Ultrafast Photochemistry in Liquids

Annual Review of Physical Chemistry 64, 247-271

DOI: 10.1146/annurev-physchem-040412-110146

Citation Report

#	Article	IF	Citations
1	Proton Transfer in Nucleobases is Mediated by Water. Journal of Physical Chemistry A, 2013, 117, 6789-6797.	1.1	43
2	Real-Time Observation of the Formation of Excited Radical Ions in Bimolecular Photoinduced Charge Separation: Absence of the Marcus Inverted Region Explained. Journal of the American Chemical Society, 2013, 135, 9843-9848.	6.6	56
3	Ultrafast Conformational Dynamics of Electron Transfer in ExBox ⁴⁺ âŠ,Perylene. Journal of Physical Chemistry A, 2013, 117, 12438-12448.	1.1	137
4	A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems. Review of Scientific Instruments, 2014, 85, 103118.	0.6	11
5	Vibrational Cooling Dynamics of a [FeFe]-Hydrogenase Mimic Probed by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 11529-11540.	1.1	20
6	Analysis of transformations of the ultrafast electron transfer photoreaction mechanism in liquid solutions by the rate distribution approach. Photochemical and Photobiological Sciences, 2014, 13, 770-780.	1.6	4
7	Investigating the Effects of Solvent on the Ultrafast Dynamics of a Photoreversible Ruthenium Sulfoxide Complex. Journal of Physical Chemistry A, 2014, 118, 10425-10432.	1.1	8
8	Bimolecular photoinduced electron transfer reactions in liquids under the gaze of ultrafast spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 25741-25754.	1.3	36
9	Excitation wavelength dependence of the charge separation pathways in tetraporphyrin-naphthalene diimide pentads. Physical Chemistry Chemical Physics, 2014, 16, 5188.	1.3	29
10	Femtosecond and Temperature-Dependent Picosecond Dynamics of Ultrafast Excited-State Proton Transfer in Water–Dioxane Mixtures. Journal of Physical Chemistry A, 2014, 118, 10448-10455.	1.1	16
11	Spectroelectrochemical identification of charge-transfer excited states in transition metal-based polypyridyl complexes. Dalton Transactions, 2014, 43, 17635-17646.	1.6	75
12	Characterization of a Conical Intersection in a Charge-Transfer Dimer with Two-Dimensional Time-Resolved Stimulated Raman Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 4955-4965.	1.1	63
13	Quantum Dynamics of a Photochemical Bond Cleavage Influenced by the Solvent Environment: A Dynamic Continuum Approach. Journal of Physical Chemistry Letters, 2014, 5, 3480-3485.	2.1	18
14	Excitation Wavelength Dependence of the Dynamics of Bimolecular Photoinduced Electron Transfer Reactions. Journal of Physical Chemistry Letters, 2014, 5, 1685-1690.	2.1	23
15	Studying the Dynamics of Photochemical Reactions via Ultrafast Time-Resolved Infrared Spectroscopy of the Local Solvent. Journal of Physical Chemistry Letters, 2014, 5, 2974-2978.	2.1	10
16	Excited-State Dynamics of an Environment-Sensitive Push–Pull Diketopyrrolopyrrole: Major Differences between the Bulk Solution Phase and the Dodecane/Water Interface. Journal of Physical Chemistry B, 2014, 118, 9952-9963.	1.2	37
17	Exciplex Formation in Bimolecular Photoinduced Electron-Transfer Investigated by Ultrafast Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2014, 136, 4066-4074.	6.6	71
18	BLUF Domain Function Does Not Require a Metastable Radical Intermediate State. Journal of the American Chemical Society, 2014, 136, 4605-4615.	6.6	41

#	Article	IF	Citations
19	Vibrational relaxation of NO3â^'(aq). Chemical Physics, 2014, 442, 86-92.	0.9	1
20	Electron attachment to some naphthoquinone derivatives: longâ€lived molecular anion formation. Rapid Communications in Mass Spectrometry, 2014, 28, 1580-1590.	0.7	36
21	Studying Reaction Intermediates Formed at Graphenic Surfaces. Journal of the American Society for Mass Spectrometry, 2014, 25, 380-387.	1.2	9
22	Sub-phonon-period compression of electron pulses for atomic diffraction. Nature Communications, 2015, 6, 8723.	5.8	73
23	Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets. Journal of Chemical Physics, 2015, 142, 114306.	1.2	11
24	Sensing near the liquid:liquid interface remotely via ultrafast pump probe study. , 2015, , .		0
25	Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nature Communications, 2015, 6, 6359.	5.8	134
26	Ultrafast Dynamics of Nile Red Interacting with Metal Doped Mesoporous Materials. Journal of Physical Chemistry C, 2015, 119, 13283-13296.	1.5	20
27	Ultrafast Intersystem-Crossing Dynamics and Breakdown of the Kasha–Vavilov's Rule of Naphthalenediimides. Journal of Physical Chemistry Letters, 2015, 6, 2096-2100.	2.1	69
28	Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 14790-14799.	1.2	21
29	Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit. Journal of Materials Chemistry A, 2015, 3, 6733-6738.	5.2	33
30	Competition and Interplay of Various Intermolecular Interactions in Ultrafast Excited-State Proton and Electron Transfer Reactions. Journal of Physical Chemistry B, 2015, 119, 2444-2453.	1.2	12
31	Time-Resolved Study of 1,8-Naphthalic Anhydride and 1,4,5,8-Naphthalene-tetracarboxylic Dianhydride. Journal of Physical Chemistry A, 2015, 119, 6006-6016.	1.1	9
32	Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature, 2015, 518, 385-389.	13.7	207
33	UV-Induced Isomerization Dynamics of <i>N</i> -Methyl-2-pyridone in Solution. Journal of Physical Chemistry A, 2015, 119, 88-94.	1.1	10
34	Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process. Journal of Physical Chemistry C, 2015, 119, 15919-15925.	1.5	15
35	Correlating Photoacidity to Hydrogen-Bond Structure by Using the Local O–H Stretching Probe in Hydrogen-Bonded Complexes of Aromatic Alcohols. Journal of Physical Chemistry A, 2015, 119, 4800-4812.	1.1	26
36	Ultrafast primary processes of the stable neutral organic radical, 1,3,5-triphenylverdazyl, in liquid solution. Physical Chemistry Chemical Physics, 2015, 17, 13659-13671.	1.3	7

3

#	Article	IF	CITATIONS
37	Time-resolved spectroscopy of the singlet excited state of betanin in aqueous and alcoholic solutions. Physical Chemistry Chemical Physics, 2015, 17, 18152-18158.	1.3	39
38	Control over Excited State Intramolecular Proton Transfer and Photoinduced Tautomerization: Influence of the Hydrogenâ€Bond Geometry. Chemistry - A European Journal, 2015, 21, 6362-6366.	1.7	58
39	Dynamics of Bimolecular Reactions in Solution. Annual Review of Physical Chemistry, 2015, 66, 119-141.	4.8	32
40	Polarizable QM/MM Multiconfiguration Self-Consistent Field Approach with State-Specific Corrections: Environment Effects on Cytosine Absorption Spectrum. Journal of Chemical Theory and Computation, 2015, 11, 1674-1682.	2.3	43
41	Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions. Journal of Physical Chemistry C, 2015, 119, 21896-21903.	1.5	16
42	Bimodal Exciplex Formation in Bimolecular Photoinduced Electron Transfer Revealed by Ultrafast Time-Resolved Infrared Absorption. Journal of Physical Chemistry B, 2015, 119, 11846-11857.	1.2	49
43	Electron, Hole, Singlet, and Triplet Energy Transfer in Photoexcited Porphyrin-Naphthalenediimide Dyads. Journal of Physical Chemistry B, 2015, 119, 7308-7320.	1.2	21
44	Microfluidics for Ultrafast Spectroscopy. , 0, , .		O
45	Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications. Chinese Journal of Chemical Physics, 2016, 29, 1-9.	0.6	4
46	Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer. Structural Dynamics, 2016, 3, 023605.	0.9	28
47	Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone. Journal of Chemical Physics, 2016, 144, 064302.	1.2	21
48	Non-equilibrium effects in ultrafast photoinduced charge transfer kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 48-72.	5. 6	39
49	Are the current theories of electron transfer applicable to reactions in ionic liquids? An ESR-study on the TCNE/TCNE ^{â^'} Ë™ couple. Physical Chemistry Chemical Physics, 2016, 18, 14442-14448.	1.3	7
50	Quenching of pHâ€Responsive Luminescence of a Benzoindolizine Sensor by an Ultrafast Hydrogen Shift. Chemistry - A European Journal, 2016, 22, 15212-15215.	1.7	36
51	Ultrafast Investigation of Intramolecular Charge Transfer and Solvation Dynamics of Tetrahydro[5]-helicene-Based Imide Derivatives. Scientific Reports, 2016, 6, 24313.	1.6	75
52	Broad-Band Pump–Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules. Journal of Physical Chemistry Letters, 2016, 7, 4722-4731.	2.1	49
53	Synchronised photoreversion of spirooxazine ring opening in thin crystals to uncover ultrafast dynamics. CrystEngComm, 2016, 18, 7212-7216.	1.3	6
54	Fluorescent DNA probes at liquid/liquid interfaces studied by surface second harmonic generation. Physical Chemistry Chemical Physics, 2016, 18, 2981-2992.	1.3	16

#	Article	IF	CITATIONS
55	Contrasting ring-opening propensities in UV-excited \hat{l}_{\pm} -pyrone and coumarin. Physical Chemistry Chemical Physics, 2016, 18, 2629-2638.	1.3	32
56	Of Excited States Again. , 2016, , 183-203.		O
58	Ultrafast Intramolecular Proton Transfer of Alizarin Investigated by Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 4129-4136.	1.2	42
59	Ultrafast photo-induced charge transfer of 1-naphthol and 2-naphthol to halocarbon solvents. Chemical Physics Letters, 2017, 683, 49-56.	1.2	8
60	Estimating electron affinity from the lifetime of negative molecular ions: Cycloheptatriene derivatives. Russian Journal of Physical Chemistry A, 2017, 91, 915-920.	0.1	4
61	Time-resolved signatures across the intramolecular response in substituted cyanine dyes. Physical Chemistry Chemical Physics, 2017, 19, 14085-14095.	1.3	5
62	Theoretical study on electronic excitation spectra: A matrix form of numerical algorithm for spectral shift. Chemical Physics, 2017, 492, 27-34.	0.9	3
63	Importance of eigenvector sign consistency in computations of expectation values via mixed quantum-classical surface-hopping dynamics. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	6
65	Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems. Journal of Physical Chemistry C, 2017, 121, 7837-7843.	1.5	1
66	Simulations of the Ultrafast Transient Absorption Dynamics of a Donor–Acceptor Biaryl in Solution. Journal of Physical Chemistry A, 2017, 121, 471-481.	1.1	14
67	Direct Observation of a Photochemical Alkyne–Allene Reaction and of a Twisted and Rehybridized Intramolecular Charge-Transfer State in a Donor–Acceptor Dyad. Journal of the American Chemical Society, 2017, 139, 16885-16893.	6.6	35
68	On the Nonâ€Metallicity of 2.2â€nm Au ₂₄₆ (SR) ₈₀ Nanoclusters. Angewandte Chemie - International Edition, 2017, 56, 16257-16261.	7.2	61
69	Breaking the Kasha Rule for More Efficient Photochemistry. Chemical Reviews, 2017, 117, 13353-13381.	23.0	285
70	Solvent Effect on the Photoinduced Structural Change of a Phosphorescent Molecular Butterfly. Chemistry - A European Journal, 2017, 23, 17734-17739.	1.7	4
71	Effect of Reactant and Product State Decay on Ultrafast Charge-Transfer Kinetics: Violation of the Principle of Independence of Elementary Chemical Reactions. Journal of Physical Chemistry C, 2017, 121, 20629-20639.	1.5	9
72	Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments. Structural Dynamics, 2017, 4, 044011.	0.9	3
73	A molecular Debye-Hýckel theory of solvation in polar fluids: An extension of the Born model. Journal of Chemical Physics, 2017, 147, 214502.	1.2	2
74	On the Nonâ€Metallicity of 2.2â€nm Au 246 (SR) 80 Nanoclusters. Angewandte Chemie, 2017, 129, 16475-16	47%	16

#	Article	IF	CITATIONS
75	Taking the plunge: chemical reaction dynamics in liquids. Chemical Society Reviews, 2017, 46, 7597-7614.	18.7	40
76	Intra-/inter-molecular interactions $\hat{a} \in \mathbb{C}$ Identification and evaluation by optical spectral data in solution. Journal of Molecular Liquids, 2017, 225, 869-876.	2.3	14
77	Principals of simulation of ultrafast charge transfer in solution within the multichannel stochastic point-transition model. Computer Physics Communications, 2017, 210, 172-180.	3.0	17
78	More than a Solvent: Donor–Acceptor Complexes of Ionic Liquids and Electron Acceptors. Journal of Physical Chemistry B, 2018, 122, 2646-2654.	1.2	9
79	Influence of the hydrogen-bond interactions on the excited-state dynamics of a push–pull azobenzene dye: the case of Methyl Orange. Physical Chemistry Chemical Physics, 2018, 20, 7254-7264.	1.3	27
80	Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. Journal of Chemical Physics, 2018, 148, 024301.	1.2	30
81	Intermolecular Hydrogen Bonding Controlled Intersystem Crossing Rates of Benzophenone. Journal of Physical Chemistry Letters, 2018, 9, 1642-1648.	2.1	27
82	Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations. Journal of Chemical Physics, 2018, 148, 104107.	1.2	9
83	Novel nonequilibrium solvation theory for calculating the vertical ionization energies of alkali metal cations and DNA bases in aqueous. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	2
84	Electron–Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces. Journal of Physical Chemistry Letters, 2018, 9, 406-412.	2.1	22
85	Energy transfer and charge separation dynamics in photoexcited pyrene–bodipy molecular dyads. Physical Chemistry Chemical Physics, 2018, 20, 837-849.	1.3	22
86	Real-time observation of the photoionization-induced water rearrangement dynamics in the 5-hydroxyindole–water cluster by time-resolved IR spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 3079-3091.	1.3	16
87	FLUT: A numerical code for simulations of multistage photoinduced electron transfer reactions in viscous solutions. AIP Conference Proceedings, 2018, , .	0.3	2
88	Ultrafast Intramolecular Proton Transfer Reaction of 1,2- Dihydroxyanthraquinone in the Excited State. , 2018, , .		0
89	Coherent multidimensional spectroscopy of dilute gas-phase nanosystems. Nature Communications, 2018, 9, 4823.	5.8	41
90	Ultrafast Dynamics of a "Super―Photobase. Angewandte Chemie, 2018, 130, 14958-14962.	1.6	7
91	Probing the effect of solvation on photoexcited 2-(2′-hydroxyphenyl)benzothiazole via ultrafast Raman loss spectroscopic studies. Journal of Chemical Physics, 2018, 149, 044310.	1.2	10
92	Excitation-dependent electron exchange energy and electron transfer dynamics in a series of covalently tethered <i>N</i> , <i>N</i> -bis(4′- <i>tert</i> -butylbiphenyl-4-yl)aniline – [C ₆₀] fullerene dyads <i>via</i> varying π-conjugated spacers. Physical Chemistry Chemical Physics, 2018, 20, 21352-21367.	1.3	6

#	ARTICLE	IF	Citations
93	Unravelling the enigma of ultrafast excited state relaxation in non-emissive aggregating conjugated polymers. Physical Chemistry Chemical Physics, 2018, 20, 22159-22167.	1.3	10
94	Ultrafast Dynamics of a "Super―Photobase. Angewandte Chemie - International Edition, 2018, 57, 14742-14746.	7.2	36
95	Ultrafast trans â†' cis Photoisomerization Dynamics of Alkyl-Substituted Stilbenes in a Supramolecular Capsule. Journal of Physical Chemistry A, 2019, 123, 5061-5071.	1.1	16
96	Contrasting hydration dynamics in DME and DMSO aqueous solutions: A combined optical pump-probe and GHz-THz dielectric relaxation investigation. Journal of Molecular Liquids, 2019, 290, 111194.	2.3	10
97	Quantum dynamics and spectroscopy of dihalogens in solid matrices. I. Efficient simulation of the photodynamics of the embedded I2Kr18 cluster using the G-MCTDH method. Journal of Chemical Physics, 2019, 150, 064111.	1.2	11
98	The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chemical Science, 2019, 10, 4792-4804.	3.7	40
99	Tunable Twisting Motion of Organic Linkers via Concentration and Hydrogen-Bond Formation. Journal of Physical Chemistry C, 2019, 123, 5900-5906.	1.5	14
100	Integrating ultrafast and stochastic dynamics studies of Brownian motion in molecular systems and colloidal particles. Current Opinion in Colloid and Interface Science, 2019, 44, 208-219.	3.4	1
101	Fluctuating exchange interactions enable quintet multiexciton formation in singlet fission. Journal of Chemical Physics, 2019, 151, 164104.	1.2	33
102	From Fundamental Theories to Quantum Coherences in Electron Transfer. Journal of the American Chemical Society, 2019, 141, 708-722.	6.6	85
103	Reâ€Evaluating the Transition State for Reactions in Solution. European Journal of Organic Chemistry, 2019, 254-266.	1.2	17
104	Health and light., 2020,, 1-27.		O
105	Accessing the Activation Mechanisms of Ethylene Photo-Polymerization under Pressure by Transient Infrared Absorption Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 8149-8157.	1.2	2
106	Extracting the Frequency-Dependent Dynamic Stokes Shift from Two-Dimensional Electronic Spectra with Prominent Vibrational Coherences. Journal of Physical Chemistry B, 2020, 124, 8857-8867.	1.2	12
107	Bimolecular photoinduced electron transfer in non-polar solvents beyond the diffusion limit. Journal of Chemical Physics, 2020, 152, 244501.	1.2	12
108	Semiclassical instanton formulation of Marcus–Levich–Jortner theory. Journal of Chemical Physics, 2020, 152, 244117.	1.2	17
109	Instanton formulation of Fermi's golden rule in the Marcus inverted regime. Journal of Chemical Physics, 2020, 152, 034106.	1.2	27
110	Role of Polar Protic Solvents in the Dissociation and Reactivity of Photogenerated Radical Ion Pairs. Journal of Physical Chemistry B, 2020, 124, 3083-3089.	1.2	5

#	Article	IF	CITATIONS
111	Solvation Controlled Excited-State Planarization in a Pushâ€"Pull Pyrene Dye. Journal of Physical Chemistry C, 2020, 124, 8550-8560.	1.5	13
112	Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. Annual Review of Physical Chemistry, 2021, 72, 121-142.	4.8	40
113	Accurate Molecular Geometries in Complex Excited-State Potential Energy Surfaces from Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation, 2021, 17, 357-366.	2.3	8
114	On the physical mechanisms underlying single molecule dynamics in simple liquids. Scientific Reports, 2021, 11, 2528.	1.6	2
115	Lifetime Broadening and Impulsive Generation of Vibrational Coherence Triggered by Ultrafast Electron Transfer. Journal of Physical Chemistry Letters, 2021, 12, 1052-1057.	2.1	6
116	Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer. Nano Research, 2022, 15, 617-626.	5.8	13
118	Vibrational Dephasing along the Reaction Coordinate of an Electron Transfer Reaction. Journal of the American Chemical Society, 2021, 143, 14511-14522.	6.6	18
119	Excited-State Dynamics of Organic Dyes in Solar Cells. , 0, , .		2
120	Interrogating the mechanism of the solvation dynamics in BmimBF4/PC mixtures: A cooperative study employing time-resolved fluorescence and molecular dynamics. Journal of Molecular Liquids, 2021, 340, 117163.	2.3	1
121	Long-lived triplet charge-separated state in naphthalenediimide based donor–acceptor systems. Chemical Science, 2021, 12, 4908-4915.	3.7	18
122	Planarity and Length of the Bridge Control Rate and Efficiency of Intramolecular Singlet Fission in Pentacene Dimers. Journal of Physical Chemistry B, 2021, 125, 231-239.	1.2	14
123	Photo-induced intermolecular electron transfer-effect of acceptor molecular structures. Chinese Journal of Chemical Physics, 2018, 31, 772-778.	0.6	6
124	Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1475-1494.	1.4	10
125	Intramolecular Proton Transfer in the Excited State (ESIPT) Process: Applications in Fluorescent Probes. Revista Virtual De Quimica, 2016, 8, 466-482.	0.1	0
126	Combining Theory and Experiment for Understanding of Ultrafast Photoinduced Charge-Transfer Processes. Mathematical Physics and Computer Simulation, 2020, , 91-99.	0.2	0
127	Electron-Induced Proton Transfer. Journal of Physical Chemistry B, 2021, 125, 12264-12273.	1.2	7
129	The excited-state dynamics of the radical anions of cyanoanthracenes. Physical Chemistry Chemical Physics, 2021, 24, 568-577.	1.3	38
130	Solvent Effects on Ultrafast Photochemical Pathways. Accounts of Chemical Research, 2021, 54, 4383-4394.	7.6	21

#	Article	IF	CITATIONS
131	Effect of solvent motions on the dynamics of the Diels–Alder reaction. Physical Chemistry Chemical Physics, 2022, 24, 1120-1130.	1.3	4
132	Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chemical Reviews, 2022, 122, 4257-4321.	23.0	47
133	Photochemistry of (<i>Z</i>)-Isovinylneoxanthobilirubic Acid Methyl Ester, a Bilirubin Dipyrrinone Subunit: Femtosecond Transient Absorption and Stimulated Raman Emission Spectroscopy. Journal of Organic Chemistry, 2022, 87, 3089-3103.	1.7	3
134	Double crossing conical intersections and anti-Vavilov fluorescence in tetraphenyl ethylene. Journal of Chemical Physics, 2022, 156, 144302.	1.2	1
135	Design and demonstration of ultrafast holographic microscopic system based on time stretching. Optics Communications, 2022, 514, 128153.	1.0	1
136	Probing solvent dependent femtosecond transient coherent oscillations to reveal interfacial dynamics. Journal of Optics (United Kingdom), 0, , .	1.0	0
137	Ultrafast Excited State Dynamics of Spatially Confined Organic Molecules. Journal of Physical Chemistry A, 2022, 126, 4681-4699.	1.1	6
138	Weighted multi-scale denoising via adaptive multi-channel fusion for compressed ultrafast photography. Optics Express, 2022, 30, 31157.	1.7	5
139	Excited state deactivation mechanisms in Shikonin rationalized from its naphthoquinone parent structures. Physical Chemistry Chemical Physics, 2022, 24, 20348-20356.	1.3	2
140	Real-time tracking of the molecular structural dynamics of photochemical pathways using vibrational spectroscopy techniques. , 2022, , 579-608.		0
141	Application of ultrafast infrared spectroscopy in elucidating electronic processes in materials. , 2022, , 609-647.		0
142	Ultrafast Dynamics of Solute Molecules Probed by Resonant Optical Kerr Effect Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 9309-9315.	2.1	0
143	Blockade of persistent colored isomer formation in photochromic 3H-naphthopyrans by excited-state intramolecular proton transfer. Scientific Reports, 2022, 12, .	1.6	0
144	Semiclassical Theory of Multistage Nonequilibrium Electron Transfer in Macromolecular Compounds in Polar Media with Several Relaxation Timescales. International Journal of Molecular Sciences, 2022, 23, 15793.	1.8	1
145	Looking for chiral recognition in photoinduced bimolecular electron transfer using ultrafast spectroscopy. Physical Chemistry Chemical Physics, 0, , .	1.3	0
146	Two triplet emitting states in one emitter: Near-infrared dual-phosphorescent Au ₂₀ nanocluster. Science Advances, 2023, 9, .	4.7	22
150	Quantitative prediction of excited-state decay rates for radical anion photocatalysts. Chemical Communications, 2023, 59, 9726-9729.	2.2	1
151	Mechanistic Photochemistry and Conical Intersections. , 2024, , 25-54.		0

ARTICLE IF CITATIONS

Ultrafast Molecular Spectroscopy in the Gas Phase. , 2023, , 1-53.