic frameworks with mesopores and [Ru(bpy) ₃] ²⁺ ligand built-in as a highly efficient visible-light heterogeneous photocatalyst. Materials Chemistry Frontiers, 2019, 3, 1909-1917.	3.2	21
80	Imineâ€Based Covalent Organic Frameworks as Photocatalysts for Metal Free Oxidation Processes under Visible Light Conditions. ChemCatChem, 2019, 11, 4916-4922.	1.8	59
81	Regular tuning of the ESIPT reaction of 3-hydroxychromone-based derivatives by substitution of functional groups. Organic Chemistry Frontiers, 2019, 6, 3093-3100.	2.3	32
82	Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100319.	5.6	32
83	Visible Lightâ€Mediated Conversion of Alcohols to Bromides by a Benzothiadiazoleâ€Containing Organic Photocatalyst. Advanced Synthesis and Catalysis, 2019, 361, 3852-3859.	2.1	15
84	One-pot synthesis of conjugated microporous polymers based on extended molecular graphenes for hydrogen storage. Polymer, 2019, 174, 96-100.	1.8	19
85	Pyrrolidine-based chiral porous polymers for heterogeneous organocatalysis in water. Polymer Chemistry, 2019, 10, 3298-3305.	1.9	24
86	Highly fluorescent triazolopyridine–thiophene D–A–D oligomers for efficient pH sensing both in solution and in the solid state. Physical Chemistry Chemical Physics, 2019, 21, 7174-7182.	1.3	26
87	Metal-free nitrogen -doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions. Green Chemistry, 2019, 21, 2448-2461.	4.6	51
88	Highly regioselective and sustainable solar click reaction: a new post-synthetic modified triazole organic polymer as a recyclable photocatalyst for regioselective azide–alkyne cycloaddition reaction. Green Chemistry, 2019, 21, 2677-2685.	4.6	15
89	Pd-nanoparticle decorated azobenzene based colloidal porous organic polymer for visible and natural sunlight induced Mott-Schottky junction mediated instantaneous Suzuki coupling. Chemical Engineering Journal, 2019, 358, 580-588.	6.6	53
90	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€Induced Photooxidation. Angewandte Chemie, 2019, 131, 3094-3098.	1.6	7
91	Mixed-Ligand Metal–Organic Framework for Two-Photon Responsive Photocatalytic C–N and C–C Coupling Reactions. ACS Catalysis, 2019, 9, 422-430.	5.5	88

#	Article	IF	CITATIONS
92	Construction of donor-acceptor type conjugated microporous polymers: A fascinating strategy for the development of efficient heterogeneous photocatalysts in organic synthesis. Applied Catalysis B: Environmental, 2019, 244, 36-44.	10.8	100
93	Porous Polymers as Multifunctional Material Platforms toward Taskâ€Specific Applications. Advanced Materials, 2019, 31, e1802922.	11.1	315
94	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€Induced Photooxidation. Angewandte Chemie - International Edition, 2019, 58, 3062-3066.	7.2	45
95	Fluorine-Phenanthroimidazole Porous Organic Polymer: Efficient Microwave Synthesis and Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3459-3465.	4.0	32
96	Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. Chemosphere, 2020, 243, 125334.	4.2	49
97	Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis. Chemical Science, 2020, 11, 1494-1502.	3.7	116
98	Single Atomically Anchored Cobalt on Carbon Quantum Dots as Efficient Photocatalysts for Visible Light-Promoted Oxidation Reactions. Chemistry of Materials, 2020, 32, 734-743.	3.2	75
99	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
100	Porous aromatic frameworks with precisely controllable conjugation lengths for visible light-driven photocatalytic selective C-H activation reactions. European Polymer Journal, 2020, 140, 110060.	2.6	13
101	Bisâ€Anthracene Fused Porphyrin as an Efficient Photocatalyst: Facile Synthesis and Visibleâ€Lightâ€Driven Oxidative Coupling of Amines. Chemistry - A European Journal, 2020, 26, 16497-16503.	1.7	7
102	Zinc-triggered photocatalytic selective synthesis of benzyl acetate on inverse spinel CuFe ₂ O ₄ 3D networks: a case of coupled redox photocatalytic reaction. Materials Advances, 2020, 1, 2773-2780.	2.6	8
103	Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chemical Society Reviews, 2020, 49, 3981-4042.	18.7	162
104	Emerging applications of porous organic polymers in visible-light photocatalysis. Journal of Materials Chemistry A, 2020, 8, 7003-7034.	5.2	215
105	Thiophene-embedded conjugated microporous polymers for photocatalysis. Catalysis Science and Technology, 2020, 10, 5171-5180.	2.1	37
106	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	5.5	200
107	Advances in Conjugated Microporous Polymers. Chemical Reviews, 2020, 120, 2171-2214.	23.0	810
108	CO ₂ -triggered reversible phase transfer of graphene quantum dots for visible light-promoted amine oxidation. Nanoscale, 2020, 12, 4410-4417.	2.8	24
109	Recent Advances of Conjugated Microporous Polymers in Visible Light–Promoted Chemical Transformations. Solar Rrl, 2021, 5, 2000489.	3.1	37

#	Article	IF	CITATIONS
110	Efficient and Selective Visible-Light-Driven Oxidative Coupling of Amines to Imines in Air over CdS@Zr-MOFs. ACS Applied Materials & Interfaces, 2021, 13, 2779-2787.	4.0	66
111	Triboelectric energy harvesting using conjugated microporous polymer nanoparticles in polyurethane films. Journal of Materials Chemistry A, 2021, 9, 12560-12565.	5.2	12
112	Visible-light-responsive lanthanide coordination polymers for highly efficient photocatalytic aerobic oxidation of amines and thiols. New Journal of Chemistry, 2021, 45, 15767-15775.	1.4	4
113	Porphyrin-Based Conjugated Microporous Polymer Tubes: Template-Free Synthesis and A Photocatalyst for Visible-Light-Driven Thiocyanation of Anilines. Macromolecules, 2021, 54, 3543-3553.	2.2	25
114	Donor–Acceptor Type Conjugated Microporous Polymer as a Metal-Free Photocatalyst for Visible-Light-Driven Aerobic Oxidative Coupling of Amines. Catalysis Letters, 2021, 151, 3145-3153.	1.4	6
115	Aromatic Dendrimers Bearing 2,4,6-Triphenyl-1,3,5-triazine Cores and Their Photocatalytic Performance. Journal of Organic Chemistry, 2021, 86, 6855-6862.	1.7	8
116	Fluorescent Hybrid Porous Polymers as Sustainable Heterogeneous Photocatalysts for Cross-Dehydrogenative Coupling Reactions. ACS Applied Materials & Enterfaces, 2021, 13, 42889-42897.	4.0	8
117	Engineering covalent organic frameworks in the modulation of photocatalytic degradation of pollutants under visible light conditions. Materials Today Chemistry, 2021, 22, 100548.	1.7	16
118	Rational design of bifunctional conjugated microporous polymers. Nanoscale Advances, 2021, 3, 4891-4906.	2.2	23
119	Nanostructured Porous Polymers for Metal-Free Photocatalysis. Engineering Materials and Processes, 2017, , 681-701.	0.2	0
120	Porous organic polymers for light-driven organic transformations. Chemical Society Reviews, 2022, 51, 2444-2490.	18.7	145
121	Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 126-134.	5.5	43
122	Direct synthesis of triphenylamine-based ordered mesoporous polymers for metal-free photocatalytic aerobic oxidation. Journal of Materials Chemistry A, 2022, 10, 13978-13986.	5.2	9
123	Integrating benzofuran and heteroradialene into donor-acceptor covalent organic frameworks for photocatalytic construction of multi-substituted olefins. Applied Catalysis B: Environmental, 2022, 316, 121630.	10.8	20
124	Fluorine-Functionalized Conjugated Microporous Polymer as Adsorbents for Solid-Phase Extraction of Nine Perfluorinated Alkyl Substances. SSRN Electronic Journal, 0, , .	0.4	0
125	Hydroboration of Hollow Microporous Organic Polymers: A Promising Postsynthetic Modification Method for Functional Materials. ACS Macro Letters, 2022, 11, 1034-1040.	2.3	7
126	Cationically Anchored Conjugated Microporous Polymers for Fast Adsorption of Negative Dyes from Aqueous Solution. ACS Applied Polymer Materials, 2022, 4, 6582-6591.	2.0	4
127	Rationally fabricating 3D porphyrinic covalent organic frameworks with scu topology as highly efficient photocatalysts. CheM, 2022, 8, 3064-3080.	5.8	42

#	Article	IF	CITATIONS
128	Fluorine-functionalized conjugated microporous polymer as adsorbents for solid-phase extraction of nine perfluorinated alkyl substances. Journal of Chromatography A, 2022, 1681, 463457.	1.8	2
129	Alkoxy Phosphonic Acid-Functionalized Conjugated Microporous Polymers for Efficient and Multi-environmental Proton Conduction. Materials Advances, 0, , .	2.6	0
130	Catalytic oxidation of ibuprofen over bulk heterojunction photocatalysts based on conjugated donor-acceptor configured benzoselenadiazole molecule. Environmental Research, 2023, 216, 114712.	3.7	3
131	Perylenediimide-Based Hybrid Materials for the Iodoperfluoroalkylation of Alkenes and Oxidative Coupling of Amines: Bay-Substituent-Mediated Photocatalytic Activity. ACS Applied Materials & Interfaces, 2022, 14, 53090-53100.	4.0	2
132	Solar-light-induced green conversion of amines into imines by lemon derived heteroatoms-doped GQDs as a green photocatalyst. Main Group Chemistry, 2022, , 1-10.	0.4	1
134	Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023, 10, 4083-4138.	6.4	13
135	Conjugated Porous Polymers and Hybrids. , 2023, , 126-154.		0