An Inhibitor of Mutant IDH1 Delays Growth and Promo

Science 340, 626-630 DOI: 10.1126/science.1236062

Citation Report

#	Article	IF	CITATIONS
1	LOW GRADE GLIOMAS. Neuro-Oncology, 2012, 14, i69-i81.	0.6	5
2	BCAT1 defines gliomas by IDH status. Nature Medicine, 2013, 19, 816-817.	15.2	17
3	Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. International Journal of Hematology, 2013, 98, 648-657.	0.7	101
5	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	7.1	408
6	Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nature Reviews Genetics, 2013, 14, 765-780.	7.7	373
7	Metabolic targets for cancer therapy. Nature Reviews Drug Discovery, 2013, 12, 829-846.	21.5	592
8	mTOR Complex 2 Controls Clycolytic Metabolism in Glioblastoma through FoxO Acetylation and Upregulation of c-Myc. Cell Metabolism, 2013, 18, 726-739.	7.2	351
10	Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood, 2013, 121, 4917-4924.	0.6	175
11	Is Glioblastoma an Epigenetic Malignancy?. Cancers, 2013, 5, 1120-1139.	1.7	51
12	Glioblastoma Multiforme Therapy and Mechanisms of Resistance. Pharmaceuticals, 2013, 6, 1475-1506.	1.7	229
13	IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncology, 2013, 9, 1923-1935.	1.1	53
14	Metabolic Mechanisms of Epigenetic Regulation. ACS Chemical Biology, 2013, 8, 2607-2621.	1.6	63
15	IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro-Oncology, 2013, 15, 1114-1126.	0.6	100
17	Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nature Communications, 2013, 4, 2429.	5.8	118
18	Massivelyâ€parallel sequencing assists the diagnosis and guided treatment of cancers of unknown primary. Journal of Pathology, 2013, 231, 413-423.	2.1	94
19	lsocitrate dehydrogenase 2 mutation is a frequent event in osteosarcoma detected by a multiâ€specific monoclonal antibody MsMabâ€1. Cancer Medicine, 2013, 2, 803-814.	1.3	46
20	Multi-Specific Monoclonal Antibody MsMab-2 Recognizes IDH1-R132L and IDH2-R172M Mutations. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 377-381.	0.8	20
21	Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm. Genome Medicine, 2013, 5, 66.	3.6	23

ATION REDO

#	Article	IF	CITATIONS
22	Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology, 2013, 145, 1215-1229.	0.6	978
23	Targeting an oncometabolite. Nature Reviews Cancer, 2013, 13, 383-383.	12.8	3
24	Metabolism in physiological cell proliferation and differentiation. Trends in Cell Biology, 2013, 23, 484-492.	3.6	195
25	Releasing the Block: Setting Differentiation Free with Mutant IDH Inhibitors. Cancer Cell, 2013, 23, 570-572.	7.7	21
26	All charged up about implanted biomaterials. Nature Biotechnology, 2013, 31, 507-509.	9.4	147
27	Cancer metabolism in breadth and depth. Nature Biotechnology, 2013, 31, 505-507.	9.4	4
28	Neuro-oncology: Five new things. Neurology: Clinical Practice, 2013, 3, 326-333.	0.8	3
29	Focus on the epigenome in the myeloproliferative neoplasms. Hematology American Society of Hematology Education Program, 2013, 2013, 538-544.	0.9	11
30	Differentiation therapy for IDH1/2 mutant malignancies. Cell Research, 2013, 23, 975-977.	5.7	8
31	What a difference a hydroxyl makes: mutant IDH, (<i>R</i>)-2-hydroxyglutarate, and cancer. Genes and Development, 2013, 27, 836-852.	2.7	491
32	Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix–associated gene modules. Neuro-Oncology, 2013, 15, 1684-1695.	0.6	55
33	Molecular insights into brain tumors. Current Opinion in Neurology, 2013, 26, 678-680.	1.8	1
34	Genomic stratification for the treatment of lymphomas. Hematology American Society of Hematology Education Program, 2013, 2013, 331-334.	0.9	2
35	Predictive biomarkers in adult gliomas. Current Opinion in Oncology, 2013, 25, 689-694.	1.1	34
36	Silencing a Metabolic Oncogene. Science, 2013, 340, 558-559.	6.0	11
37	Induction of sarcomas by mutant IDH2. Genes and Development, 2013, 27, 1986-1998.	2.7	135
38	Molecular prognostic factors in glioblastoma: state of the art and future challenges. CNS Oncology, 2013, 2, 495-510.	1.2	9
39	The Emerging Role of D-2-Hydroxyglutarate as an Oncometabolite in Hematolymphoid and Central Nervous System Neoplasms. Frontiers in Oncology, 2013, 3, 169.	1.3	44

#	Article	IF	CITATIONS
40	Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Molecular Ecology, 2013, 22, 5743-5764.	2.0	59
41	Oncogenic Isocitrate Dehydrogenase Mutations: Mechanisms, Models, and Clinical Opportunities. Cancer Discovery, 2013, 3, 730-741.	7.7	371
42	Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes and Development, 2013, 27, 1974-1985.	2.7	165
43	Establishment of a Multi-Specific Monoclonal Antibody MsMab-1 Recognizing Both IDH1 and IDH2 Mutations. Tohoku Journal of Experimental Medicine, 2013, 230, 103-109.	0.5	27
44	New and emerging treatment options for biliary tract cancer. OncoTargets and Therapy, 2013, 6, 1545.	1.0	17
45	Prognostic and Predictive Biomarkers in Adult and Pediatric Gliomas: Toward Personalized Treatment. Frontiers in Oncology, 2014, 4, 47.	1.3	36
46	Complex role of HIF in cancer: the known, the unknown, and the unexpected. Hypoxia (Auckland, N Z), 2014, 2, 59.	1.9	11
47	Intermediate-risk acute myeloid leukemia therapy: current and future. Hematology American Society of Hematology Education Program, 2014, 2014, 34-43.	0.9	2
48	Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Review of Molecular Diagnostics, 2014, 14, 439-452.	1.5	69
49	Standard of care and future pharmacological treatment options for malignant glioma: an urgent need for screening and identification of novel tumor-specific antigens. Expert Opinion on Pharmacotherapy, 2014, 15, 2047-2061.	0.9	19
50	Impact of acetylation on tumor metabolism. Molecular and Cellular Oncology, 2014, 1, e963452.	0.3	15
51	In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cellular and Molecular Life Sciences, 2014, 71, 4007-4026.	2.4	42
52	Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biology, 2014, 15, 436.	3.8	100
53	Accumulation of 2-hydroxyglutarate in gliomas correlates with survival: a study by 3.0-tesla magnetic resonance spectroscopy. Acta Neuropathologica Communications, 2014, 2, 158.	2.4	48
54	IDH1 R132H Mutation Generates a Distinct Phospholipid Metabolite Profile in Glioma. Cancer Research, 2014, 74, 4898-4907.	0.4	78
55	5-hydroxymethylcytosine: a potential therapeutic target in cancer. Epigenomics, 2014, 6, 503-514.	1.0	21
56	Hyperpolarized [1-13C] Glutamate: A Metabolic Imaging Biomarker of IDH1 Mutational Status in Glioma. Cancer Research, 2014, 74, 4247-4257.	0.4	77
57	Metabolic circuits in neural stem cells. Cellular and Molecular Life Sciences, 2014, 71, 4221-4241.	2.4	53

#	Article	IF	CITATIONS
58	Cholangiocarcinoma: Molecular Pathways and Therapeutic Opportunities. Seminars in Liver Disease, 2014, 34, 456-464.	1.8	106
59	A Systems Approach to Predict Oncometabolites via Context-Specific Genome-Scale Metabolic Networks. PLoS Computational Biology, 2014, 10, e1003837.	1.5	63
60	Intermediate-risk acute myeloid leukemia therapy: current and future. Hematology American Society of Hematology Education Program, 2014, 2014, 34-43.	0.9	27
61	Molecular Pathogenesis of Cholangiocarcinoma. Digestive Diseases, 2014, 32, 564-569.	0.8	35
62	Genomic landscape of glioblastoma and the potential clinical utility. CNS Oncology, 2014, 3, 169-172.	1.2	0
63	IDH mutations in liver cell plasticity and biliary cancer. Cell Cycle, 2014, 13, 3176-3182.	1.3	30
64	<i>Isocitrate dehydrogenase 1</i> R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics, 2014, 9, 1454-1460.	1.3	20
65	Isocitrate dehydrogenase status and molecular subclasses of glioma and glioblastoma. Neurosurgical Focus, 2014, 37, E13.	1.0	48
66	Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neuro-Oncology Practice, 2014, 1, 145-157.	1.0	31
67	Gerometabolites: The pseudohypoxic aging side of cancer oncometabolites. Cell Cycle, 2014, 13, 699-709.	1.3	33
68	Mutational profiling of kinases in glioblastoma. BMC Cancer, 2014, 14, 718.	1.1	50
69	A global assessment of cancer genomic alterations in epigenetic mechanisms. Epigenetics and Chromatin, 2014, 7, 29.	1.8	64
70	A new sensitive PCR assay for one-step detection of 12 IDH1/2 mutations in glioma. Acta Neuropathologica Communications, 2014, 2, 58.	2.4	37
71	MicroRNAs in the pathogenesis of myelodysplastic syndromes and myeloid leukaemia. Current Opinion in Hematology, 2014, 21, 276-282.	1.2	11
72	lsocitrate dehydrogenase mutations in chondrosarcoma. Current Opinion in Oncology, 2014, 26, 403-407.	1.1	9
73	New strategies for relapsed acute myeloid leukemia. Current Opinion in Hematology, 2014, 21, 79-86.	1.2	15
74	Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma. Neurosurgery, 2014, 75, N9-N10.	0.6	12
75	Why Glioma Patients Seize. Neurosurgery, 2014, 75, N10-N11.	0.6	3

#	Article	IF	CITATIONS
76	New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing. Oncologist, 2014, 19, 235-242.	1.9	371
77	Mutant IDH1-Driven Cellular Transformation Increases RAD51-Mediated Homologous Recombination and Temozolomide Resistance. Cancer Research, 2014, 74, 4836-4844.	0.4	65
79	Tumor Metabolome Targeting and Drug Development. Cancer Drug Discovery and Development, 2014, , .	0.2	0
80	<i>IDH</i> Mutation in Glioma. JAMA Neurology, 2014, 71, 1319.	4.5	176
81	Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma. Current Opinion in Gastroenterology, 2014, 30, 295-302.	1.0	42
82	The epigenetic landscape of T-cell acute lymphoblastic leukemia. International Journal of Biochemistry and Cell Biology, 2014, 53, 547-557.	1.2	20
83	Functional Heterogeneity of Genetically Defined Subclones in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 379-392.	7.7	330
84	An Analysis of the Prognostic Value of IDH1 (Isocitrate Dehydrogenase 1) Mutation in Polish Glioma Patients. Molecular Diagnosis and Therapy, 2014, 18, 45-53.	1.6	21
85	p53: The barrier to cancer stem cell formation. FEBS Letters, 2014, 588, 2580-2589.	1.3	93
86	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179.	6.3	1,350
86 87	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196.	6.3 21.5	1,350 202
86 87 88	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120, 774-780.	6.3 21.5 2.0	1,350 202 87
86 87 88 89	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120, 774-780. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia, 2014, 28, 1396-1406.	6.3 21.5 2.0 3.3	1,350 202 87 66
86 87 88 89 90	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120, 774-780. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia, 2014, 28, 1396-1406. Glutamate as chemotactic fuel for diffuse glioma cells: Are they glutamate suckers?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 66-74.	 6.3 21.5 2.0 3.3 3.3 	1,350 202 87 66 39
86 87 88 89 90 91	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120, 774-780. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia, 2014, 28, 1396-1406. Glutamate as chemotactic fuel for diffuse glioma cells: Are they glutamate suckers?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 66-74. Circulating Oncometabolite 2-Hydroxyglutarate Is a Potential Surrogate Biomarker in Patients with Isocitrate Dehydrogenase-Mutant Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2014, 20, 1884-1890.	 6.3 21.5 2.0 3.3 3.3 3.2 	1,350 202 87 66 39 110
86 87 88 89 90 91 91	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120, 774-780. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia, 2014, 28, 1396-1406. Glutamate as chemotactic fuel for diffuse glioma cells: Are they glutamate suckers?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 66-74. Circulating Oncometabolite 2-Hydroxyglutarate Is a Potential Surrogate Biomarker in Patients with Isocitrate Dehydrogenase-Mutant Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2014, 20, 1884-1890. Targeting Metabolic Changes in Cancer: Novel Therapeutic Approaches. Annual Review of Medicine, 2014, 65, 157-170.	 6.3 21.5 2.0 3.3 3.3 3.2 5.0 	1,350 202 87 66 39 110
86 87 88 89 90 91 91 92 93	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179. Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196. Targeting glucose metabolism in patients with cancer. Cancer, 2014, 120, 774-780. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia, 2014, 28, 1396-1406. Glutamate as chemotactic fuel for diffuse glioma cells: Are they glutamate suckers?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 66-74. Circulating Oncometabolite 2-Hydroxyglutarate Is a Potential Surrogate Biomarker in Patients with Isocitrate Dehydrogenase-Mutant Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2014, 20, 1884-1890. Targeting Metabolic Changes in Cancer: Novel Therapeutic Approaches. Annual Review of Medicine, 2014, 65, 157-170. A High-Throughput Fluorimetric Assay for 2-Hydroxyglutarate Identifies Zaprinast as a Glutaminase Inhibitor. Cancer Discovery, 2014, 4, 828-839.	 6.3 21.5 2.0 3.3 3.3 3.2 5.0 7.7 	1,350 202 87 66 39 110 54 70

#	Article	IF	CITATIONS
95	Using the molecular classification of glioblastoma to inform personalized treatment. Journal of Pathology, 2014, 232, 165-177.	2.1	214
96	An overview of current and future treatment options for chondrosarcoma. Expert Opinion on Orphan Drugs, 2014, 2, 217-227.	0.5	4
97	Current and Investigational Drug Strategies for Glioblastoma. Clinical Oncology, 2014, 26, 419-430.	0.6	31
98	Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro-Oncology, 2014, 16, 686-695.	0.6	162
99	Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews Cancer, 2014, 14, 92-107.	12.8	469
100	Stem cell origin of myelodysplastic syndromes. Oncogene, 2014, 33, 5139-5150.	2.6	38
101	Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells. Science, 2014, 343, 193-196.	6.0	1,164
102	Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma. Science, 2014, 343, 189-193.	6.0	1,147
103	Tumor-Suppressive miR148a Is Silenced by CpG Island Hypermethylation in <i>IDH1</i> -Mutant Gliomas. Clinical Cancer Research, 2014, 20, 5808-5822.	3.2	30
104	<i><scp>IDH</scp>1</i> and <i><scp>IDH</scp>2</i> mutations confer an adverse effect in patients with acute myeloid leukemia lacking the <i><scp>NPM</scp>1</i> mutation. European Journal of Haematology, 2014, 92, 471-477.	1.1	40
105	Advances in the Management of Paediatric High-Grade Glioma. Current Oncology Reports, 2014, 16, 414.	1.8	9
106	Concise Review: Leukemia Stem Cells in Personalized Medicine. Stem Cells, 2014, 32, 844-851.	1.4	47
107	Molecular pathology of bone tumours: diagnostic implications. Histopathology, 2014, 64, 461-476.	1.6	21
108	Isocitrate dehydrogenase (IDH)2 R140Q mutation induces myeloid and lymphoid neoplasms in mice. Leukemia, 2014, 28, 1343-1346.	3.3	18
109	Reprogramming the fate of human glioma cells to impede brain tumor development. Cell Death and Disease, 2014, 5, e1463-e1463.	2.7	45
110	Unique mutation portraits and frequent <i>COL2A1</i> gene alteration in chondrosarcoma. Genome Research, 2014, 24, 1411-1420.	2.4	85
111	Hominoid-specific enzyme GLUD2 promotes growth of <i>IDH1</i> ^{<i>R132H</i>} glioma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14217-14222.	3.3	87
112	Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases: Synthesis, Structure–Activity Relationship, and Selective Antitumor Activity. Journal of Medicinal Chemistry, 2014, 57, 8307-8318.	2.9	48

#	Article	IF	Citations
113	Genetic Markers in Adult High-Grade Gliomas. Seminars in Radiation Oncology, 2014, 24, 235-239.	1.0	2
114	The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncology, 2014, 16, 1263-1273.	0.6	159
115	Action at a Distance: Allostery and the Development of Drugs to Target Cancer Cell Metabolism. Chemistry and Biology, 2014, 21, 1143-1161.	6.2	39
116	Studying Tumorigenesis through Network Evolution and Somatic Mutational Perturbations in the Cancer Interactome. Molecular Biology and Evolution, 2014, 31, 2156-2169.	3.5	79
117	SAHA Regulates Histone Acetylation, Butyrylation, and Protein Expression in Neuroblastoma. Journal of Proteome Research, 2014, 13, 4211-4219.	1.8	48
118	Mitochondrial substrates in cancer: Drivers or passengers?. Mitochondrion, 2014, 19, 8-19.	1.6	14
119	Where are we now? And where are we going? A report from the Accelerate Brain Cancer Cure (ABC2) Low-grade Glioma Research Workshop. Neuro-Oncology, 2014, 16, 173-178.	0.6	23
120	Therapeutic potential of targeting glucose metabolism in glioma stem cells. Expert Opinion on Therapeutic Targets, 2014, 18, 1233-1236.	1.5	23
121	<i>Isocitrate dehydrogenase 1</i> and <i>2</i> mutations in gliomas. Journal of Neuroscience Research, 2014, 92, 1611-1620.	1.3	18
122	Connections between TET proteins and aberrant DNA modification in cancer. Trends in Genetics, 2014, 30, 464-474.	2.9	221
123	Emerging approaches to target tumor metabolism. Current Opinion in Pharmacology, 2014, 17, 22-29.	1.7	18
124	Somatic alterations and dysregulation of epigenetic modifiers in cancers. Biochemical and Biophysical Research Communications, 2014, 455, 24-34.	1.0	29
125	The role of mutation of metabolism-related genes in genomic hypermethylation. Biochemical and Biophysical Research Communications, 2014, 455, 16-23.	1.0	25
126	Oncometabolitesâ€driven tumorigenesis: From genetics to targeted therapy. International Journal of Cancer, 2014, 135, 2237-2248.	2.3	119
127	Changing the Paradigms of Treatment in Peripheral T-cell Lymphoma: From Biology to Clinical Practice. Clinical Cancer Research, 2014, 20, 5240-5254.	3.2	40
128	Selecting biologically informative genes in co-expression networks with a centrality score. Biology Direct, 2014, 9, 12.	1.9	49
129	A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Research, 2014, 16, 415.	2.2	161
130	IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism. Cancer Research, 2014, 74, 3317-3331.	0.4	224

λτιων Ρ

#	Article	IF	CITATIONS
131	Identification and Characterization of Small-Molecule Inhibitors of the R132H/R132H Mutant Isocitrate Dehydrogenase 1 Homodimer and R132H/Wild-Type Heterodimer. Journal of Biomolecular Screening, 2014, 19, 1193-1200.	2.6	27
132	Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11121-11126.	3.3	230
133	The tumor suppressor prostate apoptosis response-4 (Par-4) is regulated by mutant IDH1 and kills glioma stem cells. Acta Neuropathologica, 2014, 128, 723-732.	3.9	16
134	Translational research in oncology—10 years of progress and future prospects. Nature Reviews Clinical Oncology, 2014, 11, 649-662.	12.5	65
135	Biochemical, Cellular, and Biophysical Characterization of a Potent Inhibitor of Mutant Isocitrate Dehydrogenase IDH1. Journal of Biological Chemistry, 2014, 289, 13717-13725.	1.6	78
136	Investigational epigenetically targeted drugs in early phase trials for the treatment of haematological malignancies. Expert Opinion on Investigational Drugs, 2014, 23, 1321-1332.	1.9	7
137	Proto-Oncogenic Role of Mutant IDH2 in Leukemia Initiation and Maintenance. Cell Stem Cell, 2014, 14, 329-341.	5.2	172
138	The Metabolic Alterations of Cancer Cells. Methods in Enzymology, 2014, 542, 1-23.	0.4	87
139	A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512, 324-327.	13.7	613
140	Glial Progenitors as Targets for Transformation in Glioma. Advances in Cancer Research, 2014, 121, 1-65.	1.9	38
141	Clinical Cancer Advances 2013: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology. Journal of Clinical Oncology, 2014, 32, 129-160.	0.8	74
142	DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia, 2014, 28, 1774-1783.	3.3	225
143	Metabolism of Human Diseases. , 2014, , .		4
144	The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 326-341.	3.3	118
145	Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine, 2014, 6, 1359-1370.	3.3	280
146	An overview of current and future treatment options for adults anaplastic oligodendroglial tumors. Expert Opinion on Orphan Drugs, 2014, 2, 831-840.	0.5	0
147	Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner. Molecular Medicine Reports, 2014, 9, 1799-1805.	1.1	27
148	Clinical Discussion of the Management of Anaplastic Oligodendroglioma/Oligoastrocytoma (Both) Tj ETQq1 1 0	.784314 rg 2.3	gBT /Overloc 11

ARTICLE IF CITATIONS Next Generation Sequencing of Acute Myeloid Leukemia: Influencing Prognosis. BMC Genomics, 2015, 149 1.2 40 16, S5. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Reports, 2015, 13, 2353-2361. 153 Diagnostic value of <i>H3F3A</i> mutations in giant cell tumour of bone compared to osteoclastâ€rich 151 1.3 135 mimics. Journal of Pathology: Clinical Research, 2015, 1, 113-123. Glioma. Nature Reviews Disease Primers, 2015, 1, 15017. 18.1 IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule 153 0.6 143 inhibition. Blood, 2015, 125, 296-303. Functions of idh1 and its mutation in the regulation of developmental hematopoiesis in zebrafish. 0.6 Blood, 2015, 125, 2974-2984. Genetic dissection of leukemia-associated IDH1 and IDH2 mutants and D-2-hydroxyglutarate in 155 0.6 25 Drosophila. Blood, 2015, 125, 336-345. Meta-analysis of the Effect of Isocitrate Dehydrogenase 1 and 2 Mutation on Glioblastoma Prognosis. 0.2 Contemporary Neurosurgery, 2015, 37, 1-5. Perspectives for therapeutic targeting of gene mutations in acute myeloid leukaemia with normal 157 1.2 36 cytogenetics. British Journal of Haematology, 2015, 170, 305-322. 2â€Hydoxyglutarate: D/Riving Pathology in gLiomaS. Brain Pathology, 2015, 25, 760-768. 2.1 159 HOT mutation screening in human glioblastomas. Future Science OA, 2015, 1, . 0.9 1 Imaging Genomics in Gliomas. Cancer Journal (Sudbury, Mass), 2015, 21, 225-234. 160 Imaging Markers of Isocitrate Dehydrogenase-1 Mutations in Gliomas. Neurosurgery, 2015, 62, 166-170. 161 0.6 2 Meta-analysis of the Effect of Isocitrate Dehydrogenase 1 and 2 Mutation on Glioblastoma Prognosis. 0.2 Contemporary Neurosurgery, 2015, 37, 6. Epigenetics of Glioblastoma Multiforme. Journal of Clinical Research & Bioethics, 2015, 06, . 163 0.2 1 DNA Demethylation by TET Proteins: A Potential Therapeutic Target in Cancer. Epigenetic Diagnosis & 164 0.1 Therapy, 2015, 1, 49-59. New Developments in the Pathogenesis and Therapeutic Targeting of the IDH1 Mutation in Glioma. 165 1.1 83 International Journal of Medical Sciences, 2015, 12, 201-213. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells. PLoS ONE, 1.1 2015, 10, e0133813.

ARTICLE IF CITATIONS # An Omics Perspective on Molecular Biomarkers for Diagnosis, Prognosis, and Therapeutics of 0.8 19 167 Cholangiocarcinoma. International Journal of Genomics, 2015, 2015, 1-16. Glioblastoma Multiforme: The Genetic Perspective of the Treatment Planning. Critical Reviews in 0.4 Eukaryotic Gene Expression, 2015, 25, 281-285. Isocitrate dehydrogenase mutations: new opportunities for translational research. BMB Reports, 169 9 1.1 2015, 48, 266-270. The Evolving Molecular Genetics of Low-grade Glioma. Advances in Anatomic Pathology, 2015, 22, 170 2.4 94-101. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science 171 5.8 257 Translational Medicine, 2015, 7, 274ra17. Defining the Metabolome: Size, Flux, and Regulation. Molecular Cell, 2015, 58, 699-706. 4.5 234 Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy in glioma. 173 0.8 41 Journal of Clinical Neuroscience, 2015, 22, 1219-1226. 174 Animal Model Study of Epigenetic Inhibitors., 2015, , 447-477. Evaluation of IDH1 status in diffusely infiltrating gliomas by immunohistochemistry using anti-mutant 175 1.1 13 and wild type IDH1 antibodies. Brain Tumor Pathology, 2015, 32, 237-244. Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathologica, 2015, 129, 789-808. Epigenetic Biomarkers in Personalized Medicine., 2015, , 183-220. 177 0 Genetic mutations in epigenetic modifiers as therapeutic targets in acute myeloid leukemia. Expert 1.5 Opinion on Therapeutic Targets, 2015, 19, 1187-1202. Harnessing the nuclear receptor PPARÎ³ to inhibit the growth of lung adenocarcinoma by rewiring 179 0.3 1 metabolic circuitries. Molecular and Cellular Oncology, 2015, 2, e980660. BRAF Fusion Analysis in Pilocytic Astrocytomas: KIAA1549-BRAF 15-9 Fusions Are More Frequent in the Midline Than Within the Cerébellum. Journal of Neuropathology and Experimental Neurology, 2015, 74, 867-872. 181 Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell, 2015, 28, 773-784. 327 7.7 Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia, 2015, 29, 2134-2142. Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells. Cancer & 183 2.4 10 Metabolism, 2015, 3, 13. 184 Therapeutic targeting of tumor suppressor genes. Cancer, 2015, 121, 1357-1368.

#	Article	IF	CITATIONS
185	Metabolic modulation of cancer: a new frontier with great translational potential. Journal of Molecular Medicine, 2015, 93, 127-142.	1.7	27
187	Oligodendroglial Tumors. Molecular Pathology Library, 2015, , 105-120.	0.1	0
188	Practical Molecular Pathologic Diagnosis of Infiltrating Gliomas. Surgical Pathology Clinics, 2015, 8, 49-61.	0.7	3
189	5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 144-154.	3.3	69
190	Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Reports, 2015, 16, 280-296.	2.0	200
191	Retinoic acid signaling and neuronal differentiation. Cellular and Molecular Life Sciences, 2015, 72, 1559-1576.	2.4	212
192	Glioblastoma. , 2015, , 909-917.		6
193	Genomic discoveries in adult astrocytoma. Current Opinion in Genetics and Development, 2015, 30, 17-24.	1.5	17
194	Epithelial–mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. , 2015, 150, 33-46.		243
195	<scp>FOXO</scp> s support the metabolic requirements of normal and tumor cells by promoting <scp>IDH</scp> 1 expression. EMBO Reports, 2015, 16, 456-466.	2.0	38
196	A synthetic lethal approach targeting mutant isocitrate dehydrogenase in acute myeloid leukemia. Nature Medicine, 2015, 21, 113-114.	15.2	3
197	Reducing peripheral serotonin turns up the heat in brown fat. Nature Medicine, 2015, 21, 114-116.	15.2	7
198	Metabolomic comparison between cells overâ€expressing isocitrate dehydrogenase 1 and 2 mutants and the effects of an inhibitor on the metabolism. Journal of Neurochemistry, 2015, 132, 183-193.	2.1	16
199	Targeting T cell metabolism for therapy. Trends in Immunology, 2015, 36, 71-80.	2.9	204
200	Clinical impact of molecular biomarkers in gliomas. Journal of Clinical Neuroscience, 2015, 22, 437-444.	0.8	57
201	Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nature Medicine, 2015, 21, 178-184.	15.2	459
202	Liquid biopsies in patients with diffuse glioma. Acta Neuropathologica, 2015, 129, 849-865.	3.9	81
203	Isocitrate dehydrogenase 1 mutations (IDH1) and p16/CDKN2A copy number change in conventional chondrosarcomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 466, 217-222	1.4	37

#	Article	IF	CITATIONS
204	The future of high-grade glioma: Where we are and where are we going. , 2015, 6, 9.		29
205	Conditions for 13C NMR detection of 2-hydroxyglutarate in tissue extracts from isocitrate dehydrogenase-mutated gliomas. Analytical Biochemistry, 2015, 481, 4-6.	1.1	10
206	Determining optimal treatment strategy for diffuse glioma: the emerging role of IDH mutations. Expert Review of Anticancer Therapy, 2015, 15, 603-606.	1.1	12
207	DNA Methylation and Hydroxymethylation in Cancer. , 2015, , 9-30.		4
208	Clinical Significance of Epigenetic Alterations in Glioblastoma. , 2015, , 339-350.		0
209	IDH1, lipid metabolism and cancer: Shedding new light on old ideas. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1781-1785.	1.1	33
210	Epigenetics and Lymphoma: Can We Use Epigenetics to Prime or Reset Chemoresistant Lymphoma Programs?. Current Oncology Reports, 2015, 17, 40.	1.8	11
211	Enigmas of IDH mutations in hematology/oncology. Experimental Hematology, 2015, 43, 685-697.	0.2	22
212	Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment. International Journal of Molecular Sciences, 2015, 16, 11055-11086.	1.8	104
213	2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism, 2015, 22, 508-515.	7.2	190
214	Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing. Experimental and Molecular Pathology, 2015, 99, 240-244.	0.9	39
215	Diagnostic Value of Plasma and Urinary 2-Hydroxyglutarate to Identify Patients With Isocitrate Dehydrogenase-Mutated Glioma. Oncologist, 2015, 20, 562-567.	1.9	55
216	Pheochromocytoma: Gasping for Air. Hormones and Cancer, 2015, 6, 191-205.	4.9	26
217	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
218	Isocitrate Dehydrogenase (IDH) Mutation in Gliomas. , 2015, , 441-458.		0
219	CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy. Human Gene Therapy, 2015, 26, 463-471.	1.4	55
220	Molecular profiling of gliomas: potential therapeutic implications. Expert Review of Anticancer Therapy, 2015, 15, 955-962.	1.1	22
221	Lineage factors and differentiation states in lung cancer progression. Oncogene, 2015, 34, 5771-5780.	2.6	42

ARTICLE IF CITATIONS # Organ-Specific Cancer Metabolism and Its Potential for Therapy. Handbook of Experimental 222 0.9 86 Pharmacology, 2015, 233, 321-353. Cancer metabolism: targeting cancer universality. Archives of Pharmacal Research, 2015, 38, 299-301. 2.7 Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. 224 5.8 589 Science Translational Medicine, 2015, 7, 283ra54. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta 2.4 Neuropathologica Communications, 2015, 3, 4. The next steps in next-gen sequencing of cancer genomes. Journal of Clinical Investigation, 2015, 125, 226 3.9 34 462-468. Cytosine modifications in myeloid malignancies., 2015, 152, 42-53. Anaplastic glioma: current treatment and management. Expert Review of Neurotherapeutics, 2015, 15, 228 1.4 21 601-620. Metabolic consequences of oncogenic IDH mutations., 2015, 152, 54-62. 229 230 Molecular targets in glioblastoma. Future Oncology, 2015, 11, 1407-1420. 1.1 32 Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathologica, 2015, 129, 503 829-848. Next Generation Sequencing in Cancer Research, Volume 2., 2015, , . 232 4 Oncometabolites: tailoring our genes. FEBS Journal, 2015, 282, 2796-2805. 2.2 Novel Therapeutic Targets of Tumor Metabolism. Cancer Journal (Sudbury, Mass), 2015, 21, 62-69. 234 1.0 36 Genetics and immunotherapy: using the genetic landscape of gliomas to inform management strategies. Journal of Neuro-Oncology, 2015, 123, 373-383. 1.4 14 IDH2 and NPM1 Mutations Cooperate to Activate Hoxa9/Meis1 and Hypoxia Pathways in Acute Myeloid 236 0.4 48 Leukemia. Cancer Research, 2015, 75, 2005-2016. Mutational Cooperativity Linked to Combinatorial Epigenetic Gain of Function in Acute Myeloid 191 Leukemia. Cancer Cell, 2015, 27, 502-515. Molecular Markers in Low-Grade Gliomaâ€"Toward Tumor Reclassification. Seminars in Radiation 238 1.0 62 Oncology, 2015, 25, 155-163. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Review of 241 1.5 Molecular Diagnostics, 2015, 15, 1311-1323.

#	Article	IF	CITATIONS
242	IDH1R132H mutation causes a less aggressive phenotype and radiosensitizes human malignant glioma cells independent of the oxygenation status. Radiotherapy and Oncology, 2015, 116, 381-387.	0.3	33
243	New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nature Chemical Biology, 2015, 11, 878-886.	3.9	151
244	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	13.5	2,435
245	Epigenetic-based therapy: From single- to multi-target approaches. International Journal of Biochemistry and Cell Biology, 2015, 69, 121-131.	1.2	40
246	Directly targeting transcriptional dysregulation in cancer. Nature Reviews Cancer, 2015, 15, 686-694.	12.8	95
247	Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5625-5631.	1.0	16
248	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	4.3	225
249	Manipulation of metabolism in complex eukaryotic systems to control cellular state. Current Opinion in Chemical Engineering, 2015, 10, 63-69.	3.8	4
250	The Role of Glucose Modulation and Dietary Supplementation in Patients With Central Nervous System Tumors. Current Treatment Options in Oncology, 2015, 16, 36.	1.3	10
251	Detection of Dual IDH1 and IDH2 Mutations by Targeted Next-Generation Sequencing in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Journal of Molecular Diagnostics, 2015, 17, 661-668.	1.2	31
252	Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-Thiohydantoin Compounds. Journal of Medicinal Chemistry, 2015, 58, 6899-6908.	2.9	63
253	Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?. Carcinogenesis, 2015, 36, S203-S231.	1.3	93
254	Radioprotection of <i>IDH1</i> -Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Research, 2015, 75, 4790-4802.	0.4	127
255	The potential of DNA modifications as biomarkers and therapeutic targets in oncology. Expert Review of Molecular Diagnostics, 2015, 15, 1325-1337.	1.5	26
256	Metabolism and Epigenetics. Annual Review of Cell and Developmental Biology, 2015, 31, 473-496.	4.0	147
257	IDH1 mutation-associated long non-coding RNA expression profile changes in glioma. Journal of Neuro-Oncology, 2015, 125, 253-263.	1.4	16
258	Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncology, 2015, 4, 287-294.	1.2	48
259	NADP+-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria Respiration and Induces Apoptosis Resistance. Molecular Cell, 2015, 60, 661-675.	4.5	175

#	Article	IF	CITATIONS
261	Selective Inhibition of Mutant Isocitrate Dehydrogenase 1 (IDH1) via Disruption of a Metal Binding Network by an Allosteric Small Molecule. Journal of Biological Chemistry, 2015, 290, 762-774.	1.6	111
262	Emerging Interplay of Genetics and Epigenetics in Gliomas: A New Hope for Targeted Therapy. Seminars in Pediatric Neurology, 2015, 22, 14-22.	1.0	12
263	Treatment of Anaplastic Glioma. Cancer Treatment and Research, 2015, 163, 89-101.	0.2	18
264	<scp>TET</scp> proteins and 5â€methylcytosine oxidation in hematological cancers. Immunological Reviews, 2015, 263, 6-21.	2.8	158
265	Allele-Specific Chemical Genetics: Concept, Strategies, and Applications. ACS Chemical Biology, 2015, 10, 343-363.	1.6	27
266	Epigenetics in Tâ€cell acute lymphoblastic leukemia. Immunological Reviews, 2015, 263, 50-67.	2.8	61
267	The role of mutations in epigenetic regulators in myeloid malignancies. Immunological Reviews, 2015, 263, 22-35.	2.8	46
268	Current Understanding and Treatment of Gliomas. Cancer Treatment and Research, 2015, , .	0.2	11
269	Deregulated proliferation and differentiation in brain tumors. Cell and Tissue Research, 2015, 359, 225-254.	1.5	28
270	Reports from the International Liver Cancer Association (ILCA) congress 2014. Journal of Hepatology, 2015, 62, 477-482.	1.8	7
271	Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer, 2015, 18, 65-76.	2.7	97
272	A DNA methylationâ€based definition of biologically distinct breast cancer subtypes. Molecular Oncology, 2015, 9, 555-568.	2.1	156
273	Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathology, 2015, 32, 3-11.	1.1	62
274	IDH1/2 mutation detection in gliomas. Brain Tumor Pathology, 2015, 32, 79-89.	1.1	44
275	Epigenetic deregulation in myeloid malignancies. Translational Research, 2015, 165, 102-114.	2.2	6
276	Genetic Alterations of Glioblastoma. , 0, , .		2
278	Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin. Current Cancer Drug Targets, 2016, 16, 288-304.	0.8	46
279	Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer. Oncotarget, 2016, 7, 73638-73650.	0.8	13

#	Article	IF	CITATIONS
280	Compartmentation of Metabolites in Regulating Epigenomes of Cancer. Molecular Medicine, 2016, 22, 349-360.	1.9	16
281	Multimodality Targeting of Glioma Cells. , 2016, , 55-72.		Ο
282	Treatment of Adult Lower-Grade Glioma in the Era of Genomic Medicine. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 75-81.	1.8	17
283	Biliary Tract Cancer: Epidemiology, Radiotherapy, and Molecular Profiling. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e194-e203.	1.8	126
284	Cancer Metabolism: Fueling More than Just Growth. Molecules and Cells, 2016, 39, 847-854.	1.0	75
285	Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	26
286	Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. International Journal of Molecular Sciences, 2016, 17, 440.	1.8	50
287	IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE, 2016, 11, e0154726.	1.1	18
288	Precise Detection of IDH1/2 and BRAF Hotspot Mutations in Clinical Glioma Tissues by a Differential Calculus Analysis of High-Resolution Melting Data. PLoS ONE, 2016, 11, e0160489.	1.1	39
289	IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. Journal of Blood Medicine, 2016, Volume 7, 171-180.	0.7	176
290	Targeting Histone Methylation. , 2016, , 209-238.		1
291	Comparison of highâ€resolution melting analysis with direct sequencing for the detection of recurrent mutations in <scp>DNA</scp> methyltransferase 3 <scp>A</scp> and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients. European Journal of Haematology, 2016 96 181-187	1.1	14
292	Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro-Oncology, 2016, 18, now133.	0.6	130
293	Decreased <scp>FOXJ1</scp> expression and its ciliogenesis programme in aggressive ependymoma and choroid plexus tumours. Journal of Pathology, 2016, 238, 584-597.	2.1	29
294	2-Hydroxy-Glutarate 3-Dimensional Functional Spectroscopy in the Evaluation of Isocitrate Dehydrogenase–Mutant Glioma Response to Therapy. Neurosurgery, 2016, 78, N9.	0.6	2
296	Biological Significance of Mutant Isocitrate Dehydrogenase 1 and 2 in Gliomagenesis. Neurologia Medico-Chirurgica, 2016, 56, 170-179.	1.0	18
297	Treatment Strategies for Low-Grade Glioma in Adults. Journal of Oncology Practice, 2016, 12, 1235-1241.	2.5	66
298	Progress in neuro-imaging of brain tumors. Current Opinion in Oncology, 2016, 28, 484-493.	1.1	30

#	Article	IF	CITATIONS
299	Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. Journal of Hematology and Oncology, 2016, 9, 49.	6.9	124
300	Radiolabeled inhibitors as probes for imaging mutant IDH1 expression in gliomas: Synthesis and preliminary evaluation of labeled butyl-phenyl sulfonamide analogs. European Journal of Medicinal Chemistry, 2016, 119, 218-230.	2.6	13
301	Further understanding of the pathology of glioma: implications for the clinic. Expert Review of Neurotherapeutics, 2016, 16, 1055-1065.	1.4	32
302	Investigational new drugs for brain cancer. Expert Opinion on Investigational Drugs, 2016, 25, 937-956.	1.9	16
303	Epigenetic regulators and their impact on therapy in acute myeloid leukemia. Haematologica, 2016, 101, 269-278.	1.7	45
304	Mitochondria and the hallmarks of cancer. FEBS Journal, 2016, 283, 803-814.	2.2	100
305	A high-throughput analysis of the IDH1(R132H) protein expression in pituitary adenomas. Pituitary, 2016, 19, 407-414.	1.6	12
306	IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro-Oncology, 2016, 18, 1402-1412.	0.6	126
307	Molecular classification of gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 97-120.	1.0	90
308	Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood, 2016, 128, 1226-1233.	0.6	185
309	The complex role of transglutaminase 2 in glioblastoma proliferation. Neuro-Oncology, 2016, 19, now157.	0.6	13
311	Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends in Cancer, 2016, 2, 585-605.	3.8	8
312	Identification of a novel selective inhibitor of mutant isocitrate dehydrogenase 1 at allosteric site by docking-based virtual screening. RSC Advances, 2016, 6, 96735-96742.	1.7	13
313	Pediatric low-grade gliomas: implications of the biologic era. Neuro-Oncology, 2017, 19, now209.	0.6	73
314	Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nature Reviews Cancer, 2016, 16, 680-693.	12.8	306
315	Mutant IDH1 and thrombosis in gliomas. Acta Neuropathologica, 2016, 132, 917-930.	3.9	130
316	Gliomatosis cerebri: A consensus summary report from the First International Gliomatosis cerebri Group Meeting, March 26–27, 2015, Paris, France. Pediatric Blood and Cancer, 2016, 63, 2072-2077.	0.8	16
317	Astrocytic gliomas WHO grades II and III. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 345-360.	1.0	11

#	Article	IF	CITATIONS
318	The Role of Molecular Diagnostics in the Management of Patients with Gliomas. Current Treatment Options in Oncology, 2016, 17, 51.	1.3	32
319	Inflammation and Metastasis. , 2016, , .		4
320	Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer & Metabolism, 2016, 4, 14.	2.4	64
321	Relationship between IDH1 mutation and preoperative seizure in low-grade gliomas: A meta-analysis. Clinical Neurology and Neurosurgery, 2016, 148, 79-84.	0.6	9
322	Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1. ACS Medicinal Chemistry Letters, 2016, 7, 944-949.	1.3	21
323	Challenging Roadblocks to Cancer Cure. Cancer Research, 2016, 76, 4924-4930.	0.4	3
324	Management of Bone Sarcoma. Surgical Clinics of North America, 2016, 96, 1077-1106.	0.5	20
325	Undercover: gene control by metabolites and metabolic enzymes. Genes and Development, 2016, 30, 2345-2369.	2.7	192
326	Targeting the cancer epigenome for therapy. Nature Reviews Genetics, 2016, 17, 630-641.	7.7	888
327	Rapid Conversion of Mutant IDH1 from Driver to Passenger in a Model of Human Gliomagenesis. Molecular Cancer Research, 2016, 14, 976-983.	1.5	84
328	Metabolic control of epigenetics in cancer. Nature Reviews Cancer, 2016, 16, 694-707.	12.8	317
329	Report on the use of nonâ€clinical studies in the regulatory evaluation of oncology drugs. Cancer Science, 2016, 107, 189-202.	1.7	6
330	Mutant <i>IDH</i> : a targetable driver of leukemic phenotypes linking metabolism, epigenetics and transcriptional regulation. Epigenomics, 2016, 8, 945-957.	1.0	21
331	Genomic Landscape of Brain Tumors. , 2016, , 653-663.		Ο
332	Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nature Reviews Clinical Oncology, 2016, 13, 725-739.	12.5	88
333	Discovery and Optimization of Allosteric Inhibitors of Mutant Isocitrate Dehydrogenase 1 (R132H IDH1) Displaying Activity in Human Acute Myeloid Leukemia Cells. Journal of Medicinal Chemistry, 2016, 59, 11120-11137.	2.9	31
334	The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nature Communications, 2016, 7, 12700.	5.8	134
335	Genomic Characterization of Isocitrate Dehydrogenase-1–Mutant Clioma Malignant Progression. Neurosurgery, 2016, 78, N8-N9.	0.6	0

ARTICLE IF CITATIONS # Impact of IDH1 mutation status on outcome in clinical trials for recurrent glioblastoma. Journal of 336 1.4 36 Neuro-Oncology, 2016, 129, 147-154. DNA repair mechanisms and their clinical impact in glioblastoma. Mutation Research - Reviews in 2.4 128 Mutation Research, 2016, 769, 19-35. 338 Anaplastic astrocytoma. CNS Oncology, 2016, 5, 145-157. 1.2 51 Translational and clinical implications of the genetic landscape of prostate cancer. Nature Reviews Clinical Oncology, 2016, 13, 597-610. Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathology, 2016, 33, 340 1.1 38 161-168. DNA methylation in adult diffuse gliomas. Briefings in Functional Genomics, 2016, 15, elw019. 1.3 342 Context-dependent actions of Polycomb repressors in cancer. Oncogene, 2016, 35, 1341-1352. 2.6 79 Retrospective Multicenter Study Investigating the Role of Targeted Next-Generation Sequencing of Selected Cancer Genes in Mucinous Adenocarcinoma of the Lung. Journal of Thoracic Oncology, 2016, 343 19 11, 504-515. Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma. Current Neurology 344 2.0 15 and Neuroscience Reports, 2016, 16, 17. 345 The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 2016, 23, 27-47. 7.2 3,943 Metabolic control of methylation and acetylation. Current Opinion in Chemical Biology, 2016, 30, 346 2.8 241 52-60. Glioblastoma. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 381-397. 1.0 289 Roles of IDH1/2 and TET2 mutations in myeloid disorders. International Journal of Hematology, 2016, 348 0.7 44 103, 627-633. IDH mutations in cancer and progress toward development of targeted therapeutics. Annals of 349 0.6 367 Oncology, 2016, 27, 599-608 351 Molecularly targeted therapy in acute myeloid leukemia. Future Oncology, 2016, 12, 827-838. 1.1 11 Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clinical Cancer Research, 2016, 165 22, 1837-1842. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine 353 biosynthesis in cancers. Proceedings of the National Academy of Sciences of the United States of 3.3239 América, 2016, 113, 1778-1783. 354 Mitochondria and Cancer. Molecular Cell, 2016, 61, 667-676. 4.5 800

#	Article	IF	CITATIONS
355	Epigenetics: A primer for clinicians. Blood Reviews, 2016, 30, 285-295.	2.8	42
356	Seizures and gliomas — towards a single therapeutic approach. Nature Reviews Neurology, 2016, 12, 204-216.	4.9	147
357	Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro-Oncology, 2016, 18, 283-290.	0.6	161
358	An epigenetic gateway to brain tumor cell identity. Nature Neuroscience, 2016, 19, 10-19.	7.1	76
359	Oncogene brought into the loop. Nature, 2016, 529, 34-35.	13.7	6
360	Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nature Genetics, 2016, 48, 59-66.	9.4	253
361	Clinical development of cancer therapeutics that target metabolism. QJM - Monthly Journal of the Association of Physicians, 2016, 109, 367-372.	0.2	29
362	MR Imaging–Based Analysis of Clioblastoma Multiforme: Estimation of <i>IDH1</i> Mutation Status. American Journal of Neuroradiology, 2016, 37, 58-65.	1.2	109
363	Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas. Advances and Technical Standards in Neurosurgery, 2016, , 91-108.	0.2	37
364	Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate. Clinical Cancer Research, 2016, 22, 1632-1641.	3.2	127
365	Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene, 2016, 35, 2766-2776.	2.6	62
366	Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro-Oncology, 2016, 18, 160-172.	0.6	214
367	Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology, 2016, 18, 16-26.	0.6	221
368	In vivo detection of 2â€hydroxyglutarate in brain tumors by optimized pointâ€resolved spectroscopy (PRESS) at 7T. Magnetic Resonance in Medicine, 2017, 77, 936-944.	1.9	40
369	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	12.5	1,028
370	Current and future strategies for treatment of glioma. Neurosurgical Review, 2017, 40, 1-14.	1.2	416
371	Comparative Analysis of Methods for Detecting Isocitrate Dehydrogenase 1 and 2 Mutations and Their Metabolic Consequence, 2-Hydroxyglutarate, in Different Neoplasms. Applied Immunohistochemistry and Molecular Morphology, 2017, 25, 334-337.	0.6	6
372	Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 7-15.	3.3	124

#	Article	IF	CITATIONS
373	Stem Cell-Based Approaches for Treatment of Glioblastoma. Stem Cells in Clinical Applications, 2017, , 65-82.	0.4	0
374	Targeted Therapy and Immunosuppression in the Tumor Microenvironment. Trends in Cancer, 2017, 3, 19-27.	3.8	57
375	Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo. Leukemia, 2017, 31, 2020-2028.	3.3	97
376	Role of Imaging in the Era of Precision Medicine. Academic Radiology, 2017, 24, 639-649.	1.3	52
377	Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression. Molecular Cancer Research, 2017, 15, 507-520.	1.5	41
378	2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science Translational Medicine, 2017, 9, .	5.8	420
379	Targeted Therapy of IDH1-Mutated Tumors. , 2017, , 151-161.		0
380	Glioma: experimental models and reality. Acta Neuropathologica, 2017, 133, 263-282.	3.9	223
381	Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Modern Pathology, 2017, 30, 650-659.	2.9	94
382	Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene, 2017, 36, 3359-3374.	2.6	219
383	Insular primary glioblastomas with <i>IDH</i> mutations: Clinical and biological specificities. Neuropathology, 2017, 37, 200-206.	0.7	12
384	Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathologica, 2017, 133, 629-644.	3.9	146
385	Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Reports, 2017, 18, 991-1004.	2.9	114
386	Chemosensitivity of IDH1-Mutated Gliomas Due to an Impairment in PARP1-Mediated DNA Repair. Cancer Research, 2017, 77, 1709-1718.	0.4	159
387	IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α. Biomedicine and Pharmacotherapy, 2017, 89, 805-811.	2.5	15
388	New Molecular Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Current Neurology and Neuroscience Reports, 2017, 17, 19.	2.0	87
389	Targeting Epigenetic Pathways in the Treatment of Pediatric Diffuse (High Grade) Gliomas. Neurotherapeutics, 2017, 14, 274-283.	2.1	21
390	Asperspiropene A, a novel fungal metabolite as an inhibitor of cancer-associated mutant isocitrate dehydrogenase 1. Organic Chemistry Frontiers, 2017, 4, 1137-1144.	2.3	16

#	Article	IF	CITATIONS
391	IDH1 Mutation Promotes Tumorigenesis by Inhibiting JNK Activation and Apoptosis Induced by Serum Starvation. Cell Reports, 2017, 19, 389-400.	2.9	24
392	Mutant IDH1 and seizures in patients with glioma. Neurology, 2017, 88, 1805-1813.	1.5	167
393	Noninvasive Assessment of <i>IDH</i> Mutational Status in World Health Organization Grade II and III Astrocytomas Using DWI and DSC-PWI Combined with Conventional MR Imaging. American Journal of Neuroradiology, 2017, 38, 1138-1144.	1.2	103
394	Key rates for the grades and transformation ability of glioma: model simulations and clinical cases. Journal of Neuro-Oncology, 2017, 133, 377-388.	1.4	5
395	Metabolic reprogramming and epithelialâ€ŧoâ€mesenchymal transition in cancer. FEBS Journal, 2017, 284, 3132-3144.	2.2	230
396	TET family dioxygenases and DNA demethylation in stem cells and cancers. Experimental and Molecular Medicine, 2017, 49, e323-e323.	3.2	126
397	An update on genomic-guided therapies for pediatric solid tumors. Future Oncology, 2017, 13, 1345-1358.	1.1	2
398	Therapeutic Options for Aggressive T-Cell Lymphomas. Current Hematologic Malignancy Reports, 2017, 12, 269-281.	1.2	3
399	Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with <i>IDH1</i> -mutated or <i>IDH2</i> -mutated solid tumours. BMJ Open, 2017, 7, e014961.	0.8	69
400	Glioblastoma targeted therapy: updated approaches from recent biological insights. Annals of Oncology, 2017, 28, 1457-1472.	0.6	314
401	Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma. Scientific Reports, 2017, 7, 44792.	1.6	63
402	Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Modern Pathology, 2017, 30, 986-997.	2.9	84
403	Crosstalk between epigenetics and metabolism—Yin and Yang of histone demethylases and methyltransferases in cancer. Briefings in Functional Genomics, 2017, 16, 320-325.	1.3	26
404	Isocitrate Dehydrogenase Mutation and (<i>R</i>)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annual Review of Biochemistry, 2017, 86, 305-331.	5.0	161
405	Emerging molecular therapeutic targets for cholangiocarcinoma. Journal of Hepatology, 2017, 67, 632-644.	1.8	150
406	A novel all-in-one intraoperative genotyping system for IDH1-mutant glioma. Brain Tumor Pathology, 2017, 34, 91-97.	1.1	16
408	Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 2017, 10, .	1.6	53
409	Targeted Differentiation Therapy with Mutant IDH Inhibitors: Early Experiences and Parallels with Other Differentiation Agents. Annual Review of Cancer Biology, 2017, 1, 379-401.	2.3	14

#	Article	IF	CITATIONS
410	The Effect of Molecular Diagnostics on the Treatment of Glioma. Current Oncology Reports, 2017, 19, 26.	1.8	40
411	Intrahepatic cholangiocarcinoma: current management and emerging therapies. Expert Review of Gastroenterology and Hepatology, 2017, 11, 439-449.	1.4	58
412	Metabolic Reprogramming in Brain Tumors. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 515-545.	9.6	82
413	Evaluation of non-supervised MALDI mass spectrometry imaging combined with microproteomics for glioma grade III classification. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 875-890.	1.1	36
414	Advances in the molecular genetics of gliomas — implications for classification and therapy. Nature Reviews Clinical Oncology, 2017, 14, 434-452.	12.5	497
415	Malignant Astrocytic Tumor Progression Potentiated by JAK-mediated Recruitment of Myeloid Cells. Clinical Cancer Research, 2017, 23, 3109-3119.	3.2	23
416	Optimization of 3-Pyrimidin-4-yl-oxazolidin-2-ones as Allosteric and Mutant Specific Inhibitors of IDH1. ACS Medicinal Chemistry Letters, 2017, 8, 151-156.	1.3	35
417	Cholangiocarcinoma. Critical Reviews in Oncology/Hematology, 2017, 116, 11-31.	2.0	96
418	A Brain Penetrant Mutant IDH1 Inhibitor Provides In Vivo Survival Benefit. Scientific Reports, 2017, 7, 13853.	1.6	34
419	Isocitrate dehydrogenaseâ€mutant glioma: Evolving clinical and therapeutic implications. Cancer, 2017, 123, 4535-4546.	2.0	103
420	Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays. Scientific Reports, 2017, 7, 12758.	1.6	59
421	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	15.2	279
422	Targeting Metabolism for Cancer Therapy. Cell Chemical Biology, 2017, 24, 1161-1180.	2.5	677
423	Design, synthesis and biological activity of 3-pyrazine-2-yl-oxazolidin-2-ones as novel, potent and selective inhibitors of mutant isocitrate dehydrogenase 1. Bioorganic and Medicinal Chemistry, 2017, 25, 6379-6387.	1.4	10
424	InÂVivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors. Cell Metabolism, 2017, 26, 830-841.e3.	7.2	82
425	Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Scientific Reports, 2017, 7, 13396.	1.6	57
426	Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nature Communications, 2017, 8, 1067.	5.8	91
427	Targeting IDH1 and IDH2 Mutations in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2017, 12, 537-546.	1.2	31

#	Article	IF	CITATIONS
428	Metabolic Enzymes in Sarcomagenesis: Progress Toward Biology and Therapy. BioDrugs, 2017, 31, 379-392.	2.2	8
429	Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant <i>IDH1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10743-10748.	3.3	109
430	Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor. ACS Medicinal Chemistry Letters, 2017, 8, 1116-1121.	1.3	84
431	Anaplastic gliomas in adults: an update. Current Opinion in Oncology, 2017, 29, 434-442.	1.1	10
432	Small-Molecule Screens: A Gateway to Cancer Therapeutic Agents with Case Studies of Food and Drug Administration–Approved Drugs. Pharmacological Reviews, 2017, 69, 479-496.	7.1	58
433	Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends in Cell Biology, 2017, 27, 738-752.	3.6	99
434	Epigenetics in SLE. Current Rheumatology Reports, 2017, 19, 58.	2.1	79
435	Non-canonical IDH1 and IDH2 mutations: a clonal and relevant event in an Italian cohort of gliomas classified according to the 2016 World Health Organization (WHO) criteria. Journal of Neuro-Oncology, 2017, 135, 245-254.	1.4	17
436	New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discovery, 2017, 7, 943-962.	7.7	419
437	Hitting the target in IDH2 mutant AML. Blood, 2017, 130, 693-694.	0.6	4
438	MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell, 2017, 32, 840-855.e8.	7.7	188
439	Allosteric inhibitor remotely modulates the conformation of the orthestric pockets in mutant IDH2/R140Q. Scientific Reports, 2017, 7, 16458.	1.6	18
440	Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts. Cancer Cell, 2017, 32, 590-607.e4.	7.7	52
441	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	7.7	1,282
442	Role of epigenome in tumorigenesis and drug resistance. Food and Chemical Toxicology, 2017, 109, 663-668.	1.8	19
443	Recent developments in predictive biomarkers of pediatric glioma. Oncology Letters, 2017, 14, 497-500.	0.8	1
444	Expression of CD70 (CD27L) Is Associated With Epithelioid and Sarcomatous Features in IDH-Wild-Type Glioblastoma. Journal of Neuropathology and Experimental Neurology, 2017, 76, 697-708.	0.9	16
445	IDH1 or -2 mutations do not predict outcome and do not cause loss of 5-hydroxymethylcytosine or altered histone modifications in central chondrosarcomas. Clinical Sarcoma Research, 2017, 7, 8.	2.3	50

#	Article	IF	CITATIONS
446	Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Future Medicinal Chemistry, 2017, 9, 929-949.	1.1	64
447	Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Annals of Oncology, 2017, 28, 254-269.	0.6	66
448	Neomorphic mutations create therapeutic challenges in cancer. Oncogene, 2017, 36, 1607-1618.	2.6	24
449	Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids, 2017, 49, 21-32.	1.2	89
450	Detection of 2â€hydroxyglutarate in brain tumors by tripleâ€refocusing MR spectroscopy at 3T in vivo. Magnetic Resonance in Medicine, 2017, 78, 40-48.	1.9	28
451	The Emergence of Precision Urologic Oncology: A Collaborative Review on Biomarker-driven Therapeutics. European Urology, 2017, 71, 237-246.	0.9	62
452	Analyzing Tumor Metabolism In Vivo. Annual Review of Cancer Biology, 2017, 1, 99-117.	2.3	33
453	Gene Expression Profiling Stratifies IDH1-Mutant Glioma with Distinct Prognoses. Molecular Neurobiology, 2017, 54, 5996-6005.	1.9	41
454	Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia, 2017, 31, 272-281.	3.3	278
455	Long noncoding RNAs in normal and pathological pluripotency. Seminars in Cell and Developmental Biology, 2017, 65, 1-10.	2.3	16
456	Metabolic interactions with cancer epigenetics. Molecular Aspects of Medicine, 2017, 54, 50-57.	2.7	40
457	Structure based discovery of clomifene as a potent inhibitor of cancer-associated mutant IDH1. Oncotarget, 2017, 8, 44255-44265.	0.8	25
458	Beyond Alkylating Agents for Gliomas: <i>Quo Vadimus</i> ?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 175-186.	1.8	6
459	Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Frontiers in Pharmacology, 2017, 8, 495.	1.6	48
460	Magnetic Resonance Spectroscopy for Detection of 2-Hydroxyglutarate as a Biomarker for IDH Mutation in Gliomas. Metabolites, 2017, 7, 29.	1.3	48
461	From Technical Efficiency to Economic Efficiency: Development of Aza-Friedel–Crafts Reaction Using Phosphoric Acid Immobilized in Glycerol as a Sustainable Approach. Sustainability, 2017, 9, 1176.	1.6	2
462	Altered Mitochondrial Signalling and Metabolism in Cancer. Frontiers in Oncology, 2017, 7, 43.	1.3	28
463	Cliomatosis Cerebri: Current Understanding and Controversies. Frontiers in Oncology, 2017, 7, 165.	1.3	26

#	Article	IF	CITATIONS
464	Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine. BioMed Research International, 2017, 2017, 1-18.	0.9	40
465	EGFRAmplification andIDHMutations in Glioblastoma Patients of the Northeast of Morocco. BioMed Research International, 2017, 2017, 1-7.	0.9	13
466	Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. BioMed Research International, 2017, 2017, 1-13.	0.9	239
467	Drug repurposing for the treatment of glioblastoma multiforme. Journal of Experimental and Clinical Cancer Research, 2017, 36, 169.	3.5	58
468	Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell and Bioscience, 2017, 7, 37.	2.1	69
470	Current biologics for treatment of biliary tract cancers. Journal of Gastrointestinal Oncology, 2017, 8, 430-440.	0.6	33
471	A novel high-sensitivity assay to detect a small fraction of mutant IDH1 using droplet digital PCR. Brain Tumor Pathology, 2018, 35, 97-105.	1.1	14
472	The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA Journal, 2018, 9, 77-102.	3.3	184
473	Mitochondria and Hypoxia: Metabolic Crosstalk in Cell-Fate Decisions. Trends in Endocrinology and Metabolism, 2018, 29, 249-259.	3.1	45
474	Prediction of platinum-based chemotherapy efficacy in lung cancer based on LC–MS metabolomics approach. Journal of Pharmaceutical and Biomedical Analysis, 2018, 154, 95-101.	1.4	16
475	RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research, 2018, 28, 507-517.	5.7	586
476	Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nature Communications, 2018, 9, 1474.	5.8	106
477	Genetic alterations crossing the borders of distinct hematopoetic lineages and solid tumors: Diagnostic challenges in the era of high-throughput sequencing in hemato-oncology. Critical Reviews in Oncology/Hematology, 2018, 126, 64-79.	2.0	12
478	Association between mutant IDHs and tumorigenesis in gliomas. Medical Molecular Morphology, 2018, 51, 194-198.	0.4	9
479	Differential expression of the TWEAK receptor Fn14 in IDH1 wild-type and mutant gliomas. Journal of Neuro-Oncology, 2018, 138, 241-250.	1.4	9
481	IDH1 mutation is associated with a higher preoperative seizure incidence in low-grade glioma: A systematic review and meta-analysis. Seizure: the Journal of the British Epilepsy Association, 2018, 55, 76-82.	0.9	38
482	Mechanistic aspects of epigenetic dysregulation in SLE. Clinical Immunology, 2018, 196, 3-11.	1.4	27
483	Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends in Cancer, 2018, 4, 151-165.	3.8	160

#	Article	IF	CITATIONS
484	Synthesis and evaluation of radiolabeled AGI-5198 analogues as candidate radiotracers for imaging mutant IDH1 expression in tumors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 694-699.	1.0	18
485	The role of metabolic enzymes in mesenchymal tumors and tumor syndromes: genetics, pathology, and molecular mechanisms. Laboratory Investigation, 2018, 98, 414-426.	1.7	22
486	TOF-SIMS analysis of an isocitrate dehydrogenase 1 mutation-associated oncometabolite in cancer cells. Biointerphases, 2018, 13, 03B404.	0.6	5
487	Current therapeutic approaches to diffuse grade II and III gliomas. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561775203.	1.5	35
488	<i>IDH1/2</i> Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors. Clinical Cancer Research, 2018, 24, 1705-1715.	3.2	80
489	Discovery of AC-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Medicinal Chemistry Letters, 2018, 9, 300-305.	1.3	292
490	2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Research, 2018, 78, 2290-2304.	0.4	42
491	Design, synthesis and biological evaluation of novel 5-hydroxy-2-methyl-4 <i>H</i> -pyran-4-one derivatives as antiglioma agents. MedChemComm, 2018, 9, 471-476.	3.5	3
492	IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy and Behavior, 2018, 78, 30-36.	0.9	26
493	Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress. Cell Reports, 2018, 22, 512-522.	2.9	74
494	2-Hydroxyglutarate Detection by Short Echo Time Magnetic Resonance Spectroscopy in Routine Imaging Study of Brain Glioma at 3.0 T. Journal of Computer Assisted Tomography, 2018, 42, 469-474.	0.5	10
495	Functional requirement of a wild-type allele for mutant IDH1 to suppress anchorage-independent growth through redox homeostasis. Acta Neuropathologica, 2018, 135, 285-298.	3.9	10
496	IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway. Neoplasia, 2018, 20, 207-217.	2.3	14
497	lsocitrate dehydrogenase 1 mutation subtypes at site 132 and their translational potential in glioma. CNS Oncology, 2018, 7, 41-50.	1.2	10
498	Immunohistochemically detected IDH1R132H mutation is rare and mostly heterogeneous in prostate cancer. World Journal of Urology, 2018, 36, 877-882.	1.2	26
499	Steroids from Ganoderma sinense as new natural inhibitors of cancer-associated mutant IDH1. Bioorganic Chemistry, 2018, 79, 89-97.	2.0	13
500	Mutant IDH1 Promotes Glioma Formation InÂVivo. Cell Reports, 2018, 23, 1553-1564.	2.9	91
501	Applications of metabolomics to study cancer metabolism. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 2-14.	3.3	129

#	Article	IF	CITATIONS
502	Far Upstream Element-Binding Protein 1 Regulates LSD1 Alternative Splicing to Promote Terminal Differentiation of Neural Progenitors. Stem Cell Reports, 2018, 10, 1208-1221.	2.3	28
503	D-2-Hydroxyglutarate Is Necessary and Sufficient for Isocitrate Dehydrogenase 1 Mutant–Induced <i>MIR148A</i> Promoter Methylation. Molecular Cancer Research, 2018, 16, 947-960.	1.5	8
504	Radiomics, Metabolic, and Molecular MRI for Brain Tumors. Seminars in Neurology, 2018, 38, 032-040.	0.5	19
505	What's New in Grade II and Grade III Gliomas?. Seminars in Neurology, 2018, 38, 041-049.	0.5	1
506	Identification of a novel metabolic-related mutation (IDH1) in metastatic pancreatic cancer. Cancer Biology and Therapy, 2018, 19, 249-253.	1.5	18
507	Noninvasive assessment of isocitrate dehydrogenase mutation status in cerebral gliomas by magnetic resonance spectroscopy in a clinical setting. Journal of Neurosurgery, 2018, 128, 391-398.	0.9	62
508	A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biology, 2018, 14, 316-327.	3.9	166
509	Cellular and molecular characterization of IDH1â€mutated diffuse low grade gliomas reveals tumor heterogeneity and absence of EGFR/PDGFRα activation. Glia, 2018, 66, 239-255.	2.5	15
510	Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nature Reviews Clinical Oncology, 2018, 15, 95-111.	12.5	1,051
511	A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target. Leukemia, 2018, 32, 865-873.	3.3	44
512	Echoâ€planar spectroscopic imaging with dualâ€readout alternated gradients (DRAGâ€EPSI) at 7 T: Application for 2â€hydroxyglutarate imaging in glioma patients. Magnetic Resonance in Medicine, 2018, 79, 1851-1861.	1.9	30
513	Clioma epigenetics: From subclassification to novel treatment options. Seminars in Cancer Biology, 2018, 51, 50-58.	4.3	377
514	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell, 2018, 172, 90-105.e23.	13.5	794
515	Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1R132H-Induced Metabolic Liabilities. Cancer Research, 2018, 78, 36-50.	0.4	35
516	Prediction of <i>IDH1</i> -Mutation and 1p/19q-Codeletion Status Using Preoperative MR Imaging Phenotypes in Lower Grade Gliomas. American Journal of Neuroradiology, 2018, 39, 37-42.	1.2	111
517	Discovery of a novel class of pyridine derivatives that selectively inhibits mutant isocitrate dehydrogenase 2. Chemical Biology and Drug Design, 2018, 91, 1087-1093.	1.5	6
518	Current and future tools for determination and monitoring of isocitrate dehydrogenase status in gliomas. Current Opinion in Neurology, 2018, 31, 727-732.	1.8	6
519	Detection of IDH1 and IDH2 Mutation in Formalin-fixed Paraffin-embedded Gliomas Using Allele-specific COLD-PCR and Probe Melting Curve Analysis. Applied Immunohistochemistry and Molecular Morphology, 2018, 26, e93-e100.	0.6	1

#	Article	IF	CITATIONS
520	Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget, 2018, 9, 14723-14737.	0.8	39
521	Perspectives of immunotherapy in isocitrate dehydrogenase-mutant gliomas. Current Opinion in Oncology, 2018, 30, 368-374.	1.1	18
522	Survivorship in Neuro-Oncology: Improving Care by Advancing Science. Neuro-Oncology, 2018, 20, NP-NP.	0.6	0
523	Biological role of metabolic reprogramming of cancer cells during epithelial‑mesenchymal transition (Review). Oncology Reports, 2019, 41, 727-741.	1.2	15
524	Updates in prognostic markers for gliomas. Neuro-Oncology, 2018, 20, vii17-vii26.	0.6	78
525	The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Review of Molecular Diagnostics, 2018, 18, 1041-1051.	1.5	34
526	Spectral Comparison of Pass-By Traffic Noise. , 2018, , .		2
528	Inhibitor potency varies widely among tumor-relevant human isocitrate dehydrogenase 1 mutants. Biochemical Journal, 2018, 475, 3221-3238.	1.7	10
529	Mechanisms of Hematopoietic Stem Cell Ageing and Targets for Hematopoietic Tumour Prevention. Advances in Experimental Medicine and Biology, 2018, 1086, 117-140.	0.8	2
530	lsocitrate dehydrogenase 1 mutation sensitizes intrahepatic cholangiocarcinoma to the <scp>BET</scp> inhibitor <scp>JQ</scp> 1. Cancer Science, 2018, 109, 3602-3610.	1.7	17
531	Epigenetic Targeting of Glioblastoma. Frontiers in Oncology, 2018, 8, 448.	1.3	82
532	Bridging Cancer Biology with the Clinic: Comprehending and Exploiting IDH Gene Mutations in Gliomas. Cancer Genomics and Proteomics, 2018, 15, 421-436.	1.0	9
533	Modulation of Cell State to Improve Drug Therapy. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 539-542.	1.3	3
534	Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2018, 19, 3325.	1.8	46
535	Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Cells. Cell Reports, 2018, 25, 1018-1026.e4.	2.9	56
536	Functional genomic landscape of acute myeloid leukaemia. Nature, 2018, 562, 526-531.	13.7	907
537	Diagnostic moléculaire des gliomes diffus. Revue Francophone Des Laboratoires, 2018, 2018, 61-67.	0.0	1
538	Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Frontiers in Genetics, 2018, 9, 427.	1.1	88

	CITATION R	EPORT	
#	Article	IF	CITATIONS
539	Association between IDH1/2 mutations and brain glioma grade. Oncology Letters, 2018, 16, 5405-5409.	0.8	31
540	Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, 2018, , .	0.8	15
541	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	13.5	234
542	Targeting cancer's metabolic co-dependencies: A landscape shaped by genotype and tissue context. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 76-87.	3.3	25
543	Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell, 2018, 34, 186-195.	7.7	234
544	IDH1 mutation in human glioma induces chemical alterations that are amenable to optical Raman spectroscopy. Journal of Neuro-Oncology, 2018, 139, 261-268.	1.4	35
545	Inhibitors of Mutant Isocitrate Dehydrogenases 1 and 2 (mIDH1/2): An Update and Perspective. Journal of Medicinal Chemistry, 2018, 61, 8981-9003.	2.9	23
546	IDH1 mutation correlates with a beneficial prognosis and suppresses tumor growth in IHCC. Journal of Surgical Research, 2018, 231, 116-125.	0.8	13
547	Molecular Treatment of High-Grade Gliomas. , 2018, , 419-437.		0
548	Approaches to Autoimmune Diseases Using Epigenetic Therapy. , 2018, , 387-405.		2
549	Cancer Metabolism: Current Understanding and Therapies. Chemical Reviews, 2018, 118, 6893-6923.	23.0	161
550	Genome-wide methylomic and transcriptomic analyses identify subtype-specific epigenetic signatures commonly dysregulated in glioma stem cells and glioblastoma. Epigenetics, 2018, 13, 432-448.	1.3	29
551	Molecular Pathogenesis and Emerging Treatment for Glioblastoma. World Neurosurgery, 2018, 116, 495-504.	0.7	13
552	Genotype-targeted local therapy of glioma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8388-E8394.	3.3	40
553	<i>In vivo</i> imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 2018, 8, 2603-2620.	4.6	36
554	Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Current Topics in Medicinal Chemistry, 2018, 18, 494-504.	1.0	180
555	The IDH1 Mutation-Induced Oncometabolite, 2-Hydroxyglutarate, May Affect DNA Methylation and Expression of PD-L1 in Gliomas. Frontiers in Molecular Neuroscience, 2018, 11, 82.	1.4	61
556	Metabolic Alterations in Cancer Cells and the Emerging Role of Oncometabolites as Drivers of Neoplastic Change. Antioxidants, 2018, 7, 16.	2.2	27

#	Article	IF	CITATIONS
557	Beyond Brooding on Oncometabolic Havoc in IDH-Mutant Gliomas and AML: Current and Future Therapeutic Strategies. Cancers, 2018, 10, 49.	1.7	31
558	PET Imaging of ¹⁸ F-(2 <i>S</i> ,4 <i>R</i>)4-Fluoroglutamine Accumulation in Breast Cancer: From Xenografts to Patients. Molecular Pharmaceutics, 2018, 15, 3448-3455.	2.3	18
559	Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nature Medicine, 2018, 24, 1192-1203.	15.2	359
560	Novel Modes of Inhibition of Wild-Type Isocitrate Dehydrogenase 1 (IDH1): Direct Covalent Modification of His315. Journal of Medicinal Chemistry, 2018, 61, 6647-6657.	2.9	34
561	Isocitrate dehydrogenase 1 mutations in melanoma frequently coâ€occur with NRAS mutations. Histopathology, 2018, 73, 963-968.	1.6	15
562	Comparison of glioblastoma (GBM) molecular classification methods. Seminars in Cancer Biology, 2018, 53, 201-211.	4.3	125
563	Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Cancer & Metabolism, 2018, 6, 4.	2.4	55
564	Mutant IDH1 gliomas downregulate phosphocholine and phosphoethanolamine synthesis in a 2-hydroxyglutarate-dependent manner. Cancer & Metabolism, 2018, 6, 3.	2.4	34
565	Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Letters, 2018, 429, 1-10.	3.2	14
566	Preoperative Two-Dimensional Size of Glioblastoma is Associated with Patient Survival. World Neurosurgery, 2018, 115, e448-e463.	0.7	14
567	IDH1 Arg-132 mutant promotes tumor formation through down-regulating p53. Journal of Biological Chemistry, 2018, 293, 9747-9758.	1.6	20
568	Poorly Differentiated Nonkeratinizing Squamous Cell Carcinoma of the Thymus. American Journal of Surgical Pathology, 2018, 42, 1224-1236.	2.1	19
569	IDH1-mutated transgenic zebrafish lines: An in-vivo model for drug screening and functional analysis. PLoS ONE, 2018, 13, e0199737.	1.1	4
570	Crystal structures of pan-IDH inhibitor AG-881 in complex with mutant human IDH1 and IDH2. Biochemical and Biophysical Research Communications, 2018, 503, 2912-2917.	1.0	51
571	Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer. Clinical Cancer Research, 2018, 24, 6433-6446.	3.2	54
572	3â€(7â€Azaindolyl)â€4â€indolylmaleimides as a novel class of mutant isocitrate dehydrogenaseâ€1 inhibitors: Design, synthesis, and biological evaluation. Archiv Der Pharmazie, 2018, 351, e1800039.	2.1	7
573	Critical Enzymatic Functions of FTO in Obesity and Cancer. Frontiers in Endocrinology, 2018, 9, 396.	1.5	102
574	Under explored epigenetic modulators: role in glioma chemotherapy. European Journal of Pharmacology, 2018, 833, 201-209.	1.7	4

#	Article	IF	CITATIONS
575	Optimization of 3-Pyrimidin-4-yl-oxazolidin-2-ones as Orally Bioavailable and Brain Penetrant Mutant IDH1 Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 746-751.	1.3	11
576	The IncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecologic Oncology, 2018, 150, 343-354.	0.6	76
577	Bioenergetic and proteomic profiling to screen small molecule inhibitors that target cancer metabolisms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 28-37.	1.1	18
578	Isocitrate dehydrogenase 1–mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB Journal, 2019, 33, 557-571.	0.2	33
579	Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Medicinal Research Reviews, 2019, 39, 70-113.	5.0	65
580	Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. , 2019, 193, 178-193.		13
581	Mutant IDH Sensitizes Gliomas to Endoplasmic Reticulum Stress and Triggers Apoptosis via miR-183-Mediated Inhibition of Semaphorin 3E. Cancer Research, 2019, 79, 4994-5007.	0.4	28
582	Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene, 2019, 38, 6835-6849.	2.6	48
583	Toward Single-Organelle Lipidomics in Live Cells. Analytical Chemistry, 2019, 91, 11380-11387.	3.2	20
584	Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biology, 2019, 17, 57.	1.7	31
585	Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development. Frontiers in Oncology, 2019, 9, 506.	1.3	102
586	Ex vivo metabolite profiling of paediatric central nervous system tumours reveals prognostic markers. Scientific Reports, 2019, 9, 10473.	1.6	5
587	Radiosensitization and a Less Aggressive Phenotype of Human Malignant Glioma Cells Expressing Isocitrate Dehydrogenase 1 (IDH1) Mutant Protein: Dissecting the Mechanisms. Cancers, 2019, 11, 889.	1.7	17
588	Molecular Therapy for Oligodendrogliomas. , 2019, , 359-366.		0
589	Application of natural products derivatization method in the design of targeted anticancer agents from 2000 to 2018. Bioorganic and Medicinal Chemistry, 2019, 27, 115150.	1.4	14
590	Current clinical management of patients with glioblastoma. Cancer Reports, 2019, 2, e1216.	0.6	11
591	Friend or foe—IDH1 mutations in glioma 10 years on. Carcinogenesis, 2019, 40, 1299-1307.	1.3	58
592	Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomarker Research, 2019, 7, 22.	2.8	73

#	Article	IF	CITATIONS
593	Flavipesines A and B and Asperchalasines E–H: Cytochalasans and Merocytochalasans from <i>Aspergillus flavipes</i> . Journal of Natural Products, 2019, 82, 2994-3001.	1.5	13
594	Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Frontiers in Cell and Developmental Biology, 2019, 7, 207.	1.8	32
595	Genomic Profiling of Biliary Tract Cancer Cell Lines Reveals Molecular Subtypes and Actionable Drug Targets. IScience, 2019, 21, 624-637.	1.9	15
596	Epigenetic Reprogramming for Targeting IDH-Mutant Malignant Gliomas. Cancers, 2019, 11, 1616.	1.7	17
597	Management of Glioblastoma, Present and Future. World Neurosurgery, 2019, 131, 328-338.	0.7	39
598	TRPC6 inactivation does not affect loss of renal function in nephrotoxic serum glomerulonephritis in rats, but reduces severity of glomerular lesions. Biochemistry and Biophysics Reports, 2019, 17, 139-150.	0.7	15
599	DNA Methylation as a Future Therapeutic and Diagnostic Target in Rheumatoid Arthritis. Cells, 2019, 8, 953.	1.8	63
600	Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers, 2019, 11, 1231.	1.7	90
601	The ribonucleoside AICAr induces differentiation of myeloid leukemia by activating the ATR/Chk1 via pyrimidine depletion. Journal of Biological Chemistry, 2019, 294, 15257-15270.	1.6	18
602	Characterization of cancer-associated IDH2 mutations that differ in tumorigenicity, chemosensitivity and 2-hydroxyglutarate production. Oncotarget, 2019, 10, 2675-2692.	0.8	13
603	Detection of chromosome-mediated tet(X4)-carrying Aeromonas caviae in a sewage sample from a chicken farm. Journal of Antimicrobial Chemotherapy, 2019, 74, 3628-3630.	1.3	27
604	I-8, a novel inhibitor of mutant IDH1, inhibits cancer progression in vitro and in vivo. European Journal of Pharmaceutical Sciences, 2019, 140, 105072.	1.9	5
605	Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells, 2019, 8, 1172.	1.8	29
606	Warburg and Krebs and related effects in cancer. Expert Reviews in Molecular Medicine, 2019, 21, e4.	1.6	22
607	Detection of Metabolic Changes Induced via Drug Treatments in Live Cancer Cells and Tissue Using Raman Imaging Microscopy. Biosensors, 2019, 9, 5.	2.3	11
608	MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas – A preliminary study. European Journal of Radiology, 2019, 112, 169-179.	1.2	29
609	Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Frontiers in Oncology, 2019, 9, 417.	1.3	183
610	Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer & Metabolism, 2019, 7, 4.	2.4	18

#	Article	IF	CITATIONS
611	Abundance of d â€2â€hydroxyglutarate in G2/M is determined by FOXM1 in mutant IDH1â€expressing cells. FEBS Letters, 2019, 593, 2177-2193.	1.3	11
612	Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nature Communications, 2019, 10, 2701.	5.8	82
613	Sulfur metabolism and its contribution to malignancy. International Review of Cell and Molecular Biology, 2019, 347, 39-103.	1.6	40
614	Emerging Applications of Metabolomics in Clinical Pharmacology. Clinical Pharmacology and Therapeutics, 2019, 106, 544-556.	2.3	73
615	Pharmacoepigenetics of Systemic Lupus Erythematosus. , 2019, , 597-608.		0
616	Discovery of DC_H31 as potential mutant IDH1 inhibitor through NADPH-based high throughput screening. Bioorganic and Medicinal Chemistry, 2019, 27, 3229-3236.	1.4	11
617	Kinase Networks Regulate Metabolism: I'D(H1) Never Have Guessed!. Cancer Discovery, 2019, 9, 699-701.	7.7	0
618	IDH1R132H Causes Resistance to HDAC Inhibitors by Increasing NANOG in Glioblastoma Cells. International Journal of Molecular Sciences, 2019, 20, 2679.	1.8	14
619	Discovery and Optimization of Quinolinone Derivatives as Potent, Selective, and Orally Bioavailable Mutant Isocitrate Dehydrogenase 1 (mIDH1) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6575-6596.	2.9	25
620	Cellular Plasticity in Cancer. Cancer Discovery, 2019, 9, 837-851.	7.7	309
621	Glioblastoma Stem-Like Cells, Metabolic Strategy to Kill a Challenging Target. Frontiers in Oncology, 2019, 9, 118.	1.3	98
622	Molecular tumor analysis and liquid biopsy: a feasibility investigation analyzing circulating tumor DNA in patients with central nervous system lymphomas. BMC Cancer, 2019, 19, 192.	1.1	32
623	Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science, 2019, 363, 1217-1222.	6.0	281
624	Consequences of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH Proteins. Molecules, 2019, 24, 968.	1.7	72
625	Emerging drug profile: Krebs cycle and cancer: IDH mutations and therapeutic implications. Leukemia and Lymphoma, 2019, 60, 2635-2645.	0.6	6
626	A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. European Radiology, 2019, 29, 3325-3337.	2.3	58
627	Recent developments and future directions in adult lower-grade gliomas: Society for Neuro-Oncology (SNO) and European Association of Neuro-Oncology (EANO) consensus. Neuro-Oncology, 2019, 21, 837-853.	0.6	66
628	PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clinical Cancer Research, 2019, 25, 4375-4387.	3.2	26

		CITATION R	EPORT	
#	Article		IF	Citations
629	Overview of DNA methylation in adult diffuse gliomas. Brain Tumor Pathology, 2019, 3	6, 84-91.	1.1	45
630	Mammalian Target of Rapamycin 2 (MTOR2) and C-MYC Modulate Glucosamine-6-Pho Glioblastoma (GBM) Cells Through Glutamine: Fructose-6-Phosphate Aminotransferase Cellular and Molecular Neurobiology, 2019, 39, 415-434.	sphate Synthesis in 1 (GFAT1).	1.7	26
631	Synthesis and biological evaluation of anthraquinone derivatives as allosteric phospho mutase 1 inhibitors for cancer treatment. European Journal of Medicinal Chemistry, 20	glycerate 19, 168, 45-57.	2.6	25
632	FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nature Cher 2019, 15, 340-347.	nical Biology,	3.9	192
633	Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of Clinical Radiology, 2019, 74, 314-320.	^a strocytomas.	0.5	22
634	IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the D response. Science Translational Medicine, 2019, 11, .	NA damage	5.8	169
635	Pharmacokinetics, absorption, metabolism, and excretion of [14C]ivosidenib (AG-120) subjects. Cancer Chemotherapy and Pharmacology, 2019, 83, 837-848.	in healthy male	1.1	15
636	Targeting IDH1-Mutated Malignancies with NRF2 Blockade. Journal of the National Car 2019, 111, 1033-1041.	icer Institute,	3.0	61
637	Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Infor Treatment Approaches. Journal of Oncology, 2019, 2019, 1-14.	n Novel	0.6	4
638	Functional and topographic effects on DNA methylation in IDH1/2 mutant cancers. Sci 2019, 9, 16830.	entific Reports,	1.6	29
639	Targeting the interplay between metabolism and epigenetics in cancer. Current Opinio 2019, 31, 92-99.	n in Oncology,	1.1	12
640	Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-in glycolysis and AMPK activation. Scientific Reports, 2019, 9, 18859.	duced aerobic	1.6	18
641	New metabolic imaging tools in neuro-oncology. Current Opinion in Neurology, 2019,	32, 872-877.	1.8	5
642	CRISPR Editing of Mutant IDH1 R132H Induces a CpG Methylation-Low State in Patient Models of G-CIMP. Molecular Cancer Research, 2019, 17, 2042-2050.	t-Derived Clioma	1.5	15
643	Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant gl combination with temozolomide. Neuro-Oncology, 2019, 21, 189-200.	ioma growth in	0.6	49
644	An olive oil phenolic is a new chemotype of mutant isocitrate dehydrogenase 1 (IDH1) Carcinogenesis, 2019, 40, 27-40.	inhibitors.	1.3	14
645	Molecular Pathogenesis of Low-Grade Glioma. Neurosurgery Clinics of North America, 2	2019, 30, 17-25.	0.8	31
646	Metabolic reprogramming in the pathogenesis of glioma: Update. Neuropathology, 20	19, 39, 3-13.	0.7	38

#	Article	IF	CITATIONS
647	Targeting cancer energy metabolism: a potential systemic cure for cancer. Archives of Pharmacal Research, 2019, 42, 140-149.	2.7	25
648	Loss of GINS2 inhibits cell proliferation and tumorigenesis in human gliomas. CNS Neuroscience and Therapeutics, 2019, 25, 273-287.	1.9	22
649	Targeting metabolic vulnerabilities of cancer: Small molecule inhibitors in clinic. Cancer Reports, 2019, 2, e1131.	0.6	8
650	DDIT3 regulates cementoblast mineralization by isocitrate dehydrogenase 1 through nuclear factorâ€₽̂B pathway. Journal of Cellular Physiology, 2019, 234, 11602-11609.	2.0	6
651	RNA-Binding Protein HuR Regulates Both Mutant and Wild-Type IDH1 in IDH1-Mutated Cancer. Molecular Cancer Research, 2019, 17, 508-520.	1.5	17
652	N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro-Oncology, 2019, 21, 95-105.	0.6	100
653	<i>HNF4α</i> pathway mapping identifies wild-type <i>IDH1</i> as a targetable metabolic node in gastric cancer. Gut, 2020, 69, 231-242.	6.1	27
654	Integrating next-generation sequencing to endoscopic retrograde cholangiopancreatography (ERCP)-obtained biliary specimens improves the detection and management of patients with malignant bile duct strictures. Gut, 2020, 69, 52-61.	6.1	108
655	Cancer Metabolism. , 2020, , 127-138.e4.		3
656	In vivo efficacy of mutant IDH1 inhibitor HMS-101 and structural resolution of distinct binding site. Leukemia, 2020, 34, 416-426.	3.3	13
657	The influence of patient sex on clinical approaches to malignant glioma. Cancer Letters, 2020, 468, 41-47.	3.2	20
658	To be Wild or Mutant: Role of Isocitrate Dehydrogenase 1 (IDH1) and 2-Hydroxy Glutarate (2-HG) in Gliomagenesis and Treatment Outcome in Glioma. Cellular and Molecular Neurobiology, 2020, 40, 53-63.	1.7	22
660	Licochalcone A suppresses the proliferation of sarcoma HT-1080 cells, as a selective R132C mutant IDH1 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126825.	1.0	13
661	Blockade of Glutathione Metabolism in <i>IDH1</i> Mutated Glioma. Molecular Cancer Therapeutics, 2020, 19, 221-230.	1.9	55
662	Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets. Nature Reviews Cancer, 2020, 20, 57-70.	12.8	187
663	A Potent Blood–Brain Barrier-Permeable Mutant IDH1 Inhibitor Suppresses the Growth of Glioblastoma with IDH1 Mutation in a Patient-Derived Orthotopic Xenograft Model. Molecular Cancer Therapeutics, 2020, 19, 375-383.	1.9	27
664	Metabolism in tumour-associated macrophages: a quid pro quo with the tumour microenvironment. European Respiratory Review, 2020, 29, 200134.	3.0	25
665	Integrin Beta 1 Promotes Glioma Cell Proliferation by Negatively Regulating the Notch Pathway. Journal of Oncology, 2020, 2020, 1-11.	0.6	6

#	Article	IF	CITATIONS
666	Emerging pathways for precision medicine in management of cholangiocarcinoma. Surgical Oncology, 2020, 35, 47-55.	0.8	5
667	Anaplastic Astrocytoma: State of the art and future directions. Critical Reviews in Oncology/Hematology, 2020, 153, 103062.	2.0	13
668	Non-Invasive Prediction of IDH Mutation in Patients with Glioma WHO II/III/IV Based on F-18-FET PET-Guided In Vivo 1H-Magnetic Resonance Spectroscopy and Machine Learning. Cancers, 2020, 12, 3406.	1.7	17
669	Discovery of Novel IDH1 Inhibitor Through Comparative Structure-Based Virtual Screening. Frontiers in Pharmacology, 2020, 11, 579768.	1.6	15
670	Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma. Cell Death and Disease, 2020, 11, 998.	2.7	19
671	Enasidenib for the treatment of relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase 2 mutation. Expert Review of Precision Medicine and Drug Development, 2020, 5, 421-428.	0.4	3
672	IDH Signalling Pathway in Cholangiocarcinoma: From Biological Rationale to Therapeutic Targeting. Cancers, 2020, 12, 3310.	1.7	25
673	Beyond the Influence of IDH Mutations: Exploring Epigenetic Vulnerabilities in Chondrosarcoma. Cancers, 2020, 12, 3589.	1.7	19
674	The Non-canonical Role of Metabolic Enzymes in Immune Cells and Its Impact on Diseases. Current Tissue Microenvironment Reports, 2020, 1, 221-237.	1.3	5
675	Isocitrate dehydrogenase variants in cancer — Cellular consequences and therapeutic opportunities. Current Opinion in Chemical Biology, 2020, 57, 122-134.	2.8	35
676	The epigenomics of sarcoma. Nature Reviews Cancer, 2020, 20, 608-623.	12.8	121
677	Cancer Cell Metabolism Bolsters Immunotherapy Resistance by Promoting an Immunosuppressive Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 1197.	1.3	30
678	Sphingolipid Pathway as a Source of Vulnerability in IDH1mut Glioma. Cancers, 2020, 12, 2910.	1.7	13
679	Ivosidenib for the treatment of relapsed or refractory acute myeloid leukemia with an IDH1 mutation. Expert Review of Precision Medicine and Drug Development, 2020, 5, 429-438.	0.4	2
680	Metabolic plasticity of IDH1-mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer & Metabolism, 2020, 8, 23.	2.4	14
681	Frequency and Prognostic Value of IDH Mutations in Korean Patients With Cholangiocarcinoma. Frontiers in Oncology, 2020, 10, 1514.	1.3	6
682	Oncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035477.	2.9	2
683	Current Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Frontiers in Molecular Biosciences, 2020, 7, 562798.	1.6	85

		CITATION RE	PORT	
#	Article		IF	CITATIONS
684	Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell, 2020, 38, 647	-660.	7.7	66
685	Generation of induced neural stem cells with inducible IDH1R132H for analysis of glioma and drug testing. PLoS ONE, 2020, 15, e0239325.	ı development	1.1	5
686	Five Easy Metrics of Data Quality for LC–MS-Based Global Metabolomics. Analytical Cl 92, 12925-12933.	1emistry, 2020,	3.2	31
687	Metabolic Constrains Rule Metastasis Progression. Cells, 2020, 9, 2081.		1.8	13
688	Isocitrate Dehydrogenase Mutations in Glioma: Genetics, Biochemistry, and Clinical India Biomedicines, 2020, 8, 294.	ations.	1.4	39
689	Co-expression of cancer driver genes: IDH-wildtype glioblastoma-derived tumorspheres. Translational Medicine, 2020, 18, 482.	ournal of	1.8	4
690	Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. F Immunology, 2020, 11, 592389.	rontiers in	2.2	23
691	Mitochondria Targeting as an Effective Strategy for Cancer Therapy. International Journa Molecular Sciences, 2020, 21, 3363.	l of	1.8	131
692	Glioblastoma multiforme: novel therapeutic targets. Expert Opinion on Therapeutic Targ 605-614.	ets, 2020, 24,	1.5	36
693	IDH-Mutant Gliomas. , 2020, , .			4
694	Ivosidenib in Isocitrate Dehydrogenase 1 <i>–</i> Mutated Advanced Glioma. Journal o Oncology, 2020, 38, 3398-3406.	[:] Clinical	0.8	167
695	New strategies for managing adult gliomas. Journal of Neurology, 2021, 268, 3666-3674	4.	1.8	14
696	Cellular Plasticity and Tumor Microenvironment in Gliomas: The Struggle to Hit a Moving Cancers, 2020, 12, 1622.	; Target.	1.7	29
697	Molecular targeted therapies: Ready for "prime time―in biliary tractÂcancer. Journa 2020, 73, 170-185.	of Hepatology,	1.8	226
698	Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Statu Gliomas Based on Support Vector Machine. Frontiers in Neuroscience, 2020, 14, 144.	s of Grade II/III	1.4	16
699	Glucose Metabolism on Tumor Plasticity, Diagnosis, and Treatment. Frontiers in Oncolog 317.	çy, 2020, 10,	1.3	94
700	Gray Areas in the Gray Matter: <i>IDH1/2</i> Mutations in Glioma. American Society of Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 202	Linical 0, 40, 96-103.	1.8	6
701	Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain Tumor Pa 37, 33-40.	thology, 2020,	1.1	38

ARTICLE IF CITATIONS # Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochimica 702 1.8 12 Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165887. The neural stem-cell marker CD24 is specifically upregulated in IDH-mutant glioma. Translational 1.7 9 Oncology, 2020, 13, 100819. Robust detection of oncometabolic aberrations by 1Hâ€"13C heteronuclear single quantum correlation 704 2.0 3 in intact biological specimens. Communications Biology, 2020, 3, 328. From astrocytoma to glioblastoma: a clonal evolution study. FEBS Open Bio, 2020, 10, 744-751. Vascular habitat analysis based on dynamic susceptibility contrast perfusion MRI predicts IDH 706 2.3 25 mutation status and prognosis in high-grade gliomas. European Radiology, 2020, 30, 3254-3265. Mutant IDH1 Depletion Downregulates Integrins and Impairs Chondrosarcoma Growth. Cancers, 2020, 1.7 12, 141. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Science Translational 708 5.8 46 Medicine, 2020, 12, . Structure-Based Design and Identification of FT-2102 (Olutasidenib), a Potent Mutant-Selective IDH1 2.9 76 Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 1612-1623. 710 Systemic therapies for intrahepatic cholangiocarcinoma. Journal of Hepatology, 2020, 72, 353-363. 1.8 235 Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on 1.4 Biological Therapy, 2020, 20, 305-317 Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB Journal, 2020, 34, 712 0.2 81 3461-3484. Is the IDH Mutation a Good Target for Chondrosarcoma Treatment?. Current Molecular Biology 0.8 Reports, 2020, 6, 1-9. Glioblastoma precision therapy: From the bench to the clinic. Cancer Letters, 2020, 475, 79-91. 714 3.2 27 Extracellular glutamate and IDH1R132H inhibitor promote glioma growth by boosting redox potential. 1.4 14 Journal of Neuro-Oncology, 2020, 146, 427-437 Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. 716 1.7 86 Cancers, 2020, 12, 937. Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9964-9972. mTORC2/Rac1 Pathway Predisposes Cancer Aggressiveness in IDH1-Mutated Glioma. Cancers, 2020, 12, 718 1.7 22 787. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. British Journal of 719 301 Cancer, 2020, 122, 1580-1589.

#	Article	IF	CITATIONS
720	Tenâ€Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wildâ€Type Isocitrate Dehydrogenase 1. Hepatology, 2021, 73, 1747-1763.	3.6	20
721	Linking epigenetic signature and metabolic phenotype in <i>IDH</i> mutant and <i>IDH</i> wildtype diffuse glioma. Neuropathology and Applied Neurobiology, 2021, 47, 379-393.	1.8	4
722	Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacologica Sinica, 2021, 42, 801-813.	2.8	5
723	Targeting Isocitrate Dehydrogenase Mutations in Cancer: Emerging Evidence and Diverging Strategies. Clinical Cancer Research, 2021, 27, 383-388.	3.2	12
724	Will the chemical probes please stand up?. RSC Medicinal Chemistry, 2021, 12, 1428-1441.	1.7	7
725	<i>Nanog</i> maintains stemness of <i>Lkb1</i> â€deficient lung adenocarcinoma and prevents gastric differentiation. EMBO Molecular Medicine, 2021, 13, e12627.	3.3	5
726	Metabolic Codependencies in the Tumor Microenvironment. Cancer Discovery, 2021, 11, 1067-1081.	7.7	144
727	Enrichment of branched chain amino acid transaminase 1 correlates with multiple biological processes and contributes to poor survival of IDH1 wild-type gliomas. Aging, 2021, 13, 3645-3660.	1.4	10
730	Concept and Optimal Treatments of Malignant Gliomas. Japanese Journal of Neurosurgery, 2021, 30, 374-379.	0.0	0
731	Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neuro-Oncology Advances, 2021, 3, vdab103.	0.4	10
732	Metabolic control of cancer progression as novel targets for therapy. Advances in Cancer Research, 2021, 152, 103-177.	1.9	5
733	Metabolic regulation in urological tumors: Interplay with epigenetics and epitranscriptomics. , 2021, , 107-145.		0
734	Promising Molecular Targets for the Targeted Therapy of Biliary Tract Cancers: An Overview. OncoTargets and Therapy, 2021, Volume 14, 1341-1366.	1.0	12
735	redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer. Genomics, Proteomics and Bioinformatics, 2021, 19, 292-305.	3.0	2
736	Pediatric highâ€grade glioma: moving toward subtypeâ€specific multimodal therapy. FEBS Journal, 2021, 288, 6127-6141.	2.2	40
739	Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	70
740	The Roles of 2-Hydroxyglutarate. Frontiers in Cell and Developmental Biology, 2021, 9, 651317.	1.8	59
741	Non-IDH1-R132H IDH1/2 mutations are associated with increased DNA methylation and improved survival in astrocytomas, compared to IDH1-R132H mutations. Acta Neuropathologica, 2021, 141, 945-957.	3.9	32

#	Article	IF	CITATIONS
742	Contemporary Mouse Models in Glioma Research. Cells, 2021, 10, 712.	1.8	22
743	R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Molecular Cell, 2021, 81, 922-939.e9.	4.5	157
744	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	4.2	56
745	PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Molecular Cell, 2021, 81, 1276-1291.e9.	4.5	54
746	Discovery and Optimization of 2 <i>H</i> -1λ ² -Pyridin-2-one Inhibitors of Mutant Isocitrate Dehydrogenase 1 for the Treatment of Cancer. Journal of Medicinal Chemistry, 2021, 64, 4913-4946.	2.9	12
747	The landscape of metabolic pathway dependencies in cancer cell lines. PLoS Computational Biology, 2021, 17, e1008942.	1.5	9
748	Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards. ESMO Open, 2021, 6, 100040.	2.0	19
749	Identification and characterization of a novel mutant isocitrate dehydrogenase 1 inhibitor for glioma treatment. Biochemical and Biophysical Research Communications, 2021, 551, 38-45.	1.0	4
751	From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. International Journal of Molecular Sciences, 2021, 22, 5574.	1.8	6
752	IDH2 mutations in patients with normal karyotype AML predict favorable responses to daunorubicin, cytarabine and cladribine regimen. Scientific Reports, 2021, 11, 10017.	1.6	3
753	Metabolic expression profiling stratifies diffuse lower-grade glioma into three distinct tumour subtypes. British Journal of Cancer, 2021, 125, 255-264.	2.9	9
754	Metabolomics in cancer research and emerging applications in clinical oncology. Ca-A Cancer Journal for Clinicians, 2021, 71, 333-358.	157.7	267
755	Emerging Roles of Wild-type and Mutant IDH1 in Growth, Metabolism and Therapeutics of Glioma. , 0, , 61-78.		5
756	Mitochondrial DNA variation and cancer. Nature Reviews Cancer, 2021, 21, 431-445.	12.8	98
758	A Phase Ib Clinical Trial of Metformin and Chloroquine in Patients with IDH1-Mutated Solid Tumors. Cancers, 2021, 13, 2474.	1.7	13
759	Radiomics and radiogenomics in gliomas: a contemporary update. British Journal of Cancer, 2021, 125, 641-657.	2.9	97
760	Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein and Cell, 2022, 13, 877-919.	4.8	179
761	Imaging Findings of New Entities and Patterns in Brain Tumor. Radiologic Clinics of North America, 2021, 59, 305-322.	0.9	2

#	Article	IF	CITATIONS
762	Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm. Blood Cancer Journal, 2021, 11, 107.	2.8	73
763	Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers, 2021, 13, 3230.	1.7	17
764	A Systems Approach to Brain Tumor Treatment. Cancers, 2021, 13, 3152.	1.7	21
765	Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial. Clinical Cancer Research, 2021, 27, 4491-4499.	3.2	112
766	Metabolic Reprogramming and Molecular Rewiring in Cancer: Therapeutic Opportunities. Indonesian Biomedical Journal, 2021, 13, 114-39.	0.2	3
767	A vaccine for glioma. Nature Cancer, 2021, 2, 584-586.	5.7	5
768	The implications of IDH mutations for cancer development and therapy. Nature Reviews Clinical Oncology, 2021, 18, 645-661.	12.5	155
769	Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS Journal, 2022, 289, 1302-1314.	2.2	23
770	IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications?. Biomedicines, 2021, 9, 799.	1.4	37
771	Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers, 2021, 13, 3602.	1.7	9
772	IDH-Mutant Brain Tumors Hit the Achilles' Heel of Macrophages with R-2-Hydroxyglutarate. Trends in Cancer, 2021, 7, 666-667.	3.8	6
773	Metabolomics, metabolic flux analysis and cancer pharmacology. , 2021, 224, 107827.		44
774	Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Frontiers in Oncology, 2021, 11, 703764.	1.3	27
775	Modulating cell differentiation in cancer models. Biochemical Society Transactions, 2021, 49, 1803-1816.	1.6	2
776	D-2-Hydroxyglutarate in Glioma Biology. Cells, 2021, 10, 2345.	1.8	26
777	A map of the altered glioma metabolism. Trends in Molecular Medicine, 2021, 27, 1045-1059.	3.5	18
778	Clinical Targeting of Altered Metabolism in High-Grade Glioma. Cancer Journal (Sudbury, Mass), 2021, 27, 386-394.	1.0	6
779	Tumor microenvironment is associated with clinical and genetic properties of diffuse gliomas and predicts overall survival. Cancer Immunology, Immunotherapy, 2022, 71, 953-966.	2.0	8

#	Article	IF	CITATIONS
780	Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends in Cell Biology, 2021, 31, 814-828.	3.6	17
781	Mutant IDH1 inhibitors activate pSTAT3-Y705 leading to an increase in BCAT1 and YKL-40 levels in mutant IDH1-expressing cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119114.	1.9	9
782	Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight, 2021, 6, .	2.3	10
783	Brain Neoplasm. , 2021, , 521-625.		1
784	Significance of Research Career for Neurosurgeons : Development of Brain Tumor Biology through Translational Research. Japanese Journal of Neurosurgery, 2021, 30, 280-286.	0.0	0
785	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	2.3	46
786	Advances in Research of Adult Gliomas. International Journal of Molecular Sciences, 2021, 22, 924.	1.8	27
787	Quantitative Analysis of Oncometabolite 2-Hydroxyglutarate. Advances in Experimental Medicine and Biology, 2021, 1280, 161-172.	0.8	3
788	IDH1 mutations induce organelle defects via dysregulated phospholipids. Nature Communications, 2021, 12, 614.	5.8	44
789	MRS for D-2HG Detection in IDH-Mutant Glioma. , 2020, , 173-189.		1
789 790	MRS for D-2HG Detection in IDH-Mutant Glioma. , 2020, , 173-189. Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142.	0.2	1
789 790 791	MRS for D-2HG Detection in IDH-Mutant Glioma., 2020, , 173-189. Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142. Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122179.	0.2	1 5 8
789 790 791 792	MRS for D-2HG Detection in IDH-Mutant Clioma., 2020, 173-189. Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142. Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122179. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72.	0.2 1.2 9.4	1 5 8 137
 789 790 791 792 793 	MRS for D-2HG Detection in IDH-Mutant Glioma., 2020, , 173-189. Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142. Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122179. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72. An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochemical Journal, 2020, 477, 2999-3018.	0.2 1.2 9.4 1.7	1 5 8 137 8
 789 790 791 792 793 799 	MRS for D-2HG Detection in IDH-Mutant Clioma. , 2020, , 173-189.Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142.Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122179.Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72.An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochemical Journal, 2020, 477, 2999-3018.Oncometabolites: linking altered metabolism with cancer. Journal of Clinical Investigation, 2013, 123, 3652-3658.	0.2 1.2 9.4 1.7 3.9	1 5 8 137 8 334
 789 790 791 792 793 799 800 	MRS for D-2HG Detection in IDH-Mutant Glioma., 2020, 173-189. Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142. Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122179. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72. An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochemical Journal, 2020, 477, 2999-3018. Oncometabolites: linking altered metabolism with cancer. Journal of Clinical Investigation, 2013, 123, 3652-3658. Isocitrate dehydrogenase mutations in leukemia. Journal of Clinical Investigation, 2013, 123, 3672-3677.	0.2 1.2 9.4 1.7 3.9 3.9	1 5 8 137 8 334 59
 789 790 791 792 793 793 799 800 801 	MRS for D-2HG Detection in IDH-Mutant Glioma., 2020, , 173-189. Novel Chemotherapeutic Approaches in Adult High-Grade Gliomas. Cancer Treatment and Research, 2015, 163, 117-142. Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122179. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Cenetics, 2018, 50, 62-72. An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Biochemical Journal, 2020, 477, 2999-3018. Oncometabolites: linking altered metabolism with cancer. Journal of Clinical Investigation, 2013, 123, 3652-3658. Isocitrate dehydrogenase mutations in leukemia. Journal of Clinical Investigation, 2013, 123, 3672-3677. JAK2/IDH-mutantã€" driven myeloproliferative neoplasm is sensitive to combined targeted inhibition. Journal of Clinical Investigation, 2013, 123, 789-804.	0.2 1.2 9.4 1.7 3.9 3.9 3.9	1 5 8 137 8 334 59 66

#	Article	IF	CITATIONS
803	Identification of a New Selective Chemical Inhibitor of Mutant Isocitrate Dehydrogenase-1. Journal of Cancer Prevention, 2015, 20, 78-83.	0.8	6
804	mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress, 2017, 1, 55-67.	1.4	3
805	Another small molecule in the oncometabolite mix: L-2-Hydroxyglutarate in kidney cancer. Oncoscience, 2015, 2, 483-486.	0.9	16
806	GBM-associated mutations and altered protein expression are more common in young patients. Oncotarget, 2016, 7, 69466-69478.	0.8	27
807	IGFBP2 expression predicts IDH-mutant glioma patient survival. Oncotarget, 2017, 8, 191-202.	0.8	30
808	Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget, 2013, 4, 1729-1736.	0.8	213
809	IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway. Oncotarget, 2017, 8, 28865-28879.	0.8	23
810	IDH1R132H is intrinsically tumor-suppressive but functionally attenuated by the glutamate-rich cerebral environment. Oncotarget, 2018, 9, 35100-35113.	0.8	9
811	Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines. Oncotarget, 2015, 6, 12505-12519.	0.8	81
812	Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget, 2015, 6, 12279-12296.	0.8	53
813	The oncometabolite D-2-hydroxyglutarate induced by mutant IDH1 or -2 blocks osteoblast differentiation <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2015, 6, 14832-14842.	0.8	33
814	<i>IDH1/2</i> but not <i>DNMT3A</i> mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget, 2015, 6, 42345-42353.	0.8	92
815	IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget, 2015, 6, 40896-40906.	0.8	116
816	Survival kinase genes present prognostic significance in glioblastoma. Oncotarget, 2016, 7, 20140-20151.	0.8	48
817	Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations. Oncotarget, 2016, 7, 23825-23836.	0.8	10
818	The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets. Oncotarget, 2016, 7, 46750-46767.	0.8	97
819	Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget, 2016, 7, 34942-34955.	0.8	32
820	Biliary tract cancer prognostic and predictive genomics. Chinese Clinical Oncology, 2019, 8, 42-42.	0.4	15

	CHATION N	LEPUKI	
#	Article	IF	CITATIONS
821	Targeting Tumor Suppressor Networks for Cancer Therapeutics. Current Drug Targets, 2014, 15, 2-16.	1.0	69
822	Molecular Biomarkers of Brain and Spinal Cord Astrocytomas. Acta Naturae, 2019, 11, 17-27.	1.7	9
823	IDH1‑R132H mutation radiosensitizes U87MG glioma cells via epigenetic downregulation of TIGAR. Oncology Letters, 2020, 19, 1322-1330.	0.8	10
824	Towards an advanced cell-based in vitro glioma model system. AIMS Genetics, 2018, 05, 091-112.	1.9	14
825	Cancer Metabolism and Its Therapeutic Implications. Journal of Cell Science & Therapy, 2013, 04, .	0.3	3
826	Emerging molecular targets and therapy for cholangiocarcinoma. World Journal of Gastrointestinal Oncology, 2017, 9, 268.	0.8	27
828	Radiomics-based prediction of multiple gene alteration incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant. Journal of Neuro-Oncology, 2021, 155, 267-276.	1.4	10
829	Synthesis and Evaluation of 3-(Indol-3-yl)-4-(Pyrazolo[3,4-c]Pyridazin-3-yl)-Maleimides as Potent Mutant Isocitrate Dehydrogenase-1 Inhibitors. Pharmaceutical Chemistry Journal, 2021, 55, 655-664.	0.3	0
830	MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications. Biomolecules, 2021, 11, 1531.	1.8	6
831	Oligodendroglioma: A Review of Management and Pathways. Frontiers in Molecular Neuroscience, 2021, 14, 722396.	1.4	11
832	Emerging Epigenetic Therapies for Brain Tumors. NeuroMolecular Medicine, 2022, 24, 41-49.	1.8	7
833	Isocitrate Dehydrogenase Mutant Grade II and III Glial Neoplasms. Hematology/Oncology Clinics of North America, 2021, 36, 95-111.	0.9	6
835	Metabolic Enzymes: The Novel Targets for Cancer Stem Cells. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	0
836	Tumor Cell Metabolic Reprogramming and Drug Targeting. Cancer Drug Discovery and Development, 2014, , 1-5.	0.2	0
838	Signalling Pathways in Clioma-Propagating Cells. Cell Biology: Research & Therapy, 0, s1, .	0.2	0
839	The Genomics of Diffuse Low-Grade Gliomas. , 2017, , 137-149.		0
841	Cancer Metabolism. , 2018, , 129-154.		0
842	Metabolic Dysregulation in Environmental Carcinogenesis and Toxicology. , 0, , 511-606.		0

# 843	ARTICLE IDH1 Mutation Enhances Catabolic Flexibility and Mitochondrial Dependencies to Favor Drug Resistance in Acute Myeloid Leukemia. SSRN Electronic Journal, 0, , .	IF 0.4	Citations 0
844	Cerebral Gliomas. , 2018, , 1-29.		1
850	Genome Medicine for Brain Tumors: Current Status and Future Perspectives. Neurologia Medico-Chirurgica, 2020, 60, 531-542.	1.0	5
852	Integrative transcriptome analysis identified a BMP signaling pathway‑regulated IncRNA AC068643.1 in IDH mutant and wild‑type glioblastomas. Oncology Letters, 2020, 20, 75-84.	0.8	3
853	Rare Cases of IDH1 Mutations in Spinal Cord Astrocytomas. Acta Naturae, 2020, 12, 70-73.	1.7	6
854	Mouse Models of Diffuse Lower-Grade Gliomas of the Adult. Neuromethods, 2021, , 3-38.	0.2	0
855	Intracellular Cholesterol Pools Regulate Oncogenic Signaling and Epigenetic Circuitries in Early T-cell Precursor Acute Lymphoblastic Leukemia. Cancer Discovery, 2022, 12, 856-871.	7.7	13
856	Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Communications Biology, 2021, 4, 1243.	2.0	12
858	Withaferin A suppresses skin tumor promotion by inhibiting proteasome-dependent isocitrate dehydrogenase 1 degradation. Translational Cancer Research, 2019, 8, 2449-2460.	0.4	2
859	Cerebral Gliomas. , 2020, , 1853-1875.		0
862	Molecular biology of gliomas: present and future challenges. Translational Medicine @ UniSa, 2014, 10, 29-37.	0.8	33
863	Preface to the column "Metabolism of Childhood Cancer". Translational Pediatrics, 2015, 4, 1-3.	0.5	17
864	Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene, 2022, 41, 613-621.	2.6	29
865	Establishment of patient-derived organoid models of lower-grade glioma. Neuro-Oncology, 2022, 24, 612-623.	0.6	36
867	Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers, 2021, 13, 5722.	1.7	17
868	Current development and future perspective of IDH1 inhibitors in cholangiocarcinoma. Liver Cancer International, 2022, 3, 17-31.	0.2	6
869	Evaluation of a DNA demethylating agent in combination with <i>all-trans</i> retinoic acid for <i>IDH1-</i> mutant gliomas. Neuro-Oncology, 2022, 24, 711-723.	0.6	5
870	Cysteine is a limiting factor for glioma proliferation and survival. Molecular Oncology, 2022, 16, 1777-1794.	2.1	7

#	Article	IF	CITATIONS
872	Title: (R)-2-Hydroxyglutarate Inhibits KDM5 Histone Lysine Demethylases to Drive Tumorigenesis in IDH-Mutant Cancers. SSRN Electronic Journal, 0, , .	0.4	0
873	Integration into cancer studies. Advances in Magnetic Resonance Technology and Applications, 2021, 3, 157-185.	0.0	0
874	IDH-mutated gliomas promote epileptogenesis through <scp>d</scp> -2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro-Oncology, 2022, 24, 1423-1435.	0.6	27
875	Synthesis and biological evaluation of novel PET tracers [18F]AG120 & [18F]AG135 for imaging mutant isocitrate dehydrogenase 1 expression. Bioorganic and Medicinal Chemistry, 2022, 53, 116525.	1.4	4
876	Post-translational modifications on mitochondrial metabolic enzymes in cancer. Free Radical Biology and Medicine, 2022, 179, 11-23.	1.3	20
877	Discovery of linear unnatural peptides as potent mutant isocitrate dehydrogenase 1 inhibitors by Ugi reaction. Bioorganic Chemistry, 2022, 119, 105569.	2.0	1
878	Novel and emerging targets for cholangiocarcinoma progression: therapeutic implications. Expert Opinion on Therapeutic Targets, 2022, 26, 79-92.	1.5	4
879	Beyond Isocitrate Dehydrogenase Mutations: Emerging Mechanisms for the Accumulation of the Oncometabolite 2-Hydroxyglutarate. Chemical Research in Toxicology, 2022, 35, 115-124.	1.7	3
880	The Distribution and Significance of <i>IDH</i> Mutations in Gliomas. , 0, , .		1
881	An Innovation 10 Years in the Making: The Stories in the Pages of <i>ACS Medicinal Chemistry Letters</i> . ACS Medicinal Chemistry Letters, 2022, 13, 540-545.	1.3	0
882	Glioma targeted therapy: insight into future of molecular approaches. Molecular Cancer, 2022, 21, 39.	7.9	274
883	Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research. Journal of Clinical and Translational Hepatology, 2022, 10, 700-710.	0.7	3
884	Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cellular and Molecular Life Sciences, 2022, 79, 154.	2.4	10
885	Precision Oncology in Lower-Grade Gliomas: Promises and Pitfalls of Therapeutic Strategies Targeting IDH-Mutations. Cancers, 2022, 14, 1125.	1.7	10
886	Inhibitory Potential of Shen-Shuai-Ling Formulation on Renal Interstitial Fibrosis via Upregulation of PLZF. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-9.	0.5	1
887	Biology of IDH mutant cholangiocarcinoma. Hepatology, 2022, 75, 1322-1337.	3.6	20
888	A phase 1 study of IDH305 in patients with IDH1R132-mutant acute myeloid leukemia or myelodysplastic syndrome. Journal of Cancer Research and Clinical Oncology, 2023, 149, 1145-1158.	1.2	14
889	DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Frontiers in Immunology, 2022, 13, 863703.	2.2	11

#	Article	IF	CITATIONS
890	Systematic Review of Epigenetic Therapies for Treatment of IDH-mutant Glioma. World Neurosurgery, 2022, 162, 47-56.	0.7	8
891	Classification of adultâ€type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathology, 2022, 32, e13062.	2.1	53
892	Synergistic anti-tumor efficacy of mutant isocitrate dehydrogenase 1 inhibitor SYC-435 with standard therapy in patient-derived xenograft mouse models of glioma. Translational Oncology, 2022, 18, 101368.	1.7	2
893	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia, 2022, 28, 100790.	2.3	5
894	Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Reports Medicine, 2021, 2, 100469.	3.3	21
895	IDH1/2 Mutations in Cancer Stem Cells and Their Implications for Differentiation Therapy. Journal of Histochemistry and Cytochemistry, 2022, 70, 83-97.	1.3	10
911	SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors. Cell Research, 2022, 32, 638-658.	5.7	19
913	To Explore the Stem Cells Homing to GBM: The Rise to the Occasion. Biomedicines, 2022, 10, 986.	1.4	2
914	Targeting IDH-Mutant Glioma. Neurotherapeutics, 2022, 19, 1724-1732.	2.1	13
916	Chromatin structure predicts survival in glioma patients. Scientific Reports, 2022, 12, 8221.	1.6	1
917	IDH mutation and cancer stem cell. Essays in Biochemistry, 2022, 66, 413-422.	2.1	6
918	Design, Synthesis, and biological evaluation of HDAC6 inhibitors based on Cap modification strategy. Bioorganic Chemistry, 2022, 125, 105874.	2.0	6
919	A Comparative Study Between Tumor Blood Vessels and Dynamic Contrast-enhanced MRI for Identifying Isocitrate Dehydrogenase Gene 1 (IDH1) Mutation Status in Glioma. Current Medical Science, 2022, 42, 650-657.	0.7	3
920	Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. International Journal of Cancer, 2022, 151, 1431-1446.	2.3	6
921	Advances in Immune Microenvironment and Immunotherapy of Isocitrate Dehydrogenase Mutated Glioma. Frontiers in Immunology, 0, 13, .	2.2	9
923	2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines, 2022, 10, 1359.	1.4	8
924	Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neuroscience Bulletin, 2022, 38, 1069-1084.	1.5	6
925	MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2022, 23, 7148.	1.8	18

#	ARTICLE	IF	CITATIONS
926	spectroscopic studies reveal details of substrate-induced conformational changes distant from the active site in isopenicillin N synthase. Journal of Biological Chemistry, 2022, , 102249.	1.6	0
927	IDH1 p.R132H ctDNA and D-2-hydroxyglutarate as CSF biomarkers in patients with IDH-mutant gliomas. Journal of Neuro-Oncology, 2022, 159, 261-270.	1.4	6
928	Molecular and Circulating Biomarkers in Patients with Clioblastoma. International Journal of Molecular Sciences, 2022, 23, 7474.	1.8	19
929	Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death and Differentiation, 2022, 29, 1304-1317.	5.0	71
930	Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell, 2022, 185, 2678-2689.	13.5	51
931	Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Frontiers in Pharmacology, 0, 13, .	1.6	12
932	An Epigenetic Role of Mitochondria in Cancer. Cells, 2022, 11, 2518.	1.8	57
933	Metabolic targeting of malignant tumors: a need for systemic approach. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2115-2138.	1.2	2
934	Current understanding of the human microbiome in glioma. Frontiers in Oncology, 0, 12, .	1.3	5
935	Recent advances of IDH1 mutant inhibitor in cancer therapy. Frontiers in Pharmacology, 0, 13, .	1.6	21
936	Advances in the pharmacological management of acute myeloid leukemia in adults. Expert Opinion on Pharmacotherapy, 2022, 23, 1535-1543.	0.9	1
937	De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell, 2022, 40, 939-956.e16.	7.7	43
938	Early volumetric, perfusion, and diffusion MRI changes after mutant isocitrate dehydrogenase (IDH) inhibitor treatment in IDH1-mutant gliomas. Neuro-Oncology Advances, 2022, 4, .	0.4	2
939	Oncometabolites, epigenetic marks, and DNA repair. , 2022, , 191-202.		0
940	Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. Journal of Oncology, 2022, 2022, 1-16.	0.6	0
941	Von Hippel–Lindau disease: insights into oxygen sensing, protein degradation, and cancer. Journal of Clinical Investigation, 2022, 132, .	3.9	36
942	Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers, 2022, 14, 4568.	1.7	25
943	Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Sub-Cellular Biochemistry, 2022, , 3-65.	1.0	4

	CITATION RE	PORT	
Article		IF	CITATIONS
Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on m therapeutic opportunities. Cancer Communications, 2022, 42, 1049-1082.	echanisms and	3.7	28
Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) review on diagnosis, management, and future directions. Neuro-Oncology, 2023, 25, 4	consensus 1-25.	0.6	45
High Expression of Fibronectin 1 Predicts a Poor Prognosis in Glioblastoma. Current M 2022, 42, 1055-1065.	edical Science,	0.7	7
Optimize Treatment Approaches In Isocitrate Dehydrogenase (Idh) Mutant Gliomas: O Neuro-Oncology, 0, , .	pen Issues.	0.6	1
Disabling Uncompetitive Inhibition of Oncogenic IDH Mutations Drives Acquired Resis Discovery, 2023, 13, 170-193.	tance. Cancer	7.7	6
Integrated analysis of the genomic and transcriptional profile of gliomas with isocitrat dehydrogenase-1 and tumor protein 53 mutations. International Journal of Immunopa Pharmacology, 2022, 36, 039463202211392.	e thology and	1.0	0
Targeting IDH1/IDH2 mutations in gliomas. Current Opinion in Neurology, 2022, 35, 7	87-793.	1.8	8
Radiotherapy delays malignant transformation and prolongs survival in patients with I gliomas. Cancer Biology and Medicine, 2022, 19, 1477-1486.	DH-mutant	1.4	3

954 ĐšĐ¾Đ¼ĐįĐ»ĐμĐ⁰ÑĐ¼2Đ,Đ¹ Đ¾Đ³Đ»ÑĐ´ĐΌ,Ñ"уĐ·Đ½Đ¾Ñ— Đ½Đ,Đ·ŇŒĐ⁰Đ¾ĐƊ,Ñ"ĐμÑ€ĐμĐ½Ñ†Ñ–Đ¹Đ猕⊉Đ²Đ°Đϕ2Đ¾Ñ— ŧ

955	Intertwined regulation between RNA m6A modification and cancer metabolism. , 2023, 2, 100075.		1
956	Metabolic targeting, immunotherapy and radiation in locally advanced non-small cell lung cancer: Where do we go from here?. Frontiers in Oncology, 0, 12, .	1.3	0
957	Conventional and emerging treatments of astrocytomas and oligodendrogliomas. Journal of Neuro-Oncology, 2023, 162, 471-478.	1.4	3
958	Impact of epigenetic reprogramming on antitumor immune responses in glioma. Journal of Clinical Investigation, 2023, 133, .	3.9	15
959	Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers, 2023, 15, 466.	1.7	4
960	Preclinical Models of Low-Grade Gliomas. Cancers, 2023, 15, 596.	1.7	4
961	Imidazole and Biphenyl Derivatives as Anti-cancer Agents for Clioma Therapeutics: Computational Drug Repurposing Strategy. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 1085-1101.	0.9	2
962	Zinc Finger MYND-Type Containing 8 (ZMYND8) Is Epigenetically Regulated in Mutant Isocitrate Dehydrogenase 1 (IDH1) Glioma to Promote Radioresistance. Clinical Cancer Research, 2023, 29, 1763-1782.	3.2	3
963	Synthesis, Characterization, Molecular Docking and in vitro Anticancer Screening of Some Novel Thiophene Derivatives. ChemistrySelect, 2023, 8, .	0.7	0

#

#	Article	IF	CITATIONS
964	The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Acta Pharmaceutica Sinica B, 2023, 13, 1438-1466.	5.7	3
966	DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers, 2023, 15, 1342.	1.7	13
967	Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial. Nature Medicine, 2023, 29, 615-622.	15.2	46
968	<i>(R)</i> -2-Hydroxyglutarate Inhibits KDM5 Histone Lysine Demethylases to Drive Transformation in <i>IDH</i> -Mutant Cancers. Cancer Discovery, 2023, 13, 1478-1497.	7.7	3
969	Differentiating Inhibition Selectivity and Binding Affinity of Isocitrate Dehydrogenase 1 Variant Inhibitors. Journal of Medicinal Chemistry, 2023, 66, 5279-5288.	2.9	2
970	Mutated Isocitrate Dehydrogenase (mIDH) as Target for PET Imaging in Gliomas. Molecules, 2023, 28, 2890.	1.7	3
971	Preclinical modeling of lower-grade gliomas. Frontiers in Oncology, 0, 13, .	1.3	1
972	Metabolomics-based discovery of XHP as a CYP3A4 inhibitor against pancreatic cancer. Frontiers in Pharmacology, 0, 14, .	1.6	0
973	Spectral Analysis Based on Hemodynamic Habitat Imaging Predicts IDH Status and Prognosis in High-Grade Glioma. World Neurosurgery, 2023, , .	0.7	0
988	A new era for glioma therapy — targeting mutant IDH. Nature Reviews Clinical Oncology, 0, , .	12.5	0

1004 Approaches to autoimmune diseases using epigenetic therapy. , 2024, , 413-431.

0