High-level semi-synthetic production of the potent anti-

Nature

496, 528-532

DOI: 10.1038/nature12051

Citation Report

#	Article	IF	Citations
3	Genome-Scale Models for Microbial Factories. Industrial Biotechnology, 2013, 9, 177-178.	0.5	1
4	Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. Journal of the American Chemical Society, 2013, 135, 12480-12496.	6.6	646
5	From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in <i>Saccharomyces cerevisiae</i>). Biotechnology Journal, 2013, 8, 1435-1444.	1.8	91
6	14-Step Synthesis of (+)-Ingenol from (+)-3-Carene. Science, 2013, 341, 878-882.	6.0	273
7	Mapping of Functional Groups in Metal-Organic Frameworks. Science, 2013, 341, 882-885.	6.0	411
8	In vitro production of n-butanol from glucose. Metabolic Engineering, 2013, 20, 84-91.	3.6	89
9	Small, synthetic, GC-rich mRNA stem-loop modules $5\hat{a}\in^2$ proximal to the AUG start-codon predictably tune gene expression in yeast. Microbial Cell Factories, 2013, 12, 74.	1.9	20
10	High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods, 2013, 9, 46.	1.9	73
11	Efficient Terpene Synthase Catalysis by Extraction in Flow. ChemPlusChem, 2013, 78, 1334-1337.	1.3	13
12	Alternative natural sources for a new generation of antibacterial agents. International Journal of Antimicrobial Agents, 2013, 42, 195-201.	1.1	109
14	Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use. International Journal of Molecular Sciences, 2013, 14, 11713-11741.	1.8	72
15	Building synthetic cellular organization. Molecular Biology of the Cell, 2013, 24, 3585-3587.	0.9	7
16	Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41, 10668-10678.	6.5	186
17	Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis of Amorpha-4,11-diene. PLoS ONE, 2013, 8, e79650.	1.1	37
18	Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast. Frontiers in Microbiology, 2013, 4, 200.	1.5	12
19	Bridging the gap between systems biology and synthetic biology. Frontiers in Microbiology, 2013, 4, 211.	1.5	19
20	Synthetic Biology: Applying Engineering to Life Sciences to Develop Rationally Designed Biological Parts, Devices, and Systems. Frontiers in Bioengineering and Biotechnology, 2013, 1, .	2.0	1
22	Artesunate Abolishes Germinal Center B Cells and Inhibits Autoimmune Arthritis. PLoS ONE, 2014, 9, e104762.	1.1	38

#	Article	IF	CITATIONS
23	Identification of Novel Knockout Targets for Improving Terpenoids Biosynthesis in Saccharomyces cerevisiae. PLoS ONE, 2014, 9, e112615.	1.1	34
24	Microbial production of plant specialized metabolites. Plant Biotechnology, 2014, 31, 465-482.	0.5	18
25	Inducing Effect of Dihydroartemisinic Acid in the Biosynthesis of Artemisinins with Cultured Cells of <i>Artemisia annua </i> by Enhancing the Expression of Genes. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	5
26	Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae. Metabolites, 2014, 4, 751-774.	1.3	13
27	XTMS: pathway design in an eXTended metabolic space. Nucleic Acids Research, 2014, 42, W389-W394.	6.5	96
28	Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnology for Biofuels, 2014, 7, 156.	6.2	61
29	Development of bio-based fine chemical production through synthetic bioengineering. Microbial Cell Factories, 2014, 13, 173.	1.9	42
30	Heterologous fermentation of a diterpene from <i>Alternaria brassisicola</i> . Mycology, 2014, 5, 207-219.	2.0	7
31	Creating biological nanomaterials using synthetic biology. Science and Technology of Advanced Materials, 2014, 15, 014401.	2.8	18
32	Exploring the interactions between isoprenoid chain and labdenediol diphosphate synthase based on molecular docking and quartz crystal microbalance. Journal of Molecular Modeling, 2014, 20, 2527.	0.8	0
33	De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microbial Cell Factories, 2014, 13, 170.	1.9	73
34	Metabolic engineering of microorganisms for the production of L-arginine and its derivatives. Microbial Cell Factories, 2014, 13, 166.	1.9	43
35	Introducing an Inâ€Situ Capping Strategy in Systems Biocatalysis To Access 6â€Aminohexanoic acid. Angewandte Chemie - International Edition, 2014, 53, 14153-14157.	7.2	95
36	Enabling Technologies to Advance Microbial Isoprenoid Production. Advances in Biochemical Engineering/Biotechnology, 2014, 148, 143-160.	0.6	10
37	Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and $\tilde{A}\check{Z}\hat{A}^{\pm}/\tilde{A}\check{Z}\hat{A}^{2}$ -santalene. Frontiers in Plant Science, 2014, 5, 636.	1.7	72
38	High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms. BioMed Research International, 2014, 2014, 1-8.	0.9	61
39	Intermediates in the Formation and Thermolysis of Peroxides from Oxidations with Singlet Oxygen. Australian Journal of Chemistry, 2014, 67, 320.	0.5	7
40	Toehold gene switches make big footprints. Nature, 2014, 516, 333-334.	13.7	26

#	ARTICLE	IF	CITATIONS
41	Cytochrome P450 Enzyme Metabolites in Lead Discovery and Development. Annual Reports in Medicinal Chemistry, 2014, 49, 347-359.	0.5	4
43	Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346, 1084-1088.	6.0	388
44	Reprint of Design of synthetic microbial communities for biotechnological production processes. Journal of Biotechnology, 2014, 192, 293-301.	1.9	26
45	Capturing of the monoterpene olefin limonene produced inSaccharomyces cerevisiae. Yeast, 2014, 32, n/a-n/a.	0.8	62
47	Synthetic Promoters Functional in Francisella novicida and Escherichia coli. Applied and Environmental Microbiology, 2014, 80, 226-234.	1.4	20
48	cDNA Cloning and Expression Analysis of Farnesyl Pyrophosphate Synthase from Ornithogalum saundersiae. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 259-270.	0.6	8
49	Advances and Computational Tools towards Predictable Design in Biological Engineering. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-16.	0.7	21
50	Metabolic engineering of <i>Escherichia coli</i> for the production of phenol from glucose. Biotechnology Journal, 2014, 9, 621-629.	1.8	103
51	Novel fermentation processes for manufacturing plant natural products. Current Opinion in Biotechnology, 2014, 25, 17-23.	3.3	52
52	Templated globules — applications and perspectives. Advances in Colloid and Interface Science, 2014, 205, 124-133.	7.0	20
53	Polycistronic expression of a \hat{l}^2 -carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to \hat{l}^2 -ionone production. Journal of Biotechnology, 2014, 192, 383-392.	1.9	110
54	Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Current Opinion in Biotechnology, 2014, 29, 99-106.	3.3	87
55	Gene clustering in plant specialized metabolism. Current Opinion in Biotechnology, 2014, 26, 91-99.	3.3	195
56	Transgenic approach to increase artemisinin content in Artemisia annua L Plant Cell Reports, 2014, 33, 605-615.	2.8	86
57	Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Applied Microbiology and Biotechnology, 2014, 98, 3081-3089.	1.7	19
58	One step DNA assembly for combinatorial metabolic engineering. Metabolic Engineering, 2014, 23, 70-77.	3.6	58
59	Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nature Reviews Microbiology, 2014, 12, 355-367.	13.6	556
60	Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell and Environment, 2014, 37, 1753-1775.	2.8	110

#	ARTICLE	IF	Citations
61	Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Current Opinion in Plant Biology, 2014, 19, 27-34.	3.5	168
63	Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature Communications, 2014, 5, 3283.	5.8	149
64	Biotechnological production of natural zero-calorie sweeteners. Current Opinion in Biotechnology, 2014, 26, 155-161.	3.3	84
65	Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential. Current Opinion in Biotechnology, 2014, 25, 86-94.	3.3	43
66	A brief history of synthetic biology. Nature Reviews Microbiology, 2014, 12, 381-390.	13.6	646
67	Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. Journal of Biosciences, 2014, 39, 33-41.	0.5	43
68	Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nature Chemical Biology, 2014, 10, 392-399.	3.9	52
69	Designer microbes for biosynthesis. Current Opinion in Biotechnology, 2014, 29, 55-61.	3.3	23
70	Antimalarial drug resistance: new treatments options for Plasmodium. Drug Discovery Today: Technologies, 2014, 11, 81-88.	4.0	32
71	Rapid and Reliable DNA Assembly <i>via</i> Ligase Cycling Reaction. ACS Synthetic Biology, 2014, 3, 97-106.	1.9	219
72	Natural products – learning chemistry from plants. Biotechnology Journal, 2014, 9, 326-336.	1.8	43
73	Engineering synergy in biotechnology. Nature Chemical Biology, 2014, 10, 319-322.	3.9	147
74	Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants. Phytochemistry, 2014, 102, 89-96.	1.4	83
75	Artemisia annua - Pharmacology and Biotechnology. , 2014, , .		14
76	Pharmacokinetics of artemisinin delivered by oral consumption of Artemisia annua dried leaves in healthy vs. Plasmodium chabaudi-infected mice. Journal of Ethnopharmacology, 2014, 153, 732-736.	2.0	47
77	Combinatorial engineering of mevalonate pathway for improved amorphaâ€4,11â€diene production in budding yeast. Biotechnology and Bioengineering, 2014, 111, 608-617.	1.7	49
78	In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2014, 111, 1396-1405.	1.7	182
79	Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Applied Microbiology and Biotechnology, 2014, 98, 6185-6203.	1.7	293

#	Article	IF	CITATIONS
80	Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. Journal of Biotechnology, 2014, 180, 43-51.	1.9	49
81	A synthetic approach to abiogenesis. Nature Methods, 2014, 11, 495-498.	9.0	31
82	Synthetic biology in plastids. Plant Journal, 2014, 78, 783-798.	2.8	96
83	Molecular Mechanisms in Yeast Carbon Metabolism. , 2014, , .		7
84	Semisynthetic Artemisinin, the Chemical Path to Industrial Production. Organic Process Research and Development, 2014, 18, 417-422.	1.3	174
85	Antiparasitic Chemotherapy: From Genomes to Mechanisms. Annual Review of Pharmacology and Toxicology, 2014, 54, 71-94.	4.2	53
86	Retropath: Automated Pipeline for Embedded Metabolic Circuits. ACS Synthetic Biology, 2014, 3, 565-577.	1.9	76
87	Industrial natural product chemistry for drug discovery and development. Natural Product Reports, 2014, 31, 35-60.	5.2	210
88	Combinatorial biosynthesis of sapogenins and saponins in <i>Saccharomyces cerevisiae</i> using a C-16î± hydroxylase from <i>Bupleurum falcatum</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1634-1639.	3.3	173
89	Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Research, 2014, 24, 770-773.	5.7	201
90	Antimalarials in Development in 2014. Chemical Reviews, 2014, 114, 11221-11241.	23.0	64
91	Production of Macrocyclic Sesqui―and Diterpenes in Heterologous Microbial Hosts: A Systems Approach to Harness Nature's Molecular Diversity. ChemCatChem, 2014, 6, 1142-1165.	1.8	11
92	Yeast synthetic biology for high-value metabolites. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	15
93	Synthetic nanocarriers as a new paradigm. Nanomedicine, 2014, 9, 2259-2262.	1.7	5
94	Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Frontiers of Medicine, 2014, 8, 285-293.	1.5	57
95	The application of synthetic biology to elucidation of plant mono-, sesqui- and diterpenoid metabolism. Molecular Plant, 2014, , .	3.9	3
96	A sustainable route to produce the scytonemin precursor using <i>Escherichia coli </i> . Green Chemistry, 2014, 16, 3255-3265.	4.6	22
97	Scalable production of mechanically tunable block polymers from sugar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8357-8362.	3.3	159

#	ARTICLE	IF	Citations
98	A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitologica, 2014, 59, 745-57.	0.4	33
99	Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nature Protocols, 2014, 9, 2301-2316.	5.5	101
101	Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	59
103	Biopharmaceutical protein production by <i>Saccharomyces cerevisiae</i> : current state and future prospects. Pharmaceutical Bioprocessing, 2014, 2, 167-182.	0.8	40
104	Status quo and future developments of combinations of medicinal products. Synergy, 2014, 1, 70-75.	1.1	8
105	Production of Bioactive Diterpenoids in the Euphorbiaceae Depends on Evolutionarily Conserved Gene Clusters Â. Plant Cell, 2014, 26, 3286-3298.	3.1	84
106	Methyl Jasmonate-Elicited Transcriptional Responses and Pentacyclic Triterpene Biosynthesis in Sweet Basil Â. Plant Physiology, 2014, 164, 1028-1044.	2.3	92
107	Bacteriophage-based synthetic biology for the study of infectious diseases. Current Opinion in Microbiology, 2014, 19, 59-69.	2.3	56
108	Overexpression of membrane proteins from higher eukaryotes in yeasts. Applied Microbiology and Biotechnology, 2014, 98, 7671-7698.	1.7	27
109	Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	28
110	Use of Nonionic Surfactants for Improvement of Terpene Production in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2014, 80, 6685-6693.	1.4	24
111	Synthesis of Bridged Oxafenestranes from Pleuromutilin. Angewandte Chemie - International Edition, 2014, 53, 9880-9883.	7.2	32
112	Reconstructing fungal natural product biosynthetic pathways. Natural Product Reports, 2014, 31, 1339-1347.	5.2	60
113	Microbial biosynthesis of medicinally important plant secondary metabolites. Natural Product Reports, 2014, 31, 1497-1509.	5.2	71
114	Redirecting Photosynthetic Electron Flow into Light-Driven Synthesis of Alternative Products Including High-Value Bioactive Natural Compounds. ACS Synthetic Biology, 2014, 3, 1-12.	1.9	74
115	Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Natural Product Reports, 2014, 31, 1043-1055.	5.2	214
116	Traversing the fungal terpenome. Natural Product Reports, 2014, 31, 1449-1473.	5.2	287
117	Cytotoxic effect of carotenoid phytonutrient lycopene on P. falciparum infected erythrocytes. Molecular and Biochemical Parasitology, 2014, 197, 15-20.	0.5	7

#	Article	IF	CITATIONS
118	Engineering Monoterpene Production in Yeast Using a Synthetic Dominant Negative Geranyl Diphosphate Synthase. ACS Synthetic Biology, 2014, 3, 298-306.	1.9	178
119	Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 2014, 32, 1141-1145.	9.4	577
120	Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Medicinal Chemistry, 2014, 6, 1127-1148.	1.1	61
122	Iterative marker excision system. Applied Microbiology and Biotechnology, 2014, 98, 4557-4570.	1.7	49
123	Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli. Biotechnology Letters, 2014, 36, 1021-1027.	1.1	8
124	Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 2014, 36, 2069-2077.	1.1	70
125	Opportunities for merging chemical and biological synthesis. Current Opinion in Biotechnology, 2014, 30, 1-8.	3.3	77
126	Yeast biotechnology: teaching the old dog new tricks. Microbial Cell Factories, 2014, 13, 34.	1.9	91
127	Auto-induction of phase I and phase II metabolism of artemisinin in healthy Chinese subjects after oral administration of a new artemisinin-piperaquine fixed combination. Malaria Journal, 2014, 13, 214.	0.8	19
128	Nonclassical CHâ^Ï€ Supramolecular Interactions in Artemisinic Acid Favor a Single Conformation, Yielding High Diastereoselectivity in the Reduction with Diazene. Journal of Organic Chemistry, 2014, 79, 5939-5947.	1.7	13
130	Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nature Protocols, 2014, 9, 1980-1996.	5 . 5	71
131	Bioactive Macrocycles from Nature. RSC Drug Discovery Series, 2014, , 1-36.	0.2	10
132	Novel biotransformation processes of artemisinic acid to their hydroxylated derivatives $3\hat{l}^2$ -hydroxyartemisinic acid and $3\hat{l}^2$, 15-dihydroxyartemisinic by fungus Trichothecium roseum CIMAPN1and their biological evaluation. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 46-55.	1.8	10
133	Advances in the Chemical Synthesis of Artemisinin. Synthetic Communications, 2014, 44, 1987-2003.	1.1	23
134	Mixed Bioengineering–Chemical Synthesis Approach for the Efficient Preparation of Δ7-Dafachronic Acid. Organic Letters, 2014, 16, 2188-2191.	2.4	8
135	Can plant biotechnology help break the HIV–malaria link?. Biotechnology Advances, 2014, 32, 575-582.	6.0	10
136	Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Industrial Crops and Products, 2014, 58, 15-24.	2.5	159
137	Heterologous production of plant-derived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. Current Opinion in Plant Biology, 2014, 19, 8-13.	3.5	38

#	ARTICLE	IF	CITATIONS
138	The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1528-1537.	2.5	48
139	Enabling a Next Generation of Synthetic Biology Community Organization and Leadership. ACS Synthetic Biology, 2014, 3, 117-120.	1.9	4
140	Four-Step Synthesis of the Antimalarial Cardamom Peroxide via an Oxygen Stitching Strategy. Journal of the American Chemical Society, 2014, 136, 5287-5290.	6.6	73
141	Enantioselective Imidation of Sulfides via Enzyme-Catalyzed Intermolecular Nitrogen-Atom Transfer. Journal of the American Chemical Society, 2014, 136, 8766-8771.	6.6	114
142	Design of synthetic microbial communities for biotechnological production processes. Journal of Biotechnology, 2014, 184, 209-218.	1.9	61
143	Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Frontiers in Microbiology, 2014, 5, 21.	1.5	94
144	Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2014, 2, 32.	2.0	65
146	Recent progress in secondary metabolism of plant glandular trichomes. Plant Biotechnology, 2014, 31, 353-361.	0.5	30
148	ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Scientific Reports, 2015, 5, 11301.	1.6	126
150	Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme. Journal of Biological Engineering, 2015, 9, 24.	2.0	32
151	Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microbial Cell Factories, 2015, 14, 73.	1.9	98
152	Separation of salvianic acid A from the fermentation broth of engineered <i>Escherichia coli </i> using macroporous resins. Journal of Separation Science, 2015, 38, 2833-2840.	1.3	17
155	Natural Products as Source of Therapeutics against Parasitic Diseases. Angewandte Chemie - International Edition, 2015, 54, 14622-14624.	7.2	30
156	Advances in Pathway Engineering for Natural Product Biosynthesis. ChemCatChem, 2015, 7, 3078-3093.	1.8	16
157	Refactoring βâ€amyrin synthesis in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . AICHE Journal, 2015, 61, 3172-3179.	1.8	59
158	Ongoing domestication of wine yeast: past, present and future. Australian Journal of Grape and Wine Research, 2015, 21, 642-650.	1.0	15
159	Fluorescent Coumarin–Artemisinin Conjugates as Mitochondriaâ€Targeting Theranostic Probes for Enhanced Anticancer Activities. Chemistry - A European Journal, 2015, 21, 17415-17421.	1.7	53
160	Enzyme-Mediated Synthesis of Sesquiterpenes. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	1

#	Article	IF	CITATIONS
161	Applications of Natural Products from Soil Microbes., 2015,, 51-77.		1
162	Lean-Proteome Strains ââ,¬â€œ Next Step in Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 11.	2.0	19
163	Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites. Frontiers in Bioengineering and Biotechnology, 2015, 3, 57.	2.0	44
164	Analytics for Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 135.	2.0	79
165	Engineering Protocells: Prospects for Self-Assembly and Nanoscale Production-Lines. Life, 2015, 5, 1019-1053.	1.1	29
166	Thapsigargin—From Thapsia L. to Mipsagargin. Molecules, 2015, 20, 6113-6127.	1.7	80
167	The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Molecules, 2015, 20, 16235-16254.	1.7	97
168	An Open Source Business Model for Malaria. PLoS ONE, 2015, 10, e0117150.	1.1	8
169	Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans. PLoS ONE, 2015, 10, e0144519.	1.1	20
170	Antibacterial activity of the organic extracts of stem bark of Cinnamomum aromaticum nees. Dhaka University Journal of Pharmaceutical Sciences, 2015, 13, 221-224.	0.1	0
171	Microbial Synthesis of Plant Oxylipins from \hat{I}^3 -Linolenic Acid through Designed Biotransformation Pathways. Journal of Agricultural and Food Chemistry, 2015, 63, 2773-2781.	2.4	29
172	Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, , .	0.6	30
173	Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. Trends in Biotechnology, 2015, 33, 419-428.	4.9	133
174	Building biological foundries for next-generation synthetic biology. Science China Life Sciences, 2015, 58, 658-665.	2.3	20
175	Bioprocess Engineering for Microbial Synthesis and Conversion of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 251-286.	0.6	12
176	Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnology Advances, 2015, 33, 914-930.	6.0	16
177	Cambial meristematic cells: a platform for the production of plant natural products. New Biotechnology, 2015, 32, 581-587.	2.4	38
178	Shaking up ancient scents: Insights into santalol synthesis in engineered Escherichia coli. Process Biochemistry, 2015, 50, 1177-1183.	1.8	7

#	ARTICLE	IF	CITATIONS
179	Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genomics, 2015, 16, 659.	1.2	66
180	A New Golden Age of Natural Products Drug Discovery. Cell, 2015, 163, 1297-1300.	13.5	507
181	Artemisinin, a miracle of traditional Chinese medicine. Natural Product Reports, 2015, 32, 1617-1621.	5.2	137
182	Synthetic Biology Strategies for Polyhydroxyalkanoate Synthesis. , 2015, , 79-89.		0
183	US Competitiveness in Synthetic Biology. Health Security, 2015, 13, 378-389.	0.9	16
184	Profile of William C. Campbell, Satoshi ÅŒmura, and Youyou Tu, 2015 Nobel Laureates in Physiology or Medicine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15773-15776.	3.3	32
185	CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis Flowers: A Strategy for Defense against Floral Antagonists. Plant Cell, 2015, 27, tpc.15.00399.	3.1	75
186	Recent advances in the microbial production and recovery of apolar molecules. Current Opinion in Biotechnology, 2015, 33, 39-45.	3.3	22
187	The Application of Synthetic Biology to Elucidation of Plant Mono-, Sesqui-, and Diterpenoid Metabolism. Molecular Plant, 2015, 8, 6-16.	3.9	75
188	Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. Microbiology Monographs, 2015, , 303-334.	0.3	20
189	Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology, 2015, 33, 377-383.	9.4	561
190	Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Current Opinion in Biotechnology, 2015, 35, 7-15.	3.3	170
191	Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta, 2015, 241, 303-317.	1.6	103
192	De novo production of the plant-derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3205-3210.	3.3	373
193	Advanced Biotechnology: Metabolically Engineered Cells for the Bioâ€Based Production of Chemicals and Fuels, Materials, and Health are Products. Angewandte Chemie - International Edition, 2015, 54, 3328-3350.	7.2	255
194	Continuous Flow Reduction of Artemisinic Acid Utilizing Multiâ€Injection Strategies—Closing the Gap Towards a Fully Continuous Synthesis of Antimalarial Drugs. Chemistry - A European Journal, 2015, 21, 4368-4376.	1.7	37
195	Synthetic Biology for Specialty Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 35-52.	3.3	24
196	Genetic engineering of artemisinin biosynthesis: prospects to improve its production. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	20

#	Article	IF	Citations
197	Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metabolic Engineering, 2015, 28, 91-103.	3.6	66
198	Guidelines for development and implementation of biocatalytic P450 processes. Applied Microbiology and Biotechnology, 2015, 99, 2465-2483.	1.7	83
199	Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochemistry, 2015, 50, 341-346.	1.8	67
200	The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 2015, 14, 111-129.	21.5	1,891
201	Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Research, 2015, 43, 1945-1954.	6.5	112
202	Engineering metabolism through dynamic control. Current Opinion in Biotechnology, 2015, 34, 142-152.	3.3	176
203	Cytochromes P450 for Terpene Functionalisation and Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 107-139.	0.6	101
204	Producing aglycons of ginsenosides in bakers' yeast. Scientific Reports, 2014, 4, 3698.	1.6	133
205	Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 355-389.	0.6	113
206	Triacetic acid lactone production in industrial <i>Saccharomyces</i> yeast strains. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 711-721.	1.4	39
207	Sesquiterpenoids (C15)., 2015,, 403-468.		0
208	Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates. Applied and Environmental Microbiology, 2015, 81, 5662-5670.	1.4	42
209	Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. BioFactors, 2015, 41, 15-27.	2.6	36
210	Tightly regulated and high level expression vector construction for Escherichia coli BL21 (DE3). Journal of Industrial and Engineering Chemistry, 2015, 31, 367-373.	2.9	7
211	Natural Products as Pharmaceuticals and Sources for Lead Structures**Note: This chapter reflects the opinions of the authors, not necessarily those of the US Government., 2015,, 101-139.		13
212	JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Science Bulletin, 2015, 60, 1062-1072.	4.3	77
213	Cytochrome P450 from Plants: Platforms for Valuable Phytopharmaceuticals. Tropical Journal of Pharmaceutical Research, 2015, 14, 731.	0.2	9
214	Versatile genetic assembly system (VEGAS) to assemble pathways for expression in <i>S. cerevisiae</i> Nucleic Acids Research, 2015, 43, 6620-6630.	6.5	96

#	Article	IF	CITATIONS
215	Stable heterologous expression of biologically active terpenoids in green plant cells. Frontiers in Plant Science, 2015, 6, 129.	1.7	53
216	Advances in de novo strain design using integrated systems and synthetic biology tools. Current Opinion in Chemical Biology, 2015, 28, 105-114.	2.8	30
217	A Genome-Wide Scenario of Terpene Pathways in Self-pollinated Artemisia annua. Molecular Plant, 2015, 8, 1580-1598.	3.9	82
219	Advances in bioprocessing for efficient bio manufacture. RSC Advances, 2015, 5, 52444-52451.	1.7	7
220	Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis. Frontiers in Plant Science, 2015, 6, 111.	1.7	53
221	Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnology Advances, 2015, 33, 1412-1419.	6.0	12
222	The activity of the artemisinic aldehyde \hat{l} "11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L Plant Molecular Biology, 2015, 88, 325-340.	2.0	45
223	Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 38.	1.9	90
224	A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synthetic Biology, 2015, 4, 975-986.	1.9	708
225	Recovery of Artemisinin from a Complex Reaction Mixture Using Continuous Chromatography and Crystallization. Organic Process Research and Development, 2015, 19, 624-634.	1.3	39
226	YeastFab: the design and construction of standard biological parts for metabolic engineering in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2015, 43, e88-e88.	6.5	93
227	Engineering strategies for the fermentative production of plant alkaloids in yeast. Metabolic Engineering, 2015, 30, 96-104.	3.6	86
228	An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11, 465-471.	3.9	309
229	Synthetic biology advances for pharmaceutical production. Current Opinion in Biotechnology, 2015, 35, 46-51.	3.3	59
230	Building terpene production platforms in yeast. Biotechnology and Bioengineering, 2015, 112, 1854-1864.	1.7	57
231	P450 Biotechnology. , 2015, , 451-520.		7
232	Applying green chemistry to the photochemical route to artemisinin. Nature Chemistry, 2015, 7, 489-495.	6.6	140
233	Engineered biosynthesis of natural products in heterologous hosts. Chemical Society Reviews, 2015, 44, 5265-5290.	18.7	156

#	Article	IF	CITATIONS
234	Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015, 30, 69-78.	3.6	181
235	Microbial Synthesis of Myrcene by Metabolically Engineered <i>Escherichia coli</i> Agricultural and Food Chemistry, 2015, 63, 4606-4612.	2.4	67
236	Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production. Microbial Cell Factories, 2015, 14, 60.	1.9	51
237	CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, .	1.1	360
238	Enzymes for Synthetic Biology of Ambroxide-Related Diterpenoid Fragrance Compounds. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 427-447.	0.6	19
239	Plant synthetic biology. Trends in Plant Science, 2015, 20, 309-317.	4.3	144
240	Yeast Golden Gate (yGG) for the Efficient Assembly of <i>S. cerevisiae</i> Transcription Units. ACS Synthetic Biology, 2015, 4, 853-859.	1.9	75
241	Comprehensive Sequence-Flux Mapping of a Levoglucosan Utilization Pathway in <i>E. coli</i> Synthetic Biology, 2015, 4, 1235-1243.	1.9	51
242	Metabolic engineering of Bacillus subtilis for terpenoid production. Applied Microbiology and Biotechnology, 2015, 99, 9395-9406.	1.7	34
243	Engineering of Secondary Metabolism. Annual Review of Genetics, 2015, 49, 71-94.	3.2	125
244	Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnology Advances, 2015, 33, 1829-1844.	6.0	19
245	Microbial production of phenol via salicylate decarboxylation. RSC Advances, 2015, 5, 92685-92689.	1.7	12
246	Recent advances in engineering yeast for pharmaceutical protein production. RSC Advances, 2015, 5, 86665-86674.	1.7	18
247	Applications of Synthetic Gene Networks. Science Progress, 2015, 98, 244-252.	1.0	10
248	Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metabolic Engineering, 2015, 32, 133-142.	3.6	91
249	Proteomic analysis of Artemisia annua – towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biology, 2015, 15, 175.	1.6	41
250	Systems strategies for developing industrial microbial strains. Nature Biotechnology, 2015, 33, 1061-1072.	9.4	433
251	Effect of high light intensity on photoinhibition, oxyradicals and artemisinin content in Artemisia annua L Photosynthetica, 2015, 53, 403-409.	0.9	12

#	Article	IF	CITATIONS
252	Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 2015, 33, 1582-1614.	6.0	1,871
253	Use of Model-Based Nutrient Feeding for Improved Production of Artemisinin by Hairy Roots of Artemisia Annua in a Modified Stirred Tank Bioreactor. Applied Biochemistry and Biotechnology, 2015, 177, 373-388.	1.4	25
254	Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science, 2015, 349, 1224-1228.	6.0	359
255	Improving heterologous polyketide production in Escherichia coli by transporter engineering. Applied Microbiology and Biotechnology, 2015, 99, 8691-8700.	1.7	17
256	Yeast cell factories on the horizon. Science, 2015, 349, 1050-1051.	6.0	62
257	Combining biological and chemical approaches for green synthesis of chemicals. Current Opinion in Chemical Engineering, 2015, 10, 35-41.	3.8	4
258	Advancing metabolic engineering through systems biology of industrial microorganisms. Current Opinion in Biotechnology, 2015, 36, 8-15.	3.3	92
259	Glycosyltransferases: mechanisms and applications in natural product development. Chemical Society Reviews, 2015, 44, 8350-8374.	18.7	182
260	Chemical lysis of cyanobacteria. Journal of Biological Engineering, 2015, 9, 10.	2.0	35
261	Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metabolic Engineering, 2015, 28, 43-53.	3.6	116
262	Opportunities for enzyme catalysis in natural product chemistry. Tetrahedron, 2015, 71, 1473-1508.	1.0	43
263	Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell, 2015, 160, 339-350.	13.5	809
264	Enhancement of artemisinin content and relative expression of genes of artemisinin biosynthesis in Artemisia annua by exogenous MeJA treatment. Plant Growth Regulation, 2015, 75, 435-441.	1.8	47
265	Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: Engineering attempts using a modified SNARE protein. Journal of Biotechnology, 2015, 202, 146-152.	1.9	16
266	Microorganisms in Biorefineries. Microbiology Monographs, 2015, , .	0.3	3
267	Enhancing Terpene Yield from Sugars via Novel Routes to 1-Deoxy- <scp>d</scp> -Xylulose 5-Phosphate. Applied and Environmental Microbiology, 2015, 81, 130-138.	1.4	55
268	Metabolic engineering to enhance the value of plants as green factories. Metabolic Engineering, 2015, 27, 83-91.	3.6	65
269	Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 423-436.	1.4	50

#	Article	IF	CITATIONS
270	Cellâ€free metabolic engineering: Biomanufacturing beyond the cell. Biotechnology Journal, 2015, 10, 69-82.	1.8	270
271	Combinatorial Assembly of Large Biochemical Pathways into Yeast Chromosomes for Improved Production of Value-added Compounds. ACS Synthetic Biology, 2015, 4, 23-31.	1.9	47
272	Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Natural Product Reports, 2015, 32, 359-366.	5.2	48
273	Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metabolic Engineering, 2015, 27, 65-75.	3.6	101
274	Artificial concurrent catalytic processes involving enzymes. Chemical Communications, 2015, 51, 450-464.	2.2	106
275	Synthetic Biology for Therapeutic Applications. Molecular Pharmaceutics, 2015, 12, 322-331.	2.3	25
276	Assembly and multiple gene expression of thermophilic enzymes in <i>Escherichia coli</i> for in vitro metabolic engineering. Biotechnology and Bioengineering, 2015, 112, 189-196.	1.7	50
277	(+)â€Valencene production in <i>Nicotiana benthamiana</i> is increased by downâ€regulation of competing pathways. Biotechnology Journal, 2015, 10, 180-189.	1.8	54
279	Terpenoids with Special Pharmacological Significance: A Review. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	38
280	An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications. Enzyme Engineering, 2016, 05, .	0.3	7
281	Metabolic Engineering Strategies to Convert Carbohydrates to Aviation Range Hydrocarbons. , 2016, , 151-190.		6
282	IASM: A System for the Intelligent Active Surveillance of Malaria. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-11.	0.7	4
283	A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. ELife, 2016, 5, .	2.8	148
284	Insight into Biochemical Characterization of Plant Sesquiterpene Synthases. Analytical Chemistry Insights, 2016, 11s1, ACI.S40292.	2.7	0
285	Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Frontiers in Microbiology, 2015, 6, 1529.	1.5	64
286	Editorial: Secondary Metabolism. An Unlimited Foundation for Synthetic Biology. Frontiers in Microbiology, 2016, 6, 1562.	1.5	2
287	In Vitro Study on Anti-Hepatitis C Virus Activity of Spatholobus suberectus Dunn. Molecules, 2016, 21, 1367.	1.7	34
288	EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS ONE, 2016, 11, e0150394.	1.1	49

#	Article	IF	CITATIONS
289	Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production. Frontiers in Plant Science, 2016, 7, 329.	1.7	35
290	Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. Frontiers in Plant Science, 2016, 7, 509.	1.7	37
291	Recent advances in understanding apicomplexan parasites. F1000Research, 2016, 5, 1369.	0.8	56
292	Optically Active \hat{I}^2 -Methyl- \hat{I} -Valerolactone: Biosynthesis and Polymerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 4396-4402.	3.2	21
293	Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in <i>Saccharomyces cerevisiae </i> Biotechnology and Bioengineering, 2016, 113, 1787-1795.	1.7	81
294	Construction of plasmids with tunable copy numbers in <i>Saccharomyces cerevisiae</i> and their applications in pathway optimization and multiplex genome integration. Biotechnology and Bioengineering, 2016, 113, 2462-2473.	1.7	61
295	Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. Chemical Record, 2016, 16, 652-666.	2.9	10
296	What are the Limitations of Enzymes in Synthetic Organic Chemistry?. Chemical Record, 2016, 16, 2449-2459.	2.9	79
297	Synthetic biology for production of natural and newâ€toâ€nature terpenoids in photosynthetic organisms. Plant Journal, 2016, 87, 16-37.	2.8	52
298	Artemisinin analogue SM934 attenuate collagen-induced arthritis by suppressing T follicular helper cells and T helper 17 cells. Scientific Reports, 2016, 6, 38115.	1.6	35
300	Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism. Scientific Reports, 2016, 6, 32640.	1.6	25
301	<i>Artemisia annua</i> mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15150-15155.	3.3	92
303	Synthetic biology: insights into biological computation. Integrative Biology (United Kingdom), 2016, 8, 518-532.	0.6	21
304	Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis. Angewandte Chemie, 2016, 128, 2182-2186.	1.6	17
305	Genome of Diaporthe sp. provides insights into the potential inter-phylum transfer of a fungal sesquiterpenoid biosynthetic pathway. Fungal Biology, 2016, 120, 1050-1063.	1.1	13
306	Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microbial Cell Factories, 2016, 15, 86.	1.9	9
307	Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing. Integrative Biology (United Kingdom), 2016, 8, 504-517.	0.6	7
308	Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions. Fungal Genetics and Biology, 2016, 89, 114-125.	0.9	22

#	Article	IF	CITATIONS
309	Heterologous biosynthesis of artemisinic acid in <i>Saccharomyces cerevisiae</i> Journal of Applied Microbiology, 2016, 120, 1466-1478.	1.4	22
310	In vitro reconstitution guide for targeted synthetic metabolism of chemicals, nutraceuticals and drug precursors. Synthetic and Systems Biotechnology, 2016 , 1 , $25-33$.	1.8	15
311	Chemical vs. biotechnological synthesis of C13-apocarotenoids: current methods, applications and perspectives. Applied Microbiology and Biotechnology, 2016, 100, 5703-5718.	1.7	53
312	Production of the forskolin precursor $11\hat{l}^2$ -hydroxy-manoyl oxide in yeast using surrogate enzymatic activities. Microbial Cell Factories, 2016, 15, 46.	1.9	18
313	Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado?. Trends in Biotechnology, 2016, 34, 781-790.	4.9	39
314	Asymmetric Hydrogenation of α-Substituted Acrylic Acids Catalyzed by a Ruthenocenyl Phosphino-oxazoline–Ruthenium Complex. Organic Letters, 2016, 18, 2122-2125.	2.4	59
315	A Workflow for Studying Specialized Metabolism in Nonmodel Eukaryotic Organisms. Methods in Enzymology, 2016, 576, 69-97.	0.4	18
316	Using Singlet Oxygen to Synthesize Natural Products and Drugs. Chemical Reviews, 2016, 116, 9994-10034.	23.0	511
317	Central metabolic nodes for diverse biochemical production. Current Opinion in Chemical Biology, 2016, 35, 37-42.	2.8	30
318	Generation and Functional Evaluation of Designer Monoterpene Synthases. Methods in Enzymology, 2016, 576, 147-165.	0.4	8
319	Applied evolutionary theories for engineering of secondary metabolic pathways. Current Opinion in Chemical Biology, 2016, 35, 133-141.	2.8	5
320	Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. Plant Physiology, 2016, 172, 1563-1577.	2.3	44
321	<i>CB5C</i> affects the glucosinolate profile in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2016, 11, e1160189.	1.2	9
322	In vitro generation of high artemisinin yielding salt tolerant somaclonal variant and development of SCAR marker in Artemisia annua L Plant Cell, Tissue and Organ Culture, 2016, 127, 301-314.	1.2	15
323	Cell-Free Mixing of <i>Escherichia coli</i> Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis. ACS Synthetic Biology, 2016, 5, 1578-1588.	1.9	130
324	Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances. Methods in Enzymology, 2016, 576, 47-67.	0.4	10
325	Systems metabolic engineering of Escherichia coli for the heterologous production of high value molecules â€" a veteran at new shores. Current Opinion in Biotechnology, 2016, 42, 178-188.	3.3	41
326	Mitochondrial acetyl-CoA utilization pathway for terpenoid productions. Metabolic Engineering, 2016, 38, 303-309.	3.6	86

#	Article	IF	CITATIONS
328	Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines. Metabolic Engineering, 2016, 38, 191-203.	3.6	32
329	The Need for Integrated Approaches in Metabolic Engineering. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023903.	2.3	43
331	Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nature Plants, 2016, 2, 16183.	4.7	188
332	Systems Metabolic Engineering of <i>Escherichia coli</i> li>. EcoSal Plus, 2016, 7, .	2.1	31
333	Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology, 2016, , .	0.3	16
334	Unraveling the Chemical Interactions of Fungal Endophytes for Exploitation as Microbial Factories. Fungal Biology, 2016, , 353-370.	0.3	4
335	Pathway Design, Engineering, and Optimization. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 77-116.	0.6	7
336	Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537, 694-697.	13.7	491
337	Blueprints for green biotech: development and application of standards for plant synthetic biology. Biochemical Society Transactions, 2016, 44, 702-708.	1.6	8
338	Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microbial Cell Factories, 2016, 15, 125.	1.9	132
339	Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies. Analytical Chemistry, 2016, 88, 8082-8090.	3.2	72
340	Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. Journal of Natural Medicines, 2016, 70, 318-334.	1.1	42
341	Joining Forces: Fermentation and Organic Synthesis for the Production of Complex Heterocycles. Journal of Organic Chemistry, 2016, 81, 10136-10144.	1.7	10
342	Prequels to Synthetic Biology. Methods in Enzymology, 2016, 576, 167-206.	0.4	13
343	Yeast metabolic chassis designs for diverse biotechnological products. Scientific Reports, 2016, 6, 29694.	1.6	28
344	Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 36997.	1.6	33
345	Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2016, 2, 16009.	1.4	187
346	Antimalarial Compound Synthesis from Transgenic Cultures. , 2016, , 1-30.		0

#	Article	IF	CITATIONS
347	Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochemistry Reviews, 2016, 15, 1093-1114.	3.1	57
349	High-yield chemical synthesis by reprogramming central metabolism. Nature Biotechnology, 2016, 34, 1129-1129.	9.4	4
350	Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nature Communications, 2016, 7, 12137.	5.8	121
351	Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells. Molecular Plant, 2016, 9, 1464-1477.	3.9	83
352	Insights from synthetic yeasts. Yeast, 2016, 33, 483-492.	0.8	3
353	Hydroxylations of trichothecene rings in the biosynthesis of <i>Fusarium</i> trichothecenes: evolution of alternative pathways in the nivalenol chemotype. Environmental Microbiology, 2016, 18, 3798-3811.	1.8	20
354	The jasmonateâ€responsive Aa <scp>MYC</scp> 2 transcription factor positively regulates artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2016, 210, 1269-1281.	3.5	230
355	Replacement of the initial steps of ethanol metabolism in <i>Saccharomyces cerevisiae</i> by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Research, 2016, 16, fow006.	1.1	13
356	MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Research, 2016, 44, W217-W225.	6.5	45
357	Standardization for natural product synthetic biology. Natural Product Reports, 2016, 33, 920-924.	5.2	11
358	Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Natural Product Reports, 2016, 33, 951-962.	5.2	77
359	Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44, e136-e136.	6.5	99
360	Towards synthesis of monoterpenes and derivatives using synthetic biology. Current Opinion in Chemical Biology, 2016, 34, 37-43.	2.8	89
361	Interrogation of Streptomyces avermitilis for efficient production of avermectins. Synthetic and Systems Biotechnology, 2016, 1, 7-16.	1.8	24
362	The Best Model of a Cat Is Several Cats. Trends in Biotechnology, 2016, 34, 207-213.	4.9	14
363	Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin. Malaria Journal, 2016, 15, 252.	0.8	19
364	Broadening substrate specificity of a chain-extending ketosynthase through a single active-site mutation. Chemical Communications, 2016, 52, 8373-8376.	2.2	38
365	Promoter and Terminator Discovery and Engineering. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 21-44.	0.6	25

#	Article	IF	Citations
366	Overproduction of squalene synergistically downregulates ethanol production in Saccharomyces cerevisiae. Chemical Engineering Science, 2016, 152, 370-380.	1.9	24
367	Identification of lineâ€specific strategies for improving carotenoid production in synthetic maize through dataâ€driven mathematical modeling. Plant Journal, 2016, 87, 455-471.	2.8	9
368	Biocatalysts from alkaloid producing plants. Current Opinion in Chemical Biology, 2016, 31, 22-30.	2.8	38
369	Artemisinin and plant secondary metabolism. Science Bulletin, 2016, 61, 1-2.	4.3	10
370	Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L Science Bulletin, 2016, 61, 18-25.	4.3	48
371	Production of Useful Terpenoids by Higher-Fungus Cell Factory and Synthetic Biology Approaches. Trends in Biotechnology, 2016, 34, 242-255.	4.9	57
372	Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Applied Microbiology and Biotechnology, 2016, 100, 2171-2182.	1.7	47
373	New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Natural Product Reports, 2016, 33, 174-182.	5.2	90
374	Cloning, expression and functional characterization of two sesquiterpene synthase genes from moso bamboo (Phyllostachys edulis). Protein Expression and Purification, 2016, 120, 1-6.	0.6	7
375	The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnology Advances, 2016, 34, 697-713.	6.0	193
376	Technology development for natural product biosynthesis in Saccharomyces cerevisiae. Current Opinion in Biotechnology, 2016, 42, 74-83.	3.3	39
377	Living factories of the future. Nature, 2016, 531, 401-403.	13.7	34
378	Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 2142-2146.	7.2	134
379	Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum. Journal of Biological Chemistry, 2016, 291, 6583-6594.	1.6	38
380	Production of farnesene and santalene by <i>Saccharomyces cerevisiae</i> using fedâ€batch cultivations with <i>RQ</i> â€controlled feed. Biotechnology and Bioengineering, 2016, 113, 72-81.	1.7	102
381	Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Current Opinion in Chemical Biology, 2016, 31, 136-145.	2.8	212
382	Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metabolic Engineering, 2016, 36, 99-115.	3.6	117
383	Transfer of the cytochrome P450-dependent dhurrin pathway from <i>Sorghum bicolor</i> into <i>Nicotiana tabacum</i> chloroplasts for light-driven synthesis. Journal of Experimental Botany, 2016, 67, 2495-2506.	2.4	57

#	Article	IF	CITATIONS
384	Genotype Specification Language. ACS Synthetic Biology, 2016, 5, 471-478.	1.9	11
385	Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2016, 100, 4561-4571.	1.7	86
386	Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology, 2016, 14, 135-149.	13.6	393
387	Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nature Communications, 2016, 7, 10390.	5.8	160
388	Artemisia annua glandular secretory trichomes: the biofactory of antimalarial agent artemisinin. Science Bulletin, 2016, 61, 26-36.	4.3	74
389	Highlights of the Recent U.S. Patent Literature. Organic Process Research and Development, 2016, 20, 123-128.	1.3	0
390	Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. Journal of Medicinal Chemistry, 2016, 59, 5587-5603.	2.9	59
391	The Era of Synthetic Biology and Genome Engineering: Where No Man Has Gone Before. Journal of Molecular Biology, 2016, 428, 835-836.	2.0	2
392	Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Science Bulletin, 2016, 61, 3-17.	4.3	103
393	Novel Utilization of Terminators in the Design of Biologically Adjustable Synthetic Filters. ACS Synthetic Biology, 2016, 5, 365-374.	1.9	13
394	Carnosic acid biosynthesis elucidated by a synthetic biology platform. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3681-3686.	3.3	115
395	Process modelling and simulation for continuous pharmaceutical manufacturing of artemisinin. Chemical Engineering Research and Design, 2016, 112, 310-325.	2.7	27
396	Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnology Advances, 2016, 34, 634-662.	6.0	214
397	In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L South African Journal of Botany, 2016, 104, 225-231.	1.2	20
398	Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3209-3214.	3.3	193
399	Engineering Cellular Metabolism. Cell, 2016, 164, 1185-1197.	13.5	953
400	Mechanistic Insights into Taxadiene Epoxidation by Taxadiene- $5\hat{l}$ ±-Hydroxylase. ACS Chemical Biology, 2016, 11, 460-469.	1.6	45
401	Green pathways: Metabolic network analysis of plant systems. Metabolic Engineering, 2016, 34, 1-24.	3.6	24

#	Article	IF	Citations
402	Online resources for gene discovery and biochemical research with aromatic and medicinal plants. Phytochemistry Reviews, 2016, 15, 489-510.	3.1	4
403	High-throughput evaluation of synthetic metabolic pathways. Technology, 2016, 04, 9-14.	1.4	2
404	Developing fermentative terpenoid production for commercial usage. Current Opinion in Biotechnology, 2016, 37, 114-119.	3.3	95
405	Synthetic Biology for Cellular Remodelling to Elicit Industrially Relevant Microbial Phenotypes. , 2016, , 211-228.		1
406	A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in <i>Pichia pastoris</i>	1.9	127
407	Artefenomel: a promising new antimalarial drug. Lancet Infectious Diseases, The, 2016, 16, 6-8.	4.6	21
408	Synthetic Biology., 2016,,.		2
409	Intermediate-sensor assisted push–pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metabolic Engineering, 2016, 33, 41-51.	3.6	55
410	Plant cytochrome P450s: nomenclature and involvement in natural product biosynthesis. Protoplasma, 2016, 253, 1197-1209.	1.0	39
411	Improved quantification of farnesene during microbial production from Saccharomyces cerevisiae in two-liquid-phase fermentations. Talanta, 2016, 146, 100-106.	2.9	24
412	BioSynther: a customized biosynthetic potential explorer. Bioinformatics, 2016, 32, 472-473.	1.8	15
413	Biological production of adipic acid from renewable substrates: Current and future methods. Biochemical Engineering Journal, 2016, 105, 16-26.	1.8	78
414	Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production. Protoplasma, 2016, 253, 15-30.	1.0	39
415	Whole cell biocatalysts: essential workers from Nature to the industry. Microbial Biotechnology, 2017, 10, 250-263.	2.0	181
416	The selfâ€sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5â€hydroxylation of diclofenac. Biotechnology Journal, 2017, 12, 1600520.	1.8	29
417	Synthetic biology era: Improving antibiotic's world. Biochemical Pharmacology, 2017, 134, 99-113.	2.0	21
418	Integrated omics analysis of specialized metabolism in medicinal plants. Plant Journal, 2017, 90, 764-787.	2.8	185
419	Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 17.	1.9	83

#	Article	IF	Citations
420	Synthesis of Sebacic Acid Using a Deâ€Novo Designed Retroâ€Aldolase as a Key Catalyst. ChemCatChem, 2017, 9, 1378-1382.	1.8	14
422	Cell-Based Therapeutics: Making a Faustian Pact with Biology. Trends in Molecular Medicine, 2017, 23, 104-115.	3.5	9
423	Production of taxadiene by engineering of mevalonate pathway in <i>Escherichia coli</i> and endophytic fungus <i>Alternaria alternata</i> TPF6. Biotechnology Journal, 2017, 12, 1600697.	1.8	39
424	A set of isomeric episomal plasmids for systematic examination of mitotic stability in <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2017, 34, 267-275.	0.8	9
425	Optogenetic switches for light-controlled gene expression in yeast. Applied Microbiology and Biotechnology, 2017, 101, 2629-2640.	1.7	35
426	An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic Engineering, 2017, 40, 165-175.	3.6	128
427	De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions. Applied Microbiology and Biotechnology, 2017, 101, 4103-4113.	1.7	13
428	Technoeconomic optimisation and comparative environmental impact evaluation of continuous crystallisation and antisolvent selection for artemisinin recovery. Computers and Chemical Engineering, 2017, 103, 218-232.	2.0	21
429	Localization and in-Vivo Characterization of <i>Thapsia garganica</i> CYP76AE2 Indicates a Role in Thapsigargin Biosynthesis. Plant Physiology, 2017, 174, 56-72.	2.3	35
430	Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast. Biotechnology for Biofuels, 2017, 10, 43.	6.2	53
431	Amalgamation of Synthetic Biology and Chemistry for High-Throughput Nonconventional Synthesis of the Antimalarial Drug Artemisinin. Organic Process Research and Development, 2017, 21, 551-558.	1.3	24
432	Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell, Tissue and Organ Culture, 2017, 129, 251-259.	1.2	35
433	Assembly of Dynamic P450-Mediated Metabolonsâ€"Order Versus Chaos. Current Molecular Biology Reports, 2017, 3, 37-51.	0.8	42
434	Using natural products for drug discovery: the impact of the genomics era. Expert Opinion on Drug Discovery, 2017, 12, 475-487.	2.5	74
435	Bioactive Products from Fungi., 2017,, 59-87.		18
436	Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous \hat{l}^2 -carotene production. Metabolic Engineering, 2017, 41, 192-201.	3.6	190
437	Synthetic biology stretching the realms of possibility in wine yeast research. International Journal of Food Microbiology, 2017, 252, 24-34.	2.1	40
438	Progress in terpene synthesis strategies through engineering of <i>Saccharomyces cerevisiae </i> Critical Reviews in Biotechnology, 2017, 37, 974-989.	5.1	92

#	Article	IF	CITATIONS
439	Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata. International Journal of Biological Macromolecules, 2017, 102, 208-217.	3.6	15
440	Antimalarial Compound Synthesis from Transgenic Cultures. Reference Series in Phytochemistry, 2017, , 123-152.	0.2	0
441	Recombinant Protein Expression in E. coli: A Historical Perspective. Methods in Molecular Biology, 2017, 1586, 3-10.	0.4	35
442	Production of Active Compounds in Medicinal Plants: From Plant Tissue Culture to Biosynthesis. Chinese Herbal Medicines, 2017, 9, 115-125.	1.2	35
443	Overexpression of a typeâ€l isopentenyl pyrophosphate isomerase of <i>Artemisia annua</i> in the cytosol leads to high arteannuinÂB production and artemisinin increase. Plant Journal, 2017, 91, 466-479.	2.8	23
444	Utilization of biodiesel by-product as substrate for high-production of \hat{l}^2 -farnesene via relatively balanced mevalonate pathway in Escherichia coli. Bioresource Technology, 2017, 243, 228-236.	4.8	54
445	Recent advances in synthetic biology for engineering isoprenoid production in yeast. Current Opinion in Chemical Biology, 2017, 40, 47-56.	2.8	153
446	Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Microbial Cell Factories, 2017, 16, 84.	1.9	29
447	Cannabis sativa L Botany and Biotechnology. , 2017, , .		78
448	Lipids of Yeasts and Filamentous Fungi and Their Importance for Biotechnology. , 2017, , 149-204.		19
449	Incorporating comparative genomics into the design–test–learn cycle of microbial strain engineering. FEMS Yeast Research, 2017, 17, .	1.1	9
450	Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Applied Microbiology and Biotechnology, 2017, 101, 4837-4851.	1.7	10
451	Metabolic engineering of <i>Saccharomyces cerevisiae</i> for production of germacrene A, a precursor of beta-elemene. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1065-1072.	1.4	43
452	Establishing an Artificial Pathway for <i>De Novo</i> Biosynthesis of Vanillyl Alcohol in <i>Escherichia coli</i> ACS Synthetic Biology, 2017, 6, 1784-1792.	1.9	27
453	Terpene Cyclizations inside a Supramolecular Catalyst: Leaving-Group-Controlled Product Selectivity and Mechanistic Studies. Journal of the American Chemical Society, 2017, 139, 11482-11492.	6.6	90
454	A synthetic biology approach to integrative high school STEM training. Nature Biotechnology, 2017, 35, 591-595.	9.4	4
455	Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Research, 2017, 17, .	1.1	54
456	Harnessing plant metabolic diversity. Current Opinion in Chemical Biology, 2017, 40, 24-30.	2.8	56

#	ARTICLE	IF	CITATIONS
457	The Genome of Medicinal Plant Macleaya cordata Provides New Insights into Benzylisoquinoline Alkaloids Metabolism. Molecular Plant, 2017, 10, 975-989.	3.9	116
458	An Overview of the Industrial Aspects of Antibiotic Discovery. , 2017, , 149-168.		7
459	Cannabinoids: Biosynthesis and Biotechnological Applications. , 2017, , 183-206.		15
460	Current Perspective in the Discovery of Anti-aging Agents from Natural Products. Natural Products and Bioprospecting, 2017, 7, 335-404.	2.0	86
461	High-level De novo biosynthesis of arbutin in engineered Escherichia coli. Metabolic Engineering, 2017, 42, 52-58.	3.6	52
462	Biotechnology of Yeasts and Filamentous Fungi. , 2017, , .		8
463	An in-silico insight into the substrate binding characteristics of the active site of amorpha-4, 11-diene synthase, a key enzyme in artemisinin biosynthesis. Journal of Molecular Modeling, 2017, 23, 202.	0.8	2
464	Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes. FEBS Journal, 2017, 284, 1700-1711.	2.2	9
465	Synthesis of Qinghaosu Analogues from Dihydroqinghao Aldehyde: A Dark Singlet Oxygen Approach. Chinese Journal of Chemistry, 2017, 35, 465-476.	2.6	8
466	Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11, 107-116.	2.3	20
467	Glandular trichome-specific expression of alcohol dehydrogenase 1 (ADH1) using a promoter-GUS fusion in Artemisia annua L Plant Cell, Tissue and Organ Culture, 2017, 130, 61-72.	1.2	16
468	Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli. ACS Synthetic Biology, 2017, 6, 1416-1426.	1.9	33
469	Spatial organization of multi-enzyme biocatalytic cascades. Organic and Biomolecular Chemistry, 2017, 15, 4260-4271.	1.5	113
470	An Efficient Chemoenzymatic Synthesis of Dihydroartemisinic Aldehyde. Angewandte Chemie - International Edition, 2017, 56, 4347-4350.	7.2	46
471	Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial Cell Factories, 2017, 16, 46.	1.9	102
472	Streamlining the Design-to-Build Transition with Build-Optimization Software Tools. ACS Synthetic Biology, 2017, 6, 485-496.	1.9	48
473	<scp>GLANDULAR TRICHOME</scp> â€ <scp>SPECIFIC WRKY</scp> 1 promotes artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2017, 214, 304-316.	3.5	171
474	Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metabolic Engineering, 2017, 39, 228-236.	3.6	56

#	Article	IF	CITATIONS
475	Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnology Journal, 2017, 12, 1600145.	1.8	37
476	Identification of Neuroprotective Spoxazomicin and Oxachelin Glycosides via Chemoenzymatic Glycosyl-Scanning. Journal of Natural Products, 2017, 80, 12-18.	1.5	6
477	A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 39, 209-219.	3.6	91
478	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edition, 2017, 56, 6396-6419.	7.2	141
479	Synthetische Biologie – die Synthese der Biologie. Angewandte Chemie, 2017, 129, 6494-6519.	1.6	11
480	Strategies to enhance biologically active-secondary metabolites in cell cultures of ⟨i⟩Artemisia ⟨ i⟩– current trends. Critical Reviews in Biotechnology, 2017, 37, 833-851.	5.1	36
481	βâ€Amyrin synthase from <i>ConyzaÂblinii</i> expressed in <i>SaccharomycesÂcerevisiae</i> FEBS Open Bio, 2017, 7, 1575-1585.	1.0	10
482	The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology, 2017, 35, 1156-1168.	4.9	67
483	Development of a Terpenoid-Production Platform in <i>Streptomyces reveromyceticus</i> Synthetic Biology, 2017, 6, 2339-2349.	1.9	27
484	Molecular Farming Approach Towards Bioactive Compounds. , 2017, , 49-72.		4
485	RNAi-mediated modulation of squalene synthase gene expression in Artemisia annua L. and its impact on artemisinin biosynthesis. Rendiconti Lincei, 2017, 28, 731-741.	1.0	7
487	Characterization of Terminators in <i>Saccharomyces cerevisiae</i> and an Exploration of Factors Affecting Their Strength. ChemBioChem, 2017, 18, 2422-2427.	1.3	31
489	Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 44, 117-125.	3.6	37
490	Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. Gene Reports, 2017, 9, 46-53.	0.4	28
491	Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast. Scientific Reports, 2017, 7, 8855.	1.6	16
492	Fermentation and purification strategies for the production of betulinic acid and its lupaneâ€type precursors in ⟨i⟩Saccharomyces cerevisiae⟨ i⟩. Biotechnology and Bioengineering, 2017, 114, 2528-2538.	1.7	41
493	Microbial Hydrocarbon Formation from Biomass. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 411-425.	0.6	1
494	Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals. Microbial Biotechnology, 2017, 10, 1254-1258.	2.0	23

#	Article	IF	CITATIONS
495	Enhanced isoprenoid production $\langle scp \rangle f \langle scp \rangle rom xylose$ by engineered $\langle i \rangle Saccharomyces$ cerevisiae $\langle i \rangle$. Biotechnology and Bioengineering, 2017, 114, 2581-2591.	1.7	68
496	Maximizing the stability of metabolic engineeringâ€derived wholeâ€cell biocatalysts. Biotechnology Journal, 2017, 12, 1600170.	1.8	34
497	Production of a bioactive unnatural ginsenoside by metabolically engineered yeasts based on a new UDP-glycosyltransferase from Bacillus subtilis. Metabolic Engineering, 2017, 44, 60-69.	3.6	57
498	Effiziente chemoenzymatische Synthese von Dihydroartemisinaldehyd. Angewandte Chemie, 2017, 129, 4411-4415.	1.6	17
499	Strategies for terpenoid overproduction and new terpenoid discovery. Current Opinion in Biotechnology, 2017, 48, 234-241.	3.3	99
500	Perspective on Biotransformation and <i>De Novo</i> Biosynthesis of Licorice Constituents. Journal of Agricultural and Food Chemistry, 2017, 65, 11147-11156.	2.4	48
501	Rising influence of synthetic biology in regenerative medicine. Engineering Biology, 2017, 1, 24-29.	0.8	3
502	Rational engineering of <i>p</i> à€hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnology and Bioengineering, 2017, 114, 2571-2580.	1.7	67
503	Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in <i>Saccharomyces cerevisiae </i> ACS Synthetic Biology, 2017, 6, 1931-1943.	1.9	53
504	Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Research, 2017, 17, .	1.1	54
505	A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metabolic Engineering, 2017, 42, 185-193.	3.6	146
506	Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the Laboratory. Organic Process Research and Development, 2017, 21, 1042-1050.	1.3	60
507	Recent advances in systems metabolic engineering tools and strategies. Current Opinion in Biotechnology, 2017, 47, 67-82.	3.3	185
508	Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chemical Reviews, 2017, 117, 11894-11951.	23.0	166
509	Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy, 2017, 13, 41-56.	4.3	61
510	Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metabolic Engineering, 2017, 39, 102-109.	3.6	97
511	Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. Journal of Biotechnology, 2017, 241, 50-60.	1.9	9
512	Biological Dual-Use Research and Synthetic Biology of Yeast. Science and Engineering Ethics, 2017, 23, 365-374.	1.7	5

#	Article	IF	CITATIONS
513	Optimising Terpene Synthesis with Flow Biocatalysis. European Journal of Organic Chemistry, 2017, 2017, 414-418.	1.2	28
514	Putative biosynthetic cycloadditions en route to the diterpenoid (+)-chatancin. Tetrahedron, 2017, 73, 4227-4232.	1.0	6
515	Biosynthesis of the psychotropic plant diterpene salvinorin A: Discovery and characterization of the <i>Salvia divinorum</i> clerodienyl diphosphate synthase. Plant Journal, 2017, 89, 885-897.	2.8	55
516	The terpene synthase gene family in <i>Tripterygium wilfordii</i> harbors a labdaneâ€type diterpene synthase among the monoterpene synthase <scp>TPS</scp> â€b subfamily. Plant Journal, 2017, 89, 429-441.	2.8	61
517	Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs. Annual Review of Medicine, 2017, 68, 317-330.	5.0	96
518	Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnology, 2017, 37, 112-136.	5.1	45
519	Advances and prospects in biogenic substances against plant virus: A review. Pesticide Biochemistry and Physiology, 2017, 135, 15-26.	1.6	77
520	Engineering biosynthesis of high-value compounds in photosynthetic organisms. Critical Reviews in Biotechnology, 2017, 37, 779-802.	5.1	15
521	Rewiring host activities for synthetic circuit production: a translation view. Biotechnology Letters, 2017, 39, 25-31.	1.1	3
522	Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production. Applied Microbiology and Biotechnology, 2017, 101, 465-474.	1.7	32
523	Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species. ACS Synthetic Biology, 2017, 6, 471-484.	1.9	80
524	Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Research, 2017, 17, .	1.1	87
525	Metabolic Engineering of Artemisia annua L , 2017, , 163-208.		3
526	Biotransformations., 2017, , 574-585.		1
527	Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 165.	1.9	68
528	Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis. Frontiers in Plant Science, 2017, 8, 77.	1.7	33
529	Transcriptome Analysis of Genes Associated with the Artemisinin Biosynthesis by Jasmonic Acid Treatment under the Light in Artemisia annua. Frontiers in Plant Science, 2017, 8, 971.	1.7	69
530	A Review of Biotechnological Artemisinin Production in Plants. Frontiers in Plant Science, 2017, 8, 1966.	1.7	96

#	Article	IF	CITATIONS
531	Synthetic Biology. , 2017, , 239-269.		3
532	Synthetic Strategies for Peroxide Ring Construction in Artemisinin. Molecules, 2017, 22, 117.	1.7	30
533	Production of Putative Diterpene Carboxylic Acid Intermediates of Triptolide in Yeast. Molecules, 2017, 22, 981.	1.7	17
534	Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae. Molecules, 2017, 22, 1075.	1.7	12
535	Multienzyme Biosynthesis of Dihydroartemisinic Acid. Molecules, 2017, 22, 1422.	1.7	17
536	Four New Compounds Obtained from Cultured Cells of Artemisia annua. Molecules, 2017, 22, 2264.	1.7	1
537	Stable Production of the Antimalarial Drug Artemisinin in the Moss Physcomitrella patens. Frontiers in Bioengineering and Biotechnology, 2017, 5, 47.	2.0	54
538	Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. ELife, 2017, 6, .	2.8	97
539	Discovery of Several Novel Targets that Enhance \hat{l}^2 -Carotene Production in Saccharomyces cerevisiae. Frontiers in Microbiology, 2017, 8, 1116.	1.5	21
540	A transatlantic perspective on 20 emerging issues in biological engineering. ELife, 2017, 6, .	2.8	49
541	Microbial Production of Isoprenoids. , 2017, , 359-382.		6
542	Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microbial Cell Factories, 2017, 16, 125.	1.9	95
543	Reversible bacterial immobilization based on the salt-dependent adhesion of the bacterionanofiber protein AtaA. Microbial Cell Factories, 2017, 16, 123.	1.9	20
544	A review of parameters and heuristics for guiding metabolic pathfinding. Journal of Cheminformatics, 2017, 9, 51.	2.8	20
545	Advances in Metabolic Engineering of Saccharomyces cerevisiae for the Production of Industrially and Clinically Important Chemicals. , 0, , .		4
546	Biocatalyzed Production of Fine Chemicals. , 2017, , 334-373.		7
547	Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 83-93.	3.6	89
548	Metabolic division of labor in microbial systems. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2526-2531.	3.3	191

#	Article	IF	Citations
549	Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnology Reports, 2018, 12, 69-75.	0.9	17
550	Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource Technology, 2018, 257, 339-343.	4.8	60
551	Genome Writing: Current Progress and Related Applications. Genomics, Proteomics and Bioinformatics, 2018, 16, 10-16.	3.0	8
552	Biosynthesis of a ganoderic acid in <i>Saccharomyces cerevisiae</i> by expressing a cytochrome P450 gene from <i>Ganoderma lucidum</i> . Biotechnology and Bioengineering, 2018, 115, 1842-1854.	1.7	51
553	Genome-scale biological models for industrial microbial systems. Applied Microbiology and Biotechnology, 2018, 102, 3439-3451.	1.7	14
554	Research and Development on Artemisia annua in India. , 2018, , 15-27.		1
555	The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. Molecular Plant, 2018, 11, 776-788.	3.9	205
556	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metabolic Engineering, 2018, 50, 85-108.	3.6	228
557	Preparative Separation of High-Purity Dihydroartemisinic Acid from Artemisinin Production Waste by Combined Chromatography. Chemical and Pharmaceutical Bulletin, 2018, 66, 319-326.	0.6	1
558	Methyl Perillate as a Highly Functionalized Natural Starting Material for Terephthalic Acid. ChemistryOpen, 2018, 7, 201-203.	0.9	5
559	Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in <i>Saccharomyces cerevisiae</i>). Biotechnology Journal, 2018, 13, e1700582.	1.8	31
560	An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Metabolic Engineering, 2018, 47, 423-433.	3.6	53
561	Sesquiterpene Synthase–3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum. Applied and Environmental Microbiology, 2018, 84, .	1.4	25
562	Exploring the combinatorial space of complete pathways to chemicals. Biochemical Society Transactions, 2018, 46, 513-522.	1.6	14
563	Single-Gene Versus Multigene Transfer Approaches for Crop Salt Tolerance., 2018,, 359-379.		1
564	Engineering synthetic regulatory circuits in plants. Plant Science, 2018, 273, 13-22.	1.7	36
565	From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. Plant Science, 2018, 273, 3-12.	1.7	63
566	Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp Biotechnology Advances, 2018, 36, 739-783.	6.0	61

#	Article	IF	CITATIONS
567	Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends in Biochemical Sciences, 2018, 43, 180-198.	3.7	70
568	Dynamic metabolic control: towards precision engineering of metabolism. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 535-543.	1.4	86
569	Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nature Communications, 2018, 9, 448.	5.8	146
570	Total Biosynthesis of Antiangiogenic Agent (â^')-Terpestacin by Artificial Reconstitution of the Biosynthetic Machinery in <i>Aspergillus oryzae</i> . Journal of Organic Chemistry, 2018, 83, 7042-7048.	1.7	23
571	Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open, 2018, 6, 9-16.	3.2	66
572	Mevalonate/2-Methylerythritol 4-Phosphate Pathways and Their Metabolic Engineering Applications. , 2018, , 187-208.		0
573	A sigma factor toolbox for orthogonal gene expression in Escherichia coli. Nucleic Acids Research, 2018, 46, 2133-2144.	6.5	74
574	In vitro effect of artemisinin on microbial biomasses, enzyme activities and composition of bacterial community. Applied Soil Ecology, 2018, 124, 1-6.	2.1	3
575	Enhancing the performance of brewing yeasts. Biotechnology Advances, 2018, 36, 691-706.	6.0	17
576	Toward industrial production of isoprenoids in <i>Escherichia coli</i> : Lessons learned from CRISPR as9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnology and Bioengineering, 2018, 115, 1000-1013.	1.7	39
577	High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 142-148.	3.6	56
578	11-Azaartemisinin cocrystals with preserved lactam : acid heterosynthons. CrystEngComm, 2018, 20, 1205-1219.	1.3	12
579	The emerging impact of cell-free chemical biosynthesis. Current Opinion in Biotechnology, 2018, 53, 115-121.	3.3	64
581	Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnology Advances, 2018, 36, 641-665.	6.0	120
582	Biosynthesis of bioactive diterpenoids in the medicinal plant <i>Vitex agnus astus</i> . Plant Journal, 2018, 93, 943-958.	2.8	68
583	Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnology Advances, 2018, 36, 1730-1737.	6.0	114
584	Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Molecular Biotechnology, 2018, 60, 169-183.	1.3	59
585	Exploring d-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express, 2018, 8, 33.	1.4	22

#	Article	IF	CITATIONS
586	Total Synthesis and Biological Investigation of (â^')â€Artemisinin: The Antimalarial Activity of Artemisinin Is not Stereospecific. Angewandte Chemie - International Edition, 2018, 57, 8293-8296.	7.2	34
587	The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Reports, 2018, 19, .	2.0	83
589	Design, development and application of whole-cell based antibiotic-specific biosensor. Metabolic Engineering, 2018, 47, 263-270.	3.6	33
590	Additive Manufacturing of Catalytically Active Living Materials. ACS Applied Materials & Amp; Interfaces, 2018, 10, 13373-13380.	4.0	89
592	Current and future modalities of dynamic control in metabolic engineering. Current Opinion in Biotechnology, 2018, 52, 56-65.	3.3	84
593	Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018, 47, 243-253.	3.6	77
594	Biotechnological approaches for artemisinin production in Artemisia. World Journal of Microbiology and Biotechnology, 2018, 34, 54.	1.7	25
595	Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 599-614.	1.4	15
596	Strategies for microbial synthesis of high-value phytochemicals. Nature Chemistry, 2018, 10, 395-404.	6.6	95
597	Dynamics of Bacterial Gene Regulatory Networks. Annual Review of Biophysics, 2018, 47, 447-467.	4.5	20
598	Yeast 2.0â€"connecting the dots in the construction of the world's first functional synthetic eukaryotic genome. FEMS Yeast Research, 2018, 18, .	1.1	84
600	Development of <i>N</i> â€acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Biotechnology and Bioengineering, 2018, 115, 1855-1865.	1.7	23
601	De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 94-101.	3.6	21
602	Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. Journal of Agricultural and Food Chemistry, 2018, 66, 2247-2258.	2.4	148
603	Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chemical Reviews, 2018, 118, 270-348.	23.0	484
604	Concise synthesis of artemisinin from a farnesyl diphosphate analogue. Bioorganic and Medicinal Chemistry, 2018, 26, 1314-1319.	1.4	27
605	Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges. Phytochemistry Reviews, 2018, 17, 113-130.	3.1	31
606	Strategies to diversify natural products for drug discovery. Medicinal Research Reviews, 2018, 38, 1255-1294.	5.0	187

#	Article	IF	CITATIONS
607	Discovery of a nonâ€stereoselective cytochrome P450 catalyzing either 8αâ€or 8βâ€hydroxylation of germacrene A acid from the Chinese medicinal plant, <i>Inula hupehensis</i> . Plant Journal, 2018, 93, 92-106.	2.8	14
608	Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	4
609	Microbial lipids: Progress in life cycle assessment (LCA) and future outlook of heterotrophic algae and yeast-derived oils. Journal of Cleaner Production, 2018, 172, 661-672.	4.6	26
610	Transcriptome analysis of Paecilomyces hepiali at different growth stages and culture additives to reveal putative genes in cordycepin biosynthesis. Genomics, 2018, 110, 162-170.	1.3	20
611	Standardization in synthetic biology: an engineering discipline coming of age. Critical Reviews in Biotechnology, 2018, 38, 647-656.	5.1	56
612	Plant secretory structures: more than just reaction bags. Current Opinion in Biotechnology, 2018, 49, 73-79.	3.3	28
613	Taxadieneâ€5αâ€ol is a minor product of CYP725A4 when expressed in <i>Escherichia coli</i> . Biotechnology and Applied Biochemistry, 2018, 65, 294-305.	1.4	24
614	Next-Generation Plant Metabolic Engineering, Inspired by an Ancient Chinese Irrigation System. Molecular Plant, 2018, 11, 47-57.	3.9	46
615	Recent developments in the application of P450 based biocatalysts. Current Opinion in Chemical Biology, 2018, 43, 1-7.	2.8	82
616	Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chemical Letters, 2018, 29, 681-686.	4.8	32
617	Boosting 11-oxo-Î ² -amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 2018, 45, 43-50.	3.6	109
618	RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metabolic Engineering, 2018, 45, 158-170.	3.6	174
619	Metabolic Engineering of Microorganisms for the Production of Natural Compounds. Advanced Biology, 2018, 2, 1700190.	3.0	83
620	Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metabolic Engineering, 2018, 45, 211-222.	3.6	125
621	Advances and Tools in Engineering Yeast for Pharmaceutical Production. Energy, Environment, and Sustainability, 2018, , 29-49.	0.6	1
622	Plant-derived isoprenoid sweeteners: recent progress in biosynthetic gene discovery and perspectives on microbial production. Bioscience, Biotechnology and Biochemistry, 2018, 82, 927-934.	0.6	16
623	Use of bacterial co-cultures for the efficient production of chemicals. Current Opinion in Biotechnology, 2018, 53, 33-38.	3.3	107
624	Expression of artemisinin biosynthesis and trichome formation genes in five Artemisia species. Industrial Crops and Products, 2018, 112, 130-140.	2.5	32

#	Article	IF	CITATIONS
625	Microbial Synthesis of Plant Alkaloids. , 2018, , 99-130.		1
626	Taxol $\hat{A}^{ extstyle ex$		36
627	Genome modularity and synthetic biology: Engineering systems. Progress in Biophysics and Molecular Biology, 2018, 132, 43-51.	1.4	11
628	Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in <i>Cordyceps cicadae</i> i>. Royal Society Open Science, 2018, 5, 181247.	1.1	21
629	Dynamic metabolic solutions to the sessile life style of plants. Natural Product Reports, 2018, 35, 1140-1155.	5.2	57
630	Dihydroartemisinin induces apoptosis and downregulates glucose metabolism in JF-305 pancreatic cancer cells. RSC Advances, 2018, 8, 20692-20700.	1.7	5
631	From microbial upcycling to biology-oriented synthesis: combining whole-cell production and chemo-enzymatic functionalization for sustainable taxanoid delivery. Green Chemistry, 2018, 20, 5374-5384.	4.6	11
633	Advancement of Metabolic Engineering Assisted by Synthetic Biology. Catalysts, 2018, 8, 619.	1.6	17
635	A Genetic Circuit Compiler: Generating Combinatorial Genetic Circuits with Web Semantics and Inference. ACS Synthetic Biology, 2018, 7, 2812-2823.	1.9	2
636	Sigma Factor-Mediated Tuning of Bacterial Cell-Free Synthetic Genetic Oscillators. ACS Synthetic Biology, 2018, 7, 2879-2887.	1.9	29
637	Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3. Microbial Cell Factories, 2018, 17, 174.	1.9	26
638	The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Frontiers in Genetics, 2018, 9, 504.	1.1	15
639	A Combinatorial Approach To Study Cytochrome P450 Enzymes for <i>De Novo</i> Production of Steviol Glucosides in Baker's Yeast. ACS Synthetic Biology, 2018, 7, 2918-2929.	1.9	33
640	Expanding the terpenoid kingdom. Nature Chemical Biology, 2018, 14, 1069-1070.	3.9	15
641	Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in <i>Artemisia annua</i> . Science Advances, 2018, 4, eaas9357.	4.7	101
642	Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nature Communications, 2018, 9, 4657.	5.8	24
643	Modulation of benzylisoquinoline alkaloid biosynthesis by overexpression berberine bridge enzyme in Macleaya cordata. Scientific Reports, 2018, 8, 17988.	1.6	15
644	AaABF3, an Abscisic Acid–Responsive Transcription Factor, Positively Regulates Artemisinin Biosynthesis in Artemisia annua. Frontiers in Plant Science, 2018, 9, 1777.	1.7	37

#	Article	IF	CITATIONS
645	Progress and Prospects of Hairy Root Research., 2018,, 3-19.		18
646	Cytochrome P450s: Blueprints for Potential Applications in Plants. Journal of Plant Biochemistry & Physiology, 2018, 06, .	0.5	4
647	Genome mining for the search and discovery of bioactive compounds: The Streptomyces paradigm. FEMS Microbiology Letters, 2018, 365, .	0.7	38
648	Longitudinal trend of global artemisinin research in chemistry subject areas (1983–2017). Bioorganic and Medicinal Chemistry, 2018, 26, 5379-5387.	1.4	12
649	Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes. Genes, 2018, 9, 249.	1.0	29
650	CipA-mediating enzyme self-assembly to enhance the biosynthesis of pyrogallol in Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 10005-10015.	1.7	12
651	Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes, 2018, 9, 520.	1.0	67
652	The impact and prospect of natural product discovery in agriculture. EMBO Reports, 2018, 19, .	2.0	34
653	Enhanced Production and in situ Product Recovery of Fusicocca-2,10(14)-Diene from Yeast. Fermentation, 2018, 4, 65.	1.4	9
654	Transcriptomics-based identification and characterization of 11 CYP450 genes of & amp; t;italic>Panax ginseng& t;/italic> responsive to MeJA. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1094-1103.	0.9	13
655	Evolution at the Cutting Edge: CRISPR-Mediated Directed Evolution. Molecular Cell, 2018, 72, 402-403.	4.5	4
656	Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nature Catalysis, 2018, 1, 878-888.	16.1	106
657	Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nature Communications, 2018, 9, 3589.	5.8	73
658	Metabolic Gene Clusters in Eukaryotes. Annual Review of Genetics, 2018, 52, 159-183.	3.2	145
659	Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacological Research, 2018, 136, 172-180.	3.1	22
660	Expression of Cellulolytic Enzymes in Yeast. , 2018, , 201-221.		3
661	Fungal Cellulolytic Enzymes. , 2018, , .		7
662	YeastFab: High-Throughput Genetic Parts Construction, Measurement, and Pathway Engineering in Yeast. Methods in Enzymology, 2018, 608, 277-306.	0.4	8

#	Article	IF	CITATIONS
663	From systems biology to metabolically engineered cells â€" an omics perspective on the development of industrial microbes. Current Opinion in Microbiology, 2018, 45, 180-188.	2.3	52
664	Rational metabolic-flow switching for the production of exogenous secondary metabolites in bamboo suspension cells. Scientific Reports, 2018, 8, 13203.	1.6	17
665	An estimate is worth about a thousand experiments: using order-of-magnitude estimates to identify cellular engineering targets. Microbial Cell Factories, 2018, 17, 135.	1.9	1
666	Mass Production of Artemisinin Using Hairy Root Cultivation of Artemisia annua in Bioreactor. Reference Series in Phytochemistry, 2018, , 343-359.	0.2	4
667	Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory. Scientific Reports, 2018, 8, 8196.	1.6	14
668	Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9, 1933.	5.8	118
669	Engineering terpenoid production through transient expression in Nicotiana benthamiana. Plant Cell Reports, 2018, 37, 1431-1441.	2.8	86
670	Ethnobotany and Medicinal Plant Biotechnology: From Tradition to Modern Aspects of Drug Development. Planta Medica, 2018, 84, 834-838.	0.7	19
671	The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants. Planta Medica, 2018, 84, 855-873.	0.7	47
672	Totalsynthese und Untersuchung der biologischen Aktivitävon (â^')â€Artemisinin – die Antimalariaâ€Aktivitävon Artemisinin ist nicht stereospezifisch. Angewandte Chemie, 2018, 130, 8425-8428.	1.6	1
673	Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nature Reviews Molecular Cell Biology, 2018, 19, 507-525.	16.1	205
674	Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of Cleaner Production, 2018, 198, 143-159.	4.6	320
675	Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes. Applied Microbiology and Biotechnology, 2018, 102, 6923-6934.	1.7	65
676	Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus. Scientific Reports, 2018, 8, 9098.	1.6	18
677	Biocatalysis., 2018,, 471-512.		3
678	Barriers and opportunities in bio-based production of hydrocarbons. Nature Energy, 2018, 3, 925-935.	19.8	146
679	BioBitsâ,,¢ Bright: A fluorescent synthetic biology education kit. Science Advances, 2018, 4, eaat5107.	4.7	90
680	Seasonal and Differential Sesquiterpene Accumulation in Artemisia annua Suggest Selection Based on Both Artemisinin and Dihydroartemisinic Acid may Increase Artemisinin in planta. Frontiers in Plant Science, 2018, 9, 1096.	1.7	13

#	Article	IF	CITATIONS
681	Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. Genes, 2018, 9, 340.	1.0	37
682	Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry, 2018, 155, 83-92.	1.4	21
683	Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. MBio, 2018, 9, .	1.8	34
685	Biosynthesis of ursolic acid and oleanolic acid in <i>Saccharomyces cerevisiae</i> . AICHE Journal, 2018, 64, 3794-3802.	1.8	35
686	Approaches and Recent Developments for the Commercial Production of Semi-synthetic Artemisinin. Frontiers in Plant Science, 2018, 9, 87.	1.7	71
687	Detailed Phytochemical Analysis of High- and Low Artemisinin-Producing Chemotypes of Artemisia annua. Frontiers in Plant Science, 2018, 9, 641.	1.7	33
688	Overexpression of Artemisia annua Cinnamyl Alcohol Dehydrogenase Increases Lignin and Coumarin and Reduces Artemisinin and Other Sesquiterpenes. Frontiers in Plant Science, 2018, 9, 828.	1.7	28
689	Design and <i>De Novo</i> Synthesis of 6-Aza-artemisinins. Organic Letters, 2018, 20, 4667-4671.	2.4	13
690	Eudesmane-type sesquiterpene diols directly synthesized by a sesquiterpene cyclase in <i>Tripterygium wilfordii</i> . Biochemical Journal, 2018, 475, 2713-2725.	1.7	10
691	Molecular Pharmacognosyâ€"A New Borderline Discipline Between Molecular Biology and Pharmacognosy. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2018, , 665-720.	0.6	6
692	Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. FEMS Yeast Research, 2018, 18, .	1.1	8
693	Cellular Computing and Synthetic Biology. Natural Computing Series, 2018, , 93-110.	2.2	28
694	Emerging Opportunities for Synthetic Biology in Agriculture. Genes, 2018, 9, 341.	1.0	48
695	Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nature Communications, 2018, 9, 3059.	5.8	79
696	Metabolic pairing of aerobic and anaerobic production in a one-pot batch cultivation. Biotechnology for Biofuels, 2018, 11, 187.	6.2	24
697	Red and Blue Light Promote the Accumulation of Artemisinin in Artemisia Annua L Molecules, 2018, 23, 1329.	1.7	33
698	In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes, 2018, 9, 116.	1.0	73
699	In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity. Methods in Enzymology, 2018, 608, 97-129.	0.4	7

#	Article	IF	CITATIONS
700	Design of Experiments Methodology to Build a Multifactorial Statistical Model Describing the Metabolic Interactions of Alcohol Dehydrogenase Isozymes in the Ethanol Biosynthetic Pathway of the Yeast <i>Saccharomyces cerevisiae</i>	1.9	22
701	Increasing the Strength and Production of Artemisinin and Its Derivatives. Molecules, 2018, 23, 100.	1.7	24
702	The Multiplanetary Future of Plant Synthetic Biology. Genes, 2018, 9, 348.	1.0	31
703	Analysis and Isolation of Potential Artemisinin Precursors from Waste Streams of <i>Artemisia Annua</i> Extraction. ACS Omega, 2018, 3, 7803-7808.	1.6	11
704	Rational engineering of photosynthetic electron flux enhances light-powered cytochrome P450 activity. Synthetic Biology, 2018, 3, ysy009.	1.2	38
705	Prospects for engineering dynamic CRISPR–Cas transcriptional circuits to improve bioproduction. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 481-490.	1.4	14
706	Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metabolic Engineering, 2018, 48, 33-43.	3.6	49
707	Exploring of the feature space of de novo developed post-transcriptional riboregulators. PLoS Computational Biology, 2018, 14, e1006170.	1.5	4
708	Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology. Methods in Enzymology, 2018, 608, 189-261.	0.4	14
709	An enzyme-coupled assay enables rapid protein engineering for geraniol production in yeast. Biochemical Engineering Journal, 2018, 139, 95-100.	1.8	16
710	A GFP-fusion coupling FACS platform for advancing the metabolic engineering of filamentous fungi. Biotechnology for Biofuels, 2018, 11, 232.	6.2	18
711	Genetic tool development and systemic regulation in biosynthetic technology. Biotechnology for Biofuels, 2018, 11, 152.	6.2	20
712	Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell, 2018, 174, 1549-1558.e14.	13.5	215
713	Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. International Journal of Biological Macromolecules, 2018, 120, 203-212.	3.6	20
714	Heterologous Biosynthesis of the Fungal Sesquiterpene Trichodermol in Saccharomyces cerevisiae. Frontiers in Microbiology, 2018, 9, 1773.	1.5	10
715	<i>Saccharomyces cerevisiae</i> : A Unicellular Model Genetic Organism of Enduring Importance. Current Protocols in Essential Laboratory Techniques, 2018, 16, e21.	2.6	13
716	An inÂvitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synthetic and Systems Biotechnology, 2018, 3, 186-195.	1.8	42
717	Alkane Biosynthesis in Bacteria. , 2018, , 1-20.		0

#	Article	lF	Citations
718	Review: Endoplasmic Reticulum-Associated Degradation (ERAD)-Dependent Control of (Tri)terpenoid Metabolism in Plants. Planta Medica, 2018, 84, 874-880.	0.7	10
719	Biosynthesis of Sesquiterpene Lactones in Plants and Metabolic Engineering for Their Biotechnological Production. , 2018, , 47-91.		3
720	Synthetic biology strategies toward heterologous phytochemical production. Natural Product Reports, 2018, 35, 902-920.	5.2	45
721	Bio-solar cell factories for photosynthetic isoprenoids production. Planta, 2019, 249, 181-193.	1.6	22
722	Trends in herbgenomics. Science China Life Sciences, 2019, 62, 288-308.	2.3	46
723	Coâ€immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a selfâ€sufficient oxidative biocatalyst. Journal of Chemical Technology and Biotechnology, 2019, 94, 244-255.	1.6	20
724	Engineering the unicellular alga <i>Phaeodactylum tricornutum</i> for highâ€value plant triterpenoid production. Plant Biotechnology Journal, 2019, 17, 75-87.	4.1	82
725	The gal80 Deletion by CRISPR-Cas9 in Engineered Saccharomyces cerevisiae Produces Artemisinic Acid Without Galactose Induction. Current Microbiology, 2019, 76, 1313-1319.	1.0	7
726	Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nature Communications, 2019, 10, 3634.	5.8	69
727	The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast, 2019, 36, 685-700.	0.8	9
728	Engineered Rhodobacter capsulatus as a Phototrophic Platform Organism for the Synthesis of Plant Sesquiterpenoids. Frontiers in Microbiology, 2019, 10, 1998.	1.5	31
729	Crystal structure of bacterial CYP116B5 heme domain: New insights on class VII P450s structural flexibility and peroxygenase activity. International Journal of Biological Macromolecules, 2019, 140, 577-587.	3.6	23
730	"Dark―Singlet Oxygen Made Easy. Chemistry - A European Journal, 2019, 25, 12486-12490.	1.7	18
731	Vitamin A Production by Engineered <i>Saccharomyces cerevisiae</i> from Xylose <i>via</i> Two-Phase <i>in Situ</i> Extraction. ACS Synthetic Biology, 2019, 8, 2131-2140.	1.9	51
732	One-Step Purification of Microbially Produced Hydrophobic Terpenes via Process Chromatography. Frontiers in Bioengineering and Biotechnology, 2019, 7, 185.	2.0	6
733	Recent developments in terminator technology in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2019, 128, 655-661.	1.1	9
734	Enhancing <i>epi</i> à€cedrol production in <i>Escherichia coli</i> by fusion expression of farnesyl pyrophosphate synthase and <i>epi</i> â€cedrol synthase. Engineering in Life Sciences, 2019, 19, 606-616.	2.0	10
735	Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. Frontiers in Plant Science, 2019, 10, 802.	1.7	16

#	Article	IF	Citations
736	Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Applied Microbiology and Biotechnology, 2019, 103, 7029-7039.	1.7	28
737	A Review of the Microbial Production of Bioactive Natural Products and Biologics. Frontiers in Microbiology, 2019, 10, 1404.	1.5	323
738	2(5H)-Furanone sesquiterpenes from Eremophila bignoniiflora: High-resolution inhibition profiling and PTP1B inhibitory activity. Phytochemistry, 2019, 166, 112054.	1.4	23
739	Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metabolic Engineering, 2019, 55, 170-178.	3.6	74
740	<i>De Novo</i> Biosynthesis of (<i>S</i>)- and (<i>R</i>)-Phenylethanediol in Yeast <i>via</i> Artificial Enzyme Cascades. ACS Synthetic Biology, 2019, 8, 1801-1808.	1.9	12
741	Total Synthesis as a Vehicle for Collaboration. Journal of the American Chemical Society, 2019, 141, 12423-12443.	6.6	13
742	Genome-driven cell engineering review: <i>in vivo</i> and <i>in silico</i> metabolic and genome engineering. Essays in Biochemistry, 2019, 63, 267-284.	2.1	13
743	Saccharomyces cerevisiae exhibiting a modified route for uptake and catabolism of glycerol forms significant amounts of ethanol from this carbon source considered as ‬non-fermentable'. Biotechnology for Biofuels, 2019, 12, 257.	6.2	20
744	Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in <i> Saccharomyces cerevisiae </i> FEMS Yeast Research, 2019, 19, .	1.1	11
745	Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries. Synthetic Biology, 2019, 4, ysz025.	1.2	35
746	Insights into Heterologous Biosynthesis of Arteannuin B and Artemisinin in Physcomitrella patens. Molecules, 2019, 24, 3822.	1.7	19
747	Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast. ACS Synthetic Biology, 2019, 8, 2735-2745.	1.9	5
749	Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. Journal of Biological Chemistry, 2019, 294, 16549-16566.	1.6	27
7 50	A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chemical Biology, 2019, 14, 2497-2511.	1.6	8
751	A Customizable Approach for the Enzymatic Production and Purification of Diterpenoid Natural Products. Journal of Visualized Experiments, 2019, , .	0.2	7
752	Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catalysis, 2019, 9, 11207-11241.	5.5	108
753	Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a <i>Ganoderma</i> P450 reductase. Biotechnology and Bioengineering, 2019, 116, 3301-3311.	1.7	26
7 54	Anti-inflammatory diterpenoids from an endophytic fungus Phomopsis sp. S12. Tetrahedron Letters, 2019, 60, 151045.	0.7	12

#	Article	IF	CITATIONS
755	Natural Products as a Foundation for Drug Discovery. Current Protocols in Pharmacology, 2019, 86, e67.	4.0	61
756	Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate. Nature Communications, 2019, 10, 3799.	5.8	71
757	Semisynthesis of the Neuroprotective Metabolite, Serofendic Acid. ACS Synthetic Biology, 2019, 8, 2397-2403.	1.9	15
758	Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochemical Pharmacology, 2019, 169, 113619.	2.0	47
759	Biocatalysis., 2019,,.		8
760	Stress associated protein 1 regulates the development of glandular trichomes in Artemisia annua. Plant Cell, Tissue and Organ Culture, 2019, 139, 249-259.	1.2	13
761	Application of transport engineering to promote catharanthine production in Catharanthus roseus hairy roots. Plant Cell, Tissue and Organ Culture, 2019, 139, 523-530.	1.2	8
762	Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification. Plant Physiology, 2019, 181, 945-960.	2.3	19
763	Systematic Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for Lycopene Overproduction. Journal of Agricultural and Food Chemistry, 2019, 67, 11148-11157.	2.4	79
764	Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli. Molecules, 2019, 24, 3356.	1.7	16
765	Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158513.	1.2	6
766	Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. Frontiers in Plant Science, 2019, 10, 1166.	1.7	179
767	Non-heme iron enzyme-catalyzed complex transformations. Advances in Protein Chemistry and Structural Biology, 2019, 117, 1-61.	1.0	3
768	Transcriptome analysis identifies strong candidate genes for ginsenoside biosynthesis and reveals its underlying molecular mechanism in Panax ginseng C.A. Meyer. Scientific Reports, 2019, 9, 615.	1.6	24
769	Biotransformation of artemisinic acid by the fungus <i>Trichothecium roseum</i> and anti-candidal activity of its metabolites. Biocatalysis and Biotransformation, 2019, 37, 304-309.	1.1	1
770	Cloning and analyzing of chalcone isomerase gene (AaCHI) from Artemisia annua. Plant Cell, Tissue and Organ Culture, 2019, 137, 45-54.	1.2	3
771	Natural products: a strategic lead generation approach in crop protection discovery. Pest Management Science, 2019, 75, 2301-2309.	1.7	61
772	Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Natural Product Reports, 2019, 36, 626-665.	5.2	61

#	Article	IF	Citations
773	Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends in Biotechnology, 2019, 37, 817-837.	4.9	345
774	Stepwise increase in the production of 13R-manoyl oxide through metabolic engineering of Saccharomyces cerevisiae. Biochemical Engineering Journal, 2019, 144, 73-80.	1.8	3
775	Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synthetic Biology, 2019, 4, ysz003.	1.2	63
776	Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomaterials Science, 2019, 7, 867-875.	2.6	33
777	Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019, 48, 285-309.	18.7	685
778	Landscape and opportunities for active pharmaceutical ingredient manufacturing in developing African economies. Reaction Chemistry and Engineering, 2019, 4, 457-489.	1.9	15
779	Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). Journal of the American Chemical Society, 2019, 141, 9964-9979.	6.6	35
780	The phage T4 DNA ligase in vivo improves the survival-coupled bacterial mutagenesis. Microbial Cell Factories, 2019, 18, 107.	1.9	7
781	An integrated strategy to identify genes responsible for sesquiterpene biosynthesis in turmeric. Plant Molecular Biology, 2019, 101, 221-234.	2.0	5
782	Overexpression of AaPIF3 promotes artemisinin production in Artemisia annua. Industrial Crops and Products, 2019, 138, 111476.	2.5	19
783	Modularity: Adding New Dimensions to Total Synthesis. Trends in Chemistry, 2019, 1, 630-643.	4.4	28
784	Superloser: A Plasmid Shuffling Vector for <i>Saccharomyces cerevisiae</i> with Exceedingly Low Background. G3: Genes, Genomes, Genetics, 2019, 9, 2699-2707.	0.8	9
785	Endophytes as a Source of High-Value Phytochemicals: Present Scenario and Future Outlook. Reference Series in Phytochemistry, 2019, , 571-590.	0.2	6
786	Raman study of impurity influence on active center in artemisinin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 221, 117206.	2.0	5
787	Harnessing synthetic biology for kelp forest conservation (sup) 1 (sup). Journal of Phycology, 2019, 55, 745-751.	1.0	56
788	Identifying and engineering the ideal microbial terpenoid production host. Applied Microbiology and Biotechnology, 2019, 103, 5501-5516.	1.7	114
790	Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway. Metabolic Engineering, 2019, 55, 1-11.	3.6	27
791	Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Microbial Cell Factories, 2019, 18, 95.	1.9	44

#	Article	IF	CITATIONS
792	Lost in Translation: Challenges with Heterologous Expression of Lichen Polyketide Synthases. ChemistrySelect, 2019, 4, 6473-6483.	0.7	10
793	High-throughput mapping of CoA metabolites by SAMDI-MS to optimize the cell-free biosynthesis of HMG-CoA. Science Advances, 2019, 5, eaaw9180.	4.7	35
794	Esterification of geraniol as a strategy for increasing product titre and specificity in engineered Escherichia coli. Microbial Cell Factories, 2019, 18, 105.	1.9	36
795	A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer. European Journal of Pharmacology, 2019, 858, 172382.	1.7	23
796	Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 968-975.	1.9	79
797	Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnology Journal, 2019, 14, e1800439.	1.8	41
798	Novel trends for producing plant triterpenoids in yeast. Critical Reviews in Biotechnology, 2019, 39, 618-632.	5.1	39
799	Industrial Application of 2-Oxoglutarate-Dependent Oxygenases. Catalysts, 2019, 9, 221.	1.6	42
800	Characterization of a class III peroxidase from Artemisia annua: relevance to artemisinin metabolism and beyond. Plant Molecular Biology, 2019, 100, 527-541.	2.0	3
801	Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides. Green Chemistry, 2019, 21, 3286-3299.	4.6	45
802	Retrosynthetic design of metabolic pathways to chemicals not found in nature. Current Opinion in Systems Biology, 2019, 14, 82-107.	1.3	84
803	Artemisinin Biosynthesis in Non-glandular Trichome Cells of Artemisia annua. Molecular Plant, 2019, 12, 704-714.	3.9	62
804	Engineered Reversal of Function in Glycolytic Yeast Promoters. ACS Synthetic Biology, 2019, 8, 1462-1468.	1.9	12
805	En route to terpene natural products utilizing supramolecular cyclase mimetics. Natural Product Reports, 2019, 36, 1619-1627.	5.2	13
806	Simplified in Vitro and in Vivo Bioaccess to Prenylated Compounds. ACS Omega, 2019, 4, 7838-7849.	1.6	14
807	High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 73.	1.9	19
808	Synthetic Biology: A Novel Approach for Pharmaceutically Important Compounds. Fungal Biology, 2019, , 475-491.	0.3	0
809	Systems-based Saccharomyces cerevisiae strain design for improved squalene synthesis. Biochemical Engineering Journal, 2019, 148, 37-45.	1.8	11

#	Article	IF	CITATIONS
810	Shunting Phenylacetic Acid Catabolism for Tropone Biosynthesis. ACS Synthetic Biology, 2019, 8, 876-883.	1.9	5
811	Friedelaneâ€type triterpene cyclase in celastrol biosynthesis from <i>Tripterygium wilfordii</i> and its application for triterpenes biosynthesis in yeast. New Phytologist, 2019, 223, 722-735.	3.5	80
812	Characterization of a sesquiterpene cyclase from the glandular trichomes of Leucosceptrum canum for sole production of cedrol in Escherichia coli and Nicotiana benthamiana. Phytochemistry, 2019, 162, 121-128.	1.4	17
814	Porphyrinic Metal–Organic Frameworks Installed with Brønsted Acid Sites for Efficient Tandem Semisynthesis of Artemisinin. ACS Catalysis, 2019, 9, 5111-5118.	5.5	96
815	Applications and Future Perspectives of Synthetic Biology Systems. , 2019, , 393-412.		3
816	Strategies and challenges for metabolic rewiring. Current Opinion in Systems Biology, 2019, 15, 30-38.	1.3	27
817	Discovering Monoterpene Catalysis Inside Nanocapsules with Multiscale Modeling and Experiments. Journal of the American Chemical Society, 2019, 141, 6234-6246.	6.6	42
818	Poly(alkyl glycidyl ether) hydrogels for harnessing the bioactivity of engineered microbes. Faraday Discussions, 2019, 219, 58-72.	1.6	8
819	Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare. BMC Plant Biology, 2019, 19, 114.	1.6	14
820	Immunosuppressive effect of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via regulating the differentiation of CD4+ T cell subsets in rats. International Immunopharmacology, 2019, 70, 313-323.	1.7	26
821	Construction of an Efficient and RobustAspergillus terreusCell Factory for Monacolin J Production. ACS Synthetic Biology, 2019, 8, 818-825.	1.9	19
822	Design and construction of short synthetic terminators for \hat{l}^2 -amyrin production in Saccharomyces cerevisiae. Biochemical Engineering Journal, 2019, 146, 105-116.	1.8	15
823	Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations. Engineering, 2019, 5, 287-295.	3.2	42
824	The enzymes OSC1 and CYP716A263 produce a high variety of triterpenoids in the latex of Taraxacum koksaghyz. Scientific Reports, 2019, 9, 5942.	1.6	24
825	Towards the directed evolution of protein materials. MRS Communications, 2019, 9, 441-455.	0.8	21
826	Beautiful genes, beautiful plants. Plants People Planet, 2019, 1, 27-31.	1.6	1
827	BioBits Health: Classroom Activities Exploring Engineering, Biology, and Human Health with Fluorescent Readouts. ACS Synthetic Biology, 2019, 8, 1001-1009.	1.9	55
829	The SPB-Box Transcription Factor AaSPL2 Positively Regulates Artemisinin Biosynthesis in Artemisia annua L Frontiers in Plant Science, 2019, 10, 409.	1.7	25

#	Article	IF	CITATIONS
830	A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnology Advances, 2019, 37, 107360.	6.0	301
831	Constructing an efficient salicylate biosynthesis platform by Escherichia coli chromosome integration. Journal of Biotechnology, 2019, 298, 5-10.	1.9	5
832	Engineering of plastids to optimize the production of high-value metabolites and proteins. Current Opinion in Biotechnology, 2019, 59, 8-15.	3.3	28
833	Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry, 2019, 161, 149-162.	1.4	148
834	Synthetic Biology for Production of Commercially Important Natural Product Small Molecules. , 2019, , 189-205.		3
835	Co-evolution of physical and social sciences in synthetic biology. Critical Reviews in Biotechnology, 2019, 39, 351-365.	5.1	27
836	Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota). Archives of Biochemistry and Biophysics, 2019, 665, 12-19.	1.4	3
837	A CRISPR Technology and Biomolecule Production by Synthetic Biology Approach. , 2019, , 143-161.		6
838	Constructing Yeast Chimeric Pathways To Boost Lipophilic Terpene Synthesis. ACS Synthetic Biology, 2019, 8, 724-733.	1.9	21
839	Diterpenes isolated from Croton blanchetianus Baill: Potential compounds in prevention and control of the oral Streptococci biofilms. Industrial Crops and Products, 2019, 131, 371-377.	2.5	13
840	Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid. Microbial Cell Factories, 2019, 18, 205.	1.9	22
841	Multipathway Antibacterial Mechanism of a Nanoparticle-Supported Artemisinin Promoted by Nitrogen Plasma Treatment. ACS Applied Materials & Interfaces, 2019, 11, 47299-47310.	4.0	15
842	Molecular Pharmacognosy., 2019,,.		1
843	Engineering the oleaginous yeast Yarrowia lipolytica for production of \hat{l}_{\pm} -farnesene. Biotechnology for Biofuels, 2019, 12, 296.	6.2	86
844	The Transcription Factor Aabzip9 Positively Regulates the Biosynthesis of Artemisinin in Artemisia annua. Frontiers in Plant Science, 2019, 10, 1294.	1.7	14
845	Recent advancements in fungal-derived fuel and chemical production and commercialization. Current Opinion in Biotechnology, 2019, 57, 1-9.	3.3	39
846	Synthesis of amorpha-4,11-diene from dihydroartemisinic acid. Tetrahedron, 2019, 75, 743-748.	1.0	4
847	Improved Reactor Productivity for the Safe Photoâ€Oxidation of Citronellol Under Visible Light LED Irradiation. ChemPhotoChem, 2019, 3, 122-128.	1.5	16

#	ARTICLE	IF	CITATIONS
848	Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 127-136.	1.9	88
849	Modification of isoprene synthesis to enable production of curcurbitadienol synthesis in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 147-157.	1.4	14
850	Endophytes as Source of High-Value Phytochemicals: Present Scenario and Future Outlook. Reference Series in Phytochemistry, 2019, , 1-20.	0.2	0
851	Microbial Metabolomics. Methods in Molecular Biology, 2019, , .	0.4	8
852	Whole-cell based synthetic enzyme cascadesâ€"light and shadow of a promising technology. Current Opinion in Chemical Biology, 2019, 49, 84-90.	2.8	44
853	De novo biosynthesis of antimycobacterial agent geranylgeranyl acetate from glucose. Biochemical Engineering Journal, 2019, 142, 84-88.	1.8	6
854	A basic helix loop helix transcription factor, AaMYC2-Like positively regulates artemisinin biosynthesis in Artemisia annua L Industrial Crops and Products, 2019, 128, 115-125.	2.5	19
855	Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae. Methods in Molecular Biology, 2019, 1859, 317-345.	0.4	5
856	Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 2019, 249, 1-8.	1.6	207
857	Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52, 134-142.	3.6	251
858	Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discovery, 2019, 5, 5.	3.1	114
859	Engineering Plant Secondary Metabolism in Microbial Systems. Plant Physiology, 2019, 179, 844-861.	2.3	125
860	A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2, 18-33.	16.1	394
861	Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be?. Life, 2019, 9, 6.	1.1	10
862	Multiâ€omics dataâ€driven investigations of metabolic diversity of plant triterpenoids. Plant Journal, 2019, 97, 101-111.	2.8	50
863	Identification of a novel cytochrome P450 enzyme that catalyzes the C- $2\hat{l}\pm$ hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metabolic Engineering, 2019, 51, 70-78.	3.6	48
865	Strategies for Engineering Natural Product Biosynthesis in Fungi. Trends in Biotechnology, 2019, 37, 416-427.	4.9	65
866	Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine, 2019, 244, 323-331.	1.1	41

#	Article	IF	CITATIONS
867	Improving lycopene production in Saccharomyces cerevisiae through optimizing pathway and chassis metabolism. Chemical Engineering Science, 2019, 193, 364-369.	1.9	28
868	Natural products for the management of the hepatitis C virus: a biochemical review. Archives of Physiology and Biochemistry, 2020, 126, 116-128.	1.0	13
869	Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Natural Product Reports, 2020, 37, 80-99.	5.2	92
870	The production of plant natural products beneficial to humanity by metabolic engineering. Current Plant Biology, 2020, 24, 100121.	2.3	16
871	Redirection of the Glycolytic Flux Enhances Isoprenoid Production in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2020, 15, e1900173.	1.8	24
872	Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microbial Biotechnology, 2020, 13, 54-66.	2.0	8
873	Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metabolic Engineering, 2020, 58, 94-132.	3.6	82
874	De novo biosynthesis of liquiritin in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B, 2020, 10, 711-721.	5.7	19
875	Efficient Biosynthesis of $(2 < i > S < /i >)$ -Naringenin from $(i > p < /i >$ -Coumaric Acid in $(i > S$ accharomyces cerevisiae $(i > I)$ Journal of Agricultural and Food Chemistry, 2020, 68, 1015-1021.	2.4	69
876	Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drugâ€resistant <i>Plasmodium falciparum </i> . Medicinal Research Reviews, 2020, 40, 931-971.	5.0	50
877	Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194429.	0.9	12
878	Green algal hydrocarbon metabolism is an exceptional source of sustainable chemicals. Current Opinion in Biotechnology, 2020, 61, 28-37.	3.3	25
879	Engineering of <i>Saccharomyces cerevisiae</i> for the production of (+)â€ambrein. Yeast, 2020, 37, 163-172.	0.8	8
880	Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. Astrobiology, 2020, 20, 453-474.	1.5	8
881	Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnology Advances, 2020, 40, 107504.	6.0	50
882	Morphine and New Directions. , 2020, , 686-699.		1
883	Transcriptome analysis and functional characterization of oxidosqualene cyclases of the arjuna triterpene saponin pathway. Plant Science, 2020, 292, 110382.	1.7	15
884	Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis. Journal of Agricultural and Food Chemistry, 2020, 68, 10252-10264.	2.4	38

#	Article	IF	CITATIONS
885	Reconstitution of biosynthetic machinery of fungal natural products in heterologous hosts. Bioscience, Biotechnology and Biochemistry, 2020, 84, 433-444.	0.6	24
886	Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica. Metabolic Engineering Communications, 2020, 10, e00121.	1.9	66
887	A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in <i>Bacillus subtilis</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 243-249.	1.4	10
888	Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends in Biotechnology, 2020, 38, 745-765.	4.9	219
889	The wideâ€ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast, 2020, 37, 27-44.	0.8	39
890	De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae. Metabolic Engineering Communications, 2020, 10, e00111.	1.9	8
891	Engineering Plant Cytochrome P450s for Enhanced Synthesis of Natural Products: Past Achievements and Future Perspectives. Plant Communications, 2020, 1, 100012.	3.6	29
892	Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Current Opinion in Biotechnology, 2020, 65, 17-24.	3.3	42
893	Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. Journal of Biological Chemistry, 2020, 295, 833-849.	1.6	87
894	Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri. Scientific Reports, 2020, 10, 16314.	1.6	12
895	Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnology Advances, 2020, 44, 107628.	6.0	55
896	Increasing metabolic pathway flux by using machine learning models. Current Opinion in Biotechnology, 2020, 66, 179-185.	3.3	6
897	Metabolic engineering of Escherichia colifor production of non-natural acetins from glycerol. Green Chemistry, 2020, 22, 7788-7802.	4.6	5
898	Assembly of Plant Enzymes in <i>E. coli</i> for the Production of the Valuable (â^')-Podophyllotoxin Precursor (â^')-Pluviatolide. ACS Synthetic Biology, 2020, 9, 3091-3103.	1.9	13
899	Alterations in the silymarin metabolism in transgenic Silybum marianum cultured cells by the heterologous expression of the Arabidopsis thaliana V-myb myeloblastosis viral oncogene homolog transcription factor MYB12 and Cicer arietinum chalcone synthase. Industrial Crops and Products, 2020, 155, 112794.	2.5	3
900	Bioengineering studies and pathway modeling of the heterologous biosynthesis of tetrahydrocannabinolic acid in yeast. Applied Microbiology and Biotechnology, 2020, 104, 9551-9563.	1.7	19
901	Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet, 2020, 2, 463-481.	1.6	88
902	Bioactive diterpenoid metabolism and cytotoxic activities of genetically transformed Euphorbia lathyris roots. Phytochemistry, 2020, 179, 112504.	1.4	8

#	Article	IF	CITATIONS
903	Novel two-stage processes for optimal chemical production in microbes. Metabolic Engineering, 2020, 62, 186-197.	3.6	18
904	Data-driven rational biosynthesis design: from molecules to cell factories. Briefings in Bioinformatics, 2020, 21, 1238-1248.	3.2	9
905	Manipulating Biosynthesis of Plant Natural Products. , 2020, , 268-275.		0
906	Enhanced Biosynthesis of Dihydromyricetin in <i>Saccharomyces cerevisiae</i> by Coexpression of Multiple Hydroxylases. Journal of Agricultural and Food Chemistry, 2020, 68, 14221-14229.	2.4	26
907	Multi-tissue transcriptome analysis using hybrid-sequencing reveals potential genes and biological pathways associated with azadirachtin A biosynthesis in neem (azadirachta indica). BMC Genomics, 2020, 21, 749.	1.2	11
908	Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2020, 8, 588255.	2.0	17
909	Metabolic Engineering of Different Microbial Hosts for Lycopene Production. Journal of Agricultural and Food Chemistry, 2020, 68, 14104-14122.	2.4	24
910	Efficient Biosynthesis of (2 <i>S</i>)-Eriodictyol from (2 <i>S</i>)-Naringenin in <i>Saccharomyces cerevisiae</i> through a Combination of Promoter Adjustment and Directed Evolution. ACS Synthetic Biology, 2020, 9, 3288-3297.	1.9	35
911	Recent Advances on Feasible Strategies for Monoterpenoid Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2020, 8, 609800.	2.0	12
912	Artificial intelligence and synthetic biology approaches for human gut microbiome. Critical Reviews in Food Science and Nutrition, 2020, , 1-19.	5.4	8
913	Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31789-31799.	3.3	108
914	Building genomes to understand biology. Nature Communications, 2020, 11, 6177.	5.8	26
915	Genome-Wide Identification of WRKY Genes in Artemisia annua: Characterization of a Putative Ortholog of AtWRKY40. Plants, 2020, 9, 1669.	1.6	13
916	Identification of Feldin, an Antifungal Polyyne from the Beefsteak Fungus Fistulina hepatica. Biomolecules, 2020, 10, 1502.	1.8	13
917	The Biosynthetic Gene Cluster for Sestermobaraenes—Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from <i>Streptomyces mobaraensis</i> Angewandte Chemie - International Edition, 2020, 59, 19961-19965.	7.2	39
918	Engineering Critical Enzymes and Pathways for Improved Triterpenoid Biosynthesis in Yeast. ACS Synthetic Biology, 2020, 9, 2214-2227.	1.9	30
919	Biosynthesegencluster fýr Sestermobaraene – Entdeckung einer Geranylfarnesyldiphosphatsynthase und einer Multiproduktâ€Sesterterpensynthase aus <i>Streptomyces mobaraensis</i> . Angewandte Chemie, 2020, 132, 20135-20140.	1.6	13
920	A roadmap to engineering antiviral natural products synthesis in microbes. Current Opinion in Biotechnology, 2020, 66, 140-149.	3.3	22

#	Article	IF	Citations
921	Natural Products as Modulators of Sirtuins. Molecules, 2020, 25, 3287.	1.7	34
922	Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 815-828.	1.4	14
923	Strategy and Problems for Synthesis of Antimalaria Artemisinin (Qinghaosu). ChemistrySelect, 2020, 5, 12333-12344.	0.7	7
924	Integrative Biosynthetic Gene Cluster Mining to Optimize a Metabolic Pathway to Efficiently Produce l-Homophenylalanine in Escherichia coli. ACS Synthetic Biology, 2020, 9, 2943-2954.	1.9	3
925	Editorial: Artemisininâ€"From Traditional Chinese Medicine to Artemisinin Combination Therapies; Four Decades of Research on the Biochemistry, Physiology, and Breeding of Artemisia annua. Frontiers in Plant Science, 2020, 11, 594565.	1.7	12
926	A machine learning Automated Recommendation Tool for synthetic biology. Nature Communications, 2020, 11, 4879.	5 . 8	129
927	<i>Pseudomonas</i> spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Critical Reviews in Biotechnology, 2020, 40, 1232-1249.	5.1	11
928	Current Challenges and Opportunities in Non-native Chemical Production by Engineered Yeasts. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594061.	2.0	12
929	The Promise of Optogenetics for Bioproduction: Dynamic Control Strategies and Scale-Up Instruments. Bioengineering, 2020, 7, 151.	1.6	38
930	A Review of the Antimalarial, Antitrypanosomal, and Antileishmanial Activities of Natural Compounds Isolated From Nigerian Flora. Frontiers in Chemistry, 2020, 8, 617448.	1.8	21
931	Efficient Photooxygenation Process of Biosourced \hat{l}_{\pm} -Terpinene by Combining Controlled LED-Driven Flow Photochemistry and Rose Bengal-Anchored Polymer Colloids. ACS Sustainable Chemistry and Engineering, 2020, 8, 18568-18576.	3.2	20
932	Combinatorial Metabolic Engineering in Saccharomyces cerevisiae for the Enhanced Production of the FPP-Derived Sesquiterpene Germacrene. Bioengineering, 2020, 7, 135.	1.6	9
933	Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology. Bioengineering, 2020, 7, 137.	1.6	22
934	Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Current Opinion in Chemical Biology, 2020, 58, 146-154.	2.8	20
935	Exploring novel bacterial terpene synthases. PLoS ONE, 2020, 15, e0232220.	1,1	30
936	Biotransformation of Erythrodiol for New Food Supplements with Anti-Inflammatory Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 5910-5916.	2.4	9
937	Application of combinatorial optimization strategies in synthetic biology. Nature Communications, 2020, 11, 2446.	5 . 8	80
938	Bioproduction of glucose conjugates of 4-hydroxybenzoic and vanillic acids using bamboo cells transformed to express bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase. Journal of Bioscience and Bioengineering, 2020, 130, 89-97.	1.1	5

#	Article	IF	CITATIONS
939	Promoter-Library-Based Pathway Optimization for Efficient ($2 < i > S < / i >$)-Naringenin Production from $< i > p < / i >$ -Coumaric Acid in $< i > S$ accharomyces cerevisiae $< / i >$. Journal of Agricultural and Food Chemistry, 2020, 68, 6884-6891.	2.4	75
940	Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 483.	2.0	84
941	Hydroxychloroquine and Covid-19: A Cellular and Molecular Biology Based Update. Indian Journal of Clinical Biochemistry, 2020, 35, 274-284.	0.9	22
942	Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chemical Society Reviews, 2020, 49, 4615-4636.	18.7	246
943	Soil Ecosystems Services. Assa, Cssa and Sssa, 2020, , .	0.6	1
944	Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas. ACS Synthetic Biology, 2020, 9, 1406-1417.	1.9	37
945	An aurora of natural products-based drug discovery is coming. Synthetic and Systems Biotechnology, 2020, 5, 92-96.	1.8	11
946	CRISPR with a Happy Ending: Nonâ€Templated DNA Repair for Prokaryotic Genome Engineering. Biotechnology Journal, 2020, 15, e1900404.	1.8	9
947	Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 513.	2.0	26
949	Bacteria as genetically programmable producers of bioactive natural products. Nature Reviews Chemistry, 2020, 4, 172-193.	13.8	93
950	<i>In Vivo</i> Production of Five Crocins in the Engineered <i>Escherichia coli</i> ACS Synthetic Biology, 2020, 9, 1160-1168.	1.9	17
951	Sustainable engineering technologies to promote activities of beneficial microbiome., 2020,, 231-275.		1
952	Charting the path to fully synthetic plant chromosomes. Experimental Cell Research, 2020, 390, 111951.	1.2	12
953	Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synthetic and Systems Biotechnology, 2020, 5, 179-186.	1.8	40
954	Transcriptome analyses revealed the ultraviolet B irradiation and phytohormone gibberellins coordinately promoted the accumulation of artemisinin in Artemisia annua L Chinese Medicine, 2020, 15, 67.	1.6	16
955	<i>TRICHOME AND ARTEMISININ REGULATOR 2</i> positively regulates trichome development and artemisinin biosynthesis in <i>Artemisia annua</i> New Phytologist, 2020, 228, 932-945.	3.5	45
956	Engineering Tobacco for Plant Natural Product Production. , 2020, , 244-262.		8
957	Rapid and Systematic Exploration of Chemical Space Relevant to Artemisinins: Anti-malarial Activities of Skeletally Diversified Tetracyclic Peroxides and 6-Aza-artemisinins. Journal of Organic Chemistry, 2020, 85, 9694-9712.	1.7	8

#	Article	IF	CITATIONS
958	A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nature Communications, 2020, 11, 3337.	5.8	101
959	Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microbial Cell Factories, 2020, 19, 21.	1.9	39
960	Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 2020, 16, 155-166.	3.5	952
961	Bioprocess Optimization for the Production of Aromatic Compounds With Metabolically Engineered Hosts: Recent Developments and Future Challenges. Frontiers in Bioengineering and Biotechnology, 2020, 8, 96.	2.0	16
962	Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science, 2020, 294, 110457.	1.7	125
963	A modular pathway engineering strategy for the high-level production of \hat{l}^2 -ionone in Yarrowia lipolytica. Microbial Cell Factories, 2020, 19, 49.	1.9	50
964	Modular Chemoenzymatic Synthesis of Terpenes and their Analogues. Angewandte Chemie - International Edition, 2020, 59, 8486-8490.	7.2	22
965	Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nature Communications, 2020, 11, 971.	5.8	103
966	Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. Advances in Pharmacology, 2020, 87, 113-158.	1.2	33
967	Modular Chemoenzymatic Synthesis of Terpenes and their Analogues. Angewandte Chemie, 2020, 132, 8564-8568.	1.6	5
968	Advanced Strategies for Production of Natural Products in Yeast. IScience, 2020, 23, 100879.	1.9	107
969	Syntheses of Epoxyguaiane Sesquiterpenes (â^')-Englerin A, (â^')-Oxyphyllol, (+)-Orientalol E, and (+)-Orientalol F: A Synthetic Biology Approach. Organic Letters, 2020, 22, 1976-1979.	2.4	15
970	Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 3037-3047.	1.7	14
971	Triglyceride deficiency and diacylglycerol kinase1 activity lead to the upregulation of mevalonate pathway in yeast: A study for the development of potential yeast platform for improved production of triterpenoid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158661.	1.2	7
972	Crystallization-Induced Diastereoisomer Transformation of Dihydroartemisinic Aldehyde with the Betti Base. Organic Process Research and Development, 2020, 24, 850-855.	1.3	12
973	Improving the organization and interactivity of metabolic pathfinding with precomputed pathways. BMC Bioinformatics, 2020, 21, 13.	1.2	17
974	Synthetic Derivatives of (+)- <i>epi</i> -α-Bisabolol Are Formed by Mammalian Cytochromes P450 Expressed in a Yeast Reconstituted Pathway. ACS Synthetic Biology, 2020, 9, 368-380.	1.9	10
975	Construction of yeast producing patchoulol by global metabolic engineering strategy. Biotechnology and Bioengineering, 2020, 117, 1348-1356.	1.7	18

#	Article	IF	Citations
976	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	6.0	97
977	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> To Overproduce Squalene. Journal of Agricultural and Food Chemistry, 2020, 68, 2132-2138.	2.4	43
978	Semisynthesis of Plant-Derived Englerin A Enabled by Microbe Engineering of Guaia-6,10(14)-diene as Building Block. Journal of the American Chemical Society, 2020, 142, 2760-2765.	6.6	36
979	Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol. Microbial Cell Factories, 2020, 19, 15.	1.9	29
980	Dihydroartemisinin inhibits the proliferation of IgAN mesangial cells through the mTOR signaling pathway. International Immunopharmacology, 2020, 80, 106125.	1.7	24
981	Engineering <i>Yarrowia lipolytica</i> for Enhanced Production of Arbutin. Journal of Agricultural and Food Chemistry, 2020, 68, 1364-1372.	2.4	28
982	Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. International Journal of Molecular Sciences, 2020, 21, 990.	1.8	25
983	Production of Terpenoids by Synthetic Biology Approaches. Frontiers in Bioengineering and Biotechnology, 2020, 8, 347.	2.0	50
984	The importance and future of biochemical engineering. Biotechnology and Bioengineering, 2020, 117, 2305-2318.	1.7	13
985	Novel Strategies and Platforms for Industrial Isoprenoid Engineering. Trends in Biotechnology, 2020, 38, 811-822.	4.9	48
986	Production of the Inaccessible Sesquiterpene (â^)â€5â€Epieremophilene by Metabolically Engineered Escherichia coli. Chemistry and Biodiversity, 2020, 17, e2000219.	1.0	4
987	Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnology Journal, 2020, 15, e1900432.	1.8	35
988	Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Applied Microbiology and Biotechnology, 2020, 104, 4659-4674.	1.7	36
989	Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends in Biochemical Sciences, 2020, 45, 511-525.	3.7	70
990	Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metabolic Engineering, 2020, 60, 25-36.	3.6	62
991	Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metabolic Engineering, 2020, 60, 87-96.	3.6	72
992	Visible-light mediated oxidative ring expansion of anellated cyclopropanes to fused endoperoxides with antimalarial activity. Organic Chemistry Frontiers, 2020, 7, 1789-1795.	2.3	21
993	Recent Advances of Pharmaceutical Process Chemistry and Its Innovation in China: Part 1. Pharmaceutical Fronts, 2020, 02, e28-e54.	0.4	6

#	Article	IF	CITATIONS
994	An oxidatively stressful situation: a case of <i>Artemisia annua</i> L Biotechnology and Genetic Engineering Reviews, 2020, 36, 1-31.	2.4	5
995	Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Dihydroartemisinic Acid Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 152.	2.0	14
996	Overexpression of blue light receptor <i>AaCRY1</i> improves artemisinin content in <i>Artemisia annua</i> L Biotechnology and Applied Biochemistry, 2021, 68, 338-344.	1.4	7
997	Grape terpenoids: flavor importance, genetic regulation, and future potential. Critical Reviews in Food Science and Nutrition, 2021, 61, 1429-1447.	5.4	27
998	High-throughput screening for high-efficiency small-molecule biosynthesis. Metabolic Engineering, 2021, 63, 102-125.	3.6	24
999	Unlocking Nature's Biosynthetic Powerâ€"Metabolic Engineering for the Fermentative Production of Chemicals. Angewandte Chemie, 2021, 133, 2288-2308.	1.6	6
1000	Microbial Cell Factories for Tetrahydroisoquinoline Alkaloid Production. ChemBioChem, 2021, 22, 639-641.	1.3	5
1001	Unlocking Nature's Biosynthetic Powerâ€"Metabolic Engineering for the Fermentative Production of Chemicals. Angewandte Chemie - International Edition, 2021, 60, 2258-2278.	7.2	16
1002	The heterologous production of terpenes by the thermophile Parageobacillus thermoglucosidasius in a consolidated bioprocess using waste bread. Metabolic Engineering, 2021, 65, 146-155.	3.6	15
1003	Advances in biotechnological production of santalenes and santalols. Chinese Herbal Medicines, 2021, 13, 90-97.	1.2	8
1004	Metabolons and bio-condensates: The essence of plant plasticity and the key elements in development of green production systems. Advances in Botanical Research, 2021, , 185-223.	0.5	3
1005	Functional expression of eukaryotic cytochrome P450s in yeast. Biotechnology and Bioengineering, 2021, 118, 1050-1065.	1.7	27
1006	Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinoneâ€methide triterpenoid celastrol. Medicinal Research Reviews, 2021, 41, 1022-1060.	5.0	40
1007	Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. Advances in Applied Microbiology, 2021, 114, 1-35.	1.3	11
1008	Accumulation of Secondary Metabolites and Improved Size of Glandular Trichomes in Artemisia annua. Reference Series in Phytochemistry, 2021, , 99-116.	0.2	3
1009	Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nature Chemical Biology, 2021, 17, 205-212.	3.9	77
1010	High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. New Biotechnology, 2021, 60, 159-167.	2.4	14
1011	Artificial Enzymes for Dielsâ€Alder Reactions. ChemBioChem, 2021, 22, 443-459.	1.3	11

#	ARTICLE	IF	CITATIONS
1013	Membrane transporters: the key drivers of transport of secondary metabolites in plants. Plant Cell Reports, 2021, 40, 1-18.	2.8	50
1014	Microbial metabolites in nutrition and healthcare. , 2021, , 235-256.		1
1015	Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2021, 105, 457-475.	1.7	49
1016	Saccharomyces cerevisiae as a microbial cell factory. , 2021, , 319-333.		5
1017	Contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids. Organic and Biomolecular Chemistry, 2021, 19, 3791-3812.	1.5	13
1018	Synthetic Biology of Ginsenosides. Compendium of Plant Genomes, 2021, , 159-170.	0.3	0
1019	Engineering of microbial cell factories for production of plant-based natural products., 2021,, 381-392.		1
1020	Using Gene Expression to Study Specialized Metabolism—A Practical Guide. Frontiers in Plant Science, 2020, 11, 625035.	1.7	24
1021	Biosynthesis and synthetic biology of psychoactive natural products. Chemical Society Reviews, 2021, 50, 6950-7008.	18.7	32
1022	Heterologous Production of \hat{l}^2 -Caryophyllene and Evaluation of Its Activity against Plant Pathogenic Fungi. Microorganisms, 2021, 9, 168.	1.6	15
1024	Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Marine Drugs, 2021, 19, 69.	2.2	7
1025	Synthetic utility of oxygenases in site-selective terpenoid functionalization. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	9
1026	Six-Membered Rings With 1,2,4-Oxygen or Sulfur Atoms. , 2021, , .		0
1027	Alternative metabolic pathways and strategies to high-titre terpenoid production in <i>Escherichia coli < /i>. Natural Product Reports, 2022, 39, 90-118.</i>	5.2	38
1028	A 2D MOF-based artificial light-harvesting system with chloroplast bionic structure for photochemical catalysis. Journal of Materials Chemistry A, 2021, 9, 9301-9306.	5.2	29
1029	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	18.7	175
1030	Synthetic biology approaches for secondary metabolism engineering. , 2021, , 51-64.		0
1031	An introduction to microbial cell factories for production of biomolecules. , 2021, , 1-19.		6

#	Article	IF	CITATIONS
1032	The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. Journal of Inflammation Research, 2021, Volume 14, 527-550.	1.6	43
1033	High-Level Patchoulol Biosynthesis in Artemisia annua L Frontiers in Bioengineering and Biotechnology, 2020, 8, 621127.	2.0	3
1034	Endogenous $2\hat{l}\frac{1}{4}$ Plasmid Editing for Pathway Engineering in Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12, 631462.	1.5	5
1035	Bornyl Diphosphate Synthase From Cinnamomum burmanni and Its Application for (+)-Borneol Biosynthesis in Yeast. Frontiers in Bioengineering and Biotechnology, 2021, 9, 631863.	2.0	13
1036	Progress in heterologous biosynthesis of forskolin. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	7
1037	The Biochemistry of Phytocannabinoids and Metabolic Engineering of Their Production in Heterologous Systems. International Journal of Molecular Sciences, 2021, 22, 2454.	1.8	23
1038	Advanced Strategies for the Synthesis of Terpenoids in <i>Yarrowia lipolytica</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 2367-2381.	2.4	41
1039	Synthesis of cembratriene-ol and cembratriene-diol in yeast via the MVA pathway. Microbial Cell Factories, 2021, 20, 29.	1.9	8
1040	Engineered microorganisms and enzymes for efficiently synthesizing plant natural products. Chinese Journal of Chemical Engineering, 2021, 30, 62-73.	1.7	4
1041	Biochemical and Metabolic Insights into Hyoscyamine Dehydrogenase. ACS Catalysis, 2021, 11, 2912-2924.	5.5	15
1042	The Yin and Yang of traditional Chinese and Western medicine. Medicinal Research Reviews, 2021, 41, 3182-3200.	5.0	37
1043	Self-Sufficient Class VII Cytochromes P450: From Full-Length Structure to Synthetic Biology Applications. Trends in Biotechnology, 2021, 39, 1184-1207.	4.9	27
1044	Jasmonate―and abscisic acidâ€activated AaGSW1â€AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in <i>Artemisia annua</i> . Plant Biotechnology Journal, 2021, 19, 1412-1428.	4.1	45
1045	Side Products of Recombinant Amorpha-4,11-diene Synthase and Their Effect on Microbial Artemisinin Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2168-2178.	2.4	9
1046	Separation of salidroside from the fermentation broth of engineered Escherichia coli using macroporous adsorbent resins. Chinese Journal of Chemical Engineering, 2022, 44, 260-267.	1.7	3
1047	Quorum sensing-mediated protein degradation for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metabolic Engineering, 2021, 64, 85-94.	3.6	33
1048	Refining Metabolic Mass Transfer for Efficient Biosynthesis of Plant Natural Products in Yeast. Frontiers in Bioengineering and Biotechnology, 2021, 9, 633741.	2.0	2
1049	Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals, 2021, 14, 295.	1.7	28

#	ARTICLE	IF	CITATIONS
1050	Developing GDi-CRISPR System for Multi-copy Integration in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2021, 193, 2379-2388.	1.4	6
1051	Rational Promoter Engineering Enables Robust Terpene Production in Microalgae. ACS Synthetic Biology, 2021, 10, 847-856.	1.9	38
1052	Photochemical Hydrothiolation of Amorphadiene and Formal Synthesis of Artemisinin via a Pummerer Rearrangement. Organic Letters, 2021, 23, 5593-5598.	2.4	7
1054	A Perspective on Synthetic Biology in Drug Discovery and Developmentâ€"Current Impact and Future Opportunities. SLAS Discovery, 2021, 26, 581-603.	1.4	10
1055	Engineering of Multiple Modules to Improve Amorphadiene Production in <i>Bacillus subtilis</i> Using CRISPR-Cas9. Journal of Agricultural and Food Chemistry, 2021, 69, 4785-4794.	2.4	19
1056	Systematic engineering of <i>Saccharomyces cerevisiae</i> for D-lactic acid production with near theoretical yield. FEMS Yeast Research, 2021, 21, .	1.1	13
1057	Production of Carminic Acid by Metabolically Engineered <i>Escherichia coli</i> Iournal of the American Chemical Society, 2021, 143, 5364-5377.	6.6	36
1058	Palladium-Catalyzed Regioselective Allylic Oxidation of Amorphadiene, a Precursor of Artemisinin. Journal of Organic Chemistry, 2021, 86, 7603-7608.	1.7	4
1060	Endophytes: the novel sources for plant terpenoid biosynthesis. Applied Microbiology and Biotechnology, 2021, 105, 4501-4513.	1.7	18
1061	Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Medicinal Research Reviews, 2021, 41, 2971-2997.	5.0	39
1062	Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends in Biotechnology, 2021, 39, 488-504.	4.9	37
1063	Synthesis and Structural Diversification of Artemisinins towards the Generation of Potent Anti-malarial Agents. Chemistry Letters, 2021, 50, 924-937.	0.7	1
1064	Refactoring of a synthetic raspberry ketone pathway with EcoFlex. Microbial Cell Factories, 2021, 20, 116.	1.9	12
1065	Phytosterols and Novel Triterpenes Recovered from Industrial Fermentation Coproducts Exert In Vitro Anti-Inflammatory Activity in Macrophages. Pharmaceuticals, 2021, 14, 583.	1.7	12
1067	Heterologous expression and metabolic engineering tools for improving terpenoids production. Current Opinion in Biotechnology, 2021, 69, 281-289.	3.3	20
1068	Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules, 2021, 26, 3596.	1.7	10
1069	Evolution-aided engineering of plant specialized metabolism. ABIOTECH, 2021, 2, 240-263.	1.8	11
1070	Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L Plant Physiology and Biochemistry, 2021, 163, 189-200.	2.8	23

#	Article	IF	CITATIONS
1071	Combined Biosynthetic Pathway Engineering and Storage Pool Expansion for High-Level Production of Ergosterol in Industrial Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2021, 9, 681666.	2.0	12
1074	Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
1075	Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech, 2021, 11, 340.	1.1	10
1076	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	1.5	51
1077	Rationally optimized generation of integrated Escherichia coli with stable and high yield lycopene biosynthesis from heterologous mevalonate (MVA) and lycopene expression pathways. Synthetic and Systems Biotechnology, 2021, 6, 85-94.	1.8	19
1078	Systematic optimization of the yeast cell factory for sustainable and high efficiency production of bioactive ginsenoside compound K. Synthetic and Systems Biotechnology, 2021, 6, 69-76.	1.8	25
1079	Enzymology and biosynthesis of the orsellinic acid derived medicinal meroterpenoids. Current Opinion in Biotechnology, 2021, 69, 52-59.	3.3	10
1080	A dynamic understanding of cytochrome P450 structure and function through solution NMR. Current Opinion in Biotechnology, 2021, 69, 35-42.	3.3	9
1081	Amorpha-4,11-diene synthase: a key enzyme in artemisinin biosynthesis and engineering. ABIOTECH, 2021, 2, 276-288.	1.8	5
1082	AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Science, 2021, 308, 110920.	1.7	21
1083	Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants. Microbial Cell Factories, 2021, 20, 148.	1.9	14
1084	Biosynthesis of paclitaxel using synthetic biology. Phytochemistry Reviews, 2022, 21, 863-877.	3.1	11
1085	Ginsenosides in Panax genus and their biosynthesis. Acta Pharmaceutica Sinica B, 2021, 11, 1813-1834.	5.7	117
1086	High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae. Metabolic Engineering, 2021, 66, 87-97.	3.6	36
1087	Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Applied Microbiology and Biotechnology, 2021, 105, 5367-5381.	1.7	12
1088	The Role of Metabolic Engineering Technologies for the Production of Fatty Acids in Yeast. Biology, 2021, 10, 632.	1.3	7
1089	Practical Enzymatic Production of Carbocycles. Chemistry - A European Journal, 2021, 27, 11773-11794.	1.7	3
1090	Metabolic engineering strategies for sesquiterpene production in microorganism. Critical Reviews in Biotechnology, 2022, 42, 73-92.	5.1	24

#	ARTICLE	IF	CITATIONS
1091	Simultaneous Determination of the Chemical (<i>k_r</i>) and the Physical (<i>k_q</i>) Quenching Rate Constants of Singlet Oxygen in Aqueous Solution by the Chemiluminescenceâ€quenching Method ^{â€} . Photochemistry and Photobiology, 2021, 97, 1343-1352.	1.3	3
1092	Glandular trichomes: new focus on horticultural crops. Horticulture Research, 2021, 8, 158.	2.9	33
1093	Kinetic analysis of the partial synthesis of artemisinin: Photooxygenation to the intermediate hydroperoxide. Journal of Flow Chemistry, 2021, 11, 641-659.	1.2	2
1094	<i>De Novo</i> Biosynthesis of the Oleanane-Type Triterpenoids of Tunicosaponins in Yeast. ACS Synthetic Biology, 2021, 10, 1874-1881.	1.9	8
1095	Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches. Planta, 2021, 254, 29.	1.6	31
1096	AaWRKY9 contributes to light―and jasmonateâ€mediated to regulate the biosynthesis of artemisinin in <i>Artemisia annua</i> . New Phytologist, 2021, 231, 1858-1874.	3.5	67
1097	Enzymatic Hydroxylations of sp ³ -Carbons. ACS Catalysis, 2021, 11, 9168-9203.	5.5	51
1098	Recent Advances in the Synthetic Biology of Natural Drugs. Frontiers in Bioengineering and Biotechnology, 2021, 9, 691152.	2.0	12
1099	Quantitative characterization of recombinase-based digitizer circuits enables predictable amplification of biological signals. Communications Biology, 2021, 4, 875.	2.0	9
1101	De novo biosynthesis and gram-level production of m-cresol in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2021, 105, 6333-6343.	1.7	4
1102	Synthetic Biology in Plants, a Boon for Coming Decades. Molecular Biotechnology, 2021, 63, 1138-1154.	1.3	8
1103	An Integrative Toolbox for Synthetic Biology in <i>Rhodococcus</i> . ACS Synthetic Biology, 2021, 10, 2383-2395.	1.9	10
1104	Identification and Validation of Four Novel Promoters for Gene Engineering with Broad Suitability across Species. Journal of Microbiology and Biotechnology, 2021, 31, 1154-1162.	0.9	1
1105	Functional characterization and substrate promiscuity of sesquiterpene synthases from Tripterygium wilfordii. International Journal of Biological Macromolecules, 2021, 185, 949-958.	3.6	3
1106	Physiological limitations and opportunities in microbial metabolic engineering. Nature Reviews Microbiology, 2022, 20, 35-48.	13.6	53
1107	Microbial production of megadalton titin yields fibers with advantageous mechanical properties. Nature Communications, 2021, 12, 5182.	5.8	21
1108	Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Applied Microbiology and Biotechnology, 2021, 105, 6597-6606.	1.7	19
1109	Reconstitution of biosynthetic pathway for mushroom-derived cyathane diterpenes in yeast and generation of new "non-natural―analogues. Acta Pharmaceutica Sinica B, 2021, 11, 2945-2956.	5.7	11

#	Article	IF	CITATIONS
1110	Yeasts as Biopharmaceutical Production Platforms. Frontiers in Fungal Biology, 2021, 2, .	0.9	17
1111	Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 732256.	1.6	15
1112	Increased biosynthesis of acetyl-CoA in the yeast Saccharomyces cerevisiae by overexpression of a deregulated pantothenate kinase gene and engineering of the coenzyme A biosynthetic pathway. Applied Microbiology and Biotechnology, 2021, 105, 7321-7337.	1.7	9
1113	Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnology Advances, 2021, 50, 107768.	6.0	17
1114	Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Communications, 2021, 2, 100229.	3.6	37
1115	Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. Planta Medica, 2022, 88, 1175-1189.	0.7	1
1116	A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules, 2021, 26, 5583.	1.7	50
1117	Genome-Wide Analysis of Light-Regulated Alternative Splicing in Artemisia annua L Frontiers in Plant Science, 2021, 12, 733505.	1.7	4
1118	Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli. Science Bulletin, 2021, 66, 1906-1916.	4.3	40
1119	Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metabolic Engineering, 2021, 67, 104-111.	3.6	57
1120	Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol. Phytochemistry, 2021, 190, 112868.	1.4	8
1121	Expression, purification and X-ray crystal diffraction analysis of alcohol dehydrogenase 1 from Artemisia annua L Protein Expression and Purification, 2021, 187, 105943.	0.6	1
1122	Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synthetic and Systems Biotechnology, 2021, 6, 335-342.	1.8	10
1123	Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. Bioresource Technology, 2021, 342, 125978.	4.8	35
1124	Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metabolic Engineering Communications, 2021, 13, e00183.	1.9	1
1125	Research Trends in Genetically Modified (GM) Plants. , 2021, , 453-480.		1
1126	Production of plant volatile terpenoids (rose oil) by yeast cell factories. Green Chemistry, 2021, 23, 5088-5096.	4.6	20
1127	Metabolic engineering for microbial cell factories. , 2021, , 79-94.		1

#	Article	IF	Citations
1128	Multi-Enzymatic Cascades In Vivo. , 2021, , 49-63.		0
1129	Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Natural Product Reports, 2021, 38, 2145-2153.	5.2	48
1130	<i>De novo</i> biosynthesis and whole-cell catalytic production of paracetamol on a gram scale in <i>Escherichia coli</i> . Green Chemistry, 2021, 23, 8280-8289.	4.6	7
1131	Extraction Methods of Natural Products from Traditional Chinese Medicines. Methods in Molecular Biology, 2015, 1263, 177-185.	0.4	2
1132	14 Engineering Saccharomyces cerevisiae for Production of Fatty Acids and Their Derivatives. , 2020, , 339-368.		4
1133	Constraint-Based Genetic Compilation. Lecture Notes in Computer Science, 2015, , 25-38.	1.0	2
1134	Microbial Production of Isoprenoids. , 2016, , 1-24.		4
1135	Microbial Production of Isoprenoids. , 2017, , 1-24.		5
1136	Mass Production of Artemisinin Using Hairy Root Cultivation of Artemisia annua in Bioreactor. Reference Series in Phytochemistry, 2017, , 1-17.	0.2	4
1137	Heterologous Pathway Engineering. , 2016, , 31-52.		4
1138	Leveraging Gene Synthesis, Advanced Cloning Techniques, and Machine Learning for Metabolic Pathway Engineering., 2016, , 53-71.		6
1139	Bioethische Themen. , 2015, , 181-438.		1
1140	Production of Artemisinin In Planta and in Microbial Systems Need Not Be Mutually Exclusive., 2014,, 269-292.		4
1141	Mammalian and Bacterial Cytochromes P450 Cytochromes P450 Involved in Steroid Hydroxylation Steroid Hydroxylation: Regulation of Catalysis and Selectivity, and Potential Applications., 2014,, 135-151.		2
1142	Transgenic Plant Cell Cultures: A Promising Approach for Secondary Metabolite Production. , 2019, , 79-122.		6
1143	Climate Change: Challenges to Reduce Global Warming and Role of Biofuels. , 2020, , 13-54.		4
1144	Modern Plant Metabolomics for the Discovery and Characterization of Natural Products and Their Biosynthetic Genes., 2020,, 156-188.		1
1145	Systematic Solvent Evaluation for Artemisinin Recovery in Continuous Pharmaceutical Manufacturing. Computer Aided Chemical Engineering, 2016, 38, 1027-1032.	0.3	4

#	Article	IF	Citations
1146	Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli. Microbiological Research, 2020, 238, 126484.	2.5	10
1147	In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metabolic Engineering, 2020, 61, 251-260.	3.6	81
1148	Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform. Metabolic Engineering, 2020, 61, 131-140.	3.6	58
1149	Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. Journal of Biological Chemistry, 2020, 295, 833-849.	1.6	132
1150	Syntheses of the Carotane-type Terpenoids (+)-Schisanwilsonene A and (+)-Tormesol via a Two-Stage Approach. Organic Letters, 2021, 23, 400-404.	2.4	14
1151	Droplet Microfluidics: Applications in Synthetic Biology. RSC Soft Matter, 2020, , 193-222.	0.2	1
1152	Structural organization of biocatalytic systems: the next dimension of synthetic metabolism. Emerging Topics in Life Sciences, 2019, 3, 579-586.	1.1	7
1153	Advanced continuous cultivation methods for systems microbiology. Microbiology (United Kingdom), 2015, 161, 1707-1719.	0.7	42
1158	Dihydroartemisinin Ameliorated Ovalbumin-Induced Asthma in Mice via Regulation of MiR-183C. Medical Science Monitor, 2019, 25, 3804-3814.	0.5	11
1159	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	0.8	3
1160	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	0.8	5
1162	SBOL Visual: A Graphical Language for Genetic Designs. PLoS Biology, 2015, 13, e1002310.	2.6	73
1163	Anchoring a Plant Cytochrome P450 via PsaM to the Thylakoids in Synechococcus sp. PCC 7002: Evidence for Light-Driven Biosynthesis. PLoS ONE, 2014, 9, e102184.	1.1	44
1164	An Enzymatic Platform for the Synthesis of Isoprenoid Precursors. PLoS ONE, 2014, 9, e105594.	1.1	11
1165	Selection of Reference Genes for Gene Expression Normalization in Peucedanum praeruptorum Dunn under Abiotic Stresses, Hormone Treatments and Different Tissues. PLoS ONE, 2016, 11, e0152356.	1.1	37
1166	Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications. PLoS ONE, 2017, 12, e0177234.	1.1	2
1167	Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression. PLoS ONE, 2018, 13, e0194588.	1.1	8
1169	The Nobel Prize 2015 in physiology or medicine for highly effective antiparasitic drugs. Annals of Parasitology, 2015, 61, 299-301.	0.1	9

#	Article	IF	CITATIONS
1171	Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts. Current Medicinal Chemistry, 2019, 26, 2475-2484.	1.2	9
1172	Anticancer Activity of Artemisinin and its Derivatives. Anticancer Research, 2017, 37, 5995-6003.	0.5	104
1173	The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism. Frontiers in Plant Science, 2021, 12, 708370.	1.7	15
1174	Elucidation of Terpenoid Biosynthesis in Non-model Plants Utilizing Transcriptomic Data. Journal of Next Generation Sequencing & Applications, 2015, 02, .	0.3	1
1175	Evaluation of the Efficacy of Guava Extract as an Antimicrobial Agent on Periodontal Pathogens. Journal of Contemporary Dental Practice, 2018, 19, 690-697.	0.2	11
1176	Dried-leaf <i>Artemisia annua</i> : A practical malaria therapeutic for developing countries?. World Journal of Pharmacology, 2014, 3, 39.	1.3	63
1177	Biosynthesis, evolution and ecology of microbial terpenoids. Natural Product Reports, 2022, 39, 249-272.	5.2	40
1178	De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 2021, 12, 6085.	5.8	62
1179	Distributed computation with continual population growth. Distributed Computing, $0, 1$.	0.7	0
1180	Mining of the Catharanthus roseus Genome Leads to Identification of a Biosynthetic Gene Cluster for Fungicidal Sesquiterpenes. Journal of Natural Products, 2021, 84, 2709-2716.	1.5	5
1181	Design and assembly of DNA molecules using multi-objective optimization. Synthetic Biology, 2021, 6, ysab026.	1.2	2
1182	Engineering of cis-Element in <i>Saccharomyces cerevisiae</i> for Efficient Accumulation of Value-Added Compound Squalene via Downregulation of the Downstream Metabolic Flux. Journal of Agricultural and Food Chemistry, 2021, 69, 12474-12484.	2.4	11
1183	Applications of CRISPR/Cas Technology to Research the Synthetic Genomics of Yeast. , 0, , .		0
1184	Contemporary Approaches to the Discovery and Development of Broad-Spectrum Natural Product Prototypes for the Control of Coronaviruses. Journal of Natural Products, 2021, 84, 3001-3007.	1.5	6
1185	Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 113-132.	2.3	26
1186	Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production—An Updated Overview. Plants, 2021, 10, 2179.	1.6	11
1187	Utility of Aromatic Plants for the Biotechnological Production of Sustainable Chemical and Pharmaceutical Feedstocks. , 2012, 02, .		0
1189	Production of Metabolites and Heterologous Proteins. , 2014, , 299-326.		1

#	ARTICLE	IF	CITATIONS
1190	Synthesis of Natural Products with Biosynthetic Machinery. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 548-556.	0.0	0
1191	L'innovation thérapeutiqueÂ: évolution et tendances. , 2015, , .		1
1192	Perspective on Industrial Application of Specialized Metabolites in the Genomic Era. Mokuzai Gakkai Shi, 2015, 61, 232-237.	0.2	0
1194	Drug Targets from Molecular Wilderness. , 2015, , 65-88.		0
1195	Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. Chemical Record, 2016, , n/a-n/a.	2.9	0
1196	Advances in Molecular Regulation of Artemisinin Biosynthesis. Botanical Research, 2016, 05, 113-123.	0.0	0
1197	Biorefinery of Lignocellulosics for Biofuels and Biochemicals. Green Chemistry and Sustainable Technology, 2016, , 143-191.	0.4	0
1198	& amp; It; i& amp; gt; Artemisia annua & amp; It; /i& amp; gt;: A New Version of a Traditional Tea under Randomized, Controlled Clinical Trial for the Treatment of Malaria. Advances in Bioscience and Biotechnology (Print), 2016, 07, 545-563.	0.3	5
1199	Metabolic engineering and synthetic biology of plant secondary metabolism., 2016,, 315-360.		0
1201	Research Progress of Squalene Synthase on Function and Application. Lecture Notes in Electrical Engineering, 2018, , 755-765.	0.3	0
1202	On the Reform Strategy of Microbiology Teaching Model. , 2018, , .		0
1206	Alkane Biosynthesis in Bacteria. , 2019, , 451-470.		1
1207	Yeast 2.0 $\hat{a}\in$ "Synthetic Genome Engineering Pioneers New Possibilities for Wine Yeast Research. , 2019, , 211-227.		1
1210	Microbial Bio-production of Proteins and Valuable Metabolites. , 2019, , 381-418.		1
1211	Synthetic Biology of Active Compounds. , 2019, , 267-291.		0
1212	Screening, Optimization and Assembly of Key Pathway Enzymes in Metabolic Engineering., 2019, , 167-176.		1
1214	Additive manufacturing of catalytically active living material hydrogels. , 2019, , .		1
1216	Understanding Process Variables and their Interactions for Maximizing Production of Artemisinin Derivative Artemether (Anti-Malarial Drug) Through Cunninghamella echinulata var elegans at 5 L Bioreactor Level. Current Bioactive Compounds, 2019, 15, 442-452.	0.2	1

#	Article	IF	CITATIONS
1219	The State of Synthetic Biology Scholarship: A Case Study of Comparative Metrics and Citation Analysis. Risk, Systems and Decisions, 2020, , 65-83.	0.5	0
1220	Industriebeispiele und Anwendungsbereiche. , 2020, , 293-340.		0
1221	Microbes as Natural Products for Drug Discovery. , 2020, , 317-331.		1
1222	Plant Synthetic Biology: A Paradigm Shift Targeting Stress Mitigation, Reduction of Ecological Footprints and Sustainable Transformation in Agriculture. , 2020, , 435-489.		1
1223	Microbial Production of Plant Alkaloids and Creation of Bioactive Substances by Synthetic Biology: Plant-Derived Pharmaceutical Ingredients Made by Microorganisms. Kagaku To Seibutsu, 2020, 58, 271-279.	0.0	O
1224	Transformation of Amorphadiene Synthase and Antisilencing P19 Genes into Artemisia annua L. and its Effect on Antimalarial Artemisinin Production. Advanced Pharmaceutical Bulletin, 2020, 10, 464-471.	0.6	1
1225	Strategies for the Biosynthesis of Pharmaceuticals and Nutraceuticals in Microbes from Renewable Feedstock. Current Medicinal Chemistry, 2020, 27, 4613-4621.	1.2	3
1226	CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2021, 22, 11836.	1.8	8
1227	CHAPTER 8. Aerobic Oxidation Reactions in the Fine Chemicals and Pharmaceutical Industries. RSC Catalysis Series, 2020, , 252-290.	0.1	0
1228	Matching is the Key Factor to Improve the Production of Patchoulol in the Plant Chassis of <i>Marchantia paleacea</i> . ACS Omega, 2020, 5, 33028-33038.	1.6	8
1230	Accumulation of Secondary Metabolites and Improved Size of Glandular Trichomes in Artemisia annua. Reference Series in Phytochemistry, 2020, , 1-18.	0.2	0
1231	System metabolic engineering strategies for cell factories construction. , 2020, , 125-151.		1
1232	Engineering Natural Product Biosynthetic Pathways to Produce Commodity and Specialty Chemicals. , 2020, , 352-376.		0
1233	Biocatalysis in green organic synthesis. , 2020, , 105-121.		0
1236	Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Critical Reviews in Biotechnology, 2022, 42, 1213-1237.	5.1	16
1237	Impact of In-vitro Propagation and Organic Farming Cultivation Practices of Artemisia annua L. on the Enhancement of Artemisinin Yield. Current Biotechnology, 2020, 9, 38-44.	0.2	O
1238	Production of Metabolites and Heterologous Proteins. , 2014, , 299-326.		0
1239	Use YeastFab to Construct Genetic Parts and Multicomponent Pathways for Metabolic Engineering. Methods in Molecular Biology, 2021, 2196, 167-180.	0.4	1

#	Article	IF	CITATIONS
1240	Computational Methods for the Design of Recombinase Logic Circuits. Methods in Molecular Biology, 2021, 2189, 31-43.	0.4	0
1242	Expression of Two Key Enzymes of Artemisinin Biosynthesis FPS and ADS genes in. Advanced Pharmaceutical Bulletin, 2021, 11, 181-187.	0.6	0
1243	Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (â^')-eremophilene overproduction in engineered yeast. Metabolic Engineering, 2022, 69, 122-133.	3.6	24
1244	Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100567.	3.2	14
1247	<i>In Vitro</i> Biosynthesis of Isobutyraldehyde Through the Establishment of a One-Step Self-Assembly-Based Immobilization Strategy. Journal of Agricultural and Food Chemistry, 2021, 69, 14609-14619.	2.4	4
1248	Process optimization for fermented siwu decoction by multi-index-response surface method and exploration of the effects of fermented siwu decoction on the growth, immune response and resistance to Vibrio harveyi of Pacific white shrimp (Litopenaeus vannamei). Fish and Shellfish Immunology, 2022, 120, 633-647.	1.6	9
1249	Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angewandte Chemie, 2022, 134, .	1.6	7
1250	Functional Characterization and Structural Insights Into Stereoselectivity of Pulegone Reductase in Menthol Biosynthesis. Frontiers in Plant Science, 2021, 12, 780970.	1.7	5
1251	Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1253	Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances, 2022, 54, 107871.	6.0	37
1254	Toward the Heterologous Biosynthesis of Plant Natural Products: Gene Discovery and Characterization. ACS Synthetic Biology, 2021, 10, 2784-2795.	1.9	12
1255	Engineered microbial consortia: strategies and applications. Microbial Cell Factories, 2021, 20, 211.	1.9	39
1256	De Novo Production of Glycyrrhetic Acid 3-O-mono-β-D-glucuronide in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2021, 9, 709120.	2.0	6
1257	Editorial: Engineering Yeast to Produce Plant Natural Products. Frontiers in Bioengineering and Biotechnology, 2021, 9, 798097.	2.0	4
1258	Writing Genetic Material., 2022, , 177-198.		0
1259	Deacetoxycephalosporin C synthase (expandase): Research progress and application potential. Synthetic and Systems Biotechnology, 2021, 6, 396-401.	1.8	5
1261	Overproduction of medicinal ergot alkaloids based on a fungal platform. Metabolic Engineering, 2022, 69, 198-208.	3.6	15
1262	Antimalarial Natural Products. Progress in the Chemistry of Organic Natural Products, 2022, 117, 1-106.	0.8	10

#	Article	IF	CITATIONS
1263	Clinically relevant materials & amp; applications inspired by food technologies. EBioMedicine, 2022, 75, 103792.	2.7	5
1264	Probing the Synergistic Ratio of P450/CPR To Improve (+)-Nootkatone Production in <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 815-825.	2.4	17
1265	Synthetic Morphogenesis: Introducing IEEE Journal Readers to Programming Living Mammalian Cells to Make Structures. Proceedings of the IEEE, 2022, 110, 688-707.	16.4	3
1266	Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synthetic and Systems Biotechnology, 2022, 7, 498-505.	1.8	15
1267	Identification of (-)-bornyl diphosphate synthase from Blumea balsamifera and its application for (-)-borneol biosynthesis in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2022, 7, 490-497.	1.8	6
1268	Expression of Two Key Enzymes of Artemisinin Biosynthesis FPS and ADS genes in Saccharomyces cerevisiae. Advanced Pharmaceutical Bulletin, 2021, 11, 181-187.	0.6	3
1269	Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review. Pharmacological Research, 2022, 177, 106076.	3.1	23
1270	Engineered production of bioactive natural products from medicinal plants. World Journal of Traditional Chinese Medicine, 2022, 8, 59.	0.9	8
1271	Engineered production of bioactive natural products from medicinal plants. World Journal of Traditional Chinese Medicine, 2022, 8, 59.	0.9	0
1272	Engineering a Synthetic Pathway for Tyrosol Synthesis in <i>Escherichia coli</i> ACS Synthetic Biology, 2022, 11, 441-447.	1.9	14
1274	Yeast Synthetic Biology for Production of Artemisinin as an Antimalarial Drug., 2022, , 157-180.		2
1275	Combined bioderivatization and engineering approach to improve the efficiency of geraniol production. Green Chemistry, 2022, 24, 864-876.	4.6	4
1276	<i>De novo</i> biosynthesis of sex pheromone components of <i>Helicoverpa armigera</i> through an artificial pathway in yeast. Green Chemistry, 2022, 24, 767-778.	4.6	6
1277	Molecular Determinants of Carbocation Cyclisation in Bacterial Monoterpene Synthases. ChemBioChem, 2022, 23, .	1.3	5
1278	Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. Engineering Microbiology, 2022, 2, 100011.	2.2	22
1279	Microbes as biomedicinal minifactories and medical product evaluation models., 2022,, 667-701.		0
1280	UV-protective secondary metabolites from cyanobacteria. , 2022, , 107-144.		2
1281	Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metabolic Engineering, 2022, 70, 115-128.	3.6	18

#	ARTICLE	IF	Citations
1282	Global assessment of the distribution and conservation status of a key medicinal plant (Artemisia) Tj ETQq0 0 0 rg 821, 153378.	BT /Overlo 3.9	ock 10 Tf 50 13
1283	Bioprospecting potential of microbes for the therapeutic application. , 2022, , 223-255.		1
1284	Metabolic Engineering of Saccharomyces cerevisiae for High-Level Friedelin via Genetic Manipulation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 805429.	2.0	12
1285	Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synthetic and Systems Biotechnology, 2022, 7, 602-620.	1.8	35
1286	Enabling commercial success of industrial biotechnology. Science, 2021, 374, 1563-1565.	6.0	10
1287	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	23.0	155
1290	ä,è•æ´»æ€§æ^å^†ç"Ÿç‰©å•̂æ^ç"ç©¶åŠåº"甓. Scientia Sinica Vitae, 2022, , .	0.1	0
1291	Ultrasmall MnSe Nanoparticles as <i>T</i> ₁ -MRI Contrast Agents for <i>In Vivo</i> Tumor Imaging. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11167-11176.	4.0	9
1292	Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. Frontiers in Plant Science, 2022, 13, 780257.	1.7	18
1293	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for de Novo Dihydroniloticin Production Using Novel CYP450 from Neem (<i>Azadirachta indica</i>). Journal of Agricultural and Food Chemistry, 2022, 70, 3467-3476.	2.4	2
1294	Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Applied Microbiology and Biotechnology, 2022, 106, 1933-1944.	1.7	6
1295	Engineering Catharanthus roseus monoterpenoid indole alkaloid pathway in yeast. Applied Microbiology and Biotechnology, 2022, 106, 2337-2347.	1.7	7
1296	Plant metabolic gene clusters in the multi-omics era. Trends in Plant Science, 2022, 27, 981-1001.	4.3	41
1297	Genome-wide characterization of graft-transmissible mRNA-coding P450 genes of cucumber (Cucumis) Tj ETQq1	1 <u>0.7</u> 8431	4 ₁ rgBT /Over
1298	Industrially Relevant Enzyme Cascades for Drug Synthesis and Their Ecological Assessment. International Journal of Molecular Sciences, 2022, 23, 3605.	1.8	15
1299	Biotechnological production of specialty aromatic and aromatic-derivative compounds. World Journal of Microbiology and Biotechnology, 2022, 38, 80.	1.7	7
1300	Engineered Production of Strictosidine and Analogues in Yeast. ACS Synthetic Biology, 2022, 11, 1639-1649.	1.9	10
1303	Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell, 2022, 185, 1487-1505.e14.	13.5	17

#	Article	IF	CITATIONS
1304	Exploiting plant transcriptomic databases: Resources, tools, and approaches. Plant Communications, 2022, 3, 100323.	3.6	20
1305	Harnessing phosphonate antibiotics argolaphos biosynthesis enables a synthetic biology-based green synthesis of glyphosate. Nature Communications, 2022, 13, 1736.	5.8	10
1306	Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation(China), 2022, 3, 100228.	5.2	13
1307	Challenges and recent progress in the governance of biosecurity risks in the era of synthetic biology. Journal of Biosafety and Biosecurity, 2022, 4, 59-67.	1.4	11
1308	Biosynthesis of Î ² -lactam nuclei in yeast. Metabolic Engineering, 2022, 72, 56-65.	3.6	8
1309	Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metabolic Engineering, 2022, 72, 107-115.	3.6	22
1311	Improved Functional Expression of Cytochrome P450s in Saccharomyces cerevisiae Through Screening a cDNA Library From Arabidopsis thaliana. Frontiers in Bioengineering and Biotechnology, 2021, 9, 764851.	2.0	4
1312	Review on the Development and Applications of Medicinal Plant Genomes. Frontiers in Plant Science, 2021, 12, 791219.	1.7	18
1313	Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Critical Reviews in Biotechnology, 2023, 43, 1-21.	5.1	8
1314	Structurally Guided Reprogramming of Valerenadiene Synthase. Biochemistry, 2021, 60, 3868-3878.	1.2	2
1315	Regeneration of Phytochemicals by Structureâ€Driven Organization of Microbial Biosynthetic Steps. Angewandte Chemie - International Edition, 2022, 61, e202114919.	7.2	8
1316	Regeneration of Phytochemicals by Structureâ€Driven Organization of Microbial Biosynthetic Steps. Angewandte Chemie, 2022, 134, .	1.6	1
1317	Heterologous production of ascofuranone and ilicicolin A in <i>Aspergillus sojae</i> . Journal of General and Applied Microbiology, 2022, 68, 10-16.	0.4	1
1318	Innovation trends in industrial biotechnology. Trends in Biotechnology, 2022, 40, 1160-1172.	4.9	30
1358	Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods in Molecular Biology, 2022, 2489, 333-367.	0.4	3
1359	Microbial Production, Extraction, and Quantitative Analysis of Isoprenoids. Methods in Molecular Biology, 2022, 2469, 239-259.	0.4	1
1360	Metabolic engineering of yeasts for green and sustainable production of bioactive ginsenosides F2 and $3\hat{l}^2$,20S-Di-O-Glc-DM. Acta Pharmaceutica Sinica B, 2022, 12, 3167-3176.	5.7	14
1361	Phenotype-centric modeling for rational metabolic engineering. Metabolic Engineering, 2022, 72, 365-375.	3.6	0

#	Article	IF	CITATIONS
1362	Worldwide Research Trends on Artemisinin: A Bibliometric Analysis From 2000 to 2021. Frontiers in Medicine, 2022, 9, .	1.2	11
1363	Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AalPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. Planta, 2022, 255, 122.	1.6	4
1364	Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. Frontiers in Plant Science, 2022, 13 , .	1.7	8
1365	Enhancing fluxes through the mevalonate pathway in <i>Saccharomyces cerevisiae</i> by engineering the HMGR and βâ€alanine metabolism. Microbial Biotechnology, 2022, 15, 2292-2306.	2.0	19
1366	De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy. Microbial Cell Factories, 2022, 21, 81.	1.9	7
1367	Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering, 2022, 9, 207.	1.6	7
1368	Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnology Advances, 2022, 59, 107966.	6.0	30
1369	Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology, 2022, 18, 520-529.	3.9	65
1370	Engineering fungal terpene biosynthesis. Natural Product Reports, 2023, 40, 28-45.	5.2	14
1371	Enhanced squalene production by modulation of pathways consuming squalene and its precursor. Journal of Bioscience and Bioengineering, 2022, 134, 1-6.	1.1	4
1372	The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L Journal of Plant Physiology, 2022, 274, 153712.	1.6	5
1373	A concise review on Artemisia annua L.: A major source of diverse medicinal compounds. Industrial Crops and Products, 2022, 184, 115072.	2.5	18
1374	Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microbial Cell Factories, 2022, 21, .	1.9	22
1375	Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	5
1376	Metabolic Engineering of Saccharomyces cerevisiae for Heterologous Carnosic Acid Production. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	5
1377	Solarâ€Driven Overproduction of Biofuels in Microorganisms. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
1378	Continuous ex situ recovery of volatile monoterpenoids produced by genetically engineered <i>Escherichia coli</i> . Canadian Journal of Chemical Engineering, 2022, 100, 2204-2216.	0.9	0
1379	Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant, 2022, 15, 1310-1328.	3.9	47

#	Article	IF	CITATIONS
1380	Solarâ€driven Overproduction of Biofuels inÂMicroorganisms. Angewandte Chemie, 0, , .	1.6	0
1383	Dissecting the Mechanism of the Nonheme Iron Endoperoxidase FtmOx1 Using Substrate Analogues. Jacs Au, 2022, 2, 1686-1698.	3.6	11
1384	Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nature Communications, 2022, 13 , .	5.8	35
1385	Recent Advances in Directed Yeast Genome Evolution. Journal of Fungi (Basel, Switzerland), 2022, 8, 635.	1.5	2
1386	Identification, Molecular Cloning, and Functional Characterization of a Coniferyl Alcohol Acyltransferase Involved in the Biosynthesis of Dibenzocyclooctadiene Lignans in Schisandra chinensis. Frontiers in Plant Science, 0, 13, .	1.7	7
1387	Basic Helix-Loop-Helix Transcription Factors AabHLH2 and AabHLH3 Function Antagonistically With AaMYC2 and Are Negative Regulators in Artemisinin Biosynthesis. Frontiers in Plant Science, 0, 13, .	1.7	8
1389	Engineering of Promoters for Gene Expression in Pichia pastoris. Methods in Molecular Biology, 2022, , 153-177.	0.4	7
1391	Plant-based engineering for production of high-valued natural products. Natural Product Reports, 2022, 39, 1492-1509.	5.2	9
1392	Molecular Networking Assisted Discovery and Combinatorial Biosynthesis of New Antimicrobial Pleuromutilins. SSRN Electronic Journal, 0, , .	0.4	0
1393	Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends in Biotechnology, 2023, 41, 27-45.	4.9	10
1394	Gold mining nature for natural products. EMBO Reports, 0, , .	2.0	1
1395	Phosphate-inducible poly-hydroxy butyrate production dynamics in CO2 supplemented upscaled cultivation of engineered Phaeodactylum tricornutum. Journal of Applied Phycology, 2022, 34, 2259-2270.	1.5	4
1397	Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in <i>Saccharomyces cerevisiae</i> i>. ACS Synthetic Biology, 2022, 11, 2548-2563.	1.9	6
1398	Biotechnology of plant secondary metabolites: Phytochemical biopharming as a sustainable contribution to a high-tech bioeconomy. South African Journal of Botany, 2022, 149, 754-757.	1.2	1
1399	Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. Journal of Agricultural and Food Chemistry, 2022, 70, 9246-9261.	2.4	10
1400	Making small molecules in plants: A chassis for synthetic biologyâ€based production of plant natural products. Journal of Integrative Plant Biology, 2023, 65, 417-443.	4.1	14
1401	50th anniversary of artemisinin: From the discovery to allele-aware genome assembly of Artemisia annua. Molecular Plant, 2022, 15, 1243-1246.	3.9	8
1402	Production of benzylglucosinolate in genetically engineered carrot suspension cultures. Plant Biotechnology, 2022, , .	0.5	0

#	Article	IF	CITATIONS
1403	Artemisinic Acid Attenuated Symptoms of Substance P Induced Chronic Urticaria in Mice Model and Mast Cell Degranulation Via Lyn/PLC-P38 Signal Pathway. SSRN Electronic Journal, 0, , .	0.4	0
1404	Use of engineered cytochromes P450 for accelerating drug discovery and development. Advances in Pharmacology, 2022, , 195-252.	1.2	2
1405	Mining Candidate Genes and Favorable Haplotypes for Flag Leaf Shape in Rice (Oryza sativa L.) Based on a Genome-Wide Association Study. Agronomy, 2022, 12, 1814.	1.3	7
1406	Biosynthesis of tetrahydropapaverine and semisynthesis of papaverine in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
1407	Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
1408	Harnessing nature's biosynthetic capacity to facilitate total synthesis. National Science Review, 2022, 9, .	4.6	3
1409	Recent advances in biosynthesis and pharmacology of \hat{l}^2 -elemene. Phytochemistry Reviews, 2023, 22, 169-186.	3.1	12
1410	Tripterygium wilfordii cytochrome P450s catalyze the methyl shift and epoxidations in the biosynthesis of triptonide. Nature Communications, 2022, 13 , .	5.8	18
1411	Functional diversity and metabolic engineering of plant specialized metabolites., 0,,.		2
1412	Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in <i>Saccharomyces cerevisiae</i> ACS Synthetic Biology, 2022, 11, 2685-2696.	1.9	5
1413	Pathway elucidation of bioactive rhamnosylated ginsenosides in Panax ginseng and their de novo high-level production by engineered Saccharomyces cerevisiae. Communications Biology, 2022, 5, .	2.0	6
1414	Medicinal phytometabolites synthesis using yeast bioengineering platform. Nucleus (India), 2022, 65, 391-397.	0.9	2
1415	De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metabolic Engineering, 2022, 73, 201-213.	3.6	7
1416	Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Current Opinion in Biotechnology, 2022, 77, 102761.	3.3	5
1417	Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnology Advances, 2022, 60, 108026.	6.0	6
1418	A combined strategy for the overproduction of complex ergot alkaloid agroclavine. Synthetic and Systems Biotechnology, 2022, 7, 1126-1132.	1.8	5
1419	Molecular networking assisted discovery and combinatorial biosynthesis of new antimicrobial pleuromutilins. European Journal of Medicinal Chemistry, 2022, 243, 114713.	2.6	3
1420	Germline transformation of Artemisia annuaL. plant via in planta transformation technology "Floral dip― Biotechnology Reports (Amsterdam, Netherlands), 2022, 36, e00761.	2.1	1

#	Article	IF	CITATIONS
1421	Biotechnological Approaches for the Production of Immunomodulating Phytomolecules. , 2022, , 493-518.		1
1422	Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Natural Product Reports, 2022, 39, 1856-1875.	5. 2	15
1423	Metabolic Engineering and Synthetic and Semi-Synthetic Pathways: Biofuel Production for Climate Change Mitigation., 2022,, 137-170.		0
1424	Sustainable production of rare oleanane-type ginsenoside Ro with an artificial glycosylation pathway in <i>Saccharomyces cerevisiae</i> Creen Chemistry, 2022, 24, 8302-8313.	4.6	13
1425	MADS-box gene AaSEP4 promotes artemisinin biosynthesis in Artemisia annua. Frontiers in Plant Science, 0, 13, .	1.7	3
1426	Exosomes: A novel insight into traditional Chinese medicine. Frontiers in Pharmacology, 0, 13, .	1.6	4
1427	Hardware, Software, and Wetware Codesign Environment for Synthetic Biology. Biodesign Research, 2022, 2022, .	0.8	3
1428	Applications of synthetic yeast consortia for the production of native and non-native chemicals. Critical Reviews in Biotechnology, 2024, 44, 15-30.	5.1	O
1429	Synthetic biology: A powerful booster for future agriculture. , 2022, 1, 7-11.		8
1430	Natural products and drug discovery. National Science Review, 2022, 9, .	4.6	27
1431	Boosting the Cannabidiol Production in Engineered <i>Saccharomyces cerevisiae</i> by Harnessing the Vacuolar Transporter BPT1. Journal of Agricultural and Food Chemistry, 2022, 70, 12055-12064.	2.4	3
1432	Recent Biotechnological Approaches for the Enhancement of Artemisinin Production from Cell Culture System of Artemisia annua L.: Medicinal Plant with Potent Antimalarial Properties. Springer Protocols, 2023, , 361-376.	0.1	O
1433	Engineered Saccharomyces cerevisiae for the De Novo Biosynthesis of (â^²)-Menthol. Journal of Fungi (Basel, Switzerland), 2022, 8, 982.	1.5	6
1434	Integrated multi-omics analysis and microbial recombinant protein system reveal hydroxylation and glycosylation involving nevadensin biosynthesis in Lysionotus pauciflorus. Microbial Cell Factories, 2022, 21, .	1.9	1
1435	Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. Horticulture Research, 2022, 9, .	2.9	9
1436	Evaluation of biological mechanisms of artemisinin on bovine mammary epithelial cells by integration of network pharmacology and TMT-based quantitative proteomics. Frontiers in Pharmacology, 0, 13 , .	1.6	0
1438	Putative Therapeutic Impact of Inflammasome Inhibitors against COVID-19-Induced ARDS. Current Medicinal Chemistry, 2022, 29, .	1.2	0
1439	Tuning heterologous glucan biosynthesis in yeast to understand and exploit plant starch diversity. BMC Biology, 2022, 20, .	1.7	3

#	Article	IF	CITATIONS
1440	Homology Modeling, Molecular Docking, Molecular Dynamic Simulation, and Drug-Likeness of the Modified Alpha-Mangostin against the l²-Tubulin Protein of Acanthamoeba Keratitis. Molecules, 2022, 27, 6338.	1.7	12
1441	Cytochrome b5: A versatile electron carrier and regulator for plant metabolism. Frontiers in Plant Science, 0, 13, .	1.7	4
1442	Bioproduction of monoterpene indole alkaloids in a single cell factory. Engineering Microbiology, 2022, 2, 100050.	2.2	4
1443	Phenolic compounds modulation in \hat{l}^2 -farnesene fed-batch fermentation using sugarcane syrup as feedstock. Industrial Crops and Products, 2022, 188, 115721.	2.5	10
1444	Scale-Up of Engineering Strain for Industrial Applications. , 2022, , 311-326.		2
1445	Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics, 2022, 11, 1380.	1.5	17
1446	Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications. Methods in Molecular Biology, 2023, , 155-171.	0.4	0
1448	From Plant to Yeast—Advances in Biosynthesis of Artemisinin. Molecules, 2022, 27, 6888.	1.7	11
1449	Combining microbial and chemical syntheses for the production of complex natural products. Chinese Journal of Natural Medicines, 2022, 20, 729-736.	0.7	3
1450	Targeting the biological activity and biosynthesis of hyperforin: a mini-review. Chinese Journal of Natural Medicines, 2022, 20, 721-728.	0.7	1
1451	Enhancing longâ€ŧerm storage and stability of engineered living materials through desiccant storage and trehalose treatment. Biotechnology and Bioengineering, 2023, 120, 572-582.	1.7	4
1452	Engineering medicinal plant-derived CYPs: a promising strategy for production of high-valued secondary metabolites. Planta, 2022, 256, .	1.6	2
1453	High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21, .	1.9	3
1455	Artemisinic acid attenuated symptoms of substance P-induced chronic urticaria in a mice model and mast cell degranulation via Lyn/PLC-p38 signal pathway. International Immunopharmacology, 2022, 113, 109437.	1.7	3
1456	Prospective bacterial and fungal sources of hyaluronic acid: A review. Computational and Structural Biotechnology Journal, 2022, 20, 6214-6236.	1.9	4
1457	Advances in The Biosynthesis of \hat{l}^2 -elemene. , 2023, , 61-90.		0
1458	Microbial Production of Terpenes. , 2022, , 1-38.		0
1459	Harnessing Interactional Sensory Genes for Rationally Reprogramming Chaotic Metabolism. Research, 2022, 2022, .	2.8	2

#	Article	IF	CITATIONS
1460	Present and future prospects of crop synthetic biology., 2022, 1, 100017.		0
1461	Mechanism of Action of Flavin-Dependent Halogenases. ACS Catalysis, 2022, 12, 15352-15360.	5.5	9
1462	Production of ginsenoside compound K by microbial cell factory using synthetic biology-based strategy: a review. Biotechnology Letters, 2023, 45, 163-174.	1.1	1
1463	Preparativeâ€Scale Biocatalytic Oxygenation of <i>N</i> àêHeterocycles with a Lyophilized Peroxygenase Catalyst. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1464	Opportunities for Accelerating Drug Discovery and Development by Using Engineered Drug-Metabolizing Enzymes. Drug Metabolism and Disposition, 2023, 51, 392-402.	1.7	3
1465	Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients, 2022, 14, 5303.	1.7	3
1466	Engineering yeast for industrial-level production of the antimalarial drug artemisinin. Trends in Biotechnology, 2023, 41, 267-269.	4.9	1
1467	Engineering Nicotiana tabacum trichomes for triterpenic acid production. Plant Science, 2023, 328, 111573.	1.7	1
1468	Profiling of phytohormoneâ€specific <scp>microRNAs</scp> and characterization of the <scp>miR160â€ARF1</scp> module involved in glandular trichome development and artemisinin biosynthesis in <i>Artemisia annua</i> . Plant Biotechnology Journal, 2023, 21, 591-605.	4.1	7
1469	Pharmacological activity and mechanisms of action of terpenoids from Laurus nobilis L. Natural Products Journal, 2022, 13, .	0.1	0
1470	The synthesis of Broccoli RNA fluorescent aptamer in <i>Saccharomyces cerevisiae</i> yeast cells. Ecological Genetics, 2022, 20, 339-348.	0.1	0
1471	Total enzymatic synthesis of cis- $\hat{l}\pm$ -irone from a simple carbon source. Nature Communications, 2022, 13,	5.8	7
1472	Combinatorial transient gene expression strategies to enhance terpenoid production in plants. Frontiers in Plant Science, $0,13,\ldots$	1.7	2
1473	Electrophotocatalytic oxygenation of multiple adjacent C–H bonds. Nature, 2023, 614, 275-280.	13.7	44
1474	Preparativeâ€Scale Biocatalytic Oxygenation of <i>N</i> â€Heterocycles with a Lyophilized Peroxygenase Catalyst. Angewandte Chemie, 0, , .	1.6	1
1475	Inferring Conditional Probability Distributions of Noisy Gene Expression from Limited Observations by Deep Learning., 2022, 1, 504-513.		0
1476	<scp>AaMYB108</scp> is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2023, 237, 2224-2237.	3.5	20
1477	Comparative bioinformatics analysis of the biosynthetic pathways and key candidate genes of three species, Vitis vinifera, Fragaria vesca and Olea europaea, furnish enzyme sets for the production of pharmaceutically valuable terpenes in heterologous hosts. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 421-437.	0.9	1

#	Article	IF	CITATIONS
1478	De Novo Biosynthesis of Vindoline and Catharanthine in $<$ i $>$ Saccharomyces cerevisiae $<$ /i $>$. Biodesign Research, 2022, 2022, .	0.8	7
1479	Genetic analysis reveals the inconsistency of amorpha-4,11-diene synthase, a key enzyme in the artemisinin synthesis pathway, in asteraceae. Chinese Medicine, 2023, 18, .	1.6	4
1480	A Spirobicyclo[3.1.0]Terpene from the Investigation of Sesquiterpene Synthases from <i>Lactarius deliciosus</i> . ACS Chemical Biology, 2023, 18, 134-140.	1.6	4
1481	Biosynthesis of catharanthine in engineered Pichia pastoris. , 2023, 2, 231-242.		6
1482	Redesigning plant specialized metabolism with supervised machine learning using publicly available reactome data. Computational and Structural Biotechnology Journal, 2023, 21, 1639-1650.	1.9	3
1484	Manipulation of IME4 expression, a global regulation strategy for metabolic engineering in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B, 2023, 13, 2795-2806.	5 . 7	2
1485	Site-Selective Functionalization of Unactivated Allylic Câ€"H Bonds via Direct Deprotonation with KTMP: Application to the Formal Total Synthesis of (+)-Artemisinin from Amorphadiene. Organic Letters, 2023, 25, 277-281.	2.4	3
1486	Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation. Current Opinion in Plant Biology, 2023, 71, 102330.	3.5	10
1487	Metabolic Engineering: Methodologies and Applications. Chemical Reviews, 2023, 123, 5521-5570.	23.0	32
1488	Engineering a universal and efficient platform for terpenoid synthesis in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15
1489	Biodiversity: the overlooked source of human health. Trends in Molecular Medicine, 2023, 29, 173-187.	3.5	7
1490	Modular co-culture engineering of Yarrowia lipolytica for amorphadiene biosynthesis. Microbial Cell Factories, 2022, 21, .	1.9	3
1491	Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics, 2023, 12, 48.	1.5	2
1492	Natural Products in the Post Genomic Era. , 2017, , 690-740.		0
1493	Natural Products in the Post-genomic Era. , 2022, , 740-775.		0
1494	RNA-Seq Dissects Incomplete Activation of Phytoalexin Biosynthesis by the Soybean Transcription Factors GmMYB29A2 and GmNAC42-1. Plants, 2023, 12, 545.	1.6	3
1495	Overproduction of Patchoulol in Metabolically Engineered <i>Komagataella phaffii</i> Journal of Agricultural and Food Chemistry, 2023, 71, 2049-2058.	2.4	3
1496	Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory. Nature Communications, 2023, 14, .	5.8	13

#	Article	IF	CITATIONS
1497	Strain Design and Optimization Methods for Sustainable Production., 2023, , 1-15.		0
1498	Increasing the Scalability of Toxin–Intein Orthogonal Combinations. ACS Synthetic Biology, 2023, 12, 618-623.	1.9	2
1499	From Genes to Molecules, Secondary Metabolism in Botrytis cinerea: New Insights into Anamorphic and Teleomorphic Stages. Plants, 2023, 12, 553.	1.6	3
1500	Discovery of a gene cluster for the biosynthesis of novel cyclic peptide compound, KK-1, in Curvularia clavata. Frontiers in Fungal Biology, 0, 3, .	0.9	0
1501	Elevation of artemisinin content by co-transformation of artemisinin biosynthetic pathway genes and trichome-specific transcription factors in Artemisia annua. Frontiers in Plant Science, $0,14,\ldots$	1.7	7
1502	Synthesis of functional ionic liquid modified silica and its excellent performance in selective separation of artemisinin/artemisitene. Chemical Engineering Science, 2023, 272, 118612.	1.9	1
1503	Genome-wide analyzation and functional characterization on the TPS family provide insight into the biosynthesis of mono-terpenes in the camphor tree. Plant Physiology and Biochemistry, 2023, 196, 55-64.	2.8	3
1504	Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. Journal of Agricultural and Food Chemistry, 2023, 71, 2197-2210.	2.4	6
1505	Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	1
1506	Advances in the metabolic engineering of <i>Saccharomyces cerevisiae</i> and <i>Yarrowia lipolytica</i> for the production of <b<math>1^2 -carotene. Critical Reviews in Biotechnology, 2024, 44, 337-351.</b<math>	5.1	5
1507	Semi-synthetic terpenoids with differential adjuvant properties as sustainable replacements for shark squalene in vaccine emulsions. Npj Vaccines, 2023, 8, .	2.9	7
1508	Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in Saccharomyces cerevisiae. Nature Communications, 2023, 14, .	5.8	8
1509	Production of 11-Oxo- \hat{l}^2 -Amyrin in <i>Saccharomyces cerevisiae</i> at High Efficiency by Fine-Tuning the Expression Ratio of CYP450:CPR. Journal of Agricultural and Food Chemistry, 2023, 71, 3766-3776.	2.4	3
1510	Influence of planting density and development stage on photosynthetically absorbed radiation, biomass and artemisinin yield of ⟨i⟩Artemisia annua⟨ i⟩ L.  Apollon'. Acta Horticulturae, 2023, , 91-98.	0.1	0
1511	Photosynthetic 1,8-cineole production using cyanobacteria. Bioscience, Biotechnology and Biochemistry, 2023, 87, 563-568.	0.6	3
1512	Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid \hat{l}^2 -elemene. Metabolic Engineering, 2023, 76, 225-231.	3.6	15
1513	Metabolic engineering of the anthocyanin biosynthetic pathway in Artemisia annua and relation to the expression of the artemisinin biosynthetic pathway. Planta, 2023, 257, .	1.6	3
1514	Scale-up: Lab to commercial scale. , 2023, , 341-353.		0

#	Article	IF	CITATIONS
1515	Demonstration and industrial scale-up., 2023,, 365-375.		0
1516	Identification, morphological, biochemical, and genetic characterization of microorganisms. , 2023, , 47-84.		3
1518	Microbial activity and productivity enhancement strategies. , 2023, , 85-104.		0
1519	Screening strategies., 2023,, 23-46.		1
1520	Systematic Engineering to Enhance 8-Hydroxygeraniol Production in Yeast. Journal of Agricultural and Food Chemistry, 2023, 71, 4319-4327.	2.4	7
1521	A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae. , 2023, 16, .		1
1522	Building <i>Streptomyces albus</i> as a chassis for synthesis of bacterial terpenoids. Chemical Science, 2023, 14, 3661-3667.	3.7	8
1523	Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae. Microbial Cell Factories, 2023, 22, .	1.9	7
1524	High-Level Production of Patchoulol in <i>Yarrowia lipolytica</i> via Systematic Engineering Strategies. Journal of Agricultural and Food Chemistry, 2023, 71, 4638-4645.	2.4	4
1525	Multi-Level Optimization and Strategies in Microbial Biotransformation of Nature Products. Molecules, 2023, 28, 2619.	1.7	4
1526	Standard Intein Gene Expression Ramps (SIGER) for Protein-Independent Expression Control. ACS Synthetic Biology, 2023, 12, 1058-1071.	1.9	0
1528	Metabolic engineering of green chemical biosynthesis. , 2023, , 247-276.		0
1529	Genomic profiling of WRKY transcription factors and functional analysis of CcWRKY7, CcWRKY29, and CcWRKY32 related to protoberberine alkaloids biosynthesis in Coptis chinensis Franch. Frontiers in Genetics, 0, 14, .	1.1	0
1530	Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	17
1531	Increased artemisinin production by promoting glandular secretory trichome formation and reconstructing the artemisinin biosynthetic pathway in <i>Artemisia annua</i> . Horticulture Research, 2023, 10, .	2.9	2
1532	Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review. Fermentation, 2023, 9, 363.	1.4	2
1533	Application of cofactors in the regulation of microbial metabolism: A state of the art review. Frontiers in Microbiology, 0, 14 , .	1.5	0
1535	Biosynthesis of a Novel Ganoderic Acid in Saccharomyces cerevisiae and Research of its Antitumor Activity. Applied Biochemistry and Microbiology, 2023, 59, 184-189.	0.3	0

#	Article	IF	CITATIONS
1536	Integrated Omics approach for Prediction of Operons like gene clusters in plants: Tools, Techniques, and Future aspects. Research Journal of Pharmacy and Technology, 2023, , 947-954.	0.2	0
1537	Metabolic regulation and engineering of artemisinin biosynthesis in <i>A. annua</i> . , 2023, 2, 0-0.		1
1538	Industrial Applications of Asymmetric Reduction of C=C Bonds (Update)., 2022,,.		1
1544	Synthetic Biology–Engineering Tomorrow's Medicines. , 2017, , 216-240.		0
1553	Engineering the gut microbiome., 2023, 1, 665-679.		5
1556	Reshaping the Diversity of Oxidized Polyquinane Sesquiterpenoids by Cytochrome P450s. Organic Letters, 2023, 25, 3276-3280.	2.4	0
1557	Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	17
1562	An Introduction to Omics in Relevance to Industrial Microbiology. , 2023, , 23-39.		0
1565	Microbial Production of Reticuline. , 2023, , 1-29.		0
1580	Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Natural Product Reports, 2023, 40, 1822-1848.	5.2	5
1585	Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Natural Product Reports, 0, , .	5.2	0
1608	Catharanthus roseus Monoterpenoid Indole Alkaloid Pathway Engineering in Yeast. Reference Series in Phytochemistry, 2023, , 1-18.	0.2	0
1619	Plant-Based Vaccines Against Human Parasitic Diseases. , 2023, , 143-156.		0
1628	Photochemical routes to artemisinin. , 2023, , 301-330.		0
1644	R&D&I and Industry Examples: Industrial Gases as a Carbon Source for Terpene Production. , 2023, , 359-369.		0
1645	Semisynthesis of natural products under greener conditions. , 2024, , 309-328.		0
1646	Preliminary concept of semisynthesis and its importance., 2024,, 1-23.		0
1655	Endophytic microorganisms as a source of bioactive compounds. , 2024, , 247-274.		0

#	Article	IF	CITATIONS
1658	Engineering biology fundamental for plant-derived bioactive compounds: challenges and prospects. , 2024, , 285-313.		0
1659	Yeast cell factories for the biosynthesis of plant-derived bioactive terpenoids. , 2024, , 145-157.		0
1660	DNA assembly techniques for the reconstitution of plant natural product biosynthetic pathways in Saccharomyces cerevisiae. , 2024, , 33-46.		0
1661	Fine-tuning and dynamic control of microbial cell factories for the biosynthesis of plant-derived bioactive compounds., 2024,, 227-255.		0