Structural and molecular interrogation of intact biologi

Nature 497, 332-337 DOI: 10.1038/nature12107

Citation Report

#	Article	IF	CITATIONS
12	Mapping mammalian synaptic connectivity. Cellular and Molecular Life Sciences, 2013, 70, 4747-4757.	2.4	15
13	Seamless Reconstruction of Intact Adult-Born Neurons by Serial End-Block Imaging Reveals Complex Axonal Guidance and Development in the Adult Hippocampus. Journal of Neuroscience, 2013, 33, 11400-11411.	1.7	62
14	Functional labeling of neurons and their projections using the synthetic activity–dependent promoter E-SARE. Nature Methods, 2013, 10, 889-895.	9.0	166
15	Scaling and systems biology for integrating multiple organs-on-a-chip. Lab on A Chip, 2013, 13, 3496.	3.1	253
16	Cartography and Connectomes. Neuron, 2013, 80, 775-790.	3.8	88
17	Structural and Functional Brain Networks: From Connections to Cognition. Science, 2013, 342, 1238411.	6.0	1,543
18	Cortical connectivity and sensory coding. Nature, 2013, 503, 51-58.	13.7	536
19	Engineering Approaches to Illuminating Brain Structure and Dynamics. Neuron, 2013, 80, 568-577.	3.8	116
20	Mapping brain circuitry with a light microscope. Nature Methods, 2013, 10, 515-523.	9.0	228
21	Light microscopy mapping of connections in the intact brain. Trends in Cognitive Sciences, 2013, 17, 596-599.	4.0	66
22	Automated image computing reshapes computational neuroscience. BMC Bioinformatics, 2013, 14, 293.	1.2	24
23	Genome network medicine: new diagnostics and predictive tools. Expert Review of Molecular Diagnostics, 2013, 13, 643-646.	1.5	5
25	Twenty-Five Years of Progress: The View from NIMH and NINDS. Neuron, 2013, 80, 561-567.	3.8	73
26	Using rodents to model schizophrenia and substance use comorbidity. Neuroscience and Biobehavioral Reviews, 2013, 37, 896-910.	2.9	18
27	New technique makes brains transparent. Physics Today, 2013, 66, 14-15.	0.3	0
28	The Human Connectome Project and beyond: Initial applications of 300mT/m gradients. NeuroImage, 2013, 80, 234-245.	2.1	309
29	Human connectomics $\hat{a} \in$ "What will the future demand?. NeuroImage, 2013, 80, 541-544.	2.1	50
30	Connectomic approaches before the connectome. NeuroImage, 2013, 80, 2-13.	2.1	65

ITATION REDO

#	Article	IF	CITATIONS
31	SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neuroscience, 2013, 16, 1154-1161.	7.1	797
32	Progress towards the â€~Golden Age' of biotechnology. Current Opinion in Biotechnology, 2013, 24, S6-S13.	3.3	32
33	CLARITY for mapping the nervous system. Nature Methods, 2013, 10, 508-513.	9.0	654
35	Tissue Clearing for Optical Anatomy. Angewandte Chemie - International Edition, 2013, 52, 10949-10951.	7.2	9
36	Intravenous Lidocaine for Spine Surgery Pain Control. Neurosurgery, 2013, 73, N15-N16.	0.6	1
37	Cancer heterogeneity and signaling network-based drug target. Pharmacogenomics, 2013, 14, 1243-1246.	0.6	2
38	Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast. Biomedical Optics Express, 2013, 4, 1978.	1.5	54
39	Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking Activity Alone. PLoS Computational Biology, 2013, 9, e1003138.	1.5	65
40	Three-dimensional printing physiology laboratory technology. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1569-H1573.	1.5	23
42	The luminal connection. Organogenesis, 2013, 9, 111-117.	0.4	9
43	Efficient measurement of total tumor microvascularity <i>ex vivo</i> using a mathematical model to optimize volume subsampling. Journal of Biomedical Optics, 2013, 18, 096015.	1.4	2
44	The NIH BRAIN Initiative. Science, 2013, 340, 687-688.	6.0	322
45	Neurobiological advances identify novel antidepressant targets. World Psychiatry, 2013, 12, 207-209.	4.8	6
46	Imaging A frican trypanosomes. Parasite Immunology, 2013, 35, 283-294.	0.7	19
48	Neural Stem Cell-Mediated Enzyme/Prodrug Therapy for Glioma. Neurosurgery, 2013, 73, N16-N18.	0.6	2
49	CLARITY—A Clearer View of the Brain. Neurosurgery, 2013, 73, N16.	0.6	1
50	Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137.	1.2	215
52	Issues in Clinical Epileptology: A View from the Bench. a Festschrift in Honor of Philip A. Schwartzkroin, PhD. Epilepsy Currents, 2013, 13, 291-296.	0.4	1

#	Article	IF	CITATIONS
53	Structural Stabilization of Tissue for Embryo Phenotyping Using Micro-CT with lodine Staining. PLoS ONE, 2013, 8, e84321.	1.1	69
54	Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target?. Frontiers in Pharmacology, 2013, 4, 110.	1.6	103
55	Consciousness in humans and non-human animals: recent advances and future directions. Frontiers in Psychology, 2013, 4, 625.	1.1	170
56	What is Going on in Psychiatry When Nothing Seems to Happen?. Frontiers in Psychiatry, 2013, 4, 178.	1.3	0
57	A method for the three-dimensional reconstruction of Neurobiotinâ,,¢-filled neurons and the location of their synaptic inputs. Frontiers in Neural Circuits, 2013, 7, 153.	1.4	77
58	Short duration waveforms recorded extracellularly from freely moving rats are representative of axonal activity. Frontiers in Neural Circuits, 2013, 7, 181.	1.4	53
59	Self through the Mirror (Neurons) and Default Mode Network: What Neuroscientists Found and What Can Still be Found There. Frontiers in Human Neuroscience, 2013, 7, 383.	1.0	9
60	Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods?. Frontiers in Neuroscience, 2013, 7, 182.	1.4	19
61	Reentry: a key mechanism for integration of brain function. Frontiers in Integrative Neuroscience, 2013, 7, 63.	1.0	83
62	Nanoscale Imaging by Superresolution Fluorescence Microscopy and Its Emerging Applications in Biomedical Research. Critical Reviews in Biomedical Engineering, 2013, 41, 281-308.	0.5	10
63	Rod Microglia: A Morphological Definition. PLoS ONE, 2014, 9, e97096.	1.1	121
64	Active learning of neuron morphology for accurate automated tracing of neurites. Frontiers in Neuroanatomy, 2014, 8, 37.	0.9	50
65	Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines. Frontiers in Neuroanatomy, 2014, 8, 68.	0.9	66
66	Automated computation of arbor densities: a step toward identifying neuronal cell types. Frontiers in Neuroanatomy, 2014, 8, 139.	0.9	26
67	Input clustering and the microscale structure of local circuits. Frontiers in Neural Circuits, 2014, 8, 112.	1.4	38
68	The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Frontiers in Synaptic Neuroscience, 2014, 6, 4.	1.3	36
69	Editorial: Advances in Understanding Alzheimer's Disease, and the Contributions of Current Alzheimer Research: Ten Years on and Beyond. Current Alzheimer Research, 2014, 11, 107-109.	0.7	4
70	Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1149-58.	3.3	47

#	Article	IF	CITATIONS
71	Tissue Engineering of the Nervous System. , 2014, , 583-625.		3
72	Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13553-13558.	3.3	60
73	CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development (Cambridge), 2014, 141, 1589-1598.	1.2	63
75	Capturing structure and function in an embryonic heart with biophotonic tools. Frontiers in Physiology, 2014, 5, 351.	1.3	23
76	Diffusion characteristics of ethylene glycol in skeletal muscle. Journal of Biomedical Optics, 2014, 20, 051019.	1.4	37
77	Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas. Nature Communications, 2014, 5, 5665.	5.8	27
78	A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System. Cell Reports, 2014, 9, 1191-1201.	2.9	162
79	Nanotechnology-Neuroscience Convergence. , 2014, , 1-11.		0
80	Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica, 2014, 1, 181.	4.8	107
81	Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 957.	0.8	16
82	Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images. Bioinformatics, 2014, 30, i587-i593.	1.8	61
83	Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT. Development (Cambridge), 2014, 141, 2533-2541.	1.2	46
84	Opticalâ€Resolution Photoacoustic Microscopy for Volumetric and Spectral Analysis of Histological and Immunochemical Samples. Angewandte Chemie - International Edition, 2014, 53, 8099-8103.	7.2	18
85	Correcting spherical aberrations in confocal light sheet microscopy: A theoretical study. Microscopy Research and Technique, 2014, 77, 483-491.	1.2	14
86	An Optical Clearing Technique for Plant Tissues Allowing Deep Imaging and Compatible with Fluorescence Microscopy Â. Plant Physiology, 2014, 166, 1684-1687.	2.3	83
87	Imaging of the islet neural network. Diabetes, Obesity and Metabolism, 2014, 16, 77-86.	2.2	44
89	Microscopy: seeing through tissue. Nature Methods, 2014, 11, 1209-1214.	9.0	47
91	Genome network medicine: innovation to overcome huge challenges in cancer therapy. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 201-208.	6.6	8

#	Article	IF	CITATIONS
92	High-speed X-ray imaging of needle-free jet injections. , 2014, , .		4
93	Bringing CLARITY to gray matter atrophy. NeuroImage, 2014, 101, 625-632.	2.1	39
94	Application of Tissue Clearing and Light Sheet Fluorescence Microscopy to Assess Optic Nerve Regeneration in Unsectioned Tissues. Methods in Molecular Biology, 2014, 1162, 209-217.	0.4	14
95	Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Developmental Biology, 2014, 14, 48.	2.1	74
96	High-Resolution 3D Imaging of Intact Transparent Organs by 3DISCO. , 2014, , 65-81.		2
97	Local gene expression in nerve endings. Developmental Neurobiology, 2014, 74, 279-291.	1.5	36
98	Multispectral Fluorescence Ultramicroscopy: Three-Dimensional Visualization and Automatic Quantification of Tumor Morphology, Drug Penetration, and Antiangiogenic Treatment Response. Neoplasia, 2014, 16, 1-W7.	2.3	90
99	Tools for Resolving Functional Activity and Connectivity within Intact Neural Circuits. Current Biology, 2014, 24, R41-R50.	1.8	51
100	Tissue Engineering and Regenerative Medicine: A Year in Review. Tissue Engineering - Part B: Reviews, 2014, 20, 1-16.	2.5	111
101	Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array. Biomedical Microdevices, 2014, 16, 79-90.	1.4	36
102	Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, 2014, , .	1.0	6
103	Subcortical anatomy of the lateral association fascicles of the brain: A review. Clinical Anatomy, 2014, 27, 563-569.	1.5	73
104	A fast, low cost, and highly efficient fluorescent DNA labeling method using methyl green. Histochemistry and Cell Biology, 2014, 142, 335-345.	0.8	67
105	Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis. Cell, 2014, 157, 726-739.	13.5	1,097
106	Spectrum of Fates: a new approach to the study of the developing zebrafish retina. Development (Cambridge), 2014, 141, 1971-1980.	1.2	49
107	A blueprint for research on Shankopathies: A view from research on autism spectrum disorder. Developmental Neurobiology, 2014, 74, 85-112.	1.5	12
108	Feed Your Head: Neurodevelopmental Control of Feeding and Metabolism. Annual Review of Physiology, 2014, 76, 197-223.	5.6	26
109	Revitalizing Psychiatric Therapeutics. Neuropsychopharmacology, 2014, 39, 220-229.	2.8	76

ARTICLE IF CITATIONS # Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nature Reviews 110 4.9 265 Neuroscience, 2014, 15, 7-18. Polymer-based mesh as supports for multi-layered 3D cell culture and assays. Biomaterials, 2014, 35, 5.7 44 <u>259-268.</u> Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. 112 2.1 65 Neurolmage, 2014, 84, 1007-1017. Flash Memory: Photochemical Imprinting of Neuronal Action Potentials onto a Microbial Rhodopsin. Journal of the American Chemical Society, 2014, 136, 2529-2537. Circuit dynamics of adaptive and maladaptive behaviour. Nature, 2014, 505, 309-317. 114 13.7 158 Blockface histology with optical coherence tomography: A comparison with Nissl staining. NeuroImage, 2014, 84, 524-533. 2.1 87 116 Some Joys and Trials of Mathematical Neuroscience. Journal of Nonlinear Science, 2014, 24, 201-242. 1.0 7 iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging. Cell, 2014, 159, 13.5 1,300 896-910. 118 Whole-Body Imaging with Single-Cell Resolution by Tissue Decolorization. Cell, 2014, 159, 911-924. 13.5 404 Manipulating a "Cocaine Engram―in Mice. Journal of Neuroscience, 2014, 34, 14115-14127. 1.7 Modulation of behavior by the histaminergic system: Lessons from HDC-, H3R- and H4R-deficient mice. 120 2.9 69 Neuroscience and Biobehavioral Reviews, 2014, 47, 101-121. Image transmission through dynamic scattering media by single-pixel photodetection. Optics Express, 170 2014, 22, 16945. Making biology transparent. Nature Biotechnology, 2014, 32, 1104-1105. 122 9.4 5 Functional organization of synaptic connections in the neocortex. Science, 2014, 346, 555-555. 6.0 Ultrafast tissue staining with chemical tags. Proceedings of the National Academy of Sciences of the 124 3.3 81 United States of America, 2014, 111, E3805-14. The Practical and Fundamental Limits of Optical Imaging in Mammalian Brains. Neuron, 2014, 83, 29 1242-1245. Photo-tunable multicolour fluorescence imaging based on self-assembled fluorogenic nanoparticles. 126 2.248 Chemical Communications, 2014, 50, 5326. How Might Novel Technologies Such as Optogenetics Lead to Better Treatments in Epilepsy?. Advances 19 in Experimental Medicine and Biology, 2014, 813, 319-336.

#	Article	IF	CITATIONS
128	Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nature Protocols, 2014, 9, 2369-2381.	5.5	40
129	Review: Tissue Optical Clearing Window for Blood Flow Monitoring. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 92-103.	1.9	26
130	Axon plasticity in the mammalian central nervous system after injury. Trends in Neurosciences, 2014, 37, 583-593.	4.2	43
131	Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing. Cell, 2014, 158, 945-958.	13.5	833
132	Reversible Chemical Reactions for Singleâ€Color Multiplexing Microscopy. ChemPhysChem, 2014, 15, 2331-2336.	1.0	4
133	Axon Growth and Regeneration. Methods in Molecular Biology, 2014, , .	0.4	5
134	Feasibility of Small Animal Anatomical and Functional Imaging with Neutrons: A Monte Carlo Simulation Study. IEEE Transactions on Nuclear Science, 2014, 61, 2480-2488.	1.2	1
135	Chemogenetic Tools to Interrogate Brain Functions. Annual Review of Neuroscience, 2014, 37, 387-407.	5.0	412
136	Tissue Optical Clearing, Three-Dimensional Imaging, and Computer Morphometry in Whole Mouse Lungs and Human Airways. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 43-55.	1.4	57
137	A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron, 2014, 83, 663-678.	3.8	356
138	The relevance and potential roles of microphysiological systems in biology and medicine. Experimental Biology and Medicine, 2014, 239, 1061-1072.	1.1	185
139	Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D. Acta Neuropathologica, 2014, 128, 457-459.	3.9	64
140	Optical Clearing of Fixed Brain Samples Using SeeDB. Current Protocols in Neuroscience, 2014, 66, Unit 2.22	2.6	41
142	Breakthrough discoveries in drug delivery technologies: The next 30 years. Journal of Controlled Release, 2014, 190, 9-14.	4.8	82
143	Spectrum of Fates: a new approach to the study of the developing zebrafish retina. Development (Cambridge), 2014, 141, 2912-2912.	1.2	6
144	Simplified method to perform CLARITY imaging. Molecular Neurodegeneration, 2014, 9, 19.	4.4	42
145	The Use of Optical Clearing and Multiphoton Microscopy for Investigation of Three-Dimensional Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods, 2014, 20, 570-577.	1.1	19
146	Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks. Nature Communications, 2014, 5, 3997.	5.8	64

		CITATION REPORT		
#	Article		IF	CITATIONS
147	Neurological drug development: A guide for a start-up biotech. Neurobiology of Disease, 2	014, 61, 1-5.	2.1	1
148	In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-p excitation fluorescence imaging. Journal of Neuroscience Methods, 2014, 221, 48-61.	hoton	1.3	31
149	Multiplex Cell and Lineage Tracking with Combinatorial Labels. Neuron, 2014, 81, 505-520).	3.8	142
150	Glycerol-Mediated Nanostructure Modification Leading to Improved Transparency of Poro Polymeric Scaffolds for High Performance 3D Cell Imaging. Biomacromolecules, 2014, 15,		2.6	12
151	Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocol 1682-1697.	s, 2014, 9,	5.5	725
152	Vestibular pathways involved in cognition. Frontiers in Integrative Neuroscience, 2014, 8,	59.	1.0	239
153	Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO. Journal of Visualiz Experiments, 2014, , .	ed?	0.2	44
155	A New Clarification Method to Visualize Biliary Degeneration During Liver Metamorphosis Lamprey (<i>Petromyzon marinus</i>). Journal of Visualized Experiments, 2014, , .	in Sea	0.2	7
156	Imaging and 3D Reconstruction of Cerebrovascular Structures in Embryonic Zebrafish. Jou Visualized Experiments, 2014, , .	rnal of	0.2	0
157	CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis o DMM Disease Models and Mechanisms, 2015, 8, 1643-50.	of infections.	1.2	56
158	A simple optical clearing method for tissue block. , 2015, , .			1
159	Computer-based automatic identification of neurons in gigavoxel-sized 3D human brain in 2015, 7724-7.	nages. , 2015,		2
160	Seeing the forest and trees: wholeâ€body and wholeâ€brain imaging for circadian biology. Obesity and Metabolism, 2015, 17, 47-54.	Diabetes,	2.2	8
161	Gene Targeting in Neuroendocrinology. , 2015, 5, 1645-1676.			17
162	Challenges in Retinal Circuit Regeneration. Biological and Pharmaceutical Bulletin, 2015, 3	8, 341-357.	0.6	7
164	Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinate variational model. Scientific Reports, 2014, 4, 4970.	d	1.6	12
165	PEA-CLARITY: 3D molecular imaging of whole plant organs. Scientific Reports, 2015, 5, 13	492.	1.6	74
166	Distribution of Raphespinal Fibers in the Mouse Spinal Cord. Molecular Pain, 2015, 11, s12	990-015-0046.	1.0	21

#	Article	IF	CITATIONS
167	Fast immuno-labeling by electrophoretically driven infiltration for intact tissue imaging. Scientific Reports, 2015, 5, 10640.	1.6	40
168	Reconstruction of micron resolution mouse brain surface from large-scale imaging dataset using resampling-based variational model. Scientific Reports, 2015, 5, 12782.	1.6	3
169	脳ã,'膨ã,‰ã¾ã∙ã┥ãfŠãfŽã,¹ã,±ãf¼ãf«ã®ç∽éf¨ã,'観å⁻Ÿ. Nature Digest, 2015, 12, 12-13.	0.0	0
170	A Simple Protocol to Clear and Transparentize the Brain. Seibutsu Butsuri, 2015, 55, 145-147.	0.0	0
171	Dissolvable Base Scaffolds Allow Tissue Penetration of Highâ€Aspectâ€Ratio Flexible Microneedles. Advanced Healthcare Materials, 2015, 4, 1949-1955.	3.9	17
172	The development of a virtual 3D model of the renal corpuscle from serial histological sections for <scp>E</scp> â€learning environments. Anatomical Sciences Education, 2015, 8, 574-583.	2.5	16
173	Nonspecific labeling limits the utility of Creâ€Lox bred CSTâ€YFP mice for studies of corticospinal tract regeneration. Journal of Comparative Neurology, 2015, 523, 2665-2682.	0.9	10
174	Alzheimer's in 3D culture: Challenges and perspectives. BioEssays, 2015, 37, 1139-1148.	1.2	83
175	New imaging methods and tools to study vascular biology. Current Opinion in Hematology, 2015, 22, 258-266.	1.2	9
176	Optical Tools to Investigate Cellular Activity in the Intestinal Wall. Journal of Neurogastroenterology and Motility, 2015, 21, 337-351.	0.8	30
177	Into the depths: Techniques for in vitro three-dimensional microtissue visualization. BioTechniques, 2015, 59, 279-286.	0.8	36
178	See-through Brains and Diffusion Tensor MRI Clarified Fiber Connections: A Preliminary Microstructural Study in a Mouse with Callosal Agenesis. Magnetic Resonance in Medical Sciences, 2015, 14, 159-162.	1.1	8
179	Blown-up brains reveal nanoscale details. Nature, 2015, 517, 254-254.	13.7	0
180	The Effects of Psychological Stress on Depression. Current Neuropharmacology, 2015, 13, 494-504.	1.4	363
181	Photoreceptor engineering. Frontiers in Molecular Biosciences, 2015, 2, 30.	1.6	100
182	Brain BLAQ: Post-hoc thick-section histochemistry for localizing optogenetic constructs in neurons and their distal terminals. Frontiers in Neuroanatomy, 2015, 9, 6.	0.9	26
183	Visible rodent brain-wide networks at single-neuron resolution. Frontiers in Neuroanatomy, 2015, 9, 70.	0.9	36
184	Validation of In utero Tractography of Human Fetal Commissural and Internal Capsule Fibers with Histological Structure Tensor Analysis. Frontiers in Neuroanatomy, 2015, 9, 164.	0.9	34

#	Article	IF	CITATIONS
185	Probabilistic atlases of default mode, executive control and salience network white matter tracts: an fMRI-guided diffusion tensor imaging and tractography study. Frontiers in Human Neuroscience, 2015, 9, 585.	1.0	35
186	Axonal activity in vivo: technical considerations and implications for the exploration of neural circuits in freely moving animals. Frontiers in Neuroscience, 2015, 9, 153.	1.4	32
187	Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Frontiers in Neuroscience, 2015, 9, 335.	1.4	150
188	Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Frontiers in Molecular Neuroscience, 2015, 8, 14.	1.4	88
189	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667.	1.1	15
190	A Rapid Optical Clearing Protocol Using 2,2′-Thiodiethanol for Microscopic Observation of Fixed Mouse Brain. PLoS ONE, 2015, 10, e0116280.	1.1	134
191	Optical Clearing in Dense Connective Tissues to Visualize Cellular Connectivity In Situ. PLoS ONE, 2015, 10, e0116662.	1.1	41
192	Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains. PLoS ONE, 2015, 10, e0124650.	1.1	168
193	Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data. PLoS Computational Biology, 2015, 11, e1004464.	1.5	39
194	Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling. PLoS ONE, 2015, 10, e0128975.	1.1	22
195	Procedures for the Quantification of Whole-Tissue Immunofluorescence Images Obtained at Single-Cell Resolution during Murine Tubular Organ Development. PLoS ONE, 2015, 10, e0135343.	1.1	27
196	Rapid High-resolution Brain Mapping with CLARITY Optimized Light Sheet Microscopy (COLM). Microscopy and Microanalysis, 2015, 21, 717-718.	0.2	2
197	Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs. ENeuro, 2015, 2, ENEURO.0022-15.2015.	0.9	123
198	Putting cells in their place. Nature Biotechnology, 2015, 33, 490-491.	9.4	4
199	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
200	Multiscale analysis of the murine intestine for modeling human diseases. Integrative Biology (United) Tj ETQq1 1	0.784314	rgBT /Over
201	Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin. Optics and Laser Technology, 2015, 73, 69-76.	2.2	12
202	Scalable and Dil-compatible optical clearance of the mammalian brain. Frontiers in Neuroanatomy, 2015, 9, 19.	0.9	154

#	Article	IF	CITATIONS
203	The brain timewise: how timing shapes and supports brain function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140170.	1.8	60
204	A versatile clearing agent for multi-modal brain imaging. Scientific Reports, 2015, 5, 9808.	1.6	228
205	Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development. Development and Psychopathology, 2015, 27, 347-367.	1.4	33
206	C4-P-09Three-dimensional analysis of microglia and synapses with large-volume optical reconstruction. Microscopy (Oxford, England), 2015, 64, i138.1-i138.	0.7	0
207	Directional <i>Trans</i> -Synaptic Labeling of Specific Neuronal Connections in Live Animals. Genetics, 2015, 200, 697-705.	1.2	34
208	Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell, 2015, 163, 1500-1514.	13.5	391
209	Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. Journal of Neuroscience, 2015, 35, 15812-15826.	1.7	124
210	SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function. Cell, 2015, 163, 1796-1806.	13.5	213
211	Architectonic Mapping of the Human Brain beyond Brodmann. Neuron, 2015, 88, 1086-1107.	3.8	360
212	Optical clearing of the mouse brain and light attenuation quantitation. , 2015, , .		0
213	Quantification of light attenuation in optically cleared mouse brains. Journal of Biomedical Optics, 2015, 20, 080503.	1.4	17
214	Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential. Proceedings of SPIE, 2015, , .	0.8	1
215	A simple and rapid optical clearing method for improving optical imaging depth. , 2015, , .		0
216	Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of Neural Engineering, 2015, 12, 011001.	1.8	309
217	Nanoscopy for nanoscience: how superâ€resolution microscopy extends imaging for nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 266-281.	3.3	5
218	Optical clearing in collagen- and proteoglycan-rich osteochondral tissues. Osteoarthritis and Cartilage, 2015, 23, 405-413.	0.6	34
219	Mission (im)possible – mapping the brain becomes a reality. Microscopy (Oxford, England), 2015, 64, 45-55.	0.7	23
220	Calcium signaling in neocortical development. Developmental Neurobiology, 2015, 75, 360-368.	1.5	51

#	Article	IF	CITATIONS
221	Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron, 2015, 85, 462-483.	3.8	215
222	Design principles and developmental mechanisms underlying retinal mosaics. Biological Reviews, 2015, 90, 854-876.	4.7	67
223	Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson's disease. Neurobiology of Disease, 2015, 73, 70-82.	2.1	74
224	Neurolight –astonishing advances in brain imaging. International Journal of Neuroscience, 2015, 125, 91-99.	0.8	Ο
225	Engineered In Vitro Disease Models. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 195-262.	9.6	442
226	The superresolved brain. Science, 2015, 347, 474-475.	6.0	10
227	An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 2015, 44, 4743-4768.	18.7	1,316
228	From Pathobiology to the Targeting of Pericytes for the Treatment of Diabetic Retinopathy. Current Diabetes Reports, 2015, 15, 573.	1.7	42
229	Brainbow: New Resources and Emerging Biological Applications for Multicolor Genetic Labeling and Analysis. Genetics, 2015, 199, 293-306.	1.2	118
230	Biology coming full circle: Joining the whole and the parts. Experimental Biology and Medicine, 2015, 240, 3-7.	1.1	18
231	Use of labeled tomato lectin for imaging vasculature structures. Histochemistry and Cell Biology, 2015, 143, 225-234.	0.8	149
232	Future advances. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 129, 689-692.	1.0	0
233	Visualizing Neural Structure. , 2015, , 145-166.		1
234	Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis. Frontiers in Neuroanatomy, 2015, 9, 68.	0.9	33
235	The epigenetics of aging and neurodegeneration. Progress in Neurobiology, 2015, 131, 21-64.	2.8	334
236	Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion. Experimental Eye Research, 2015, 139, 136-143.	1.2	42
237	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell, 2015, 162, 635-647.	13.5	608
238	Coordinating Neuronal Actin–Microtubule Dynamics. Current Biology, 2015, 25, R677-R691.	1.8	236

#	Article	IF	CITATIONS
239	Sender–receiver systems and applying information theory for quantitative synthetic biology. Current Opinion in Biotechnology, 2015, 31, 101-107.	3.3	26
240	Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy. International Journal of Pharmaceutics, 2015, 494, 651-656.	2.6	30
241	Diffusion MR Microscopy of Cortical Development in the Mouse Embryo. Cerebral Cortex, 2015, 25, 1970-1980.	1.6	20
242	Towards a comprehensive understanding of brain machinery by correlative microscopy. Journal of Biomedical Optics, 2015, 20, 061105.	1.4	14
243	Neural Computation and Neuromodulation Underlying Social Behavior. Integrative and Comparative Biology, 2015, 55, 268-280.	0.9	11
244	Laminar and Dorsoventral Molecular Organization of the Medial Entorhinal Cortex Revealed by Large-scale Anatomical Analysis of Gene Expression. PLoS Computational Biology, 2015, 11, e1004032.	1.5	48
245	Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction. Scientific Reports, 2015, 5, 11739.	1.6	22
246	Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity. Journal of Computational Neuroscience, 2015, 39, 77-103.	0.6	47
247	A versatile new technique to clear mouse and human brain. Proceedings of SPIE, 2015, , .	0.8	0
248	Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins InÂVivo. Chemistry and Biology, 2015, 22, 1108-1121.	6.2	56
249	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. Neuron, 2015, 87, 252-256.	3.8	202
250	Clarifying Tissue Clearing. Cell, 2015, 162, 246-257.	13.5	977
251	Brain/MINDS: brain-mapping project in Japan. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140310.	1.8	89
252	Optical reconstruction of murine colorectal mucosa at cellular resolution. American Journal of Physiology - Renal Physiology, 2015, 308, G721-G735.	1.6	19
253	Two-photon excitation fluorescence microscopy and its application in functional connectomics. Microscopy (Oxford, England), 2015, 64, 9-15.	0.7	15
254	A new versatile clearing method for brain imaging. , 2015, , .		1
255	Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle. Biotechnic and Histochemistry, 2015, 90, 424-431.	0.7	20
256	Soft Materials in Neuroengineering for Hard Problems in Neuroscience. Neuron, 2015, 86, 175-186.	3.8	251

#	Article	IF	CITATIONS
257	Brain clearing for connectomics. Microscopy (Oxford, England), 2015, 64, 5-8.	0.7	13
258	The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia. Developmental Neuroscience, 2015, 37, 363-375.	1.0	10
260	Optimized optical clearing method for imaging central nervous system. , 2015, , .		0
261	Whole brain optical imaging. Proceedings of SPIE, 2015, , .	0.8	0
262	Recent advances in wavefront shaping techniques for biomedical applications. Current Applied Physics, 2015, 15, 632-641.	1.1	194
263	Unraveling the fabric of polyploidy. Nature Biotechnology, 2015, 33, 491-493.	9.4	17
264	Optical coherence tomography visualizes neurons in human entorhinal cortex. Neurophotonics, 2015, 2, 015004.	1.7	52
265	Abstracting the principles of development using imaging and modeling. Integrative Biology (United) Tj ETQq1 1 ().784314 ı 0.6	ˈgβᢩŢ /Overloo
266	<i>In vivo</i> deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. Journal of Biomedical Optics, 2015, 20, 016019.	1.4	46
267	Cellular Level Brain Imaging in Behaving Mammals: An Engineering Approach. Neuron, 2015, 86, 140-159.	3.8	134
268	Closed-Loop and Activity-Guided Optogenetic Control. Neuron, 2015, 86, 106-139.	3.8	328
269	High-throughput fluorescence imaging approaches for drug discovery using <i>in vitro</i> and <i>in vivo</i> three-dimensional models. Expert Opinion on Drug Discovery, 2015, 10, 1347-1361.	2.5	47
270	Aldehyde-stabilized cryopreservation. Cryobiology, 2015, 71, 448-458.	0.3	18
271	Projections from neocortex mediate top-down control of memory retrieval. Nature, 2015, 526, 653-659.	13.7	376
272	Optical properties of mouse brain tissue after optical clearing with FocusClearâ,,¢. Journal of Biomedical Optics, 2015, 20, 095010.	1.4	23
273	Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature, 2015, 526, 126-130.	13.7	564
274	ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development (Cambridge), 2015, 142, 4168-79.	1.2	436
275	Light on leptin link to lipolysis. Nature, 2015, 527, 43-44.	13.7	12

#	Article	IF	CITATIONS
276	Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nature Protocols, 2015, 10, 1860-1896.	5.5	234
277	Automated <i>in situ</i> brain imaging for mapping the <i>Drosophila</i> connectome. Journal of Neurogenetics, 2015, 29, 157-168.	0.6	10
278	Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6274-83.	3.3	195
279	Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer. Cell, 2015, 162, 766-779.	13.5	394
280	Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 299-320.	3.1	173
281	The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140164.	1.8	179
282	A multi modal clearing method for brain imaging. , 2015, , .		0
283	Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nature Protocols, 2015, 10, 1709-1727.	5.5	615
284	Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Science Translational Medicine, 2015, 7, 309ra164.	5.8	61
285	Brain-wide charting of neuronal activation maps with cellular resolution. , 2015, , .		1
286	From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 2015, 16, 551-563.	4.9	764
287	Programmed synthesis of three-dimensional tissues. Nature Methods, 2015, 12, 975-981.	9.0	215
288	Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses. Immunity, 2015, 43, 579-590.	6.6	360
289	Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains. Neurophotonics, 2015, 2, 041404.	1.7	26
290	Memory engram storage and retrieval. Current Opinion in Neurobiology, 2015, 35, 101-109.	2.0	332
291	Directional bilateral filters for smoothing fluorescence microscopy images. AIP Advances, 2015, 5, 084805.	0.6	4
292	ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience, 2015, 18, 1518-1529.	7.1	511
293	A journey to uncharted territory: new technical frontiers in studying tumor–stromal cell interactions. Integrative Biology (United Kingdom), 2015, 7, 153-161.	0.6	9

		LPOKI	
# 294	ARTICLE Modeling psychiatric disorders for developing effective treatments. Nature Medicine, 2015, 21, 979-988.	lF 15.2	Citations
296	Expanding the power of recombinase-based labeling to uncover cellular diversity. Development (Cambridge), 2015, 142, 4385-93.	1.2	85
297	Advancing biomedical imaging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14424-14428.	3.3	130
298	Development of <scp>MRI</scp> â€based atlases of nonâ€human brains. Journal of Comparative Neurology, 2015, 523, 391-405.	0.9	22
299	Spatially resolved transcriptomics and beyond. Nature Reviews Genetics, 2015, 16, 57-66.	7.7	406
300	Connectomics: A new paradigm for understanding brain disease. European Neuropsychopharmacology, 2015, 25, 733-748.	0.3	187
301	Molecular psychiatry of zebrafish. Molecular Psychiatry, 2015, 20, 2-17.	4.1	174
302	Application and Assessment of Optical Clearing Methods for Imaging of Tissue-Engineered Neural Stem Cell Spheres. Tissue Engineering - Part C: Methods, 2015, 21, 292-302.	1.1	44
304	Clearing and Labeling Techniques for Large-Scale Biological Tissues. Molecules and Cells, 2016, 39, 439-446.	1.0	96
305	Quantitative Histological Validation of Diffusion Tensor MRI with Two-Photon Microscopy of Cleared Mouse Brain. Magnetic Resonance in Medical Sciences, 2016, 15, 416-421.	1.1	11
306	High-Resolution Reconstruction of Whole Mouse Brain Vasculature with Light-Sheet Microscopy. , 2016, , .		1
307	Anterograde Viral Tracer Methods. , 2016, , 203-218.		1
308	Whole-brain imaging reaches new heights (and lengths). ELife, 2016, 5, e13367.	2.8	10
309	Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging. Frontiers in Neuroanatomy, 2016, 10, 40.	0.9	63
310	Connectomic Analysis of Brain Networks: Novel Techniques and Future Directions. Frontiers in Neuroanatomy, 2016, 10, 110.	0.9	23
311	Estimating Fast Neural Input Using Anatomical and Functional Connectivity. Frontiers in Neural Circuits, 2016, 10, 99.	1.4	2
312	Clarifying CLARITY: Quantitative Optimization of the Diffusion Based Delipidation Protocol for Genetically Labeled Tissue. Frontiers in Neuroscience, 2016, 10, 179.	1.4	37
313	Advanced Fluorescence Protein-Based Synapse-Detectors. Frontiers in Synaptic Neuroscience, 2016, 8, 16.	1.3	16

#	Article	IF	CITATIONS
314	Large-scale localization of touching somas from 3D images using density-peak clustering. BMC Bioinformatics, 2016, 17, 375.	1.2	9
315	Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space. PLoS Computational Biology, 2016, 12, e1004970.	1.5	56
316	A Versatile Optical Clearing Protocol for Deep Tissue Imaging of Fluorescent Proteins in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0161107.	1.1	37
317	An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope. PLoS ONE, 2016, 11, e0166735.	1.1	6
318	Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy. Biomedical Optics Express, 2016, 7, 2362.	1.5	7
319	Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology, 2016, 40, 193-207.	3.3	41
320	New approaches in renal microscopy. Current Opinion in Nephrology and Hypertension, 2016, 25, 159-167.	1.0	7
321	Light microscopy of whole plant organs. Journal of Microscopy, 2016, 263, 165-170.	0.8	18
322	Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing. Development (Cambridge), 2016, 143, 2862-7.	1.2	174
323	Improved specificity of hippocampal memory trace labeling. Hippocampus, 2016, 26, 752-762.	0.9	34
324	Anatomy of the Murine Hepatobiliary System: A Wholeâ€Organ‣evel Analysis Using a Transparency Method. Anatomical Record, 2016, 299, 161-172.	0.8	19
325	Study of the inhibition effect of thiazone on muscle optical clearing. Journal of Biomedical Optics, 2016, 21, 105004.	1.4	5
326	Tomographic brain imaging with nucleolar detail and automatic cell counting. Scientific Reports, 2016, 6, 32156.	1.6	57
327	Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms. Proceedings of SPIE, 2016, , .	0.8	0
328	Real-time high dynamic range laser scanning microscopy. Nature Communications, 2016, 7, 11077.	5.8	33
329	High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Scientific Reports, 2016, 6, 24544.	1.6	56
330	Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning. Scientific Reports, 2016, 6, 23494.	1.6	17
331	Genetically Encoded Fluorescent Probes and Live Cell Imaging. , 2016, , 51-61.		0

#	Article	IF	CITATIONS
332	Exposing the Three-Dimensional Biogeography and Metabolic States of Pathogens in Cystic Fibrosis Sputum via Hydrogel Embedding, Clearing, and rRNA Labeling. MBio, 2016, 7, .	1.8	112
333	Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology and ultrastructure. Scientific Reports, 2016, 6, 34331.	1.6	67
334	Clarifying intact 3D tissues on a microfluidic chip for high-throughput structural analysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14915-14920.	3.3	62
335	Optimization of the optical transparency of rodent tissues by modified PACT-based passive clearing. Experimental and Molecular Medicine, 2016, 48, e274-e274.	3.2	42
336	<i>In vitro</i> methods to study bubble-cell interactions: Fundamentals and therapeutic applications. Biomicrofluidics, 2016, 10, 011501.	1.2	45
337	Alternative Methods Used to Assess Potential Embryo-Fetal Developmental Risk of Pharmaceuticals. Methods in Pharmacology and Toxicology, 2016, , 235-259.	0.1	1
338	ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Scientific Reports, 2016, 6, 18631.	1.6	186
339	Roadmap on neurophotonics. Journal of Optics (United Kingdom), 2016, 18, 093007.	1.0	28
340	Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540, 230-235.	13.7	812
342	On-chip clearing of arrays of 3-D cell cultures and micro-tissues. Biomicrofluidics, 2016, 10, 044107.	1.2	40
343	Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death and Disease, 2016, 7, e2160-e2160.	2.7	72
344	Clearing of fixed tissue: a review from a microscopist's perspective. Journal of Biomedical Optics, 2016, 21, 081205.	1.4	140
345	A methodological pipeline for serial-section imaging and tissue realignment for whole-brain functional and connectivity assessment. Journal of Neuroscience Methods, 2016, 266, 151-160.	1.3	6
346	TAM receptors regulate multiple features of microglial physiology. Nature, 2016, 532, 240-244.	13.7	441
347	Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell, 2016, 165, 1776-1788.	13.5	295
348	Focus on Bio-Image Informatics. Advances in Anatomy, Embryology and Cell Biology, 2016, , .	1.0	13
349	An improved method for in vitro morphofunctional analysis of mouse dorsal root ganglia. Annals of Anatomy, 2016, 207, 62-67.	1.0	7
350	Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12–16 October 2014. Psychiatric Genetics, 2016, 26, 1-47.	0.6	0

~		<u> </u>		
(11	ГАТ	リロ	PORT	г
	IAL	IVL.	PUR	

#	Article	IF	CITATIONS
352	Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021824.	2.3	43
353	Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish <i>(Danio rerio)</i> embryonic brain. Radiology and Oncology, 2016, 50, 159-167.	0.6	20
354	Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues. ACS Nano, 2016, 10, 5468-5478.	7.3	73
355	Minimally disruptive needle insertion: a biologically inspired solution. Interface Focus, 2016, 6, 20150107.	1.5	34
356	Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction. Biological Psychiatry, 2016, 80, 743-753.	0.7	74
357	Expansion microscopy with conventional antibodies and fluorescent proteins. Nature Methods, 2016, 13, 485-488.	9.0	363
358	Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochemistry and Cell Biology, 2016, 146, 141-152.	0.8	92
359	Deformably registering and annotating whole CLARITY brains to an atlas via masked LDDMM. , 2016, , .		6
360	Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integrative Biology (United Kingdom), 2016, 8, 672-683.	0.6	94
361	Neuro-Immune Interactions at Barrier Surfaces. Cell, 2016, 165, 801-811.	13.5	201
362	Mapping Brain Anatomical Connectivity Using Diffusion Magnetic Resonance Imaging: Structural connectivity of the human brain. IEEE Signal Processing Magazine, 2016, 33, 36-51.	4.6	15
363	Enhancement of OCT imaging by blood optical clearing in vessels – A feasibility study. Photonics & Lasers in Medicine, 2016, 5, .	0.3	7
364	Targeting Neural Circuits. Cell, 2016, 165, 524-534.	13.5	148
365	Threeâ€dimensional microscopic analysis of clinical prostate specimens. Histopathology, 2016, 69, 985-992.	1.6	71
366	Angling for A Better View. Biophysical Journal, 2016, 111, 1141-1142.	0.2	0
367	Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods in Cell Biology, 2016, 134, 165-209.	0.5	32
368	Deep tissue imaging: a review from a preclinical cancer research perspective. Histochemistry and Cell Biology, 2016, 146, 781-806.	0.8	50
369	Application of Optical Clearing Methods on the Songbird Brain. Ornithological Science, 2016, 15, 163-170.	0.3	3

#	Article	IF	CITATIONS
370	A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models. Trends in Biotechnology, 2016, 34, 757-769.	4.9	57
371	Animal Models of Behavior Genetics. , 2016, , .		0
372	Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice. ACS Chemical Neuroscience, 2016, 7, 1364-1373.	1.7	30
373	Extending two-dimensional histology into the third dimension through conventional micro computed tomography. NeuroImage, 2016, 139, 26-36.	2.1	69
374	Bringing <scp>CLARITY</scp> to the human brain: visualization of Lewy pathology in three dimensions. Neuropathology and Applied Neurobiology, 2016, 42, 573-587.	1.8	62
375	Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature Methods, 2016, 13, 859-867.	9.0	522
376	Neurologic Disease. , 2016, , .		5
378	High-throughput 3D whole-brain quantitative histopathology in rodents. Scientific Reports, 2016, 6, 20958.	1.6	46
379	A scalable cyberinfrastructure for interactive visualization of terascale microscopy data. , 2016, 2016, .		1
380	Advances in decoding breast cancer brain metastasis. Cancer and Metastasis Reviews, 2016, 35, 677-684.	2.7	7
381	Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Scientific Reports, 2016, 6, 26013.	1.6	43
382	High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14456-14461.	3.3	224
383	Sheet Probability Index (SPI): Characterizing the geometrical organization of the white matter with diffusion MRI. NeuroImage, 2016, 142, 260-279.	2.1	17
384	Volume scanning electron microscopy for imaging biological ultrastructure. Biology of the Cell, 2016, 108, 307-323.	0.7	183
385	Automated Neuron Tracing Methods: An Updated Account. Neuroinformatics, 2016, 14, 353-367.	1.5	89
386	Three-Dimensional Study of Alzheimer's Disease Hallmarks Using the iDISCO Clearing Method. Cell Reports, 2016, 16, 1138-1152.	2.9	156
386 387		2.9 5.8	156 138

ARTICLE IF CITATIONS # Enhancing image quality in cleared tissue with adaptive optics. Journal of Biomedical Optics, 2016, 21, 389 1.4 7 121508. X-ray micro-tomography for investigations of brain tissues on cellular level., 2016, , . 391 Toward Whole-Body Connectomics. Journal of Neuroscience, 2016, 36, 11375-11383. 1.7 24 A combined method for correlative 3D imaging of biological samples from macro to nano scale. Scientific Reports, 2016, 6, 35606. Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications, 2016, 7, 393 5.8 179 11425. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 121510. 394 1.4 Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes 395 6.6 176 Infection. Immunity, 2016, 45, 861-876. Clonal Proliferation and Stochastic Pruning Orchestrate Lymph Node Vasculature Remodeling. 396 6.6 48 Immunity, 2016, 45, 877-888. Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. 397 38 1.6 Scientific Reports, 2016, 6, 30736. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Scientific Reports, 1.6 46 2016, 6, 32674. 399 Optogenetics in the Psychiatry Field. Nippon Laser Igakkaishi, 2016, 36, 478-481. 0.0 0 Imaging Serotonergic Fibers in the Mouse Spinal Cord Using the CLARITY/CUBIC Technique. Journal of 400 Visualized Experiments, 2016, , 53673. Optical Clearing of the Mouse Central Nervous System Using Passive CLARITY. Journal of Visualized 402 0.2 11 Experiments, 2016, , . Imaging Cleared Embryonic and Postnatal Hearts at Single-cell Resolution. Journal of Visualized 0.2 Experiments, 2016, , . ACT-PRESTO: Biological Tissue Clearing and Immunolabeling Methods for Volume Imaging. Journal of 404 0.2 6 Visualized Experiments, 2016, , . Clearing skeletal muscle with CLARITY for light microscopy imaging. Cell Biology International, 2016, 23 40, 478-483. Entry Sites of Venezuelan and Western Equine Encephalitis Viruses in the Mouse Central Nervous 406 1.536 System following Peripheral Infection. Journal of Virology, 2016, 90, 5785-5796. Light-sheet imaging of mammalian development. Seminars in Cell and Developmental Biology, 2016, 55, 2.3 148-155.

#	Article	IF	CITATIONS
408	Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. Journal of Neurophysiology, 2016, 115, 2124-2146.	0.9	17
409	Illustrated Review of the Ventral Striatum's Olfactory Tubercle. Chemical Senses, 2016, 41, bjw069.	1.1	32
410	Catching the Brain in the Act. Cell, 2016, 165, 1570-1571.	13.5	0
411	Image Informatics Strategies for Deciphering Neuronal Network Connectivity. Advances in Anatomy, Embryology and Cell Biology, 2016, 219, 123-148.	1.0	5
412	A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry, 2016, 51, 9-23.	5.1	146
413	Novel Targets for Drug Treatment in Psychiatry. , 2016, , 601-654.		0
414	Studying the Variations of Complex Electrical Bio-Impedance of Plant Tissues During Boiling. Procedia Technology, 2016, 23, 248-255.	1.1	9
415	RetroDISCO: Clearing technique to improve quantification of retrograde labeled motor neurons of intact mouse spinal cords. Journal of Neuroscience Methods, 2016, 271, 34-42.	1.3	21
416	CMOS technology: a critical enabler for free-form electronics-based killer applications. , 2016, , .		0
417	Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annual Review of Cell and Developmental Biology, 2016, 32, 713-741.	4.0	238
418	Arrhythmogenic and metabolic remodelling of failing human heart. Journal of Physiology, 2016, 594, 3963-3980.	1.3	18
419	Modeling sleep alterations in Parkinson's disease: How close are we toÂvalid translational animal models?. Sleep Medicine Reviews, 2016, 25, 95-111.	3.8	27
420	In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells. Molecular and Cellular Neurosciences, 2016, 73, 3-12.	1.0	19
421	Rapid and prodium iodide-compatible optical clearing method for brain tissue based on sugar/sugar-alcohol. Journal of Biomedical Optics, 2016, 21, 081203.	1.4	29
422	The lymphatic system and pancreatic cancer. Cancer Letters, 2016, 381, 217-236.	3.2	44
423	Multiplexed Intact-Tissue Transcriptional Analysis at Cellular Resolution. Cell, 2016, 164, 792-804.	13.5	125
424	Using hydrogels in microscopy: A tutorial. Micron, 2016, 84, 7-16.	1.1	15
425	Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation. ACS Nano, 2016, 10, 3132-3143.	7.3	52

ARTICLE IF CITATIONS Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared 2.6 80 kidney tissue. Kidney International, 2016, 89, 243-247. On the outside looking in: redefining the role of analytical chemistry in the biosciences. Chemical 2.2 23 Communications, 2016, 52, 8918-8934. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis 1.5 8 across length scales. Interface Focus, 2016, 6, 20150081. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chemical Biology, 2016, 23, 137-157. Analysis of Hippo and TGFÎ² signaling in polarizing epithelial cells and mouse embryos. Differentiation, 1.0 7 2016, 91, 109-118. Adaptive optics microscopy enhances image quality in deep layers of CLARITY processed brains of YFP-H mice. Proceedings of SPIE, 2016, , . 0.8 Optimizing probes to image cleared tissue. Nature Methods, 2016, 13, 205-209. 9.0 31 Neurological Diseases from a Systems Medicine Point of View. Methods in Molecular Biology, 2016, 0.4 1386, 221-250. Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell, 2016, 164, 1136-1150. 13.5 143 Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent. Cell Reports, 2016, 14, 2718-2732. Foraging for Coherence in Neuroscience: A Pragmatist Orientation. Contemporary Pragmatism, 2016, 4 0.1 13, 1-28. Through Thick and Thin: a Need to Reconcile Contradictory Results on Trajectories in Human Cortical 1.6 171 Development. Cerebral Cortex, 2017, 27, bhv301. Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE Journal of Selected 1.9 48 Topics in Quantum Electronics, 2016, 22, 1-13. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Experimental Neurology, 2016, 277, 103-114. Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery. 2.1 34 Neurotherapeutics, 2016, 13, 325-340. An Emerging Technology Framework for the Neurobiology of Appetite. Cell Metabolism, 2016, 23, 48 234-253. Nestin-expressing vascular wall cells drive development of pulmonary hypertension. European 3.133 Respiratory Journal, 2016, 47, 876-888.

CITATION REPORT

443	Sleep as a biological problem: an overview of frontiers in sleep research. Journal of Physiological Sciences, 2016, 66, 1-13.	0.9	28
-----	---	-----	----

#

426

427

428

429

430

432

433

434

436

438

440

441

#	Article	IF	CITATIONS
444	Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opinion on Drug Discovery, 2016, 11, 11-25.	2.5	16
445	Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Annals of Biomedical Engineering, 2016, 44, 1436-1448.	1.3	40
446	3-D imaging of islets in obesity: formation of the islet–duct complex and neurovascular remodeling in young hyperphagic mice. International Journal of Obesity, 2016, 40, 685-697.	1.6	25
447	Seeing Through the Surface: Non-invasive Characterization of Biomaterial–Tissue Interactions Using Photoacoustic Microscopy. Annals of Biomedical Engineering, 2016, 44, 649-666.	1.3	13
448	Auditory–limbic interactions in chronic tinnitus: Challenges for neuroimaging research. Hearing Research, 2016, 334, 49-57.	0.9	100
449	Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology, 2016, 41, 24-44.	2.8	159
450	Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Structure and Function, 2016, 221, 2375-2383.	1.2	44
451	Dynamic interactions of <i>Plasmodium</i> spp. with vascular endothelium. Tissue Barriers, 2017, 5, e1268667.	1.6	16
452	Diffusion tensor imaging measures of white matter compared to myelin basic protein immunofluorescence in tissue cleared intact brains. Data in Brief, 2017, 10, 438-443.	0.5	19
453	Reflection imaging of China inkâ€perfused brain vasculature using confocal laserâ€scanning microscopy after clarification of brain tissue by the Spalteholz method. Journal of Anatomy, 2017, 230, 601-606.	0.9	3
454	A beginner's guide to tissue clearing. International Journal of Biochemistry and Cell Biology, 2017, 84, 35-39.	1.2	108
455	Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue. Scientific Reports, 2017, 7, 38848.	1.6	28
456	Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1, .	11.6	1,982
457	Photostable and photoswitching fluorescent dyes for super-resolution imaging. Journal of Biological Inorganic Chemistry, 2017, 22, 639-652.	1.1	58
458	Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Human Molecular Genetics, 2017, 26, ddw381.	1.4	48
459	Breaking the population barrier by single cell analysis: one host against one pathogen. Current Opinion in Microbiology, 2017, 36, 69-75.	2.3	17
460	High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis. Scientific Reports, 2017, 7, 43012.	1.6	37
461	Second-Generation <i>Drosophila</i> Chemical Tags: Sensitivity, Versatility, and Speed. Genetics, 2017, 205, 1399-1408.	1.2	25

#	Article	IF	CITATIONS
462	Induction – reversal modeling of psychiatric disorders by functional manipulation of habenular pathways in zebrafish. Neurology Psychiatry and Brain Research, 2017, 24, 1-8.	2.0	6
463	Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding. Trends in Endocrinology and Metabolism, 2017, 28, 437-448.	3.1	48
464	Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos. Scientific Reports, 2017, 7, 43786.	1.6	58
465	Modelling of optical aberrations caused by light propagation in mouse cranial bone using second harmonic generation imaging. , 2017, , .		1
466	Stimulation of ovarian follicle growth after AMPK inhibition. Reproduction, 2017, 153, 683-694.	1.1	28
467	Neuronal Activity in Ontogeny and Oncology. Trends in Cancer, 2017, 3, 89-112.	3.8	80
468	Constitutive activation of CREB in mice enhances temporal association learning and increases hippocampal CA1 neuronal spine density and complexity. Scientific Reports, 2017, 7, 42528.	1.6	24
469	Label-free volumetric optical imaging of intact murine brains. Scientific Reports, 2017, 7, 46306.	1.6	13
470	New frontiers in intravital microscopy of the kidney. Current Opinion in Nephrology and Hypertension, 2017, 26, 172-178.	1.0	7
471	We can see clearly now. Current Opinion in Nephrology and Hypertension, 2017, 26, 179-186.	1.0	12
472	Three-dimensional imaging of human brain tissues using absorption-contrast high-resolution X-ray tomography. , 2017, , .		0
473	Optimized CUBIC protocol for 3D imaging of chicken embryos at single-cell resolution. Development (Cambridge), 2017, 144, 2092-2097.	1.2	35
474	The separate effects of lipids and proteins on brain MRI contrast revealed through tissue clearing. NeuroImage, 2017, 156, 412-422.	2.1	53
475	Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. DMM Disease Models and Mechanisms, 2017, 10, 847-857.	1.2	46
476	Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Science Translational Medicine, 2017, 9, .	5.8	160
477	The expression of chemorepulsive guidance receptors and the regenerative abilities of spinal-projecting neurons after spinal cord injury. Neuroscience, 2017, 341, 95-111.	1.1	20
478	Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform. Brain, Behavior, and Immunity, 2017, 65, 1-8.	2.0	7
479	Relevant variations and neuroprotecive effect of hydrogen sulfide in a rat glaucoma model. Neuroscience, 2017, 341, 27-41.	1.1	29

#	Article	IF	CITATIONS
480	ePro-ClearSee: a simple immunohistochemical method that does not require sectioning of plant samples. Scientific Reports, 2017, 7, 42203.	1.6	17
481	High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates. Neuron, 2017, 94, 1085-1100.e6.	3.8	108
482	The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542.	9.4	371
483	Optical and chemical discoveries recognized for impact on biology and psychiatry. EMBO Reports, 2017, 18, 859-860.	2.0	7
484	Clustered protocadherin trafficking. Seminars in Cell and Developmental Biology, 2017, 69, 131-139.	2.3	16
485	Optimized CLARITY technique detects reduced parvalbumin density in a genetic model of schizophrenia. Journal of Neuroscience Methods, 2017, 283, 23-32.	1.3	13
486	Light-Sheet Fluorescence Microscopy: Chemical Clearing and Labeling Protocols for Ultramicroscopy. Methods in Molecular Biology, 2017, 1563, 33-49.	0.4	4
487	Mapping brain structure and function: cellular resolution, global perspective. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 245-264.	0.7	4
488	Cell Fixation by Lightâ€Triggered Release of Glutaraldehyde. Angewandte Chemie, 2017, 129, 4802-4806.	1.6	1
489	CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions. Scientific Reports, 2017, 7, 44810.	1.6	91
490	Improved clearing of lipid droplet-rich tissues for three-dimensional structural elucidation. Acta Biochimica Et Biophysica Sinica, 2017, 49, 465-467.	0.9	9
491	Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Research, 2017, 27, 959-972.	2.4	54
492	Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nature Neuroscience, 2017, 20, 836-844.	7.1	146
493	Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017, 18, 222-235.	4.9	562
494	Comparative analysis of monoaminergic cerebrospinal fluidâ€contacting cells in <i>Osteichthyes</i> (bony vertebrates). Journal of Comparative Neurology, 2017, 525, 2265-2283.	0.9	46
495	Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosensors and Bioelectronics, 2017, 94, 485-499.	5.3	50
496	Light Microscopy. Methods in Molecular Biology, 2017, , .	0.4	10
497	Glucose diffusion in colorectal mucosa—a comparative study between normal and cancer tissues. Journal of Biomedical Optics, 2017, 22, 091506.	1.4	35

#	Article	IF	CITATIONS
498	Cell Fixation by Lightâ€Triggered Release of Glutaraldehyde. Angewandte Chemie - International Edition, 2017, 56, 4724-4728.	7.2	13
499	Three-dimensional evaluation of subclinical extension of extramammary Paget disease: visualization of the histological border and its comparison to the clinical border. British Journal of Dermatology, 2017, 177, 229-237.	1.4	24
500	Extreme terahertz science. Nature Photonics, 2017, 11, 16-18.	15.6	335
501	Optical microscopy aims deep. Nature Photonics, 2017, 11, 14-16.	15.6	75
502	Quality Matters: 2016 Annual Conference of the National Infrastructures for Biobanking. Biopreservation and Biobanking, 2017, 15, 270-276.	0.5	26
503	Synapse Development. Methods in Molecular Biology, 2017, , .	0.4	1
504	The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains. NeuroImage, 2017, 147, 253-261.	2.1	133
505	Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity. Methods in Molecular Biology, 2017, 1538, 321-340.	0.4	6
506	Quantitative approaches for investigating the spatial context of gene expression. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1369.	6.6	41
507	Optimized Protocol for Imaging Cleared Neural Tissues Using Light Microscopy. Methods in Molecular Biology, 2017, 1538, 137-153.	0.4	11
508	Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Science Translational Medicine, 2017, 9, .	5.8	50
509	Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nature Communications, 2017, 8, 780.	5.8	68
510	A platform for efficient identification of molecular phenotypes of brain-wide neural circuits. Scientific Reports, 2017, 7, 13891.	1.6	27
511	Ancestral Circuits for the Coordinated Modulation of Brain State. Cell, 2017, 171, 1411-1423.e17.	13.5	145
512	Seeing whole-tumour heterogeneity. Nature Biomedical Engineering, 2017, 1, 772-774.	11.6	10
513	Organism-Level Analysis of Vaccination Reveals Networks of Protection across Tissues. Cell, 2017, 171, 398-413.e21.	13.5	69
514	Short-range connections in the developmental connectome during typical and atypical brain maturation. Neuroscience and Biobehavioral Reviews, 2017, 83, 109-122.	2.9	86
515	Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain. Neuron, 2017, 96, 755-768.e5.	3.8	174

#	Article	IF	CITATIONS
516	High resolution, high speed, long working distance, large field of view confocal fluorescence microscope. Scientific Reports, 2017, 7, 13349.	1.6	16
518	3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy. Science Advances, 2017, 3, e1700553.	4.7	29
519	Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nature Neuroscience, 2017, 20, 1384-1394.	7.1	186
520	Novel Therapeutic Targets Against Spreading Depression. Headache, 2017, 57, 1340-1358.	1.8	18
521	Optogenetic targeting of cardiac myocytes and non-myocytes: Tools, challenges and utility. Progress in Biophysics and Molecular Biology, 2017, 130, 140-149.	1.4	28
522	In vivo magnetic resonance images reveal neuroanatomical sex differences through the application of voxel-based morphometry in C57BL/6 mice. NeuroImage, 2017, 163, 197-205.	2.1	29
523	A radial axis defined by Semaphorin to Neuropilin signaling controls pancreatic islet morphogenesis. Development (Cambridge), 2017, 144, 3744-3754.	1.2	29
524	Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues. Nano Letters, 2017, 17, 6131-6139.	4.5	116
525	CUBIC pathology: three-dimensional imaging for pathological diagnosis. Scientific Reports, 2017, 7, 9269.	1.6	110
526	UbasM: An effective balanced optical clearing method for intact biomedical imaging. Scientific Reports, 2017, 7, 12218.	1.6	56
527	Microstructural Alterations and Oligodendrocyte Dysmaturation in White Matter After Cardiopulmonary Bypass in a Juvenile Porcine Model. Journal of the American Heart Association, 2017, 6, .	1.6	16
528	Fast free-of-acrylamide clearing tissue (FACT)—an optimized new protocol for rapid, high-resolution imaging of three-dimensional brain tissue. Scientific Reports, 2017, 7, 9895.	1.6	39
529	The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature, 2017, 549, 282-286.	13.7	400
530	Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Translational Research, 2017, 189, 1-12.	2.2	23
531	Advances and perspectives in tissue clearing using CLARITY. Journal of Chemical Neuroanatomy, 2017, 86, 19-34.	1.0	52
532	A Guide to Creating and Testing New INTRSECT Constructs. Current Protocols in Neuroscience, 2017, 80, 4.39.1-4.39.24.	2.6	25
533	Free-of-Acrylamide SDS-based Tissue Clearing (FASTClear) for three dimensional visualization of myocardial tissue. Scientific Reports, 2017, 7, 5188.	1.6	38
534	Quantitative Visualization of Leukocyte Infiltrate in a Murine Model of Fulminant Myocarditis by Light Sheet Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	2

#	Article	IF	CITATIONS
535	Depolarization signatures map gold nanorods within biological tissue. Nature Photonics, 2017, 11, 583-588.	15.6	25
536	Three-dimensional visualization of intrauterine conceptus through the uterine wall by tissue clearing method. Scientific Reports, 2017, 7, 5964.	1.6	14
537	Optimal staining and clearing protocol for whole mouse brain vasculature imaging with light-sheet microscopy. Proceedings of SPIE, 2017, , .	0.8	0
538	Histopathological Evaluation in Prostate Cancer. , 2017, , 169-189.		0
539	Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (C _e 3D). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7321-E7330.	3.3	238
540	Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories. Cell, 2017, 170, 100-1012.e19.	13.5	221
541	Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking. Cell, 2017, 170, 1013-1027.e14.	13.5	129
542	Fluoropolymer Nanosheet as a Wrapping Mount for Highâ€Quality Tissue Imaging. Advanced Materials, 2017, 29, 1703139.	11.1	19
543	Cardiac neuroanatomy - Imaging nerves to define functional control. Autonomic Neuroscience: Basic and Clinical, 2017, 207, 48-58.	1.4	44
544	Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Scientific Reports, 2017, 7, 5899.	1.6	33
545	Generative models for network neuroscience: prospects and promise. Journal of the Royal Society Interface, 2017, 14, 20170623.	1.5	89
546	Multiplex three-dimensional optical mapping of tumor immune microenvironment. Scientific Reports, 2017, 7, 17031.	1.6	41
547	<i>In Vivo</i> Imaging of CNS Injury and Disease. Journal of Neuroscience, 2017, 37, 10808-10816.	1.7	24
548	Leveraging advances in biology to design biomaterials. Nature Materials, 2017, 16, 1178-1185.	13.3	97
549	xDCI, a data science cyberinfrastructure for interdisciplinary research. , 2017, , .		0
550	Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nature Communications, 2017, 8, 1386.	5.8	104
551	Chemical Probes for Visualizing Intact Animal and Human Brain Tissue. Cell Chemical Biology, 2017, 24, 659-672.	2.5	45
552	Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nature Biomedical Engineering, 2017, 1, .	11.6	285

CITAT	ION	DEDODT
ULLAL		Report
U 11711		

#	Article	IF	CITATIONS
553	Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. Angiogenesis, 2017, 20, 533-546.	3.7	71
554	Examining the Role of Microglia and Astroglia During the Pathogenesis of Alzheimer's Disease via the Puri-Li Model. Journal of Molecular Neuroscience, 2017, 62, 363-367.	1.1	8
555	Whole-Body Profiling of Cancer Metastasis with Single-Cell Resolution. Cell Reports, 2017, 20, 236-250.	2.9	194
556	Fast assembling of neuron fragments in serial 3D sections. Brain Informatics, 2017, 4, 183-186.	1.8	9
557	Q&A: Expansion microscopy. BMC Biology, 2017, 15, 50.	1.7	49
558	Automated dense neuronal fiber tracing and connectivity mapping at cellular level. , 2017, , .		1
559	Exploring Passive Clearing for 3D Optical Imaging of Nanoparticles in Intact Tissues. Bioconjugate Chemistry, 2017, 28, 253-259.	1.8	39
560	Neurogenesis: Regulation by Alternative Splicing and Related Posttranscriptional Processes. Neuroscientist, 2017, 23, 466-477.	2.6	22
561	Visualisation of Collagen in fixed skeletal muscle tissue using fluorescently tagged Collagen binding protein CNA35. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 37-44.	1.5	6
562	Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. Journal of the American Society of Nephrology: JASN, 2017, 28, 452-459.	3.0	274
563	The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Experimental Neurology, 2017, 287, 437-451.	2.0	45
564	CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit. Neuropsychopharmacology, 2017, 42, 774-784.	2.8	68
565	Optical Brain Imaging: A Powerful Tool for Neuroscience. Neuroscience Bulletin, 2017, 33, 95-102.	1.5	16
566	Whole-Brain Microscopy Meets In Vivo Neuroimaging: Techniques, Benefits, and Limitations. Molecular Imaging and Biology, 2017, 19, 1-9.	1.3	30
567	The neuroanatomy of autism $\hat{a} \in $ a developmental perspective. Journal of Anatomy, 2017, 230, 4-15.	0.9	156
568	Free of acrylamide sodium dodecyl sulphate (SDS)â€based tissue clearing (FASTClear): a novel protocol of tissue clearing for threeâ€dimensional visualization of human brainÂtissues. Neuropathology and Applied Neurobiology, 2017, 43, 346-351.	1.8	36
569	Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Molecular Psychiatry, 2017, 22, 4-12.	4.1	94
570	Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells, 2017, 35, 51-60.	1.4	48

#	Article	IF	CITATIONS
571	Three-dimensional Reconstruction of the Vascular Architecture of the Passive CLARITY-cleared Mouse Ovary. Journal of Visualized Experiments, 2017, , .	0.2	11
572	Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chemical and Pharmaceutical Bulletin, 2017, 65, 642-648.	0.6	8
575	Plastic embedding immunolabeled large-volume samples for three-dimensional high-resolution imaging. Biomedical Optics Express, 2017, 8, 3583.	1.5	13
576	Longitudinal imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence and electron tomography. ELife, 2017, 6, .	2.8	27
577	Effect of Perfluoroalkyl Endgroups on the Interactions of Tri-Block Copolymers with Monofluorinated F-DPPC Monolayers. Polymers, 2017, 9, 555.	2.0	4
578	Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. International Journal of Molecular Sciences, 2017, 18, 828.	1.8	25
579	A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury. Frontiers in Aging Neuroscience, 2017, 9, 230.	1.7	24
580	A Tool for Brain-Wide Quantitative Analysis of Molecular Data upon Projection into a Planar View of Choice. Frontiers in Neuroanatomy, 2017, 11, 1.	0.9	53
581	DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D. Frontiers in Neuroanatomy, 2017, 11, 117.	0.9	15
582	From Engrams to Pathologies of the Brain. Frontiers in Neural Circuits, 2017, 11, 23.	1.4	32
583	A Manual Segmentation Tool for Three-Dimensional Neuron Datasets. Frontiers in Neuroinformatics, 2017, 11, 36.	1.3	16
584	Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Frontiers in Neuroscience, 2017, 11, 589.	1.4	29
585	In Vivo Assessment of Stem Cells for Treating Neurodegenerative Disease: Current Approaches and Future Prospects. Stem Cells International, 2017, 2017, 1-5.	1.2	5
586	Age-related Impairment of Vascular Structure and Functions. , 2017, 8, 590.		192
587	Super-resolution Microscopy Made Simple. , 2017, , .		0
588	Ribbon scanning confocal for high-speed high-resolution volume imaging of brain. PLoS ONE, 2017, 12, e0180486.	1.1	33
589	3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation. Biological Procedures Online, 2017, 19, 7.	1.4	3
590	An optimised clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils. Plant Methods, 2017, 13, 67.	1.9	20

#	Article	IF	Citations
591	Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Molecular Brain, 2017, 10, 33.	1.3	70
592	Antibody incubation at 37°C improves fluorescent immunolabeling in free-floating thick tissue sections. BioTechniques, 2017, 62, 115-122.	0.8	8
593	In Search of Engram Cells. , 2017, , 637-658.		3
594	Localization-controlled two-color luminescence imaging <i>via</i> environmental modulation of energy transfer in a multichromophoric species. Dalton Transactions, 2018, 47, 4733-4738.	1.6	10
595	Fluorescent Mycobacterium tuberculosis reporters: illuminating host–pathogen interactions. Pathogens and Disease, 2018, 76, .	0.8	33
596	Intravital Imaging of Dynamic Bone and Immune Systems. Methods in Molecular Biology, 2018, , .	0.4	1
597	Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nature Communications, 2018, 9, 754.	5.8	94
598	Three-Dimensional Analysis of the Human Pancreas. Endocrinology, 2018, 159, 1393-1400.	1.4	36
599	Toward Understanding <i>in Vivo</i> Sequestration of Nanoparticles at the Molecular Level. ACS Nano, 2018, 12, 2088-2093.	7.3	21
600	Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates. Scientific Reports, 2018, 8, 3362.	1.6	12
601	A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nature Neuroscience, 2018, 21, 625-637.	7.1	234
602	Feeding circuit development and early-life influences on future feeding behaviour. Nature Reviews Neuroscience, 2018, 19, 302-316.	4.9	43
603	Optimization of immunolabeling and clearing techniques for indelibly labeled memory traces. Hippocampus, 2018, 28, 523-535.	0.9	16
604	A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Reports, 2018, 23, 652-665.	2.9	65
605	High Resolution 3D Imaging of the Human Pancreas Neuro-insular Network. Journal of Visualized Experiments, 2018, , .	0.2	16
606	Cortical parcellation based on structural connectivity: A case for generative models. NeuroImage, 2018, 173, 592-603.	2.1	18
607	Recent progress in tissue optical clearing for spectroscopic application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 216-229.	2.0	79
608	Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cellular and Molecular Immunology, 2018, 15, 875-887.	4.8	24

#	Article	IF	CITATIONS
609	Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Scientific Reports, 2018, 8, 2242.	1.6	15
610	Three-dimensional histochemistry and imaging of human gingiva. Scientific Reports, 2018, 8, 1647.	1.6	22
611	Porous supramolecular materials: the importance of emptiness. Supramolecular Chemistry, 2018, 30, 166-168.	1.5	2
612	A Virtual Reality Visualization Tool for Neuron Tracing. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 994-1003.	2.9	59
613	3D imaging of cleared human skin biopsies using lightâ€sheet microscopy: A new way to visualize inâ€depth skin structure. Skin Research and Technology, 2018, 24, 294-303.	0.8	34
614	RTF: a rapid and versatile tissue optical clearing method. Scientific Reports, 2018, 8, 1964.	1.6	53
615	Three-dimensional visualization of extracellular matrix networks during murine development. Developmental Biology, 2018, 435, 122-129.	0.9	17
616	A Novel Ultra-Stable, Monomeric Green Fluorescent Protein For Direct Volumetric Imaging of Whole Organs Using CLARITY. Scientific Reports, 2018, 8, 667.	1.6	66
617	17 Multiscale correlative imaging of the brain. , 2018, , 321-344.		0
618	3D NIRâ€II Molecular Imaging Distinguishes Targeted Organs with Highâ€Performance NIRâ€II Bioconjugates. Advanced Materials, 2018, 30, e1705799.	11.1	150
619	Transparencyâ€enhancing technology allows threeâ€dimensional assessment of gastrointestinal mucosa: A porcine model. Pathology International, 2018, 68, 102-108.	0.6	21
620	Whole Organ Blood and Lymphatic Vessels Imaging (WOBLI). Scientific Reports, 2018, 8, 1412.	1.6	28
621	Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology. NeuroImage, 2018, 182, 417-428.	2.1	81
622	Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY acrylamide formulations. Brain Structure and Function, 2018, 223, 987-999.	1.2	9
623	Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nature Reviews Materials, 2018, 3, .	23.3	51
624	Clarity and Immunofluorescence on Mouse Brain Tissue. Current Protocols in Neuroscience, 2018, 83, e46.	2.6	2
625	Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature, 2018, 557, 242-246.	13.7	394
627	Optically-controlled bacterial metabolite for cancer therapy. Nature Communications, 2018, 9, 1680.	5.8	212

		CITATION REPORT		
#	Article		IF	CITATIONS
628	3D Reconstruction of Lipid Droplets in the Seed of Brassica napus. Scientific Reports, 2	2018, 8, 6560.	1.6	7
629	Three-dimensional Cardiomyocytes Structure Revealed By Diffusion Tensor Imaging an Using a Tissue-Clearing Technique. Scientific Reports, 2018, 8, 6640.	d Its Validation	1.6	22
630	Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral A Reports, 2018, 22, 905-918.	ımygdala. Cell	2.9	214
631	Next generation histology methods for three-dimensional imaging of fresh and archiva tissues. Nature Communications, 2018, 9, 1066.	l human brain	5.8	98
632	A guide to integrating immunohistochemistry and chemical imaging. Chemical Society 3770-3787.	Reviews, 2018, 47,	18.7	52
633	Mesoscale connectomics. Current Opinion in Neurobiology, 2018, 50, 154-162.		2.0	59
634	Characterizing the human hippocampus in aging and Alzheimer's disease using a c derived from ex vivo MRI and histology. Proceedings of the National Academy of Scien United States of America, 2018, 115, 4252-4257.	computational atlas ces of the	3.3	136
635	Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippoca Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND). Scientific Re 4011.	mpus using 3D ports, 2018, 8,	1.6	47
636	Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraise and Mechanisms with High-Resolution Anatomical Methods. Journal of Neuroscience, 2 4031-4047.	ıl of Pathology 2018, 38,	1.7	66
637	Cortico–reticulo–spinal circuit reorganization enables functional recovery after se contusion. Nature Neuroscience, 2018, 21, 576-588.	vere spinal cord	7.1	228
638	Imaging the ovary. Reproductive BioMedicine Online, 2018, 36, 584-593.		1.1	19
639	A novel method to visualise the threeâ€dimensional organisation of the human cerebrative vasculature. Journal of Anatomy, 2018, 232, 1025-1030.	al cortical	0.9	8
640	Imaging Biomaterial–Tissue Interactions. Trends in Biotechnology, 2018, 36, 403-41	4.	4.9	35
641	Validation of an easily applicable three-dimensional immunohistochemical imaging me mouse brain using conventional confocal microscopy. Histochemistry and Cell Biology 97-103.		0.8	1
642	Optical clearing of small intestine for threeâ€dimensional visualization of cellular prolit within crypts. Journal of Anatomy, 2018, 232, 152-157.	eration	0.9	6
643	Pancreatic neuro-insular network in young mice revealed by 3D panoramic histology. D 2018, 61, 158-167.)iabetologia,	2.9	48
644	as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectiv 2018, 165, 56-68.	ity. NeuroImage,	2.1	50
645	Optical clearing for multiscale biological tissues. Journal of Biophotonics, 2018, 11, e2	01700187.	1.1	75

#	Article	IF	CITATIONS
646	Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology, 2018, 163-164, 144-171.	2.8	565
647	Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Current Opinion in Neurobiology, 2018, 48, 17-29.	2.0	23
648	A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue. Journal of Neuroscience Methods, 2018, 294, 102-110.	1.3	18
649	Demonstrating Improved Multiple Transportâ€Meanâ€Freeâ€Path Imaging Capabilities of Light Sheet Microscopy in the Quantification of Fluorescence Dynamics. Biotechnology Journal, 2018, 13, 1700419.	1.8	6
650	Rapid spheroid clearing on a microfluidic chip. Lab on A Chip, 2018, 18, 153-161.	3.1	22
651	A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant Journal, 2018, 93, 399-412.	2.8	324
652	Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	16
653	Chemokine-Mediated Choreography of Thymocyte Development and Selection. Trends in Immunology, 2018, 39, 86-98.	2.9	56
654	Image processing for precise three-dimensional registration and stitching of thick high-resolution laser-scanning microscopy image stacks. Computers in Biology and Medicine, 2018, 92, 22-41.	3.9	9
655	Multiple Dopamine Systems: Weal and Woe of Dopamine. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 83-95.	2.0	49
656	Optical tissue clearing in combination with perfusion and immunofluorescence for placental vascular imaging. Medicine (United States), 2018, 97, e12392.	0.4	11
657	A new tool for imaging and reconstruction of optically cleared invertebrate animals. Journal of Physics: Conference Series, 2018, 1092, 012088.	0.3	0
658	High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nature Communications, 2018, 9, 4731.	5.8	54
659	Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags. ELife, 2018, 7, .	2.8	48
660	Fast free of acrylamide clearing tissue (FACT) for clearing, immunolabelling and threeâ€dimensional imaging of partridge tissues. Microscopy Research and Technique, 2018, 81, 1374-1382.	1.2	11
661	Animal Models in Psychiatric Disease: A Circuit-Search Approach. Harvard Review of Psychiatry, 2018, 26, 298-303.	0.9	3
662	Endogenous Ovarian Angiogenesis in Polycystic Ovary Syndrome-Like Rats Induced by Low-Frequency Electro-Acupuncture: The CLARITY Three-Dimensional Approach. International Journal of Molecular Sciences, 2018, 19, 3500.	1.8	24
663	Prospects for a Robust Cortical Recording Interface. , 2018, , 393-413.		1

ARTICLE IF CITATIONS # Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research, 2018, 664 0.8 149 7, 23. The Utility of DiceCT Imaging for High-Throughput Comparative Neuroanatomical Studies. Brain, Behavior and Evolution, 2018, 91, 180-190. 23 Optical Clearing in the Kidney Reveals Potassium-Mediated Tubule Remodeling. Cell Reports, 2018, 25, 666 2.9 40 2668-2675.e3. Prion pathogenesis is unaltered in a mouse strain with a permeable blood-brain barrier. PLoS Pathogens, 2018, 14, e1007424. Voxel-Based Statistical Analysis of 3D Immunostained Tissue Imaging. Frontiers in Neuroscience, 2018, 668 1.4 7 12, 754. Transparent tissues bring cells into focus for microscopy. Nature, 2018, 564, 147-149. 13.7 670 Engineered niches model the onset of metastasis. Nature Biomedical Engineering, 2018, 2, 885-887. 11.6 3 Signal Detection and Coding in the Accessory Olfactory System. Chemical Senses, 2018, 43, 667-695. 671 1.1 87 Optical Imaging With Voltage Sensorsâ€"Capturing TMS-Induced Neuronal Signals Using Light. 672 0.7 1 Handbook of Behavioral Neuroscience, 2018, 28, 223-234. Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug 11.6 uptake and treatment responses in tumours. Nature Biomedical Engineering, 2018, 2, 773-787. The effortless custody of automatism. Science, 2018, 362, 169-169. 674 6.0 2 Glioblastoma Bystander Cell Therapy: Improvements in Treatment and Insights into the Therapy Mechanisms. Molecular Therapy - Oncolytics, 2018, 11, 39-51. Specimen Preparation., 2018, , 73-97. 676 0 A Regeneration Toolkit. Developmental Cell, 2018, 47, 267-280. 3.1 A Population of Navigator Neurons Is Essential for Olfactory Map Formation during the Critical 678 3.8 28 Period. Neuron, 2018, 100, 1066-1082.e6. Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2018, 2, 679 040901. A community-developed open-source computational ecosystem for big neuro data. Nature Methods, 680 9.0 51 2018, 15, 846-847. Whole-Brain Analysis of Cells and Circuits by Tissue Clearing and Light-Sheet Microscopy. Journal of Neuroscience, 2018, 38, 9330-9337.

#	Article	IF	CITATIONS
682	Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nature Biomedical Engineering, 2018, 2, 915-929.	11.6	57
683	Imaging of Murine Whole Lung Fibrosis by Large Scale 3D Microscopy aided by Tissue Optical Clearing. Scientific Reports, 2018, 8, 13348.	1.6	34
684	Hypothalamic DNA methylation in rats with dihydrotestosteroneâ€induced polycystic ovary syndrome: effects of lowâ€frequency electroâ€acupuncture. Experimental Physiology, 2018, 103, 1618-1632.	0.9	20
685	Novel approaches to study coronary vasculature development in mice. Developmental Dynamics, 2018, 247, 1018-1027.	0.8	21
686	Gateway reflex: neural activation-mediated immune cell gateways in the central nervous system. International Immunology, 2018, 30, 281-289.	1.8	11
687	Normalizing Tumor Microenvironment Based on Photosynthetic Abiotic/Biotic Nanoparticles. ACS Nano, 2018, 12, 6218-6227.	7.3	73
688	Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Research, 2018, 28, 803-818.	5.7	256
689	Pathogenesis of Alzheimer's Disease Examined Using a Modified Puri-Li Model that Incorporates Calcium Ion Homeostasis. Journal of Molecular Neuroscience, 2018, 65, 119-126.	1.1	8
690	Hydrogel-Tissue Chemistry: Principles and Applications. Annual Review of Biophysics, 2018, 47, 355-376.	4.5	95
692	TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma. Cell Reports, 2018, 23, 3798-3812.e8.	2.9	33
693	3D imaging in the postmortem human brain with CLARITY and CUBIC. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 303-317.	1.0	5
694	Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nature Neuroscience, 2018, 21, 903-919.	7.1	299
695	The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions. Current Biology, 2018, 28, 2218-2229.e7.	1.8	83
696	Recent Progress in Light Sheet Microscopy for Biological Applications. Applied Spectroscopy, 2018, 72, 1137-1169.	1.2	53
697	Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biology, 2018, 16, 57.	1.7	86
698	Imaging transparent intact cardiac tissue with single-cell resolution. Biomedical Optics Express, 2018, 9, 423.	1.5	24
699	Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nature Protocols, 2018, 13, 1793-1813.	5.5	58
700	Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. Nature Protocols, 2018, 13, 1850-1868.	5.5	70

#	Article	IF	CITATIONS
701	Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS ONE, 2018, 13, e0199918.	1.1	22
702	A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Scientific Reports, 2018, 8, 11135.	1.6	80
703	Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria. Journal of Neuroinflammation, 2018, 15, 173.	3.1	15
704	Three-dimensional evaluation of murine ovarian follicles using a modified CUBIC tissue clearing method. Reproductive Biology and Endocrinology, 2018, 16, 72.	1.4	21
705	Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Frontiers in Medicine, 2018, 5, 179.	1.2	45
706	Projections of the Diencephalospinal Dopaminergic System to Peripheral Sense Organs in Larval Zebrafish (Danio rerio). Frontiers in Neuroanatomy, 2018, 12, 20.	0.9	24
707	In Vivo Visualization of Active Polysynaptic Circuits With Longitudinal Manganese-Enhanced MRI (MEMRI). Frontiers in Neural Circuits, 2018, 12, 42.	1.4	11
708	Astroglial Glutamate Signaling and Uptake in the Hippocampus. Frontiers in Molecular Neuroscience, 2017, 10, 451.	1.4	148
709	Review: Revisiting the human cholinergic nucleus of the diagonal band of Broca. Neuropathology and Applied Neurobiology, 2018, 44, 647-662.	1.8	25
710	Clearing for Deep Tissue Imaging. Current Protocols in Cytometry, 2018, 86, e38.	3.7	34
711	3D Clearing and Molecular Labeling in Plant Tissues. Methods in Molecular Biology, 2018, 1770, 285-304.	0.4	2
712	Silencing cuticular pigmentation genes enables RNA FISH in intact insect appendages. Journal of Experimental Biology, 2018, 221, .	0.8	7
713	CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain. , 2018, 9, 262.		37
714	Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. Journal of Internal Medicine, 2018, 284, 568-580.	2.7	4
715	Human cellular models of medium spiny neuron development and Huntington disease. Life Sciences, 2018, 209, 179-196.	2.0	19
716	Highâ€ŧhroughput light sheet tomography platform for automated fast imaging of whole mouse brain. Journal of Biophotonics, 2018, 11, e201800047.	1.1	34
717	Linking neuronal lineage and wiring specificity. Neural Development, 2018, 13, 5.	1.1	37
718	PrismPlus: a mouse line expressing distinct fluorophores in four different brain cell types. Scientific Reports, 2018, 8, 7182.	1.6	10

#	Article	IF	CITATIONS
719	Novel Passive Clearing Methods for the Rapid Production of Optical Transparency in Whole CNS Tissue. Journal of Visualized Experiments, 2018, , .	0.2	5
720	Advances in CLARITYâ€ʿbased tissue clearing and imaging (Review). Experimental and Therapeutic Medicine, 2018, 16, 1567-1576.	0.8	21
721	Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound. Scientific Reports, 2018, 8, 12259.	1.6	43
722	In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces. MRS Communications, 2018, 8, 1043-1049.	0.8	21
723	Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery. Journal of Neuroscience, 2018, 38, 8723-8736.	1.7	70
724	Chemical Landscape for Tissue Clearing Based on Hydrophilic Reagents. Cell Reports, 2018, 24, 2196-2210.e9.	2.9	221
725	Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures. Scientific Reports, 2018, 8, 12815.	1.6	37
726	Heterogeneous distribution of doublecortinâ€expressing cells surrounding the rostral migratory stream in the juvenile mouse. Journal of Comparative Neurology, 2018, 526, 2631-2646.	0.9	4
727	Xenopus. Methods in Molecular Biology, 2018, , .	0.4	3
728	X-FaCT: Xenopus-Fast Clearing Technique. Methods in Molecular Biology, 2018, 1865, 233-241.	0.4	9
729	Whole-Brain Vasculature Reconstruction at the Single Capillary Level. Scientific Reports, 2018, 8, 12573.	1.6	96
730	Optimization of GFP Fluorescence Preservation by a Modified uDISCO Clearing Protocol. Frontiers in Neuroanatomy, 2018, 12, 67.	0.9	33
731	Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope. Frontiers in Neuroscience, 2018, 12, 496.	1.4	73
732	Advances in nanomaterials for brain microscopy. Nano Research, 2018, 11, 5144-5172.	5.8	14
733	Quantitative Large-Scale Three-Dimensional Imaging of Human Kidney Biopsies: A Bridge to Precision Medicine in Kidney Disease. Nephron, 2018, 140, 134-139.	0.9	9
734	Direct label-free imaging of brain tissue using synchrotron light: a review of new spectroscopic tools for the modern neuroscientist. Analyst, The, 2018, 143, 3761-3774.	1.7	13
735	Aqueous-based tissue clearing in crustaceans. Zoological Letters, 2018, 4, 13.	0.7	18
736	Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science, 2018, 361, .	6.0	890

#	Article	IF	CITATIONS
737	Hard Xâ€Ray Nanoholotomography: Largeâ€Scale, Labelâ€Free, 3D Neuroimaging beyond Optical Limit. Advanced Science, 2018, 5, 1700694.	5.6	45
738	BrainFilm, a novel technique for physical compression of 3D brain slices for efficient image acquisition and post-processing. Scientific Reports, 2018, 8, 8531.	1.6	8
739	Graph theoretical modeling of baby brain networks. NeuroImage, 2019, 185, 711-727.	2.1	65
740	Light sheet fluorescence microscopy for neuroscience. Journal of Neuroscience Methods, 2019, 319, 16-27.	1.3	33
741	Super-Resolving Approaches Suitable for Brain Imaging Applications. Progress in Optical Science and Photonics, 2019, , 221-244.	0.3	0
742	Light-Sheet Microscopy for Whole-Brain Imaging. Progress in Optical Science and Photonics, 2019, , 69-81.	0.3	5
743	Chemical Processing of Brain Tissues for Large-Volume, High-Resolution Optical Imaging. Progress in Optical Science and Photonics, 2019, , 295-334.	0.3	2
744	Expansion microscopy: enabling single cell analysis in intact biological systems. FEBS Journal, 2019, 286, 1482-1494.	2.2	31
745	Cell–Substrate Interactions. , 2019, , 437-468.		10
746	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	0.8	88
746 747	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64. Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. Journal of Biophotonics, 2019, 12, e201800136.	0.8	88
	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural		
747	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. Journal of Biophotonics, 2019, 12, e201800136.	1.1	7
747 748	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. Journal of Biophotonics, 2019, 12, e201800136. Towards Differential Connectomics with NeuroVIISAS. Neuroinformatics, 2019, 17, 163-179. The effect of age-related risk factors and comorbidities on white matter injury and repair after	1.1 1.5	7
747 748 749	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. Journal of Biophotonics, 2019, 12, e201800136. Towards Differential Connectomics with NeuroVIISAS. Neuroinformatics, 2019, 17, 163-179. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22. Optical Visualization of Cerebral Cortex by Label-Free Multiphoton Microscopy. IEEE Journal of	1.1 1.5 2.1	7 4 14
747 748 749 750	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. Journal of Biophotonics, 2019, 12, e201800136. Towards Differential Connectomics with NeuroVIISAS. Neuroinformatics, 2019, 17, 163-179. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22. Optical Visualization of Cerebral Cortex by Label-Free Multiphoton Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	1.1 1.5 2.1 1.9	7 4 14 5
747 748 749 750 751	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. Journal of Biophotonics, 2019, 12, e201800136. Towards Differential Connectomics with NeuroVIISAS. Neuroinformatics, 2019, 17, 163-179. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22. Optical Visualization of Cerebral Cortex by Label-Free Multiphoton Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8. Optical Clearing and Imaging of Immunolabeled Kidney Tissue. Journal of Visualized Experiments, 2019, , .	1.1 1.5 2.1 1.9	7 4 14 5 5

#	Article	IF	CITATIONS
755	Expansion Microscopy: Scalable and Convenient Super-Resolution Microscopy. Annual Review of Cell and Developmental Biology, 2019, 35, 683-701.	4.0	32
756	FxClear, A Free-hydrogel Electrophoretic Tissue Clearing Method for Rapid De-lipidation of Tissues with High Preservation of Immunoreactivity. Experimental Neurobiology, 2019, 28, 436-445.	0.7	5
757	Quantitative synchrotron X-ray tomography of the material-tissue interface in rat cortex implanted with neural probes. Scientific Reports, 2019, 9, 7646.	1.6	12
758	Imaging axon regeneration within synthetic nerve conduits. Scientific Reports, 2019, 9, 10095.	1.6	11
759	Advances in Ex Situ Tissue Optical Clearing. Laser and Photonics Reviews, 2019, 13, 1800292.	4.4	52
760	mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen Interactions <i>In Vivo</i> . MSphere, 2019, 4, .	1.3	0
761	RNA Splicing Analysis: From InÂVitro Testing to Single-Cell Imaging. CheM, 2019, 5, 2571-2592.	5.8	41
762	Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14937-14946.	3.3	55
763	Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids. Biotechnology and Bioengineering, 2019, 116, 2742-2763.	1.7	65
764	Spatial metagenomic characterization of microbial biogeography in the gut. Nature Biotechnology, 2019, 37, 877-883.	9.4	103
765	Modified CLARITY Achieving Faster and Better Intact Mouse Brain Clearing and Immunostaining. Scientific Reports, 2019, 9, 10571.	1.6	7
766	Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Frontiers in Systems Neuroscience, 2019, 13, 26.	1.2	25
767	3D-Imaging of Whole Neuronal and Vascular Networks of the Human Dental Pulp via CLARITY and Light Sheet Microscopy. Scientific Reports, 2019, 9, 10860.	1.6	29
768	Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples. Scientific Reports, 2019, 9, 10880.	1.6	26
769	Tissue Transparency In Vivo. Molecules, 2019, 24, 2388.	1.7	21
770	Multi-modal image cytometry approach – From dynamic to whole organ imaging. Cellular Immunology, 2019, 344, 103946.	1.4	3
771	Methods for analysis of brain connectivity: An IFCN-sponsored review. Clinical Neurophysiology, 2019, 130, 1833-1858.	0.7	106
772	Targeting of replicating CD133 and OCT4/SOX2 expressing glioma stem cells selects a cell population that reinitiates tumors upon release of therapeutic pressure. Scientific Reports, 2019, 9, 9549.	1.6	40

#	Article	IF	CITATIONS
773	Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nature Communications, 2019, 10, 2781.	5.8	135
774	Rapid single-wavelength lightsheet localization microscopy for clarified tissue. Nature Communications, 2019, 10, 4762.	5.8	25
775	New Design of the Electrophoretic Part of CLARITY Technology for Confocal Light Microscopy of Rat and Human Brains. Brain Sciences, 2019, 9, 218.	1.1	1
776	Developmental analyses of mouse embryos and adults using a non-overlapping tracing system for all three germ layers. Development (Cambridge), 2019, 146, .	1.2	7
777	Pluripotent Stem Cells in Eye Disease Therapy. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
778	A Clearing Technique to Enhance Endogenous Fluorophores in Skin and Soft Tissue. Scientific Reports, 2019, 9, 15791.	1.6	15
779	Multiplexed in-gel microfluidic immunoassays: characterizing protein target loss during reprobing of benzophenone-modified hydrogels. Scientific Reports, 2019, 9, 15389.	1.6	10
780	Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D. Nature Protocols, 2019, 14, 3395-3425.	5.5	55
781	Bearing Fault Diagnosis Based on One-Dimensional Convolution Network and Residual Training. , 2019,		0
782	Rolling circle amplification for single cell analysis and in situ sequencing. TrAC - Trends in Analytical Chemistry, 2019, 121, 115700.	5.8	48
783	3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing. Advances in Experimental Medicine and Biology, 2019, 1186, 171-193.	0.8	11
784	A Student's Guide to Neural Circuit Tracing. Frontiers in Neuroscience, 2019, 13, 897.	1.4	107
785	BoneClear: whole-tissue immunolabeling of the intact mouse bones for 3D imaging of neural anatomy and pathology. Cell Research, 2019, 29, 870-872.	5.7	25
786	Optimization-based investigations of a two-phase thermofluidic oscillator for low-grade heat conversion. BMC Chemical Engineering, 2019, 1, .	3.4	3
787	Expanding the Computational Anatomy Gateway from clinical imaging to basic neuroscience research. , 2019, , .		0
788	Thalamocortical Circuit Motifs: A General Framework. Neuron, 2019, 103, 762-770.	3.8	171
789	Optimisation and validation of hydrogel-based brain tissue clearing shows uniform expansion across anatomical regions and spatial scales. Scientific Reports, 2019, 9, 12084.	1.6	0
790	Infection with mosquito-borne alphavirus induces selective loss of dopaminergic neurons, neuroinflammation and widespread protein aggregation. Npj Parkinson's Disease, 2019, 5, 20.	2.5	58

#	Article	IF	CITATIONS
791	Rapid optical tissue clearing using various anionic polymer hydrogels. Materials Today Communications, 2019, 21, 100611.	0.9	3
792	Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nature Microbiology, 2019, 4, 2430-2441.	5.9	81
793	Recent Advances in Cardiac Magnetic Resonance Imaging. Korean Circulation Journal, 2019, 49, 146.	0.7	15
794	Broad applicability of a streamlined Ethyl Cinnamate-based clearing procedure. Development (Cambridge), 2019, 146, .	1.2	92
795	Expansion Light Sheet Microscopy Resolves Subcellular Structures in Large Portions of the Songbird Brain. Frontiers in Neuroanatomy, 2019, 13, 2.	0.9	27
796	Optical clearing potential of immersion-based agents applied to thick mouse brain sections. PLoS ONE, 2019, 14, e0216064.	1.1	13
797	Panicle-Shaped Sympathetic Architecture in the Spleen Parenchyma Modulates Antibacterial Innate Immunity. Cell Reports, 2019, 27, 3799-3807.e3.	2.9	41
798	Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 133, 99-111.	0.9	26
799	Rapid chemical clearing of white matter in the post-mortem human brain by 1,2-hexanediol delipidation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1886-1890.	1.0	12
800	High-Performance Acellular Tissue Scaffold Combined with Hydrogel Polymers for Regenerative Medicine. ACS Biomaterials Science and Engineering, 2019, 5, 3462-3474.	2.6	18
801	Immunostaining in whole-mount lipid-cleared peripheral nerves and dorsal root ganglia after neuropathy in mice. Scientific Reports, 2019, 9, 8374.	1.6	4
802	Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Frontiers in Cellular Neuroscience, 2019, 13, 248.	1.8	127
803	Rapid increase in transparency of biological organs by matching refractive index of medium to cell membrane using phosphoric acid. RSC Advances, 2019, 9, 15269-15276.	1.7	7
804	3D Reconstruction of the Intracortical Volume Around a Hybrid Microelectrode Array. Frontiers in Neuroscience, 2019, 13, 393.	1.4	4
805	Visualization of spatiotemporal dynamics of human glioma stem cell invasion. Molecular Brain, 2019, 12, 45.	1.3	20
806	Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. Frontiers in Endocrinology, 2019, 10, 188.	1.5	38
807	Light-sheet microscopy in the near-infrared II window. Nature Methods, 2019, 16, 545-552.	9.0	151
808	Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. National Science Review, 2019, 6, 982-992.	4.6	38

#	Article	IF	CITATIONS
809	Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11480-11489.	3.3	77
810	Tissue Clearing and Its Application to Bone and Dental Tissues. Journal of Dental Research, 2019, 98, 621-631.	2.5	30
811	Comprehensive three-dimensional analysis (CUBIC-kidney) visualizes abnormal renal sympathetic nerves after ischemia/reperfusion injury. Kidney International, 2019, 96, 129-138.	2.6	34
812	Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 68-96.	6.6	561
813	High-Resolution 3D Imaging of Rabies Virus Infection in Solvent-Cleared Brain Tissue. Journal of Visualized Experiments, 2019, , .	0.2	18
814	High-resolution 3D imaging of fixed and cleared organoids. Nature Protocols, 2019, 14, 1756-1771.	5.5	317
815	MICâ€MAC: An automated pipeline for highâ€ŧhroughput characterization and classification of threeâ€dimensional microglia morphologies in mouse and human postmortem brain samples. Glia, 2019, 67, 1496-1509.	2.5	36
816	3DCellAtlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods, 2019, 15, 33.	1.9	16
817	High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nature Protocols, 2019, 14, 1708-1733.	5.5	103
818	High-resolution 3D imaging and analysis of axon regeneration in unsectioned spinal cord with or without tissue clearing. Nature Protocols, 2019, 14, 1235-1260.	5.5	25
819	Cleaved Cochlin Sequesters Pseudomonas aeruginosa and Activates Innate Immunity in the Inner Ear. Cell Host and Microbe, 2019, 25, 513-525.e6.	5.1	42
820	Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney International, 2019, 96, 505-516.	2.6	35
821	Reconstruction of coronary circulation networks: A review of methods. Microcirculation, 2019, 26, e12542.	1.0	8
822	Quantitative assessment of regional variation in tissue clearing efficiency using optical coherence tomography (OCT) and magnetic resonance imaging (MRI): A feasibility study. Scientific Reports, 2019, 9, 2923.	1.6	11
823	A Novel Optical Tissue Clearing Protocol for Mouse Skeletal Muscle to Visualize Endplates in Their Tissue Context. Frontiers in Cellular Neuroscience, 2019, 13, 49.	1.8	39
824	Distinct Cortical-Thalamic-Striatal Circuits through the Parafascicular Nucleus. Neuron, 2019, 102, 636-652.e7.	3.8	118
826	Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6608-6617.	3.3	92
827	The within-subject application of diffusion tensor MRI and CLARITY reveals brain structural changes in Nrxn2 deletion mice. Molecular Autism, 2019, 10, 8.	2.6	13

#	Article	IF	CITATIONS
828	Three-dimensional imaging and quantitative analysis in CLARITY processed breast cancer tissues. Scientific Reports, 2019, 9, 5624.	1.6	45
829	Zebrafish otolith biomineralization requires polyketide synthase. Mechanisms of Development, 2019, 157, 1-9.	1.7	9
830	Intraclonal Plasticity in Mammary Tumors Revealed through Large-Scale Single-Cell Resolution 3D Imaging. Cancer Cell, 2019, 35, 618-632.e6.	7.7	119
831	Highâ€resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO). Journal of Biophotonics, 2019, 12, e201800368.	1.1	51
832	Eight autopsy cases of melanoma brain metastases showing angiotropism and pericytic mimicry. Implications for extravascular migratory metastasis. Journal of Cutaneous Pathology, 2019, 46, 570-578.	0.7	14
833	Immunofluorescence Tomography: High-resolution 3-D reconstruction by serial-sectioning of methacrylate embedded tissues and alignment of 2-D immunofluorescence images. Scientific Reports, 2019, 9, 1992.	1.6	6
834	Toolbox for In Vivo Imaging of Host–Parasite Interactions at Multiple Scales. Trends in Parasitology, 2019, 35, 193-212.	1.5	12
835	Bioinspired neuron-like electronics. Nature Materials, 2019, 18, 510-517.	13.3	277
836	Ossified blood vessels in primary familial brain calcification elicit a neurotoxic astrocyte response. Brain, 2019, 142, 885-902.	3.7	50
837	Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine. Neurogastroenterology and Motility, 2019, 31, e13560.	1.6	32
	Tissue-Clearing Technique and Cutaneous Nerve Biopsies: Quantification of the Intraepidermal		_

838 Nerve-Fiber Density Using Active Clarity Technique-Pressure Related Efficient and Stable Transfer of

	CITATION	n Report	
#	ARTICLE Optical tissue clearing and immunolabeling in kidney research. Methods in Cell Biology, 2019, 154, 31-41.	IF 0.5	CITATIONS 3
848	The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nature Methods, 2019, 16, 1105-1108.	9.0	174
849	Neuroinflammation and Perioperative Neurocognitive Disorders. Anesthesia and Analgesia, 2019, 128, 781-788.	1.1	238
850	One-Shot Preparation of Polyacrylamide/Poly(sodium styrenesulfonate) Double-Network Hydrogels for Rapid Optical Tissue Clearing. ACS Omega, 2019, 4, 21083-21090.	1.6	11
851	Orthopedic Surgery Triggers Attention Deficits in a Delirium-Like Mouse Model. Frontiers in Immunology, 2019, 10, 2675.	2.2	31
852	Resistance to optical distortions in three-dimensional interferometric temporal focusing microscopy. Optics Communications, 2019, 430, 486-496.	1.0	3
853	Hyperspectral scanning laser optical tomography. Journal of Biophotonics, 2019, 12, e201800221.	1.1	2
854	EyeCi: Optical clearing and imaging of immunolabeled mouse eyes using light-sheet fluorescence microscopy. Experimental Eye Research, 2019, 180, 137-145.	1.2	41
855	Biometrics from Cellular Imaging. Series in Bioengineering, 2019, , 229-252.	0.3	0
856	Microvascular networks in the area of the auditory peripheral nervous system. Hearing Research, 2019, 371, 105-116.	0.9	16
857	Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nature Biotechnology, 2019, 37, 73-83.	9.4	262
858	Quick visualization of neurons in brain tissues using an optical clearing technique. Anatomical Science International, 2019, 94, 199-208.	0.5	7
859	Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nature Neuroscience, 2019, 22, 317-327.	7.1	318
860	Spatial impact of microglial distribution on dynamics of dendritic spines. European Journal of Neuroscience, 2019, 49, 1400-1417.	1.2	4
861	Expansion microscopy: principles and uses in biological research. Nature Methods, 2019, 16, 33-41.	9.0	330
862	Nondestructive, multiplex three-dimensional mapping of immune infiltrates in core needle biopsy. Laboratory Investigation, 2019, 99, 1400-1413.	1.7	18
863	Wholeâ€mount in situ hybridization of mouse brain to precisely locate mRNAs via fluorescence tomography. Journal of Biophotonics, 2019, 12, e201800249.	1.1	5
864	CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathology, 2019, 29, 437-450.	2.1	29

#	Article	IF	CITATIONS
865	FDISCO: Advanced solvent-based clearing method for imaging whole organs. Science Advances, 2019, 5, eaau8355.	4.7	171
866	A Specialized Method to Resolve Fine 3D Features of Astrocytes in Nonhuman Primate (Marmoset,) Tj ETQq1 1 ().784314 r 0.4	gBJ /Overloc
867	A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nature Methods, 2019, 16, 175-178.	9.0	132
868	Modeling Tumor Phenotypes InÂVitro with Three-Dimensional Bioprinting. Cell Reports, 2019, 26, 608-623.e6.	2.9	169
869	From Aggregates to Porous Three-Dimensional Scaffolds through a Mechanochemical Approach to Design Photosensitive Chitosan Derivatives. Marine Drugs, 2019, 17, 48.	2.2	18
870	Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann's area 32 and area 21. Brain Structure and Function, 2019, 224, 351-362.	1.2	13
871	Immunofluorescence staining of live lymph node tissue slices. Journal of Immunological Methods, 2019, 464, 119-125.	0.6	21
872	Post mortem high resolution diffusion MRI for large specimen imaging at 11.7 T with 3D segmented echo-planar imaging. Journal of Neuroscience Methods, 2019, 311, 222-234.	1.3	10
873	Modeling organ-specific vasculature with organ-on-a-chip devices. Nanotechnology, 2019, 30, 024002.	1.3	35
874	Quantitative assessment of optical clearing methods in various intact mouse organs. Journal of Biophotonics, 2019, 12, e201800134.	1.1	53
875	Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Molecular Cancer Therapeutics, 2019, 18, 213-226.	1.9	33
876	A "Clearer―View of Pancreatic Pathology: A Review of Tissue Clearing and Advanced Microscopy Techniques. Advances in Anatomic Pathology, 2019, 26, 31-39.	2.4	19
877	Sectioning soft materials with an oscillating blade. Precision Engineering, 2019, 56, 96-100.	1.8	10
878	Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits. Neuroscience Bulletin, 2019, 35, 369-377.	1.5	18
879	Gateway reflex: Local neuroimmune interactions that regulate blood vessels. Neurochemistry International, 2019, 130, 104303.	1.9	5
880	In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex. NeuroImage, 2019, 197, 707-715.	2.1	83
881	Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. NeuroImage, 2019, 197, 657-667.	2.1	17
882	Decoding the microstructural correlate of diffusion MRI. NMR in Biomedicine, 2019, 32, e3779.	1.6	23

#	Article	IF	CITATIONS
883	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
884	Axonal damage in spinal cord is associated with gray matter atrophy in sensorimotor cortex in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal, 2020, 26, 294-303.	1.4	11
885	Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy. Differentiation, 2020, 111, 12-21.	1.0	10
886	Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Molecular Psychiatry, 2020, 25, 254-274.	4.1	78
887	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
888	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
889	Towards a clearer view of sympathetic innervation of cardiac and skeletal muscles. Progress in Biophysics and Molecular Biology, 2020, 154, 80-93.	1.4	19
890	Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics, 2020, 10, 74-90.	4.6	106
891	Visualizing Mitochondrial Form and Function within the Cell. Trends in Molecular Medicine, 2020, 26, 58-70.	3.5	55
892	Viscoelastic characterization of injured brain tissue after controlled cortical impact (CCI) using a mouse model. Journal of Neuroscience Methods, 2020, 330, 108463.	1.3	18
893	Illuminating the dark depths inside coral. Cellular Microbiology, 2020, 22, e13122.	1.1	7
894	Nanosheet wrapping-assisted coverslip-free imaging for looking deeper into a tissue at high resolution. PLoS ONE, 2020, 15, e0227650.	1.1	5
895	Tissue clearing and its applications inÂneuroscience. Nature Reviews Neuroscience, 2020, 21, 61-79.	4.9	350
896	Memory engrams: Recalling the past and imagining the future. Science, 2020, 367, .	6.0	530
897	The combination of twoâ€dimensional and threeâ€dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. Journal of Biophotonics, 2020, 13, e201900196.	1.1	10
898	In Situ Formation of Covalent Second Network in a DNA Supramolecular Hydrogel and Its Application for 3D Cell Imaging. ACS Applied Materials & amp; Interfaces, 2020, 12, 4185-4192.	4.0	37
899	Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cerebral Cortex, 2020, 30, 3483-3517.	1.6	31
900	Novel Approaches to the Molecular Mapping of the Brain: 3D Cyclic Immunohistochemistry and Optical Clearing. Neuroscience and Behavioral Physiology, 2020, 50, 73-80.	0.2	Ο

#	Article	IF	CITATIONS
901	Soft Ring‣haped Celluâ€Robots with Simultaneous Locomotion in Batches. Advanced Materials, 2020, 32, e1905713.	11.1	30
902	In-Depth Characterization of Layer 5 Output Neurons of the Primary Somatosensory Cortex Innervating the Mouse Dorsal Spinal Cord. Cerebral Cortex Communications, 2020, 1, tgaa052.	0.7	8
903	Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration: From Circuits to Synapses and Beyond. Frontiers in Neuroscience, 2020, 14, 914.	1.4	26
904	An Optimized Mouse Brain Atlas for Automated Mapping and Quantification of Neuronal Activity Using iDISCO+ and Light Sheet Fluorescence Microscopy. Neuroinformatics, 2021, 19, 433-446.	1.5	33
905	Pericyte-Endothelial Interactions in the Retinal Microvasculature. International Journal of Molecular Sciences, 2020, 21, 7413.	1.8	94
906	Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. IScience, 2020, 23, 101432.	1.9	67
907	High-Resolution Imaging of Tumor Spheroids and Organoids Enabled by Expansion Microscopy. Frontiers in Molecular Biosciences, 2020, 7, 208.	1.6	27
908	Large-scale characterization of the microvascular geometry in development and disease by tissue clearing and quantitative ultramicroscopy. Journal of Cerebral Blood Flow and Metabolism, 2020, 41, 0271678X2096185.	2.4	10
909	A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samples. Communications Biology, 2020, 3, 548.	2.0	6
910	New imaging tools to study synaptogenesis. , 2020, , 119-148.		0
911	Biofabrication strategies for engineering heterogeneous artificial tissues. Additive Manufacturing, 2020, 36, 101459.	1.7	15
912	Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index. Frontiers in Neuroanatomy, 2020, 14, 599282.	0.9	15
913	Therapeutic implications of cortical spreading depression models in migraine. Progress in Brain Research, 2020, 255, 29-67.	0.9	6
914	Developmental divergence of sensory stimulus representation in cortical interneurons. Nature Communications, 2020, 11, 5729.	5.8	17
915	A pH-Adjustable Tissue Clearing Solution That Preserves Lipid Ultrastructures: Suitable Tissue Clearing Method for DDS Evaluation. Pharmaceutics, 2020, 12, 1070.	2.0	10
916	Protein Proximity Observed Using Fluorogen Activating Protein and Dye Activated by Proximal Anchoring (FAP–DAPA) System. ACS Chemical Biology, 2020, 15, 2433-2443.	1.6	15
917	Microglia: sculptors of neuropathic pain?. Royal Society Open Science, 2020, 7, 200260.	1.1	18
918	Feasibility of commonly used fluorescent dyes and viral tracers in aqueous and solvent-based tissue clearing. Neuroscience Letters, 2020, 737, 135301.	1.0	5

#	Article	IF	CITATIONS
919	Addressing Cellular Heterogeneity in Cancer through Precision Proteomics. Journal of Proteome Research, 2020, 19, 3607-3619.	1.8	8
920	Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nature Protocols, 2020, 15, 2773-2784.	5.5	49
921	Considerations for using optical clearing techniques for 3D imaging of nanoparticle biodistribution. International Journal of Pharmaceutics, 2020, 588, 119739.	2.6	3
922	Applications of tissue clearing in the spinal cord. European Journal of Neuroscience, 2020, 52, 4019-4036.	1.2	8
923	3D histopathology of human tumours by fast clearing and ultramicroscopy. Scientific Reports, 2020, 10, 17619.	1.6	39
924	From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases. Diagnostics, 2020, 10, 636.	1.3	14
925	Denser brain capillary network with preserved pericytes in Alzheimer's disease. Brain Pathology, 2020, 30, 1071-1086.	2.1	19
926	Value-guided remapping of sensory cortex by lateral orbitofrontal cortex. Nature, 2020, 585, 245-250.	13.7	109
927	Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sciences, 2020, 10, 578.	1.1	7
928	The maternal microbiome modulates fetal neurodevelopment in mice. Nature, 2020, 586, 281-286.	13.7	280
928 929	The maternal microbiome modulates fetal neurodevelopment in mice. Nature, 2020, 586, 281-286. 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Scientific Reports, 2020, 10, 14276.	13.7 1.6	280 12
	3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and		
929	3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Scientific Reports, 2020, 10, 14276. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected	1.6	12
929 930	 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Scientific Reports, 2020, 10, 14276. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected with Plasmodium parasites. PLoS ONE, 2020, 15, e0238134. 3D confocal microscope imaging of macromolecule uptake in the intact brachiocephalic artery. 	1.6	12 8
929 930 931	 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Scientific Reports, 2020, 10, 14276. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected with Plasmodium parasites. PLoS ONE, 2020, 15, e0238134. 3D confocal microscope imaging of macromolecule uptake in the intact brachiocephalic artery. Atherosclerosis, 2020, 310, 93-101. Light microscopy based approach for mapping connectivity with molecular specificity. Nature 	1.6 1.1 0.4	12 8 0
929 930 931 932	 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Scientific Reports, 2020, 10, 14276. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected with Plasmodium parasites. PLoS ONE, 2020, 15, e0238134. 3D confocal microscope imaging of macromolecule uptake in the intact brachiocephalic artery. Atherosclerosis, 2020, 310, 93-101. Light microscopy based approach for mapping connectivity with molecular specificity. Nature Communications, 2020, 11, 4632. Selective loss of the GABA_{Aα1} subunit from Purkinje cells is sufficient to induce a tremor 	1.6 1.1 0.4 5.8	12 8 0 32
929 930 931 932 933	 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Scientific Reports, 2020, 10, 14276. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes and midguts infected with Plasmodium parasites. PLoS ONE, 2020, 15, e0238134. 3D confocal microscope imaging of macromolecule uptake in the intact brachiocephalic artery. Atherosclerosis, 2020, 310, 93-101. Light microscopy based approach for mapping connectivity with molecular specificity. Nature Communications, 2020, 11, 4632. Selective loss of the GABA_{Aα1} subunit from Purkinje cells is sufficient to induce a tremor phenotype. Journal of Neurophysiology, 2020, 124, 1183-1197. Dorsal Horn of Mouse Lumbar Spinal Cord Imaged with CLARITY. BioMed Research International, 2020, 	1.6 1.1 0.4 5.8 0.9	12 8 0 32 11

#	Article	IF	CITATIONS
937	Three-Dimensional Imaging for Multiplex Phenotypic Analysis of Pancreatic Microtumors Grown on a Minipillar Array Chip. Cancers, 2020, 12, 3662.	1.7	7
938	UnaC as a reporter in adenoâ€associated virus â€mediated gene transfer for biomedical imaging. Journal of Biophotonics, 2020, 13, e202000182.	1.1	4
939	Multiplex Fluorescence Microscopy Platform for High-resolution ex Vivo and in Vitro imaging to Support Correlative Tissue Distribution and Biomarker Analysis. Microscopy and Microanalysis, 2020, 26, 586-586.	0.2	0
940	Detection of Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography. Frontiers in Aging Neuroscience, 2020, 12, 585218.	1.7	9
941	A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues. Cell Reports, 2020, 33, 108349.	2.9	37
942	Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Frontiers in Neuroscience, 2020, 14, 569517.	1.4	31
943	Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Advanced Functional Materials, 2020, 30, 2000097.	7.8	61
944	Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11068-11075.	3.3	52
945	High resolution three-dimensional imaging of the ocular surface and intact eyeball using tissue clearing and light sheet microscopy. Ocular Surface, 2020, 18, 526-532.	2.2	9
946	Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nature Methods, 2020, 17, 609-613.	9.0	49
947	Cellular maps of gastrointestinal organs: getting the most from tissue clearing. American Journal of Physiology - Renal Physiology, 2020, 319, G1-G10.	1.6	12
948	A novel third mesh-like myometrial layer connects the longitudinal and circular muscle fibers -A potential stratum to coordinate uterine contractions Scientific Reports, 2020, 10, 8274.	1.6	12
949	Novel Fluorescence Method for Determination of Spatial Interparticle Distance in Polymer Nanocomposites. Analytical Chemistry, 2020, 92, 7794-7799.	3.2	6
950	Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron, 2020, 106, 369-387.	3.8	145
951	Local sympathetic innervations modulate the lung innate immune responses. Science Advances, 2020, 6, eaay1497.	4.7	39
952	3D Imaging of the Transparent Mycobacterium tuberculosis-Infected Lung Verifies the Localization of Innate Immune Cells With Granuloma. Frontiers in Cellular and Infection Microbiology, 2020, 10, 226.	1.8	8
953	A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. IScience, 2020, 23, 101140.	1.9	40
954	A new pipeline for pathophysiological analysis of the mammary gland based on organoid transplantation and organ clearing. Journal of Cell Science, 2020, 133, .	1.2	2

#	Article	IF	CITATIONS
955	On-chip Earth spin detection. Nature Photonics, 2020, 14, 341-343.	15.6	1
956	Optically sensing neural activity without imaging. Nature Photonics, 2020, 14, 340-341.	15.6	1
957	A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Science Advances, 2020, 6, eaba0365.	4.7	56
958	New technical approaches for 3D morphological imaging and quantification of measurements. Anatomical Record, 2020, 303, 2702-2715.	0.8	6
959	Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment. Bioconjugate Chemistry, 2020, 31, 1784-1794.	1.8	9
960	Research Techniques Made Simple: Optical Clearing and Three-Dimensional Volumetric Imaging of Skin Biopsies. Journal of Investigative Dermatology, 2020, 140, 1305-1314.e1.	0.3	1
961	Biophysical studies of protein misfolding and aggregation inin vivomodels of Alzheimer's and Parkinson's diseases. Quarterly Reviews of Biophysics, 2020, 53, e22.	2.4	13
962	Synthesis of hydrogels with a gradient crosslinking structure by electron beam radiation to an aqueous solution of poly(sodium acrylate). Journal of Applied Polymer Science, 2020, 137, 49515.	1.3	1
963	Development of an animal-free methodology for mechanical performance assessment of engineered skin substitutes. Biomedical Science and Engineering, 2020, 3, .	0.0	0
964	Clarifying mid-brain organoids: Application of the CLARITY protocol to unperfusable samples. Biomedical Science and Engineering, 2020, 3, .	0.0	1
965	Clarifying and Imaging Candida albicans Biofilms. Journal of Visualized Experiments, 2020, , .	0.2	3
966	Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Frontiers in Molecular Biosciences, 2020, 7, 20.	1.6	50
967	Reprint of "Multi-modal image cytometry approach – From dynamic to whole organ imagingâ€: Cellular Immunology, 2020, 350, 104086.	1.4	1
968	Neuro-Immune Circuits Regulate Immune Responses in Tissues and Organ Homeostasis. Frontiers in Immunology, 2020, 11, 308.	2.2	43
969	Nanoscale imaging of clinical specimens using conventional and rapid-expansion pathology. Nature Protocols, 2020, 15, 1649-1672.	5.5	28
970	MACS: Rapid Aqueous Clearing System for 3D Mapping of Intact Organs. Advanced Science, 2020, 7, 1903185.	5.6	52
971	Diffeomorphic Registration With Intensity Transformation and Missing Data: Application to 3D Digital Pathology of Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 52.	1.4	31
972	Multiscale Imaging Approach for Studying the Central Nervous System: Methodology and Perspective. Frontiers in Neuroscience, 2020, 14, 72.	1.4	7

#	Article	IF	CITATIONS
973	Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nature Biomedical Engineering, 2020, 4, 875-888.	11.6	21
974	Recent Strategies for Targeted Brain Drug Delivery. Chemical and Pharmaceutical Bulletin, 2020, 68, 567-582.	0.6	18
975	Single-Cell Resolution Three-Dimensional Imaging of Intact Organoids. Journal of Visualized Experiments, 2020, , .	0.2	22
976	Prefrontal Cortex Corticotropin-Releasing Factor Neurons Control Behavioral Style Selection under Challenging Situations. Neuron, 2020, 106, 301-315.e7.	3.8	69
977	Visualization of the Retina in Intact Eyes of Mice and Ferrets Using a Tissue Clearing Method. Translational Vision Science and Technology, 2020, 9, 1.	1.1	9
978	A high sensitivity ZENK monoclonal antibody to map neuronal activity in Aves. Scientific Reports, 2020, 10, 915.	1.6	12
979	Visualization and molecular characterization of whole-brain vascular networks with capillary resolution. Nature Communications, 2020, 11, 1104.	5.8	57
980	Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. Tissue Engineering - Part C: Methods, 2020, 26, 207-215.	1.1	9
981	A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nature Nanotechnology, 2020, 15, 321-330.	15.6	83
982	Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics, 2020, 10, 1884-1909.	4.6	30
983	Cellular and Molecular Probing of Intact Human Organs. Cell, 2020, 180, 796-812.e19.	13.5	187
984	Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Reports, 2020, 30, 320-334.e6.	2.9	88
985	Clearing techniques for visualizing the nervous system in development, injury, and disease. Journal of Neuroscience Methods, 2020, 334, 108594.	1.3	4
986	In situ 3D visualization of biomineralization matrix proteins. Journal of Structural Biology, 2020, 209, 107448.	1.3	10
987	Clearing, immunofluorescence, and confocal microscopy for the three-dimensional imaging of murine testes and study of testis biology. Journal of Structural Biology, 2020, 209, 107449.	1.3	2
988	Liposome Imaging in Optically Cleared Tissues. Nano Letters, 2020, 20, 1362-1369.	4.5	28
989	Transparent tumor microenvironment: Are liposomal nanoparticles sufficient for drug delivery to hypoxic regions and clonogenic cells?. Applied Materials Today, 2020, 19, 100561.	2.3	1
990	The re-emergence of adipose innervation as a research focus. Nature Reviews Endocrinology, 2020, 16, 127-128.	4.3	2

#	Article	IF	CITATIONS
991	Hydrogel machines. Materials Today, 2020, 36, 102-124.	8.3	625
992	Investigation of PRDM7 and PRDM12 expression pattern during mouse embryonic development by using a modified passive clearing technique. Biochemical and Biophysical Research Communications, 2020, 524, 346-353.	1.0	9
993	Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nature Communications, 2020, 11, 1982.	5.8	134
994	Scattering Compensation for Deep Brain Microscopy: The Long Road to Get Proper Images. Frontiers in Physics, 2020, 8, .	1.0	8
995	Geometrically Structured Microtumors in 3D Hydrogel Matrices. Advanced Biology, 2020, 4, 2000056.	3.0	10
996	Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Advanced Science, 2020, 7, 1902953.	5.6	86
997	Tissue engineering: current status and future perspectives. , 2020, , 1-35.		22
998	Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish. Journal of the American Chemical Society, 2020, 142, 7858-7867.	6.6	41
999	Fluorescence microscopy tensor imaging representations for large-scale dataset analysis. Scientific Reports, 2020, 10, 5632.	1.6	7
1000	Capturing the Cardiac Injury Response of Targeted Cell Populations via Cleared Heart Three-Dimensional Imaging. Journal of Visualized Experiments, 2020, , .	0.2	2
1001	Transcribing In Vivo Blood Vessel Networks into In Vitro Perfusable Microfluidic Devices. Advanced Materials Technologies, 2020, 5, 2000103.	3.0	16
1002	Mapping Connectome in Mammalian Brain: A Novel Approach by Bioengineering Neuro-Glia specific Vectors. Journal of Theoretical Biology, 2020, 496, 110244.	0.8	1
1003	Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends in Biotechnology, 2021, 39, 43-58.	4.9	145
1004	Basic quantitative morphological methods applied to the central nervous system. Journal of Comparative Neurology, 2021, 529, 694-756.	0.9	22
1005	Sensory and Behavioral Components of Neocortical Signal Flow in Discrimination Tasks with Short-Term Memory. Neuron, 2021, 109, 135-148.e6.	3.8	45
1006	Simple multi-color super-resolution by X10 microscopy. Methods in Cell Biology, 2021, 161, 33-56.	0.5	6
1007	A clearing protocol for Galleria mellonella larvae: Visualization of internalized fluorescent nanoparticles. New Biotechnology, 2021, 60, 20-26.	2.4	9
1008	Salamanderâ€Eci: An optical clearing protocol for the threeâ€dimensional exploration of regeneration. Developmental Dynamics, 2021, 250, 902-915.	0.8	8

#	Article	IF	Citations
π 1009	CUBIC-f: An optimized clearing method for cell tracing and evaluation of neurite density in the salamander brain. Journal of Neuroscience Methods, 2021, 348, 109002.	1.3	8
1010	Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nature Protocols, 2021, 16, 239-262.	5.5	50
1011	Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nature Cancer, 2021, 2, 83-97.	5.7	56
1012	Current Status of Tissue Clearing and the Path Forward in Neuroscience. ACS Chemical Neuroscience, 2021, 12, 5-29.	1.7	10
1013	A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends in Neurosciences, 2021, 44, 289-305.	4.2	57
1014	Optimised tissue clearing minimises distortion and destruction during tissue delipidation. Neuropathology and Applied Neurobiology, 2021, 47, 441-453.	1.8	6
1016	Tissue clearing technique: Recent progress and biomedical applications. Journal of Anatomy, 2021, 238, 489-507.	0.9	74
1018	Optical clearing of living brains with MAGICAL to extend inÂvivo imaging. IScience, 2021, 24, 101888.	1.9	9
1019	Light-Sheet Fluorescence Microscopy for Multiscale Biological Imaging. , 2021, , 373-382.		0
1020	Use of computational fluid dynamics for 3D fiber tract visualization on human high-thickness histological slices: histological mesh tractography. Brain Structure and Function, 2021, 226, 323-333.	1.2	7
1021	Multicolor 3D Confocal Imaging of Thick Tissue Sections. Methods in Molecular Biology, 2021, 2350, 95-104.	0.4	5
1022	Optical Tissue Clearing: Illuminating Brain Function and Dysfunction. Theranostics, 2021, 11, 3035-3051.	4.6	15
1023	ATP activation of peritubular cells drives testicular sperm transport. ELife, 2021, 10, .	2.8	24
1025	LIMPID: a versatile method for visualization of brain vascular networks. Biomaterials Science, 2021, 9, 2658-2669.	2.6	4
1026	Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. Advances in Experimental Medicine and Biology, 2021, 3233, 217-255.	0.8	0
1028	Optimization and evaluation of fluorescence in situ hybridization chain reaction in cleared fresh-frozen brain tissues. Brain Structure and Function, 2021, 226, 481-499.	1.2	9
1029	Rapid bone staining with hair removal (RAP-B/HR): a non-destructive and rapid whole-mount bone staining protocol optimized for adult hairy mice. Scientific Reports, 2021, 11, 1950.	1.6	0
1030	Morphometric Analysis of Axons and Dendrites as a Tool for Assessing. Neuromethods, 2021, , 51-87.	0.2	0

	CITATION	Report	
#	Article	IF	CITATIONS
1031	Efficient Tissue Clearing and Multi-Organ Volumetric Imaging Enable Quantitative Visualization of Sparse Immune Cell Populations During Inflammation. Frontiers in Immunology, 2020, 11, 599495.	2.2	12
1032	Multiplexed Tissue Tomography. Methods in Molecular Biology, 2021, 2350, 77-93.	0.4	0
1033	The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries. Stem Cell Research and Therapy, 2021, 12, 99.	2.4	19
1035	In vivo NIR-II structured-illumination light-sheet microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
1036	3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue. Science Advances, 2021, 7, .	4.7	31
1037	Chemical sectioning fluorescence tomography: high-throughput, high-contrast, multicolor, whole-brain imaging at subcellular resolution. Cell Reports, 2021, 34, 108709.	2.9	34
1038	Engineering-inspired approaches to study \hat{l}^2 -cell function and diabetes. Stem Cells, 2021, 39, 522-535.	1.4	5
1039	Harnessing non-destructive 3D pathology. Nature Biomedical Engineering, 2021, 5, 203-218.	11.6	74
1040	Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain. ELife, 2021, 10, .	2.8	15
1041	Improving the Usability of Virtual Reality Neuron Tracing with Topological Elements. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 744-754.	2.9	4
1042	The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation. Molecular Pharmacology, 2021, 99, 256-265.	1.0	9
1043	DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome. ELife, 2021, 10, .	2.8	9
1044	CLARITY with neuronal tracing and immunofluorescence to study the somatosensory system in rats. Journal of Neuroscience Methods, 2021, 350, 109048.	1.3	3
1045	Limiting the incident NA for efficient wavefront shaping through thin anisotropic scattering media. Optica, 2021, 8, 428.	4.8	13
1047	Navigating across multi-dimensional space of tissue clearing parameters. Methods and Applications in Fluorescence, 2021, 9, 022001.	1.1	7
1048	Optimizing tissue clearing and imaging methods for human brain tissue. Journal of International Medical Research, 2021, 49, 030006052110017.	0.4	2
1049	Revealing 3D structure of gluten in wheat dough by optical clearing imaging. Nature Communications, 2021, 12, 1708.	5.8	12
1051	A guidebook for DISCO tissue clearing. Molecular Systems Biology, 2021, 17, e9807.	3.2	53

#	Article	IF	CITATIONS
1052	Effect of captopril on post-infarction remodelling visualized by light sheet microscopy and echocardiography. Scientific Reports, 2021, 11, 5241.	1.6	8
1053	A quick and versatile protocol for the 3D visualization of transgene expression across the whole body of larval <i>Drosophila</i> . Journal of Neurogenetics, 2021, 35, 306-319.	0.6	3
1054	Quantitative birefringence microscopy for imaging the structural integrity of CNS myelin following circumscribed cortical injury in the rhesus monkey. Neurophotonics, 2021, 8, 015010.	1.7	9
1055	Physical and chemical mechanisms of tissue optical clearing. IScience, 2021, 24, 102178.	1.9	63
1056	Investigation of PRDM10 and PRDM13 Expression in Developing Mouse Embryos by an Optimized PACT-Based Embryo Clearing Method. International Journal of Molecular Sciences, 2021, 22, 2892.	1.8	5
1057	Enhancing cardiovascular research with whole-organ imaging. Current Opinion in Hematology, 2021, 28, 214-220.	1.2	5
1058	Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain. NeuroImage, 2021, 228, 117692.	2.1	20
1059	The Cellular Organization of the Mammary Gland: Insights From Microscopy. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 71-85.	1.0	16
1060	Three-Dimensional Imaging in Stem Cell-Based Researches. Frontiers in Veterinary Science, 2021, 8, 657525.	0.9	13
1062	Tissue clearing techniques for threeâ€dimensional optical imaging of intact human prostate and correlations with multiâ€parametric MRI. Prostate, 2021, 81, 521-529.	1.2	1
1063	3D Whole-Brain Imaging Approaches to Study Brain Tumors. Cancers, 2021, 13, 1897.	1.7	7
1064	Simple methodology to visualize whole-brain microvasculature in three dimensions. Neurophotonics, 2021, 8, 025004.	1.7	6
1065	Sensitive label-free imaging of brain samples using FxClear-based tissue clearing technique. IScience, 2021, 24, 102267.	1.9	2
1066	Tissue clearing and imaging methods for cardiovascular development. IScience, 2021, 24, 102387.	1.9	18
1068	Comparative Study Of Voxel-Based Statistical Analysis Methods For Fluorescently Labelled And Light Sheet Imaged Whole-Brain Samples. , 2021, , .		3
1069	Three-Dimensional Mapping of Retrograde Multi-Labeled Motor Neuron Columns in the Spinal Cord. Photonics, 2021, 8, 145.	0.9	1
1071	Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Molecular Psychiatry, 2021, 26, 6253-6268.	4.1	15
1072	The Hidden Brain: Uncovering Previously Overlooked Brain Regions by Employing Novel Preclinical Unbiased Network Approaches. Frontiers in Systems Neuroscience, 2021, 15, 595507.	1.2	11

#	Article	IF	CITATIONS
1073	A comparison of insertion methods for surgical placement of penetrating neural interfaces. Journal of Neural Engineering, 2021, 18, 041003.	1.8	21
1074	Three-dimensional understanding of the morphological complexity of the human uterine endometrium. IScience, 2021, 24, 102258.	1.9	59
1076	High-resolution 3D fluorescent imaging of intact tissues. , 2021, 1, 1-14.		0
1077	Large-scale, cell-resolution volumetric mapping allows layer-specific investigation of human brain cytoarchitecture. Biomedical Optics Express, 2021, 12, 3684.	1.5	18
1078	Identifying cellular signalling molecules in developmental disorders of the brain: Evidence from focal cortical dysplasia and tuberous sclerosis. Neuropathology and Applied Neurobiology, 2021, 47, 781-795.	1.8	6
1080	Deep learning based neuronal soma detection and counting for Alzheimer's disease analysis. Computer Methods and Programs in Biomedicine, 2021, 203, 106023.	2.6	10
1081	In Vivo and In Situ Approach to Study Islet Microcirculation: A Mini-Review. Frontiers in Endocrinology, 2021, 12, 602620.	1.5	3
1082	A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLoS Computational Biology, 2021, 17, e1009074.	1.5	44
1083	Tutorial: practical considerations for tissue clearing and imaging. Nature Protocols, 2021, 16, 2732-2748.	5.5	51
1084	Advances in Two-Photon Imaging in Plants. Plant and Cell Physiology, 2021, 62, 1224-1230.	1.5	13
1085	Longitudinal intravital imaging nerve degeneration and sprouting in the toes of spared nerve injured mice. Journal of Comparative Neurology, 2021, 529, 3247-3264.	0.9	3
1086	Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nature Chemical Biology, 2021, 17, 1057-1064.	3.9	59
1087	The tweety Gene Family: From Embryo to Disease. Frontiers in Molecular Neuroscience, 2021, 14, 672511.	1.4	12
1088	High-resolution light-field microscopy with patterned illumination. Biomedical Optics Express, 2021, 12, 3887.	1.5	10
1089	Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. Journal of Neural Engineering, 2021, 18, 044002.	1.8	3
1090	Clarifying a crowded field of techniques. Lab Animal, 2021, 50, 159-161.	0.2	0
1091	Application of Zwitterionic Polymer Hydrogels to Optical Tissue Clearing for 3D Fluorescence Imaging. Macromolecular Bioscience, 2021, 21, e2100170.	2.1	7
1093	Imaging the Gut with "CLARITY". Journal of Visualized Experiments, 2021, , .	0.2	0

#	Article	IF	CITATIONS
1094	It's clearly the heart! Optical transparency, cardiac tissue imaging, and computer modelling. Progress in Biophysics and Molecular Biology, 2021, 168, 18-18.	1.4	6
1095	Chemical Sectioning for Immunofluorescence Imaging. Analytical Chemistry, 2021, 93, 8698-8703.	3.2	5
1096	Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging?. International Journal of Molecular Sciences, 2021, 22, 6730.	1.8	2
1097	Three-Dimensional X-ray Imaging of β-Galactosidase Reporter Activity by Micro-CT: Implication for Quantitative Analysis of Gene Expression. Brain Sciences, 2021, 11, 746.	1.1	8
1098	Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nature Reviews Physics, 2021, 3, 570-588.	11.9	115
1099	Volumetric histological characterization of optic nerve degeneration using tissue clearing: literature review and practical study. Journal of Histotechnology, 2021, 44, 206-216.	0.2	0
1100	Protocol for constructing a versatile tiling light sheet microscope for imaging cleared tissues. STAR Protocols, 2021, 2, 100546.	0.5	6
1101	Stage-dependent sequential organization of nascent smooth muscle cells and its implications for the gut coiling morphogenesis in Xenopus larva. Zoology, 2021, 146, 125905.	0.6	1
1102	CUBIC-Cloud provides an integrative computational framework toward community-driven whole-mouse-brain mapping. Cell Reports Methods, 2021, 1, 100038.	1.4	12
1103	Whole-Mount Kidney Clearing and Visualization Reveal Renal Sympathetic Hyperinnervation in Heart Failure Mice. Frontiers in Physiology, 2021, 12, 696286.	1.3	4
1105	Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods, 2022, 203, 465-477.	1.9	15
1106	Arrhythmogenic potential of myocardial disarray in hypertrophic cardiomyopathy: genetic basis, functional consequences and relation to sudden cardiac death. Europace, 2021, 23, 985-995.	0.7	11
1107	Innovations in exÂvivo Light Sheet Fluorescence Microscopy. Progress in Biophysics and Molecular Biology, 2022, 168, 37-51.	1.4	8
1108	3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. IScience, 2021, 24, 102795.	1.9	6
1109	Tissue clearing to examine tumour complexity in three dimensions. Nature Reviews Cancer, 2021, 21, 718-730.	12.8	50
1110	Label-retention expansion microscopy. Journal of Cell Biology, 2021, 220, .	2.3	31
1111	Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Reports, 2021, 36, 109310.	2.9	17
1112	Ovary Development: Insights From a Three-Dimensional Imaging Revolution. Frontiers in Cell and Developmental Biology, 2021, 9, 698315.	1.8	12

#	Article	IF	CITATIONS
1113	Improvement in image quality via the pseudo confocal effect in multidirectional digital scanned laser light-sheet microscopy. Optics Express, 2021, 29, 24278.	1.7	0
1114	In search of lost time: attosecond physics, petahertz optoelectronics, and quantum speed limit. Physics-Uspekhi, 2021, 64, 370-385.	0.8	20
1115	Mesoscale microscopy and image analysis tools for understanding the brain. Progress in Biophysics and Molecular Biology, 2022, 168, 81-93.	1.4	25
1116	Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nature Methods, 2021, 18, 953-958.	9.0	32
1117	Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Advanced Drug Delivery Reviews, 2021, 174, 265-293.	6.6	53
1118	High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nature Biotechnology, 2021, 39, 1521-1528.	9.4	61
1119	Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annual Review of Microbiology, 2021, 75, 407-426.	2.9	2
1120	Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Frontiers in Physiology, 2021, 12, 726895.	1.3	14
1121	Accelerated clearing and molecular labeling of biological tissues using magnetohydrodynamic force. Scientific Reports, 2021, 11, 16462.	1.6	5
1122	Imaging the Hypothalamo-Neurohypophysial System. Neuroendocrinology, 2023, 113, 168-178.	1.2	3
1123	Specific Endothelial Cells Govern Nanoparticle Entry into Solid Tumors. ACS Nano, 2021, 15, 14080-14094.	7.3	60
1124	A high-resolution interactive atlas of the human brainstem using magnetic resonance imaging. Neurolmage, 2021, 237, 118135.	2.1	18
1125	Optical clearing in cardiac imaging: A comparative study. Progress in Biophysics and Molecular Biology, 2022, 168, 10-17.	1.4	10
1126	Dec-DISCO: decolorization DISCO clearing for seeing through the biological architectures of heme-rich organs. Biomedical Optics Express, 2021, 12, 5499.	1.5	3
1128	Passive Clearing and 3D Lightsheet Imaging of the Intact and Injured Spinal Cord in Mice. Frontiers in Cellular Neuroscience, 2021, 15, 684792.	1.8	7
1129	Tissue clearing and 3D imaging – putting immune cells into context. Journal of Cell Science, 2021, 134, .	1.2	6
1130	Basic principles of hydrogel-based tissue transformation technologies and their applications. Cell, 2021, 184, 4115-4136.	13.5	37
1131	Advancing models of neural development with biomaterials. Nature Reviews Neuroscience, 2021, 22, 593-615.	4.9	60

#	Article	IF	CITATIONS
1133	Exploring the human cerebral cortex using confocal microscopy. Progress in Biophysics and Molecular Biology, 2022, 168, 3-9.	1.4	8
1134	Tissue clearing and 3D imaging in developmental biology. Development (Cambridge), 2021, 148, .	1.2	30
1135	Recent advances in stem cell therapy for neurodegenerative disease: Three dimensional tracing and its emerging use. World Journal of Stem Cells, 2021, 13, 1215-1230.	1.3	5
1136	Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet. PLoS ONE, 2021, 16, e0257426.	1.1	5
1137	Assessment of flow within developing chicken vasculature and biofabricated vascularized tissues using multimodal imaging techniques. Scientific Reports, 2021, 11, 18251.	1.6	5
1138	CUBIC-plus: An optimized method for rapid tissue clearing and decolorization. Biochemical and Biophysical Research Communications, 2021, 568, 116-123.	1.0	5
1139	Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold. Scientific Reports, 2021, 11, 18053.	1.6	3
1140	FDISCO+: a clearing method for robust fluorescence preservation of cleared samples. Neurophotonics, 2021, 8, 035007.	1.7	3
1141	Tissue optical clearing for 3D visualization of vascular networks: A review. Vascular Pharmacology, 2021, 141, 106905.	1.0	10
1142	Progress towards a cellularly resolved mouse mesoconnectome is empowered by data fusion and new neuroanatomy techniques. Neuroscience and Biobehavioral Reviews, 2021, 128, 569-591.	2.9	2
1144	Visualization and analysis of whole depot adipose tissue neural innervation. IScience, 2021, 24, 103127.	1.9	22
1145	Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Seminars in Cell and Developmental Biology, 2021, 118, 107-118.	2.3	5
1146	High-resolution resources and histological mesh tractography. , 2022, , 303-323.		0
1147	Spatial mapping of the tumor immune microenvironment. , 2022, , 293-329.		0
1148	No observed effect on brain vasculature of Alzheimer's disease-related mutations in the zebrafish presenilin 1 gene. Molecular Brain, 2021, 14, 22.	1.3	1
1149	Whole Murine Brain Imaging Based on Optical Elastic Scattering. Advances in Experimental Medicine and Biology, 2021, 3233, 109-125.	0.8	0
1150	Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. Journal of the American Chemical Society, 2021, 143, 2304-2314.	6.6	13
1151	Visualizing Pericyte Mimicry of Angiotropic Melanoma by Direct Labeling of the Angioarchitecture. Methods in Molecular Biology, 2021, 2235, 1-12.	0.4	2

#	Article	IF	CITATIONS
1152	Three-dimensional Imaging Coupled with Topological Quantification Uncovers Retinal Vascular Plexuses Undergoing Obliteration. Theranostics, 2021, 11, 1162-1175.	4.6	6
1156	Engineered Tools to Study Intercellular Communication. Advanced Science, 2021, 8, 2002825.	5.6	39
1157	Mapping vascular and glomerular pathology in a rabbit model of neonatal acute kidney injury using <scp>MRI</scp> . Anatomical Record, 2020, 303, 2716-2728.	0.8	12
1158	Rapid optical tissue clearing using poly(acrylamideâ€coâ€styrenesulfonate) hydrogels for threeâ€dimensional imaging. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2297-2304.	1.6	12
1159	Organelle size scaling over embryonic development. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e376.	5.9	15
1160	Analysis of Gene Expression in Neurons and Synapses by Multi-color In Situ Hybridization. Neuromethods, 2015, , 293-317.	0.2	4
1161	Combining Whole-Mount In Situ Hybridization with Neuronal Tracing and Immunohistochemistry. Neuromethods, 2015, , 339-352.	0.2	10
1162	Imaging the Lymph Node Stroma. Methods in Molecular Biology, 2018, 1763, 53-61.	0.4	6
1163	Nanotechnology-Neuroscience Convergence. , 2016, , 293-306.		1
1164	Neuroarchaeology. Springer Series in Bio-/neuroinformatics, 2015, , 145-175.	0.1	12
1165	Form Meets Function in the Brain: Observing the Activity and Structure of Specific Neural Connections. Research and Perspectives in Neurosciences, 2016, , 19-29.	0.4	1
1166	Visualization of Lymphatic Vessel Development, Growth, and Function. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 167-186.	1.0	16
1167	History of the Study and Nomenclature of the Claustrum. , 2014, , 1-27.		4
1168	Neuroscience: Method man. Nature, 2013, 497, 550-552.	13.7	3
1169	Lighting up single-nucleotide variation <i>in situ</i> in single cells and tissues. Chemical Society Reviews, 2020, 49, 1932-1954.	18.7	40
1170	AO DIVER: Development of a three-dimensional adaptive optics system to advance the depth limits of multiphoton imaging. APL Photonics, 2020, 5, 120801.	3.0	5
1171	Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro-Oncology, 2021, 23, 932-944.	0.6	32
1211	Multi-Node Multi-GPU Diffeomorphic Image Registration for Large-Scale Imaging Problems. , 2020, 2020, .		6

#	Article	IF	CITATIONS
1212	The connectomics challenge. Functional Neurology, 2013, 28, 167-73.	1.3	16
1213	Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens. Advanced Photonics, 2019, 1, 1.	6.2	37
1214	Development of a neutral embedding resin for optical imaging of fluorescently labeled biological tissue. Journal of Biomedical Optics, 2017, 22, 1.	1.4	3
1215	Characterization of wavefront errors in mouse cranial bone using second-harmonic generation. Journal of Biomedical Optics, 2017, 22, 036012.	1.4	17
1216	Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector. Journal of Biomedical Optics, 2019, 24, 1.	1.4	22
1217	Evaluation of seven optical clearing methods in mouse brain. Neurophotonics, 2018, 5, 1.	1.7	70
1218	Light-sheet fluorescence expansion microscopy: fast mapping of neural circuits at super resolution. Neurophotonics, 2019, 6, 1.	1.7	30
1219	Contrast-enhanced serial optical coherence scanner with deep learning network reveals vasculature and white matter organization of mouse brain. Neurophotonics, 2019, 6, 1.	1.7	10
1220	Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method. Neurophotonics, 2020, 7, 1.	1.7	8
1221	Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods. , 2016, , .		16
1222	Transcytosis route mediates rapid delivery of intact antibodies to draining lymph nodes. Journal of Clinical Investigation, 2019, 129, 3086-3102.	3.9	48
1223	Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. Journal of Clinical Investigation, 2016, 126, 4554-4568.	3.9	35
1224	Efficacy, Drug Sensitivity, and Safety of a Chronic Ocular Hypertension Rat Model Established Using a Single Intracameral Injection of Hydrogel into the Anterior Chamber. Medical Science Monitor, 2020, 26, e925852.	0.5	6
1225	Recent advances in imaging subcellular processes. F1000Research, 2016, 5, 1553.	0.8	9
1226	Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. Biomedical Optics Express, 2019, 10, 4075.	1.5	22
1227	In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomedical Optics Express, 2019, 10, 5251.	1.5	133
1228	Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy. Biomedical Optics Express, 2020, 11, 6181.	1.5	20
1229	Continuous imaging of large-volume tissues with a machinable optical clearing method at subcellular resolution. Biomedical Optics Express, 2020, 11, 7132.	1.5	5

#	Article	IF	CITATIONS
1230	Multi-resolution open-top light-sheet microscopy to enable efficient 3D pathology workflows. Biomedical Optics Express, 2020, 11, 6605.	1.5	36
1231	Multi-purpose SLM-light-sheet microscope. Biomedical Optics Express, 2018, 9, 5419.	1.5	16
1232	Performance evaluation of an implantable sensor for deep brain imaging: an analytical investigation. Optical Materials Express, 2019, 9, 3729.	1.6	5
1233	A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast. PLoS ONE, 2015, 10, e0142974.	1.1	24
1234	Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues. PLoS ONE, 2016, 11, e0148233.	1.1	31
1235	Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing. PLoS ONE, 2016, 11, e0150268.	1.1	43
1236	Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids. PLoS ONE, 2016, 11, e0156942.	1.1	11
1237	Rationalisation and Validation of an Acrylamide-Free Procedure in Three-Dimensional Histological Imaging. PLoS ONE, 2016, 11, e0158628.	1.1	32
1238	3D Visualization of the Temporal and Spatial Spread of Tau Pathology Reveals Extensive Sites of Tau Accumulation Associated with Neuronal Loss and Recognition Memory Deficit in Aged Tau Transgenic Mice. PLoS ONE, 2016, 11, e0159463.	1.1	27
1239	A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System. PLoS ONE, 2017, 12, e0169611.	1.1	41
1240	Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS ONE, 2017, 12, e0182072.	1.1	40
1241	The Role of Lymphatic Niches in T Cell Differentiation. Molecules and Cells, 2016, 39, 515-523.	1.0	14
1242	3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates. ENeuro, 2015, 2, ENEURO.0001-15.2015.	0.9	53
1243	Characterization of a Knock-In Mouse Line Expressing a Fusion Protein of \hat{I}^{e} Opioid Receptor Conjugated with tdTomato: 3-Dimensional Brain Imaging via CLARITY. ENeuro, 2020, 7, ENEURO.0028-20.2020.	0.9	38
1244	High-Fidelity Imaging in Brain-Wide Structural Studies Using Light-Sheet Microscopy. ENeuro, 2018, 5, ENEURO.0124-18.2018.	0.9	15
1245	Distinctive Structural and Molecular Features of Myelinated Inhibitory Axons in Human Neocortex. ENeuro, 2018, 5, ENEURO.0297-18.2018.	0.9	35
1246	Synaptic Connections of Aromatase Circuits in the Medial Amygdala Are Sex Specific. ENeuro, 2020, 7, ENEURO.0489-19.2020.	0.9	16
1247	Prefrontal Cortex Corticotropin-Releasing Factor Neurons Motivate Behavioral Coping Strategies During Various Challenging Situations. SSRN Electronic Journal, 0, , .	0.4	2

	CIATION	KLF OK I	
#	Article	IF	Citations
1248	A rapid, nondestructive method for vascular network visualization. BioTechniques, 2020, 69, 443-449.	0.8	2
1249	Recent Advances in Self-Assembled Fluorescent DNA Structures and Probes. Current Topics in Medicinal Chemistry, 2015, 15, 1162-1178.	1.0	4
1250	zPACT: Tissue Clearing and Immunohistochemistry on Juvenile Zebrafish Brain. Bio-protocol, 2017, 7, e2636.	0.2	13
1251	Looking through Brains with Fast Passive CLARITY: Zebrafish, Rodents, Non-human Primates and Humans. Bio-protocol, 2019, 9, e3321.	0.2	6
1252	Skeletal Muscle CLARITY: A Preliminary Study of Imaging The Three-Dimensional Architecture of Blood Vessels and Neurons. Cell Journal, 2018, 20, 132-137.	0.2	22
1253	A Simple Technique for Three-Dimensional Imaging and Segmentation of Brain Vasculature U sing Fast Free-of-Acrylamide Clearing Tissue in Murine. Cell Journal, 2019, 21, 49-56.	0.2	9
1254	FACT or PACT: A Comparison between Free-Acrylamide and Acrylamide-Based Passive Sodium Dodecyl Sulfate Tissue Clearing for whole Tissue Imaging. Cell Journal, 2019, 21, 103-114.	0.2	4
1255	BACH family members regulate angiogenesis and lymphangiogenesis by modulating VEGFC expression. Life Science Alliance, 2020, 3, e202000666.	1.3	20
1256	Schizophrenia and abnormal brain network hubs. Dialogues in Clinical Neuroscience, 2013, 15, 339-349.	1.8	173
1257	Nerves in the Tumor Microenvironment: Origin and Effects. Frontiers in Cell and Developmental Biology, 2020, 8, 601738.	1.8	48
1258	An automated images-to-graphs framework for high resolution connectomics. Frontiers in Neuroinformatics, 2015, 9, 20.	1.3	18
1259	Three-dimensional histology: new visual approaches to morphological changes during neural regeneration. Neural Regeneration Research, 2017, 12, 53.	1.6	1
1260	See-Through Technology for Biological Tissue: 3-Dimensional Visualization of Macromolecules. International Neurourology Journal, 2016, 20, S15-22.	0.5	21
1261	Mapping neural circuits with CLARITY. ELife, 2015, 4, e11409.	2.8	8
1262	Correlated magnetic resonance imaging and ultramicroscopy (MR-UM) is a tool kit to assess the dynamics of glioma angiogenesis. ELife, 2016, 5, e11712.	2.8	40
1263	Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. ELife, 2017, 6, .	2.8	73
1264	A tunable refractive index matching medium for live imaging cells, tissues and model organisms. ELife, 2017, 6, .	2.8	128
1265	Cellular cartography of the organ of Corti based on optical tissue clearing and machine learning. ELife, 2019, 8, .	2.8	16

ARTICLE IF CITATIONS Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography. ELife, 2019, 1266 2.8 79 8, . Novel long-range inhibitory nNOS-expressing hippocampal cells. ELife, 2019, 8, . 2.8 Mechanisms of virus dissemination in bone marrow of HIV-1–infected humanized BLT mice. ELife, 2019, 1268 2.8 24 8,. Magnetic resonance measurements of cellular and sub-cellular membrane structures in live and fixed 1269 neural tissue. ELife, 2019, 8, . 3D visualization of macromolecule synthesis. ELife, 2020, 9, . 1270 2.8 14 3D in situ imaging of the female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice. ELife, 2020, 9, . 1271 2.8 1272 Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox. PeerJ, 2015, 3, e1078. 0.9 11 ${
m \hat{A}G}$ lial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system. PeerJ, 2017, 5, e3519. Electrophoretic Tissue Clearing and Labeling Methods & nbsp; for Volume Imaging of Whole Organs. 1274 0.8 1 Applied Microscopy, 2016, 46, 134-139. Multi-Scale Light-Sheet Fluorescence Microscopy for Fast Whole Brain Imaging. Frontiers in Neuroanatomy, 2021, 15, 732464. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nature 1276 9.4 43 Biotechnology, 2022, 40, 364-373. Foreground Estimation in Neuronal Images With a Sparse-Smooth Model for Robust Quantification. 1277 0.9 Frontiers in Neuroanatomy, 2021, 15, 716718. Neuron segmentation using 3D wavelet integrated encoder–decoder network. Bioinformatics, 2022, 1279 1.8 5 38,809-817. Recent progress in optical clearing of eye tissues. Experimental Eye Research, 2021, 212, 108796. 1.2 1283 Enhanced biosensing based on chemical or mechanical optical clearing., 2013, , . 0 Optogenetics. Materials and Methods, 0, 3, . 1284 Cavarsela alla meno peggio. Psicoanalisi e neuroscienze., 2014, , 277-298. 1285 0 Combining Multichannel Confocal Laser Scanning Microscopy with Serial Section Reconstruction to Analyze Large Tissue Volumes at Cellular Resolution. Neuromethods, 2014, , 83-103.

#	Article	IF	CITATIONS
1287	3D Microscopic Imaging and Evaluation of Tubular Tissue Architecture. Physiological Research, 2014, 63, S49-S55.	0.4	2
1289	A versatile new technique to clear mouse and human brain. , 2015, , .		0
1290	A multi modal clearing method for brain imaging. , 2015, , .		0
1291	Clearing of mouse retina and optic nerve by CLARITY. Denki Eido, 2015, 59, 103-105.	0.0	0
1292	Whole brain imaging with a scalable microscope. , 2016, , .		0
1293	ERROR ANALYSIS AND QUANTIFICATION IN NEURON SIMULATIONS. , 2016, , .		1
1294	PEA-CLARITY: Three Dimensional (3D) Molecular Imaging of Whole Plant Organs. Bio-protocol, 2016, 6, .	0.2	0
1296	A Quantitative Approach to Characterize MR Contrasts with Histology. Lecture Notes in Computer Science, 2016, , 104-115.	1.0	0
1297	Imaging through dynamic scattering media with compressed sensing. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 040501.	0.2	5
1298	Optically Cleared Mouse Tongues for Three-Dimensional Investigation of Oral Neoplasia. , 2016, , .		1
1299	Immune Responses to Viruses in the CNS. , 2016, , 332-341.		0
1300	Future Brain Research and Neurotechnology. Japanese Journal of Neurosurgery, 2016, 25, 476-479.	0.0	0
1303	High-resolution synchrotron radiation-based phase tomography of the healthy and epileptic brain. , 2016, , .		0
1306	Brain Mapping: From Anatomics to Informatics. Applied Microscopy, 2016, 46, 184-187.	0.8	0
1309	Rapid optical clearing method for mouse brain tissues. , 2017, , .		0
1310	High Throughput Multiscale Brain Imaging. , 2017, , .		0
1311	High-resolution imaging immunolabeled large tissues. , 2017, , .		0
1315	Myocardial wall stiffening in a mouse model of persistent truncus arteriosus. PLoS ONE, 2017, 12, e0184678.	1.1	1

#	Article	IF	Citations
1317	High-refractive index of acrylate embedding resin clarifies mouse brain tissue. Journal of Biomedical Optics, 2017, 22, 1.	1.4	1
1320	Engineering of Human-Induced Pluripotent Stem Cells for Precise Disease Modeling. , 2018, , 369-411.		Ο
1321	UbasM: a simple, rapid, efficient balanced optical clearing method for brain imaging. , 2018, , .		0
1322	Whole-organ atlas imaged by label-free high-resolution photoacoustic microscopy assisted by a microtome. , 2018, , .		0
1323	DAS: A simple, efficient, scalable and Dil-compatible optical clearing method for intact systems. , 2018, ,		0
1324	Hyper-spectrum scanning laser optical tomography. , 2018, , .		0
1333	A Novel Technique for Imaging and Analysis of Hair Cells in the Organ of Corti Using Modified Sca/eS and Machine Learning. Bio-protocol, 2019, 9, e3342.	0.2	3
1335	Seebest: A pH-Adjustable Tissue Clearing Solution that Preserves Lipid Ultrastructures. SSRN Electronic Journal, 0, , .	0.4	0
1337	Changes in Conyza canadensis (L.) cronquist leaf anatomy under caprylic acid stress. Pakistan Journal of Botany, 2019, 51, .	0.2	0
1340	An applicable whole-mount immunolabeling method for volume imaging of skeletal muscle. , 2019, , .		1
1341	Optimized 3DISCO for imaging of heme-rich tissues by decolorization. , 2019, , .		0
1342	Imaging the brain in 3D using a combination of CUBIC and immunofluorescence staining. Biomedical Optics Express, 2019, 10, 2141.	1.5	7
1354	Whole-Tissue Immunolabeling and 3D Fluorescence Imaging to Visualize Axon Degeneration in the Intact, Unsectioned Mouse Tissues. Methods in Molecular Biology, 2020, 2143, 223-232.	0.4	1
1355	Neurohistology with a Touch of History: Technology-Driven Research. Neuromethods, 2020, , 1-48.	0.2	0
1365	In Vivo Clonal Analysis of Cardiomyocytes. Methods in Molecular Biology, 2021, 2158, 243-256.	0.4	2
1367	Tutorial: methods for three-dimensional visualization of archival tissue material. Nature Protocols, 2021, 16, 4945-4962.	5.5	7
1368	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Đriven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	7.8	9
1369	In-gel fluorescence detection by DNA polymerase elongation. APL Bioengineering, 2020, 4, 046104.	3.3	0

	Сітатіс	on Report	
#	Article	IF	Citations
1370	A Hydrophobic Tissue Clearing Method for Rat Brain Tissue. Journal of Visualized Experiments, 2020, , .	0.2	2
1371	Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast histological imaging. Photoacoustics, 2022, 25, 100313.	4.4	10
1373	Three-Dimensional Visualization and Quantitative Characterization of Cerebral Microvasculature in Mice. , 2021, , .		0
1374	Chemical Clearing of GFP-Expressing Neural Tissues. Neuromethods, 2020, , 183-199.	0.2	0
1375	Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods in Molecular Biology, 2020, 2122, 3-14.	0.4	1
1376	Neuroanatomical Tracing Based on Selective Fluorochrome Expression in Transgenic Animals. Neuromethods, 2020, , 125-156.	0.2	0
1378	Toward Better Medical Diagnosis: Tissue Optical Clearing. Journal of Public Health International, 2019, 2, 13-21.	0.1	6
1379	Novel imaging and related techniques for studies of diseases of the central nervous system: a review. Cell and Tissue Research, 2020, 380, 415-424.	1.5	2
1380	Three-Dimensional Approaches in Histopathological Tissue Clearing System. Korean Journal of Clinical Laboratory Science, 2020, 52, 1-17.	0.1	2
1386	Intraoperative imaging in pathology-assisted surgery. Nature Biomedical Engineering, 2022, 6, 503-514.	11.6	39
1387	Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Frontiers in Neuroanatomy, 2021, 15, 757499.	0.9	3
1388	Deep learning is widely applicable to phenotyping embryonic development and disease. Development (Cambridge), 2021, 148, .	1.2	16
1389	Brain virtual histology with X-ray phase-contrast tomography Part I: whole-brain myelin mapping in white-matter injury models. Biomedical Optics Express, 2022, 13, 1620.	1.5	8
1390	Bioprinting of Complex Multicellular Organs with Advanced Functionality—Recent Progress and Challenges Ahead. Advanced Materials, 2022, 34, e2101321.	11.1	31
1391	Sodium Cholateâ€Based Active Delipidation for Rapid and Efficient Clearing and Immunostaining of Deep Biological Samples. Small Methods, 2022, 6, e2100943.	4.6	4
1392	Neural mechanisms for developing species-universal and individually unique song of zebra finch Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2020, 37, 94-102.	0.0	0
1393	Human Glioblastoma Organoids to Model Brain Tumor Heterogeneity Ex Vivo. Neuromethods, 2021, , 133-158.	0.2	0
1395	Phenotyping Intact Mouse Bones Using Bone CLARITY. Methods in Molecular Biology, 2021, 2230, 217-230.	0.4	0

#	Article	IF	CITATIONS
1397	The BRAIN Initiative Provides a Unifying Context for Integrating Core STEM Competencies into a Neurobiology Course. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2016, 14, A97-A103.	0.6	3
1400	Combined transmission, dark field and fluorescence microscopy for intact, 3D tissue analysis of biopsies. Journal of Biomedical Optics, 2020, 25, .	1.4	1
1401	Conventional histomorphometry and fast free of acrylamide clearing tissue (FACT) visualization of sciatic nerve in chicken (). Veterinary Research Forum, 2021, 12, 167-173.	0.3	0
1402	Macro photography with Lighsheet Illumination Enables Whole Expanded Brain Imaging with Single-cell Resolution. Discoveries, 2021, 9, e133.	1.5	2
1403	Aberration measurement and correction on a large field of view in fluorescence microscopy. Biomedical Optics Express, 2022, 13, 262.	1.5	11
1404	Comparison of Different Tissue Clearing Methods for Three-Dimensional Reconstruction of Human Brain Cellular Anatomy Using Advanced Imaging Techniques. Frontiers in Neuroanatomy, 2021, 15, 752234.	0.9	8
1405	Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels, 2021, 7, 207.	2.1	32
1406	Quantification of Myocyte Disarray in Human Cardiac Tissue. Frontiers in Physiology, 2021, 12, 750364.	1.3	7
1407	An easy brain thickâ€sectionâ€clearing protocol to observe antigens in the brains of neurological disease mouse models by conventional epifluorescence and confocal laser scanning microscopy. Microscopy Research and Technique, 2021, , .	1.2	0
1408	Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nature Methods, 2022, 19, 284-295.	9.0	156
1409	Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview. Journal of Innovative Optical Health Sciences, 2022, 15, .	0.5	6
1410	Complete Visualization of T Follicular Helper Cells in Germinal Centers by Light Sheet Fluorescence Microscopy. Methods in Molecular Biology, 2022, 2380, 3-13.	0.4	Ο
1411	Ventral striatal islands of Calleja neurons control grooming in mice. Nature Neuroscience, 2021, 24, 1699-1710.	7.1	25
1412	Towards organism-level systems biology by next-generation genetics and whole-organ cell profiling. Biophysical Reviews, 2021, 13, 1113-1126.	1.5	1
1414	Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Frontiers in Physiology, 2021, 12, 769586.	1.3	6
1415	F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation. Biomedical Optics Express, 2022, 13, 237.	1.5	3
1416	Epitope-preserving magnified analysis of proteome (eMAP). Science Advances, 2021, 7, eabf6589.	4.7	22
1417	A novel paper MAP method for rapid high resolution histological analysis. Scientific Reports, 2021, 11, 23340.	1.6	2

IF

ARTICLE

CITATIONS

0

1418	Multiphoton Ir	maging.,	,2021,,	1-20.
------	----------------	----------	---------	-------

1419	Vasculature-Staining with Lipophilic Dyes in Tissue-Cleared Brains Assessed by Deep Learning. SSRN	0.4	0
	Electronic Journal, O, , .		
1420	Use of High-Refractive Index Hydrogels and Tissue Clearing for Large Biological Sample Imaging. Gels, 2022, 8, 32.	2.1	2
1421	Common principles in the lateralization of auditory cortex structure and function for vocal communication in primates and rodents. European Journal of Neuroscience, 2022, 55, 827-845.	1.2	3
1422	Finding the best clearing approach - Towards 3D wide-scale multimodal imaging of aged human brain tissue. Neurolmage, 2022, 247, 118832.	2.1	7
1423	Combined transmission, dark field and fluorescence microscopy for intact, 3D tissue analysis of biopsies. Journal of Biomedical Optics, 2020, 25, .	1.4	3
1425	Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Frontiers in Neuroanatomy, 2021, 15, 787601.	0.9	11
1426	Stretchable Mesh Nanoelectronics for 3D Singleâ€Cell Chronic Electrophysiology from Developing Brain Organoids. Advanced Materials, 2022, 34, e2106829.	11.1	44
1427	Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nature Biotechnology, 2022, 40, 1143-1149.	9.4	18
1428	Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. International Journal of Biological Sciences, 2022, 18, 552-571.	2.6	3
1429	Animal health monitoring using nanosensor networks. , 2022, , 573-608.		4
1430	Comparative Analyses of Clearing Efficacies of Tissue Clearing Protocols by Using a Punching Assisted Clarity Analysis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 784626.	2.0	6
1431	Brain-Wide Synaptic Inputs to Aromatase-Expressing Neurons in the Medial Amygdala Suggest Complex Circuitry for Modulating Social Behavior. ENeuro, 2022, 9, ENEURO.0329-21.2021.	0.9	3
1432	Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. IScience, 2022, 25, 103601.	1.9	11
1433	Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development (Cambridge), 2022, 149, .	1.2	11
1434	Electrotransfer of Immunoprobes through Thin-Layer Polyacrylamide Gels. Analytical Chemistry, 2022, 94, 2706-2712.	3.2	3
1435	MR and fluorescence imaging of gadobutrolâ€induced optical clearing of red fluorescent protein signal in an in vivo cancer model. NMR in Biomedicine, 2022, 35, e4708.	1.6	5
1436	The brain as a structure: A model of how fluid–structure interactions stiffen brain tissue after injury. Engineering Structures, 2022, 256, 113960.	2.6	4

# 1437	ARTICLE Tissue clearing. Nature Reviews Methods Primers, 2021, 1, .	IF 11.8	Citations
1438	Clearing-induced tisssue shrinkage: A novel observation of a thickness size effect. PLoS ONE, 2021, 16, e0261417.	1.1	5
1440	Hydrophobic and Hydrogel-Based Methods for Passive Tissue Clearing. Methods in Molecular Biology, 2022, 2440, 197-209.	0.4	2
1441	Cell-based biocomposite engineering directed by polymers. Lab on A Chip, 2022, 22, 1042-1067.	3.1	8
1442	Measuring Plasmodesmata Density on Cell Interfaces of Monocot Leaves Using 3D Immunolocalization and Scanning Electron Microscopy. Methods in Molecular Biology, 2022, 2457, 125-142.	0.4	0
1443	A Clearing Method for Three-Dimensional Imaging of Adipose Tissue. Methods in Molecular Biology, 2022, 2448, 73-82.	0.4	1
1444	Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxidants and Redox Signaling, 2022, 37, 538-559.	2.5	8
1445	Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging. International Journal of Molecular Sciences, 2022, 23, 3575.	1.8	0
1447	Human induced pluripotent stem cells integrate, create synapses and extend long axons after spinal cord injury. Journal of Cellular and Molecular Medicine, 2022, 26, 1932-1942.	1.6	7
1448	Post mortem mapping of connectional anatomy for the validation of diffusion MRI. NeuroImage, 2022, 256, 119146.	2.1	47
1450	Chemical fluorescence-based dye staining for 3-dimensional histopathology analysis. Animal Cells and Systems, 2022, 26, 45-51.	0.8	2
1452	The G Protein-Coupled Receptor Latrophilin-2, A Marker for Heart Development, Induces Myocardial Repair After Infarction. Stem Cells Translational Medicine, 2022, 11, 332-342.	1.6	2
1453	A method for ultrafast tissue clearing that preserves fluorescence for multimodal and longitudinal brain imaging. BMC Biology, 2022, 20, 77.	1.7	5
1454	Feasibility study of dual-modality optical-Raman projection tomography. , 2022, , .		0
1455	Impact of Tumor Barriers on Nanoparticle Delivery to Macrophages. Molecular Pharmaceutics, 2022, 19, 1917-1925.	2.3	7
1456	Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochemistry and Cell Biology, 2022, 157, 497-511.	0.8	10
1457	HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies. Nature Methods, 2022, 19, 479-485.	9.0	20
1458	Imaging plant tissues: advances and promising clearing practices. Trends in Plant Science, 2022, 27, 601-615.	4.3	6

		LEPORT	
#	Article	IF	CITATIONS
1460	Computer-assisted three-dimensional quantitation of programmed death-ligand 1 in non-small cell lung cancer using tissue clearing technology. Journal of Translational Medicine, 2022, 20, 131.	1.8	11
1461	LiverClear: A versatile protocol for mouse liver tissue clearing. STAR Protocols, 2022, 3, 101178.	0.5	1
1463	Multiresolution nondestructive 3D pathology of whole lymph nodes for breast cancer staging. Journal of Biomedical Optics, 2022, 27, .	1.4	9
1464	Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis. Journal of Biological Engineering, 2022, 16, 10.	2.0	2
1465	Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Communications, 2022, 13, 1799.	5.8	88
1467	High contrast 3-D optical bioimaging using molecular and nanoprobes optically responsive to IR light. Physics Reports, 2022, 962, 1-107.	10.3	8
1468	Neuroimaging and modulation in obesity and diabetes research: 10th anniversary meeting. International Journal of Obesity, 2022, 46, 718-725.	1.6	2
1470	Understanding immunity in a tissueâ€eentric context: Combining novel imaging methods and mathematics to extract new insights into function and dysfunction*. Immunological Reviews, 2022, 306, 8-24.	2.8	11
1471	The Future of Mammalian Whole-brain Simulations Estimated from Technological Trends in Supercomputers and Brain Measurements. The Brain & Neural Networks, 2021, 28, 172-182.	0.1	0
1472	Cross-modal coherent registration of whole mouse brains. Nature Methods, 2022, 19, 111-118.	9.0	36
1474	Whole-Tissue Three-Dimensional Imaging of Rice at Single-Cell Resolution. International Journal of Molecular Sciences, 2022, 23, 40.	1.8	5
1475	Biomedical Application of Tissue Clearing Methods. Journal of the Japan Society for Precision Engineering, 2021, 87, 922-925.	0.0	0
1476	Visualizing Nervous System Structure. , 2022, , 145-168.		0
1477	Macrophages Actively Transport Nanoparticles in Tumors After Extravasation. ACS Nano, 2022, 16, 6080-6092.	7.3	34
1478	Digital Brain Maps and Virtual Neuroscience: An Emerging Role for Light-Sheet Fluorescence Microscopy in Drug Development. Frontiers in Neuroscience, 2022, 16, 866884.	1.4	6
1479	Quantitative analysis of illumination and detection corrections in adaptive light sheet fluorescence microscopy. Biomedical Optics Express, 2022, 13, 2960.	1.5	7
1542	Challenges and advances in optical 3D mesoscale imaging. Journal of Microscopy, 2022, 286, 201-219.	0.8	13
1544	Decoding the Mouse Spinal Cord Locomotor Neural Network Using Tissue Clearing, Tissue Expansion and Tiling Light Sheet Microscopy Techniques. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
1545	Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118483119.	3.3	18
1547	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
1548	PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements. Nature Communications, 2022, 13, 2475.	5.8	30
1549	Loss of the Sympathetic Signal Produces Sterile Inflammation of the Prostate. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	2
1551	Optimized single-step optical clearing solution for 3D volume imaging of biological structures. Communications Biology, 2022, 5, 431.	2.0	9
1552	A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nature Methods, 2022, 19, 613-619.	9.0	54
1553	In situ identification of cellular drug targets in mammalian tissue. Cell, 2022, 185, 1793-1805.e17.	13.5	28
1554	Human Connectome Mapping and Monitoring Using Neuronanorobots. , 2016, 26, 1-25.		0
1556	Threeâ€dimensional imaging for the analysis of human epidermal melanocytes. Pigment Cell and Melanoma Research, 0, , .	1.5	0
1557	Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Frontiers in Neural Circuits, 0, 16, .	1.4	14
1558	Engineering the multiscale complexity of vascular networks. Nature Reviews Materials, 2022, 7, 702-716.	23.3	61
1559	Transgenic mice encoding modern imaging probes: Properties and applications. Cell Reports, 2022, 39, 110845.	2.9	3
1561	High-Resolution 3D Heart Models of Cardiomyocyte Subpopulations in Cleared Murine Heart. Frontiers in Physiology, 2022, 13, .	1.3	1
1562	Altered Calcium Permeability of AMPA Receptor Drives NMDA Receptor Inhibition in the Hippocampus of Murine Obesity Models. Molecular Neurobiology, 2022, 59, 4902-4925.	1.9	2
1563	BoutonNet: an automatic method to detect anterogradely labeled presynaptic boutons in brain tissue sections. Brain Structure and Function, 2022, 227, 1921-1932.	1.2	1
1564	Technologies for large-scale mapping of functional neural circuits active during a user-defined time window. Progress in Neurobiology, 2022, 216, 102290.	2.8	9
1566	Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging. International Journal of Molecular Sciences, 2022, 23, 6826.	1.8	0
1567	Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy. Nature Communications, 2022, 13, .	5.8	23

#	Article	IF	CITATIONS
1568	Tissue Optical Clearing: State of the Art and Prospects. Diagnostics, 2022, 12, 1534.	1.3	3
1569	Transparent Liver Tumor as an Ex Vivo Model for Transarterial Chemoembolization (TACE). SSRN Electronic Journal, 0, , .	0.4	0
1570	Hybrid open-top light-sheet microscopy. , 2022, , .		0
1571	A role of prefrontal cortico-hypothalamic projections in wake promotion. Cerebral Cortex, 2023, 33, 3026-3042.	1.6	3
1572	Recovery from the damage of cranial radiation modulated by memantine, an NMDA receptor antagonist combined with hyperbaric oxygen therapy. Neuro-Oncology, 0, , .	0.6	1
1573	Genetically encodable fluorescent protein markers in advanced optical imaging. Methods and Applications in Fluorescence, 2022, 10, 042002.	1.1	14
1575	biPACT: A method for three-dimensional visualization of mouse spinal cord circuits of long segments with high resolution. Journal of Neuroscience Methods, 2022, 379, 109672.	1.3	0
1576	Nanoscale fluorescence imaging of biological ultrastructure via molecular anchoring and physical expansion. Nano Convergence, 2022, 9, .	6.3	5
1578	Recent Microscopy Advances and the Applications to Huntington's Disease Research. Journal of Huntington's Disease, 2022, , 1-12.	0.9	0
1579	lsotropic imaging across spatial scales with axially swept light-sheet microscopy. Nature Protocols, 2022, 17, 2025-2053.	5.5	19
1580	Multiscale optical and optoacoustic imaging of amyloid-β deposits in mice. Nature Biomedical Engineering, 2022, 6, 1031-1044.	11.6	39
1581	The developing bird pelvis passes through ancestral dinosaurian conditions. Nature, 2022, 608, 346-352.	13.7	7
1582	Scalable tissue labeling and clearing of intact human organs. Nature Protocols, 2022, 17, 2188-2215.	5.5	15
1583	Hybrid Open-Top Light-Sheet Microscopy for Multi-Scale 3D Imaging of Cleared and Expanded Tissues. Microscopy and Microanalysis, 2022, 28, 1558-1558.	0.2	1
1584	Mesoscale visualization of three-dimensional microvascular architecture and immunocyte distribution in intact mouse liver lobes. Theranostics, 2022, 12, 5418-5433.	4.6	6
1585	Features of the Development of the Human Cerebral Cortex during the Second Trimester of Gestation. Neuroscience and Behavioral Physiology, 2022, 52, 531-540.	0.2	0
1586	High-Resolution Ex Vivo Tissue Clearing, Lightsheet Imaging, and Data Analysis to Support Macromolecular Drug and Biomarker Distribution in Whole Organs and Tumors. Microscopy and Microanalysis, 2022, 28, 1436-1437.	0.2	1
1587	Standard metadata for 3D microscopy. Scientific Data, 2022, 9, .	2.4	7

		CITATION REPORT		
#	Article		IF	Citations
1588	The emerging landscape of spatial profiling technologies. Nature Reviews Genetics, 2022	, 23, 741-759.	7.7	149
1589	Stem-like T cells and niches: Implications in human health and disease. Frontiers in Immur	nology, 0, 13, .	2.2	2
1590	High contrast, isotropic, and uniform 3D-imaging of centimeter-scale scattering samples structured illumination light-sheet microscopy with axial sweeping. Biomedical Optics Exp 13, 4907.	using press, 2022,	1.5	3
1591	Long Preservation of AAV-Transduced Fluorescence by a Modified Organic Solvent-Based Method. International Journal of Molecular Sciences, 2022, 23, 9637.	Clearing	1.8	0
1592	Understanding Breast Cancers through Spatial and High-Resolution Visualization Using Ir Technologies. Cancers, 2022, 14, 4080.	naging	1.7	0
1593	Visualization of the distribution of covalently cross-linked hydrogels in CLARITY brain-poly hybrids for different monomer concentrations. Scientific Reports, 2022, 12, .	mer	1.6	2
1595	CLAIRE—Parallelized Diffeomorphic Image Registration for Large-Scale Biomedical Imagi Applications. Journal of Imaging, 2022, 8, 251.	ng	1.7	3
1596	High-resolution atlasing and segmentation of the subcortex: Review and perspective on c and opportunities created by machine learning. NeuroImage, 2022, 263, 119616.	hallenges	2.1	0
1597	FlyClear: A Tissue-Clearing Technique for High-Resolution Microscopy of Drosophila. Meth Molecular Biology, 2022, , 349-359.	iods in	0.4	0
1598	FACT for Fast and Three-Dimensional Imaging of Intact Tissues. SSRN Electronic Journal, C), , .	0.4	0
1599	Imaging of Acupuncture's Effects. , 2022, , 273-296.			0
1601	The Role of Optical Imaging in Translational Nanomedicine. Journal of Functional Biomate 13, 137.	rials, 2022,	1.8	0
1602	Multidimensional Imaging of Breast Cancer. Cold Spring Harbor Perspectives in Medicine,	0, , a041330.	2.9	1
1603	Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Fror Molecular Neuroscience, 0, 15, .	tiers in	1.4	2
1604	Whole structural reconstruction and quantification of epidermal innervation through the blister method and skin-clearing technique. Scientific Reports, 2022, 12, .	suction	1.6	0
1605	Brain augmentation and neuroscience technologies: current applications, challenges, eth future prospects. Frontiers in Systems Neuroscience, 0, 16, .	ics and	1.2	6
1606	Developmental biology: A dinosaur in a quail egg. Current Biology, 2022, 32, R964-R967.		1.8	0
1607	Three-dimensional visualization of cerebral blood vessels and neural changes in thick isch brain slices using tissue clearing. Scientific Reports, 2022, 12, .	emic rat	1.6	0

#	Article	IF	Citations
1608	Predictive models for social functioning in healthy young adults: A machine learning study integrating neuroanatomical, cognitive, and behavioral data. Social Neuroscience, 0, , 1-14.	0.7	0
1609	Development of a 3D-immunofluorescence analysis for sensory nerve endings in human ligaments. Journal of Neuroscience Methods, 2022, 382, 109724.	1.3	2
1611	Environmental perception and control of gastrointestinal immunity by the enteric nervous system. Trends in Molecular Medicine, 2022, 28, 989-1005.	3.5	11
1612	The dinosaurian femoral head experienced a morphogenetic shift from torsion to growth along the avian stem. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
1613	Tissue clearing of human iPSC-derived organ-chips enables high resolution imaging and analysis. Lab on A Chip, 2022, 22, 4246-4255.	3.1	4
1615	Drug delivery in transarterial chemoembolization of hepatocellular carcinoma: Ex vivo evaluation using transparent tissue imaging. Acta Biomaterialia, 2022, 154, 523-535.	4.1	3
1616	Practical considerations for quantitative light sheet fluorescence microscopy. Nature Methods, 2022, 19, 1538-1549.	9.0	15
1617	Editorial: The human brain multiscale imaging challenge. Frontiers in Neuroanatomy, 0, 16, .	0.9	1
1618	Ethyl Cinnamate-Based Tissue Clearing Strategies. Methods in Molecular Biology, 2023, , 123-133.	0.4	0
1619	CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nature Methods, 2022, 19, 1490-1499.	9.0	49
1620	Probing the nature of episodic memory in rodents. Neuroscience and Biobehavioral Reviews, 2023, 144, 104930.	2.9	2
1621	An interdisciplinary framework for the characterization of extracellular matrix-hydrogels for biomedical applications. Matter, 2022, 5, 3659-3705.	5.0	5
1622	A new protocol for whole-brain biodistribution analysis of AAVs by tissue clearing, light-sheet microscopy and semi-automated spatial quantification. Gene Therapy, 2022, 29, 665-679.	2.3	4
1623	Connecting the connectome: A bibliometric investigation of the 50 most cited articles. Clinical Neurology and Neurosurgery, 2022, 223, 107481.	0.6	2
1624	A protocol to visualize on-target specific drug binding in mammalian tissue with cellular resolution using tissue clearing and click chemistry. STAR Protocols, 2022, 3, 101778.	0.5	0
1625	Pocket CLARITY enables distortion-mitigated cardiac microstructural tissue characterization of large-scale specimens. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
1626	The neurons that restore walking after paralysis. Nature, 2022, 611, 540-547.	13.7	83
1627	Three-dimensional imaging and analysis of pathological tissue samples with de novo generation of citrate-based fluorophores. Science Advances, 2022, 8, .	4.7	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1628	Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022,	, 18, .	3.2	8
1629	Three-dimensional visualization of human brain tumors using the CUBIC technique. Bra Pathology, 0, , .	in Tumor	1.1	1
1630	MAX: a simple, affordable, and rapid tissue clearing reagent for 3D imaging of wide vari biological specimens. Scientific Reports, 2022, 12, .	ety of	1.6	0
1631	Mechanisms of Axon Growth and Regeneration: Moving between Development and Dis Neuroscience, 2022, 42, 8393-8405.	ease. Journal of	1.7	10
1632	Wholeâ€brain microscopy reveals distinct temporal and spatial efficacy of antiâ€Aβ the Molecular Medicine, 0, , .	erapies. EMBO	3.3	4
1633	Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolo with real-time molecular staining. ELife, 0, 11, .	or imaging	2.8	4
1634	Backscattering Mueller Matrix polarimetry on whole brain specimens shows promise fo invasive mapping of microstructural orientation features. Frontiers in Photonics, 0, 3, .	r minimally	1.1	3
1635	The Diverse Network of Brain Histamine in Feeding: Dissect its Functions in a Circuit-Sp Current Neuropharmacology, 2024, 22, 241-259.	ecific Way.	1.4	1
1637	Chapter 12. Imaging in Scaffolds. Biomaterials Science Series, 2022, , 304-341.		0.1	0
1638	Differences in junction-associated gene expression changes in three rat models of diabore retinopathy with similar neurovascular phenotype. Neurobiology of Disease, 2023, 176	etic , 105961.	2.1	1
1639	Neuroinflammation in perioperative brain dysfunction. Russian Journal of Anesthesiolog Reanimatology /Anesteziologiya I Reanimatologiya, 2022, , 99.	;y and	0.2	0
1640	Detection and Morphological Analysis of Micro-Ruptured Cortical Arteries in Subdural F Three-Dimensional Visualization Using the Tissue-Clearing Clear, Unobstructed, Brain/B Cocktails and Computational Analysis Method. Diagnostics, 2022, 12, 2875.	lematoma: ody Imaging	1.3	1
1641	HyClear: A Novel Tissue Clearing Solution for One-Step Clearing of Microtissues. Cells, 2	2022, 11, 3854.	1.8	1
1643	An Image-Based Framework for the Analysis of the Murine Microvasculature: From Tissu Clarification to Computational Hemodynamics. Mathematics, 2022, 10, 4593.	Ie	1.1	0
1644	Revisiting PFA-mediated tissue fixation chemistry: FixEL enables trapping of small molec brain to visualize their distribution changes. CheM, 2023, 9, 523-540.	cules in the	5.8	7
1645	3D Imaging for Cleared Tissues and Thicker Samples on Confocal and Light-Sheet Micro Methods in Molecular Biology, 2023, , 143-161.	oscopes.	0.4	2
1647	Genetically Encoded Fluorescent Probes and Live Cell Imaging. , 2016, , 61-72.			0
1648	Whole-Brain Clearing and Immunolabelling in the African Killifish Nothobranchius furzer Neuromethods, 2023, , 43-58.	i.	0.2	0

		LEPUKI	
#	Article	IF	CITATIONS
1649	Tissue Clearing and Its Application in the Musculoskeletal System. ACS Omega, 2023, 8, 1739-1758.	1.6	1
1650	Volumetric imaging of optically cleared and fluorescently labeled animal tissue (VIOLA) for quantifying the 3D biodistribution of nanoparticles at cellular resolution in tumor tissue. Journal of Controlled Release, 2023, 354, 244-259.	4.8	1
1651	Assessment of histological and immunohistochemical features of retinal tissues using a novel tissue submission procedure. Experimental Eye Research, 2023, 227, 109384.	1.2	0
1652	Observing single cells in whole organs with optical imaging. Journal of Innovative Optical Health Sciences, 2023, 16, .	0.5	7
1653	Painting memory engram by biologically active messengers –The molecular time travel for the search of memory. IP Indian Journal of Neurosciences, 2023, 8, 260-273.	0.0	0
1654	Instantaneous Clearing of Biofilm (iCBiofilm): an optical approach to revisit bacterial and fungal biofilm imaging. Communications Biology, 2023, 6, .	2.0	1
1656	Whole-mouse clearing and imaging at the cellular level with vDISCO. Nature Protocols, 2023, 18, 1197-1242.	5.5	14
1657	Characteristic Features of Deep Brain Lymphatic Vessels and Their Regulation by Chronic Stress. Research, 2023, 6, .	2.8	1
1658	Increasing resolution in stress neurobiology: from single cells to complex group behaviors. Stress, 2023, 26, .	0.8	2
1659	Tissue clearing to examine glioma complexity in 3 dimensions. Journal of Neuropathology and Experimental Neurology, 2023, 82, 376-389.	0.9	1
1660	Chemogenetic stimulation of the parasympathetic nervous system lowers hepatic lipid accumulation and inflammation in a nonalcoholic steatohepatitis mouse model. Life Sciences, 2023, 321, 121533.	2.0	6
1662	Efficient 3D light-sheet imaging of very large-scale optically cleared human brain and prostate tissue samples. Communications Biology, 2023, 6, .	2.0	5
1664	Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System. Neuroinformatics, 2023, 21, 269-286.	1.5	3
1665	3D imaging techniques. Drug Delivery System, 2022, 37, 444-447.	0.0	0
1666	Miniature Probe for Optomechanical Focus-adjustable Optical-resolution Photoacoustic Endoscopy. IEEE Transactions on Medical Imaging, 2023, , 1-1.	5.4	1
1667	Labelâ€free cleared tissue microscopy and machine learning for <scp>3D</scp> histopathology of biomaterial implants. Journal of Biomedical Materials Research - Part A, 2023, 111, 840-850.	2.1	3
1668	Current Progress in Expansion Microscopy: Chemical Strategies and Applications. Chemical Reviews, 2023, 123, 3299-3323.	23.0	10
1669	Tissue-embedded stretchable nanoelectronics reveal endothelial cell–mediated electrical maturation of human 3D cardiac microtissues. Science Advances, 2023, 9, .	4.7	8

#	Article	IF	CITATIONS
1671	Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer. Pharmaceutics, 2023, 15, 946.	2.0	2
1672	Reflective multi-immersion microscope objectives. , 2023, , .		0
1673	Advanced Temporally‧patially Precise Technologies for Onâ€Đemand Neurological Disorder Intervention. Advanced Science, 0, , 2207436.	5.6	2
1674	Three-dimensional visualization of neural networks inside bone by Osteo-DISCO protocol and alteration of bone remodeling by surgical nerve ablation. Scientific Reports, 2023, 13, .	1.6	2
1675	High-resolution visualization of pial surface vessels by flattened whole mount staining. IScience, 2023, 26, 106467.	1.9	0
1676	Isolation and identification of extracellular matrix proteins from oil-based CASPERized mouse brains for matrisomal analysis. Heliyon, 2023, 9, e14777.	1.4	1
1677	Reflective multi-immersion microscope objectives inspired by the Schmidt telescope. Nature Biotechnology, 2024, 42, 65-71.	9.4	3
1678	A simple and effective vascular network labeling method for transparent tissues of mice. Journal of Biophotonics, 2023, 16, .	1.1	0
1679	A Guide to Perform 3D Histology of Biological Tissues with Fluorescence Microscopy. International Journal of Molecular Sciences, 2023, 24, 6747.	1.8	4
1680	Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Advanced Science, 2023, 10, .	5.6	7
1689	Ultrastructure Analysis ofÂCardiomyocytes andÂTheir Nuclei. Lecture Notes in Computer Science, 2023, , 14-24.	1.0	0
1698	Tissue optical clearing and 3D imaging of virus infections. Advances in Virus Research, 2023, , 89-121.	0.9	Ο
1705	Therapeutic Potentials of Hydrogel and Nanogel in CNS Disorders. , 0, , .		0
1714	Three-Dimensional Imaging of Macrophages in Complete Organs. Methods in Molecular Biology, 2024, , 297-306.	0.4	0
1717	Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level. Neuroscience Bulletin, 2023, 39, 1840-1858.	1.5	2
1734	Decoding the tumor microenvironment with spatial technologies. Nature Immunology, 2023, 24, 1982-1993.	7.0	6
1736	Induction of excitatory brain state governs plastic functional changes in visual cortical topology. Brain Structure and Function, 0, , .	1.2	0
1760	Flocking Method for Identifying of Neural Circuits in Optogenetic Datasets. Lecture Notes in Computer Science, 2024, , 39-52.	1.0	0

ARTICLE

IF CITATIONS