Controlled Flight of a Biologically Inspired, Insect-Scale

Science 340, 603-607 DOI: 10.1126/science.1231806

Citation Report

#	Article	IF	CITATIONS
1	Micro-Scale Mobile Robotics. Foundations and Trends in Robotics, 2011, 2, 143-259.	5.0	135
2	Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today, 2013, 8, 531-554.	6.2	586
3	Model-free control of a flapping-wing flying microrobot. , 2013, , .		11
4	Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data. International Journal of Micro Air Vehicles, 2013, 5, 273-286.	1.0	44
5	Flying like a fly. Nature, 2013, 498, 306-307.	13.7	36
6	Heavy calcium nuclei weigh in. Nature, 2013, 498, 307-308.	13.7	0
7	Biomimetic and Biohybrid Systems. Lecture Notes in Computer Science, 2013, , .	1.0	7
8	Pitch Moment Generation and Measurement in a Robotic Hummingbird. International Journal of Micro Air Vehicles, 2013, 5, 299-309.	1.0	18
9	A Biomimetic Neuronal Network-Based Controller for Guided Helicopter Flight. Lecture Notes in Computer Science, 2013, , 299-310.	1.0	2
10	Adaptive control for takeoff, hovering, and landing of a robotic fly. , 2013, , .		23
12	Plants as Model in Biomimetics and Biorobotics: New Perspectives. Frontiers in Bioengineering and Biotechnology, 2014, 2, 2.	2.0	65
13	Robot jellyfish takes to the air. Nature, 2014, , .	13.7	0
14	Predicting fruit fly's sensing rate with insect flight simulations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11246-11251.	3.3	26
15	Self-folding origami: shape memory composites activated by uniform heating. Smart Materials and Structures, 2014, 23, 094006.	1.8	236
16	Robo Raven: A Flapping-Wing Air Vehicle with Highly Compliant and Independently Controlled Wings. Soft Robotics, 2014, 1, 275-288.	4.6	104
17	A low cycle fatigue test device for micro-cantilevers based on self-excited vibration principle. Review of Scientific Instruments, 2014, 85, 105005.	0.6	10
18	An indoor autonomous flight of multiple ornithopters following a circular path. , 2014, , .		1
19	Is Flapping Flight Aerodynamically Efficient?. , 2014, , .		12

ATION REDO

#	Article	IF	CITATIONS
20	Stable hovering of a jellyfish-like flying machine. Journal of the Royal Society Interface, 2014, 11, 20130992.	1.5	55
21	Hovering Flight in the Honeybee <i>Apis mellifera</i> : Kinematic Mechanisms for Varying Aerodynamic Forces. Physiological and Biochemical Zoology, 2014, 87, 870-881.	0.6	31
22	Performance Characterization of Multifunctional Wings With Integrated Solar Cells for Unmanned Air Vehicles. , 2014, , .		6
23	Aeroelastic Shape Optimization of a Flapping Wing. , 2014, , .		6
24	Low Reynolds Number Experimental Studies on Flat Plates. , 2014, , .		6
25	Moment Generation of Stabilizing Axes for Insect-Inspired Flapping Wing Flight. , 2014, , .		1
26	Pitch and yaw control of a robotic insect using an onboard magnetometer. , 2014, , .		23
27	A computational tool to improve flapping efficiency of robotic insects. , 2014, , .		4
28	Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system. , 2014, , ,		70
29	Fly on the wall. , 2014, , .		14
30	A wirelessly powered, biologically inspired ambulatory microrobot. , 2014, , .		24
31	High-throughput study of flapping wing aerodynamics for biological and robotic applications. , 2014, ,		6
32	Magnetic Assembly of Soft Robots with Hard Components. Advanced Functional Materials, 2014, 24, 2180-2187.	7.8	129
33	Elastomeric Tiles for the Fabrication of Inflatable Structures. Advanced Functional Materials, 2014, 24, 5541-5549.	7.8	53
34	Hawkmoth flight performance in tornado-like whirlwind vortices. Bioinspiration and Biomimetics, 2014, 9, 025003.	1.5	27
35	Computational morphology for a soft micro air vehicle in hovering flight. , 2014, , .		1
36	Power and weight considerations in small, agile quadrotors. Proceedings of SPIE, 2014, , .	0.8	21
37	Principles of microscale flexure hinge design for enhanced endurance. , 2014, , .		23

#	ARTICLE	IF	CITATIONS
38	Pitch and Roll Control Mechanism for a Hovering Flapping Wing MAV. International Journal of Micro Air Vehicles, 2014, 6, 253-264.	1.0	64
39	The Bioinspiration Design Paradigm: A Perspective for Soft Robotics. Soft Robotics, 2014, 1, 28-37.	4.6	70
40	Flying <i>Drosophila</i> stabilize their vision-based velocity controller by sensing wind with their antennae. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1182-91.	3.3	130
41	Small-Scale Robotics : An Introduction. Lecture Notes in Computer Science, 2014, , 1-15.	1.0	8
42	Insect flight dynamics: Stability and control. Reviews of Modern Physics, 2014, 86, 615-646.	16.4	204
43	Fluid–structure interaction in compliant insect wings. Bioinspiration and Biomimetics, 2014, 9, 025005.	1.5	17
44	Diffusion refueling biofuel cell mountable on insect. , 2014, , .		9
45	Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications. Lecture Notes in Computer Science, 2014, , .	1.0	8
46	Optimization of mechanism design of flapping wing MAV. , 2014, , .		3
47	Statistical analysis of stochastic multi-robot boundary coverage. , 2014, , .		3
48	The effectiveness of resistive force theory in granular locomotion. Physics of Fluids, 2014, 26, .	1.6	88
49	Planar fabrication of a mesoscale voice coil actuator. , 2014, , .		10
50	Membraneless hydrogen peroxide micro semi-fuel cell for portable applications. RSC Advances, 2014, 4, 37284-37287.	1.7	21
51	Is low fertility really a problem? Population aging, dependency, and consumption. Science, 2014, 346, 229-234.	6.0	142
52	Evaluating Adaptive Clocking for Supply-Noise Resilience in Battery-Powered Aerial Microrobotic System-on-Chip. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 2309-2317.	3.5	8
53	A bioinspired approach to torque control in an insect-sized flapping-wing robot. , 2014, , .		8
54	Robotics and Neuroscience. Current Biology, 2014, 24, R910-R920.	1.8	64
55	FLIGHT SIMULATIONS OF A TWO-DIMENSIONAL FLAPPING WING BY THE IB-LBM. International Journal of Modern Physics C, 2014, 25, 1340020.	0.8	8

#	Article	IF	CITATIONS
56	Reconfigurable swarm robots produce self-assembling and self-repairing organisms. Robotics and Autonomous Systems, 2014, 62, 1371-1376.	3.0	13
57	Control of Wing Stroke Plane Angle for Stabilizing of a Hovering Flapping-Wing Air Vehicle. , 2014, , .		1
58	Single-loop control and trajectory following of a flapping-wing microrobot. , 2014, , .		11
59	Biorobotics: Using robots to emulate and investigate agile locomotion. Science, 2014, 346, 196-203.	6.0	367
60	Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 2014, 346, 224-229.	6.0	209
61	Micro- and nano-motors for biomedical applications. Journal of Materials Chemistry B, 2014, 2, 2395-2408.	2.9	201
62	Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Journal of the Royal Society Interface, 2014, 11, 20140281.	1.5	98
63	Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again. Proceedings of the IEEE, 2014, 102, 751-781.	16.4	55
64	Autonomous formation flight of multiple flapping-wing flying vehicles using motion capture system. Aerospace Science and Technology, 2014, 39, 596-604.	2.5	10
65	Adaptive control of a millimeter-scale flapping-wing robot. Bioinspiration and Biomimetics, 2014, 9, 025004.	1.5	98
66	Flight in nature I: Take-off in animal flyers. Aeronautical Journal, 2015, 119, 257-280.	1.1	2
67	Thorax unit driven by unidirectional USM for under 10-gram flapping MAV platform. , 2015, , .		0
68	Model driven design for flexure-based Microrobots. , 2015, , .		37
69	Electromechanical behavior of fiber-reinforced dielectric elastomer membrane. International Journal of Smart and Nano Materials, 2015, 6, 124-134.	2.0	6
70	Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring. Physical Review E, 2015, 92, 022712.	0.8	43
71	Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals. Scientific Reports, 2015, 5, 17414.	1.6	173
72	Micro Artificial Flexible Wings Mimicking Insect Wings. Journal of the Japan Society for Precision Engineering, 2015, 81, 405-409.	0.0	0
73	A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry. Bioinspiration and Biomimetics, 2015, 10, 026002.	1.5	17

		EPORT	
#	Article	IF	Citations
74	Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods. Bioinspiration and Biomimetics, 2015, 10, 056004.	1.5	19
75	Flexible flapping wings with self-organized microwrinkles. Bioinspiration and Biomimetics, 2015, 10, 046005.	1.5	29
76	Macroscopic Supramolecular Assembly to Fabricate 3D Ordered Structures: Towards Potential Tissue Scaffolds with Targeted Modification. Advanced Functional Materials, 2015, 25, 6851-6857.	7.8	51
77	Self-lifting artificial insect wings via electrostatic flapping actuators. , 2015, , .		27
78	Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles. Smart Materials and Structures, 2015, 24, 065042.	1.8	32
79	Science, technology and the future of small autonomous drones. Nature, 2015, 521, 460-466.	13.7	908
80	Novel dielectric elastomer structure of soft robot. , 2015, , .		4
81	Luminance-dependent visual processing enables moth flight in low light. Science, 2015, 348, 1245-1248.	6.0	122
82	The dispersal of alien species redefines biogeography in the Anthropocene. Science, 2015, 348, 1248-1251.	6.0	331
83	Hybrid aerial and aquatic locomotion in an at-scale robotic insect. , 2015, , .		21
84	Passively Stable Flapping Flight from Hover to Fast Forward through Shift in Wing Position. International Journal of Micro Air Vehicles, 2015, 7, 407-418.	1.0	7
85	Design of a two degree of freedom resonant miniature robotic leg. , 2015, , .		7
86	Wind disturbance rejection for an insect-scale flapping-wing robot. , 2015, , .		3
87	A power electronics unit to drive piezoelectric actuators for flying microrobots. , 2015, , .		10
88	Ultralight shape-recovering plate mechanical metamaterials. Nature Communications, 2015, 6, 10019.	5.8	66
89	Design and fabrication of an insect-scale flying robot for control autonomy. , 2015, , .		23
90	X4-MaG: A Low-Cost Open-Source Micro-Quadrotor and its Linux-Based Controller. International Journal of Micro Air Vehicles, 2015, 7, 89-109.	1.0	21
91	Rigid-Body Kinematics Versus Flapping Kinematics of a Flapping Wing Micro Air Vehicle. Journal of Guidance, Control, and Dynamics, 2015, 38, 2257-2269.	1.6	11

#	Article	IF	CITATIONS
92	Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspiration and Biomimetics, 2015, 10, 046003.	1.5	73
93	Enhancing the Design of Solar-Powered Flapping Wing Air Vehicles Using Multifunctional Structural Components. , 2015, , .		7
94	Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers. Bioinspiration and Biomimetics, 2015, 10, 026003.	1.5	41
95	Robot Makers: The Future of Digital Rapid Design and Fabrication of Robots. IEEE Robotics and Automation Magazine, 2015, 22, 27-36.	2.2	21
96	Rotating the heading angle of underactuated flapping-wing flyers by wriggle-steering. , 2015, , .		6
97	<italic>In Situ</italic> Platform for Isothermal Testing of Thin-Film Mechanical Properties Using Thermal Actuators. Journal of Microelectromechanical Systems, 2015, 24, 2008-2018.	1.7	10
98	Biomimetic Autopilot Based on Minimalistic Motion Vision for Navigating along Corridors Comprising U-shaped and S-shaped Turns. Journal of Bionic Engineering, 2015, 12, 47-60.	2.7	12
99	Nonlinear analysis of 2D flexible flapping wings. Nonlinear Dynamics, 2015, 81, 299-310.	2.7	7
100	Modal Analysis Using Digital Image Correlation Technique: An Application to Artificial Wing Mimicking Beetle's Hind Wing. Experimental Mechanics, 2015, 55, 989-998.	1.1	51
101	Finding Our Way through Phenotypes. PLoS Biology, 2015, 13, e1002033.	2.6	178
103	A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 2015, 349, 521-524.	6.0	207
104	Jumping on water: Surface tension–dominated jumping of water striders and robotic insects. Science, 2015, 349, 517-521.	6.0	306
105	Design of small, safe and robust quadrotor swarms. , 2015, , .		27
106	Aerodynamics of dynamic wing flexion in translating wings. Experiments in Fluids, 2015, 56, 1.	1.1	3
107	A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. Meccanica, 2015, 50, 2815-2824.	1.2	61
108	An artificial elementary eye with optic flow detection and compositional properties. Journal of the Royal Society Interface, 2015, 12, 20150414.	1.5	15
109	Attitude and altitude estimation and control on board a Flapping Wing Micro Air Vehicle. , 2015, , .		29
110	An Electromagnetic Actuator for High-Frequency Flapping-Wing Microair Vehicles. IEEE Transactions on Robotics, 2015, 31, 400-414.	7.3	75

#	ARTICLE	IF	Citations
111	Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators. Smart Materials and Structures, 2015, 24, 065023.	1.8	51
112	Lift and thrust generation by a butterfly-like flapping wing–body model: immersed boundary–lattice Boltzmann simulations. Journal of Fluid Mechanics, 2015, 767, 659-695.	1.4	57
113	Analysis and Fabrication of Unconventional Flapping Wing Air Vehicles. International Journal of Micro Air Vehicles, 2015, 7, 71-88.	1.0	9
114	Controlling roll perturbations in fruit flies. Journal of the Royal Society Interface, 2015, 12, 20150075.	1.5	89
115	Materials that couple sensing, actuation, computation, and communication. Science, 2015, 347, 1261689.	6.0	471
116	Trajectory control of MEMS falling object fabricated by SU-8 multilayer structure. , 2015, , .		0
117	Biomedical Applications of Untethered Mobile Milli/Microrobots. Proceedings of the IEEE, 2015, 103, 205-224.	16.4	656
118	A multi-chip system optimized for insect-scale flapping-wing robots. , 2015, , .		14
119	Design principle of wing rotational hinge stiffness. , 2015, , .		2
120	Effect of Wing Kinematics Modulation on Aerodynamic Force Generation in Hovering Insect-mimicking Flapping-wing Micro Air Vehicle. Journal of Bionic Engineering, 2015, 12, 539-554.	2.7	22
121	Optimal control of stochastic coverage strategies for robotic swarms. , 2015, , .		22
122	Model-Free Control of a Hovering Flapping-Wing Microrobot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 77, 95-111.	2.0	25
123	Biologically Inspired, Sophisticated Motions from Helically Assembled, Conducting Fibers. Advanced Materials, 2015, 27, 1042-1047.	11.1	37
124	Numerical investigation of insect wing fracture behaviour. Journal of Biomechanics, 2015, 48, 89-94.	0.9	55
125	Model Organisms are Not (Theoretical) Models. British Journal for the Philosophy of Science, 2015, 66, 327-348.	1.4	64
126	Optic Flow Regulation in Unsteady Environments: A Tethered MAV Achieves Terrain Following and Targeted Landing Over a Moving Platform. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 79, 275-293.	2.0	29
127	The Effect of the Phase Angle between the Forewing and Hindwing on the Aerodynamic Performance of a Dragonfly-Type Ornithopter. Aerospace, 2016, 3, 4.	1.1	14
128	Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation. Actuators, 2016, 5, 20.	1.2	4

#	ARTICLE	IF	Citations
129	Wing Geometry and Kinematic Parameters Optimization of Flapping Wing Hovering Flight. Applied Sciences (Switzerland), 2016, 6, 390.	1.3	5
131	Electrochemical Capacitors with High Output Voltages that Mimic Electric Eels. Advanced Materials, 2016, 28, 2070-2076.	11.1	119
132	Anomalous yaw torque generation from passively pitching wings. , 2016, , .		14
133	Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353, 158-162.	6.0	534
134	Design of a flapping-wing aerial vehicle based on four-bar mechanism. , 2016, , .		3
135	Soft pop-up mechanisms for micro surgical tools: Design and characterization of compliant millimeter-scale articulated structures. , 2016, , .		23
136	Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy. Bioinspiration and Biomimetics, 2016, 11, 016004.	1.5	36
137	An Insect Tether System Using Magnetic Levitation: Development, Analysis and Feedback Control. , 2016, , .		2
138	Spiking neural network (SNN) control of a flapping insect-scale robot. , 2016, , .		33
139	Modeling and control of an ornithopter for diving. , 2016, , .		6
140	Influence of wing morphological and inertial parameters on flapping flight performance. , 2016, , .		18
141	Resonance principle for the design of flapping wing micro air vehicles. , 2016, , .		2
142	Chirality-dependent flutter of Typha blades in wind. Scientific Reports, 2016, 6, 28907.	1.6	10
143	Solar cell as wings of different sizes for flapping-wing micro air vehicles. International Journal of Micro Air Vehicles, 2016, 8, 209-220.	1.0	6
144	Model Development for PZT Bimorph Actuation Employed for Micro-Air Vehicles. , 2016, , .		6
145	Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing. Journal of Fluid Mechanics, 2016, 791, 1-33.	1.4	49
146	Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle. Royal Society Open Science, 2016, 3, 160746.	1.1	42
147	Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait. Journal of the Royal Society Interface, 2016, 13, 20160060.	1.5	41

		CITATION RE	PORT	
#	Article		IF	CITATIONS
148	Controlled regular locomotion of algae cell microrobots. Biomedical Microdevices, 201	6, 18, 47.	1.4	28
149	Perching and takeoff of a robotic insect on overhangs using switchable electrostatic ac Science, 2016, 352, 978-982.	lhesion.	6.0	297
150	Design and analysis of a smart soft composite structure for various modes of actuatior Part B: Engineering, 2016, 95, 155-165.	1. Composites	5.9	26
151	Optimal wing rotation angle by the unsteady blade element theory for maximum trans generation in insect-mimicking flapping-wing micro air vehicle. Journal of Bionic Engine 261-270.		2.7	6
152	Flight control simulations of a butterfly-like flapping wing–body model by the immer boundary–lattice Boltzmann method. Computers and Fluids, 2016, 133, 103-115.	sed	1.3	13
153	Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV. Procee 2016, , .	edings of SPIE,	0.8	1
154	Flying Robots. Springer Handbooks, 2016, , 623-670.		0.3	12
155	Flight mechanics and control of escape manoeuvres in hummingbirds I. Flight kinemati Experimental Biology, 2016, 219, 3518-3531.	cs. Journal of	0.8	65
156	Fruit fly scale robots can hover longer with flapping wings than with spinning wings. Jo Royal Society Interface, 2016, 13, 20160730.	urnal of the	1.5	25
157	Blocking force of a piezoelectric stack actuator made of single crystal layers (PMN-29P Materials and Structures, 2016, 25, 095038.	T). Smart	1.8	9
158	Biomimetic Robots. Springer Handbooks, 2016, , 543-574.		0.3	12
159	Largeâ€Area Supercapacitor Textiles with Novel Hierarchical Conducting Structures. Ac Materials, 2016, 28, 8431-8438.	lvanced	11.1	158
160	Generation of Control Moments in an Insect-like Tailless Flapping-wing Micro Air Vehicl the Stroke-plane Angle. Journal of Bionic Engineering, 2016, 13, 449-457.	e by Changing	2.7	36
161	Intrusion rheology in grains and other flowableÂmaterials. Nature Materials, 2016, 15,	1274-1279.	13.3	70
162	A Solutionâ€Processed Highâ€Temperature, Flexible, Thinâ€Film Actuator. Advanced N 8618-8624.	1aterials, 2016, 28,	11.1	53
163	Biomechanics and biomimetics in insect-inspired flight systems. Philosophical Transact Royal Society B: Biological Sciences, 2016, 371, 20150390.	ions of the	1.8	93
164	A review on locomotion robophysics: the study of movement at the intersection of rob matter and dynamical systems. Reports on Progress in Physics, 2016, 79, 110001.	otics, soft	8.1	197
165	Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat Bioinspiration and Biomimetics, 2016, 11, 046007.	?.	1.5	22

#	Article	IF	CITATIONS
166	A predictive quasi-steady model of aerodynamic loads on flapping wings. Journal of Fluid Mechanics, 2016, 800, 688-719.	1.4	52
167	Bird-mimetic Wing System of Flapping-wing Micro Air Vehicle with Autonomous Flight Control Capability. Journal of Bionic Engineering, 2016, 13, 458-467.	2.7	27
168	Neural Basis Underlying Short- and Middle-range Navigation in Insects. Journal of the Robotics Society of Japan, 2016, 34, 685-689.	0.0	0
169	Social Interaction Test between a Rat and a Robot: A Pilot Study. International Journal of Advanced Robotic Systems, 2016, 13, 4.	1.3	18
170	Linear model identification of beetle-mimicking flapping wing micro-air vehicle in hovering flight. , 2016, , .		0
171	Insect-machine Hybrid System: Remote Radio Control of a Freely Flying Beetle (Mercynorrhina) Tj ETQq1 1	0.784314 0.2	rgBT /Overlo
172	Non-linear resonance modeling and system design improvements for underactuated flapping-wing vehicles. , 2016, , .		27
173	Emerging Critical Technologies and Security in the Asia-Pacific. , 2016, , .		3
174	Aeroelastic Optimization of Flap-gliding Micro Air Vehicle wings. , 2016, , .		0
175	Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspiration and Biomimetics, 2016, 11, 046001.	1.5	24
176	The Potential Import of New, Emerging, and Over-the-Horizon Technologies. , 2016, , 22-36.		2
177	Development of a 3.2g untethered flapping-wing platform for flight energetics and control experiments. , 2016, , .		17
178	Mechanics of a scalable high frequency flapping wing robotic platform capable of lift-off. , 2016, , .		28
179	A controllable flying vehicle with a single moving part. , 2016, , .		10
180	Cicada (Tibicen linnei) steers by force vectoring. Theoretical and Applied Mechanics Letters, 2016, 6, 107-111.	1.3	8
181	Instantaneous Lift and Motion Characteristics of Butterflies in Free Flight. , 2016, , .		8
182	Design and Control of an Agile Robotic Fish With Integrative Biomimetic Mechanisms. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1846-1857.	3.7	92
183	Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency. Smart Materials and Structures, 2016, 25, 055033.	1.8	35

#	Article	IF	CITATIONS
184	Integrating Solar Cells Into Flapping Wing Air Vehicles for Enhanced Flight Endurance. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	17
185	Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150712.	1.0	104
186	A Non-Newtonian Fluid Robot. Artificial Life, 2016, 22, 1-22.	1.0	5
187	Insect Flight: From Newton's Law to Neurons. Annual Review of Condensed Matter Physics, 2016, 7, 281-300.	5.2	14
188	Perching with a robotic insect using adaptive tracking control and iterative learning control. International Journal of Robotics Research, 2016, 35, 1185-1206.	5.8	43
189	Electrostatic flapping wings with pivot-spar brackets for high lift force. , 2016, , .		6
190	Low voltage electromagnetically driven artificial flapping wings. , 2016, , .		3
191	Aeroelastic Shape Optimization of a Flapping Wing. Journal of Aircraft, 2016, 53, 636-650.	1.7	9
192	The Dynamics of Passive Wing-Pitching in Hovering Flight of Flapping Micro Air Vehicles Using Three-Dimensional Aerodynamic Simulations. , 2016, , .		6
193	Highly compliant shape memory polymer gels for tunable damping and reversible adhesion. Smart Materials and Structures, 2016, 25, 025004.	1.8	10
194	Instantaneous wing kinematics tracking and force control of a high-frequency flapping wing insect MAV. Journal of Micro-Bio Robotics, 2016, 11, 67-84.	2.1	45
195	PULP: A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embedded Vision. Journal of Signal Processing Systems, 2016, 84, 339-354.	1.4	58
196	Introduction to Flapping Wing Design. , 2016, , 9-29.		2
197	The DelFly. , 2016, , .		54
198	Introduction to Autonomous Flight. , 2016, , 125-138.		0
199	Modelling wing wake and tail-wake interaction of a clap-and-peel flapping-wing MAV. , 2017, , .		5
200	Resonance Principle for the Design of Flapping Wing Micro Air Vehicles. IEEE Transactions on Robotics, 2017, 33, 183-197.	7.3	39
201	Petiolate wings: effects on the leading-edge vortex in flapping flight. Interface Focus, 2017, 7, 20160084.	1.5	25

		CITATION R	EPORT	
#	Article		IF	CITATIONS
202	A biomimetic robotic platform to study flight specializations of bats. Science Robotics,	2017, 2, .	9.9	161
203	Diversity of Cuticular Micro- and Nanostructures on Insects: Properties, Functions, and Applications. Annual Review of Entomology, 2017, 62, 185-205.	Potential	5.7	65
204	Effects of Altitude on the Flight Performance of Monarch Butterflies. , 2017, , .			0
205	Quasi-steady versus Navier-Stokes Solutions of Flapping Wing Aerodynamics. , 2017, ,			1
206	VAM: Hypocycloid Mechanism for Efficient Bioinspired Robotic Gaits. IEEE Robotics and Letters, 2017, 2, 1055-1061.	d Automation	3.3	5
207	Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System. Scientific 41383.	Reports, 2017, 7,	1.6	54
208	Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle feedback control. Bioinspiration and Biomimetics, 2017, 12, 036006.	with angular rates	1.5	144
209	An experimental comparative study of the efficiency of twisted and flat flapping wings hovering flight. Bioinspiration and Biomimetics, 2017, 12, 036009.	during	1.5	24
210	Rapidly Prototyping Robots: Using Plates and Reinforced Flexures. IEEE Robotics and A Magazine, 2017, 24, 41-47.	utomation	2.2	11
211	Lateral moving of an artificial flapping-wing insect driven by low voltage electromagnet 2017, , .	tic actuator. ,		1
212	Wing geometry and kinematic parameters optimization of flapping wing hovering fligh energy. Aerospace Science and Technology, 2017, 64, 192-203.	it for minimum	2.5	19
213	Materially Engineered Artificial Pollinators. CheM, 2017, 2, 224-239.		5.8	45
214	Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and Autonomous Robots, 2017, 41, 1555-1573.	l scaling.	3.2	13
216	Sticky Solution Provides Grip for the First Robotic Pollinator. CheM, 2017, 2, 162-164.		5.8	26
217	Theoretical and practical investigation into the use of a bio-inspired "click―mecha motor of a micro air vehicle. International Journal of Micro Air Vehicles, 2017, 9, 136-14	nism for the flight 45.	1.0	6
218	Controlled hovering flight of an insect-like tailless flapping-wing micro air vehicle. , 201	7,,.		3
219	Aerodynamic comparison of a butterfly-like flapping wing–body model and a revolvir Fluid Dynamics Research, 2017, 49, 035512.	ng-wing model.	0.6	4
220	A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying Journal of Fluid Mechanics, 2017, 819, 621-655.	gÂmachine.	1.4	22

#	Article	IF	CITATIONS
221	Classifications, applications, and design challenges of drones: A review. Progress in Aerospace	6.3	860
	Sciences, 2017, 91, 99-131.		
222	Obstacle Avoidance Strategy using Onboard Stereo Vision on a Flapping Wing MAV. IEEE Transactions on Robotics, 2017, 33, 858-874.	7.3	37
223	Energy harvesting and storage in 1D devices. Nature Reviews Materials, 2017, 2, .	23.3	421
224	Synthetic biology engineering of biofilms as nanomaterials factories. Biochemical Society Transactions, 2017, 45, 585-597.	1.6	33
225	Development of an autonomous flapping-wing aerial vehicle. Science China Information Sciences, 2017, 60, 1.	2.7	31
226	A light-driven artificial flytrap. Nature Communications, 2017, 8, 15546.	5.8	499
227	Invertebrate biomechanics. Current Biology, 2017, 27, R371-R375.	1.8	1
228	Fundamentals of soft robot locomotion. Journal of the Royal Society Interface, 2017, 14, 20170101.	1.5	207
229	Surrogate model development and feedforward control implementation for PZT bimorph actuators employed for robobee. , 2017, , .		1
230	A Fully Integrated Battery-Powered System-on-Chip in 40-nm CMOS for Closed-Loop Control of Insect-Scale Pico-Aerial Vehicle. IEEE Journal of Solid-State Circuits, 2017, 52, 2374-2387.	3.5	15
231	A Modular Folded Laminate Robot Capable of Multi Modal Locomotion. Springer Proceedings in Advanced Robotics, 2017, , 59-70.	0.9	4
232	Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle. Bioinspiration and Biomimetics, 2017, 12, 026010.	1.5	66
233	Aerodynamics of Ascending Flight in Fruit Flies. Journal of Bionic Engineering, 2017, 14, 75-87.	2.7	24
234	Biomechanics of aerial righting in wingless nymphal stick insects. Interface Focus, 2017, 7, 20160075.	1.5	31
235	Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts. Interface Focus, 2017, 7, 20160080.	1.5	36
236	Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence. Interface Focus, 2017, 7, 20160086.	1.5	45
237	Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots. Interface Focus, 2017, 7, 20160087.	1.5	33
238	Energetics in robotic flight at small scales. Interface Focus, 2017, 7, 20160088.	1.5	55

#	Article	IF	CITATIONS
239	Clarity of objectives and working principles enhances the success of biomimetic programs. Bioinspiration and Biomimetics, 2017, 12, 051001.	1.5	35
240	A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2017, 2, .	9.9	159
241	Flexible printed circuit board actuators. Smart Materials and Structures, 2017, 26, 125019.	1.8	2
242	Achieving hover equilibrium in free flight with a flexible flapping wing. Journal of Fluids and Structures, 2017, 75, 117-139.	1.5	13
243	Automated Kinematics Measurement and Aerodynamics of a Bioinspired Flapping Rotary Wing. Journal of Bionic Engineering, 2017, 14, 726-737.	2.7	11
244	Comparison of Aerodynamic Forces and Moments Calculated by Three-dimensional Unsteady Blade Element Theory and Computational Fluid Dynamics. Journal of Bionic Engineering, 2017, 14, 746-758.	2.7	12
246	Low-voltage electromagnetic actuators for flapping-wing micro aerial vehicles. Sensors and Actuators A: Physical, 2017, 265, 1-9.	2.0	17
247	A soft robot that navigates its environment through growth. Science Robotics, 2017, 2, .	9.9	603
248	Addressable wireless actuation for multijoint folding robots and devices. Science Robotics, 2017, 2, .	9.9	83
249	Design and analysis of aerodynamic force platforms for free flight studies. Bioinspiration and Biomimetics, 2017, 12, 064001.	1.5	16
250	The emergent physics of animal locomotion. Physics Today, 2017, 70, 34-40.	0.3	15
251	Geometric flight control of a hovering robotic hummingbird. , 2017, , .		38
252	Thermoplastic Dielectric Elastomer of Triblock Copolymer with High Electromechanical Performance. Macromolecular Rapid Communications, 2017, 38, 1700268.	2.0	30
253	Artificial insect wings with biomimetic wing morphology and mechanical properties. Bioinspiration and Biomimetics, 2017, 12, 056007.	1.5	17
254	From algorithms to devices: Enabling machine learning through ultra-low-power VLSI mixed-signal array processing. , 2017, , .		10
255	Guidelines for the design and control of bio-inspired hovering robots. , 2017, , .		5
256	In-flight data acquisition and flight testing for system identification of flapping-wing MAVs. , 2017, , .		0
257	Model-Based Evaluation of Control Roll, Pitch, Yaw Moments for a Robotic Hummingbird. Journal of Guidance, Control, and Dynamics, 2017, 40, 2934-2940.	1.6	4

	Cr	tation Report	
#	Article	IF	Citations
258	An actuated gaze stabilization platform for a flapping-wing microrobot. , 2017, , .		5
259	An efficient fluid–structure interaction model for optimizing twistable flapping wings. Journal of Fluids and Structures, 2017, 73, 82-99.	1.5	40
260	Optimal pitching axis location of flapping wings for efficient hovering flight. Bioinspiration and Biomimetics, 2017, 12, 056001.	1.5	10
261	A blade element approach to modeling aerodynamic flight of an insect-scale robot. , 2017, , .		5
262	Thin-film piezoelectric and high-aspect ratio polymer leg mechanisms for millimeter-scale robotics. International Journal of Intelligent Robotics and Applications, 2017, 1, 180-194.	1.6	21
263	Electrically Driving Sensors Based onÂPolymer. , 2017, , 287-323.		0
264	Miniature Resonant Ambulatory Robot. IEEE Robotics and Automation Letters, 2017, 2, 337-343.	3.3	61
267	Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics, 2017, , .	0.3	3
268	Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging. Journal of Nonlinear Science, 2017, 27, 1193-1214.	1.0	12
270	Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer. IEEE Transactions on Cybernetics, 2017, 47, 3452-3465.	6.2	283
272	Decentralized stochastic control of robotic swarm density: Theory, simulation, and experiment. , 2017 , .	7,	18
273	Data-Driven Model Development and Feedback Control Design for PZT Bimorph Actuators. , 2017, , .		2
274	Jumping aided takeoff: Conceptual design of a bio-inspired jumping-flapping multi-modal locomotion robot. , 2017, , .		10
275	Toward an insect-inspired event-based autopilot combining both visual and control events. , 2017, , .		5
276	Adaptive control for multirotor systems with completely uncertain dynamics. , 2017, , .		2
277	Rearranging agents in a small space using global controls. , 2017, , .		8
278	Quadrobee: Simulating flapping wing aerial vehicle dynamics on a quadrotor. , 2017, , .		2
279	An adaptive spiking neural controller for flapping insect-scale robots. , 2017, , .		3

#	Article	IF	CITATIONS
280	Ornithopter with a MEMS Differential Pressure Sensor. Journal of the Robotics Society of Japan, 2017, 35, 660-663.	0.0	0
282	Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot. Sensors, 2017, 17, 571.	2.1	15
283	From insects to robots. Arthropod Structure and Development, 2017, 46, 687-688.	0.8	5
284	It's Not a Bug, It's a Feature: Functional Materials in Insects. Advanced Materials, 2018, 30, e1705322.	11.1	120
285	Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot. Bioinspiration and Biomimetics, 2018, 13, 036009.	1.5	29
286	Design of Materials and Mechanisms for Responsive Robots. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 359-384.	7.5	17
287	Monolithic Piezoelectric Insect With Resonance Walking. IEEE/ASME Transactions on Mechatronics, 2018, 23, 524-530.	3.7	32
288	Concomitant sensing and actuation for piezoelectric microrobots. Smart Materials and Structures, 2018, 27, 065028.	1.8	41
289	High-frequency performance for a spiral-shaped piezoelectric bimorph. Modern Physics Letters B, 2018, 32, 1850111.	1.0	1
290	A Vision-Aided Approach to Perching a Bioinspired Unmanned Aerial Vehicle. IEEE Transactions on Industrial Electronics, 2018, 65, 3976-3984.	5.2	35
291	Dynamic Relationship Between Flapping Wing and Body Undulation of Monarch Butterflies in Free Flight. , 2018, , .		1
292	Proper orthogonal decomposition of straight and level flight kinematics in an insectivorous bat. , 2018, , .		3
293	Closure to "Discussion of â€~A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping Wing Vehicles'―(Helbling, E. F., and Wood, R. J., 2018, ASME Appl. Mech. Rev., 70(1),)	Тј иЕ ТQqO	010 rgBT /O
294	Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT. Journal of Micromechanics and Microengineering, 2018, 28, 025007.	1.5	9
295	A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping-Wing Vehicles. Applied Mechanics Reviews, 2018, 70, .	4.5	73
296	A direct optic flow-based strategy for inverse flight altitude estimation with monocular vision and IMU measurements. Bioinspiration and Biomimetics, 2018, 13, 036004.	1.5	15
297	Studying the Effect of the Tail on the Dynamics of a Flapping-Wing MAV using Free-Flight Data. , 2018, , .		2
298	Design of a Flapping Wing Mechanism to Coordinate Both Wing Swing and Wing Pitch. Journal of Mechanisms and Robotics, 2018, 10, .	1.5	13

#	Article	IF	CITATIONS
299	Robotics-inspired biology. Journal of Experimental Biology, 2018, 221, .	0.8	88
300	Attitude control system for a lightweight flapping wing MAV. Bioinspiration and Biomimetics, 2018, 13, 056004.	1.5	11
301	Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number. Royal Society Open Science, 2018, 5, 171307.	1.1	10
302	Longitudinal Flight Dynamic Analysis on Vertical Takeoff of a Tailless Flapping-Wing Micro Air Vehicle. Journal of Bionic Engineering, 2018, 15, 283-297.	2.7	16
303	Shape memory polymers for composites. Composites Science and Technology, 2018, 160, 169-198.	3.8	211
304	Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization. Bioinspiration and Biomimetics, 2018, 13, 046002.	1.5	22
305	A Low Mass Power Electronics Unit to Drive Piezoelectric Actuators for Flying Microrobots. IEEE Transactions on Power Electronics, 2018, 33, 3180-3191.	5.4	31
306	Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials. Advanced Materials, 2018, 30, e1703554.	11.1	270
307	Flexible Energy Harvesting/Storage Structures for Flapping Wing Air Vehicles. Conference Proceedings of the Society for Experimental Mechanics, 2018, , 35-45.	0.3	2
308	Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms. IEEE Transactions on Automatic Control, 2018, 63, 1563-1578.	3.6	11
309	Altitude Estimation and Control of an Insect-Scale Robot with an Onboard Proximity Sensor. Springer Proceedings in Advanced Robotics, 2018, , 57-69.	0.9	9
310	A New Robot Fly Design That is Easier to Fabricate and Capable of Flight and Ground Locomotion. , 2018, , .		18
311	Robot Patrol Path Planning Based on Combined Deep Reinforcement Learning. , 2018, , .		6
312	An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar. , 2018, , .		4
313	Milligram-Scale Micro Aerial Vehicle Design for Low-Voltage Operation. , 2018, , .		9
314	The Embedded On-Board Controller and Ground Monitoring System of a Flapping-Wing Aerial Vehicle. , 2018, , .		1
315	An Efficient Method for the Design and Fabrication of 2D Laminate Robotic Structures. , 2018, , .		0
316	Peak Load Shifting Benefit Evaluation of Distribution Network With Distributed Photovoltaic Considering Uncertainty. , 2018, , .		2

#	Article	IF	CITATIONS
317	Integrated Weather Monitoring Device for Multi-Parameter Sensing Modelled on Insect Antennae. , 2018, , .		1
318	Liftoff of a 190 mg Laser-Powered Aerial Vehicle: The Lightest Wireless Robot to Fly. , 2018, , .		78
319	Optimizing the structure and movement of a robotic bat with biological kinematic synergies. International Journal of Robotics Research, 2018, 37, 1233-1252.	5.8	16
320	An Integrated Design and Simulation Environment for Rapid Prototyping of Laminate Robotic Mechanisms. , 2018, , .		2
321	Insect-Computer Hybrid Robot. Molecular Frontiers Journal, 2018, 02, 30-42.	0.9	17
322	The Influence of Wing Kinematic Pattern of Biplane Flapping Wings on The Production of Aerodynamic Forces. , 2018, , .		0
323	ΑινοΤΤΑ. , 2018, , .		5
324	Design of an Autonomous Precision Pollination Robot. , 2018, , .		41
325	Challenges of Autonomous Flight in Indoor Environments. , 2018, , .		20
326	Asymmetric charge transfer phenomenon and its mechanism in self-excited electrostatic actuator. , 2018, , .		4
327	Speed control and force-vectoring of blue bottle flies in a magnetically-levitated flight mill. Journal of Experimental Biology, 2019, 222, .	0.8	7
328	Plasmonicâ€Assisted Graphene Oxide Artificial Muscles. Advanced Materials, 2019, 31, e1806386.	11.1	134
329	Autonomous Door and Corridor Traversal with a 20-Gram Flapping Wing MAV by Onboard Stereo Vision. Aerospace, 2018, 5, 69.	1.1	8
330	Electro-Aero-Mechanical Model of Piezoelectric Direct-Driven Flapping-Wing Actuator. Applied Sciences (Switzerland), 2018, 8, 1699.	1.3	11
331	Taking Inspiration from Flying Insects to Navigate inside Buildings. , 2018, , .		0
332	Simplified Quasi-Steady Aeromechanic Model for Flapping-Wing Robots with Passively Rotating Hinges. , 2018, , .		4
333	Quad-thopter: Tailless flapping wing robot with four pairs of wings. International Journal of Micro Air Vehicles, 2018, 10, 244-253.	1.0	16
334	Quasi-Steady versus Navier–Stokes Solutions of Flapping Wing Aerodynamics. Fluids, 2018, 3, 81.	0.8	17

#	Article	IF	CITATIONS
335	Aeromechanic Models for Flapping-Wing Robots With Passive Hinges in the Presence of Frontal Winds. IEEE Access, 2018, 6, 53890-53906.	2.6	7
336	High-Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices. ACS Nano, 2018, 12, 11838-11846.	7.3	158
337	Bidirectional, Thin-Film Repulsive-/Attractive-Force Electrostatic Actuators for a Crawling Milli-Robot. , 2018, , .		7
338	Nanocardboard as a nanoscale analog of hollow sandwich plates. Nature Communications, 2018, 9, 4442.	5.8	19
339	Genetic Algorithm Based Optimization of Wing Rotation in Hover. Fluids, 2018, 3, 59.	0.8	5
340	Can Scalable Design of Wings for Flapping Wing Micro Air Vehicle Be Inspired by Natural Flyers?. International Journal of Aerospace Engineering, 2018, 2018, 1-24.	0.5	5
341	First Autonomous Multi-Room Exploration with an Insect-Inspired Flapping Wing Vehicle. , 2018, , .		4
342	A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361, 1089-1094.	6.0	252
343	Robotic-flapper maneuvers and fruitfly turns. Science, 2018, 361, 1073-1074.	6.0	2
344	High-speed CAMShift Tracking of Insect on GPU. , 2018, , .		1
345	The effect of structural deformation on flapping wing energetics. Journal of Sound and Vibration, 2018, 429, 176-192.	2.1	24
346	Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number. Physics of Fluids, 2018, 30, 051903.	1.6	34
347	A Three-axis PD Control Model for Bumblebee Hovering Stabilization. Journal of Bionic Engineering, 2018, 15, 494-504.	2.7	12
348	Investigation on high-frequency performance of spiral-shaped trapezoidal piezoelectric cantilever. Modern Physics Letters B, 2018, 32, 1850187.	1.0	0
349	Bistability in the rotational motion of rigid and flexible flyers. Journal of Fluid Mechanics, 2018, 849, 1043-1067.	1.4	6
350	Optimal wing hinge position for fast ascent in a model fly. Journal of Fluid Mechanics, 2018, 849, 498-509.	1.4	4
351	Electrostatic flapping-wing actuator with improved lift force by the pivot-spar bracket design. Sensors and Actuators A: Physical, 2018, 280, 295-302.	2.0	11
352	Development and Analysis of a Three-Dimensional Printed Miniature Walking Robot With Soft Joints and Links. Journal of Mechanisms and Robotics, 2018, 10, .	1.5	22

#	Article	IF	CITATIONS
353	Digital in situ fabrication - Challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cement and Concrete Research, 2018, 112, 66-75.	4.6	86
354	U-turning an agile robotic cube by a soft dielectric elastomer resonator. , 2018, , .		2
355	Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Structure and Development, 2018, 47, 391-407.	0.8	50
356	Lift and power in fruitflies in vertically-ascending flight. Bioinspiration and Biomimetics, 2018, 13, 056008.	1.5	6
357	A plant-inspired kinematic model for growing robots. , 2018, , .		9
358	Functional Polymeric Materials Inspired by Geckos, Mussels, and Spider Silk. Macromolecular Chemistry and Physics, 2018, 219, 1800051.	1.1	5
359	Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. Journal of Fluids and Structures, 2018, 81, 69-96.	1.5	48
360	Design, fabrication and control of origami robots. Nature Reviews Materials, 2018, 3, 101-112.	23.3	372
361	Ultra‣ightweight, High Power Density Lithiumâ€Ion Batteries. Batteries and Supercaps, 2018, 1, 131-134.	2.4	25
362	Bioinspired Flapping-Wing Robot With Direct-Driven Piezoelectric Actuation and Its Takeoff Demonstration. IEEE Robotics and Automation Letters, 2018, 3, 4217-4224.	3.3	42
363	Bees with attitude: the effects of directed gusts on flight trajectories. Biology Open, 2018, 7, .	0.6	22
364	Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. Current Opinion in Insect Science, 2018, 30, 26-32.	2.2	23
365	Wing inertia as a cause of aerodynamically uneconomical flight with high angles-of-attack in hovering insects. Journal of Experimental Biology, 2018, 221, .	0.8	15
366	At-scale lift experiments modeling dragonfly forewings. Bioinspiration and Biomimetics, 2018, 13, 046008.	1.5	8
367	Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle. Aerospace Science and Technology, 2018, 79, 468-481.	2.5	43
368	Toward Controlled Flight of the Ionocraft: A Flying Microrobot Using Electrohydrodynamic Thrust With Onboard Sensing and No Moving Parts. IEEE Robotics and Automation Letters, 2018, 3, 2807-2813.	3.3	43
369	Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations. Physical Review E, 2019, 100, 013104.	0.8	10
370	A simulation-based approach to modeling component interactions during design of flapping wing aerial vehicles. International Journal of Micro Air Vehicles, 2019, 11, 175682931882232.	1.0	1

#	Article	IF	CITATIONS
371	Nitinol living hinges for millimeter-sized robots and medical devices. , 2019, , .		2
372	Yaw Torque Authority for a Flapping-Wing Micro-Aerial Vehicle. , 2019, , .		10
373	Digitally Adaptive High-Fidelity Analog Array Signal Processing Resilient to Capacitive Multiplying DAC Inter-Stage Gain Error. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 4095-4107.	3.5	2
374	Bionic Design and Attitude Control Measurement in a Double Flapping-Wing Micro Air Vehicle. Lecture Notes in Computer Science, 2019, , 240-254.	1.0	1
375	Aerodynamic mechanisms in bioâ€inspired micro air vehicles: a review in the light of novel compound layouts. IET Cyber-Systems and Robotics, 2019, 1, 2-12.	1.1	9
376	Towards efficient elastic actuation in bio-inspired robotics using dielectric elastomer artificial muscles. Smart Materials and Structures, 2019, 28, 095015.	1.8	24
377	Bio-inspired untethered fully soft robots in liquid actuated by induced energy gradients. National Science Review, 2019, 6, 970-981.	4.6	22
378	A Millimeterâ€Scale Snail Robot Based on a Lightâ€Powered Liquid Crystal Elastomer Continuous Actuator. Macromolecular Rapid Communications, 2019, 40, e1900279.	2.0	59
379	Wing flexibility reduces the energetic requirements of insect flight. Bioinspiration and Biomimetics, 2019, 14, 056007.	1.5	30
380	Design, modeling and control of a flying vehicle with a single moving part that can be positioned anywhere in space. Mechatronics, 2019, 61, 117-130.	2.0	12
381	Accurate position control of a flapping-wing robot enabling free-flight flow visualisation in a wind tunnel. International Journal of Micro Air Vehicles, 2019, 11, 175682931983368.	1.0	7
382	Artificial-Hand Technology—Current State of Knowledge in Designing and Forecasting Changes. Applied Sciences (Switzerland), 2019, 9, 4090.	1.3	11
384	Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575, 324-329.	13.7	460
385	Manipulating the Moving Trajectory of Insect-Scale Piezoelectric Soft Robots by Frequency. , 2019, , .		6
386	The optimum design of the flapping-wing mechanism. IOP Conference Series: Materials Science and Engineering, 2019, 631, 032019.	0.3	2
387	Titanium and titanium alloys in drones and other small flying objects. , 2019, , 91-113.		1
388	Dynamics and stability of Bat-Scale Flapping Wing Hovering Robot. , 2019, , .		2
389	Computational simulation and free flight validation of body vibration of flapping-wing MAV in forward flight. Aerospace Science and Technology, 2019, 95, 105491.	2.5	24

#	Article	IF	CITATIONS
390	From Studying Real Hummingbirds to Designing Hummingbird-Like Robots—A Literature Review. IEEE Access, 2019, 7, 131785-131804.	2.6	9
391	Design of the First Sub-Milligram Flapping Wing Aerial Vehicle. , 2019, , .		5
392	KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. International Journal of Micro Air Vehicles, 2019, 11, 175682931986137.	1.0	35
393	Longitudinal Modeling and Control of Tailed Flapping-Wings Micro Air Vehicles near Hovering. Journal of Robotics, 2019, 2019, 1-12.	0.6	3
394	Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics, 2019, 4, .	9.9	148
395	Acting Is Seeing: Navigating Tight Space Using Flapping Wings. , 2019, , .		11
396	Flappy Hummingbird: An Open Source Dynamic Simulation of Flapping Wing Robots and Animals. , 2019, ,		24
397	Intelligent Autonomous Pollination for Future Farming - A Micro Air Vehicle Conceptual Framework With Artificial Intelligence and Human-in-the-Loop. IEEE Access, 2019, 7, 119706-119717.	2.6	29
398	Rapid Inertial Reorientation of an Aerial Insect-sized Robot Using a Piezo-actuated Tail. , 2019, , .		8
399	Living IoT. , 2019, , .		61
399 400	Living IoT. , 2019, , . Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics, 2019, 878, 113-146.	1.4	61 2
	Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics,	1.4	
400	Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics, 2019, 878, 113-146.	1.4	2
400 401	 Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics, 2019, 878, 113-146. Learning Extreme Hummingbird Maneuvers on Flapping Wing Robots. , 2019, , . Bee⁺: A 95-mg Four-Winged Insect-Scale Flying Robot Driven by Twinned Unimorph 		2 24
400 401 402	 Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics, 2019, 878, 113-146. Learning Extreme Hummingbird Maneuvers on Flapping Wing Robots., 2019,,. Bee⁺: A 95-mg Four-Winged Insect-Scale Flying Robot Driven by Twinned Unimorph Actuators. IEEE Robotics and Automation Letters, 2019, 4, 4270-4277. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future 	3.3	2 24 34
400 401 402 403	Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics, 2019, 878, 113-146. Learning Extreme Hummingbird Maneuvers on Flapping Wing Robots., 2019, , . Bee ⁺ : A 95-mg Four-Winged Insect-Scale Flying Robot Driven by Twinned Unimorph Actuators. IEEE Robotics and Automation Letters, 2019, 4, 4270-4277. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions. Progress in Aerospace Sciences, 2019, 111, 100573.	3.3 6.3	2 24 34 82
400 401 402 403 404	Passive hovering of a flexible -flyer in a vertically oscillating airflow. Journal of Fluid Mechanics, 2019, 878, 113-146. Learning Extreme Hummingbird Maneuvers on Flapping Wing Robots. , 2019, , . Bee ⁺ : A 95-mg Four-Winged Insect-Scale Flying Robot Driven by Twinned Unimorph Actuators. IEEE Robotics and Automation Letters, 2019, 4, 4270-4277. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions. Progress in Aerospace Sciences, 2019, 111, 100573. Fluid dynamics and control of insect flight. Nature Reviews Physics, 2019, 1, 638-639.	3.3 6.3	2 24 34 82 1

	Сітаті	on Report	
#	Article	IF	CITATIONS
408	Local deformation and stiffness distribution in fly wings. Biology Open, 2019, 8, .	0.6	22
409	Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles. Bioinspiration and Biomimetics, 2019, 14, 036006.	1.5	16
410	Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti). PLoS ONE, 2019, 14, e0218672.	1.1	10
411	Design and Experimental Study on a Flapping Wing Micro Air Vehicle. Lecture Notes in Electrical Engineering, 2019, , 1330-1342.	0.3	0
412	Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions. Nano Energy, 2019, 63, 103810.	8.2	23
413	Sizing process, aerodynamic analysis, and experimental assessment of a biplane flapping wing nano air vehicle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5618-5636.	0.7	12
414	The Effects of Wing Mass Asymmetry on Low-Speed Flight Characteristics of an Insect Model. International Journal of Aeronautical and Space Sciences, 2019, 20, 940-952.	1.0	4
415	Theoretical Modeling and Experimental Validation of Inertial Piezoelectric Actuators. IEEE Access, 2019, 7, 19881-19889.	2.6	8
416	A minimal longitudinal dynamic model of a tailless flapping wing robot for control design. Bioinspiration and Biomimetics, 2019, 14, 046008.	1.5	16
417	Photothermal Bimorph Actuators with Inâ€Built Cooler for Light Mills, Frequency Switches, and Soft Robots. Advanced Functional Materials, 2019, 29, 1808995.	7.8	88
419	A light-driven flying balloon composed of carbon nanotube freestanding films. Applied Physics Express, 2019, 12, 047002.	1.1	2
420	A Review of Design and Fabrication of the Bionic Flapping Wing Micro Air Vehicles. Micromachines, 2019, 10, 144.	1.4	37
421	Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle. International Journal of Micro Air Vehicles, 2019, 11, 175682931983367.	1.0	10
422	An insect-inspired collapsible wing hinge dampens collision-induced body rotation rates in a microrobot. Journal of the Royal Society Interface, 2019, 16, 20180618.	1.5	18
423	REMODEL: Rethinking Deep CNN Models to Detect and Count on a NeuroSynaptic System. Frontiers in Neuroscience, 2019, 13, 4.	1.4	8
424	Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones. IEEE Journal of Solid-State Circuits, 2019, 54, 1106-1119.	3.5	72
425	Interactions of the wakes of two flapping wings in hover. Physics of Fluids, 2019, 31, 021901.	1.6	19
426	Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping. Sensors, 2019, 19, 478.	2.1	88

#	Article	IF	CITATIONS
427	Fibrous Orientation Effects on the Deformation and Stress of an Insect-like Flapping-wing Micro Aerial Vehicle Based on ACP. IOP Conference Series: Materials Science and Engineering, 2019, 585, 012060.	0.3	0
428	Control of Flying Robotic Insects: A Perspective and Unifying Approach. , 2019, , .		4
429	Cooperative Audio-Visual System for Localizing Small Aerial Robots. , 2019, , .		0
430	Current Status of insect-inspired Flapping Wing Micro Air Vehicles. , 2019, , .		Ο
431	Trajectory planning for a bat-like flapping wing robot. , 2019, , .		13
432	Tracking Experiments with ChevBot: A Laser-Actuated Stick-Slip Microrobot. , 2019, , .		3
433	Towards Improved Hybrid Actuation Mechanisms for Flapping Wing Micro Air Vehicles: Analytical and Experimental Investigations. Drones, 2019, 3, 73.	2.7	20
434	Aspect ratio studies on insect wings. Physics of Fluids, 2019, 31, .	1.6	32
435	Giant "Breathing―Proteinosomes with Jellyfish-like Property. ACS Applied Materials & Interfaces, 2019, 11, 47619-47624.	4.0	14
436	Scaling of the performance of insect-inspired passive-pitching flapping wings. Journal of the Royal Society Interface, 2019, 16, 20190609.	1.5	18
437	Design, Planning, and Control of an Origami-inspired Foldable Quadrotor. , 2019, , .		15
438	A portable three-degrees-of-freedom force feedback origami robot for human–robot interactions. Nature Machine Intelligence, 2019, 1, 584-593.	8.3	56
439	An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 2019, 4, .	9.9	295
440	Programmable Ultralight Magnets via Orientational Arrangement of Ferromagnetic Nanoparticles within Aerogel Hosts. ACS Nano, 2019, 13, 13875-13883.	7.3	24
441	Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mechanical Systems and Signal Processing, 2019, 125, 4-20.	4.4	48
443	Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation. Bioinspiration and Biomimetics, 2019, 14, 016015.	1.5	63
444	Agile and Resilient Insect-Scale Robot. Soft Robotics, 2019, 6, 133-141.	4.6	93
445	Design of flexible hinges in electromagnetically driven artificial flapping-wing insects for improved lift force. Journal of Micromechanics and Microengineering, 2019, 29, 015011.	1.5	7

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
446	An overview of biomimetic robots with animal behaviors. Neurocomputing, 2019, 332, 339-350.	3.5	72
447	Toward Autonomy in Sub-Gram Terrestrial Robots. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 231-252.	7.5	54
448	Influence of Center of Gravity Location on Flight Dynamic Stability in a Hovering Tailless FW-MAV: Longitudinal Motion. Journal of Bionic Engineering, 2019, 16, 130-144.	2.7	14
449	Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics, 2019, 2, 26-35.	13.1	322
450	Curving to Fly: Synthetic Adaptation Unveils Optimal Flight Performance of Whirling Fruits. Physical Review Letters, 2019, 122, 024501.	2.9	32
451	Yaw control torque generation for a hovering robotic hummingbird. International Journal of Advanced Robotic Systems, 2019, 16, 172988141882396.	1.3	8
452	Transition to chaos in the flow-induced vibration of a pitching–plunging airfoil at low Reynolds numbers: Ruelle–Takens–Newhouse scenario. International Journal of Non-Linear Mechanics, 2019, 109, 189-203.	1.4	14
453	Aerodynamics of a Flapping-Perturbed Revolving Wing. AIAA Journal, 2019, 57, 3728-3743.	1.5	23
454	Effect of flexibility on unsteady aerodynamics forces of a purely plunging airfoil. Chinese Journal of Aeronautics, 2020, 33, 88-101.	2.8	16
455	Uncertainty and Disturbance Estimator-Based Control of a Flapping-Wing Aerial Vehicle With Unknown Backlash-Like Hysteresis. IEEE Transactions on Industrial Electronics, 2020, 67, 4826-4835.	5.2	21
456	Power optimization of a conical dielectric elastomer actuator for resonant robotic systems. Extreme Mechanics Letters, 2020, 35, 100619.	2.0	36
457	Kirigamiâ€Based Lightâ€Induced Shapeâ€Morphing and Locomotion. Advanced Materials, 2020, 32, e1906233.	11.1	147
458	An Insect-Scale Self-Sufficient Rolling Microrobot. IEEE Robotics and Automation Letters, 2020, 5, 167-172.	3.3	15
459	Neurorobots as a Means Toward Neuroethology and Explainable AI. Frontiers in Neurorobotics, 2020, 14, 570308.	1.6	14
460	Recent advancements in flapping mechanism and wing design of micro aerial vehicles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 4425-4446.	1.1	9
461	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1
462	Mimicking nature's flyers: a review of insect-inspired flying robots. Current Opinion in Insect Science, 2020, 42, 70-75.	2.2	21
463	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0

ARTICLE

164 Bioinspired Underwater Propulsors 2020 113

IF CITATIONS

464	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
465	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
466	Improved lift force of a resonant-driven flapping-wing micro aerial vehicle by suppressing wing–body and wing–wing vibration coupling. Extreme Mechanics Letters, 2020, 40, 100867.	2.0	8
467	Wireless steerable vision for live insects and insect-scale robots. Science Robotics, 2020, 5, .	9.9	50
468	An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Science Robotics, 2020, 5, .	9.9	115
469	Enhancements of Loading Capacity and Moving Ability by Microstructures for Wireless Soft Robot Boats. Langmuir, 2020, 36, 14728-14736.	1.6	4
470	A Sub-100 mg Electromagnetically Driven Insect-inspired Flapping-wing Micro Robot Capable of Liftoff and Control Torques Modulation. Journal of Bionic Engineering, 2020, 17, 1085-1095.	2.7	14
471	Design and kinematic analysis of flapping wing mechanism for common swift inspired micro aerial vehicle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622097404.	1.1	9
472	Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370, 1214-1219.	6.0	79
473	Triboelectric Nanogenerator Powered Electrowetting-on-Dielectric Actuator for Concealed Aquatic Microbots. ACS Nano, 2020, 14, 15394-15402.	7.3	31
474	Efficient flapping wing drone arrests high-speed flight using post-stall soaring. Science Robotics, 2020, 5, .	9.9	36
476	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
477	Bionic Organs. , 2020, , 167-192.		1
478	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
479	Flying of Insects. , 2020, , 271-299.		5
480	Bioinspired Building Envelopes. , 2020, , 343-354.		0
482	Full Flight Envelope and Trim Map of Flapping-Wing Micro Aerial Vehicles. Journal of Guidance, Control, and Dynamics, 2020, 43, 2218-2236.	1.6	9
483	Miniaturization re-establishes symmetry in the wing folding patterns of featherwing beetles. Scientific Reports, 2020, 10, 16458.	1.6	3

#	Article	IF	CITATIONS
484	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
485	Evolved Neuromorphic Control for High Speed Divergence-Based Landings of MAVs. IEEE Robotics and Automation Letters, 2020, 5, 6239-6246.	3.3	12
486	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
487	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
488	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
489	A Testing Platform for Flapping-Wing Robots. , 2020, , .		1
490	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	3.3	244
491	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
492	An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Science Robotics, 2020, 5, .	9.9	88
493	Insect wing damage: causes, consequences and compensatory mechanisms. Journal of Experimental Biology, 2020, 223, .	0.8	30
494	Drones become even more insect-like. Science, 2020, 368, 586-587.	6.0	3
495	An At-Scale Tailless Flapping-Wing Hummingbird Robot. I. Design, Optimization, and Experimental Validation. IEEE Transactions on Robotics, 2020, 36, 1511-1525.	7.3	53
496	Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Science Robotics, 2020, 5, .	9.9	93
497	Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations. Bioinspiration and Biomimetics, 2020, 15, 056001.	1.5	8
498	Aerodynamics Force Analysis for Designing a Flapping Butterfly Robot Wing. , 2020, , .		2
499	Recent progress of morphable 3D mesostructures in advanced materials. Journal of Semiconductors, 2020, 41, 041604.	2.0	9
500	Aerodynamic performance enhancement for flapping airfoils by co-flow jet. Chinese Journal of Aeronautics, 2020, 33, 2535-2554.	2.8	9
501	Design principles for non-reciprocal photomechanical actuation. Soft Matter, 2020, 16, 5951-5958.	1.2	17

# 502	ARTICLE Fibrous Orientation Effects on the Deformation and Stress of a Pigeon-like Flapping-wing Micro Aerial Vehicle Based on APDL. IOP Conference Series: Materials Science and Engineering, 2020, 816, 012002.	IF 0.3	Citations 0
503	Ramus: A Frequency-Multiplexed Power Bus for Powering, Sensing and Controlling Robots. IEEE Robotics and Automation Letters, 2020, 5, 4126-4132.	3.3	Ο
504	Automatic tracking of free-flying insects using a cable-driven robot. Science Robotics, 2020, 5, .	9.9	17
505	A Survey on Mechanical Solutions for Hybrid Mobile Robots. Robotics, 2020, 9, 32.	2.1	21
506	Review on bio-inspired flight systems and bionic aerodynamics. Chinese Journal of Aeronautics, 2021, 34, 170-186.	2.8	67
507	Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020, 8, 5517-5524.	2.7	40
508	Materials as Machines. Advanced Materials, 2020, 32, e1906564.	11.1	213
509	Design and Control of Bioinspired Millibots. Advanced Intelligent Systems, 2020, 2, 2000059.	3.3	0
510	Power-Efficient Driver Circuit for Piezo Electric Actuator with Passive Charge Recovery. Energies, 2020, 13, 2866.	1.6	9
511	Towards the Long-Endurance Flight of an Insect-Inspired, Tailless, Two-Winged, Flapping-Wing Flying Robot. IEEE Robotics and Automation Letters, 2020, 5, 5059-5066.	3.3	51
512	Effect of corrugation on the aerodynamic performance of three-dimensional flapping wings. Aerospace Science and Technology, 2020, 105, 106041.	2.5	20
513	Design and experimental study of a new flapping wing rotor micro aerial vehicle. Chinese Journal of Aeronautics, 2020, 33, 3092-3099.	2.8	29
514	Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy, 2020, 71, 104578.	8.2	44
515	Taking inspiration from climbing plants: methodologies and benchmarks—a review. Bioinspiration and Biomimetics, 2020, 15, 031001.	1.5	38
516	Untethered Flight of an At-Scale Dual-motor Hummingbird Robot with Bio-inspired Decoupled Wings. IEEE Robotics and Automation Letters, 2020, , 1-1.	3.3	28
517	Photophoretic Levitation of Macroscopic Nanocardboard Plates. Advanced Materials, 2020, 32, e1906878.	11.1	9
518	Deployable tessellated transducer array for ultrasound focusing and bio-heat generation in a multilayer environment. Ultrasonics, 2020, 104, 106108.	2.1	6
519	Influence of Center of Gravity Location on Flight Dynamic Stability in a Hovering Tailless FW-MAV: Lateral Motion. Journal of Bionic Engineering, 2020, 17, 148-160.	2.7	7

#	Article	IF	CITATIONS
520	Sunlight-Driven Continuous Flapping-Wing Motion. ACS Applied Materials & Interfaces, 2020, 12, 6460-6470.	4.0	18
521	A Device for Rapid, Automated Trimming of Insect-Sized Flying Robots. IEEE Robotics and Automation Letters, 2020, 5, 1373-1380.	3.3	19
522	A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones. Science Robotics, 2020, 5, .	9.9	23
523	A laser-microfabricated electrohydrodynamic thruster for centimeter-scale aerial robots. PLoS ONE, 2020, 15, e0231362.	1.1	13
524	Flexoskeleton Printing Enables Versatile Fabrication of Hybrid Soft and Rigid Robots. Soft Robotics, 2020, 7, 770-778.	4.6	18
525	Granular Jamming Feet Enable Improved Foot-Ground Interactions for Robot Mobility on Deformable Ground. IEEE Robotics and Automation Letters, 2020, 5, 3975-3981.	3.3	24
526	Low-Noise Flapping Wings with Tensed Membrane. AIAA Journal, 2020, 58, 2388-2397.	1.5	3
527	Bending control of liquid-crystal elastomers based on doped azo derivatives synthesized via controlled gradient polymerization. EXPRESS Polymer Letters, 2020, 14, 566-575.	1.1	1
528	Recent progress in flapping wings for micro aerial vehicle applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 245-264.	1.1	15
529	Design of a distributed compliant mechanism using spring-lever model and topology optimization for piezoelectrically actuated flapping wings. Mechanics of Advanced Materials and Structures, 2021, 28, 118-126.	1.5	13
530	Morphologically induced stability on an underwater legged robot with a deformable body. International Journal of Robotics Research, 2021, 40, 435-448.	5.8	20
531	A new control framework for flapping-wing vehicles based on 3D pendulum dynamics. Automatica, 2021, 123, 109293.	3.0	2
532	Robust fluid–structure interaction analysis for parametric study of flapping motion. Finite Elements in Analysis and Design, 2021, 183-184, 103494.	1.7	2
533	The frequency-response behaviour of flexible piezoelectric devices for detecting the magnitude and loading rate of stimuli. Journal of Materials Chemistry C, 2021, 9, 584-594.	2.7	34
534	Locomotion of Miniature Soft Robots. Advanced Materials, 2021, 33, e2003558.	11.1	95
535	Multi-physics simulation of an insect with flapping wings. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235, 1318-1339.	0.7	16
536	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	11.1	75
537	Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials, 2021, 33, e2002882.	11.1	66

#	Article	IF	CITATIONS
538	Design of functionally cooperating systems and application towards self-propulsive mini-generators. Materials Chemistry Frontiers, 2021, 5, 129-150.	3.2	14
539	Bio-Inspired Rapid Escape and Tight Body Flip on an At-Scale Flapping Wing Hummingbird Robot Via Reinforcement Learning. IEEE Transactions on Robotics, 2021, 37, 1742-1751.	7.3	16
540	Collision Resilient Insect-Scale Soft-Actuated Aerial Robots With High Agility. IEEE Transactions on Robotics, 2021, 37, 1752-1764.	7.3	49
541	A six-degree-of-freedom proportional-derivative control strategy for bumblebee flight stabilization. Journal of Biomechanical Science and Engineering, 2021, 16, .	0.1	1
542	Design and Free Play Analysis for a Control Mechanism of an Insect-Type FWMAV. , 2021, , .		0
543	Fabrication and Characterization ofÂFolded Foils Supporting Streamwise Traveling Waves. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 399-412.	0.2	0
544	Zinc oxide heterostructures: advances in devices from self-powered photodetectors to self-charging supercapacitors. Materials Advances, 2021, 2, 6768-6799.	2.6	19
545	Design of Bionic Foldable Wing Mimicking the Hind Wings of the C. Buqueti Bamboo Weevil. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	4
546	Effects of wing-to-body mass ratio on insect flapping flights. Physics of Fluids, 2021, 33, .	1.6	19
547	Liquid Crystal Soft Actuators and Robots toward Mixed Reality. Advanced Functional Materials, 2021, 31, 2009835.	7.8	57
548	Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles. Applied Sciences (Switzerland), 2021, 11, 1546.	1.3	8
549	Estimation of the State of Folding Structures using a Novel Sensor. Journal of Sensor Science and Technology, 2021, 30, 88-93.	0.1	0
550	The modeling and numerical solution for flapping wing hovering wingbeat dynamics. Aerospace Science and Technology, 2021, 110, 106474.	2.5	14
551	Flight control of a large-scale flapping-wing flying robotic bird: System development and flight experiment. Chinese Journal of Aeronautics, 2022, 35, 235-249.	2.8	12
552	Magnetically Driven Micro and Nanorobots. Chemical Reviews, 2021, 121, 4999-5041.	23.0	345
553	Photostrictive Effect: Characterization Techniques, Materials, and Applications. Advanced Functional Materials, 2021, 31, 2010706.	7.8	24
554	A non-overshooting controller for vehicle path following. Transactions of the Institute of Measurement and Control, 2021, 43, 2282-2291.	1.1	3
555	Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. Bioinspiration and Biomimetics, 2021, 16, 036001.	1.5	8

#	Article	IF	CITATIONS
556	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	4.6	9
557	Flexibility Effects of a Flapping Mechanism Inspired by Insect Musculoskeletal System on Flight Performance. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612183.	2.0	7
558	Biomechanics of insect cuticle: an interdisciplinary experimental challenge. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	24
559	Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures. Nonlinear Dynamics, 2021, 104, 1991-2013.	2.7	31
561	Unsteady aerodynamics of a micro flapping rotary wing in forward flight. Aerospace Science and Technology, 2021, 111, 106530.	2.5	7
562	The WiFly: Flapping-Wing Small Unmanned Aerial Vehicle with Center-of-Gravity Shift Mechanism. Journal of Robotics and Mechatronics, 2021, 33, 205-215.	0.5	2
563	Flying With Damaged Wings: The Effect on Flight Capacity and Bio-Inspired Coping Strategies of a Flapping Wing Robot. IEEE Robotics and Automation Letters, 2021, 6, 2114-2121.	3.3	14
564	Yaw Control of a Hovering Flapping-Wing Aerial Vehicle With a Passive Wing Hinge. IEEE Robotics and Automation Letters, 2021, 6, 1864-1871.	3.3	15
565	Liftoff of a New Hovering Oscillating-wing Micro Aerial Vehicle. Journal of Bionic Engineering, 2021, 18, 649-661.	2.7	2
566	Linearized Aerodynamic Modeling of Flapping Rotary Wings by Rotating the Leading-Edge Suction. AIAA Journal, 2021, 59, 1884-1890.	1.5	3
567	Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210352.	1.2	16
568	Influence of Different Take-Off Weights on the Longitudinal Dynamic Stability of Flapping-Wing MAVs. Journal of Aerospace Engineering, 2021, 34, 04021006.	0.8	Ο
569	Autonomous Flying With Neuromorphic Sensing. Frontiers in Neuroscience, 2021, 15, 672161.	1.4	3
570	Spiderâ€Inspired Electrohydraulic Actuators for Fast, Softâ€Actuated Joints. Advanced Science, 2021, 8, e2100916.	5.6	46
571	Effects of airfoil on aerodynamic performance of flapping wing. Biomimetic Intelligence and Robotics, 2021, 1, 100004.	1.1	2
572	Toward a living soft microrobot through optogenetic locomotion control of <i>Caenorhabditis elegans</i> . Science Robotics, 2021, 6, .	9.9	33
573	An Electrostatic Self-Excited Resonator with Pre-Tension/Pre-Compression Constraint for Active Rotation Control. Micromachines, 2021, 12, 650.	1.4	2
574	Fast-moving piezoelectric micro-robotic fish with double caudal fins. Robotics and Autonomous Systems, 2021, 140, 103733.	3.0	42

#	Article	IF	CITATIONS
575	A review: Learning from the flight of beetles. Computers in Biology and Medicine, 2021, 133, 104397.	3.9	12
576	Effects of uniform vertical inflow perturbations on the performance of flapping wings. Royal Society Open Science, 2021, 8, 210471.	1.1	4
577	Physical reservoir computing with origami and its application to robotic crawling. Scientific Reports, 2021, 11, 13002.	1.6	40
578	Aerodynamic investigation of three-dimensional $\hat{a} \in \hat{c}$ clap and fling $\hat{a} \in \hat{c}$ motion. , 2021, , .		1
579	Strongly enhanced electromechanical coupling in atomically thin transition metal dichalcogenides. Materials Today, 2021, 47, 69-74.	8.3	7
580	Untethered Soft Robots for Future Planetary Explorations?. Advanced Intelligent Systems, 2023, 5, 2100106.	3.3	9
581	Wake Effects on Force Production of a Translating-Pitching Flat Plate. , 2021, , .		4
582	Physical intelligence as a new paradigm. Extreme Mechanics Letters, 2021, 46, 101340.	2.0	114
583	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
584	Interaction of the wakes of two flapping wings on control forces and moment. Aerospace Science and Technology, 2021, 115, 106794.	2.5	3
585	3D Temporaryâ€Magnetized Soft Robotic Structures for Enhanced Energy Harvesting. Advanced Materials, 2021, 33, e2102691.	11.1	23
586	Asynchronous and Selfâ€Adaptive Flight Assembly via Electrostatic Actuation of Flapping Wings. Advanced Intelligent Systems, 2021, 3, 2100048.	3.3	3
587	Miniature Ultralight Deformable Squama Mechanics and Skin Based on Piezoelectric Actuation. Micromachines, 2021, 12, 969.	1.4	3
588	Extended incremental nonlinear dynamic inversion for optical flow control of micro air vehicles. Aerospace Science and Technology, 2021, 116, 106889.	2.5	7
589	Elastodynamic model for flapping-wing micro aerial vehicle. Bioinspiration and Biomimetics, 2021, 16, 065009.	1.5	3
590	Scalability of resonant motor-driven flapping wing propulsion systems. Royal Society Open Science, 2021, 8, 210452.	1.1	11
591	Synthetic Muscleâ,,¢ for Deep Space Travel and Other Applications on Earth and in Space. , 2022, , 1-48.		0
592	Construction of Nanomotors with Replaceable Engines by Supramolecular Machine-Based Host–Guest Assembly and Disassembly. Journal of the American Chemical Society, 2021, 143, 15063-15072.	6.6	34

ΙΤΛΤΙΟΝ

P

#	Article	IF	Citations
593	Solar Powered Small Unmanned Aerial Vehicles: A Review. Energy Technology, 2021, 9, 2100587.	1.8	13
594	Introductory Chapter: Diptera. , 0, , .		0
595	SMARTI: A 60-mg Steerable Robot Driven by High-Frequency Shape-Memory Alloy Actuation. IEEE Robotics and Automation Letters, 2021, 6, 8173-8180.	3.3	20
596	Feedback-Assisted Feedforward Hysteresis Compensation: A Unified Approach and Applications to Piezoactuated Nanopositioners. IEEE Transactions on Industrial Electronics, 2021, 68, 11245-11254.	5.2	6
597	Effects of wing kinematics, corrugation, and clap-and-fling on aerodynamic efficiency of a hovering insect-inspired flapping-wing micro air vehicle. Aerospace Science and Technology, 2021, 118, 106990.	2.5	15
598	Generative design of bioinspired wings based on deployable hindwings of Anomala Corpulenta Motschulsky. Micron, 2021, 151, 103150.	1.1	3
599	Moisture induced electricity for self-powered microrobots. Nano Energy, 2021, 90, 106499.	8.2	23
600	Adaptive Finite-Time Fault-Tolerant Control for Uncertain Flexible Flapping Wings Based on Rigid Finite Element Method. IEEE Transactions on Cybernetics, 2022, 52, 9036-9047.	6.2	26
601	Study on a new type of miniature piezo walking robot. Smart Materials and Structures, 0, , .	1.8	8
602	RoboFly: An Insect-Sized Robot With Simplified Fabrication That Is Capable of Flight, Ground, and Water Surface Locomotion. IEEE Transactions on Robotics, 2021, 37, 2025-2040.	7.3	26
603	Ultralow-Power Localization of Insect-Scale Drones: Interplay of Probabilistic Filtering and Compute-in-Memory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 68-80.	2.1	9
604	Mechanics of Multifunctional Wings with Solar Cells for Robotic Birds. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 1-10.	0.3	2
605	Visual Odometry and Low Optic Flow Measurement by Means of a Vibrating Artificial Compound Eye. Lecture Notes in Computer Science, 2015, , 153-163.	1.0	3
606	Animal and Robotic Locomotion on Wet Granular Media. Lecture Notes in Computer Science, 2017, , 13-24.	1.0	4
607	Modeling of Bioinspired Apical Extension in a Soft Robot. Lecture Notes in Computer Science, 2017, , 522-531.	1.0	39
609	Chapter 13. Bio-inspired Polymer Artificial Muscles. RSC Polymer Chemistry Series, 2016, , 429-459.	0.1	5
610	Averting robo-bees: why free-flying robotic bees are a bad idea. Emerging Topics in Life Sciences, 2019, 3, 723-729.	1.1	8
611	The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number. Physics of Fluids, 2020, 32, .	1.6	14

#	Article	IF	CITATIONS
612	Piezoelectric actuators with on-board sensing for micro-robotic applications. Smart Materials and Structures, 2019, 28, 115036.	1.8	22
613	Longitudinal mode model-based controller design for tailless flapping wing robot with loop shaping compensator. Bioinspiration and Biomimetics, 2020, 15, 056004.	1.5	9
614	Rapid two-anchor crawling from a milliscale prismatic-push–pull (3P) robot. Bioinspiration and Biomimetics, 2020, 15, 065001.	1.5	5
615	Revised Propeller Dynamics and Energy-Optimal Hovering in a Monospinner. , 0, , .		4
616	Parameter-dependent surrogate model development for PZT bimorph actuators employed for micro-air vehicles. , 2019, , .		1
617	Fabrication of Miniature High-Speed Actuator Capable of Biomimetic Flapping Motions. Journal of the Korean Society for Precision Engineering, 2017, 34, 597-602.	0.1	2
618	Two-Stage Trajectory Optimization for Flapping Flight with Data-Driven Models. , 2021, , .		1
619	A high-voltage power electronics unit for flying insect robots that can modulate wing thrust. , 2021, ,		5
620	Plant-like hooked miniature machines for on-leaf sensing and delivery. Communications Materials, 2021, 2, .	2.9	16
621	Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods. Chinese Journal of Aeronautics, 2022, 35, 63-76.	2.8	8
622	Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle. Chinese Journal of Aeronautics, 2022, 35, 309-328.	2.8	6
623	A bipedal walking robot that can fly, slackline, and skateboard. Science Robotics, 2021, 6, eabf8136.	9.9	59
624	Insect wing 3D printing. Scientific Reports, 2021, 11, 18631.	1.6	10
626	Tiny robot flies like a fly. Nature, 0, , .	13.7	0
627	Wing and fin motions share universal principles. Nature, 0, , .	13.7	0
628	Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles. Journal of Institute of Control, Robotics and Systems, 2015, 21, 1-6.	0.1	1
629	Design, Fabrication and Analysis of Walking Robot Based on Origami Structure. Journal of the Korean Society for Precision Engineering, 2015, 32, 97-105.	0.1	2
631	Reliable electrical systems for micro aerial vehicles and insect-scale robots. , 2017, , 207-235.		3

#	Article	IF	CITATIONS
633	Uncertainty quantification for PZT bimorph actuators. , 2018, , .		1
634	MEMS AIRFOIL WITH INTEGRATED INCHWORM MOTOR AND FORCE SENSOR. , 2018, , .		2
636	Fabrication and Radioactive Heating Simulation of the flying Balloon Based on Carbon Nanotube Freestanding Films. Nihon AEM Gakkaishi, 2019, 27, 206-211.	0.0	0
637	Three-Dimensional Flight Simulation with Transient Moving-Aerofoil Models. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , 27-39.	0.1	0
638	Flight control of flapping-wing robot with three paired direct-driven piezoelectric actuators. IFAC-PapersOnLine, 2020, 53, 9391-9398.	0.5	3
639	Design of a Flapping Wings Butterfly Robot based on Aerodynamics Force. Advances in Science, Technology and Engineering Systems, 2020, 5, 667-675.	0.4	1
641	Motion detection based on 3D-printed compound eyes. OSA Continuum, 2020, 3, 2553.	1.8	4
642	A Modified Quasisteady Aerodynamic Model for a Sub-100 mg Insect-Inspired Flapping-Wing Robot. Applied Bionics and Biomechanics, 2020, 2020, 1-12.	0.5	0
643	Survey on the Development of Aerial–Aquatic Hybrid Vehicles. Unmanned Systems, 2021, 09, 263-282.	2.7	13
644	Design, takeoff and steering torques modulation of an 80â€mg insectâ€scale flappingâ€wing robot. Micro and Nano Letters, 2020, 15, 1079-1083.	0.6	0
645	Intermittent control strategy can enhance stabilization robustness in bumblebee hovering. Bioinspiration and Biomimetics, 2021, 16, 016013.	1.5	3
647	On the snap-through buckling analysis of electrostatic shallow arch micro-actuator via meshless Galerkin decomposition technique. Engineering Analysis With Boundary Elements, 2022, 134, 388-397.	2.0	21
648	B <scp>it</scp> SAD v2. Transactions on Architecture and Code Optimization, 2019, 16, 1-25.	1.6	4
649	Control of a Wing Type Flat-Plate for an Ornithopter Autonomous Robot With Differential Flatness. Advances in Computational Intelligence and Robotics Book Series, 2020, , 209-245.	0.4	0
650	A Bio-Inspired Flapping Wing Rotor of Variant Frequency Driven by Ultrasonic Motor. Applied Sciences (Switzerland), 2020, 10, 412.	1.3	13
651	Bioinspired Aerial Robots. , 2020, , 1-12.		0
652	Flying Insects and Their Robot Imitators. Physics Magazine, 0, 13, .	0.1	0
653	Design optimization and wind tunnel investigation of a flapping system based on the flapping wing trajectories of a beetle's hindwings. Computers in Biology and Medicine, 2022, 140, 105085.	3.9	8

#	Article	IF	CITATIONS
654	A comparative review of artificial muscles for microsystem applications. Microsystems and Nanoengineering, 2021, 7, 95.	3.4	21
655	A Review of Research on the Mechanical Design of Hoverable Flapping Wing Micro-Air Vehicles. Journal of Bionic Engineering, 2021, 18, 1235-1254.	2.7	18
656	A Highâ€Lift Microâ€Aerialâ€Robot Powered by Lowâ€Voltage and Longâ€Endurance Dielectric Elastomer Actuators. Advanced Materials, 2022, 34, e2106757.	11.1	64
657	Stimuli-Responsive Polymers for Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 515-545.	7.5	21
658	Achieving multimodal locomotion by a crosslinked poly(ethylene-co-vinyl acetate)-based two-way shape memory polymer. Smart Materials and Structures, 2022, 31, 015034.	1.8	8
659	Chemical Systems for Life Science. Reviews on Advanced Materials and Technologies, 2021, 3, 1-28.	0.1	1
660	Simulation of the flapping wing aerial vehicle using flexible multibody dynamics. International Journal of Micro Air Vehicles, 2021, 13, 175682932110433.	1.0	3
661	Optimal-power Configurations for Hover Solutions in Mono-spinners. , 2020, , .		0
662	Bat Bot 2.0: bio-inspired anisotropic skin, passive wrist joints, and redesigned flapping mechanism. , 2021, , .		1
664	The Combined Effect of Wing Planform and Stroke Kinematics on Aerodynamics of Flapping Insect Wings. , 2022, , .		2
665	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
666	Interpretable Autonomous Flight Via Compact Visualizable Neural Circuit Policies. IEEE Robotics and Automation Letters, 2022, 7, 3265-3272.	3.3	6
667	Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping. Science Robotics, 2022, 7, eabi8189.	9.9	22
668	Methods forÂFolding Linkages Out ofÂCarbon Fiber. Mechanisms and Machine Science, 2022, , 100-115.	0.3	1
669	Sustaining ecosystem services. , 2022, , 753-797.		0
670	Clap-and-Fling Mechanism in Non-Zero Inflow of a Tailless Two-Winged Flapping-Wing Micro Air Vehicle. Aerospace, 2022, 9, 108.	1.1	3
671	Longitudinal Mode System Identification of an Insect-like Tailless Flapping-Wing Micro Air Vehicle Using Onboard Sensors. Applied Sciences (Switzerland), 2022, 12, 2486.	1.3	3
672	Research on visual image processing and edge detection method of micro flapping wing flying robot based on cluster analysis. , 2022, , .		2

#	Article	IF	CITATIONS
673	Vibration Suppression of a Coupled Aircraft Wing with Finite-Time Convergence. Complexity, 2022, 2022, 1-14.	0.9	0
674	Horizontal take-off of an insect-like FMAV based on stroke plane modulation. Aircraft Engineering and Aerospace Technology, 2022, ahead-of-print, .	0.7	2
675	UnIC: Towards Unmanned Intelligent Cluster and Its Integration into Society. Engineering, 2022, 12, 24-38.	3.2	5
676	Influence of aspect ratio on the wake dynamics of a pitching wing. Physics of Fluids, 2022, 34, .	1.6	3
677	Development of an Insect-like Flapping-Wing Micro Air Vehicle with Parallel Control Mechanism. Applied Sciences (Switzerland), 2022, 12, 3509.	1.3	7
678	Experimental Study on the Wing Parameter Optimization of Flapping-Wing Aircraft Based on the Clap-and-Fling Mechanism. International Journal of Aeronautical and Space Sciences, 2022, 23, 265-276.	1.0	9
679	An efficient, modular controller for flapping flight composing model-based and model-free components. International Journal of Robotics Research, 2022, 41, 441-457.	5.8	1
680	Visual-Inertial Cross Fusion: A Fast and Accurate State Estimation Framework for Micro Flapping Wing Rotors. Drones, 2022, 6, 90.	2.7	5
681	Electrohydraulic actuator based on multiple pouch modules for bending and twisting. Sensors and Actuators A: Physical, 2022, 337, 113450.	2.0	3
682	Experimental surrogate-based design optimization of wing geometry and structure for flapping wing micro air vehicles. Aerospace Science and Technology, 2022, 123, 107451.	2.5	9
683	Morphable three-dimensional electronic mesofliers capable of on-demand unfolding. Science China Materials, 2022, 65, 2309-2318.	3.5	12
684	Effects of Miniaturization on Wing Structure and Flight Mechanics in Insects. Entomological Review, 2021, 101, 1126-1141.	0.1	4
685	Data-Based Modeling and Control of Dynamical Systems: Parameter Estimation. , 2021, , .		1
686	A novel insect-inspired $\hat{a} \in \hat{c}$ clicking $\hat{a} \in M$ dielectric elastomer oscillator for soft robotics. , 2021, , .		0
687	Wake aerodynamics of flapping systems in formation flight. Physics of Fluids, 2022, 34, .	1.6	4
688	Toward broad optimal output bandwidth dielectric elastomer actuators. Science China Technological Sciences, 2022, 65, 1137-1148.	2.0	14
689	Electro-Ribbon Muscles for Biomimetic Wing Flapping. , 2022, , .		1
690	An energy-based model of dielectric elastomer minimum energy structures with stiffeners: Equilibrium configuration and the electromechanical response. Mechanics of Advanced Materials and Structures, 2023, 30, 2574-2592.	1.5	13

#	ARTICLE Elastic storage enables robustness of flapping wing dynamics. Bioinspiration and Biomimetics, 2022, 17,	IF	CITATIONS
691	045003.	1.5	5
692	A Cyborg Insect Reveals a Function of a Muscle in Free Flight. Cyborg and Bionic Systems, 2022, 2022, .	3.7	23
693	Recovery mechanisms in the dragonfly righting reflex. Science, 2022, 376, 754-758.	6.0	8
694	A Multiplatform Position Control Scheme for Flying Robotic Insects. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	2.0	4
695	A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight. Science Robotics, 2022, 7, eabg5913.	9.9	18
696	Neural Network-Based Hybrid Three-Dimensional Position Control for a Flapping Wing Aerial Vehicle. IEEE Transactions on Cybernetics, 2023, 53, 6095-6108.	6.2	4
697	Physical intelligence as a new paradigm Extreme Mechanics Letters, 2021, 46, 101340.	2.0	8
698	Hybrid-SoRo: Hybrid Switched Capacitor Power Management Architecture for Multi-Channel Piezoelectric Soft Robot. , 2022, , .		6
699	Submillimeter-scale multimaterial terrestrial robots. Science Robotics, 2022, 7, .	9.9	57
700	The hawkmoth wingbeat is not at resonance. Biology Letters, 2022, 18, .	1.0	11
701	FireFly: An Insect-Scale Aerial Robot Powered by Electroluminescent Soft Artificial Muscles. IEEE Robotics and Automation Letters, 2022, 7, 6950-6957.	3.3	9
702	Optimal thrust efficiency for a tandem wing in forward flight using varied hindwing kinematics of a damselfly. Physics of Fluids, 2022, 34, .	1.6	4
703	Effects of bore-hole design on the aerodynamics of a flapping rotary wing in forward flight. Aerospace Science and Technology, 2022, 127, 107671.	2.5	3
704	Classification of actuation mechanism designs with structural block diagrams for flapping-wing drones: A comprehensive review. Progress in Aerospace Sciences, 2022, 132, 100833.	6.3	10
705	An All Servo-Driven Bird-Like Flapping-Wing Aerial Robot Capable of Autonomous Flight. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5484-5494.	3.7	52
706	Kinetics Analysis of a Flapping Wing UAV based on the Four Bar Linkages Mechanism. , 2022, , .		0
707	Fabrication and Functionality Integration Technologies for Smallâ€ 5 cale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
709	Turning-ascending flight of a <i>Hipposideros pratti</i> bat. Royal Society Open Science, 2022, 9, .	1.1	2

#	Article	IF	CITATIONS
710	Insect-inspired AI for autonomous robots. Science Robotics, 2022, 7, .	9.9	42
711	Liftoff of A Motor-Driven Flapping Wing Rotorcraft with Mechanically Decoupled Wings. , 2022, , .		1
712	A beetle-claw inspired miniature mesh climbing robot. , 2022, , .		2
713	Towards Sensor Autonomy in Sub-Gram Flying Insect Robots: A Lightweight and Power-Efficient Avionics System. , 2022, , .		3
714	Autonomous Actuation of Flapping Wing Robots Inspired by Asynchronous Insect Muscle. , 2022, , .		5
715	Implications of dragonfly's muscle control on flapping kinematics and aerodynamics. Physics of Fluids, 2022, 34, .	1.6	3
716	Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics. Physics of Fluids, 2022, 34, .	1.6	6
717	A 3-DOF inertial impact locomotion robot constructed on four piezoelectric bimorph actuators. Smart Materials and Structures, 2022, 31, 095008.	1.8	13
718	Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators. Micromachines, 2022, 13, 1136.	1.4	4
719	Necrobotics: Biotic Materials as Readyâ€toâ€Use Actuators. Advanced Science, 2022, 9, .	5.6	8
720	A Novel Compact Underactuated Tendon-Driven Mechanism with Shape Memory Alloys. , 2022, , .		1
721	A Monolithic Flexible Transmission for Piezoelectric Actuators. , 2022, , .		0
722	Functional characteristics of the rigid elytra in a bamboo weevil beetle <i>Cyrtotrachelus buqueti</i> . IET Nanobiotechnology, 2022, 16, 273-283.	1.9	3
723	Synthetic growth by self-lubricated photopolymerization and extrusion inspired by plants and fungi. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
724	Numerical Analysis on the Aerodynamic Characteristics of an X-wing Flapping Vehicle with Various Tails. Aerospace, 2022, 9, 440.	1.1	6
725	More Detailed Disturbance Measurement and Active Disturbance Rejection Altitude Control for a Flapping Wing Robot Under Internal and External Disturbances. Journal of Bionic Engineering, 2022, 19, 1722-1735.	2.7	5
726	A Centimeter-Scale Electrohydrodynamic Multi-Modal Robot Capable of Rolling, Hopping, and Taking Off. IEEE Robotics and Automation Letters, 2022, 7, 11791-11798.	3.3	1
727	Agile and Energy-Efficient Jumping–Crawling Robot Through Rapid Transition of Locomotion and Enhanced Jumping Height Adjustment. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5890-5901.	3.7	10

#	Article	IF	CITATIONS
728	A High-Power-Density Piezoelectric Actuator Operating in Bicycling Movement Mechanism. IEEE Transactions on Industrial Electronics, 2023, 70, 6090-6098.	5.2	4
729	Effects of Stroke Amplitude and Wing Planform on the Aerodynamic Performance of Hovering Flapping Wings. Aerospace, 2022, 9, 479.	1.1	8
730	Numerical Study of the Aerodynamic Performance of Two Coaxial Flapping Rotary Wings Under Wake Interaction. Lecture Notes in Electrical Engineering, 2023, , 567-577.	0.3	0
731	Recent Advances in the Application of Piezoelectric Materials in Microrobotic Systems. Micromachines, 2022, 13, 1422.	1.4	10
732	Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots. Micromachines, 2022, 13, 1489.	1.4	1
733	Computational Study on Thermal Motion Sensors That Can Measure Acceleration and Rotation Simultaneously. Sensors, 2022, 22, 6744.	2.1	2
734	Parametric Study on Aerodynamic Performance of a Flapping Wing Rotor MAV Capable of Sustained Flight. Aerospace, 2022, 9, 551.	1.1	5
735	Adaptive Control of Flapping-Wing Micro Aerial Vehicle with Coupled Dynamics and Unknown Model Parameters. Applied Sciences (Switzerland), 2022, 12, 9104.	1.3	4
736	Efficient Fluid–Structure Interaction Model for Twistable Flapping Rotary Wings. AIAA Journal, 2022, 60, 6665-6679.	1.5	2
737	Wing Modulation and Aerodynamics of Hoverflies in Gust Perturbations. Journal of Bionic Engineering, 2023, 20, 711-721.	2.7	0
738	Adaptive Vibration Control for Two-Stage Bionic Flapping Wings Based on Neural Network Algorithm. , 2022, , .		2
739	MEMS-Based Micro Sensors for Measuring the Tiny Forces Acting on Insects. Sensors, 2022, 22, 8018.	2.1	3
740	High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Science Robotics, 2022, 7, .	9.9	24
741	Energy dynamics in the helical wakes of flapping systems. Physics of Fluids, 2022, 34, 103111.	1.6	0
742	Band-type resonance: non-discrete energetically optimal resonant states. Nonlinear Dynamics, 0, , .	2.7	2
743	Aerodynamic modelling of flapping insect: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 0, , 095441002211343.	0.7	0
744	Design, Analysis and Prototyping of One-DoF Drive Mechanism for Flapping Wing Micro-aerial Vehicle Application. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 0, , .	0.8	0
745	Accommodating unobservability to control flight attitude with optic flow. Nature, 2022, 610, 485-490.	13.7	11

#	Article	IF	CITATIONS
746	Light-Driven Flying Balloons Based on Hybrids of Carbon Nanotubes and Cellulose Nanofibers. Materials, 2022, 15, 7739.	1.3	0
747	A Long-Endurance Flapping-Wing Robot Based on Mass Distribution and Energy Consumption Method. IEEE Transactions on Industrial Electronics, 2023, 70, 8215-8224.	5.2	6
748	Upward Wing Elevation Stabilizes Descending Flight of a Tailless Flapping Wing Micro Air Vehicle. , 2022, , .		0
749	Untethered Microrobots Driven by kV-Level Capacitive Actuators via Mechanical Electrostatic Inverters. IEEE Robotics and Automation Letters, 2022, 7, 12483-12490.	3.3	5
750	Electromechanics of solenoid electroribbon actuators. European Physical Journal Plus, 2022, 137, .	1.2	0
752	Flies trade off stability and performance via adaptive compensation to wing damage. Science Advances, 2022, 8, .	4.7	6
753	Magnetorheological Fluid-Filled Origami Joints With Variable Stiffness Characteristics. IEEE/ASME Transactions on Mechatronics, 2023, 28, 1546-1557.	3.7	2
754	Insects, 60% of All Biodiversity. , 2024, , 504-516.		0
755	Development of a flapping mechanism inspired by the flexible wing-base structure of insects for wing motion control. Journal of Biomechanical Science and Engineering, 2023, 18, 22-00347-22-00347.	0.1	2
756	A Novel Aquatic Propulsor Inspired by Mobuliform Swimming. , 2022, , .		0
757	Indoor Stockpile Reconstruction Using Drone-Borne Actuated Single-Point LiDARs. Drones, 2022, 6, 386.	2.7	1
758	Improvement of Adaptive Motion Performance in a Flexible Actuator, Based on Electrically Induced Deformation. Actuators, 2022, 11, 338.	1.2	1
759	A gyroscope-free visual-inertial flight control and wind sensing system for 10-mg robots. Science Robotics, 2022, 7, .	9.9	7
760	Data Ecosystem and Data Value Chain: An Exploration of Drones Technology Applications. Lecture Notes in Information Systems and Organisation, 2023, , 203-218.	0.4	0
761	Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs. Biomimetics, 2023, 8, 6.	1.5	2
762	An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking. Bioinspiration and Biomimetics, 2023, 18, 026003.	1.5	1
763	Insects in Research and Innovation. , 2023, , 183-241.		0
764	Review of insect-inspired wing micro air vehicle. Arthropod Structure and Development, 2023, 72, 101225.	0.8	5

#	Article	IF	CITATIONS
765	A Bio-Inspired Flapping-Wing Robot With Cambered Wings and Its Application in Autonomous Airdrop. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 2138-2150.	8.5	20
766	Robotic Avian Wing Explains Aerodynamic Advantages of Wing Folding and Stroke Tilting in Flapping Flight. Advanced Intelligent Systems, 2023, 5, .	3.3	4
767	Piezoelectric soft robot driven by mechanical energy. Nano Research, 2023, 16, 4970-4979.	5.8	1
768	Iterative design window search for polymer micromachined flapping-wing nano air vehicles using nonlinear dynamic analysis. International Journal of Mechanics and Materials in Design, 2023, 19, 407-429.	1.7	2
769	Jumping on Air: Design and Modeling of Latch-mediated, Spring-actuated Air-jumpers. , 2022, , .		1
770	Unsteady aerodynamic modeling of Aerobat using lifting line theory and Wagner's function. , 2022, , .		2
771	A compliant thorax design for robustness and elastic energy exchange in flapping-wing robots. , 2022,		0
772	Passive attitude stabilization of ionic-wind-powered micro air vehicles. Chinese Journal of Aeronautics, 2023, 36, 412-419.	2.8	1
773	Spiral Spring-Supported Force Plate with an External Eddy Current Displacement Sensor. Actuators, 2023, 12, 16.	1.2	3
774	An Ultra High Gain Converter for Driving HASEL Actuator Used in Soft Mobile Robots. Biomimetics, 2023, 8, 53.	1.5	1
775	Active and passive mechanics for rugose terrain traversal in centipedes. Journal of Experimental Biology, 2023, 226, .	0.8	3
776	Appraisal of conducting polymers for potential bioelectronics. , 2023, , 265-298.		0
777	Modeling, Control and Implementation of Adaptive Reconfigurable ROtary Wings (ARROWs). IEEE/ASME Transactions on Mechatronics, 2023, 28, 2282-2292.	3.7	4
778	Parameter Optimization of Foldable Flapping-Wing Mechanism for Maximum Lift. Journal of Mechanisms and Robotics, 2024, 16, .	1.5	2
779	In vivo bioprinting: Broadening the therapeutic horizon for tissue injuries. Bioactive Materials, 2023, 25, 201-222.	8.6	9
780	Optimal Stiffness Design of a Twistable Flapping Rotary Wing in Hovering Flight. Lecture Notes in Electrical Engineering, 2023, , 358-367.	0.3	0
781	Review of hybrid aquatic-aerial vehicle (HAAV): Classifications, current status, applications, challenges and technology perspectives. Progress in Aerospace Sciences, 2023, 139, 100902.	6.3	6
782	AgNWs/Ti3C2Tx MXene-based multi-responsive actuators for programmable smart devices. Sensors and Actuators B: Chemical, 2023, 383, 133576.	4.0	7

#	Article	IF	CITATIONS
783	Prescribe performance dynamic surface control of a flapping-wing aerial vehicle with unknown input dead-zone. , 2022, , .		1
784	Numerical study on the aerodynamic performance of the three-dimensional wing of a jellyfish-like flyer. Frontiers in Physics, 0, 11, .	1.0	1
785	The Natural Robotics Contest: crowdsourced biomimetic design. Bioinspiration and Biomimetics, 2023, 18, 036002.	1.5	3
786	Self-propelling colloids with finite state dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
787	Feedback and Control of Linear Electromagnetic Actuators for Flapping Wing MAVs. Aerospace, 2023, 10, 259.	1.1	2
788	Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Science Robotics, 2023, 8, .	9.9	9
789	Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings. Chinese Journal of Aeronautics, 2023, 36, 63-91.	2.8	6
790	High-Performance Six-DOF Flight Control of the Bee\$^{++}\$: An Inclined-Stroke-Plane Approach. IEEE Transactions on Robotics, 2023, 39, 1668-1684.	7.3	2
791	Modular and Scalable Fabrication of Insectâ€Scale Aerial Robots toward Demonstrating Swarm Flights. Advanced Intelligent Systems, 2024, 6, .	3.3	0
792	Photothermal-accelerated urease-powered human serum albumin nanomotor for rapid and efficient photothermal and photodynamic cancer combination therapy. International Journal of Biological Macromolecules, 2023, 240, 124486.	3.6	2
793	Takeoff of a 2.1 g Fully Untethered Tailless Flapping-Wing Micro Aerial Vehicle With Integrated Battery. IEEE Robotics and Automation Letters, 2023, 8, 3574-3580.	3.3	1
794	An Aerial–Wall Robotic Insect That Can Land, Climb, and Take Off from Vertical Surfaces. Research, 2023, 6, .	2.8	3
804	QuadGlider: Towards the Design and Control of a Bio-Inspired Multi-Modal UAV with Compliant Wings. , 2023, , .		0
805	Climbing mini-machines using plant-inspired micropatterned adhesive wheels fabricated via two-photon lithography. , 2023, , .		0
806	HISSbot: Sidewinding with a Soft Snake Robot. , 2023, , .		1
811	Vector Field Aided Trajectory Tracking by a 10-gram Flapping-Wing Micro Aerial Vehicle. , 2023, , .		0
812	Robust, High-Rate Trajectory Tracking on Insect-Scale Soft-Actuated Aerial Robots with Deep-Learned Tube MPC. , 2023, , .		1
813	Heading Control of a Long-Endurance Insect-Scale Aerial Robot Powered by Soft Artificial Muscles. , 2023, , .		1

#	ARTICLE	IF	CITATIONS
814	A lightweight high-voltage boost circuit for soft-actuated micro-aerial-robots. , 2023, , .		1
815	Hummingbird-bat hybrid wing by 3-D printing*. , 2023, , .		1
821	Improving Piezoceramic Artificial Muscles for Flying Insect-Sized Mini Robots. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 527-538.	0.5	0
827	Micro(bio)robotics: design and applications. Journal of Micro-Bio Robotics, 2023, 19, 1-20.	2.1	0
829	A Flexible Lightweight 7.4 V Input 300 V to 1500 V Output Power Converter for an Untethered Modular Piezoelectric Soft Robot. , 2023, , .		0
835	A MATLAB Multi-Body Simulation Platform Toward Multiple Flapping Wing Vehicles. , 2023, , .		0
851	Hovering Control of Flapping Wings in Tandem with Multi-Rotors. , 2023, , .		0
852	Toward Sub-Gram Helicopters: Designing a Miniaturized Flybar for Passive Stability. , 2023, , .		0
854	A Comparison Between Framed-Based and Event-Based Cameras for Flapping-Wing Robot Perception. , 2023, , .		0
855	Noise Suppression and Disturbance Rejection Control for Piezo-Actuated Nanopositioning Stages. , 2023, , .		0

870 Robotic applications. , 2024, , 223-259.

0