Thermal, structural and rheological characteristics of da compositions

Journal of Food Engineering 116, 97-108 DOI: 10.1016/j.jfoodeng.2012.12.002

Citation Report

#	Article	IF	CITATIONS
1	On cross- and self-nucleation in seeded crystallization of isotactic poly(1-butene). Polymer, 2013, 54, 4637-4644.	3.8	59
2	Rheological Characteristics of Nut Creams Realized with Different Types and Amounts of Fats. Journal of Food Quality, 2013, 36, 342-350.	2.6	26
3	Rheological, textural and calorimetric modifications of dark chocolate during process. Journal of Food Engineering, 2013, 119, 173-179.	5.2	97
4	In search of confectionary fat blends stable to heat: Hydrogenated palm kernel oil stearin with sorbitan monostearate. Food Research International, 2014, 55, 93-102.	6.2	33
5	Using polydextrose as a prebiotic substance in milk chocolate: effects of process parameters on physical and rheological properties. CYTA - Journal of Food, 2014, 12, 150-159.	1.9	13
6	Thermogravimetric characterization of dark chocolate. Journal of Thermal Analysis and Calorimetry, 2014, 116, 93-98.	3.6	43
7	Rheological and physical properties of Inulin-containing milk chocolate prepared at different process conditions. CYTA - Journal of Food, 2014, 12, 55-64.	1.9	28
8	Using Avrami equation in the studies on changes in granulometric composition of algal suspension. Hydrobiologia, 2015, 758, 243-255.	2.0	9
9	Effects of external shear forces on crystallisation kinetics of model fat blends. International Journal of Food Science and Technology, 2015, 50, 2255-2263.	2.7	11
10	A comparative study of aroma-active compounds between dark and milk chocolate: relationship to sensory perception. Journal of the Science of Food and Agriculture, 2015, 95, 1362-1372.	3.5	63
11	Effect of hydrocolloids on low-fat chocolate fillings. Journal of Food Science and Technology, 2015, 52, 7209-7217.	2.8	12
12	Modelling food digestion. , 2015, , 255-305.		11
13	Crystallization and rheology of palm oil in the presence of sugar. Food Research International, 2016, 85, 224-234.	6.2	15
14	Acceleration of polymorphic transition of cocoa butter and cocoa butter equivalent by addition ofd-limonene. European Journal of Lipid Science and Technology, 2016, 118, 716-723.	1.5	13
15	The influence of particle size on some physicochemical, rheological and melting properties and volatile compound profile of compound chocolate and cocolin samples. European Food Research and Technology, 2016, 242, 1253-1266.	3.3	20
16	Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, 2016, 169, 165-171.	5.2	86
17	Effect of sweetener combination and storage temperature on physicochemical properties of sucrose free white chocolate. Food Chemistry, 2017, 229, 610-620.	8.2	28
18	Lubrication of chocolate during oral processing. Food and Function, 2017, 8, 533-544.	4.6	26

#	Article	IF	CITATIONS
19	Effect of Inulin DP on Various Properties of Sugar-Free Dark Chocolates Containing Lactobacillus paracasei and Lactobacillus acidophilus. International Journal of Food Engineering, 2017, 13, .	1.5	12
20	Quality attributes of dark chocolates formulated with palm sap-based sugar as nutritious and natural alternative sweetener. European Food Research and Technology, 2017, 243, 177-191.	3.3	64
21	Rheological and melting properties of sucrose-free dark chocolate. International Journal of Food Properties, 0, , 1-11.	3.0	8
22	Rheological properties of sugarfree milk chocolate: Comparative study and optimisation. Czech Journal of Food Sciences, 2017, 35, 440-448.	1.2	15
23	Advances in Yield Stress Measurements for Chocolate. , 2017, , 459-481.		3
24	Enrichment of Milk Chocolate by Using EPA and DHA Originated from Various Origins: Effects on Product Quality. Sugar Tech, 2018, 20, 745-755.	1.8	17
25	The role of nonfat ingredients on confectionery fat crystallization. Critical Reviews in Food Science and Nutrition, 2018, 58, 1917-1936.	10.3	14
26	Developing functional white chocolate by incorporating different forms of EPA and DHA - Effects on product quality. LWT - Food Science and Technology, 2018, 87, 177-185.	5.2	29
27	Impact of different sugar and cocoa powder particle sizes on crystallization of fat used for the production of confectionery products. Journal of Food Processing and Preservation, 2018, 42, e13848.	2.0	13
28	Material properties of ex vivo milk chocolate boluses examined in relation to texture perception. Food and Function, 2018, 9, 3532-3546.	4.6	19
29	Phase transitions in polymorphic materials probed using space-resolved diffusing wave spectroscopy. Soft Matter, 2018, 14, 6439-6448.	2.7	7
30	Study of the structural properties of goat's milk chocolates with different concentrations of cocoa mass. Journal of Texture Studies, 2019, 50, 547-555.	2.5	6
31	Chocolate quality and conching. Trends in Food Science and Technology, 2019, 91, 446-453.	15.1	32
32	Alternatives for Sugar Replacement in Food Technology: Formulating and Processing Key Aspects. , 2019, , .		6
33	Application of simplex lattice mixture design for optimization of sucrose-free milk chocolate produced in a ball mill. LWT - Food Science and Technology, 2019, 115, 108435.	5.2	26
34	The effect of composition on the rheological behavior of commercial chocolates. LWT - Food Science and Technology, 2019, 111, 744-750.	5.2	23
35	Regression modelling of the impact of confectioner's sugar and temperature on palm oil crystallization and rheology. Food Chemistry, 2019, 274, 194-201.	8.2	6
36	A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochimica Acta, 2019, 671, 60-69.	2.7	28

#	Article	IF	CITATIONS
37	3D food printing: main components selection by considering rheological properties. Critical Reviews in Food Science and Nutrition, 2019, 59, 2335-2347.	10.3	132
38	Rheological and sensory properties of glazes prepared with carob and cocoa powders. Journal of Food Processing and Preservation, 2020, 44, e14580.	2.0	4
39	Natural convection in a partially heated porous cavity to Casson fluid. International Communications in Heat and Mass Transfer, 2020, 114, 104555.	5.6	54
40	Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations. Acta Biomaterialia, 2021, 120, 277-292.	8.3	21
41	Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Current Research in Food Science, 2021, 4, 105-114.	5.8	22
42	The effect of sugar substitution on model confectionary systems. Progress in Agricultural Engineering Sciences, 2021, 16, 1-8.	0.3	0
43	An empirical equation for shear viscosity of shear thickening fluids. Journal of Molecular Liquids, 2021, 325, 115220.	4.9	34
44	Caramelized white chocolate: effects of production process on quality parameters. Journal of Food Measurement and Characterization, 2021, 15, 3182-3194.	3.2	3
45	Spontaneous Pattern Growth on Chocolate Surface: Simulations and Experiments. Frontiers in Physics, 2021, 9, .	2.1	1
46	Effects of shear and cooling rates on the crystallization behavior of cocoa butter. Harran Tarım Ve Gıda Bilimleri Dergisi, 0, , 120-130.	0.5	0
47	Thermal Analysis of Dark Chocolate with Differential Scanning Calorimetry—Limitations in the Quantitative Evaluation of the Crystalline State. Food Analytical Methods, 2021, 14, 2556-2568.	2.6	8
48	Texture, color, and sensory changes occurring in chocolate bars with filling during storage. Food Science and Nutrition, 2021, 9, 4863-4873.	3.4	7
49	Formulation and evaluation of cold-extruded chocolate ganache for three-dimensional food printing. Journal of Food Engineering, 2022, 314, 110785.	5.2	17
50	Rapid tempering of sucrose-free milk chocolates by β V seeding: textural, rheological and melting properties. European Food Research and Technology, 2017, 243, 1849-1860.	3.3	11
51	An investigation into the crystalline structure, and the rheological, thermal, textural and sensory properties of sugar-free milk chocolate: effect of inulin and maltodextrin. Journal of Food Measurement and Characterization, 2020, 14, 1568-1581.	3.2	10
52	βv TOHUMLAMA TEKNİĞİNİN ALTERNATİF PRE-KRİSTALİZASYON YÃ−NTEMİ OLARAK SİNBİYOTÄ ÜRETİMİNDE KULLANIMI. Gıda, 2018, 43, 422-431.	Å⁰K SÜTL 0.4	Ãॡ ÇİKOL
53	Estudo reológico de chocolates elaborados com diferentes cultivares de cacau (Theobroma cacao L.). Brazilian Journal of Food Technology, 2013, 16, 192-197.	0.8	10
54	Composition and Thermogravimetric Characterization of Components of Venezuelan Fermented and dry Trinitario Cocoa Beans (Theobroma cacao L.): Whole Beans, Peeled Beans and Shells. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 0, , 38-45.	0.1	1

#	Article	IF	CITATIONS
55	Rheological and Sensory Properties of Four Kinds of Dark Chocolates. American Journal of Analytical Chemistry, 2015, 06, 1010-1018.	0.9	4
56	Rheological and Pipe Flow Properties of Chocolate Masses at Different Temperatures. Foods, 2021, 10, 2519.	4.3	13
57	A review on 3D printable food materials: types and development trends. International Journal of Food Science and Technology, 2022, 57, 164-172.	2.7	22
58	Chocolate flow behavior: Composition and process effects. Critical Reviews in Food Science and Nutrition, 2023, 63, 3788-3802.	10.3	10
59	The experimental determination of the thermal conductivity of melting chocolate: thermal resistance analogies and free convection boundary conditions. WIT Transactions on Engineering Sciences, 2014, , .	0.0	0
60	Rheo-Dielectric Effects in Three Types of Dark Chocolate With Different Compositions. Materials Performance and Characterization, 2017, 6, 105-120.	0.3	0
61	Effect of Recipe and Production Technology of Chocolate Products on Their Quality During Storage. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2017, 65, 91-98.	0.4	0
62	Rheological behaviour of chocolate at different temperatures. Potravinarstvo, 2018, 12, 123-128.	0.6	4
63	Physical characterization of the milk chocolate using whey powder. LWT - Food Science and Technology, 2022, 154, 112669.	5.2	12
64	Impact of Geographical Origin on Chocolate Microstructure, Phase Transition, and Fat Bloom. , 2022, , 153-187.		1
65	Rheological and Functional Properties of Dark Chocolate with Partial Substitution of Peanuts and Sacha Inchi. Foods, 2022, 11, 1142.	4.3	6
66	Kinetics Crystallization and Polymorphism of Cocoa Butter throughout the Spontaneous Fermentation Process. Foods, 2022, 11, 1769.	4.3	5
67	Use of rheological plastic models to describe the flow behaviour of unconventional chocolate masses. Czech Journal of Food Sciences, 2022, 40, 305-312.	1.2	1
68	Large amplitude oscillatory shear (LAOS) behavior of chocolates of different compositions. Journal of Rheology, 2022, 66, 859-879.	2.6	6
69	Influence of Test Parameters on the Evaluation of Chocolate Silkiness Using the Tribological Method. Lubricants, 2022, 10, 217.	2.9	0
70	Accurate Evaluation of the Flow Properties of Molten Chocolate: Circumventing Artefacts. Food Analytical Methods, 2023, 16, 190-205.	2.6	2
71	Calorimetry characterization and crystallization modelling of wax-based mixtures under isokinetic and non-isokinetic cooling. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	1
72	Controlling lipid crystallization across multiple length scales by directed shear flow. Journal of Colloid and Interface Science, 2023, 630, 731-741.	9.4	5

#	Article	IF	CITATIONS
73	Effect of storage temperature on quality characteristics of iron fortified milkchocolate. Indian Journal of Dairy Science, 0, , 199-207.	0.2	0
74	Advances in yield stress measurements for chocolate. , 2017, , 707-730.		0
75	Modeling changes in chocolate during production and storage by ATR-FT-IR spectroscopy and MCR-ALS hybrid soft and hard modeling. Chemometrics and Intelligent Laboratory Systems, 2023, 233, 104735.	3.5	1
76	Effect of tempering and cocoa butter equivalents on crystallization kinetics, polymorphism, melting, and physical properties of dark chocolates. LWT - Food Science and Technology, 2023, 173, 114402.	5.2	4
77	Physical and Chemical Properties of 70% Cocoa Dark Chocolate Mixed with Freeze-Dried ArazÃi (<i>Eugenia stipitata</i>) Pulp. Preventive Nutrition and Food Science, 2022, 27, 474-482.	1.6	2
78	Fortification of chocolate with microencapsulated fish oil: Effect of protein wall material on physicochemical properties of microcapsules and chocolate matrix. Food Chemistry: X, 2023, 17, 100583.	4.3	9
79	A Molecularâ€Scale Understanding of Misorientation Toughening in Corals and Seashells. Advanced Materials, 2023, 35, .	21.0	8
81	Edible Insects as Materials for Food Printing: Printability and Nutritional Value. , 2023, , 101-113.		0
82	Pickering Waterâ€inâ€Oil Emulsions Stabilized Solely by Fat Crystals. Advanced Materials Interfaces, 0, , .	3.7	0
83	Effect of alternative sweetener and carbohydrate polymer mixtures on the physical properties, melting and crystallization behaviour of dark compound chocolate. Food Chemistry, 2024, 431, 137118.	8.2	1
84	Conching process time, sauco by-product concentration, and sacha inchi oil levels identification for the enrichment of dark chocolate. Heliyon, 2023, 9, e19886.	3.2	0
85	Rheological, Thermal, and Moisture Sorption Characterisation of cocoa-flavoured Confectionery Coatings Elaborated with Isomalt as Sucrose Substitute. Food Biophysics, 0, , .	3.0	1
86	Cadmium Levels in Locally Produced and Imported Dark Chocolate in Lebanon. Exposure and Health, 0, ,	4.9	0
87	Blueberry juice encapsulated on maltodextrin: The impact on the properties of white chocolate. Food and Feed Research, 2023, , 32-32.	0.5	0
88	Alpha-amylase inhibitory activity of collagen hydrolysate from Asian bullfrog skin and its application in dark chocolate. Cogent Food and Agriculture, 2024, 10, .	1.4	0