Phytoremediation of heavy metalsâ€"Concepts and app

Chemosphere 91, 869-881 DOI: 10.1016/j.chemosphere.2013.01.075

Citation Report

#	Article	IF	CITATIONS
1	Water Leaching of Chelated Pb Complexes from Post-Phytoremediation Biomass. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	6
2	Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Journal of Hazardous Materials, 2013, 261, 332-341.	6.5	31
3	Phytoextraction of Cr(VI) from soil using <i>Portulaca oleracea</i> . Toxicological and Environmental Chemistry, 2013, 95, 1338-1347.	0.6	14
5	Metallothionein multigene family expression is differentially affected by <scp>C</scp> hromium (<scp>III</scp>) and (<scp>VI</scp>) in <i><scp>S</scp>olanum nigrum </i> <scp>L</scp> . plants. Food and Energy Security, 2013, 2, 130-140.	2.0	14
6	Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix integra Treated with Lead. PLoS ONE, 2014, 9, e108568.	1.1	59
7	Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. , 0, , .		27
8	Capacidad fitorremediadora de cinco especies altoandinas de suelos contaminados con metales pesados. Revista Peruana De Biologia, 2014, 21, .	0.1	5
9	Arbuscular Mycorrhizal Fungi and Metal Phytoremediation. , 2014, , 133-160.		16
10	Sorption Stability and Mechanism Exploration of Palygorskite as Immobilization Agent for Cd in Polluted Soil. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	22
11	Effect of Exogenous Spermidine on the Absorption of Copper Ions in <i>Salix Matsudana</i> . Applied Mechanics and Materials, 0, 587-589, 904-907.	0.2	0
12	Phytoremediation of Radionuclides: A Report on the State of the Art. , 2014, , 1-31.		7
13	A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration. Environmental Science and Pollution Research, 2014, 21, 13452-13460.	2.7	18
14	Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry, 2014, 2, 36.	1.8	65
15	Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 2014, 5, 65-75.	1.2	372
16	Study on the Incineration Experiment to Dispose <i>Ptreis vittata</i> L <i>.</i> . Applied Mechanics and Materials, 0, 700, 487-492.	0.2	2
18	Arsenic Uptake and Translocation by Plants in Pot and Field Experiments. International Journal of Phytoremediation, 2014, 16, 804-823.	1.7	21
19	Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environmental Science and Pollution Research, 2014, 21, 1304-1313.	2.7	69
20	Adaptive plasticity of Laguncularia racemosa in response to different environmental conditions: integrating chemical and biological data by chemometrics. Ecotoxicology, 2014, 23, 335-348.	1.1	24

#	Article	IF	CITATIONS
21	Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals. Frontiers of Environmental Science and Engineering, 2014, 8, 952-959.	3.3	6
22	Thermal studies and chromium removal efficiency of thermoresponsive hyperbranched copolymers based on PEG-methacrylates. Journal of Thermal Analysis and Calorimetry, 2014, 116, 401-409.	2.0	8
23	Plant Cell Responses to Cadmium and Zinc. Plant Cell Monographs, 2014, , 209-246.	0.4	36
24	Chemical Stabilization of Metal-Contaminated Mine Soil: Early Short-Term Soil-Amendment Interactions and Their Effects on Biological and Chemical Parameters. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	22
25	Enhancing phytoextraction of Cd by combining poplar (clone "l-214â€) with Pseudomonas fluorescens and microbial consortia. Environmental Science and Pollution Research, 2014, 21, 1796-1808.	2.7	22
26	Ecological risk and pollution history of heavy metals in Nansha mangrove, South China. Ecotoxicology and Environmental Safety, 2014, 104, 143-151.	2.9	81
27	Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants—implications for phytoremediation. Environmental Science and Pollution Research, 2014, 21, 10286-10293.	2.7	59
28	Biosorption properties of pretreated sporopollenin biomass for lead(II) and copper(II): Application of response surface methodology. Ecological Engineering, 2014, 68, 200-208.	1.6	37
29	Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environmental Science and Pollution Research, 2014, 21, 6845-6858.	2.7	54
30	Facultative hyperaccumulation of heavy metals and metalloids. Plant Science, 2014, 217-218, 8-17.	1.7	274
31	Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. Chemical Papers, 2014, 68, .	1.0	22
32	The effects of substrate type, HRT and reed on the lead removal in horizontal subsurface-flow constructed wetland. Desalination and Water Treatment, 0, , 1-11.	1.0	0
33	Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation. Marine Pollution Bulletin, 2014, 88, 231-238.	2.3	16
34	Inkpen-printed reusable colorimetric sensors for the detection of Hg(<scp>ii</scp>). RSC Advances, 2014, 4, 46145-46151.	1.7	6
35	Optical chemosensors for Hg2+from terthiophene appended rhodamine derivatives: FRET based molecular and in situ hybrid gold nanoparticle sensors. New Journal of Chemistry, 2014, 38, 3831.	1.4	26
36	Disposable Electrochemical Sensor to Evaluate the Phytoremediation of the Aquatic Plant <i>Lemna minor</i> L. toward Pb ²⁺ and/or Cd ²⁺ . Environmental Science & Technology, 2014, 48, 7477-7485.	4.6	31
37	Assessment of the employment of halophyte plant species for the phytomanagement of mine tailings in semiarid areas. Ecological Engineering, 2014, 71, 598-604.	1.6	29
38	Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 2014, 117, 232-242.	4.2	308

ARTICLE

39 Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

40	The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in Cd-polluted soils. Pedobiologia, 2014, 57, 223-233.	0.5	25
41	Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicology and Environmental Safety, 2014, 107, 284-290.	2.9	60
42	Distribution of chromium species in a Cr-polluted soil: Presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment, 2014, 493, 828-833.	3.9	85
43	The influence of earthworm and mycorrhizal co-inoculation on Cd speciation in a contaminated soil. Soil Biology and Biochemistry, 2014, 78, 21-29.	4.2	31
44	Risk assessment of wetland under aluminium and iron toxicities: A review. Aquatic Ecosystem Health and Management, 2014, 17, 122-128.	0.3	11
45	Nanoremediation. , 2014, , 233-250.		18
46	Subcellular Targeting of Bacterial CusF Enhances Cu Accumulation and Alters Root to Shoot Cu Translocation in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1568-1581.	1.5	22
47	Phytoremediation: Strategies of Argentinean Plants Against Stress by Heavy Metals. , 2014, , 123-134.		3
48	Quantum dot-based turn-on fluorescent probe for imaging intracellular zinc(II) and cadmium(II) ions. Mikrochimica Acta, 2014, 181, 1361-1367.	2.5	19
49	A bisphosphonate increasing the shoot biomass of the metal hyperaccumulator Noccaea caerulescens. Chemosphere, 2014, 95, 566-571.	4.2	7
50	Arsenic Root Sequestration by a Tropical Woody Legume as Affected by Arbuscular Mycorrhizal Fungi and Organic Matter: Implications for Land Reclamation. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	19
51	Assessment of the applicability of a "toolbox―designed for microbially assisted phytoremediation: the case study at Ingurtosu mining site (Italy). Environmental Science and Pollution Research, 2014, 21, 6939-6951.	2.7	27
52	Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L Environmental Science and Pollution Research, 2014, 21, 10960-10969.	2.7	22
53	Classification and identification of metal-accumulating plant species by cluster analysis. Environmental Science and Pollution Research, 2014, 21, 10626-10637.	2.7	22
54	The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens. Journal of Soils and Sediments, 2014, 14, 687-696.	1.5	59
55	Effects of in situ biological treatments on heavy metal release of urban river sediment. Frontiers of Environmental Science and Engineering, 2014, 8, 607-615.	3.3	2
56	Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation. Journal of Environmental Management, 2014, 144, 176-185.	3.8	23

#	Article	IF	CITATIONS
57	Mn accumulation and tolerance in Celosia argentea Linn.: A new Mn-hyperaccumulating plant species. Journal of Hazardous Materials, 2014, 267, 136-141.	6.5	53
58	Halophyte agriculture: Success stories. Environmental and Experimental Botany, 2014, 107, 71-83.	2.0	358
59	Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius. Fungal Biology, 2014, 118, 695-703.	1.1	17
60	Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecological Engineering, 2014, 69, 186-191.	1.6	40
61	Phytoremediation of Zn- and Cr-Contaminated Soil Using Two Promising Energy Grasses. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	249
62	Accumulation of heavy metals in a constructed wetland treating road runoff. Ecological Engineering, 2014, 70, 133-139.	1.6	67
63	Engineering the rhizosphere for the purpose of bioremediation: an overview CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-17.	0.6	16
64	Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261. Electronic Journal of Biotechnology, 2015, 18, 418-427.	1.2	38
65	Interaction of cadmium and calcium on ethanol fermentation by Saccharomyces cerevisiae. , 2015, , 451-456.		0
66	Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Scientific Reports, 2015, 5, 13554.	1.6	111
67	Analysis of microbiologically stimulated biomass of Salix viminalis L. in the presence of Cd2+ under in vitro conditions – implications for phytoremediation. Acta Biologica Cracoviensia Series Botanica, 2015, 57, 67-78.	0.5	3
68	Remediation Techniques for Heavyâ€Metals Contamination in Lakes: A Miniâ€Review. Clean - Soil, Air, Water, 2015, 43, 1350-1354.	0.7	31
69	Interactive effect between Cuâ€adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of <i>Oenothera picensis</i> growing in Cuâ€polluted soils. Journal of Plant Nutrition and Soil Science, 2015, 178, 126-135.	1.1	52
70	Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater. Agriculture (Switzerland), 2015, 5, 806-825.	1.4	31
71	Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils. Brazilian Journal of Biology, 2015, 75, 868-877.	0.4	19
72	Construction of a Modular Arsenic-Resistance Operon in E. coli and the Production of Arsenic Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2015, 3, 160.	2.0	14
73	Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils. Frontiers in Microbiology, 2015, 6, 1450.	1.5	97
74	Jacks of metal/metalloid chelation trade in plantsââ,¬â€an overview. Frontiers in Plant Science, 2015, 6, 192.	1.7	148

#	Article	IF	CITATIONS
75	Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Scientific World Journal, The, 2015, 2015, 1-18.	0.8	701
76	Relações da anatomia radicular na absorção, no acúmulo e na tolerância ao chumbo em Echinodorus grandiflorus. Revista Brasileira De Engenharia Agricola E Ambiental, 2015, 19, 605-612.	0.4	17
77	Phytoextraction of Heavy Metals from Contaminated Soil by Co-CroppingSolanum nigrumL. with Ryegrass Associated with Endophytic Bacterium. Separation Science and Technology, 2015, 50, 1806-1813.	1.3	11
78	Genotypic Variation in Phytoremediation Potential of Indian Mustard Exposed to Nickel Stress: A Hydroponic Study. International Journal of Phytoremediation, 2015, 17, 135-144.	1.7	26
79	Phytoremediation of Cd, Ni, Pb and Zn by <i>Salvinia minima</i> . International Journal of Phytoremediation, 2015, 17, 929-935.	1.7	20
80	ESEM-EDS: In vivo characterization of the Ni hyperaccumulator Noccaea caerulescens. Micron, 2015, 75, 18-26.	1.1	9
81	Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. Environmental Geochemistry and Health, 2015, 37, 953-967.	1.8	76
82	Removal of Toxic Materials from Aqueous Streams. , 2015, , 443-473.		3
83	Phytoremediation of Copper-Contaminated Soil. , 2015, , 143-170.		8
84	Phytoremediation Potential of Cadmium-Contaminated Soil by Eucalyptus globulus Under Different Coppice Systems. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 321-325.	1.3	19
85	Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction. Environmental Science and Pollution Research, 2015, 22, 15443-15448.	2.7	9
86	Interaction of copper and 2,4,5-trichlorophenol on bioremediation potential and biochemical properties in co-contaminated soil incubated with Clitocybe maxima. RSC Advances, 2015, 5, 42768-42776.	1.7	17
87	Mitigation mechanism of Cd-contaminated soils by different levels of exogenous low-molecular-weight organic acids and Phytolacca americana. RSC Advances, 2015, 5, 45502-45509.	1.7	16
88	Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry. Solid Earth, 2015, 6, 323-335.	1.2	37
89	Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine – a quest for phytostabilization. Journal of Sustainable Mining, 2015, 14, 115-123.	0.1	70
90	Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L Bioenergy Research, 2015, 8, 1500-1511.	2.2	153
91	Removal of cadmium and zinc ions from industrial wastewater using nanocomposites of PANI/ZnO and PANI/CoHCF: a comparative study. Desalination and Water Treatment, 0, , 1-20.	1.0	7
92	Phycoremediation of Emerging Contaminants. , 2015, , 129-146.		8

C_{1}	ON L	DEDC	DT
CITATI	ON	KEPU	ואנ

#	Article	IF	CITATIONS
93	Overview and New Insights of Genetically Engineered Plants for Improving Phytoremediation. , 2015, , 99-113.		7
94	Influence of biochar application methods on the phytostabilization ofÂa hydrophobic soil contaminated with lead and acid tar. Journal of Environmental Management, 2015, 150, 226-234.	3.8	35
95	Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: Phytotoxicity, uptake kinetics, and mechanism. Ecotoxicology and Environmental Safety, 2015, 112, 193-200.	2.9	33
96	Copper Tolerance Mechanisms of <i>Mesorhizobium amorphae</i> and Its Role in Aiding Phytostabilization by <i>Robinia pseudoacacia</i> in Copper Contaminated Soil. Environmental Science & Technology, 2015, 49, 2328-2340.	4.6	56
97	Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecology, 2015, 89, 44-49.	2.1	99
98	A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants. Chemosphere, 2015, 138, 883-887.	4.2	61
99	Heavy Metal Uptakes by <i>Myriophyllum verticillatum</i> from Two Environmental Matrices: The Water and the Sediment. International Journal of Phytoremediation, 2015, 17, 290-297.	1.7	3
100	Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies. , 2015, , 133-155.		29
101	Enhancing Phytoremediation Potential of <i>Pennisetum clandestinum</i> Hochst in Cadmium-Contaminated Soil Using Smoke-Water and Smoke-Isolated Karrikinolide. International Journal of Phytoremediation, 2015, 17, 1046-1052.	1.7	10
102	Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L. (Lentibulariaceae). Environmental Science and Pollution Research, 2015, 22, 9742-9748.	2.7	16
103	Copper uptake by Eichhornia crassipes exposed at high level concentrations. Environmental Science and Pollution Research, 2015, 22, 8307-8315.	2.7	23
104	Effect of Saponin on the Phytoextraction of Pb, Cd and Zn from Soil Using Italian Ryegrass. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 129-133.	1.3	20
105	A new two-step screening method for prospecting of trace element accumulating plants. International Journal of Environmental Science and Technology, 2015, 12, 3071-3078.	1.8	9
106	Enhanced Phytoextraction of Heavy Metals from Contaminated Soil by Plant Co-cropping Associated with PGPR. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	38
107	An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils. Environmental Science and Pollution Research, 2015, 22, 4609-4620.	2.7	20
108	Exogenous nitric oxide-mediated GSH-PC synthesis pathway in tomato under copper stress. Russian Journal of Plant Physiology, 2015, 62, 349-359.	0.5	16
109	Novel Field Data on Phytoextraction: Pre-Cultivation With <i>Salix</i> Reduces Cadmium in Wheat Grains. International Journal of Phytoremediation, 2015, 17, 917-924.	1.7	24
110	Cadmium transfer and detoxification mechanisms in a soil–mulberry–silkworm system: phytoremediation potential. Environmental Science and Pollution Research, 2015, 22, 18031-18039.	2.7	40

#	Article	IF	CITATIONS
111	Plants to harvest rhenium: scientific and economic viability. Environmental Chemistry Letters, 2015, 13, 439-445.	8.3	25
112	Colocalization of low-methylesterified pectins and Pb deposits in the apoplast of aspen roots exposed to lead. Environmental Pollution, 2015, 205, 315-326.	3.7	29
113	Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy, 2015, , 135-225.	2.4	137
114	Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere, 2015, 138, 370-376.	4.2	98
115	Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. Journal of Hazardous Materials, 2015, 299, 371-378.	6.5	54
116	Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Frontiers in Plant Science, 2014, 5, 757.	1.7	79
117	Phytoremediation and Environmental Factors. , 2015, , 45-55.		8
118	An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry. Analytical Methods, 2015, 7, 2479-2487.	1.3	28
119	Phytoremediation of Pb and Hg by using Scirpus mucronatus with addition of bacterial inoculums. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 151-155.	0.7	15
120	Juncus maritimus root biochemical assessment for its mercury stabilization potential in Ria de Aveiro coastal lagoon (Portugal). Environmental Science and Pollution Research, 2015, 22, 2231-2238.	2.7	10
121	Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environmental Science and Pollution Research, 2015, 22, 11076-11086.	2.7	38
122	Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environmental Science and Pollution Research, 2015, 22, 11478-11487.	2.7	22
123	Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Environmental Science and Pollution Research, 2015, 22, 19408-19416.	2.7	34
124	Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecological Engineering, 2015, 81, 115-122.	1.6	74
125	Removal of Cu2+ from aqueous solution by adsorption onto mercapto functionalized palygorskite. Journal of Industrial and Engineering Chemistry, 2015, 23, 307-315.	2.9	32
126	Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system. Marine Pollution Bulletin, 2015, 94, 176-184.	2.3	35
127	Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 2015, 117, 28-40.	2.0	563
128	Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead–zinc mine area: potential applications for phytoremediation. Environmental Science and Pollution Research, 2015, 22, 13179-13193.	2.7	84

#	Article	IF	CITATIONS
129	Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environmental Science and Pollution Research, 2015, 22, 12479-12489.	2.7	78
130	Bacterial-assisted cadmium phytoremediation by Ocimum gratissimum L. in polluted agricultural soil: a field trial experiment. International Journal of Environmental Science and Technology, 2015, 12, 3843-3852.	1.8	48
131	Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, 2015, 7, 2189-2212.	1.6	932
132	The potential of Lepidium sativum L. for phytoextraction of Hg-contaminated soil assisted by thiosulphate. Journal of Soils and Sediments, 2015, 15, 393-400.	1.5	26
133	Influence of combined use of iodide and compost on Hg accumulation by Lepidium sativum L Journal of Environmental Management, 2015, 150, 499-507.	3.8	12
134	Irrigation water quality influences heavy metal uptake by willows in biosolids. Journal of Environmental Management, 2015, 155, 31-39.	3.8	18
135	Effect of mineral nutrients on the uptake of Cr(VI) by maize plants. New Biotechnology, 2015, 32, 396-402.	2.4	14
136	Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. Journal of Experimental Botany, 2015, 66, 2901-2911.	2.4	217
137	New â€~solutions' for floating cultivation system of ready-to-eat salad: A review. Trends in Food Science and Technology, 2015, 46, 267-276.	7.8	69
138	Restoration of rare earth mine areas: organic amendments and phytoremediation. Environmental Science and Pollution Research, 2015, 22, 17151-17160.	2.7	49
139	Heavy Metal-Induced Oxidative Stress in Plants: Response of the Antioxidative System. , 2015, , 127-163.		29
140	Giant reed for selenium phytoremediation under changing climate. Environmental Chemistry Letters, 2015, 13, 359-380.	8.3	29
141	An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater. Environmental Science and Pollution Research, 2015, 22, 18918-18926.	2.7	17
142	Selenium Phytoremediation by Giant Reed. Environmental Chemistry for A Sustainable World, 2015, , 133-198.	0.3	5
143	Scanning Cadmium Photosynthetic Responses of Elephantopus mollis for Potential Phytoremediation Practices. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	10
144	Removal of potentially toxic metals from soil by para-sulphonato-thiacalix[4]arene: competitive extraction and selectivity sequence. RSC Advances, 2015, 5, 75033-75043.	1.7	6
145	Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 2015, 163, 125-133.	3.8	255
146	Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon, 2015, 105, 62-73.	0.8	27

#	Article	IF	CITATIONS
147	Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environmental Science and Pollution Research, 2015, 22, 17886-17896.	2.7	17
148	Evaluation of phytostabilizer ability of three ruderal plants in mining soils restored by application of organic amendments. Ecological Engineering, 2015, 83, 431-436.	1.6	15
149	Abandoned reverse osmosis membrane effects on phytoremediation of saline soils with trees. Ecological Engineering, 2015, 84, 660-667.	1.6	4
150	A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos. Fish and Shellfish Immunology, 2015, 47, 1032-1042.	1.6	32
151	Challenging synergistic activity of poplar–bacteria association for the Cd phytostabilization. Environmental Science and Pollution Research, 2015, 22, 19546-19561.	2.7	19
152	Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology, 2015, 12, 1443-1460.	1.8	147
153	Enhanced Pb Absorption by <i>Hordeum vulgare</i> L. and <i>Helianthus annuus</i> L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium. International Journal of Phytoremediation, 2015, 17, 405-413.	1.7	18
154	Prospecting for hyperaccumulators of trace elements: a review. Critical Reviews in Biotechnology, 2015, 35, 522-532.	5.1	40
155	Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: Application for phytoremediation. Journal of Geochemical Exploration, 2015, 149, 1-7.	1.5	23
156	Tris(triazole) tripodal receptors as selective probes for citrate anion recognition and multichannel transition and heavy metal cation sensing. Organic and Biomolecular Chemistry, 2015, 13, 1429-1438.	1.5	24
157	Root based responses account for Psidium guajava survival at high nickel concentration. Journal of Plant Physiology, 2015, 174, 137-146.	1.6	28
158	Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech, 2015, 5, 111-121.	1.1	116
159	Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik Chemosphere, 2015, 119, 1372-1378.	4.2	33
160	Development of drainage water quality from a landfill cover built with secondary construction materials. Waste Management, 2015, 35, 148-158.	3.7	7
161	Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca) Tj ETQq0 0 0 rgBT /C)verlock 1(1.7) Tf 50 182 1 13
162	Accumulation of Heavy Metals in Water, Sediments and Wetland Plants of Kizilirmak Delta (Samsun,) Tj ETQq1 1	0.784314 1.7	rgBT /Overl
163	Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environmental Science and Pollution Research, 2015, 22, 2505-2514.	2.7	69
164	Is phytoremediation without biomass valorization sustainable? $\hat{a} \in \mathbb{C}^{\infty}$ Comparative LCA of landfilling vs.	3.9	76

#	Article		IF	CITATIONS
165	Nanoparticles applied to plant science: A review. Talanta, 2015, 131, 693-705.		2.9	272
166	The interaction of heavy metals and nutrients present in soil and native plants with arbumy corrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Science Environment, 2015, 505, 555-564.	uscular of the Total	3.9	41
167	Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolate rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi. Environmental Pollution Research, 2015, 22, 3055-3067.		2.7	37
168	Combining phytoextraction and biochar addition improves soil biochemical properties i contaminated with Cd. Chemosphere, 2015, 119, 209-216.	n a soil	4.2	131
169	Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated Environmental Reviews, 2015, 23, 44-65.	d sites.	2.1	65
170	Recovering a copper mine soil using organic amendments and phytomanagement with L. Journal of Environmental Management, 2015, 147, 73-80.	Brassica juncea	3.8	40
171	Phytoremediation. , 2015, , 85-105.			42
172	Plant–Microbe Interactions in Phytoremediation. , 2015, , 255-285.			11
173	Estimation of the Seedling Vigor Index of Sunflowers Treated with Various Heavy Metal Bioremediation & Biodegradation, 2016, 07, .	s. Journal of	0.5	22
174	Chromium and the Plant. , 2016, , 149-177.			16
175	Responses of Phytochelatins and Metallothioneins in Alleviation of Heavy MetalÂStress 2016, , 263-283.	in Plants. ,		29
176	Heavy Metal ATPase (HMA2, HMA3, and HMA4) Genes inÂHyperaccumulation Mechani 2016, , 545-556.	sm of Heavy Metals. ,		18
177	Behavior of Eucalyptus urophylla and Eucalyptus citriodora Seedlings Grown in Soil Cor Arsenate. Revista Brasileira De Ciencia Do Solo, 2016, 40, .	ntaminated by	0.5	4
178	Trace Elements in Dominant Species of the Fenghe River, China: Their Relations to Envir Factors. Journal of Environmental Quality, 2016, 45, 1252-1258.	ronmental	1.0	2
179	Potential of sunflower, castor bean, common buckwheat and vetiver as lead phytoaccu Revista Brasileira De Engenharia Agricola E Ambiental, 2016, 20, 243-249.	mulators.	0.4	17
180	Urban farming as a possible source of trace metals in human diets. South African Journa 2016, 112, 6.	al of Science,	0.3	5
181	Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (<i>Brassica ju Clay Minerals, 2016, 51, 489-497.</i>	ınceaL.).	0.2	16
182	Mulberry and Vetiver for Phytostabilization of Mine Overburden. , 2016, , 295-328.			13

#	Article	IF	CITATIONS
183	Metalliferous Waste in India and Knowledge Explosion in Metal Recovery Techniques and Processes for the Prevention of Pollution. , 2016, , 339-390.		4
184	Stability of the Inherent Target Metallome in Seed Crops and a Mushroom Grown on Soils of Extreme Mineral Spans. Agronomy, 2016, 6, 14.	1.3	8
185	Phytoremediation of petroleum hydrocarbons-contaminated soil using Desmodium incanum DC., Fabaceae. Revista Latinoamericana De BiotecnologÃa Ambiental Y Algal, 2016, 7, .	0.3	6
186	Engineered Soils Using Amendments for In Situ Rehabilitation of Mine Lands. , 2016, , 131-146.		4
187	Genetic Strategies forÂAdvancing Phytoremediation Potential in Plants. , 2016, , 431-454.		11
188	Potential of Plants and Microbes for the Removal of Metals. , 2016, , 469-482.		4
189	Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard. Frontiers in Plant Science, 2016, 7, 101.	1.7	49
190	Soybean production and heavy metal stress. , 2016, , 197-216.		8
191	Microbially Assisted Phytoremediation of Heavy Metal–Contaminated Soils. , 2016, , 483-498.		12
192	Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd. Ecotoxicology and Environmental Safety, 2016, 133, 25-35.	2.9	35
193	Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil. Journal of Chemical Technology and Biotechnology, 2016, 91, 3045-3052.	1.6	19
194	Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes. Journal of Hazardous Materials, 2016, 317, 585-592.	6.5	17
195	Application of iron and silicon fertilizers reduces arsenic accumulation by two Ipomoea aquatica varities. Journal of Integrative Agriculture, 2016, 15, 2613-2619.	1.7	15
196	Immobilization of copper and cadmium by hydroxyapatite combined with phytoextraction and changes in microbial community structure in a smelter-impacted soil. RSC Advances, 2016, 6, 103955-103964.	1.7	16
197	Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil Using PGPR for Sustainable Agriculture. , 2016, , 187-204.		19
198	Heavy Metal Tolerance and Accumulation in Plants of the Southeastern United States. Castanea, 2016, 81, 257-269.	0.2	7
199	Household greywater treatment methods using natural materials and their hybrid system. Journal of Water and Health, 2016, 14, 914-928.	1.1	34
200	Chapter 2 Nano-Bioremediation Applications of Nanotechnology for Bioremediation. Advances in Industrial and Hazardous Wastes Treatment Series, 2016, , 27-48.	0.0	10

#	Article	IF	CITATIONS
201	Detection of heavy metals in common vegetables at Varaždin City Market, Croatia. Arhiv Za Higijenu Rada I Toksikologiju, 2016, 67, 340-350.	0.4	17
202	Depleted Uranium Toxicity, Accumulation, and Uptake in Cynodon dactylon (Bermuda) and Aristida purpurea (Purple Threeawn). Bulletin of Environmental Contamination and Toxicology, 2016, 96, 714-719.	1.3	7
203	Hydrothermal Synthesis of Sodalite on Alkali-Activated Coal Fly Ash for Removal of Lead Ions. Procedia Environmental Sciences, 2016, 31, 605-614.	1.3	36
204	Cadmium accumulation and tolerance of <i>Lagerstroemia indica and Lagerstroemia fauriei</i> (Lythraceae) seedlings for phytoremediation applications. International Journal of Phytoremediation, 2016, 18, 1104-1112.	1.7	9
205	Evaluation of <i>Cajanus cajan</i> (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead. International Journal of Phytoremediation, 2016, 18, 1122-1127.	1.7	18
206	Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying. Chemosphere, 2016, 157, 262-270.	4.2	30
207	Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere, 2016, 156, 407-411.	4.2	79
208	Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert. Environmental Monitoring and Assessment, 2016, 188, 235.	1.3	16
209	Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnology Advances, 2016, 34, 859-873.	6.0	111
210	Accumulation patterns of Cr in Callitriche organs—qualitative and quantitative analysis. Environmental Science and Pollution Research, 2016, 23, 2669-2676.	2.7	6
211	Cadmium and lead accumulation and low-molecular-weight organic acids secreted by roots in an intercropping of a cadmium accumulator Sonchus asper L. with Vicia faba L RSC Advances, 2016, 6, 33240-33248.	1.7	32
212	Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation. Industrial Biotechnology, 2016, 12, 83-90.	0.5	17
213	Sequestering heavy metals from wastewater using cow dung. Water Resources and Industry, 2016, 13, 7-13.	1.9	102
214	A step forward in tree physiological research on soil copper contamination. Tree Physiology, 2016, 36, 403-406.	1.4	2
215	Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils. Minerals Engineering, 2016, 92, 208-215.	1.8	54
216	Reflections on soil contamination research from a biologistÌs point of view. Applied Soil Ecology, 2016, 105, 207-210.	2.1	22
217	Cadmium accumulation characteristics and removal potentials of high cadmium accumulating rice line grown in cadmium-contaminated soils. Environmental Science and Pollution Research, 2016, 23, 15351-15357.	2.7	21
218	Pectinous cell wall thickenings formation – A common defense strategy of plants to cope with Pb. Environmental Pollution, 2016, 214, 354-361.	3.7	86

ARTICLE IF CITATIONS <i>Phytolacca acinosa</i> Roxb. with <i>Arthrobacter echigonensis</i> MN1405 enhances heavy metal 219 1.7 5 phytoremediation. International Journal of Phytoremediation, 2016, 18, 956-965. Metal Tolerance Strategy in Plants., 2016, , 19-32. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, 221 1.1 168 Efficacy, Problems, and Strategies. Water, Air, and Soil Pollution, 2016, 227, 1. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety, 2016, 134, 133-147. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, 223 lime and charcoal: A five-year field experiment. Ecotoxicology and Environmental Safety, 2016, 134, 2.9 88 148-155. Glutathione Metabolism in Plants Under Metal and Metalloid Stress and its Impact on the Cellular 224 Redox Homoeostasis., 2016, , 159-181. Effects of Different Soil Amendments on Mixed Heavy Metals Contamination in Vetiver Grass. Bulletin 225 1.3 14 of Environmental Contamination and Toxicology, 2016, 97, 695-701. Phytoremediation of PCBs and PAHs by Grasses: A Critical Perspective., 2016, , 3-19. 226 Without exceeding the limits: industrial soil rich in Zn and Cd has no effect on purslane and lettuce 227 1.3 12 but promotes geranium growth. Environmental Earth Sciences, 2016, 75, 1. Phytofiltration of Metal(loid)-Contaminated Water: The Potential of Native Aquatic Plants., 2016,, 305-343. Biological Approaches for Remediation of Metal-Contaminated Sites., 2016, , 65-112. 229 8 Phytoremediation of Mining Areas: An Overview of Application in Lead- and Zinc-Contaminated Soils., 2016, , 3-27. Role of Phytochelatins in Phytoremediation of Heavy Metals Contaminated Soils., 2016, , 393-419. 231 5 Phytoremediation of Heavy Metals Contaminated Soils Through Transgenic Plants., 2016, , 345-391. 233 Phytoremediation of Boron-Contaminated Sites., 2016, , 547-566. 0 EDTA and hydrochloric acid effects on mercury accumulation by Lupinus albus. Environmental 234 2.7 Science and Pollution Research, 2016, 23, 24739-24748. Tree Crops on Abandoned Mines for Environmental Remediation and Industrial Feedstock., 2016,, 235 5 219-249. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-déstructive and integrative approach. Journal of Environmental 3.8 Management, 2016, 183, 850-863.

#	Article	IF	CITATIONS
237	Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATEâ,,¢ studies. Environmental Pollution, 2016, 219, 9-18.	3.7	25
238	Kinetic and equilibrium modelling of adsorption of cadmium on nano crystalline zirconia using response surface methodology. Environmental Nanotechnology, Monitoring and Management, 2016, 6, 99-107.	1.7	12
239	Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologica Sinica, 2016, 36, 256-268.	0.9	13
240	Effect of growing Brachiria brizantha on phytoremediation of picloram under different pH environments. Ecological Engineering, 2016, 94, 102-106.	1.6	18
241	Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 2016, 163, 54-61.	4.2	152
242	Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express, 2016, 6, 54.	1.4	74
243	Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 2016, 318, 587-599.	6.5	414
244	State of the Art of Phytoremediation in Brazil—Review and Perspectives. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	14
246	Cadmium accumulation and growth response to cadmium stress of eighteen plant species. Environmental Science and Pollution Research, 2016, 23, 23071-23080.	2.7	22
247	Comparative epigenomic and transcriptomic analysis of Populus roots under excess Zn. Environmental and Experimental Botany, 2016, 132, 16-27.	2.0	8
248	Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface. Environmental Monitoring and Assessment, 2016, 188, 670.	1.3	18
249	COPPER REMOVAL USING ACID ACTIVATED PEANUT HUSK FROM AQUEOUS SOLUTION. Journal of Environmental Engineering and Landscape Management, 2016, 24, 210-217.	0.4	5
250	Competitive adsorption of toxic metals on bentonite and use of chitosan as flocculent coagulant to speed up the settling of generated clay suspensions. Chemosphere, 2016, 165, 87-93.	4.2	48
251	Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 2016, 32, 180.	1.7	855
252	Lead and Antimony Removal from Contaminated Soil by Phytoremediation Combined with an Immobilization Material. Clean - Soil, Air, Water, 2016, 44, 1717-1724.	0.7	13
253	Heavy Metal Uptake in Plants. , 2016, , 1-18.		5
254	Phytoremediation: A Green Technology. , 2016, , 69-87.		1
255	Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium. Ecohydrology and Hydrobiology, 2016, 16, 194-200.	1.0	31

#	Article	IF	CITATIONS
256	Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing, 2016, 3, .	2.0	141
257	Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafranca clone. Journal of Plant Physiology, 2016, 202, 83-91.	1.6	29
258	Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 2016, 34, 1131-1148.	6.0	283
259	Accumulation of zinc protects against cadmium stress in photosynthetic Euglena gracilis. Environmental and Experimental Botany, 2016, 131, 19-31.	2.0	24
260	In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil. Chemosphere, 2016, 161, 233-241.	4.2	41
261	Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, north-east India: Implications for the bio-economy. Emerging Contaminants, 2016, 2, 119-127.	2.2	47
262	Response of soil enzyme activities to synergistic effects of biosolids and plants in iron ore mine soils. International Journal of Environmental Science and Technology, 2016, 13, 2117-2126.	1.8	15
263	Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum. Scientific Reports, 2016, 6, 24309.	1.6	39
264	Phytoremediation Potential of Selected Mangrove Plants for Trace Metal Contamination in Indian Sundarban Wetland. , 2016, , 283-310.		3
265	Phytoremediation Applications for Waste Water and Improved Water Quality. , 2016, , 213-232.		0
267	Biodegradation of Polycyclic Aromatic Hydrocarbons by Microbial Consortium: A Distinctive Approach for Decontamination of Soil. Soil and Sediment Contamination, 2016, 25, 597-623.	1.1	27
268	Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environmental Science and Pollution Research, 2016, 23, 10189-10199.	2.7	48
269	Elemental composition of Marrubium astracanicum Jacq. growing in tungsten-contaminated sites. Environmental Science and Pollution Research, 2016, 23, 18332-18342.	2.7	7
270	Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. Journal of Hazardous Materials, 2016, 318, 9-14.	6.5	125
271	A microcosm investigation of fe (iron) removal using macrophytes of ramsar lake: A phytoremediation approach. International Journal of Phytoremediation, 2016, 18, 1231-1236.	1.7	24
272	A multilevel sustainability analysis of zinc recovery from wastes. Resources, Conservation and Recycling, 2016, 113, 88-105.	5.3	47
273	A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils. International Journal of Phytoremediation, 2016, 18, 1014-1021.	1.7	18
274	Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban Forestry and Urban Greening, 2016, 17, 177-191.	2.3	56

#	Article	IF	CITATIONS
275	Effect of <i>Medicago sativa</i> L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. International Journal of Phytoremediation, 2016, 18, 1136-1147.	1.7	19
276	Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida. Journal of Hazardous Materials, 2016, 317, 476-484.	6.5	28
277	Comparative Proteomic Analysis of Differentially Expressed Proteins in Amaranthus hybridus L. Roots Under Cadmium Stress. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	17
278	Advances in biogenic synthesis of palladium nanoparticles. RSC Advances, 2016, 6, 60277-60286.	1.7	41
279	Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Reviews of Environmental Contamination and Toxicology, 2016, 241, 73-137.	0.7	171
280	Effects of surfactants on low-molecular-weight organic acids to wash soil zinc. Environmental Science and Pollution Research, 2016, 23, 4629-4638.	2.7	32
281	Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil — Effect of the inoculum size. Geoderma, 2016, 278, 1-11.	2.3	36
282	Soil Pollution and Remediation. , 2016, , 423-438.		1
283	Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Marine Pollution Bulletin, 2016, 110, 133-142.	2.3	59
284	The role of selected tree species in industrial sewage sludge/flotation tailing management. International Journal of Phytoremediation, 2016, 18, 1086-1095.	1.7	19
285	Seed Germination and Seedling Growth of Five Plant Species for Assessing Potential Strategies to Stabilizing or Recovering Metals from Mine Tailings. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	12
286	Plants Used for Biomonitoring and Phytoremediation of Trace Elements in Soil and Water. , 2016, , 361-384.		22
287	Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni). Environmental Monitoring and Assessment, 2016, 188, 99.	1.3	40
288	Heavy Metal Stress and Molecular Approaches inÂPlants. , 2016, , 531-543.		5
289	Heavy Metal Stress Signaling in Plants. , 2016, , 585-603.		37
290	Phytoremediation of lead-contaminated soil by <i>Sinapis arvensis</i> and <i>Rapistrum rugosum</i> . International Journal of Phytoremediation, 2016, 18, 387-392.	1.7	15
291	Nitrate removal from polluted water by using a vegetated floating system. Science of the Total Environment, 2016, 542, 803-808.	3.9	34
292	Can the use of natural biostimulants be a potential means of phytoremediating contaminated soils from goldmines in South Africa?. International Journal of Phytoremediation, 2016, 18, 427-434.	1.7	7

#	ARTICLE	IF	CITATIONS
293	Biosorption of cadmium and chromium from water by endophytic <i>Kocuria rhizophila</i> : equilibrium and kinetic studies. Desalination and Water Treatment, 2016, 57, 19946-19958.	1.0	33
294	Characterizing the accumulation of various heavy metals in native plants growing around an old antimony mine. Human and Ecological Risk Assessment (HERA), 2016, 22, 882-898.	1.7	10
295	Alleviation of selenium toxicity in Brassica juncea L.: salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts. Protoplasma, 2016, 253, 1515-1528.	1.0	26
296	Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation?. International Journal of Phytoremediation, 2016, 18, 861-868.	1.7	5
297	Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science and Biotechnology, 2016, 15, 299-326.	3.9	114
298	Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: Effects on the vertical distribution of physicochemical parameters and trace elements. Journal of Environmental Management, 2016, 171, 204-216.	3.8	16
299	Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. Environmental Science and Pollution Research, 2016, 23, 10005-10020.	2.7	23
300	Remediation of Cd(<scp>ii</scp>)-contaminated soil by three kinds of ferrous phosphate nanoparticles. RSC Advances, 2016, 6, 17390-17395.	1.7	27
301	Physiological responses of the hybrid larch (Larix × eurolepis Henry) to cadmium exposure and distribution of cadmium in plantlets. Environmental Science and Pollution Research, 2016, 23, 8617-8626.	2.7	10
302	Reduction of pollution load of paper mill effluent by phytoremediation technique using water caltrop (Trapa natans L.). Cogent Environmental Science, 2016, 2, 1153216.	1.6	17
303	Phytoremediation of iron from red soil of tropical region by using <i>Centella asiatica</i> . International Journal of Phytoremediation, 2016, 18, 918-923.	1.7	11
304	Mercury concentrations in the coastal marine food web along the Senegalese coast. Environmental Science and Pollution Research, 2016, 23, 11975-11984.	2.7	25
305	Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere, 2016, 26, 1-12.	2.1	169
306	Correlations in metal release profiles following sorption byLemna minor. International Journal of Phytoremediation, 2016, 18, 785-793.	1.7	5
307	Translocation of mercury from substrate to fruit bodies of Panellus stipticus, Psilocybe cubensis, Schizophyllum commune and Stropharia rugosoannulata on oat flakes. Ecotoxicology and Environmental Safety, 2016, 125, 184-189.	2.9	12
308	Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environment, 2016, 563-564, 796-802.	3.9	262
309	Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environmental Science and Pollution Research, 2016, 23, 6940-6950.	2.7	50
310	Phytoextraction. , 2016, , 385-409.		41

#	Article	IF	CITATIONS
311	The Phylogenetic Association Between Salt Tolerance and Heavy Metal Hyperaccumulation in Angiosperms. Evolutionary Biology, 2016, 43, 119-130.	0.5	25
312	Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China. Ecological Engineering, 2016, 86, 60-68.	1.6	57
313	Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting. Journal of Hazardous Materials, 2016, 302, 275-285.	6.5	8
314	Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil. Environmental Science and Pollution Research, 2016, 23, 2371-2380.	2.7	47
315	Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo. Environmental Science and Pollution Research, 2016, 23, 13693-13705.	2.7	31
316	State of remediation and metal toxicity in the Tri-State Mining District, USA. Chemosphere, 2016, 144, 1132-1141.	4.2	53
317	Phytoremediation efficiency OF CD by <i>Eucalyptus globulus</i> transplanted from polluted and unpolluted sites. International Journal of Phytoremediation, 2016, 18, 308-314.	1.7	24
318	Phytoextraction of heavy metal from tailing waste using Napier grass. Catena, 2016, 136, 74-83.	2.2	30
319	Douglas fir (<i>pseudotsuga menziesii</i>) plantlets responses to as, PB, and sb-contaminated soils from former mines. International Journal of Phytoremediation, 2016, 18, 559-566.	1.7	6
320	Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. International Journal of Phytoremediation, 2016, 18, 87-93.	1.7	47
321	Phytoremediation of Toxic Metals in Soils and Wetlands: Concepts and Applications. , 2016, , 161-195.		26
322	Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp Environmental Science and Pollution Research, 2016, 23, 756-764.	2.7	46
323	Assessing the influence of technosol and biochar amendments combined with Brassica juncea L. on the fractionation of Cu, Ni, Pb and Zn in a polluted mine soil. Journal of Soils and Sediments, 2016, 16, 339-348.	1.5	28
324	Removal of mercury (II) from the aquatic environment by phytoremediation. Desalination and Water Treatment, 2016, 57, 1515-1524.	1.0	4
325	Phytoremediation: Potential flora for synthetic dyestuff metabolism. Journal of King Saud University - Science, 2016, 28, 119-130.	1.6	84
326	Effects of high Zn and Pb concentrations on <i>Phragmites australis</i> (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions. International Journal of Phytoremediation, 2016, 18, 16-24.	1.7	36
327	Heavy metal content and toxicity of mine and quarry soils. Journal of Soils and Sediments, 2017, 17, 1331-1348.	1.5	18
328	Metal tolerance in barley and wheat cultivars: physiological screening methods and application in phytoremediation. Journal of Soils and Sediments, 2017, 17, 1403-1412.	1.5	17

#	ARTICLE	IF	CITATIONS
329	Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. Journal of Taibah University for Science, 2017, 11, 57-65.	1.1	57
330	Metals Content in Herbal Supplements. Biological Trace Element Research, 2017, 175, 488-494.	1.9	15
331	Stabilization of tannery sludge amended soil using Ricinus communis, Brassica juncea and Nerium oleander. Journal of Soils and Sediments, 2017, 17, 1449-1458.	1.5	27
332	Response of Piptatherum miliaceum to co-culture with a legume species for the phytostabilisation of trace elements contaminated soils. Journal of Soils and Sediments, 2017, 17, 1349-1357.	1.5	17
333	Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 2017, 186, 192-200.	3.8	218
334	New environmental technology uptake and bias toward the status quo: The case of phytoremediation. Environmental Technology and Innovation, 2017, 7, 102-109.	3.0	27
335	Enhanced phytoremediation capacity of a mixed-species plantation of Eucalyptus globulus and Chickpeas. Journal of Geochemical Exploration, 2017, 182, 201-205.	1.5	20
336	Photosynthesis and aboveground carbon allocation of two co-occurring poplar species in an urban brownfield. Environmental Pollution, 2017, 223, 497-506.	3.7	13
337	Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere, 2017, 175, 85-96.	4.2	53
338	Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environmental Technology (United Kingdom), 2017, 38, 2691-2699.	1.2	13
339	Variations in several morphological characteristics and Cd/Pb accumulation capacities among different ecotypes of torpedograss responding to Cd-Pb stresses. International Journal of Phytoremediation, 2017, 19, 844-861.	1.7	5
341	Arsenic transformation behaviour during thermal decomposition of P. vittata, an arsenic hyperaccumulator. Journal of Analytical and Applied Pyrolysis, 2017, 124, 584-591.	2.6	34
342	Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 2017, 224, 622-630.	3.7	315
343	Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma, 2017, 295, 10-21.	2.3	59
344	Effects of calcium at toxic concentrations of cadmium in plants. Planta, 2017, 245, 863-873.	1.6	169
345	Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation. Chemosphere, 2017, 176, 397-404.	4.2	38
346	Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus. Environmental Science and Pollution Research, 2017, 24, 8098-8107.	2.7	23
347	Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent. Environmental Science and Pollution Research, 2017, 24, 9506-9514.	2.7	42

#	Article	IF	CITATIONS
348	In vitro multiplication of Dianthus carthusianorum calamine ecotype with the aim to revegetate and stabilize polluted wastes. Plant Cell, Tissue and Organ Culture, 2017, 128, 631-640.	1.2	16
349	Reclamation of Cr-contaminated or Cu-contaminated agricultural soils using sunflower and chelants. Environmental Science and Pollution Research, 2017, 24, 10131-10138.	2.7	4
350	Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere, 2017, 27, 193-204.	2.1	250
351	Mycoremediation of Potentially Toxic Trace Elements—a Biological Tool for Soil Cleanup: A Review. Pedosphere, 2017, 27, 205-222.	2.1	59
352	Modulation of N-Methyl-D-Aspartate Receptors (NMDAR), Bcl-2 and C-Fos Gene Expressions on Exposure to Individual and Mixtures of Low Concentration Metals in Zebrafish (Danio rerio). Archives of Environmental Contamination and Toxicology, 2017, 72, 418-427.	2.1	9
353	Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland. Marine Pollution Bulletin, 2017, 124, 1078-1088.	2.3	54
354	Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicology and Environmental Safety, 2017, 139, 272-279.	2.9	62
355	Differential elemental uptake in three pseudo-metallophyte C4 grasses in situ in the eastern USA. Plant and Soil, 2017, 416, 149-163.	1.8	4
356	Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere, 2017, 180, 564-573.	4.2	60
357	Environmental Electrokinetics for a sustainable subsurface. Chemosphere, 2017, 181, 122-133.	4.2	63
358	Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn. Chemosphere, 2017, 181, 382-389.	4.2	13
359	Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. Advances in Experimental Medicine and Biology, 2017, 979, 91-121.	0.8	33
360	Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil. Environmental Science and Pollution Research, 2017, 24, 14234-14248.	2.7	8
361	Unique Rhizosphere Micro-characteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant <i>Sedum alfredii</i> . Environmental Science & Technology, 2017, 51, 5675-5684.	4.6	158
362	Arsenite phytoextraction and its influence on selected nutritional elements in one-year-old tree species. Microchemical Journal, 2017, 133, 530-538.	2.3	9
363	Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environmental Science and Pollution Research, 2017, 24, 14091-14103.	2.7	30
364	Metal Bioaccumulation by Plants in Roadside Soils: Perspectives for Bioindication and Phytoremediation. , 2017, , 215-230.		8
365	Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant and Soil, 2017, 412, 253-266.	1.8	35

#	Article	IF	CITATIONS
366	Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environment International, 2017, 105, 43-55.	4.8	379
367	Assisted green remediation of chromium pollution. Journal of Environmental Management, 2017, 203, 920-924.	3.8	19
368	Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management, 2017, 198, 132-143.	3.8	178
369	Protein changes in <i>Lepidium sativum</i> L. exposed to Hg during soil phytoremediation. International Journal of Phytoremediation, 2017, 19, 765-773.	1.7	10
370	Establishment of in vitro plants selected from heavy metal contaminated soils for further phytoremediation use. Acta Horticulturae, 2017, , 599-606.	0.1	2
371	A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 2017, 182, 247-268.	1.5	877
372	The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation. Advances in Microbial Physiology, 2017, 71, 97-132.	1.0	162
373	The phytoprotective effects of arbuscular mycorrhizal fungi on Enterolobium contorstisiliquum (Vell.) Morong in soil containing coal-mine tailings. International Journal of Phytoremediation, 2017, 19, 1100-1108.	1.7	4
374	Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis , Typha latifolia and Typha angustifolia. Ecotoxicology and Environmental Safety, 2017, 143, 92-101.	2.9	107
375	Remediation of Mine Tailings and Fly Ash Dumpsites: Role of Poaceae Family Members and Aromatic Grasses. , 2017, , 117-167.		3
376	Remediation of Polluted Soils Using Hyperaccumulator Plants. , 2017, , 187-214.		2
377	Bioenergy and Phytoremediation Potential of Millettia pinnata. , 2017, , 169-188.		5
378	Reclamation of EDTA by sodium tetraethylenepentamine-multi dithiocarbamate after soil washing process with EDTA. Environmental Earth Sciences, 2017, 76, 1.	1.3	11
379	Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 2017, 171, 621-645.	4.0	588
380	Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration, 2017, 182, 210-217.	1.5	87
381	Exogenously Applied Citric Acid Enhances Antioxidant Defense and Phytoextraction of Cadmium by Willows (Salix Spp.). Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	27
382	A review on in situ phytoremediation of mine tailings. Chemosphere, 2017, 184, 594-600.	4.2	370
383	Polyamine and tyramine involvement in NaCl-induced improvement of Cd resistance in the halophyte Inula chrithmoides L Journal of Plant Physiology, 2017, 216, 136-144.	1.6	18

#	Article	IF	CITATIONS
384	Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Metallomics, 2017, 9, 936-948.	1.0	22
385	Modeling of phytoextraction efficiency of microbially stimulated <i>Salix dasyclados</i> L. in the soils with different speciation of heavy metals. International Journal of Phytoremediation, 2017, 19, 1150-1164.	1.7	32
386	Assessment of Marginal Quality Water for Sustainable Irrigation Management: Case Study of Bahr El-Baqar Area, Egypt. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	15
387	Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 2017, 5, 2782-2799.	3.3	1,066
388	Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Science of the Total Environment, 2017, 601-602, 32-44.	3.9	75
389	Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environmental Pollution, 2017, 229, 362-370.	3.7	59
390	Phytoremediation Application: Plants as Biosorbent for Metal Removal in Soil and Water. , 2017, , 405-422.		11
391	Phytomining of Rare and Valuable Metals. , 2017, , 469-486.		20
392	Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination. Environmental Science and Pollution Research, 2017, 24, 5439-5451.	2.7	9
393	Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environmental Pollution, 2017, 225, 644-653.	3.7	56
394	Green Approach in the Bio-removal of Heavy Metals from wastewaters. MATEC Web of Conferences, 2017, 103, 06007.	0.1	14
395	Early seedling establishment on aged Tasmanian tin mine tailings constrained by nutrient deficiency and soil structure, not toxicity. Soil Research, 2017, 55, 692.	0.6	17
396	Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	56
397	Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications. Bioresource Technology, 2017, 238, 399-406.	4.8	198
398	Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils. Marine Pollution Bulletin, 2017, 118, 297-306.	2.3	30
399	Land Reclamation and Remediation, Principles and Practice. , 2017, , 304-310.		3
400	Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecological Engineering, 2017, 102, 490-500.	1.6	50
401	Bacterial biosurfactants can be an ecofriendly and advanced technology for remediation of heavy metals and co-contaminated soil. International Journal of Environmental Science and Technology, 2017, 14, 1343-1354.	1.8	43

ARTICLE IF CITATIONS Stabilization of Pb(II) accumulated in biomass through phosphate-pretreated pyrolysis at low 402 6.5 31 temperatures. Journal of Hazardous Materials, 2017, 324, 464-471. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future 4.2 946 perspectives. Chemosphere, 2017, 171, 710-721. Evaluation of cotton burdock (Arctium tomentosum Mill.) responses to multi-metal exposure. 404 2.7 2 Environmental Science and Pollution Research, 2017, 24, 5431-5438. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. Journal of Geochemical Exploration, 2017, 182, 149-156. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and 406 2.190 future perspectives. Environmental Reviews, 2017, 25, 269-281. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation. Environmental Science and Pollution Research, 2017, 24, 8866-8878. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation 408 1.7 22 technology. International Journal of Phytoremediation, 2017, 19, 530-536. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environmental Science and Pollution Research, 2017, 24, 409 2.7 47 3843-3852. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical 410 2.3 59 technologies. Reviews in Chemical Engineering, 2017, 33, . <i>>Portulaca grandiflora</i>> as green roof vegetation: Plant growth and phytoremediation 1.7 experiments. International Journal of Phytoremediation, 2017, 19, 537-544. Impact of Cr and Zn on Growth, Biochemical and Physiological Parameters, and Metal Accumulation 412 17 1.1 by Wheat and Barley Plants. Water, Air, and Soil Pollution, 2017, 228, 1. Role of Bioremediation Agents (Bacteria, Fungi, and Algae) in Alleviating Heavy Metal Toxicity., 2017, 517-537. Framework for assessment and phytoremediation of asbestos-contaminated sites. Environmental 414 2.7 5 Science and Pollution Research, 2017, 24, 25912-25922. The Edaphism: Gypsum, Dolomite and Serpentine Flora and Vegetation. Plant and Vegetation, 2017, , 277-354. Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in 416 29 1.6 the low-temperature season. Ecological Engineering, 2017, 109, 48-56. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Environmental Science and Pollution Research, 2017, 24, 39 27244-27253. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining 419 2.7 39 sludge. Environmental Science and Pollution Research, 2017, 24, 22183-22195. Root potassium and hydrogen flux rates as potential indicators of plant response to zinc, copper and nickel stress. Environmental and Experimental Botany, 2017, 143, 38-50.

#	Article	IF	CITATIONS
421	Hydroponic Screening of Fast-growing Tree Species for Lead Phytoremediation Potential. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 518-523.	1.3	15
422	Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere, 2017, 187, 27-34.	4.2	13
423	Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, Cyprinus carpio L Fish and Shellfish Immunology, 2017, 70, 461-472.	1.6	65
424	Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 2017, 189, 161-170.	4.2	69
426	Effect of phosphate minerals on phytoremediation of arsenic contaminated groundwater using an arsenic-hyperaccumulator. Environmental Technology and Innovation, 2017, 8, 366-372.	3.0	14
427	Erato polymnioides – A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere, 2017, 188, 633-641.	4.2	45
428	Pb-induced changes in roots of two cultivated rice cultivars grown in lead-contaminated soil mediated by smoke. Environmental Science and Pollution Research, 2017, 24, 21298-21310.	2.7	23
429	Phytoremediation of cadmium-polluted soil by Chlorophytum laxum combined with chitosan-immobilized cadmium-resistant bacteria. Environmental Science and Pollution Research, 2017, 24, 19249-19258.	2.7	27
430	Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Advanced Functional Materials, 2017, 27, 1702338.	7.8	92
431	Metallophytes of Serpentine and Calamine Soils – Their Unique Ecophysiology and Potential for Phytoremediation. Advances in Botanical Research, 2017, , 1-42.	0.5	34
432	Seasonal patterns of metals and nutrients in Phragmites australis (Cav.) Trin. ex Steudel in a constructed wetland in the west of Ireland. Ecological Engineering, 2017, 107, 192-197.	1.6	21
433	In-sights into the effect of heavy metal stress on the endogenous mustard cystatin. International Journal of Biological Macromolecules, 2017, 105, 1138-1147.	3.6	6
434	Phytoremediation Potential of Plants Growing on the Pb-Contaminated Soil at the Song Tho Pb Mine, Thailand. Soil and Sediment Contamination, 2017, 26, 426-437.	1.1	9
435	Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Applied and Environmental Microbiology, 2017, 83, .	1.4	26
436	Effects of live Myriophyllum aquaticum and its straw on cadmium accumulation in Nasturtium officinale. Environmental Science and Pollution Research, 2017, 24, 22503-22509.	2.7	8
437	Influence of the residue from an iron mining dam in the growth of two macrophyte species. Chemosphere, 2017, 186, 488-494.	4.2	25
438	Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 2017, 8, 309-326.	3.0	284
439	Exploring the Potential of Naturalized Plants for Phytoremediation of Heavy Metal Contamination. International Journal of Environmental Research, 2017, 11, 515-521.	1.1	22

#	ARTICLE	IF	CITATIONS
440	Assessment of heavy metal bioaccumulation in sorghum from neutral saline soils in the Po River Delta Plain (Northern Italy). Environmental Earth Sciences, 2017, 76, 1.	1.3	1
441	Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology, 2017, 218, 121-126.	1.6	71
442	Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L Chemosphere, 2017, 185, 1011-1018.	4.2	69
443	Identification of root exudates from the Pb-accumulator <i>Sedum alfredii</i> under Pb stresses and assessment of their roles. Journal of Plant Interactions, 2017, 12, 272-278.	1.0	16
444	Pyroligneous Acids Enhance Phytoremediation of Heavy Metal-Contaminated Soils Using Mustard. Communications in Soil Science and Plant Analysis, 2017, 48, 2061-2073.	0.6	15
445	Investigation of the potential of Cyperus alternifolius in the phytoremediation of palm oil mill effluent. AIP Conference Proceedings, 2017, , .	0.3	7
446	Tolerance of Microorganisms in Soil Contaminated with Trace Metals: An Overview. , 2017, , 165-193.		5
447	Metals in mine wastes: environmental pollution and soil remediation approaches – a review. Geosystem Engineering, 2021, 24, 157-172.	0.7	20
448	Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Scientific Reports, 2017, 7, 15000.	1.6	45
449	Recycling stabilised/solidified drill cuttings for forage production in acidic soils. Chemosphere, 2017, 184, 652-663.	4.2	34
450	The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Environmental Science and Pollution Research, 2017, 24, 19104-19113.	2.7	17
451	Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops. Ecotoxicology and Environmental Safety, 2017, 145, 111-118.	2.9	65
452	Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 2017, 605-606, 792-800.	3.9	101
453	Impact of salinity and Pb on enzyme activities of a saline soil from the Yellow River delta: A microcosm study. Physics and Chemistry of the Earth, 2017, 97, 77-87.	1.2	29
454	Ecological diversity of sediment rhizobacteria associated with Phragmites australis along a drainage canal in the Yellow River watershed. Journal of Soils and Sediments, 2017, 17, 253-265.	1.5	17
455	Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicology and Environmental Safety, 2017, 135, 209-215.	2.9	124
456	Sediment washing by EDTA and its reclamation by sodium polyamidoamine-multi dithiocarbamate. Chemosphere, 2017, 168, 450-456.	4.2	16
457	Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. World Journal of Microbiology and Biotechnology, 2017, 33, 9.	1.7	51

		15	<u></u>
#	ARTICLE Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in	IF	CITATIONS
458	multi-metal contaminated soils from a gold mining area. Environmentál Science and Pollutión Research, 2017, 24, 3063-3073.	2.7	19
459	Removal of Cd (II) from water using the waste of jatropha fruit (Jatropha curcas L.). Applied Water Science, 2017, 7, 3207-3222.	2.8	17
460	Relationship between metal and pigment concentrations in the Fe-hyperaccumulator moss Scopelophila ligulata. Journal of Plant Research, 2017, 130, 135-141.	1.2	10
461	Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. Science of the Total Environment, 2017, 575, 437-447.	3.9	24
462	Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L. Environmental Science and Pollution Research, 2017, 24, 685-700.	2.7	28
463	Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresource Technology, 2017, 223, 287-295.	4.8	62
464	Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands $\hat{a} \in $ " A review. Chemosphere, 2017, 168, 1230-1247.	4.2	119
465	Influence of endophytic <i>Bacillus pumilus</i> and EDTA on the phytoextraction of Cu from soil by using <i>Cicer arietinum</i> . International Journal of Phytoremediation, 2017, 19, 14-22.	1.7	14
466	Metal storage in reeds from an acid mine drainage contaminated field. International Journal of Phytoremediation, 2017, 19, 254-261.	1.7	4
467	Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. Journal of Hazardous Materials, 2017, 321, 268-280.	6.5	42
468	Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. Journal of Hazardous Materials, 2017, 321, 290-298.	6.5	85
469	A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Annals of Microbiology, 2017, 67, 49-58.	1.1	49
470	Toxicity and bioremediation of As(III) and As(V) in the green microalgae <i>Botryococcus braunii</i> : A laboratory study. International Journal of Phytoremediation, 2017, 19, 157-173.	1.7	7
471	Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecological Engineering, 2017, 99, 70-82.	1.6	45
472	Influence of 2,4-D and MCPA herbicides on uptake and translocation of heavy metals in wheat (Triticum aestivum L.). Environmental Pollution, 2017, 220, 882-890.	3.7	27
473	Effects of plant growth-promoting bacteria on the phytoremediation of cadmium-contaminated soil by sunflower. Archives of Agronomy and Soil Science, 2017, 63, 807-816.	1.3	24
474	Phytoremediation of chromium from tannery wastewater using local plant species. Water Practice and Technology, 2017, 12, 894-901.	1.0	30
475	Adaptation Strategies of Plants Against Common Inorganic Pollutants and Metals. , 2017, , 315-328.		5

#	Article	IF	CITATIONS
476	Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus × canescens. Tree Physiology, 2017, 37, 1697-1712.	1.4	79
477	Removal of Heavy Metals from Waste Water by using Various Adsorbents- A Review. Indian Journal of Science and Technology, 2017, 10, 1-14.	0.5	24
478	Enhanced Nitrogen and Phosphorus Removal by Woody Plants with Deep-Planting Technique for the Potential Environmental Management of Carcass Burial Sites. Sustainability, 2017, 9, 155.	1.6	7
479	Water Pollution Control Technologies. , 2017, , 3-22.		9
480	Establishment of an Aseptic Culture System and Analysis of the Effective Growth Conditions for Eleocharis acicularis Ramets for Use in Phytoremediation. Environments - MDPI, 2017, 4, 40.	1.5	2
481	A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 2017, 14, 94.	1.2	1,062
482	Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum) Tj ETQq0 0 0 r Environmental Research and Public Health, 2017, 14, 1273.	gBT /Over 1.2	lock 10 Tf 50 9
483	Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International Journal of Environmental Research and Public Health, 2017, 14, 1504.	1.2	685
484	Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 2017, 5, .	1.5	215
485	Hazard Assessment of Soils and Spoils From the Portuguese Iberian Pyrite Belt Mining Areas and Their Potential Reclamation. , 2017, , 63-88.		4
486	Contamination of Soil with Pb and Sb at a Lead-Acid Battery Dumpsite and Their Potential Early Uptake by <i> Phragmites australis</i> . Applied and Environmental Soil Science, 2017, 2017, 1-9.	0.8	6
487	Removal of Pb, Cu, Cd, and Zn Present in Aqueous Solution Using Coupled Electrocoagulation-Phytoremediation Treatment. International Journal of Electrochemistry, 2017, 2017, 1-11.	2.4	11
488	The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE, 2017, 12, e0182264.	1.1	72
489	Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PLoS ONE, 2017, 12, e0184681.	1.1	30
490	The Extraction of Heavy Metals From Vegetable Samples. , 2017, , 253-273.		2
491	Mycorrhiza-Assisted Phytoremediation. Advances in Botanical Research, 2017, 83, 127-188.	0.5	44
492	Induced changes in the growth of four plant species due to lead toxicity. Revista Brasileira De Engenharia Agricola E Ambiental, 2017, 21, 327-332.	0.4	8
493	IS Annona emarginata CAPABLE OF ACCUMULATE ESSENTIAL HEAVY METALS WITHOUT DAMAGES IN THE METABOLISM?. Revista Brasileira De Fruticultura, 2017, 39, .	0.2	2

#	Article	IF	CITATIONS
494	Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area. International Journal of Environmental Research and Public Health, 2017, 14, 1068.	1.2	13
495	Phytoremediation of chlorobenzenes in sewage sludge cultivated with Pennisetum purpureum at different times. Revista Brasileira De Engenharia Agricola E Ambiental, 2017, 21, 573-578.	0.4	12
496	Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environmental Science and Pollution Research, 2018, 25, 9745-9758.	2.7	37
497	Morphophysiological and transcriptome analysis reveals a multiline defense system enabling cyanobacterium Leptolyngbya strain JSC-1 to withstand iron induced oxidative stress. Chemosphere, 2018, 200, 93-105.	4.2	12
498	Transcriptomic analysis of boron hyperaccumulation mechanisms in Puccinellia distans. Chemosphere, 2018, 199, 390-401.	4.2	17
499	Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials, 2018, 351, 131-137.	6.5	59
500	Strategies for Soil Protection and Remediation. , 2018, , 251-281.		5
501	Potentialities of Six Plant Species on Phytoremediation Attempts of Fuel Oil-Contaminated Soils. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	16
502	Integrated phytoremediation focused on microbial investigation. RSC Advances, 2018, 8, 4680-4685.	1.7	3
503	Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel. Chemosphere, 2018, 201, 511-518.	4.2	46
504	Bioremediation of Mined Waste Land. , 2018, , 1-25.		3
505	Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 2018, 18, 1701-1719.	1.5	121
506	Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science of the Total Environment, 2018, 628-629, 1582-1599.	3.9	144
507	Remove heavy metals from groundwater using carbon nanotubes grafted with amino compound. Separation Science and Technology, 2018, 53, 1698-1702.	1.3	6
508	Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations. Environmental Science and Pollution Research, 2018, 25, 17820-17829.	2.7	18
509	Effects of kinetin on plant growth and chloroplast ultrastructure of two Pteris species under arsenate stress. Ecotoxicology and Environmental Safety, 2018, 158, 37-43.	2.9	12
510	The environmental impact of informal and home productive arrangement in the jewelry and fashion jewelry chain on sanitary sewer system. Environmental Science and Pollution Research, 2018, 25, 10701-10713.	2.7	9
511	Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive?. Journal of Environmental Management, 2018, 213, 320-328.	3.8	14

#	Article	IF	CITATIONS
512	Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 2018, 217, 56-70.	3.8	421
513	A review of phytoremediation technology: heavy metals uptake by plants. IOP Conference Series: Earth and Environmental Science, 2018, 142, 012023.	0.2	66
514	Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea courbaril L. (Caesalpinioideae). Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	77
515	Applying β-cyclodextrin to amaranth inoculated with white-rot fungus for more efficient remediation of soil co-contaminated with Cd and BDE-209. Science of the Total Environment, 2018, 634, 417-426.	3.9	17
516	Use of a hyperaccumulator and biochar to remediate an acid soil highly contaminated with trace metals and/or oxytetracycline. Chemosphere, 2018, 204, 390-397.	4.2	31
517	Novel Hyper Antimony-Oxidizing Bacteria Isolated from Contaminated Mine Soils in China. Geomicrobiology Journal, 2018, 35, 713-720.	1.0	35
518	Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Reports, 2018, 12, 1-14.	0.9	127
519	Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus. Environmental Science and Pollution Research, 2018, 25, 11343-11350.	2.7	12
520	From Conventional Lewis Acids to Heterogeneous Montmorillonite K10: Ecoâ€Friendly Plantâ€Based Catalysts Used as Green Lewis Acids. ChemSusChem, 2018, 11, 1249-1277.	3.6	56
521	Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. Journal of Environmental Management, 2018, 210, 210-225.	3.8	61
522	Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (<i>Helianthus annuus</i> L.). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 609-616.	0.9	38
523	Bioaccumulation and sources of metal(loid)s in lilies and their potential health risks. Ecotoxicology and Environmental Safety, 2018, 151, 228-235.	2.9	6
524	Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 2018, 151, 266-271.	2.9	83
525	Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes. Journal of Environmental Radioactivity, 2018, 184-185, 152-157.	0.9	19
526	Plant Growth–Promoting Rhizobacteria-Assisted Phytoremediation of Mine Soils. , 2018, , 281-295.		38
527	Effects of cadmium on photosynthesis of Schima superba young plant detected by chlorophyll fluorescence. Environmental Science and Pollution Research, 2018, 25, 10679-10687.	2.7	23
528	Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis. Science of the Total Environment, 2018, 625, 1113-1121.	3.9	13
529	Different efficiencies of the same mechanisms result in distinct Cd tolerance within Rhizobium. Ecotoxicology and Environmental Safety, 2018, 150, 260-269.	2.9	20

#	Article	IF	CITATIONS
530	Traitâ€based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of Applied Ecology, 2018, 55, 1195-1206.	1.9	53
531	Assessing the ability of hybrid poplar for in-situ phytoextraction of cadmium by using UAV-photogrammetry and 3D flow simulator. International Journal of Remote Sensing, 2018, 39, 5175-5194.	1.3	16
532	Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia. Science of the Total Environment, 2018, 627, 1106-1120.	3.9	28
533	Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil. Environmental Science and Pollution Research, 2018, 25, 7021-7032.	2.7	16
534	Ectopic expression of Vicia sativa Caffeoyl-CoA O -methyltransferase (VsCCoAOMT) increases the uptake and tolerance of cadmium in Arabidopsis. Environmental and Experimental Botany, 2018, 145, 47-53.	2.0	38
535	Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil. Journal of Hazardous Materials, 2018, 346, 273-284.	6.5	34
536	InÂvivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremediation purposes. Chemosphere, 2018, 193, 1049-1057.	4.2	19
537	Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere, 2018, 194, 316-326.	4.2	57
538	Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosphere, 2018, 194, 432-440.	4.2	41
539	Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environmental and Experimental Botany, 2018, 147, 202-219.	2.0	88
540	Assessment of the Bioaccumulation Capacity of Heavy Metals of the Species: Quercus Ilex L Tree Plant Garden of El Hamma-Algeria for Use in Phytoremediation. Advances in Science, Technology and Innovation, 2018, , 555-557.	0.2	1
541	Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environmental Science and Pollution Research, 2018, 25, 8701-8714.	2.7	34
542	Bioremediation of Heavy Metals. Environmental Chemistry for A Sustainable World, 2018, , 277-311.	0.3	15
543	Accumulation patterns and risk assessment of metals and metalloid in muscle and offal of free-range chickens, cattle and goat in Benin City, Nigeria. Ecotoxicology and Environmental Safety, 2018, 151, 98-108.	2.9	46
544	Effect of Steel Slag to Improve Soil Quality of Tsunami-Impacted Land while Reducing the Risk of Heavy Metal Bioaccumulation. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	12
545	Heavy Metal Pollution and Remediation. , 2018, , 359-373.		76
546	Review: Nutritional ecology of heavy metals. Animal, 2018, 12, 2156-2170.	1.3	122
547	Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology, 2018, 253, 64-71.	4.8	214

#	Article	IF	CITATIONS
548	Effect of water cadmium concentration and water level on the growth performance of Salix triandroides cuttings. Environmental Science and Pollution Research, 2018, 25, 8002-8011.	2.7	11
549	Uptake and distribution of several inorganic ions in Nephrolepis cordifolia (L.) C. Presl grown on contaminated soil. Plant Biosystems, 2018, 152, 59-69.	0.8	2
550	Simultaneous syngas and biochar production during heavy metal separation from Cd/Zn hyperaccumulator (Sedum alfredii) by gasification. Chemical Engineering Journal, 2018, 347, 543-551.	6.6	97
551	Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. Journal of Hazardous Materials, 2018, 354, 91-98.	6.5	24
552	Remediation of a heavy metals contaminated soil using mycorrhized and nonâ€mycorrhized <i>Helichrysum italicum</i> (Roth) Don. Land Degradation and Development, 2018, 29, 91-104.	1.8	25
553	Engineering plants for heavy metal stress tolerance. Rendiconti Lincei, 2018, 29, 709-723.	1.0	91
554	Recent advances in LIBS and XRF for the analysis of plants. Journal of Analytical Atomic Spectrometry, 2018, 33, 919-944.	1.6	67
555	Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environmental Science and Pollution Research, 2018, 25, 18846-18852.	2.7	31
556	Chemometric evaluation of heavy metal pollutions in Patna region of the Ganges alluvial plain, India: implication for source apportionment and health risk assessment. Environmental Geochemistry and Health, 2018, 40, 2343-2358.	1.8	24
557	Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass. Ecotoxicology and Environmental Safety, 2018, 157, 102-110.	2.9	52
558	Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: An advancement in metal phytoremediation technology. Environmental Technology and Innovation, 2018, 10, 243-263.	3.0	87
559	Adsorption of Cd(II) by rhizosphere and non-rhizosphere soil originating from mulberry field under laboratory condition. International Journal of Phytoremediation, 2018, 20, 378-383.	1.7	25
560	Potential for Phytoextraction of Cu by Sesamum indicum L. and Cyamopsis tetragonoloba L.: A Green Solution to Decontaminate Soil. Earth Systems and Environment, 2018, 2, 133-143.	3.0	16
561	Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 2018, 633, 206-219.	3.9	1,064
562	Cost-Effectiveness Analysis for Soil Heavy Metal Contamination Treatments. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	36
563	Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA. Environmental Pollution, 2018, 236, 634-644.	3.7	36
564	Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1. Chemosphere, 2018, 202, 280-288.	4.2	39
565	Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere, 2018, 198, 351-363.	4.2	78

#	Article	IF	CITATIONS
566	Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter. International Journal of Phytoremediation, 2018, 20, 35-43.	1.7	12
567	Isolation of vanadium-resistance endophytic bacterium PREO1 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. Journal of Hazardous Materials, 2018, 341, 1-9.	6.5	72
568	Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. Journal of Soils and Sediments, 2018, 18, 2188-2202.	1.5	66
569	Phytoremediation potential and morphological changes of plants growing in the vicinity of lead smelter plant. International Journal of Environmental Science and Technology, 2018, 15, 361-372.	1.8	11
570	Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion. Chemosphere, 2018, 191, 520-526.	4.2	36
571	A methodological framework for coastal development assessment: A case study of Fujian Province, China. Science of the Total Environment, 2018, 615, 572-580.	3.9	20
572	Melatonin affects the growth and cadmium accumulation of <i>Malachium aquaticum</i> and <i>Galinsoga parviflora</i> . International Journal of Phytoremediation, 2018, 20, 295-300.	1.7	29
573	Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. International Journal of Phytoremediation, 2018, 20, 311-320.	1.7	76
574	Phytoremediation of lead by a wild, non-edible Pb accumulator <i>Coronopus didymus</i> (L.) Brassicaceae. International Journal of Phytoremediation, 2018, 20, 483-489.	1.7	41
575	Trace element transfer from two contaminated soil series to <i>Medicago sativa</i> and one of its herbivores <i>, Spodoptera exigua</i> . International Journal of Phytoremediation, 2018, 20, 650-657.	1.7	3
576	Assessment of the adaptive capacity of plant species in copper mine tailings in arid and semiarid environments. Journal of Soils and Sediments, 2018, 18, 2203-2216.	1.5	34
578	Comparison of heavy metal phytoremediation in monoculture and intercropping systems of <i>Phyllostachys praecox</i> and <i>Sedum plumbizincicola</i> in polluted soil. International Journal of Phytoremediation, 2018, 20, 490-498.	1.7	32
579	Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: A field experiment. Catena, 2018, 160, 185-193.	2.2	48
580	From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 2018, 20, 384-397.	1.7	199
581	Phytoremediation of Trace Metals by Mangrove Plants of Sundarban Wetland. , 2018, , 209-247.		2
582	Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in <i>Siegesbeckia orientalis</i> L International Journal of Phytoremediation, 2018, 20, 973-980.	1.7	43
583	Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Science of the Total Environment, 2018, 613-614, 447-455.	3.9	62
584	Phytoremediation of contaminated soils using ornamental plants. Environmental Reviews, 2018, 26, 43-54.	2.1	69

#	Article	IF	CITATIONS
585	Nickel accumulation by the green algae-like Euglena gracilis. Journal of Hazardous Materials, 2018, 343, 10-18.	6.5	31
586	Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology, 2018, 38, 455-468.	5.1	158
587	How does the endophytic fungus Mucor sp. improve Arabidopsis arenosa vegetation in the degraded environment of a mine dump?. Environmental and Experimental Botany, 2018, 147, 31-42.	2.0	38
588	Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead. Ecotoxicology and Environmental Safety, 2018, 148, 805-812.	2.9	50
589	Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils. Energy, Environment, and Sustainability, 2018, , 301-312.	0.6	6
590	Health risk evaluation of heavy metals in green land soils from urban parks in Urumqi, northwest China. Environmental Science and Pollution Research, 2018, 25, 4459-4473.	2.7	28
591	Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia) Tj ETQqO 5344-5358.	0 0 rgBT /(2.7	Overlock 10 46
592	What are heavy metals? Long-standing controversy over the scientific use of the term â€~heavy metals'–Âproposal of a comprehensive definition. Toxicological and Environmental Chemistry, 2018, 100, 6-19.	0.6	232
593	Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 2018, 148, 97-104.	2.9	90
594	Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotoxicology and Environmental Safety, 2018, 148, 431-440.	2.9	56
595	Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Environmental Science and Pollution Research, 2018, 25, 3275-3290.	2.7	22
596	Accumulation of heavy metals in stemwood of forest tree plantations fertilized with different sewage sludge doses. Journal of Forestry Research, 2018, 29, 347-361.	1.7	10
597	Turning Waste drilling fluids into a new, sustainable soil resources for landscaping. Ecological Engineering, 2018, 121, 130-136.	1.6	30
598	Assessment of phytokinetic removal of pollutants of paper mill effluent using water hyacinth (Eichhornia crassipes [Mart.] Solms). Environmental Technology (United Kingdom), 2018, 39, 2781-2791.	1.2	12
599	Tolerance to Metals in Two Species of Fabaceae Grown in Riverbank Sediments Polluted with Chromium, Copper, and Lead. , 2018, , 169-178.		3
600	Differential behavior of the summer cover crops in the absorption and translocation of copper. Ciencia Rural, 2018, 48, .	0.3	8
601	Phytoremediation of Industrial Wastewater by Hydrophytes. , 2018, , 179-200.		3
602	Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water (Switzerland), 2018, 10, 1685.	1.2	85

#	Article	IF	CITATIONS
603	Evaluation of the Bioavailability and Translocation of Selected Heavy Metals by Brassica juncea and Spinacea oleracea L for a South African Power Utility Coal Fly Ash. International Journal of Environmental Research and Public Health, 2018, 15, 2841.	1.2	11
604	Redesigning Abandoned Gas Stations Through Phytotechnologies. , 2018, , 3-20.		0
605	Phytoremediation of Lead Contaminated Soils using <i>Cordyline fruicosa (L)</i> . E3S Web of Conferences, 2018, 73, 05023.	0.2	4
606	Differences in phytoextraction by the cadmium and zinc hyperaccumulator <i>Sedum plumbizincicola</i> in greenhouse, polytunnel and field conditions. International Journal of Phytoremediation, 2018, 20, 1400-1407.	1.7	2
607	Response to cadmium and phytostabilization potential of <i>Platycladus orientalis</i> in contaminated soil. International Journal of Phytoremediation, 2018, 20, 1337-1345.	1.7	23
608	Screening of native tropical trees for phytoremediation in copper-polluted soils. International Journal of Phytoremediation, 2018, 20, 1456-1463.	1.7	19
609	Removal of sulphide using phytoremediation process. Materials Today: Proceedings, 2018, 5, 22069-22073.	0.9	1
610	Remediation of Fly Ash Dumpsites Through Bioenergy Crop Plantation and Generation: A Review. Pedosphere, 2018, 28, 561-580.	2.1	35
611	A Review on Genetically Modified Plants Designed to Phytoremediate Polluted Soils: Biochemical Responses and International Regulation. Pedosphere, 2018, 28, 697-712.	2.1	14
612	Cobalt and nickel content in Hydrocharis morsus-ranae and their bioremoval from single- and binary solutions. Environmental Science and Pollution Research, 2018, 25, 32044-32052.	2.7	7
613	Phytoremediation for the Elimination of Metals, Pesticides, PAHs, and Other Pollutants from Wastewater and Soil. , 2018, , 101-136.		23
614	Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation. , 2018, , 135-149.		8
615	Growth, biochemical response and nutritional status of Angico-Vermelho (<i>Parapiptadenia) Tj ETQq0 0 0 rgBT / International Journal of Phytoremediation, 2018, 20, 1380-1388.</i>	Overlock 1 1.7	.0 Tf 50 267 3
616	Dendroremediation: The Role of Trees in Phytoextraction of Trace Elements. , 2018, , 267-295.		6
617	Microbial-Assisted Phytoremediation: A Convenient Use of Plant and Microbes to Clean Up Soils. , 2018, , 21-87.		10
618	Defense Mechanisms of Two Pioneer Submerged Plants during Their Optimal Performance Period in the Bioaccumulation of Lead: A Comparative Study. International Journal of Environmental Research and Public Health, 2018, 15, 2844.	1.2	4
619	Phytoremediationâ<" A Sustainable Solution for Reducing Heavy Metal Contamination from the Bhalaswa Landfill Site. , 2018, , .		2
620	Rapid Determination of Cadmium Contamination in Lettuce Using Laser-Induced Breakdown Spectroscopy. Molecules, 2018, 23, 2930.	1.7	28

#	Article	IF	CITATIONS
621	Heavy metal leachability in soil amended with zeolite- or biochar-modified contaminated sediment. Environmental Monitoring and Assessment, 2018, 190, 751.	1.3	15
622	Copper Uptake by <i>Adesmia atacamensis</i> in a Mine Tailing in an Arid Environment. Air, Soil and Water Research, 2018, 11, 117862211881246.	1.2	17
623	Mining and biodiversity: key issues and research needs in conservation science. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	1.2	140
624	Selenium removal from mining and process wastewater: a systematic review of available technologies. Journal of Water Supply: Research and Technology - AQUA, 2018, 67, 903-918.	0.6	47
625	Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis. Microbes and Environments, 2018, 33, 257-263.	0.7	56
626	Integrating Ecosystem Services in Historically Polluted Areas: Bioremediation Techniques for Soils Contaminated by Heavy Metals. , 2018, , .		0
627	Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Environmental Science and Pollution Research, 2018, 25, 32603-32616.	2.7	15
628	Health Risk Assessment of Heavy Metals in Surface Water near a Uranium Tailing Pond in Jiangxi Province, South China. Sustainability, 2018, 10, 1113.	1.6	23
629	Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Environmental Science and Pollution Research, 2018, 25, 33957-33966.	2.7	27
630	Ultrasonic seed treatment improved physiological and yield traits of rice under lead toxicity. Environmental Science and Pollution Research, 2018, 25, 33637-33644.	2.7	28
631	PGPR Reduce Root Respiration and Oxidative Stress Enhancing Spartina maritima Root Growth and Heavy Metal Rhizoaccumulation. Frontiers in Plant Science, 2018, 9, 1500.	1.7	61
632	Avaliação dos nÃveis de metais pesados no pantanal dos Marimbus, Bahia, Brasil. Engenharia Sanitaria E Ambiental, 2018, 23, 591-598.	0.1	4
633	Adsorption of Cu2+ and Pb2+ Ions by Pontederia rotundifolia (L.f.) (Pontederiaceae) and Salvinia biloba Raddi (Salviniaceae) Biomass. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	11
634	Soil Remediation Through Algae, Plants and Animals. , 2018, , 129-195.		0
635	Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annus. Frontiers in Microbiology, 2018, 9, 2507.	1.5	127
636	Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset. Data in Brief, 2018, 21, 1409-1414.	0.5	27
637	Phytoremediation of Heavy Metals Using Cotton Plant: A Field Analysis. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 637-643.	1.3	35
638	Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils. Environmental Science and Pollution Research, 2018, 25, 36636-36644.	2.7	13

#	Article	IF	CITATIONS
639	Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. Agriculture, Ecosystems and Environment, 2018, 267, 165-173.	2.5	82
640	Phytoremediation and Physiological Effects of Mixed Heavy Metals on Poplar Hybrids. , 2018, , .		4
641	Soil microbial and Ni-agronomic responses to Alyssum murale interplanted with a legume. Applied Soil Ecology, 2018, 132, 60-73.	2.1	8
642	Earthworms stimulate nitrogen transformation in an acidic soil under different Cd contamination. Ecotoxicology and Environmental Safety, 2018, 165, 564-572.	2.9	10
643	Nutrient Supply Rates and Phytoextraction during Wetland Phytoremediation of an Endâ€ofâ€Life Municipal Lagoon. Soil Science Society of America Journal, 2018, 82, 1004-1012.	1.2	4
644	Endophytes as Pollutant-Degrading Agents: Current Trends and Perspectives. Reference Series in Phytochemistry, 2018, , 1-22.	0.2	1
645	Phyto-evaluation of Cd-Pb Using Tropical Plants in Soil-Leachate Conditions. Air, Soil and Water Research, 2018, 11, 117862211877776.	1.2	7
646	Phytoremediation: Halophytes as Promising Heavy Metal Hyperaccumulators. , 0, , .		20
(47	GROWTH AND PHYSIOLOGICAL RESPONSES OF TREE SPECIES (Hymenaea courbaril L., Peltophorum dubium) Tj I		0
647	THE SOIL. Revista Arvore, 2018, 42, .	0.5	9
648	Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems and Environment, 2018, 267, 129-140.	2.5	104
649	Pollution status of agricultural land in China: impact of land use and geographical position. Soil and Water Research, 2018, 13, 234-242.	0.7	16
650	Mycoremediation for Mine Site Rehabilitation. , 2018, , 233-260.		8
651	Patterns of toxic metals bioaccumulation in a cross-border freshwater reservoir. Chemosphere, 2018, 207, 192-202.	4.2	26
652	Effect of plant growth on Pb and Zn geoaccumulation in 300-year-old mine tailings of Zacatecas, México. Environmental Earth Sciences, 2018, 77, 1.	1.3	5
653	Repeated phytoextraction of metal contaminated calcareous soil by hyperaccumulator <i>Sedum plumbizincicola</i> . International Journal of Phytoremediation, 2018, 20, 1243-1249.	1.7	15
654	Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. Journal of Environmental Management, 2018, 222, 396-401.	3.8	62
655	The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: the role of particulate organic matter. Plant and Soil, 2018, 429, 321-333.	1.8	18
656	Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediation potential in water contaminated with heavy metals. Environmental Earth Sciences, 2018, 77, 1.	1.3	17

	CITATION	Report	
#		IF	Citations
657	Uranium Mine Waste Phytostabilization With Native Plants—A Case Study From Brazil. , 2018, , 299-322.		5
658	Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecological Indicators, 2018, 93, 274-281.	2.6	29
659	Kinetics of arsenic absorption by the species Eichhornia crassipes and Lemna valdiviana under optimized conditions. Chemosphere, 2018, 209, 866-874.	4.2	15
660	Spatial distribution, mobility and bioavailability of arsenic, lead, copper and zinc in low polluted forest ecosystem in North-western Mexico. Chemosphere, 2018, 210, 320-333.	4.2	8
661	Genome-Wide Analysis of Multidrug and Toxic Compound Extrusion (<i>MATE</i>) Family in <i>Gossypium raimondii</i> and <i>Gossypium arboreum</i> and Its Expression Analysis Under Salt, Cadmium, and Drought Stress. G3: Genes, Genomes, Genetics, 2018, 8, 2483-2500.	0.8	56
662	Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 2018, 120, 274-298.	1.6	275
663	In situ phytoremediation characterization of heavy metals promoted by Hydrocotyle ranunculoides at Santa Bárbara stream, an anthropogenic polluted site in southern of Brazil. Environmental Science and Pollution Research, 2018, 25, 28312-28321.	2.7	14
664	Electrochemical reduction of hexavalent chromium on titania nanotubes with urea as an anolyte additive. Electrochimica Acta, 2018, 284, 427-435.	2.6	40
665	Association mapping of cadmium-tolerant QTLs in Brassica napus L. and insight into their contributions to phytoremediation. Environmental and Experimental Botany, 2018, 155, 420-428.	2.0	26
666	Turn bane into a boon: Application of invasive plant species to remedy soil cadmium contamination. Chemosphere, 2018, 210, 1013-1020.	4.2	46
667	Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere, 2018, 211, 397-406.	4.2	51
668	Proteome responses of Gracilaria lemaneiformis exposed to lead stress. Marine Pollution Bulletin, 2018, 135, 311-317.	2.3	18
669	The role of plants in bioretention systems; does the science underpin current guidance?. Ecological Engineering, 2018, 120, 532-545.	1.6	73
670	Introductory Chapter: Introducing Heavy Metals. , 0, , .		36
671	Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China. Frontiers in Microbiology, 2018, 9, 226.	1.5	29
672	Intercropping of Gramineous Pasture Ryegrass (<i>Lolium perenne</i> L.) and Leguminous Forage Alfalfa (<i>Medicago sativa</i> L.) Increases the Resistance of Plants to Heavy Metals. Journal of Chemistry, 2018, 2018, 1-11.	0.9	30
673	Effect of Phosphate-Solubilizing Bacteria on the Mobility of Insoluble Cadmium and Metabolic Analysis. International Journal of Environmental Research and Public Health, 2018, 15, 1330.	1.2	47
674	Evaluation of the performance of chemical extractants to mobilise metals for remediation of contaminated samples. Journal of Geochemical Exploration, 2018, 193, 22-31.	1.5	4

#	Article	IF	CITATIONS
675	Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 457-467.	2.7	68
676	Rhizobium-Legume Symbioses: Heavy Metal Effects and Principal Approaches for Bioremediation of Contaminated Soil. , 2018, , 205-233.		10
677	Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review. Marine Drugs, 2018, 16, 65.	2.2	308
678	Genome Editing Weds CRISPR: What Is in It for Phytoremediation?. Plants, 2018, 7, 51.	1.6	69
679	Efficacy of EDTA and Olive Mill Wastewater to Enhance As, Pb, and Zn Phytoextraction by Pteris vittata L. from a Soil Heavily Polluted by Mining Activities. Sustainability, 2018, 10, 1962.	1.6	8
680	Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environmental Reviews, 2018, 26, 316-332.	2.1	47
681	Assessment of chromium hyper-accumulative behaviour using biochemical analytical techniques of greenhouse cultivated Sonchus asper on tannery waste dump site soils. Environmental Science and Pollution Research, 2018, 25, 26992-26999.	2.7	5
682	Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview. Frontiers in Plant Science, 2018, 9, 452.	1.7	303
683	Screening of Indigenous Ornamental Species from Different Plant Families for Pb Accumulation Potential Exposed to Metal Gradient in Spiked Soils. Soil and Sediment Contamination, 2018, 27, 439-453.	1.1	33
684	Arbuscular mycorrhizal inoculum sources influence bacterial, archaeal, and fungal communities' structures of historically dioxin/furan-contaminated soil but not the pollutant dissipation rate. Mycorrhiza, 2018, 28, 635-650.	1.3	12
685	The importance of substrate compaction and chemical composition in the phytoextraction of elements by <i>Pinus sylvestris</i> L Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 1029-1038.	0.9	6
686	In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere, 2018, 210, 968-976.	4.2	127
687	Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecological Engineering, 2018, 120, 464-473.	1.6	41
688	Assisted Phytoremediation of a Multi-contaminated Industrial Soil Using Biochar and Garden Soil Amendments Associated with Salix alba or Salix viminalis: Abilities to Stabilize As, Pb, and Cu. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	17
689	Bioaccumulation and Biosorption of Mercury by Salvinia biloba Raddi (Salviniaceae). Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	22
690	Evaluation of amendment addition and tree planting as measures to remediate contaminated soils: The Guadiamar case study (SW Spain). Catena, 2018, 166, 34-43.	2.2	35
691	The effects of lead on photosynthetic performance of waxberry seedlings (Myrica rubra). Photosynthetica, 2018, 56, 1147-1153.	0.9	13
692	Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L Environmental Science and Pollution Research, 2018, 25, 19713-19727.	2.7	5

#	Article	IF	CITATIONS
693	Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 2018, 207, 255-266.	4.2	528
694	Effect of initial pH, operating temperature, and dissolved oxygen concentrations on performance of pyrite-fuel cells in the presence of Acidithiobacillus ferrooxidans. Journal of Hazardous Materials, 2018, 360, 512-519.	6.5	9
695	Biofilters for urban agriculture: Metal uptake of vegetables irrigated with stormwater. Ecological Engineering, 2018, 122, 177-186.	1.6	22
696	Examining the Effects of the Destroying Ammunition, Mines, and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit: Part 1—Pseudo-total Concentration. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	4
697	Immobilization of citric acid and magnetite on sawdust for competitive adsorption and extraction of metal ions from environmental waters. Journal of Environmental Chemical Engineering, 2018, 6, 5186-5195.	3.3	24
698	Arsenic forms in phytoextraction of this metalloid in organs of 2-year-old Acer platanoides seedlings. Environmental Science and Pollution Research, 2018, 25, 27260-27273.	2.7	16
699	Temperature effects on Zn-responses and Zn-reclamation capacity of two native Brazilian plant species: Implications of climate change. Environmental and Experimental Botany, 2018, 155, 589-599.	2.0	3
700	Response of Zea mays to multimetal contaminated soils: a multibiomarker approach. Ecotoxicology, 2018, 27, 1161-1177.	1.1	12
701	Salix viminalis L A highly effective plant in phytoextraction of elements. Chemosphere, 2018, 212, 67-78.	4.2	34
702	Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). Chemosphere, 2018, 212, 124-132.	4.2	28
703	Role of Phytochelatins (PCs), Metallothioneins (MTs), and Heavy Metal ATPase (HMA) Genes in Heavy Metal Tolerance. Fungal Biology, 2018, , 39-60.	0.3	29
704	Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environmental Science and Pollution Research, 2018, 25, 23695-23711.	2.7	28
705	Phytofiltration of As ³⁺ , As ⁵⁺ , and Hg by the aquatic macrophyte <i>Potamogeton pusillus</i> L, and its potential use in the treatment of wastewater. International Journal of Phytoremediation, 2018, 20, 914-921.	1.7	8
706	Trace element contaminant uptake in phytocap vegetation and implications for koala habitat, Lismore, Australia. Environmental Science and Pollution Research, 2018, 25, 24281-24292.	2.7	7
707	Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Transactions, 2018, 47, 11988-12010.	1.6	97
708	Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters, 2018, 16, 1339-1359.	8.3	394
709	Plant Physiological Responses to Nutrient Solution. , 2018, , 415-425.		3
710	Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. Journal of Environmental Management, 2018, 223, 132-139.	3.8	77

#	Article	IF	CITATIONS
711	Heavy metals phytoremediation potential of Hevea brasiliensis in Bentong, Malaysia. AIP Conference Proceedings, 2018, , .	0.3	1
712	Can we use Cd-contaminated macrophytes for biogas production?. Environmental Science and Pollution Research, 2019, 26, 27620-27630.	2.7	9
713	Effects of soil sterilization and metal spiking in plant growth promoting rhizobacteria selection for phytotechnology purposes. Geoderma, 2019, 334, 72-81.	2.3	32
714	Phytoremediation potential of Leersia hexandra Swartz of copper contaminated soil and its enhancement by using agronomic management practices. Ecological Engineering, 2019, 127, 561-566.	1.6	29
715	Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. International Journal of Environmental Science and Technology, 2019, 16, 2091-2100.	1.8	43
716	Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare). Environmental Science and Pollution Research, 2019, 26, 14-23.	2.7	27
717	Threats to Water: Issues and Challenges Related to Ground Water and Drinking Water. , 2019, , 1-19.		4
718	Risk assessment and copper geochemistry of an orchard irrigated with mine water: a case study in the semiarid region of Brazil. Environmental Geochemistry and Health, 2019, 41, 603-615.	1.8	2
719	SR induced micro-XRF for studying the spatial distribution of Pb in plants used for soil phytoremediation. Radiation Physics and Chemistry, 2019, 154, 69-73.	1.4	10
720	Temporal and spatial variations of macrofouling organisms on ecological floating beds in Yundang Lagoon, China. Marine Pollution Bulletin, 2019, 148, 156-167.	2.3	11
721	Microbe-Mediated Removal of Heavy Metals for Sustainable Agricultural Practices. Soil Biology, 2019, , 521-544.	0.6	1
722	Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environment International, 2019, 131, 105015.	4.8	65
723	Environmental Perspectives of Plant-Microbe Nexus for Soil and Water Remediation. , 2019, , 403-419.		7
724	Ecological Risk Assessment of Neodymium and Yttrium on Rare Earth Element Mine Sites in Ganzhou, China. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 565-570.	1.3	21
725	Seasonal variations in heavy metals in water and sediment samples from River Tano in the Bono, Bono East, and Ahafo Regions, Ghana. Environmental Monitoring and Assessment, 2019, 191, 570.	1.3	24
726	Trace element accumulation in Salvinia natans from areas of various land use types. Environmental Science and Pollution Research, 2019, 26, 30242-30251.	2.7	10
727	Phytostabilization of Heavy Metals: Understanding of Principles and Practices. , 2019, , 263-282.		32
728	Removal of chromium from batik wastewater by using kenaf (Hibiscus cannabinus L.) with bed evapotranspiration. IOP Conference Series: Earth and Environmental Science, 2019, 243, 012011.	0.2	2

#	Article	IF	CITATIONS
729	Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicology and Environmental Safety, 2019, 183, 109504.	2.9	75
730	Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environmental Technology and Innovation, 2019, 16, 100462.	3.0	91
731	Phytoremediation of Three Herbaceous Plants to Remove Metals from Urban Runoff. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 336-341.	1.3	5
732	Phytostabilization of Zn and Cd in Mine Soil Using Corn in Combination with Biochars and Manure-Based Compost. Environments - MDPI, 2019, 6, 69.	1.5	21
733	Enhancement of phytoextraction of Pb by compounded activation agent derived from fruit residue. International Journal of Phytoremediation, 2019, 21, 1449-1456.	1.7	14
734	Competition for alfalfa nodulation under metal stress by the metalâ€ŧolerant strain <i>Ochrobactrum cytisi</i> Azn6.2. Annals of Applied Biology, 2019, 175, 184-192.	1.3	14
735	Evaluation of Copper-Contaminated Marginal Land for the Cultivation of Vetiver Grass (Chrysopogon) Tj ETQq0 0 Applied Sciences (Switzerland), 2019, 9, 2685.	0 rgBT /O 1.3	verlock 10 T 3
736	Functionally dissimilar soil organisms improve growth and Pb/Zn uptake by Stachys inflata grown in a calcareous soil highly polluted with mining activities. Journal of Environmental Management, 2019, 247, 780-789.	3.8	18
737	Harvesting Biomass-Based Ni–N Doped Carbonaceous Materials with High Capacitance by Fast Pyrolysis of Ni Enriched Spent Wetland Biomass. Industrial & Engineering Chemistry Research, 2019, 58, 13868-13878.	1.8	17
738	Application of economic plant for remediation of cadmium contaminated soils: Three mulberry (Moms) Tj ETQq1	1 0.78431 4.2	4 rgBT /Ovei
739	Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. Journal of Chemical Technology and Biotechnology, 2020, 95, 940-949.	1.6	37
740	Phytoremediation of Heavy Metal- Contaminated Tailings Soil by Symbiotic Interaction of <i>Cymbopogon Citratus</i> and <i>Solanum Torvum</i> with <i>Bacillus Cereus</i> T1B3. Soil and Sediment Contamination, 2019, 28, 547-568.	1.1	12
741	Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization. Environmental Science and Pollution Research, 2019, 26, 26242-26253.	2.7	16
742	Managing environmental contamination through phytoremediation by invasive plants: A review. Ecological Engineering, 2019, 138, 28-37.	1.6	99
743	Potential use of biochar, compost and iron grit associated with Trifolium repens to stabilize Pb and As on a multi-contaminated technosol. Ecotoxicology and Environmental Safety, 2019, 182, 109432.	2.9	21
744	Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heat- and Metallo-Resistant PGPR. Microorganisms, 2019, 7, 212.	1.6	61
745	Analysis of Bn MTL , a novel metallothioneinâ€like protein in the bast fiber crop Ramie (BoehmeriaÂnivea) Tj ETQ	q0 0 0 rgB 1.0	T <u>/</u> Overlock :

<p>Effect of a dentifrice containing different particle sizes of hydroxyapatite on dentin tubule occlusion and aqueous Cr (VI) sorption</p>. International Journal of Nanomedicine, 2019, Volume 14, 5243-5256. 746

#	Article	IF	CITATIONS
747	Evaluation method for the measuring comprehensive suitability of chelating agents: a study of the temporal dynamics of heavy metal activation. International Journal of Phytoremediation, 2019, 21, 1415-1422.	1.7	8
748	An Integrated Transcriptomic, Proteomic, and Metabolomic Approach to Unravel the Molecular Mechanisms of Metal Stress Tolerance in Plants. , 2019, , 1-28.		6
749	Response Surface Methodology Approach for Analysis of Phytoremediation Process of Pb(II) from Aqueous Solution UsingEchinodorus palaefolius. IOP Conference Series: Materials Science and Engineering, 2019, 546, 022009.	0.3	1
750	Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Journal of General and Applied Microbiology, 2019, 65, 254-264.	0.4	18
751	Plant growth-promoting microorganisms in sustainable agriculture. , 2019, , 1-19.		7
752	Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. Journal of Geochemical Exploration, 2019, 205, 106327.	1.5	21
753	Assessment of Potential Toxic Metals in a Ramsar Wetland, Central Mexico and its Self-Depuration through Eichhornia crassipes. Water (Switzerland), 2019, 11, 1248.	1.2	7
754	Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions. International Journal of Molecular Sciences, 2019, 20, 3215.	1.8	56
755	Jatropha curcas as a potential plant for bauxite phytoremediation. IOP Conference Series: Earth and Environmental Science, 2019, 308, 012006.	0.2	3
756	Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L Ecotoxicology and Environmental Safety, 2019, 185, 109659.	2.9	35
757	A review on phytoremediation as an ecological method for in situ clean up of heavy metals contaminated soils. E3S Web of Conferences, 2019, 112, 03024.	0.2	8
758	Potential of Mentha aquatica L., Eryngium caucasicum Trautv. and Froriepia subpinnata Ledeb. for phytoremediation of Cd-contaminated soil. Revista Brasileira De Botanica, 2019, 42, 399-406.	0.5	7
759	Cadmium Hyperaccumulation and Translocation in Impatiens Glandulifera: From Foe to Friend?. Sustainability, 2019, 11, 5018.	1.6	47
760	Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Environmental Science and Pollution Research, 2019, 26, 34818-34829.	2.7	35
761	Differences in cadmium accumulation between indica and japonica rice cultivars in the reproductive stage. Ecotoxicology and Environmental Safety, 2019, 186, 109795.	2.9	28
762	Removal of Cu and Zn from Aqueous Solutions by Selected Tree Leaves with Phytoremediation Potential. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	4
763	Distribution of Metals and Cell Wall Compounds in Leaf Parts of Three Tree Species Suitable for the Phytomanagement of Heavy Metal–Contaminated Soils. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	7
764	Functions of phosphorus additives on immobilizing heavy metal cadmium in the char through pyrolysis of contaminated biomass. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104721.	2.6	13

#	Article	IF	CITATIONS
765	How Much Does Weather Matter? Effects of Rain and Wind on PM Accumulation by Four Species of Australian Native Trees. Atmosphere, 2019, 10, 633.	1.0	31
766	Movement of the Neonicotinoid Seed Treatment Clothianidin into Groundwater, Aquatic Plants, and Insect Herbivores. Environmental Science & Technology, 2019, 53, 14368-14376.	4.6	18
767	Removal of toxic pollutants from produced water by phytoremediation: Applications and mechanistic study. Journal of Water Process Engineering, 2019, 32, 100990.	2.6	13
768	Functional and structural roles of wiry and sturdy rooted emerged macrophytes root functional traits in the abatement of nutrients and metals. Journal of Environmental Management, 2019, 249, 109330.	3.8	17
769	cDNA Library for Mining Functional Genes in <i>Sedum alfredii</i> Hance Related to Cadmium Tolerance and Characterization of the Roles of a Novel <i>SaCTP2</i> Gene in Enhancing Cadmium Hyperaccumulation. Environmental Science & Technology, 2019, 53, 10926-10940.	4.6	21
770	Uptake of Cd and Pb from Aqueous Solutions Using Selected Tree Leaves Through Phytoremediation. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	8
771	Sorption of Pb(II) and Cu(II) on the colloid of black soil, red soil and fine powder kaolinite: effects of pH, ionic strength and organic matter. Environmental Pollutants and Bioavailability, 2019, 31, 85-93.	1.3	12
772	Exploration of the reduction mechanism of Cr(VI) in anaerobic hydrogen fermenter. Environmental Pollution, 2019, 254, 113042.	3.7	33
773	Manganese accumulation and plant physiology behavior of Camellia oleifera in response to different levels of nitrogen fertilization. Ecotoxicology and Environmental Safety, 2019, 184, 109603.	2.9	40
774	The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Environmental Science and Pollution Research, 2019, 26, 31822-31833.	2.7	16
775	Decadal changes and ecological risk assessment of trace and heavy metal elements in soils of a desert oasis, Linze County, China. Soil Research, 2019, 57, 178.	0.6	3
776	Phytoremediation of Lebanese polluted waters: a review of current initiatives. MATEC Web of Conferences, 2019, 281, 03007.	0.1	2
777	Winter Species Promote Phytoremediation of Soil Contaminated with Protox-Inhibiting Herbicides. Planta Daninha, 0, 37, .	0.5	1
778	Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. Agronomy, 2019, 9, 529.	1.3	32
779	Lead accumulation and soil microbial activity in the rhizosphere of the mining and non-mining ecotypes of Athyrium wardii (Hook.) Makino in adaptation to lead-contaminated soils. Environmental Science and Pollution Research, 2019, 26, 32957-32966.	2.7	2
780	Investigation of Heavy Metal Levels in Blood Samples of Three Cattle Breeds in Turkey. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 739-744.	1.3	7
781	Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes. Environmental Pollution, 2019, 255, 113234.	3.7	28
782	A Meta-Analysis on Phenotypic Variation in Cadmium Accumulation of Rice and Wheat: Implications for Food Cadmium Risk Control. Pedosphere, 2019, 29, 545-553.	2.1	51

# 783	ARTICLE Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon, 2019, 5, e02440.	IF 1.4	CITATIONS 22
784	Changes in microbial community structure and increased metal bioavailability in a metal-contaminated soil and in the rhizosphere of corn (Zea mays). Rhizosphere, 2019, 11, 100169.	1.4	10
785	Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research, 2019, 179, 108792.	3.7	309
786	Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 2019, 250, 109557.	3.8	255
787	Contamination and risk assessment of heavy metals, and uranium of sediments in two watersheds in Abiete-Toko gold district, Southern Cameroon. Heliyon, 2019, 5, e02591.	1.4	55
788	Biological traits of tropical trees suitable for restoration of copper-polluted lands. Ecological Engineering, 2019, 138, 118-125.	1.6	15
789	Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. TrAC - Trends in Analytical Chemistry, 2019, 120, 115654.	5.8	47
790	Seasonal and Scale Effects of Anthropogenic Pressures on Water Quality and Ecological Integrity: A Study in the Sabor River Basin (NE Portugal) Using Partial Least Squares-Path Modeling. Water (Switzerland), 2019, 11, 1941.	1.2	12
791	<i>In situ</i> phytoremediation of copper and cadmium in a co-contaminated soil and its biological and physical effects. RSC Advances, 2019, 9, 993-1003.	1.7	40
792	Cadmium-Induced Anatomical Abnormalities in Plants. , 2019, , 111-139.		6
793	Phytoremediation of Cd-Contaminated Soil and Water. , 2019, , 531-543.		1
794	The Role of Aquatic Macrophytes in Cadmium Phytoremediation of Contaminated Estuarine Environments. , 2019, , 545-575.		1
795	Transgenics for Arsenic and Chromium Phytoremediation. , 2019, , 167-185.		2
796	Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environmental and Experimental Botany, 2019, 159, 23-33.	2.0	67
797	EDTA-assisted phytoextraction of lead and cadmium by <i>Pelargonium cultivars</i> grown on spiked soil. International Journal of Phytoremediation, 2019, 21, 101-110.	1.7	48
798	Comparing storage battery and solar cell in assisting <i>Eucalyptus Globulus</i> to phytoremediate soil polluted by Cd, Pb, and Cu. International Journal of Phytoremediation, 2019, 21, 181-190.	1.7	2
799	Cobalt speciation and phytoavailability in fluvo-aquic soil under treatments of spent mushroom substrate from Pleurotus ostreatus. Environmental Science and Pollution Research, 2019, 26, 7486-7496.	2.7	8
800	Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L.) cultivars. Ecological Engineering, 2019, 129, 38-44.	1.6	41

ARTICLE IF CITATIONS Soil treatment and crop rotation for <i>in situ</i> 801 18 1.7 agricultural soil in gold mining areas. Human and Ecological Risk Assessment (HERA), 2019, 25, 374-392. The response and tolerance mechanisms of lettuce (Lactuca sativa L.) exposed to nickel in a spiked soil 4.2 system. Chemosphere, 2019, 222, 399-406. Effects of Heavy Metals on the Growth of the Edible Cactus <i>Nopalea cochenillifera</i> Grown 803 0.3 4 Under Hydroponic Conditions. Environmental Control in Biology, 2019, 57, 9-13. Effects of Vegetation Pattern and Spontaneous Succession on Remediation of Potential Toxic 804 Metal-Polluted Soil in Mine Dumps. Sustainability, 2019, 11, 397. Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their 805 1.8 20 effects on Eucalyptus globulus growth promotion. Plant and Soil, 2019, 436, 449-461. Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection. Journal of Analytical Atomic Spectrometry, 2019, 34, 1.6 394-400. Capability of the Invasive Tree Prosopis glandulosa Torr. to Remediate Soil Treated with Sewage 807 1.6 18 Sludge. Sustainability, 2019, 11, 2711. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Environmental Science and Pollution 808 2.7 Research, 2019, 26, 20866-20878. Improving Cobalt Phytoextraction by <i>Astragalus Sinicus</i> L. Grown in Co-Contaminated Soils 809 1.1 12 Using Biodegradable Chelators. Soil and Sediment Contamination, 2019, 28, 461-472. Use of heavy metals resistant bacteriaâ€"a strategy for arsenic bioremediation. Applied Microbiology 1.7 and Biotechnology, 2019, 103, 6007-6021. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future 811 2.3855 perspectives. Journal of Molecular Liquids, 2019, 290, 111197. Manganese tolerance and accumulation characteristics of a woody accumulator Camellia oleifera. 2.7 Environmental Science and Pollution Research, 2019, 26, 21329-21339. Cadmium phytoextraction from contaminated paddy soil as influenced by EDTA and Si fertilizer. 813 2.7 7 Environmental Science and Pollution Research, 2019, 26, 23638-23644. Potential of indigenous plant species for phytoremediation of metal(loid)-contaminated soil in the Baoshan mining area, China. Environmental Science and Pollution Research, 2019, 26, 23583-23592. 814 2.7 Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicology and Environmental Safety, 2019, 181, 508-517. 815 2.9 26 Endophytes as Pollutant-Degrading Agents: Current Trends and Perspectives. Reference Series in Phytochemistry, 2019, , 609-630. The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to 817 1.6 13 elevated cadmium concentrations. Journal of Plant Physiology, 2019, 240, 153005. Potential Pollutants in Soil System: Impacts and Remediation., 2019, , 407-422.

ARTICLE IF CITATIONS # Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environmental 819 1.3 21 Monitoring and Assessment, 2019, 191, 465. Floating treatment wetlands as biological buoyant filters for wastewater reclamation. International 1.7 Journal of Phytoremediation, 2019, 21, 1273-1289. Growth, accumulation and uptake of Eichhornia crassipes exposed to high cadmium concentrations. 821 2.7 6 Environmental Science and Pollution Research, 2019, 26, 22826-22834. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI),) Tj ETQq1 1 0.784314 rgBT /Overloo 1.3 679 Assessment, 2019, 191, 419. Transcriptome Analysis to Shed Light on the Molecular Mechanisms of Early Responses to Cadmium in 823 Roots and Leaves of King Grass (Pennisetum americanum A– P. purpureum). International Journal of 1.8 24 Molecular Sciences, 2019, 20, 2532. Nanotechnology for Phytoremediation of Heavy Metals: Mechanisms of Nanomaterial-Mediated Alleviation of Toxic Metals., 2019, , 315-327. 824 Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and 825 2.9 45 biochar/attapulgite amendments. Ecotoxicology and Environmental Safety, 2019, 180, 517-525. Protein Changes in Response to Lead Stress of Lead-Tolerant and Lead-Sensitive Industrial Hemp Using 1.0 SWATH Technology. Genes, 2019, 10, 396. Challenges and Opportunities of Nanotechnology in Plant-Soil Mediated Systems: Beneficial Role, 827 9 Phytotoxicity, and Phytoextraction., 2019, , 379-404. Petroleum-contaminated sites: Decision framework for selecting remediation technologies. Journal 828 6.5 of Hazardous Materials, 2019, 378, 120722. Bioremediation of Mined Waste Land., 2019, , 557-582. 829 5 Phytomanagement of lead-contaminated soils: critical review of new trends and future prospects. 1.8 30 International Journal of Environmental Science and Technology, 2019, 16, 6473-6488. Nitrogen fertilizers promote plant growth and assist in manganese (Mn) accumulation by 831 <i>Polygonum pubescens</i> Blume cultured in Mn tailings soil. International Journal of 1.7 9 Phytoremediation, 2019, 21, 1225-1233. XRD-Thermal Combined Analyses: An Approach to Evaluate the Potential of Phytoremediation, Phytomining, and Biochar Production. International Journal of Environmental Research and Public Health, 2019, 16, 1976. 1.2 Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed 833 1.3 14 heavy metalâ€"contaminated soil. Environmental Monitoring and Assessment, 2019, 191, 434. Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. Environmental Science and Pollution Research, 2019, 26, 23679-23688. 834 54 The performance of biochar-microbe multiple biochemical material on bioremediation and soil 835 3.9 74 micro-ecology in the cadmium aged soil. Science of the Total Environment, 2019, 686, 719-728. Role of phosphorous mining in mobilization and bioaccessibility of heavy metals in soil-plant system: Abbottabad, Pakistan. Arabian Journal of Geosciences, 2019, 12, 1.

#	Article	IF	CITATIONS
837	Bryophyte Communities along a Tropical Urban River Respond to Heavy Metal and Arsenic Pollution. Water (Switzerland), 2019, 11, 813.	1.2	17
838	Comparison of floating-bed wetland and gravel filter amended with limestone and sawdust for sewage treatment. Environmental Science and Pollution Research, 2019, 26, 20400-20410.	2.7	6
839	The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 141, 51-59.	2.8	46
840	Phytoextraction of arsenic forms in selected tree species growing in As-polluted mining sludge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 933-942.	0.9	8
841	New insights into bioremediation strategies for oil-contaminated soil in cold environments. International Biodeterioration and Biodegradation, 2019, 142, 58-72.	1.9	72
842	Phytoextraction capability of Azolla pinnata in the removal of rhodamine B from aqueous solution: artificial neural network and random forests approaches. Applied Water Science, 2019, 9, 1.	2.8	8
843	An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 2019, 110, 402-414.	8.2	132
844	Accumulation and subcellular distribution of heavy metal in <i>Paulownia fortunei</i> cultivated in lead-zinc slag amended with peat. International Journal of Phytoremediation, 2019, 21, 1153-1160.	1.7	14
845	Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology and Innovation, 2019, 15, 100393.	3.0	62
846	Sensitivity of Eucalyptus globulus to red and blue light with different combinations and their influence on its efficacy for contaminated soil phytoremediation. Journal of Environmental Management, 2019, 241, 235-242.	3.8	7
847	Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. International Journal of Phytoremediation, 2019, 21, 1012-1018.	1.7	24
848	Soil lead pollution modifies the structure of arbuscular mycorrhizal fungal communities. Mycorrhiza, 2019, 29, 363-373.	1.3	30
849	The release mechanism of heavy metals from lab-scale vertical flow constructed wetlands treating road runoff. Environmental Science and Pollution Research, 2019, 26, 16588-16595.	2.7	15
850	Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena) Tj ETQq1 1 0.	784314 rg 2.7	BT ₁ Overlock
851	Pre-aeration of the rhizosphere offers potential for phytoremediation of heavy metal-contaminated wetlands. Journal of Hazardous Materials, 2019, 374, 437-446.	6.5	18
852	Balance Between Soil Remediation and Economic Benefits of Eucalyptus globulus. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 887-891.	1.3	2
853	Biotechnological Tools in the Remediation of Cadmium Toxicity. , 2019, , 497-520.		1
854	Comparative Transcriptomic Studies on a Cadmium Hyperaccumulator Viola baoshanensis and Its Non-Tolerant Counterpart V. inconspicua. International Journal of Molecular Sciences, 2019, 20, 1906.	1.8	22

#	Article	IF	CITATIONS
855	Cu2+ regulated sulfonamides resistance gene (sul) via reactive oxygen species induced ArcA in a pathogenic Vibrio splendidus. Annals of Microbiology, 2019, 69, 829-838.	1.1	2
856	Enhancement of heavy metal tolerance and accumulation efficiency by expressing Arabidopsis ATP sulfurylase gene in alfalfa. International Journal of Phytoremediation, 2019, 21, 1112-1121.	1.7	27
857	Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene. International Journal of Phytoremediation, 2019, 21, 683-692.	1.7	15
858	Microbes-Assisted Remediation of Metal Polluted Soils. , 2019, , 223-232.		1
859	Arsenate phytoextraction abilities of one-year-old tree species and its effects on the nutritional element content in plant organs. International Journal of Phytoremediation, 2019, 21, 1019-1031.	1.7	6
860	Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, 2019, 1-14.	0.9	1,250
861	Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma, 2019, 343, 235-246.	2.3	143
862	Early screening of new accumulating versus non-accumulating tree species for the phytomanagement of marginal lands. Ecological Engineering, 2019, 130, 147-156.	1.6	15
863	Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 2019, 76, 17-38.	2.9	490
864	Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomedicine and Pharmacotherapy, 2019, 114, 108802.	2.5	100
865	Compost-assisted phytoremediation of As-polluted soil. Journal of Soils and Sediments, 2019, 19, 2971-2983.	1.5	22
866	Co-precipitation strategy for engineering pH-tolerant and durable ZnO@MgO nanospheres for efficient, room-temperature, chemisorptive removal of Pb(II) from water. Journal of Environmental Chemical Engineering, 2019, 7, 103019.	3.3	16
867	Salicylic acid induces amelioration of chromium toxicity and affects antioxidant enzyme activity in Sorghum bicolor L. International Journal of Phytoremediation, 2019, 21, 293-304.	1.7	29
868	Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Environmental Science and Pollution Research, 2019, 26, 14400-14413.	2.7	40
869	Interaction of Rhodococcus with Metals and Biotechnological Applications. Microbiology Monographs, 2019, , 333-357.	0.3	11
870	Characterization of cadmiumâ€resistant rhizobacteria and their promotion effects on <i>Brassica napus</i> growth and cadmium uptake. Journal of Basic Microbiology, 2019, 59, 579-590.	1.8	31
871	Evaluation of the metal content of farm grown Gracilaria tikvahiae and Saccharina latissima from Long Island Sound and New York Estuaries. Algal Research, 2019, 40, 101484.	2.4	15
872	Visible light assisted photodegradation of thimerosal by high performance ZnFe2O4/poly(o-phenylenediamine) composite. Materials Research Bulletin, 2019, 116, 8-15.	2.7	22

#	Article	IF	Citations
873	The Effects of Different Lead Pollution Levels on Soil Microbial Quantities and Metabolic Function with/without Salix integra Thunb. Planting. Forests, 2019, 10, 77.	0.9	6
874	Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Science of the Total Environment, 2019, 670, 585-594.	3.9	46
875	Use of Pistia stratiotes for phytoremediation of water resources contaminated by clomazone. Chemosphere, 2019, 227, 299-304.	4.2	21
876	Effect of cadmium on young plants of Virola surinamensis. AoB PLANTS, 2019, 11, plz022.	1.2	25
877	Effect of tannery sludge amendments on the activity of soil enzymes and phytoremediation potential of two economically important cultivars of geranium (<i>Pelargonium graveolens</i>). Soil and Sediment Contamination, 2019, 28, 395-410.	1.1	8
878	Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1. Brazilian Journal of Microbiology, 2019, 50, 223-230.	0.8	59
879	Bioaccumulation and translocation of nine heavy metals by <i>Eichhornia crassipes</i> in Nile Delta, Egypt: perspectives for phytoremediation. International Journal of Phytoremediation, 2019, 21, 821-830.	1.7	41
880	Emerging Trends and Tools in Transgenic Plant Technology for Phytoremediation of Toxic Metals and Metalloids. , 2019, , 63-88.		13
881	Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. Reviews of Environmental Contamination and Toxicology, 2019, 249, 71-131.	0.7	103
882	The significance of selected tree species age in their efficiency in elements phytoextraction from wastes mixture. International Journal of Environmental Science and Technology, 2019, 16, 3579-3594.	1.8	7
883	Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes. , 2019, , 25-46.		21
884	Emerging Trends in Transgenic Technology for Phytoremediation of Toxic Metals and Metalloids. , 2019, , 43-62.		5
885	Transgenic Plants for Remediation of Radionuclides. , 2019, , 187-237.		4
886	Chromium and cadmium removal from wastewater using duckweed - <i>Lemna gibba L</i> . and ultrastructural deformation due to metal toxicity. International Journal of Phytoremediation, 2019, 21, 279-286.	1.7	32
887	Trace Element Uptake by Herbaceous Plants from the Soils at a Multiple Trace Element-Contaminated Site. Toxics, 2019, 7, 3.	1.6	22
888	Status, progress and challenges of phytoremediation - An African scenario. Journal of Environmental Management, 2019, 237, 365-378.	3.8	55
889	RNA-sequencing analysis reveals transcriptional changes in the roots of low-cadmium-accumulating winter wheat under cadmium stress. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	16
890	Prospects for Manipulation of Molecular Mechanisms and Transgenic Approaches in Aquatic Macrophytes for Remediation of Toxic Metals and Metalloids in Wastewaters. , 2019, , 395-428.		4

#	Article	IF	CITATIONS
891	Effects of manganese stress on phenology and biomass allocation in Xanthium strumarium from metalliferous and non-metalliferous sites. Ecotoxicology and Environmental Safety, 2019, 172, 308-316.	2.9	12
892	The effects of EDTA on plant growth and manganese (Mn) accumulation in Polygonum pubescens Blume cultured in unexplored soil, mining soil and tailing soil from the Pingle Mn mine, China. Ecotoxicology and Environmental Safety, 2019, 173, 235-242.	2.9	35
893	The performance of vetivers (<i>Chrysopogon zizaniodes</i> and <i>Chrysopogon nemoralis</i>) on heavy metals phytoremediation: laboratory investigation. International Journal of Phytoremediation, 2019, 21, 624-633.	1.7	16
894	TEMPORARY REMOVAL: Recent advances in phytonanotechnology. Comprehensive Analytical Chemistry, 2019, , .	0.7	0
895	Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series: Materials Science and Engineering, 0, 495, 012054.	0.3	16
896	Research on Progress in Combined Remediation Technologies of Heavy Metal Polluted Sediment. International Journal of Environmental Research and Public Health, 2019, 16, 5098.	1.2	30
897	Assessment of remediation potential of flora of the Southern Urals. IOP Conference Series: Earth and Environmental Science, 2019, 341, 012037.	0.2	3
898	Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L. Environmental Science and Pollution Research, 2019, 26, 36688-36697.	2.7	14
899	The Endophytic Fungus Chaetomium cupreum Regulates Expression of Genes Involved in the Tolerance to Metals and Plant Growth Promotion in Eucalyptus globulus Roots. Microorganisms, 2019, 7, 490.	1.6	28
900	Phytoremediation of Heavy Metals and Pesticides Present in Water Using Aquatic Macrophytes. Microorganisms for Sustainability, 2019, , 89-119.	0.4	14
901	Phycoremediation of industrial effluents contaminated soils. , 2019, , 245-258.		10
902	Mining environments. Advances in Chemical Pollution, Environmental Management and Protection, 2019, 4, 157-205.	0.3	8
903	Metals accumulation (Cu, Zn and Pb) in mangrove-associated plants from Blanakan Brackish Water Pond, Subang District, West Java. AIP Conference Proceedings, 2019, , .	0.3	3
904	Soil Heavy Metal(loid) Pollution and Phytoremediation Potential of Native Plants on a Former Gold Mine in Ghana. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	39
905	Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018. International Journal of Environmental Research and Public Health, 2019, 16, 4755.	1.2	30
906	Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L Environmental Science and Pollution Research, 2019, 26, 36055-36062.	2.7	7
907	Arsenic Toxicity Induced Changes in Growth, Photosynthetic Pigments, Antioxidant Machinery, Essential Oil, Menthol and Other Active Constituents of Menthol Mint (<i>Mentha arvensis</i> L.). Journal of Essential Oil-bearing Plants: JEOP, 2019, 22, 1333-1348.	0.7	16
908	Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. Journal of Central South University, 2019, 26, 2987-2997.	1.2	13

#	Article	IF	Citations
909	Gray biotechnology: An overview. AIP Conference Proceedings, 2019, , .	0.3	1
910	A laboratory assay of in situ stabilization of toxic metals in contaminated boreal forest soil using organic and inorganic amendments. Canadian Journal of Soil Science, 0, , 1-11.	0.5	2
911	Phytoremediation of barium-affected flooded soils using single and intercropping cultivation of aquatic macrophytes. Chemosphere, 2019, 214, 10-16.	4.2	20
912	The Sundarban Delta Complex. , 2019, , 145-168.		0
913	Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5Âyears of assisted revegetation. Journal of Soils and Sediments, 2019, 19, 702-715.	1.5	35
914	Isolation and expression analysis of cadmiumâ€induced genes from Cd/Mn hyperaccumulator <i>Phytolacca americana</i> inÂresponse to high Cd exposure. Plant Biology, 2019, 21, 15-24.	1.8	14
915	A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients, 2019, 11, 22.	1.7	76
916	Rhizoremediation of Polluted Sites. , 2019, , 389-407.		6
917	Isolation of the Hg(II)â€volatilizing <i>Bacillus</i> sp. strain DCâ€B2 and its potential to remediate Hg(II)â€contaminated soils. Journal of Chemical Technology and Biotechnology, 2019, 94, 1433-1440.	1.6	14
918	Phytoremediation in flooded environments: Dynamics of barium absorption and translocation by Eleocharis acutangula. Chemosphere, 2019, 219, 836-844.	4.2	9
919	Mathematical estimation of heavy metal accumulations in Helianthus annuus L. with a sigmoid heavy metal uptake model. Chemosphere, 2019, 220, 965-973.	4.2	29
920	Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4. Journal of Hazardous Materials, 2019, 365, 813-819.	6.5	53
921	Organic acid profile and phenolic and sugar content in <i>Salix purpurea × viminalis</i> L.Âcultivated with different spent mushroom substrate and copper additions. Chemistry and Ecology, 2019, 35, 191-203.	0.6	1
922	Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicology and Environmental Safety, 2019, 169, 150-160.	2.9	73
923	Integrated phytoremediation system for uranium-contaminated soils by adding a plant growth promoting bacterial mixture and mowing grass. Journal of Soils and Sediments, 2019, 19, 1799-1808.	1.5	30
924	Abiotic factors determine functional outcomes of microbial inoculation of soils from a metal contaminated brownfield. Ecotoxicology and Environmental Safety, 2019, 168, 450-456.	2.9	9
925	Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments. Journal of Soils and Sediments, 2019, 19, 1788-1798.	1.5	49
926	Cd induced generation of free radical species in Brassica juncea is regulated by supplementation of earthworms in the drilosphere. Science of the Total Environment, 2019, 655, 663-675.	3.9	29

	CITATION	REFORT	
#	Article	IF	CITATIONS
927	Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity. Environmental Science and Pollution Research, 2019, 26, 1781-1790.	2.7	58
928	Site-specific regulation of transcriptional responses to cadmium stress in the hyperaccumulator, Sedum alfredii: based on stem parenchymal and vascular cells. Plant Molecular Biology, 2019, 99, 347-362.	2.0	12
929	Physiological and Biochemical Characteristics of Cinnamomum camphora in Response to Cu- and Cd-Contaminated Soil. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	15
930	Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study. Environmental Pollution, 2019, 246, 980-989.	3.7	15
931	Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology, 2019, 49, 791-824.	6.6	90
932	Comparison of heavy metal accumulation and cadmium phytoextraction rates among ten leading tobacco (<i>Nicotiana tabacum</i> L.) cultivars in China. International Journal of Phytoremediation, 2019, 21, 699-706.	1.7	16
933	Assessment of microbial communities and heavy metals in urban soils of Patna, Bihar (India). Arabian Journal of Geosciences, 2019, 12, 1.	0.6	3
934	Fungal bioâ€ s orption potential of chromium in Norkrans liquid medium by shake flask technique. Journal of Basic Microbiology, 2019, 59, 62-73.	1.8	8
935	Isolation and characterization of high temperature tolerant mutant from the cyanobacterium <i>Anabaena doliolum</i> . Journal of Basic Microbiology, 2019, 59, 314-322.	1.8	2
936	Arsenic content in two-year-old Acer platanoides L. and Tilia cordata Miller seedlings growing under dimethylarsinic acid exposure–model experiment. Environmental Science and Pollution Research, 2019, 26, 6877-6889.	2.7	10
937	Remediation of Uranium-Contaminated Sites by Phytoremediation and Natural Attenuation. , 2019, , 277-300.		14
938	Root morphology and leaf gas exchange in Peltophorum dubium (Spreng.) Taub. (Caesalpinioideae) exposed to copper-induced toxicity. South African Journal of Botany, 2019, 121, 186-192.	1.2	26
939	Thermal desorption for remediation of contaminated soil: A review. Chemosphere, 2019, 221, 841-855.	4.2	161
940	Evaluation of the novel nanoparticle material – CdSe quantum dots on Chlorella pyrenoidosa and Scenedesmus obliquus: Concentration-time-dependent responses. Ecotoxicology and Environmental Safety, 2019, 171, 728-736.	2.9	17
941	Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 2019, 216, 147-156.	4.2	64
942	Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 2019, 216, 449-462.	4.2	308
943	Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors?. Chemosphere, 2019, 216, 463-471.	4.2	71
944	Improvement in fluoride remediation technology using GIS based mapping of fluoride contaminated groundwater and microbe assisted phytoremediation. Ecotoxicology and Environmental Safety, 2019, 168, 164-176.	2.9	23

ITATION P

#	Article	IF	CITATIONS
945	EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Ecotoxicology and Environmental Safety, 2019, 167, 396-403.	2.9	71
946	Using Sarcocornia fruticosa and Saccharomyces cerevisiae to remediate metal contaminated sediments of the Ria Formosa lagoon (SE Portugal). Ecohydrology and Hydrobiology, 2019, 19, 588-597.	1.0	21
947	A novel phytoextraction strategy based on harvesting the dead leaves: Cadmium distribution and chelator regulations among leaves of tall fescue. Science of the Total Environment, 2019, 650, 3041-3047.	3.9	28
948	Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management, 2019, 231, 189-197.	3.8	128
949	Removal of Inorganic and Organic Contaminants from Terrestrial and Aquatic Ecosystems Through Phytoremediation and Biosorption. , 2019, , 45-71.		5
950	Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustainable Cities and Society, 2019, 46, 101381.	5.1	35
951	Sustainable Phytoremediation Strategies for River Water Rejuvenation. , 2019, , 301-311.		4
952	Adaption Mechanisms in Plants Under Heavy Metal Stress Conditions During Phytoremediation. , 2019, , 329-360.		13
953	A Review of Phytoremediation Prospects for Arsenic Contaminated Water and Soil. , 2019, , 243-254.		13
954	Using the method of dynamic factors for assessing the transfer of chemical elements from soil to plants from various perspectives. Environmental Science and Pollution Research, 2019, 26, 34184-34196.	2.7	2
955	Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome. Applied Soil Ecology, 2019, 133, 62-69.	2.1	37
956	Lantana camara—an Ecological Bioindicator Plant for Decontamination of Pb-Impaired Soil Under Organic Waste-Supplemented Scenarios. Pedosphere, 2019, 29, 248-258.	2.1	4
957	Biomass production and nutrient removal efficiency of Suaeda salsa in eutrophic saline water using a floating mat treatment system. Water Science and Technology: Water Supply, 2019, 19, 254-263.	1.0	5
958	Benthic diatom community response to metal contamination from an abandoned Cu mine: Case study of the Gromolo Torrent (Italy). Journal of Environmental Sciences, 2019, 75, 233-246.	3.2	21
959	Progresses in restoration of post-mining landscape in Africa. Journal of Forestry Research, 2019, 30, 381-396.	1.7	99
960	Silicon-mediated genotoxic alterations in Brassica juncea under arsenic stress: A comparative study of biochemical and molecular markers. Pedosphere, 2020, 30, 517-527.	2.1	28
961	Emerging and Ecofriendly Technologies for the Removal of Organic and Inorganic Pollutants from Industrial Wastewaters. , 2020, , 113-126.		8
962	Phycoremediation: Algae as Eco-friendly Tools for the Removal of Heavy Metals from Wastewaters. , 2020, , 53-76.		41

#	Article	IF	CITATIONS
963	Recent Advances in Phytoremediation of Toxic Metals from Contaminated Sites: A Road Map to a Safer Environment. , 2020, , 77-112.		1
964	Isolation and characterization of Pb-resistant plant growth promoting endophytic bacteria and their role in Pb accumulation by fast-growing trees. Environmental Technology (United Kingdom), 2020, 41, 3598-3606.	1.2	9
965	The influence of compost and nitrilotriacetic acid on mercury phytoextraction by <scp><i>Lepidium sativum</i></scp> L. Journal of Chemical Technology and Biotechnology, 2020, 95, 950-958.	1.6	10
966	Phytoextraction technologies for mercury―and chromiumâ€contaminated soil: a review. Journal of Chemical Technology and Biotechnology, 2020, 95, 317-327.	1.6	66
967	Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids. International Journal of Phytoremediation, 2020, 22, 383-391.	1.7	42
968	Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment, 2020, 699, 134330.	3.9	237
969	Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. Journal of Hazardous Materials, 2020, 381, 121208.	6.5	33
970	Pteridophytes in phytoremediation. Environmental Geochemistry and Health, 2020, 42, 2399-2411.	1.8	23
971	A multifunctional rhizobacterial strain with wide application in different ferns facilitates arsenic phytoremediation. Science of the Total Environment, 2020, 712, 134504.	3.9	20
972	Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere, 2020, 242, 125112.	4.2	124
973	Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 2020, 241, 125018.	4.2	65
974	A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festuca arundinacea. Journal of Hazardous Materials, 2020, 383, 121115.	6.5	29
975	Ultrafast remediation of lead-contaminated water applying sphagnum peat moss by dispersive solid-phase extraction. International Journal of Environmental Studies, 2020, 77, 382-397.	0.7	8
976	Electrospun SiO2-MgO hybrid fibers for heavy metal removal: Characterization and adsorption study of Pb(II) and Cu(II). Journal of Hazardous Materials, 2020, 381, 120974.	6.5	85
977	Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands (RSHCWs) and their removal. Chemical Engineering Journal, 2020, 379, 122363.	6.6	54
978	Can Lead and Nickel Interaction Affect Plant Nutrient Uptake Pattern in Spinach (Spinacia oleracea)?. Agricultural Research, 2020, 9, 358-364.	0.9	8
979	Biomass and phytoextraction potential of three ornamental shrub species tested over three years on a large-scale experimental site in Shanghai, China. International Journal of Phytoremediation, 2020, 22, 10-19.	1.7	14
980	Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities. Environmental Chemistry for A Sustainable World, 2020, , 191-222.	0.3	21

#	Article	IF	CITATIONS
981	Recent Advances in Phytoremediation of Soil Contaminated by Industrial Waste: A Road Map to a Safer Environment. , 2020, , 207-221.		7
982	Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management. , 2020, , 1-18.		28
984	Restoration, Construction, and Conservation of Degrading Wetlands: A Step Toward Sustainable Management Practices. , 2020, , 1-16.		2
985	Bioremediation of Heavy Metals: A New Approach to Sustainable Agriculture. , 2020, , 195-226.		9
986	Urban Pond Ecosystems: Preservation and Management Through Phytoremediation. , 2020, , 263-291.		4
987	Nitrogen fertilizer enhances zinc and cadmium uptake by hyperaccumulator Sedum alfredii Hance. Journal of Soils and Sediments, 2020, 20, 320-329.	1.5	25
988	Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 2020, 50, 1085-1115.	6.6	40
989	Phytoremediation potential of Cd and Pb-contaminated soils by <i>Paspalum fasciculatum</i> Willd. ex FlA¼ggé. International Journal of Phytoremediation, 2020, 22, 87-97.	1.7	27
990	Metal accumulation capacity in indigenous Alaska vegetation growing on military training lands. International Journal of Phytoremediation, 2020, 22, 259-266.	1.7	15
991	Phytoremediation of organic pollutants. , 2020, , 81-105.		32
991 992	Phytoremediation of organic pollutants. , 2020, , 81-105. Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760.	4.2	32 18
	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a	4.2 2.1	
992	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760. Vermiremediation of organically contaminated soils: Concepts, current status, and future		18
992 993	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760. Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 2020, 147, 103377. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in	2.1	18 66
992 993 994	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760. Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 2020, 147, 103377. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2020, 171, 103925.	2.1 2.0	18 66 37
992 993 994 995	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760. Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 2020, 147, 103377. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2020, 171, 103925. Application of white mustard and oats in the phytostabilisation of soil contaminated with cadmium with the addition of cellulose and urea. Journal of Soils and Sediments, 2020, 20, 931-942. Do metal contamination and plant species affect microbial abundance and bacterial diversity in the rhizosphere of metallophytes growing in mining areas in a semiarid climate?. Journal of Soils and	2.1 2.0 1.5	18 66 37 18
992 993 994 995 996	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760. Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 2020, 147, 103377. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2020, 171, 103925. Application of white mustard and oats in the phytostabilisation of soil contaminated with cadmium with the addition of cellulose and urea. Journal of Soils and Sediments, 2020, 20, 931-942. Do metal contamination and plant species affect microbial abundance and bacterial diversity in the rhizosphere of metallophytes growing in mining areas in a semiarid climate?. Journal of Soils and Sediments, 2020, 20, 1003-1017.	2.1 2.0 1.5 1.5	18 66 37 18 10

#	Article	IF	CITATIONS
1000	Changes in Proteome and Protein Phosphorylation Reveal the Protective Roles of Exogenous Nitrogen in Alleviating Cadmium Toxicity in Poplar Plants. International Journal of Molecular Sciences, 2020, 21, 278.	1.8	36
1001	Evaluation of Vetiver Grass Uptake Efficiency in Single and Mixed Heavy Metal Contaminated Soil. Environmental Processes, 2020, 7, 207-226.	1.7	13
1002	Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring and Management, 2020, 13, 100283.	1.7	57
1003	Cadmium immobilization in aqueous solution by Aspergillus niger and geological fluorapatite. Environmental Science and Pollution Research, 2020, 27, 7647-7656.	2.7	14
1004	Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes. Environmental Science and Pollution Research, 2020, 27, 8719-8731.	2.7	45
1005	Mercury remediation potential of Brassica juncea (L.) Czern. for clean-up of flyash contaminated sites. Chemosphere, 2020, 248, 125857.	4.2	30
1006	Potential interferences of microplastics in the phytoremediation of Cd and Cu by the salt marsh plant Phragmites australis. Journal of Environmental Chemical Engineering, 2020, 8, 103658.	3.3	23
1007	Detection of Copper Ions by a Simple, Greener and Cost Effective Sensor with GCE Modified with L-Tryptophan. Journal of the Electrochemical Society, 2020, 167, 027506.	1.3	8
1008	Heavy metalÂtransport and fate in soil-plant system: study case of industrial cement vicinity, Tunisia. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	7
1009	Single and combined effect of chelating, reductive agents, and agro-industrial by-product treatments on As, Pb, and Zn mobility in a mine-affected soil over time. Environmental Science and Pollution Research, 2020, 27, 5536-5546.	2.7	7
1010	Screening of trace metal elements for pollution tolerance of freshwater and marine microalgal strains: Overview and perspectives. Algal Research, 2020, 45, 101751.	2.4	21
1011	Crop suitability assessment in remediation of Zn contaminated soil. Chemosphere, 2020, 246, 125706.	4.2	23
1012	Behavior of glutathione as ligand of lead (II). Chemosphere, 2020, 246, 125718.	4.2	7
1013	Bamboo – An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 2020, 246, 125750.	4.2	116
1014	Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum) Tj ETQq0 0 0 rgBT /Over Management, 2020, 257, 109994.	lock 10 Tf 3.8	50 187 Td (136
1015	Tolerance and distribution of cadmium in an ornamental species <i>Althaea rosea</i> Cavan. International Journal of Phytoremediation, 2020, 22, 713-724.	1.7	16
1016	Bioaccumulation and physiological responses of the Coontail, Ceratophyllum demersum exposed to copper, zinc and in combination Ecotoxicology and Environmental Safety, 2020, 189, 110049.	2.9	16
1017	2-Hydroxymelatonin mitigates cadmium stress in cucumis sativus seedlings: Modulation of antioxidant enzymes and polyamines. Chemosphere, 2020, 243, 125308.	4.2	79

#	Article	IF	Citations
1018	Vicia: a green bridge to clean up polluted environments. Applied Microbiology and Biotechnology, 2020, 104, 13-21.	1.7	9
1019	Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community. Environmental Pollution, 2020, 257, 113575.	3.7	63
1020	Rhizoremediation – A promising tool for the removal of soil contaminants: A review. Journal of Environmental Chemical Engineering, 2020, 8, 103543.	3.3	58
1021	On the difficulties of being rigorous in environmental geochemistry studies: some recommendations for designing an impactful paper. Environmental Science and Pollution Research, 2020, 27, 1267-1275.	2.7	16
1022	Cultivar diversity and organ differences of cadmium accumulation in potato (Solanum tuberosum L.) allow the potential for Cd-safe staple food production on contaminated soils. Science of the Total Environment, 2020, 711, 134534.	3.9	19
1023	Exploring the phytoremediation potential of Cynara cardunculus: a trial on an industrial soil highly contaminated by heavy metals. Environmental Science and Pollution Research, 2020, 27, 9075-9084.	2.7	28
1024	Preliminary Characterization of a Post-Industrial Soil for Long-Term Remediation by Phytomanagement: Mesocosm Study of Its Phytotoxicity Before Field Application. International Journal of Environmental Research, 2020, 14, 93-105.	1.1	4
1025	Effect of panchakavya (organic formulation) on phytoremediation of lead and zinc using Zea mays. Chemosphere, 2020, 246, 125810.	4.2	9
1026	Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Journal of Hazardous Materials, 2020, 389, 121873.	6.5	60
1027	The risk and phytotoxicity of metal(loid)s in the sediment, floodplain soil, and hygrophilous grasses along Le'an River. International Journal of Environmental Science and Technology, 2020, 17, 1963-1974.	1.8	7
1028	Bioprospection of indigenous flora grown in copper mining tailing area for phytoremediation of metals. Journal of Environmental Management, 2020, 256, 109953.	3.8	32
1029	Effects of amendments and aided phytostabilization of an energy crop on the metal availability and leaching in mine tailings using a pot test. Environmental Science and Pollution Research, 2020, 27, 2745-2759.	2.7	10
1030	Pyrolysis of various phytoremediation residues for biochars: Chemical forms and environmental risk of Cd in biochar. Bioresource Technology, 2020, 299, 122581.	4.8	41
1031	Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). Journal of Hazardous Materials, 2020, 389, 121849.	6.5	67
1032	The adsorptive removal of lead ions in aquatic media: Performance comparison between advanced functional materials and conventional materials. Critical Reviews in Environmental Science and Technology, 2020, 50, 2441-2483.	6.6	10
1033	Drug design strategies with metal-hydroxyquinoline complexes. Expert Opinion on Drug Discovery, 2020, 15, 383-390.	2.5	22
1034	Monitoring of a long term phytoremediation process of a soil contaminated by heavy metals and hydrocarbons in Tuscany. Environmental Science and Pollution Research, 2020, 27, 424-437.	2.7	9
1035	Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Ecotoxicology and Environmental Safety, 2020, 189, 109997.	2.9	45

#	Article	IF	CITATIONS
1036	Drift pump back test for residence time distribution in engineered treatment system. Bioremediation Journal, 2020, 24, 50-59.	1.0	0
1037	Probabilistic health risk assessment of heavy metals at wastewater discharge points within the Vaal River Basin, South Africa. International Journal of Hygiene and Environmental Health, 2020, 224, 113421.	2.1	18
1038	Differences in root surface adsorption, root uptake, subcellular distribution, and chemical forms of Cd between low- and high-Cd-accumulating wheat cultivars. Environmental Science and Pollution Research, 2020, 27, 1417-1427.	2.7	18
1039	Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environmental Technology and Innovation, 2020, 17, 100559.	3.0	28
1040	Phytoremediation of phenol by Hydrilla verticillata (L.f.) Royle and associated effects on physiological parameters. Journal of Hazardous Materials, 2020, 388, 121569.	6.5	15
1041	The Common Ice Plant (Mesembryanthemum crystallinum L.)–Phytoremediation Potential for Cadmium and Chromate-Contaminated Soils. Plants, 2020, 9, 1230.	1.6	19
1042	Halophytes in India and Their Role in Phytoremediation. , 2020, , 1-21.		1
1043	Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors. Green Energy and Environment, 2021, 6, 929-937.	4.7	27
1044	Heavy metal and radon gas concentration levels in Khasa River in Kirkuk City (NE Iraq) and the associated health effects. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	8
1045	Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: A long-term field study. Environmental Pollution, 2020, 266, 115408.	3.7	42
1046	Effects of electric fields on Cd accumulation and photosynthesis in Zea mays seedlings. Journal of Environmental Management, 2020, 276, 111328.	3.8	8
1047	Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species. Environmental Science & Technology, 2020, 54, 13598-13609.	4.6	44
1048	Effects of plant species and traits on metal treatment and phytoextraction in stormwater bioretention. Journal of Environmental Management, 2020, 276, 111282.	3.8	23
1049	Indexes of Radicle are Sensitive and Effective for Assessing Copper and Zinc Tolerance in Germinating Seeds of Suaeda salsa. Agriculture (Switzerland), 2020, 10, 445.	1.4	14
1050	Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. Agronomy, 2020, 10, 1335.	1.3	18
1051	Effects of Toxic Metal Contamination in the Tri-State Mining District on the Ecological Community and Human Health: A Systematic Review. International Journal of Environmental Research and Public Health, 2020, 17, 6783.	1.2	4
1052	Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus cannabinus L.). Industrial Crops and Products, 2020, 158, 112970.	2.5	45
1053	Assessment of phytoremedial potential of invasive weeds Acalypha indica and Amaranthus viridis. Environmental Sustainability, 2020, 3, 415-425.	1.4	1

# 1054	ARTICLE Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in dieselâ€contaminated soil. Physiologia Plantarum, 2021, 173, 58-66.	IF 2.6	Citations 5
1055	Morphometric characteristics and heavy metal bioaccumulation in edible freshwater gastropod (Filopaludina javanica). IOP Conference Series: Earth and Environmental Science, 2020, 457, 012005.	0.2	1
1056	Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochimica Et Cosmochimica Acta, 2020, 286, 306-323.	1.6	19
1057	Seasonal variations on trace element bioaccumulation and trophic transfer along a freshwater food chain in Argentina. Environmental Science and Pollution Research, 2020, 27, 40664-40678.	2.7	15
1058	Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation. Environmental Science and Pollution Research, 2020, 27, 40187-40204.	2.7	28
1059	Assessment of Nitrogen Fixation by Mungbean Genotypes in Different Soil Textures Using 15N Natural Abundance Method. Journal of Soil Science and Plant Nutrition, 2020, 20, 2230-2240.	1.7	41
1060	Appraisal of tissue compartmentalized metal(loid) uptake by rice. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	4
1061	Phytoremediation of hexavalent chromium by mung bean through bio-accumulation and bio-stabilization in a short duration. International Journal of Environmental Science and Technology, 2021, 18, 3023-3034.	1.8	7
1062	Characterization of the biochemical basis for copper homeostasis and tolerance in Biscutella auriculata L Physiologia Plantarum, 2020, 173, 167-179.	2.6	1
1064	A Review on Practical Application and Potentials of Phytohormone-Producing Plant Growth-Promoting Rhizobacteria for Inducing Heavy Metal Tolerance in Crops. Sustainability, 2020, 12, 9056.	1.6	55
1065	Nanotechnology: A promising tool for Bioremediation. , 2020, , 515-547.		3
1066	Lead phytoextraction by Pelargonium hortorum: Comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Science of the Total Environment, 2020, 748, 141496.	3.9	48
1067	A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 2020, 272, 111057.	3.8	113
1068	Analysis of Benzene Exposure in Gas Station Workers Using Trans,Trans-Muconic Acid. International Journal of Environmental Research and Public Health, 2020, 17, 5295.	1.2	16
1069	Performance of Streptomyces pactum–assisted phytoextraction of Cd and Pb: in view of soil properties, element bioavailability, and phytoextraction indices. Environmental Science and Pollution Research, 2020, 27, 43514-43525.	2.7	8
1070	Deciphering lead tolerance mechanisms in a population of the plant species Biscutella auriculata L. from a mining area: Accumulation strategies and antioxidant defenses. Chemosphere, 2020, 261, 127721.	4.2	17
1071	Phosphorus is more effective than nitrogen in restoring plant communities of heavy metals polluted soils. Environmental Pollution, 2020, 266, 115259.	3.7	34
1072	Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Science of the Total Environment, 2020, 746, 141219.	3.9	26

ARTICLE

IF CITATIONS

Mercury bioaccumulation by Juncus maritimus grown in a Hg contaminated salt marsh (northern) Tj ETQq0 0 0 rgBT. Overlock 10 Tf 50

1074	Nutrient and heavy metal composition in select biotic and abiotic components of Varthur wetlands, Bangalore, India. SN Applied Sciences, 2020, 2, 1.	1.5	7
1075	Phytoremediation of Soil for Metal and Organic Pollutant Removal. Handbook of Environmental Chemistry, 2020, , 45-66.	0.2	7
1076	Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: growth endpoints, metal bioaccumulation, and ultrastructural analysis. Environmental Science and Pollution Research, 2020, 27, 45513-45526.	2.7	10
1077	Remediation of vanadium contaminated soil by alfalfa (Medicago sativa L.) combined with vanadium-resistant bacterial strain. Environmental Technology and Innovation, 2020, 20, 101090.	3.0	29
1078	Potential use of king grass (Pennisetum purpureum Schumach. × Pennisetum glaucum (L.) R.Br.) for phytoextraction of cadmium from fields. Environmental Science and Pollution Research, 2020, 27, 35249-35260.	2.7	14
1079	Single-Component and Multi-Component Metal Abatement in Water Using a Hydrogel Based on Chitosan: Characterization, Isotherm, Kinetic, and Thermodynamic Results. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
1080	Populus alba tolerates and efficiently removes caffeine and zinc excesses using an organ allocation strategy. Plant Growth Regulation, 2020, 92, 597-606.	1.8	5
1081	Comparison of cadmium accumulation in three Solanum species. IOP Conference Series: Earth and Environmental Science, 2020, 446, 032008.	0.2	5
1082	Industrial Cd-Contaminated Soil Bioaugmented with Absidia cylindrospora: Influence on the Mineralogical Speciation of Cadmium. Geomicrobiology Journal, 2020, 37, 890-900.	1.0	3
1083	Cadmium hyperaccumulation as an inexpensive metal armor against disease in Crofton weed. Environmental Pollution, 2020, 267, 115649.	3.7	14
1084	Assessment of different multipurpose tree species for phytoextraction of lead from lead-contaminated soils. Bioremediation Journal, 2020, 24, 215-230.	1.0	6
1085	Monitoring the Efficiency of Rhazya stricta L. Plants in Phytoremediation of Heavy Metal-Contaminated Soil. Plants, 2020, 9, 1057.	1.6	25
1086	Microorganisms and Plants in the Recovery of Metals from the Printed Circuit Boards of Computers and Cell Phones: A Mini Review. Metals, 2020, 10, 1120.	1.0	9
1087	Cadmium accumulation in oilseed rape is promoted by intercropping with faba bean and ryegrass. Ecotoxicology and Environmental Safety, 2020, 205, 111162.	2.9	27
1088	Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. Ecotoxicology and Environmental Safety, 2020, 205, 111298.	2.9	29
1089	Accumulation of Airborne Toxic Elements and Photosynthetic Performance of Lolium multiflorum L. Leaves. Processes, 2020, 8, 1013.	1.3	2
1090	Phytoremediation of arsenic-contaminated soils by arsenic hyperaccumulating plants in selected areas of Enugu State, Southeastern, Nigeria. , 2021, 5, 308-319.		10

#	Article	IF	CITATIONS
1091	The Effectiveness of Arthrospira platensis for the Purification of Copper-Contaminated Water. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	2
1092	Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents – a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 160-180.	5.4	16
1093	Biological Responses to Cadmium Stress in Liverwort Conocephalum conicum (Marchantiales). International Journal of Molecular Sciences, 2020, 21, 6485.	1.8	16
1094	The effects of biochar and AM fungi (Funneliformis mosseae) on bioavailability Cd in a highly contaminated acid soil with different soil phosphorus supplies. Environmental Science and Pollution Research, 2020, 27, 44440-44451.	2.7	2
1095	Role of environmental factors in shaping the soil microbiome. Environmental Science and Pollution Research, 2020, 27, 41225-41247.	2.7	68
1096	Using profitable chrysanthemums for phytoremediation of Cd- and Zn-contaminated soils in the suburb of Shanghai. Journal of Soils and Sediments, 2020, 20, 4011-4022.	1.5	9
1097	Evaluation of phytoremediation effects of chicken manure, urea and lemongrass on remediating a lead contaminated soil in Kabwe, Zambia. South African Journal of Plant and Soil, 2020, 37, 351-360.	0.4	4
1098	Role of Ferrous Sulfate (FeSO4) in Resistance to Cadmium Stress in Two Rice (Oryza sativa L.) Genotypes. Biomolecules, 2020, 10, 1693.	1.8	51
1099	Isolation of Four Microalgal Strains From the Lake Massaciuccoli: Screening of Common Pollutants Tolerance Pattern and Perspectives for Their Use in Biotechnological Applications. Frontiers in Plant Science, 2020, 11, 607651.	1.7	9
1100	Genome-Wide Identification and Expression Analysis of Heavy Metal Stress–Responsive Metallothionein Family Genes in Nicotiana tabacum. Plant Molecular Biology Reporter, 2021, 39, 443-454.	1.0	15
1101	Dendroremediation of Metal and Metalloid Elements with Poplar and Willow in the Floodplain Area Downstream a Mining Hill, Tongling, China. IOP Conference Series: Earth and Environmental Science, 2020, 453, 012026.	0.2	2
1102	Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(loid)-Based Nanostructures. Microorganisms, 2020, 8, 2027.	1.6	31
1103	Identification and functional characterization of ABCC transporters for Cd tolerance and accumulation in Sedum alfredii Hance. Scientific Reports, 2020, 10, 20928.	1.6	14
1104	Effect of slightly cadmium-enriched kenaf straw on the mechanical and thermal properties of cement mortar. European Journal of Environmental and Civil Engineering, 2022, 26, 4093-4111.	1.0	6
1105	Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Scientific African, 2020, 10, e00654.	0.7	20
1106	Removal of selected heavy metals and metalloids from an artisanal gold mining site in Ghana using indigenous plant species. Cogent Environmental Science, 2020, 6, 1840863.	1.6	15
1107	Natural zeolites: prospects for heavy metal polluted soil remediation. IOP Conference Series: Materials Science and Engineering, 2020, 921, 012003.	0.3	1
1108	Phytoextraction with Maize of Soil Contaminated with Copper after Application of Mineral and Organic Amendments. Agronomy, 2020, 10, 1597.	1.3	9

#	Article	IF	CITATIONS
1109	Diagnosis and recommendation integrated system and nutritional balance index reveal Cd-induced nutritional disorders in Panicum maximum assayed for Cd phytoextraction. Bioremediation Journal, 2020, 24, 265-282.	1.0	4
1110	Metals Uptake by Sagittaria montevidensis in Contaminated Riparian Area of Matanza-Riachuelo River (Argentina). SN Applied Sciences, 2020, 2, 1.	1.5	4
1111	Arsenic Fixation in Polluted Soils by Peat Applications. Minerals (Basel, Switzerland), 2020, 10, 968.	0.8	8
1112	Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. Plants, 2020, 9, 1458.	1.6	36
1113	Variation in arsenic accumulation and translocation among 74 main rice cultivars in Jiangsu Province, China. Environmental Science and Pollution Research, 2020, 27, 26249-26261.	2.7	4
1114	Macronutrients and heavy metals contents in the leaves of trees from the devastated lands at Kryvyi Rih District (Central Ukraine). E3S Web of Conferences, 2020, 166, 01011.	0.2	11
1115	Phytoremediation potential of Khaya ivorensis and Cedrela fissilis in copper contaminated soil. Journal of Environmental Management, 2020, 268, 110733.	3.8	23
1116	Effects of winter and summer conditions on Cd fractionation and bioavailability, bacterial communities and Cd phytoextraction potential of Brachiaria decumbens and Panicum maximum grown in a tropical soil. Science of the Total Environment, 2020, 728, 138885.	3.9	14
1117	Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Communications Biology, 2020, 3, 242.	2.0	28
1118	Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. Environmental Sustainability, 2020, 3, 169-178.	1.4	13
1119	Morphological Responses and Gene Expression of Grain Amaranth (Amaranthus spp.) Growing under Cd. Plants, 2020, 9, 572.	1.6	7
1120	Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 2020, 11, 359.	1.7	705
1121	Polycyclic aromatic hydrocarbons (PAHs) dissipation from a contaminated technosol composed of dredged sediments with Miscanthus x giganteus and Trifolium repens L. in mono- and co-culture. Journal of Soils and Sediments, 2020, 20, 2893-2902.	1.5	6
1122	Cadmium Accumulation Potential of Brassica Species Grown in Metal Spiked Loamy Sand Soil. Soil and Sediment Contamination, 2020, 29, 638-649.	1.1	17
1123	Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: a critical review of research progress and prospects. Environmental Reviews, 2020, 28, 294-310.	2.1	28
1124	Feed and Water Management May Influence the Heavy Metal Contamination in Domestic Ducks from Central Java, Indonesia. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	1
1125	High leaf fluctuating asymmetry in two native plants growing in heavy metal-contaminated soil: the case of Metlaoui phosphate mining basin (Gafsa, Tunisia). Environmental Monitoring and Assessment, 2020, 192, 406.	1.3	12
1126	Phyto-extraction of zinc, lead, nickel, and cadmium from zinc leach residue by a halophyte: Salicornia europaea. Ecological Engineering, 2020, 148, 105797.	1.6	12

#	Article	IF	CITATIONS
1128	Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake. Plant and Soil, 2020, 452, 397-412.	1.8	20
1129	Bioaugmentation coupled with phytoextraction for the treatment of Cd and Sr, and reuse opportunities for phosphogypsum rare earth elements. Journal of Hazardous Materials, 2020, 399, 122821.	6.5	9
1130	Spatial variations of heavy metal contamination and associated risks around an unplanned landfill site in India. Environmental Monitoring and Assessment, 2020, 192, 335.	1.3	8
1131	Phytoremediation of Heavy metal Contaminated Wastes from Small-scale Gold Mining Using <i>Pityrogramma calomelanos</i> . E3S Web of Conferences, 2020, 148, 05007.	0.2	4
1132	Chromium, Cadmium, Lead, and Arsenic Concentrations in Water, Vegetables, and Seafood Consumed in a Coastal Area in Northern Vietnam. Environmental Health Insights, 2020, 14, 117863022092141.	0.6	39
1133	Biosorption of Water Pollutants by Fungal Pellets. Water (Switzerland), 2020, 12, 1155.	1.2	53
1134	Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil–plant system. Ecotoxicology and Environmental Safety, 2020, 199, 110654.	2.9	11
1135	Accumulation and transport of antimony and arsenic in terrestrial and aquatic plants in an antimony ore concentration area (south-west China). Environmental Chemistry, 2020, 17, 314.	0.7	9
1136	Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research, 2020, 27, 27563-27581.	2.7	108
1137	Mushroom residue modification enhances phytoremediation potential of Paulownia fortunei to lead-zinc slag. Chemosphere, 2020, 253, 126774.	4.2	24
1138	Study on Remediation of Cd-Contaminated Soil by Thermally Modified Attapulgite Combined with Ryegrass. Soil and Sediment Contamination, 2020, 29, 680-701.	1.1	4
1139	Tolerance mechanism of cadmium in Ceratopteris pteridoides: Translocation and subcellular distribution. Ecotoxicology and Environmental Safety, 2020, 197, 110599.	2.9	19
1140	Assessment of Alternanthera sessilis and Aster philippinensis as excluders in a small-scale Cu–Au processing site at Kias, Benguet, Philippines. Environmental Monitoring and Assessment, 2020, 192, 402.	1.3	1
1141	Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Environmental Science and Pollution Research, 2020, 27, 30367-30377.	2.7	42
1142	Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 2020, 398, 125657.	6.6	235
1143	24-Epibrassinolide combined with heavy metal resistant bacteria enhancing phytoextraction of Amaranthus hypochondriacus L. in Cd-contaminated soil. Journal of Hazardous Materials, 2020, 399, 123031.	6.5	30
1144	Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants, 2020, 9, 454.	2.2	218
1145	Phytoremediation—a holistic approach for remediation of heavy metals and metalloids. , 2020, , 3-16.		9

#	Article	IF	CITATIONS
1146	A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 2020, 400, 123138.	6.5	73
1147	Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials, 2020, 400, 123289.	6.5	176
1148	Chromium(VI) reduction and accumulation on the kaolinite surface in the presence of cationic soil flocculant. Journal of Soils and Sediments, 2020, 20, 3688-3697.	1.5	22
1149	Plant growth promotion and enhanced uptake of Cd by combinatorial application of <i>Bacillus pumilus</i> and EDTA on <i>Zea mays</i> L International Journal of Phytoremediation, 2020, 22, 1372-1384.	1.7	26
1150	Bioremediation Methods for the Recovery of Lead-Contaminated Soils: A Review. Applied Sciences (Switzerland), 2020, 10, 3528.	1.3	24
1151	Citizen science campaign reveals widespread fallout of contaminated dust from mining activities in the central Peruvian Andes. Geology, 2020, 48, 678-682.	2.0	5
1152	Uptake of Potentially Toxic Elements by Four Plant Species Suitable for Phytoremediation of Turin Urban Soils. Applied Sciences (Switzerland), 2020, 10, 3948.	1.3	7
1153	Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant <i>Tamarix chinensis</i> . FEMS Microbiology Letters, 2020, 367, .	0.7	24
1154	Phytoremediation Potential of Crop Plants in Countering Nickel Contamination in Carbonation Lime Coming from the Sugar Industry. Plants, 2020, 9, 580.	1.6	8
1155	Development of sustainable extraction method for long-lived radioisotopes, 133Ba and 134Cs using a potential bio-sorbent. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325, 587-593.	0.7	8
1156	Phyto-extraction of zinc, lead, nickel, and cadmium from a zinc leach residue. Journal of Cleaner Production, 2020, 266, 121539.	4.6	14
1157	Remediation of Cobalt-Contaminated Soil Using Manure, Clay, Charcoal, Zeolite, Calcium Oxide, Main Crop (Hordeum vulgare L.), and After-Crop (Synapis alba L.). Minerals (Basel, Switzerland), 2020, 10, 429.	0.8	21
1158	Water-soluble chitosan enhances phytoremediation efficiency of cadmium by Hylotelephium spectabile in contaminated soils. Carbohydrate Polymers, 2020, 246, 116559.	5.1	26
1159	Differential Growth and Metal Accumulation Response of <i>Brachiaria Mutica</i> and <i>Leptochloa Fusca</i> on Cadmium and Lead Contaminated Soil. Soil and Sediment Contamination, 2020, 29, 844-859.	1.1	14
1160	Localization of mercury and gold in cassava (Manihot esculenta Crantz). Environmental Science and Pollution Research, 2020, 27, 18498-18509.	2.7	10
1161	Phytoextraction of cobalt (Co)-contaminated soils by sweet alyssum (Lobularia maritima (L.) Desv.) is enhanced by biodegradable chelating agents. Journal of Soils and Sediments, 2020, 20, 1931-1942.	1.5	12
1162	Potential carcinogenic and non-carcinogenic health hazards of metal(loid)s in food grains. Environmental Science and Pollution Research, 2020, 27, 17032-17042.	2.7	15
1163	Phytostabilization of Cd and Pb in Highly Polluted Farmland Soils Using Ramie and Amendments. International Journal of Environmental Research and Public Health, 2020, 17, 1661.	1.2	34

ARTICLE IF CITATIONS Efficacy of fenugreek plant for ascorbic acid assisted phytoextraction of copper (Cu); A detailed study 4.2 22 1164 of Cu induced morpho-physiological and biochemical alterations. Chemosphere, 2020, 251, 126424. Plant–soil interactions as a restoration tool. , 2020, , 689-730. Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, 1166 0.4 17 Mechanisms, Challenges, and Future Perspectives. Microorganisms for Sustainability, 2020, , 161-189. Microrobots Derived from Variety Plant Pollen Grains for Efficient Environmental Clean Up and as an 64 Antiâ€Cancer Drug Carrier. Advanced Functional Materials, 2020, 30, 2000112. A new approach to evaluate toxic metal transport in a catchment. Environmental Monitoring and 1168 1.35 Assessment, 2020, 192, 234. Genome-Wide Identification of Metal Tolerance Protein Genes in Populus trichocarpa and Their Roles in Response to Various Heavy Metal Stresses. International Journal of Molecular Sciences, 2020, 21, 1.8 46 1680. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. 1170 1.6 217 Sustainability, 2020, 12, 1927. Hydrogen sulfide mediated alleviation of cadmium toxicity in <i>Phlox paniculata</i> L. and 1171 establishment of a comprehensive evaluation model for corresponding strategy. International 1.7 14 Journal of Phytoremediation, 2020, 22, 1085-1095. Variations in the Phytoremediation Efficiency of Metal-polluted Water with Salvinia biloba: Prospects 1172 1.2 22 and Toxicological Impacts. Water (Switzerland), 2020, 12, 1737. Constructed pine log piles facilitate plant establishment in mining drylands. Journal of 3.8 Environmental Management, 2020, 271, 111015. A High Performance Electrochemical Sensor for Pb²⁺ Ions Based on Carbon Nanotubes 1174 8 0.7Functionalized CoMn₂O₄ Nanocomposite. ChemistrySelect, 2020, 5, 7909-7918. Role of Biotechnology in Pesticide Remediation., 2020, , 291-314. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted 1176 3.9 19 phytoremediation?. Science of the Total Environment, 2020, 739, 139850. Genomic and biotechnological insights on stress-linked polyphosphate production induced by chromium(III) in Ochrobactrum anthropi DE2010. World Journal of Microbiology and Biotechnology, 1.7 2020, 36, 97 Accumulation of Heavy Metals and As in the Fern Blechnum orientale L. from Guangdong Province, 1178 1.1 1 Southern China. Water, Air, and Soil Pollution, 2020, 231, 1. Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth 1179 4.2 53 promoting (PGP) Bacillus speciés. Chemosphere, 2020, 260, 127614. The application of Calamagrostis epigejos (L.) Roth. in phytoremediation technologies. , 2020, , 259-282. 1180 3 The ecophysiology, genetics, adaptive significance, and biotechnology of nickel hyperaccumulation in 1181 plants. , 2020, , 327-347.

#	Article	IF	CITATIONS
1182	Arbuscular mycorrhiza and Aspergillus terreus inoculation along with compost amendment enhance the phytoremediation of Cr-rich technosol by Solanum lycopersicum under field conditions. Ecotoxicology and Environmental Safety, 2020, 201, 110869.	2.9	19
1183	Endophytic microbe approaches in bioremediation of organic pollutants. , 2020, , 157-174.		8
1184	Improving zinc phytoremediation characteristics in <i>Salix pedicellata</i> with a new acclimation approach. International Journal of Phytoremediation, 2020, 22, 745-754.	1.7	2
1185	Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China. Sustainability, 2020, 12, 721.	1.6	6
1186	Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. Environmental Monitoring and Assessment, 2020, 192, 202.	1.3	24
1187	Deepening the knowledge on the removal of Cr(VI) by L. minuta Kunth: removal efficiency and mechanisms, lipid signaling pathways, antioxidant response, and toxic effects. Environmental Science and Pollution Research, 2020, 27, 14567-14580.	2.7	4
1188	Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere, 2020, 250, 126158.	4.2	33
1189	Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: A mini-review. Materials Today: Proceedings, 2020, 30, 283-288.	0.9	20
1190	Rhizoremediation of Cu(II) ions from contaminated soil using plant growth promoting bacteria: an outlook on pyrolysis conditions on plant residues for methylene orange dye biosorption. Bioengineered, 2020, 11, 175-187.	1.4	20
1191	The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. Environmental Science and Pollution Research, 2020, 27, 15515-15536.	2.7	43
1192	RBOH expression and ROS metabolism in Citrullus colocynthis under cadmium stress. Revista Brasileira De Botanica, 2020, 43, 35-43.	0.5	4
1193	Ethanol-blended petroleum fuels: implications of co-solvency for phytotechnologies. RSC Advances, 2020, 10, 6473-6481.	1.7	9
1194	Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Science of the Total Environment, 2020, 721, 137581.	3.9	88
1195	Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn,) Tj ETQq1 1	0,784314 2.7	l rgBT /Ονει ≇2
1196	Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napusÂL.). BMC Genomics, 2020, 21, 139.	1.2	14
1197	Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant and Soil, 2020, 448, 439-453.	1.8	40
1198	The impact of seasonal waterlogging on the depth-wise distribution of major and trace metals in the soils of the eastern Ganges basin. Catena, 2020, 189, 104510.	2.2	13
1199	Toxic metal decontamination by phytoremediation approach: Concept, challenges, opportunities and future perspectives. Environmental Technology and Innovation, 2020, 18, 100672.	3.0	75

#	Article	IF	CITATIONS
1200	The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environmental Technology and Innovation, 2020, 17, 100602.	3.0	47
1201	Pulmonary oxidative stress in wild bats exposed to coal dust: A model to evaluate the impact of coal mining on health. Ecotoxicology and Environmental Safety, 2020, 191, 110211.	2.9	13
1202	Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: a novel approach. SN Applied Sciences, 2020, 2, 1.	1.5	41
1203	Nanotechnology for soil remediation: Revitalizing the tarnished resource. , 2020, , 345-370.		20
1204	The Suitability of Short Rotation Coppice Crops for Phytoremediation of Urban Soils. Applied Sciences (Switzerland), 2020, 10, 307.	1.3	21
1205	Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health, 2020, 17, 679.	1.2	685
1206	Salinity influences Cd accumulation and distribution characteristics in two contrasting halophytes, Suaeda glauca and Limonium aureum. Ecotoxicology and Environmental Safety, 2020, 191, 110230.	2.9	26
1207	Heavy metal bioaccumulation and morphological changes in Vachellia campechiana (Fabaceae) reveal its potential for phytoextraction of Cr, Cu, and Pb in mine tailings. Environmental Science and Pollution Research, 2020, 27, 11260-11276.	2.7	13
1208	Comparative Activation Process of Pb, Cd and Tl Using Chelating Agents from Contaminated Red Soils. International Journal of Environmental Research and Public Health, 2020, 17, 497.	1.2	18
1209	Cleaner strategies on the effective elimination of toxic chromium from wastewater using coupled electrochemical/biological systems. Environmental Progress and Sustainable Energy, 2020, 39, e13399.	1.3	11
1210	Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	200
1211	Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environmental Science and Pollution Research, 2020, 27, 11213-11226.	2.7	42
1212	Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure. Chemosphere, 2020, 249, 126121.	4.2	44
1213	Modern environmental technologies of healthy soils contaminated by heavy metals and radionuclides. E3S Web of Conferences, 2020, 166, 01007.	0.2	9
1214	Application of integrated local plant species and vesicular basalt rock for the treatment of chromium in tannery wastewater in a horizontal subsurface flow wetland system. Journal of Environmental Chemical Engineering, 2020, 8, 103940.	3.3	16
1215	Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. International Journal of Phytoremediation, 2020, 22, 1195-1203.	1.7	18
1216	Bioremediation: A Low-Cost and Clean-Green Technology for Environmental Management. , 2020, , 153-171.		4
1217	AM fungi increase uptake of Cd and BDE-209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil. Ecotoxicology and Environmental Safety, 2020, 195, 110485.	2.9	20

#	Article	IF	CITATIONS
1218	Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China. Environmental Science and Pollution Research, 2020, 27, 19933-19945.	2.7	20
1219	Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environmental Chemistry Letters, 2020, 18, 1085-1112.	8.3	124
1220	Growth and elemental uptake of Rhodes grass (Chloris gayana) grown in a mine waste-contaminated soil amended with fly ash-enriched vermicompost. Environmental Science and Pollution Research, 2020, 27, 19461-19472.	2.7	6
1221	Transcriptome analysis revealed cadmium accumulation mechanisms in hyperaccumulator Siegesbeckia orientalis L Environmental Science and Pollution Research, 2020, 27, 18853-18865.	2.7	12
1222	Heavy metal mobility in surface water and soil, climate change, and soil interactions. , 2020, , 51-88.		13
1223	Tolerance evaluation and morphophysiological responses of Astronium graveolens, a native brazilian Cerrado, to addition of lead in soil Ecotoxicology and Environmental Safety, 2020, 195, 110524.	2.9	6
1224	Microbial strategies in non-target invasive Spartina densiflora for heavy metal clean up in polluted saltmarshes. Estuarine, Coastal and Shelf Science, 2020, 238, 106730.	0.9	6
1225	Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy. Environmental Pollution, 2020, 263, 114419.	3.7	14
1226	Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater. Applied Sciences (Switzerland), 2020, 10, 2712.	1.3	57
1227	Effect of Citric Acid on Growth, Ecophysiology, Chloroplast Ultrastructure, and Phytoremediation Potential of Jute (Corchorus capsularis L.) Seedlings Exposed to Copper Stress. Biomolecules, 2020, 10, 592.	1.8	85
1228	Salinity Improves Zinc Resistance in Kosteletzkya pentacarpos in Relation to a Modification in Mucilage and Polysaccharides Composition. International Journal of Environmental Research, 2020, 14, 323-333.	1.1	10
1229	Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of <i>Calendula officinalis</i> L. in a cadmium-spiked calcareous soil. International Journal of Phytoremediation, 2020, 22, 1204-1214.	1.7	30
1230	A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. Scientific World Journal, The, 2020, 2020, 1-11.	0.8	87
1231	Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources. Sustainability, 2020, 12, 2147.	1.6	13
1232	Effects of silver(I) toxicity on microstructure, biochemical activities, and genic material of Lemna minor L. with special reference to application of bioindicator. Environmental Science and Pollution Research, 2020, 27, 22735-22748.	2.7	9
1233	Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	29
1234	Nanomaterials and soil health for agricultural crop production: current status and future prospects. , 2020, , 289-312.		2
1235	Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). Ecotoxicology and Environmental Safety, 2020, 197, 110613.	2.9	28

#	Article	IF	Citations
1236	Hydrogen gas production during the synthesis of the iron nanoparticles by using Pinus brutia, an accumulator plant. International Journal of Hydrogen Energy, 2020, 45, 26472-26489.	3.8	4
1237	An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. Journal of Hazardous Materials, 2020, 396, 122682.	6.5	105
1238	Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397, 122720.	6.5	127
1239	Cadmium, copper, and chromium levels in maize plants and soil fertilized with sewage sludge. Australian Journal of Crop Science, 2020, , 244-249.	0.1	3
1240	Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 704-750.	6.6	43
1241	Growth and Physiology of Maize (Zea mays L.) in a Nickel-Contaminated Soil and Phytoremediation Efficiency Using EDTA. Journal of Plant Growth Regulation, 2021, 40, 774-786.	2.8	16
1242	Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. Environmental Geochemistry and Health, 2021, 43, 1491-1505.	1.8	14
1243	Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 2021, 12, 355-365.	3.5	129
1244	Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 2021, 43, 1629-1654.	1.8	32
1245	The current state of heavy metal pollution in Pacific Island Countries: a review. Applied Spectroscopy Reviews, 2021, 56, 27-51.	3.4	28
1246	The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environmental Geochemistry and Health, 2021, 43, 1477-1489.	1.8	15
1247	Modulation of Cardiopulmonary Toxicity and Oxidative Stress by Phenolic-Rich Fraction of Croton zambiscus Leaves in Rat Exposed to Chronic Mixture of Environmental Toxicants. Cardiovascular Toxicology, 2021, 21, 272-285.	1.1	0
1248	Role of redox system in enhancement of phytoremediation capacity in plants. , 2021, , 165-193.		0
1249	Plant growth promoting rhizobacteria in phytoremediation of environmental contaminants: challenges and future prospects. , 2021, , 191-218.		1
1250	Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity?. Environmental Pollution, 2021, 272, 115971.	3.7	20
1251	Lindane uptake and translocation by rice seedlings (Oryza sativa L.) under different culture patterns and triggered biomass re-allocation. Chemosphere, 2021, 262, 127831.	4.2	8
1252	Effects of cadmium toxicity on the physiology and growth of a halophytic plant, <i>Tamarix usneoides</i> (E. Mey. ex Bunge). International Journal of Phytoremediation, 2021, 23, 130-138.	1.7	9
1253	Selective removal of selenium by phytoremediation from post/mining coal wastes: practicality and implications. International Journal of Mining, Reclamation and Environment, 2021, 35, 69-77.	1.2	7

#	Article	IF	CITATIONS
1254	Phytoremediation using genetically engineered plants to remove metals: a review. Environmental Chemistry Letters, 2021, 19, 669-698.	8.3	55
1255	Effect of planting density of the macrophyte consortium of Typha domingensis and Eleocharis acutangula on phytoremediation of barium from a flooded contaminated soil. Chemosphere, 2021, 262, 127869.	4.2	1
1256	Evaluation of zeolite, nanomagnetite, and nanomagnetite-zeolite composite materials as arsenic (V) adsorbents in hydroponic tomato cultures. Science of the Total Environment, 2021, 751, 141623.	3.9	13
1257	Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) Tj ETQq1 1 ().784314 ı 4.2	rg₿Ţ /Overloo
1258	Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. Ecotoxicology and Environmental Safety, 2021, 207, 111301.	2.9	44
1259	Investigation of Vetiver Grass Capability in Phytoremediation of Contaminated Soils with Heavy Metals (Pb, Cd, Mn, and Ni). Soil and Sediment Contamination, 2021, 30, 163-186.	1.1	17
1260	Cadmium level and soil type played a selective role in the endophytic bacterial community of hyperaccumulator Sedum alfredii Hance. Chemosphere, 2021, 263, 127986.	4.2	10
1261	A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. Journal of Hazardous Materials, 2021, 405, 123832.	6.5	74
1262	Facile synthesis of halloysite-bentonite clay/magnesite nanocomposite and its application for the removal of chromium ions: Adsorption and precipitation process. Materials Today: Proceedings, 2021, 38, 1088-1101.	0.9	13
1263	Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. Journal of Hazardous Materials, 2021, 405, 124200.	6.5	111
1264	Harnessing <i>Pisum sativum–Glomus mosseae</i> symbiosis for phytoremediation of soil contaminated with lead, cadmium, and arsenic. International Journal of Phytoremediation, 2021, 23, 279-290.	1.7	19
1265	Increasement of Cd adsorption capacity of rice stubble from being alive until death in a modified rice-fish system. Ecotoxicology and Environmental Safety, 2021, 208, 111441.	2.9	5
1266	Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum. Environmental Science and Pollution Research, 2021, 28, 13955-13969.	2.7	29
1267	Microbial linkages in the heavy metal remediation. , 2021, , 367-395.		0
1268	Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 2021, 265, 129071.	4.2	107
1269	Impacts of bamboo biochar on the phytoremediation potential of <i>Salix psammophila</i> grown in multi-metals contaminated soil. International Journal of Phytoremediation, 2021, 23, 387-399.	1.7	30
1270	A brief review on biochemical oxygen demand (BOD) treatment methods for palm oil mill effluents (POME). Environmental Technology and Innovation, 2021, 21, 101258.	3.0	17
1271	Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicology and Environmental Safety, 2021, 207, 111500.	2.9	21

#	Article	IF	CITATIONS
1272	Potential of Eucalyptus globulus for the phytoremediation of metals in a Moroccan iron mine soil—a case study. Environmental Science and Pollution Research, 2021, 28, 15782-15793.	2.7	8
1273	Phytoremediation of chromium and manganese by <i>Ipomoea aquatica</i> Forssk. from aqueous medium containing chromiumâ€manganese mixtures in microcosms and mesocosms. Water and Environment Journal, 2021, 35, 884-891.	1.0	13
1274	Metal(loid) accumulation levels in submerged macrophytes and epiphytic biofilms and correlations with metal(loid) levels in the surrounding water and sediments. Science of the Total Environment, 2021, 758, 143878.	3.9	11
1275	Phytoremediation of distillery effluent: current progress, challenges, and future opportunities. , 2021, , 349-374.		6
1276	A preliminary study on heavy metal pollutants chrome (Cr), cadmium (Cd), and lead (Pb) in sediments and beach morning glory vegetation (Ipomoea pes-caprae) from Dasun Estuary, Rembang, Indonesia. Marine Pollution Bulletin, 2021, 162, 111819.	2.3	20
1277	Strategies to address coal mine-created environmental issues and their feasibility study on northeastern coalfields of Assam, India: a review. Environment, Development and Sustainability, 2021, 23, 9667-9709.	2.7	8
1278	Zn phytoextraction and recycling of alfalfa biomass as potential Zn-biofortified feed crop. Science of the Total Environment, 2021, 760, 143424.	3.9	13
1279	Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus cv Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver). Chemosphere, 2021, 265, 129086.	4.2	25
1280	Rhizoextraction Potential of Convolvulus tricolor Hairy Roots for Cr6+, Ni2+, and Pb2+ Removal from Aqueous Solutions. Applied Biochemistry and Biotechnology, 2021, 193, 1215-1230.	1.4	6
1281	Opportunities and challenges of utilizing energy crops in phytoremediation of environmental pollutants: A review. , 2021, , 383-396.		34
1282	Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. Journal of Environmental Management, 2021, 279, 111623.	3.8	117
1283	In situ phytoremediation of heavy metal–contaminated soil and groundwater: a green inventive approach. Environmental Science and Pollution Research, 2021, 28, 4104-4124.	2.7	41
1284	Dynamic zinc and potassium release from a burning hyperaccumulator pellet and their interactions with inhibitive additives. Fuel, 2021, 286, 119365.	3.4	9
1285	Application of microalgae in industrial effluent treatment, contaminants removal, and biodiesel production: Opportunities, challenges, and future prospects. , 2021, , 481-517.		6
1286	Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environmental Safety, 2021, 208, 111627.	2.9	154
1287	Possible sources of rare earth elements near different classes of road in Poland and their phytoextraction to herbaceous plant species. Environmental Research, 2021, 193, 110580.	3.7	14
1288	Phytoremediation of radionuclides in soil, sediments and water. Journal of Hazardous Materials, 2021, 407, 124771.	6.5	53
1289	Split-root investigation of the physiological response to heterogeneous elevated Zn exposure in poplar and willow. Environmental and Experimental Botany, 2021, 183, 104347.	2.0	9

#	Article	IF	CITATIONS
1290	Enhanced anaerobic digestion with the addition of chelator-nickel complexes to improve nickel bioavailability. Science of the Total Environment, 2021, 759, 143458.	3.9	12
1291	Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environmental Advances, 2021, 3, 100028.	2.2	32
1292	Synthesis, characterization, and lead (II) sorption performance of a new magnetic separable composite: MnFe2O4@wild plants-derived biochar. Journal of Environmental Chemical Engineering, 2021, 9, 104567.	3.3	18
1293	Concept and types of bioremediation. , 2021, , 3-8.		9
1294	Phytomanagement of As-contaminated matrix: Physiological and molecular basis. , 2021, , 61-79.		23
1295	Recent advances in phytoremediation of heavy metals-contaminated soils: a review. , 2021, , 23-41.		1
1296	Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environmental Geochemistry and Health, 2021, 43, 601-620.	1.8	24
1297	Assessment of PAH degradation potential of native species from a coking plant through identifying of the beneficial bacterial community within the rhizosphere soil. Chemosphere, 2021, 264, 128513.	4.2	25
1298	The effects and health risk assessment of cauliflower co-cropping with Sedum alfredii in cadmium contaminated vegetable field. Environmental Pollution, 2021, 268, 115869.	3.7	23
1299	Phytoremediation potential of Echinochloa crus galli and Hibiscus cannabinus in the stabilization of municipal wastewater sludge. International Journal of Environmental Science and Technology, 2021, 18, 2137-2144.	1.8	3
1300	Mass balance of metals during the phytoremediation process using Noccaea caerulescens: a pot study. Environmental Science and Pollution Research, 2021, 28, 8476-8485.	2.7	11
1301	Closing the loop in a constructed wetland for the improvement of metal removal: the use of Phragmites australis biomass harvested from the system as biosorbent. Environmental Science and Pollution Research, 2021, 28, 11444-11453.	2.7	10
1302	Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere, 2021, 268, 128855.	4.2	120
1303	Probiotics: a Promising Generation of Heavy Metal Detoxification. Biological Trace Element Research, 2021, 199, 2406-2413.	1.9	42
1304	Phytoremediation of soil contaminated with nickel, cadmium and cobalt. International Journal of Phytoremediation, 2021, 23, 252-262.	1.7	22
1305	The performance of mycorrhizae, rhizobacteria, and earthworms to improve Bermuda grass (Cynodon) Tj ETQq1 1 Research, 2021, 28, 3019-3034.	0.784314 2.7	l rgBT /Ov∈ 13
1306	Accumulation of Cd by three forage mulberry (Morus atropurpurea Roxb.) cultivars in heavy metal–polluted farmland: a field experiment. Environmental Science and Pollution Research, 2021, 28, 3354-3360.	2.7	7
1307	Evaluation of Cynara cardunculus L. and municipal solid waste compost for aided phytoremediation of multi potentially toxic element–contaminated soils. Environmental Science and Pollution Research, 2021, 28, 3253-3265.	2.7	14

#	Article	IF	Citations
1308	Heavy metal accumulation and distribution in Phragmites australis seedlings tissues originating from natural and urban catchment. Environmental Science and Pollution Research, 2021, 28, 14299-14309.	2.7	10
1309	The beneficial applications of humic substances in agriculture and soil environments. , 2021, , 131-160.		5
1310	Microbial remediation of heavy metals from sludge of wastewater treatment plants. , 2021, , 559-569.		0
1311	Sustainable remediation of heavy metals. , 2021, , 571-610.		0
1312	The Growth of Triticale (Triticosecale wittm.) in Multi-Metal Contaminated Soils by Use of Zeolite: A Pilot Plant Study. Current Environmental Management, 2021, 7, 55-66.	0.7	2
1313	Application of plant–microbe systems in bioremediation of metalloid-contaminated soils. , 2021, , 227-240.		0
1314	Role of metal-binding proteins and peptides in bioremediation of toxic metals. , 2021, , 437-444.		1
1315	Green Manure Species for Phytoremediation of Soil With Tebuthiuron and Vinasse. Frontiers in Bioengineering and Biotechnology, 2020, 8, 613642.	2.0	9
1316	New Approaches on Phytoremediation of Soil Cultivated with Sugarcane with Herbicide Residues and Fertigation. , 2021, , 272-282.		1
1317	Molecular basis of plant-microbe interaction in remediating organic pollutants. , 2021, , 603-623.		2
1318	Bioremediation—the natural solution. , 2021, , 11-40.		5
1319	Co-planting of Quercus nuttallii, Quercus pagoda with Solanum nigrum enhanced their phytoremediation potential to multi-metal contaminated soil. International Journal of Phytoremediation, 2021, 23, 1104-1112.	1.7	4
1320	Heavy Metal Remediation in Wetlands. , 2021, , 2423-2449.		0
1321	Halophytes. , 2021, , 2303-2318.		0
1322	Adaptation of bacterial communities and plant strategies for amelioration and eco-restoration of an organometallic industrial waste polluted site. , 2021, , 45-90.		2
1323	Root Characteristics and Metal Uptake of Maize (Zea mays L.) under Extreme Soil Contamination. Agronomy, 2021, 11, 178.	1.3	19
1324	Industrially scalable Chitosan/Nylon-6 (CS/N) nanofiber-based reusable adsorbent for efficient removal of heavy metal from water. Polymer, 2021, 213, 123333.	1.8	14
1325	Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environmental Pollutants and Bioavailability, 2021, 33, 55-65.	1.3	42

P

#	Article	IF	CITATIONS
1326	Microbial Indicators of Bioremediation: Potential and Success. Microorganisms for Sustainability, 2021, , 85-100.	0.4	0
1327	Determination of morphological and physiological changes of ornamental cabbage (Brassica oleracea) Tj ETQq1 1 and Social Sciences, 0, , 29-38.	0.784314 0.0	rgBT /Ove o
1328	Biomonitoring and Bioremediation of a Transboundary River in India: Functional Roles of Benthic Mollusks and Fungi. Environmental Challenges and Solutions, 2021, , 611-661.	0.5	8
1329	Visualization and Quantification of the Impact of Humic Acid on Zinc Accumulation in Aquatic Plants Using a Low-Molecular-Weight Fluorescent Probe. Journal of Water and Environment Technology, 2021, 19, 49-63.	0.3	0
1330	Microbial Enzymes and Their Role in Phytoremediation. , 2021, , 625-650.		3
1331	Contamination of water resources with potentially toxic elements and human health risk assessment: Part 1., 2021, , 123-141.		1
1332	Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology, 2021, 3, 84-98.	1.9	112
1333	Halophytes in India and Their Role in Phytoremediation. , 2021, , 2345-2365.		Ο
1334	Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered, 2021, 12, 7297-7313.	1.4	42
1335	Bioremediation of Heavy Metals Using Salvina Molesta – A Freshwater Aquatic Weed. , 2021, , 337-353.		0
1336	Determining the characteristics and potential of plantbased biochars to reduce copper uptake in maize. Bragantia, 0, 80, .	1.3	3
1337	Mapping leaf metal content over industrial brownfields using airborne hyperspectral imaging and optimized vegetation indices. Scientific Reports, 2021, 11, 2.	1.6	12
1338	Heavy Metal Contamination Degree of Soils Surrounding the Rehabilitated Dump of Oued Smar, Algeria. Environmental Science and Engineering, 2021, , 1255-1259.	0.1	0
1339	Applying a novel systems approach to address systemic environmental injustices. Elementa, 2021, 9, .	1.1	2
1340	The antioxidant defense system and bioremediation. , 2021, , 205-220.		2
1341	Assessment on micronutrient concentration after reclaimed water irrigation: A CASE study in green areas of Madrid*. Irrigation and Drainage, 2021, 70, 668.	0.8	6
1342	Anthropogenic Exposure and Its Impact on Reproductive System of Fishes. , 2021, , 323-334.		1
1343	Phytomining: a sustainable approach for recovery and extraction of valuable metals. , 2021, , 487-506.		1

#	Article	IF	CITATIONS
1344	Bioremediation of Heavy Metals Using the Symbiosis Between Leguminous Plants and Genetically Engineered Rhizobia. , 2021, , 303-322.		4
1345	Aspects of Genetically Modified Plants in Removing Heavy Metals From the Soil. , 2021, , 273-289.		Ο
	Exogenous nitrogen enhances poplar resistance to leaf herbivory and pathogen infection after		
1346	exposure to soil cadmium stress. Ecotoxicology and Environmental Safety, 2021, 208, 111688.	2.9	8
1347	Biochar for Climate Change Adaptation: Effect on Heavy Metal Composition of Telfairia occidentalis		0
1347	Leaves., 2021,, 1401-1421.		0
1348	Plant–Microbe Interactions in Bioremediation of Toxic Wastes in Tropical Environment. , 2021, ,		1
	163-194.		
1349	Metallothionein-assisted phytoremediation of inorganic pollutants. , 2021, , 81-90.		4
1350	Plantâ \in "Microbe Interactions for Bioremediation of Pesticides. , 2021, , 1-24.		1
	Bioentrepreneurship in Environmental Biotechnology. Advances in Business Strategy and Competitive		
1351	Advantage Book Series, 2021, , 254-271.	0.2	Ο
1959	Bioremediation of Waste Gases and Polluted Soils. Microorganisms for Sustainability, 2021, , 111-137.	0.4	11
1352	biolemediation of waste Gases and Politice Solis. Microorganisms for Sustainability, 2021, , 111-137.	0.4	11
1353	Heavy metal removal by nanobiotechnology. , 2021, , 235-252.		1
1354	Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicology and Environmental Safety, 2021, 208, 111750.	2.9	46
1355	Nanomaterials in integrated methods for soil remediation (biological/physiological combination) Tj ETQq1 1 0.78	34314 rgB ⁻	T /Qverlock 1
1356	Soil remediation technologies. , 2021, , 193-219.		2
	Integration of bacterial and algal metabolic repertoire in the removal of heavy metals from		
1357	wastewater., 2021,, 375-402.		1
1358	Removal of heavy metals from coke-plant effluents by using wetlands. , 2021, , 263-299.		0
1000			0
1359	Removal of multi-contaminants from water by association of poplar and Brassica plants in a short-term growth chamber experiment. Environmental Science and Pollution Research, 2021, 28,	2.7	4
	16323-16333.		
1360	Active Compound and Heavy Metals in Bleaching Creams and Their Health Effects: A Review. Journal of Pharmaceutical Research International, 0, , 22-33.	1.0	0
1361	Metals Phytoextraction by Brassica Species. , 2021, , 361-384.		2

#	Article	IF	CITATIONS
1362	Emerging insights on the potential role of plant-associated microorganisms in sustainable agriculture. , 2021, , 3-28.		0
1363	Efficient utilization of plant biomass after harvesting the phytoremediator plants. , 2021, , 57-84.		3
1364	Phytoremediation of abandoned mining areas for land restoration: Approaches and technology. , 2021, , 33-56.		2
1365	Potential application of endophytes in bioremediation of heavy metals and organic pollutants and growth promotion: mechanism, challenges, and future prospects. , 2021, , 91-121.		2
1366	Halophytes for Future Horticulture. , 2021, , 2367-2393.		3
1367	Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium uptake of maize plants associated to the mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Heliyon, 2021, 7, e05891.	1.4	9
1368	Harnessing the Potential of Microbes for Rejuvenating Soils from Mining Sites: An Initiative for Environmental Balance and Value Addition. Earth and Environmental Sciences Library, 2021, , 149-181.	0.3	0
1369	Newer Approaches in Phytoremediation. , 2021, , 1785-1808.		0
1370	Bioremediation and Phytoremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 38-64.	0.3	0
1371	Environmental Toxicant and Immune cells: A Review. American Journal of Applied Bio-Technology Research, 2021, 2, 11-34.	0.1	0
1372	Phytoremediation of Mine Waste Disposal Sites: Current State of Knowledge and Examples of Good Practice. , 2021, , 223-250.		2
1373	Incidence and Impact of Some Heavy Metals Pollutants in Some of the Different Newly Developed Regions, Egypt. Springer Water, 2021, , 139-159.	0.2	0
1374	Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition, 2021, 44, 1993-2028.	0.9	40
1375	Vermiremediation – Remediation of Soil Contaminated with Oil Using Earthworm (<i>Eisenia) Tj ETQq1 1 0.78</i>	84314 rgB⊺ 1.1	[/Qyerlock](
1376	Calcium-crosslinked alginate-encapsulated bacteria for remediating of cadmium-polluted water and production of CdS nanoparticles. Applied Microbiology and Biotechnology, 2021, 105, 2171-2179.	1.7	9
1377	Exploratory analysis of trace elements in soils and plants affected by a gossan in the Semiarid. Revista Brasileira De Engenharia Agricola E Ambiental, 2021, 25, 139-145.	0.4	1
1378	A Review on Heavy Metal lons and Containing Dyes Removal Through Graphene Oxideâ€Based Adsorption Strategies for Textile Wastewater Treatment. Chemical Record, 2021, 21, 1570-1610.	2.9	353
1379	Role of dominant macrophytes to treat Nambul river, the main polluter of Loktak – a dying Ramsar site in the Indo Burma hot spot (Manipur, India). International Journal of Phytoremediation, 2021, 23, 1132-1144.	1.7	3

#	Article	IF	Citations
1380	Expansive herbaceous species as bio-tools forÂelements detection in the vicinity of major roads of Hamedan, Iran. International Journal of Environmental Science and Technology, 2022, 19, 1611-1624.	1.8	9
1381	The Analysis of Content of Heavy Metals Cadmium (cd) in the Flow of the River Barumun Labuhanbatu Selatan. Budapest International Research and Critics Institute (BIRCI-Journal) Humanities and Social Sciences, 2021, 4, 1242-1247.	0.3	0
1382	Phytoremediation of Heavy Metals in Tropical Soils an Overview. Sustainability, 2021, 13, 2574.	1.6	24
1383	Microbially Mediated Remediation of Contaminated Sediments by Heavy Metals: a Critical Review. Current Pollution Reports, 2021, 7, 201-212.	3.1	25
1384	Corrigendum to "A Theoretical Study on the Inclusion of Fe, Cu, and Zn in Illite Clays― Journal of Nanomaterials, 2021, 2021, 1-1.	1.5	0
1385	Potentially toxic elements in river water and associated health risks in Ropar Wetland, India and its vicinity. International Journal of Environmental Science and Technology, 2022, 19, 475-498.	1.8	4
1386	Biochemical transmutation in Lumbricus terrestris and phytoextraction of heavy metals from the swamp of Challawa industrial layout, Kano, Nigeria. SN Applied Sciences, 2021, 3, 1.	1.5	1
1387	Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Technologies and Environmental Policy, 2023, 25, 1485-1507.	2.1	37
1388	Effect of hexavalent chromium on the environment and removal techniques: A review. Journal of Environmental Management, 2021, 280, 111809.	3.8	169
1389	Bioelectricity Harvesting at Aquaponics System: Current and Future Challenges. , 2021, , .		0
1391	Use of native plants and their associated bacteria rhizobiomes to remediate-restore Draa Sfar and Kettara mining sites, Morocco. Environmental Monitoring and Assessment, 2021, 193, 232.	1.3	8
1392	Lead accumulation in photosynthetic Euglena gracilis depends on polyphosphates and calcium. Environmental Pollution, 2021, 272, 116007.	3.7	5
1393	Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants, 2021, 10, 635.	1.6	131
1394	Comparison of heavy metal and nutrients removal in <i>Canna indica</i> and <i>Oryza sativa L.</i> based constructed wetlands for piggery effluent treatment in north-central Nigeria. International Journal of Phytoremediation, 2021, 23, 1382-1390.	1.7	7
1396	Application of the Adsorptive Stripping Voltammetry-Response Surface Methodology (AdSV-RSM) in the simultaneous determination of copper ions in an aquaponics system. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	1.8	0
1397	Effect of two-dimensional electric field on the growth and cadmium uptake of Sedum plumbizincicola. Separation and Purification Technology, 2021, 259, 118121.	3.9	4
1398	Influence of cadmium-resistant Streptomycetes on plant growth and cadmium uptake by Chlorophytum comosum (Thunb.) Jacques. Environmental Science and Pollution Research, 2021, 28, 39398-39408.	2.7	8
1399	Metal Accumulation Profile of Catharanthus roseus (L.) G.Don and Celosia argentea L. with EDTA Co-Application. Processes, 2021, 9, 598.	1.3	12

#	Article	IF	Citations
1400	Phytoremediation potential of water hyacinth in heavy metal removal in chromium and lead contaminated water. International Journal of Environmental Analytical Chemistry, 2023, 103, 3081-3096.	1.8	22
1401	MITIGATING ALUMINUM TOXICITY IN SEEDLINGS OF GLYCYRRHIZA GLABRA L. USING SILICON. Periodico Tche Quimica, 2021, 18, 33-47.	0.0	0
1402	Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. Journal of Plant Growth Regulation, 2022, 41, 922-935.	2.8	16
1403	Garlic (Allium sativum) based interplanting alters the heavy metals absorption and bacterial diversity in neighboring plants. Scientific Reports, 2021, 11, 5833.	1.6	18
1404	Lead Phytoremediation Potential of Wild Type and Transgenic Tobacco Plants. ISPEC Journal of Agricultural Sciences, 2021, 5, 168-182.	0.0	4
1405	Oyster Shell Powder, Zeolite and Red Mud as Binders for Immobilising Toxic Metals in Fine Granular Contaminated Soils (from Industrial Zones in South Korea). International Journal of Environmental Research and Public Health, 2021, 18, 2530.	1.2	10
1406	Silicon reduces cadmium absorption and increases root-to-shoot translocation without impacting growth in young plants of hemp (Cannabis sativa L.) on a short-term basis. Environmental Science and Pollution Research, 2021, 28, 37963-37977.	2.7	18
1407	Frenemies: Interactions between Rhizospheric Bacteria and Fungi from Metalliferous Soils. Life, 2021, 11, 273.	1.1	3
1408	Halotolerant Endophytic Bacterium Serratia rubidaea ED1 Enhances Phosphate Solubilization and Promotes Seed Germination. Agriculture (Switzerland), 2021, 11, 224.	1.4	12
1409	Phytodepuration of Nitrate Contaminated Water Using Four Different Tree Species. Plants, 2021, 10, 515.	1.6	4
1410	Impact of cadmium and zinc on proteins and cell wall-related gene expression in young stems of hemp (Cannabis sativa L.) and influence of exogenous silicon. Environmental and Experimental Botany, 2021, 183, 104363.	2.0	15
1411	One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111578.	2.5	23
1412	Cd tolerance and accumulation in barley: screening of 36 North African cultivars on Cd-contaminated soil. Environmental Science and Pollution Research, 2021, 28, 42722-42736.	2.7	5
1413	Silencing MdGH3-2/12 in apple reduces cadmium resistance via the regulation of AM colonization. Chemosphere, 2021, 269, 129407.	4.2	8
1414	The Salicornia europaea potential for phytoremediation of heavy metals in the soils under different times of wastewater irrigation in northwestern Iran. Environmental Science and Pollution Research, 2021, 28, 47605-47618.	2.7	11
1415	Effects of Growth Stage and Cd Chemical Form on Cd and Zn Accumulation in Arabidopsis halleri ssp. gemmifera. International Journal of Environmental Research and Public Health, 2021, 18, 4214.	1.2	5
1416	Biosensing the Presence of Metal Nanoparticles by Spectrally- and Time-Resolved Endogenous Fluorescence in Water Moss Fontinalis antipyretica. Frontiers in Physics, 2021, 9, .	1.0	3
1417	Physiological and biochemical changes in tree seedlings growing in urban forest soil contaminated with copper in São Paulo, Brazil. Plant and Soil, 2021, 464, 149.	1.8	3

#	Article	IF	CITATIONS
1418	Pb Stress and Ectomycorrhizas: Strong Protective Proteomic Responses in Poplar Roots Inoculated with Paxillus involutus Isolate and Characterized by Low Root Colonization Intensity. International Journal of Molecular Sciences, 2021, 22, 4300.	1.8	7
1419	Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements in Soils of the Vicinity of the Bulgarian Antarctic Station "St. Kliment Ohridski―(Antarctic Peninsula). Frontiers in Environmental Science, 2021, 9, .	1.5	9
1421	Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Frontiers in Microbiology, 2021, 12, 645893.	1.5	28
1422	Heavy metal phytoremediation potential of the roadside forage Chloris barbata Sw. (swollen windmill) Tj ETQq1 1 Pollution Research, 2021, 28, 45096-45108.	0.784314 2.7	rgBT /Ove 10
1423	Microbial response to designer biochar and compost treatments for mining impacted soils. Biochar, 2021, 3, 299-314.	6.2	7
1424	Occurrence and remediation of naturally occurring radioactive materials in Nigeria: a review. Environmental Chemistry Letters, 2021, 19, 3243-3262.	8.3	17
1425	Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environmental Research, 2021, 195, 110780.	3.7	84
1426	Toxic metal phytoextraction potential and health-risk parameters of some cultivated plants when grown in metal-contaminated river sediment of Danube, near an industrial town. Environmental Geochemistry and Health, 2021, 43, 2317-2330.	1.8	5
1427	A sustainable agricultural strategy integrating Cd-contaminated soils remediation and bioethanol production using sorghum cultivars. Industrial Crops and Products, 2021, 162, 113299.	2.5	16
1428	Changes Induced by Self-Burning in Technosols from a Coal Mine Waste Pile: A Hydropedological Approach. Geosciences (Switzerland), 2021, 11, 195.	1.0	10
1429	Invasive Weed Asystasia gangetica as a Potential Biomonitor and a Phytoremediator of Potentially Toxic Metals: A Case Study in Peninsular Malaysia. International Journal of Environmental Research and Public Health, 2021, 18, 4682.	1.2	1
1431	Insights on Cadmium Removal by Bioremediation: The Case of Haloarchaea. Microbiology Research, 2021, 12, 354-375.	0.8	11
1432	The Use of Sorghum in a Phytoattenuation Strategy: A Field Experiment on a TE-Contaminated Site. Applied Sciences (Switzerland), 2021, 11, 3471.	1.3	4
1433	Influence of Planting Density on the Phytoremediation Efficiency of Festuca arundinacea in cdâ€Polluted Soil. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 154-159.	1.3	7
1434	Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 2021, 283, 111986.	3.8	125
1435	Application of in situ bioremediation strategies in soils amended with sewage sludges. Science of the Total Environment, 2021, 766, 144099.	3.9	22
1436	Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants, 2021, 10, 1070.	1.6	70
1437	Assessment of seasonal variations and human health risks due to heavy metals in water, soils and food crops using multi-indices approach. Environmental Earth Sciences, 2021, 80, 1.	1.3	21

#	Article	IF	CITATIONS
1438	Safe, efficient, and economically beneficial remediation of arsenic-contaminated soil: possible strategies for increasing arsenic tolerance and accumulation in non-edible economically important native plants. Environmental Science and Pollution Research, 2021, 28, 64113-64129.	2.7	7
1439	Effects of four woody plant species revegetation on habitat improvement and the spatial distribution of arsenic and antimony in zinc smelting slag. International Journal of Phytoremediation, 2021, 23, 1506-1518.	1.7	8
1440	Life cycle and economic assessment of enhanced ecological floating beds applied water purification. Environmental Science and Pollution Research, 2021, 28, 49574-49587.	2.7	3
1441	Elemental measurements and health risk assessment of sub-Saharan African medicinal plants used for cardiovascular diseases' and related risk factors' treatment. Journal of Trace Elements in Medicine and Biology, 2021, 65, 126725.	1.5	9
1442	Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. Physiologia Plantarum, 2021, 173, 287-304.	2.6	15
1444	Influence of soil pollution on the morphology of roots and leaves of Verbascum thapsus L. Environmental Geochemistry and Health, 2022, 44, 83-98.	1.8	5
1445	Preparation of magnetic hydrochar derived from iron-rich Phytolacca acinosa Roxb. for Cd removal. Science of the Total Environment, 2021, 769, 145159.	3.9	24
1446	Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Science of the Total Environment, 2021, 767, 144351.	3.9	72
1447	Phytoremediation of metals by colonizing plants developed in point bars in the channeled bed of the Dilúvio Stream, Southern Brazil. International Journal of Phytoremediation, 2022, 24, 59-65.	1.7	2
1448	Phytomining of valuable metals: status and prospective-a review. International Journal of Environmental Analytical Chemistry, 2023, 103, 3913-3933.	1.8	3
1450	Molecular characterization of leaf spot caused by Alternaria alternata on buttonwood (Conocarpus) Tj ETQq0 0 (e0251471.	0 rgBT /Ov 1.1	verlock 10 Tf 5 10
1452	Rhizofiltration of Cadmium and Zinc in Hydroponic Systems. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	13
1453	Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd2+) and mercury (Hg2+). Scientific Reports, 2021, 11, 11257.	1.6	15
1454	Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 2021, 328, 124835.	4.8	134
1455	External application of nitrogen alleviates toxicity of cadmium on poplars via starch and sucrose metabolism. Tree Physiology, 2021, 41, 2126-2141.	1.4	20
1456	The Potential Application of Ciant Reed (Arundo donax) in Ecological Remediation. Frontiers in Environmental Science, 2021, 9, .	1.5	13
1457	Plant-assisted metal remediation in mine-degraded land: a scientometric review. International Journal of Environmental Science and Technology, 2022, 19, 8085-8112.	1.8	5
1458	Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. International Journal of Environmental Research and Public Health, 2021, 18, 5215.	1.2	21

#	Article	IF	CITATIONS
1459	Chromium Contamination from Tanning Industries and Phytoremediation Potential of Native Plants: A Study of Savar Tannery Industrial Estate in Dhaka, Bangladesh. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 1024-1032.	1.3	22
1460	Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. Science of the Total Environment, 2021, 768, 144983.	3.9	19
1461	Effects of exogenous spermidine on poplar resistance to leaf and root herbivory as affected by soil cadmium stress. Journal of Environmental Management, 2021, 288, 112467.	3.8	9
1463	Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Chemical Engineering Research and Design, 2021, 150, 323-355.	2.7	54
1464	Mechanisms of cadmium phytoremediation and detoxification in plants. Crop Journal, 2021, 9, 521-529.	2.3	67
1465	Metagenomics of mine tailing rhizospheric communities and its selection for plant establishment towards bioremediation. Microbiological Research, 2021, 247, 126732.	2.5	15
1466	A review on heavy metal contamination at mining sites and remedial techniques. IOP Conference Series: Earth and Environmental Science, 2021, 796, 012013.	0.2	15
1467	Abandoned Mine Lands Reclamation by Plant Remediation Technologies. Sustainability, 2021, 13, 6555.	1.6	19
1468	Development of Phytoremediation Technology For Arsenic Removal-A State of Art. International Journal of Advanced Research in Science, Communication and Technology, 0, , 112-132.	0.0	0
1469	Evaluation of trace metal accumulation in six vegetable crops intercropped with phytostabilizing plant species, in a French urban wasteland. Environmental Science and Pollution Research, 2021, 28, 56795-56807.	2.7	4
1470	Phyto-Tolerance Degradation of Hydrocarbons and Accumulation of Heavy Metals by of Cajanus cajan (Pigeon Pea) in Petroleum-Oily-Sludge-Contaminated Soil. Agronomy, 2021, 11, 1138.	1.3	7
1471	Long-term phytoremediation using the symbiotic Pongamia pinnata reshaped soil micro-ecological environment. Science of the Total Environment, 2021, 774, 145112.	3.9	9
1472	Rehabilitation of a Riparian Site Contaminated by Tailings from the Fundão Dam, Brazil, Using Different Remediation Strategies. Environmental Toxicology and Chemistry, 2021, 40, 2359-2373.	2.2	10
1473	The fate of sulfonamides in the process of phytoremediation in hydroponics. Water Research, 2021, 198, 117145.	5.3	27
1474	Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt. Biology, 2021, 10, 560.	1.3	5
1475	Temporal distribution of trace metals pollution load index in the Nile Delta coastal surface sediments. Marine Pollution Bulletin, 2021, 167, 112290.	2.3	19
1476	Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS ONE, 2021, 16, e0253390.	1.1	21
1477	Remediation of heavy metal–polluted alkaline vegetable soil using mercapto-grafted palygorskite: effects of field-scale application and soil environmental quality. Environmental Science and Pollution Research, 2021, 28, 60526-60536.	2.7	6

#	Article	IF	CITATIONS
1478	Phytomanagement of a metal(loid)-contaminated agricultural site using aromatic and medicinal plants to produce essential oils: analysis of the metal(loid) fate in the value chain Environmental Science and Pollution Research, 2021, 28, 62155-62173.	2.7	14
1479	Plant Species Diversity of Plant Communities and Heavy Metal Accumulation in Buffer Zone of Momianhe Stream Along a Long-Term Mine Wastes Area, China. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1136-1142.	1.3	3
1480	Importance of Cytochrome P450 gene family from metabolite biosynthesis to stress tolerance: A review. IOP Conference Series: Earth and Environmental Science, 2021, 775, 012012.	0.2	4
1481	Biosorption of Cu2+ by Pseudomonas putida Immobilized on Loofa Sponge (Luffa cylindrica L.). Natural Science and Discovery, 2021, 4, 7-15.	0.3	0
1482	Bacterial inoculant-assisted phytoremediation of heavy metal-contaminated soil: Inoculant development and the inoculation effects. Biologia (Poland), 2021, 76, 2675-2685.	0.8	11
1483	Porous graphene-based electrodes: Advances in electrochemical sensing of environmental contaminants. Trends in Environmental Analytical Chemistry, 2021, 30, e00120.	5.3	39
1484	Cadmium uptake and translocation: selenium and siliconÂroles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 2021, 273, 129690.	4.2	116
1485	Macrophyte and indigenous bacterial co-remediation process for pentachlorophenol removal from wastewater. International Journal of Phytoremediation, 2022, 24, 271-282.	1.7	10
1486	Bioremoval of cadmium by co-cultivated bacterial strains, Bacillus paramycoides and Bacillus subtilis, in a pilot-scale phyto- and rhizoremediation approach. International Journal of Environmental Science and Technology, 2022, 19, 7565-7574.	1.8	6
1487	Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Science of the Total Environment, 2021, 777, 145988.	3.9	96
1488	Effect of microbial consortium on Ricinus communis L. seedling in Pb/Zn-contaminated soils. IOP Conference Series: Earth and Environmental Science, 2021, 804, 042023.	0.2	0
1489	Effects of Cattails and Hydraulic Loading on Heavy Metal Removal from Closed Mine Drainage by Pilot-Scale Constructed Wetlands. Water (Switzerland), 2021, 13, 1937.	1.2	8
1490	Using plants to remediate or manage metal-polluted soils: an overview on the current state of phytotechnologies. Acta Scientiarum - Agronomy, 0, 43, e58283.	0.6	15
1491	Phytoremediation potential of water hyacinth (Eichhornia crassipes) for phenol and cyanide elimination from synthetic/simulated wastewater. Applied Water Science, 2021, 11, 1.	2.8	9
1492	Spatial distribution, source apportionment, and associated risks of trace metals (As, Pb, Cr, Cd, and) Tj ETQq0 0 0 83-96.	rgBT /Ove 1.8	rlock 10 Tf 5 13
1493	Effect of Chemical Refining Steps on the Some Micro and Macro Element Content and Quality Parameters in Corn Oil. Turkish Journal of Agriculture: Food Science and Technology, 2021, 9, 982-990.	0.1	2
1494	Growth Responses and Accumulation of Vanadium in Alfalfa, Milkvetch Root, and Swamp Morning Glory and Their Potential in Phytoremediation. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 559-564.	1.3	10
1495	Changes in the Structures and Directions of Heavy Metal-Contaminated Soil Remediation Research from 1999 to 2020: A Bibliometric & Scientometric Study. International Journal of Environmental Research and Public Health, 2021, 18, 7358.	1.2	14

	СІТАТ	ION REPORT	
#	Article	IF	CITATIONS
1496	Removal of metals from aqueous solutions using dried Cladophora parriaudii of varying biochemical composition. Journal of Environmental Management, 2021, 290, 112620.	3.8	2
1497	Utilization of Chlorella pyrenoidosa for Remediation of Common Effluent Treatment Plant Wastewater in Coupling with Co-relational Study: An Experimental Approach. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 507-517.	1.3	10
1498	HEAVY METALS IN THE FOOD CHAIN - CONSEQUENCES OF POLLUTING WATER BODIES. Green Chemistry Technology Letters, 2021, 7, 07-17.	y& 0.3	1
1499	Management of Abiotic Stress in Forage Crops. , 0, , .		0
1500	Cadmium (Cd) and Lead (Pb) topsoil levels and incidence of childhood leukemias. Environmental Geochemistry and Health, 2021, , 1.	1.8	5
1501	On the phytoscreening potential of insect-induced plant galls. Plant and Soil, 2021, 467, 569.	1.8	0
1502	Effect of an Equal Dose of Polymetallic Pollution on the Microbiological Characteristics of Two Soils with Different Organic Carbon Contents. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
1503	Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 2021, 1, 329-351.	0.7	25
1504	Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. Journal of Hazardous Materials, 2021, 416, 125898.	6.5	60
1505	Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, 2021, 9, .	1.5	17
1507	Aquatic Plants as Bioremediators in Pollution Abatement of Heavy Metals. , 0, , .		1
1508	A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey. Chemosphere, 2021, 276, 130192.	4.2	8
1509	Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon) Tj ETQq0 0	0 rgBT /Oyerlock I	10 Tf 50 262 27
1510	Elemental and Thermo-gravimetric Characterization of Trace Metals in Leaves and Soils as Bioindicators of Pollution in Kyiv City. Water, Air, and Soil Pollution, 2021, 232, 331.	1.1	0
1511	Bioretention systems for stormwater management: Recent advances and future prospects. Journal of Environmental Management, 2021, 292, 112766.	3.8	81
1512	Lonchocarpus cultratus, a Brazilian savanna tree, endures high soil Pb levels. Environmental Science and Pollution Research, 2021, 28, 50931-50940.	2.7	3
1513	Effects of Abiotic Stress on Soil Microbiome. International Journal of Molecular Sciences, 2021, 22, 9036.	1.8	84
1514	Ecological risk assessment of heavy metals in sediment, fish, and human hair from Chabahar Bay, Makoran, Iran. Marine Pollution Bulletin, 2021, 169, 112345.	2.3	35

#	Article	IF	Citations
1515	Magnetic and electric field accelerate Phytoextraction of copper Lemna minor duckweed. PLoS ONE, 2021, 16, e0255512.	1.1	7
1516	The Remediation Characteristics of Heavy Metals (Copper and Lead) on Applying Recycled Food Waste Ash and Electrokinetic Remediation Techniques. Applied Sciences (Switzerland), 2021, 11, 7437.	1.3	7
1517	Simultaneous removal of Cd (II), Ni (II), and Pb (II) from water by a submerged macrophyte pondweed (<i>Potamogeton malaianus</i>). Water Environment Research, 2021, 93, 2637-2647.	1.3	3
1518	Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa L Ecotoxicology and Environmental Safety, 2021, 219, 112332.	2.9	27
1519	Biochar and urban solid refuse ameliorate the inhospitality of acidic mine tailings and foster effective spontaneous plant colonization under semiarid climate. Journal of Environmental Management, 2021, 292, 112824.	3.8	3
1520	Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil. Environmental Science and Pollution Research, 2022, 29, 6000-6009.	2.7	11
1521	Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. Environmental Pollution, 2021, 283, 117159.	3.7	35
1522	Hyperaccumulators for Potentially Toxic Elements: A Scientometric Analysis. Agronomy, 2021, 11, 1729.	1.3	7
1523	Screening the phytoextractability of trace metals by Aloe cryptopoda Baker and Aloe vera (L.) Burm.f. cultivated on mine tailings. South African Journal of Botany, 2021, 140, 110-113.	1.2	3
1524	Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis. Environmental Challenges, 2021, 4, 100197.	2.0	66
1525	Double-edged effects of polyvinyl chloride addition on heavy metal separation and biochar production during pyrolysis of Cd/Zn hyperaccumulator. Journal of Hazardous Materials, 2021, 416, 125793.	6.5	21
1526	Metal speciation distribution of anaerobic fermentation with alfalfa grass harvested from abandoned iron mine and the influence of metals addition. Chemical Engineering Research and Design, 2021, 152, 527-535.	2.7	2
1527	Energetic Value of Elymus elongatus L. and Zea mays L. Grown on Soil Polluted with Ni2+, Co2+, Cd2+, and Sensitivity of Rhizospheric Bacteria to Heavy Metals. Energies, 2021, 14, 4903.	1.6	13
1528	Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. Science of the Total Environment, 2021, 784, 147093.	3.9	20
1529	A review on the removal of heavy metals and metalloids by constructed wetlands: bibliometric, removal pathways, and key factors. World Journal of Microbiology and Biotechnology, 2021, 37, 157.	1.7	27
1530	Accumulation of heavy metals in soil and litter of roadside plantations in Western Polissia of Ukraine. Folia Forestalia Polonica, Series A, 2021, 63, 232-242.	0.1	2
1531	Reclamation competence of Crotalaria juncea with the amalgamation and influence of indigenous bacteria on a waste dump of bauxite mine. Chemosphere, 2021, 279, 130632.	4.2	17
1532	Root damages induced by extended phytotoxic effects of cadmium pre-exposure against subsequent lindane uptake in rice seedlings. Environmental and Experimental Botany, 2021, 189, 104553.	2.0	0

#	Article	IF	CITATIONS
1533	Efficiencies of indigenous South African plant biofilters for urban stormwater runoff water quality improvement with a focus on nutrients and metals. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 1094-1110.	0.6	2
1534	Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 2021, 220, 112368.	2.9	55
1535	Phytoattenuation of Cd, Pb, and Zn in a Slag-contaminated Soil Amended with Rice Straw Biochar and Grown with Energy Maize. Environmental Management, 2022, 69, 196-212.	1.2	5
1536	Review On Activated Carbon: Synthesis, Properties And Applications. SSRG International Journal of Engineering Trends and Technology, 2021, 69, 124-139.	0.3	2
1537	Irrigating digestate to improve cadmium phytoremediation potential of Pennisetum hybridum. Chemosphere, 2021, 279, 130592.	4.2	10
1538	Insights on the bioremediation technologies for pesticide-contaminated soils. Environmental Geochemistry and Health, 2022, 44, 1329-1354.	1.8	36
1539	PGPR-Mediated Plant Growth Attributes and Metal Extraction Ability of Sesbania sesban L. in Industrially Contaminated Soils. Agronomy, 2021, 11, 1820.	1.3	80
1540	Metal accumulation potential and tolerance responses in Alternanthera dentata grown under multi metal treatment. Environmental Technology and Innovation, 2021, 24, 101991.	3.0	0
1541	Reflections and Insights on the Evolution of the Biological Remediation of Contaminated Soils. Frontiers in Environmental Science, 2021, 9, .	1.5	7
1542	Soil Chemical Properties and Maize (Zea mays L.) Yield influenced by Lime and Fern (Pteris vittata). Walailak Journal of Science and Technology, 2021, 18, .	0.5	0
1543	A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. Journal of Environmental Management, 2021, 294, 113108.	3.8	46
1544	Co-planting Brassica napus and Salix nigra as a phytomanagement alternative for copper contaminated soil. Chemosphere, 2021, 279, 130517.	4.2	12
1545	Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research, 2021, 200, 111730.	3.7	50
1546	Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis. Ecological Modelling, 2021, 455, 109633.	1.2	16
1547	The remediation potential for PAHs of Verbascum sinuatum L. combined with an enhanced rhizosphere landscape: A full-scale mesocosm experiment. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00657.	2.1	4
1548	In situ electrokinetic (EK) remediation of the total and plant available cadmium (Cd) in paddy agricultural soil using low voltage gradients at pilot and full scales. Science of the Total Environment, 2021, 785, 147277.	3.9	24
1549	Critical review on arsenic: Its occurrence, contamination and remediation from water and soil. Journal of Applied and Natural Science, 2021, 13, 861-879.	0.2	3
1550	Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Chemosphere, 2021, 280, 130724.	4.2	12

#	Article	IF	CITATIONS
1551	The effect of chelating agents on iron plaques and arsenic accumulation in duckweed (Lemna minor). Journal of Hazardous Materials, 2021, 419, 126410.	6.5	15
1552	Identification of heavy metal-responsive genes in radish (Raphanus sativus L.) through RNA-Seq meta-analysis. Scientia Horticulturae, 2021, 288, 110402.	1.7	6
1553	Phytoremediation of Cr(VI) in wastewater using the vetiver grass (Chrysopogon zizanioides). Minerals Engineering, 2021, 172, 107141.	1.8	25
1554	The effects of phytoremediation of treated urban wastewater on the discharge of surface and subsurface drippers (Case study: Gorgan wastewater treatment plant in northern Iran). Cleaner Engineering and Technology, 2021, 4, 100210.	2.1	4
1555	Phytoremediation of Cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: Efficiency comparison and cost-benefit analysis. Journal of Hazardous Materials, 2021, 419, 126489.	6.5	53
1556	The behavior of heavy metals in relation to their influence on the common bean (Phaseolus vulgaris) symbiosis. Environmental and Experimental Botany, 2022, 193, 104670.	2.0	14
1557	Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China. Ecotoxicology and Environmental Safety, 2021, 224, 112679.	2.9	77
1558	A Bacillus and Lysinibacillus sp. bio-augmented Festuca arundinacea phytoremediation system for the rapid decontamination of chromium influenced soil. Chemosphere, 2021, 283, 131186.	4.2	15
1559	Analysis of the potential of 165 ramie germplasms to be used for cadmium-contamination remediation. Industrial Crops and Products, 2021, 171, 113841.	2.5	7
1560	Bioaugmentation improves the anaerobic co-digestion of cadmium-containing plant residues and cow manure. Environmental Pollution, 2021, 289, 117885.	3.7	8
1561	Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. Chemosphere, 2021, 285, 131437.	4.2	7
1562	Comparing the effects of humic acid and oxalic acid on Pb(II) immobilization by a green synthesized nanocrystalline hydroxyapatite. Chemosphere, 2021, 285, 131411.	4.2	21
1563	Physiological and biochemical responses of Lawsonia inermis L. to heavy metal pollution in arid environments. South African Journal of Botany, 2021, 143, 7-16.	1.2	5
1564	Assessment of compost and three biochars associated with Ailanthus altissima (Miller) Swingle for lead and arsenic stabilization in a post-mining Technosol. Pedosphere, 2021, 31, 944-953.	2.1	8
1565	Nanoparticles-assisted phytoremediation: Advances and applications. , 2022, , 155-178.		3
1566	Biosurfactant-assisted phytoremediation for a sustainable future. , 2022, , 399-414.		1
1567	Approaches for assisted phytoremediation of arsenic contaminated sites. , 2022, , 221-242.		2
1568	Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Science of the Total Environment, 2022, 803, 150006.	3.9	23

#	Article	IF	CITATIONS
1569	The phytoextraction power of Cichorium intybus L. on metal-contaminated soil: Focus on time- and cultivar-depending accumulation and distribution of cadmium, lead and zinc. Chemosphere, 2022, 287, 132122.	4.2	3
1570	Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu,) Tj ETQq1	1 0,784314 4.2	4 ဌဌBT /Ove
1571	Recent developments in phosphate-assisted phytoremediation of potentially toxic metal(loid)s-contaminated soils. , 2022, , 345-370.		3
1572	Chelate-assisted phytoremediation. , 2022, , 131-154.		2
1573	Overcome the limits of multi-contaminated industrial soils bioremediation: Insights from a multi-disciplinary study. Journal of Hazardous Materials, 2022, 421, 126762.	6.5	7
1574	Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere, 2022, 286, 131648.	4.2	22
1575	In-situ remediation of zinc contaminated soil using phosphorus recovery product: Hydroxyapatite/calcium silicate hydrate (HAP/C–S–H). Chemosphere, 2022, 286, 131664.	4.2	13
1576	CRISPR-assisted strategies for futuristic phytoremediation. , 2022, , 203-220.		7
1577	Current perspectives of soil nanoremediation. , 2021, , 521-550.		1
1578	Biochar for Climate Change Adaptation: Effect on Heavy Metal Composition of Telfairia occidentalis Leaves. , 2021, , 1-21.		0
1579	Implications of the Phytoremediation of Heavy Metal Contamination of Soils and Wild Plants in the Industrial Area of Haina, Dominican Republic. Sustainability, 2021, 13, 1403.	1.6	9
1580	Role of secondary metabolites in salt and heavy metal stress mitigation by halophytic plants: An overview. , 2021, , 307-327.		4
1581	Aromatic and Medicinal Plants for Phytoremediation: A Sustainable Approach. , 2021, , 485-543.		3
1582	Potential of Ricinus communis for the removal of toxic metals from mining dumping sites. , 2021, , 263-286.		0
1583	Functional and Phylogenetic Characteristics of Vegetation: Effects on Constructed Green Infrastructure. Future City, 2021, , 61-83.	0.2	4
1584	Retos y oportunidades para la industria minera como potencial impulsor del desarrollo en Colombia. Tecno Lógicas, 2021, 24, e1683.	0.1	1
1585	Iron Toxicity and Its Relation to Nitrogen and Phosphorus Availability in Ectomycorrhizal Fungi. Soil Biology, 2021, , 459-479.	0.6	0
1586	Plant–microbe–metal interactions for heavy metal bioremediation: a review. Crop and Pasture Science, 2022, 73, 181-201.	0.7	24

\sim			<u> </u>	
CI	ITATI	ON	REPO	JRT

#	Article	IF	CITATIONS
1587	Enzymatic defense of Cyperus brevifolius in hydrocarbons stress environment and changes in soil properties. Scientific Reports, 2021, 11, 718.	1.6	20
1588	Potassium and Nitrogen Fertilization vs. Trace Element Content of Maize (Zea mays L.). Agriculture (Switzerland), 2021, 11, 96.	1.4	11
1589	The influence of passivating agent on soil pollution. MethodsX, 2021, 8, 101321.	0.7	3
1590	Bioremediation: principles and applications in environmental management. , 2021, , 3-28.		9
1591	Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. Environmental Science and Pollution Research, 2021, 28, 7710-7741.	2.7	32
1592	Arbuscular mycorrhizal (AM) fungi: Potential role in sustainable agriculture. , 2021, , 203-225.		0
1593	Bioremediation of organic pollutants: a sustainable green approach. , 2021, , 131-147.		0
1594	Plant growth promoting bacteria and its role in green remediation. , 2021, , 149-163.		0
1595	Sustainable Treatment of Landfill Leachate Using Constructed Wetlands. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 237-255.	0.3	4
1596	Crop Information Sensing Technology. Agriculture Automation and Control, 2021, , 121-153.	0.3	1
1597	Contamination of rice crop with potentially toxic elements and associated human health risks—a review. Environmental Science and Pollution Research, 2021, 28, 12282-12299.	2.7	22
1598	Chemical water contaminants: potential risk to human health and possible remediation. , 2021, , 157-172.		5
1599	A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology, 2021, 12, 102-136.	1.5	84
1600	Transgenic Approaches for Phytoextraction of Heavy Metals. , 2014, , 57-80.		5
1601	Municipal and Industrial Wastewater Treatment Using Constructed Wetlands. Concepts and Strategies in Plant Sciences, 2020, , 329-367.	0.6	7
1602	Phytoremediation of Agricultural Pollutants. Concepts and Strategies in Plant Sciences, 2020, , 27-81.	0.6	7
1603	Phytoremediation Using Aquatic Plants. Concepts and Strategies in Plant Sciences, 2020, , 205-260.	0.6	21
1604	Phytoremediation Using Native Plants. Concepts and Strategies in Plant Sciences, 2020, , 285-327.	0.6	4

#	Article	IF	CITATIONS
1605	Halophytes for Future Horticulture. , 2020, , 1-28.		5
1606	Creating Products and Services in Environmental Biotechnology. , 2019, , 53-87.		2
1607	Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects. Fungal Biology, 2019, , 437-461.	0.3	50
1608	Fungal Enzymes for Bioremediation of Contaminated Soil. Fungal Biology, 2019, , 189-215.	0.3	6
1609	Phytoremediation of Heavy Metals: An Eco-Friendly and Sustainable Approach. , 2020, , 215-231.		12
1610	Credibility of In Situ Phytoremediation for Restoration of Disturbed Environments. , 2020, , 233-256.		2
1611	Pollution Remediation by Way of Using Genetically Modified Plants (GMPs). , 2020, , 305-318.		2
1612	Heavy Metal Soil Contamination and Bioremediation. , 2020, , 221-239.		3
1613	Environmental Biotechnology: For Sustainable Future. , 2020, , 241-258.		4
1614	Ecotoxicology of Heavy Metals: Sources, Effects and Toxicity. , 2020, , 13-23.		6
1615	Heavy Metal Mitigation with Special Reference to Bioremediation byÂMixotrophic Algae-Bacterial Protocooperation. Nanotechnology in the Life Sciences, 2020, , 305-334.	0.4	6
1616	Molecular Mechanisms of Heavy Metal Tolerance in Plants. Nanotechnology in the Life Sciences, 2020, , 125-136.	0.4	4
1617	Hyperaccumulation of Potentially Toxic Micronutrients by Plants. , 2020, , 345-371.		3
1618	Some Effective Methods for Treatment of Wastewater from Cu Production. Environmental Chemistry for A Sustainable World, 2021, , 313-440.	0.3	1
1619	Phytoremediation and the Electrokinetic Process: Potential Use for the Phytoremediation of Antimony and Arsenic. , 2015, , 199-209.		6
1620	Phytochemical Removal of Heavy Metal-Contaminated Soils. Soil Biology, 2015, , 299-309.	0.6	12
1621	Phytoremediation Coupled to Electrochemical Process for Arsenic Removal from Soil. , 2016, , 313-329.		1
1622	Proposed Rehabilitation Method of Uncontrolled Landfills in Insular Communities Through Multi-Criteria Analysis Decision Tool. , 2016, , 365-383.		1

щ		15	CITATIONS
#	ARTICLE Soil Quality Protection at Heavy Metal-Contaminated Manufactured Gas Plant Sites: Role of Biological	IF	CITATIONS
1623	Remediation. , 2017, , 231-260.		5
1624	Biotechnological Strategies for Remediation of Toxic Metal(loid)s from Environment. , 2017, , 315-359.		8
1625	Metal Toxicity and Nitrogen Metabolism in Plants: An Overview. , 2020, , 221-248.		30
1626	Environmental Remediation: Microbial and Nonmicrobial Prospects. , 2019, , 379-409.		2
1627	Molecular Biology of Glandular Trichomes and Their Functions in Environmental Stresses. Energy, Environment, and Sustainability, 2019, , 365-393.	0.6	3
1628	Nanobioremediation: An Emerging Approach for a Cleaner Environment. , 2020, , 309-363.		11
1629	Sustainable Approaches to Remove Heavy Metals from Water. Environmental and Microbial Biotechnology, 2020, , 127-146.	0.4	9
1630	Phytoremediation of Toxic Metals/Metalloids and Pollutants by Brassicaceae Plants. , 2020, , 409-435.		4
1631	Concepts and Application of Plant–Microbe Interaction in Remediation of Heavy Metals. Rhizosphere Biology, 2021, , 55-77.	0.4	14
1632	Toxic Metals in Crops: A Burgeoning Problem. , 2020, , 273-301.		3
1633	Mitigation of Chromium Toxicity in Wheat (Triticum aestivumÂL.) Through Silicon. Gesunde Pflanzen, 2020, 72, 237-244.	1.7	20
1634	Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environmental Science and Pollution Research, 2020, 27, 29954-29966.	2.7	24
1635	Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere, 2017, 185, 764-771.	4.2	57
1636	Aided phytostabilisation of As- and Cu-contaminated soils using white lupin and combined iron and organic amendments. Journal of Environmental Management, 2018, 205, 142-150.	3.8	27
1637	The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. Marine Pollution Bulletin, 2020, 156, 111080.	2.3	32
1638	Trace metal dynamics in soils and plants along intertidal gradients in semi-arid mangroves (New) Tj ETQq1 1 0.78	4314 rgBT 2.3	Overlock
1639	Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 2020, 152, 90-99.	2.8	74
1640	Amelioration of heavy metal stress by endophytic <i>Bacillus amyloliquefaciens</i> RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochemical Journal, 2019, 476, 3385-3400.	1.7	33

#	Article	IF	CITATIONS
1641	Synthetic biology approaches towards the recycling of metals from the environment. Biochemical Society Transactions, 2020, 48, 1367-1378.	1.6	26
1642	Removal of heavy metals from a contaminated soil using phytoremediation. MATEC Web of Conferences, 2020, 305, 00061.	0.1	4
1643	Tolerance and phytoremediation potential of grass species native to South American grasslands to copper-contaminated soils. International Journal of Phytoremediation, 2021, 23, 1-10.	1.7	4
1646	Removal of heavy metals by natural adsorbent: review. International Journal of Biosciences, 2014, , 130-139.	0.4	12
1647	Single and mixed chelants-assisted phytoextraction of heavy metals in municipal waste dump soil by castor. Advances in Environmental Research, 2016, 5, 19-35.	0.3	5
1648	The Phytoremediation of Chromium from Soil Using Cirsium Vulgare and the Health Effects. Biosciences, Biotechnology Research Asia, 2020, 17, 535-541.	0.2	13
1649	Antioxidant activity and gene expression associated with cadmium toxicity in wheat affected by mycorrhizal fungus. Zemdirbyste, 2016, 103, 53-60.	0.3	20
1650	Differential expression of antioxidants, Fe and Zn transporter genes in wheat under Pb stress. Zemdirbyste, 2018, 105, 49-54.	0.3	4
1651	Selection and Validation of Reference Genes for Real-Time Quantitative PCR in Hyperaccumulating Ecotype of Sedum alfredii under Different Heavy Metals Stresses. PLoS ONE, 2013, 8, e82927.	1.1	39
1652	Can Biochar and Phytoextractors Be Jointly Used for Cadmium Remediation?. PLoS ONE, 2014, 9, e95218.	1.1	48
1653	A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress. PLoS ONE, 2015, 10, e0136606.	1.1	9
1654	Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS ONE, 2017, 12, e0180240.	1.1	36

1655

#	Article	IF	CITATIONS
1661	Evaluation of the addition of immobilizing agents on selected physicochemical properties of soil contaminated with heavy metals. Polish Journal of Soil Science, 2018, 51, 59.	0.3	4
1662	Activated mineral adsorbent for the efficient removal of Pb(II) and Cd(II) from aqueous solution: adsorption performance and mechanism studies. Water Science and Technology, 2020, 82, 1896-1911.	1.2	9
1665	Identificación y análisis de genes ars en cepas de Bacillus hipertolerantes al arsénico, aisladas de pozas termales en Araró, MA©xico. TIP Revista Especializada En Ciencias QuÃmico-Biológicas, 0, 21, .	0.3	1
1666	Nickel phytoremediation potential of some plant species of the Lower Dir, Khyber Pakhtunkhwa, Pakistan. Limnological Review, 2020, 20, 13-22.	0.5	23
1667	THE PCA OF PHYTOMINING: PRINCIPLES, CHALLENGES AND ACHIEVEMENTS. Carpathian Journal of Earth and Environmental Sciences, 2020, 15, 37-42.	0.2	6
1668	Phytoremediation of organic pollutants in wastewater using native plants. Association of Arab Universities Journal of Engineering Sciences, 2019, 26, 54-65.	0.2	2
1669	Notice of release of Charleston Peak Germplasm slender wheatgrass: a selected class, genetically manipulated track pre-variety germplasm. Native Plants Journal, 2016, 17, 127-133.	0.0	1
1670	Phytostabilization of Polluted Military Soil Supported by Bioaugmentation with PGP-Trace Element Tolerant Bacteria Isolated from Helianthus petiolaris. Agronomy, 2020, 10, 204.	1.3	20
1671	Wild Plants for the Phytostabilization of Phosphate Mine Waste in Semi-Arid Environments: A Field Experiment. Minerals (Basel, Switzerland), 2021, 11, 42.	0.8	17
1672	Bacterial Augmented Floating Treatment Wetlands for Efficient Treatment of Synthetic Textile Dye Wastewater. Sustainability, 2020, 12, 3731.	1.6	29
1673	Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater. Sustainability, 2021, 13, 329.	1.6	24
1674	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	0.8	16
1675	Determination of Heavy Metal Contamination in Soil and Accumulation in Cassava (Manihot) Tj ETQq0 0 0 rgBT , Health Sciences, 2020, 4, 54-69.	Overlock 0.1	10 Tf 50 267 3
1676	Effect of concentration and exposure time on copper accumulation in Eichhornia crassipes (Mart.) Solms. (Pontederiaceae). Scientific Electronic Archives, 2017, 10, 56.	0.1	3
1677	A quick screening to assess the phytoextraction potential of cadmium and copper in Quercus pubescens plantlets. IForest, 2017, 10, 93-98.	0.5	2
1678	Preliminary results of the tolerance to inorganic contaminants and phytoextraction potential of twelve ornamental shrub species tested on an experimental contaminated site. IForest, 2018, 11, 442-448.	0.5	6
1679	Spatial and Temporal Changes of Heavy Metals in Coastal Mangrove Sediment in China: Review of Present Status. Journal of Biological Sciences, 2019, 19, 314-322.	0.1	7
1680	Metal Hyperaccumulator Plants and Environmental Pollution. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 305-317.	0.3	2

#	Article	IF	Citations
1681	Role of Plant Growth Promoting Bacteria (PGPB) for Bioremediation of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 104-125.	0.3	6
1682	Soil Bioremediation Techniques. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 35-50.	0.3	4
1683	Role of Plant Leaves in Removing Airborne Dust and Associated Metals on Beijing Roadsides. Aerosol and Air Quality Research, 2017, 17, 2566-2584.	0.9	17
1684	Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open Journal of Ecology, 2015, 05, 375-388.	0.4	145
1685	Heavy metal profiles of agricultural soils in Sakarya, Turkey. Environmental Engineering Research, 2019, 24, 427-433.	1.5	7
1687	Change in Soil Properties after Planting Giant Miscanthus. Journal of the Korean Society of Agricultural Engineers, 2013, 55, 69-75.	0.1	3
1688	Coexistence of diverse heavy metal pollution magnitudes: Health risk assessment of affected cattle and human population in some rural regions, Qena, Egypt. Journal of Advanced Veterinary and Animal Research, 2020, 7, 345.	0.5	5
1690	The effect of sewage sludge and BAF inoculant on plant condition and yield as well as biochemical and microbial activity of soil in willow (<i>Salix viminalis</i> L.) culture as an energy crop. PeerJ, 2019, 7, e6434.	0.9	7
1691	Evaluation of the Feasibility of Phytoremediation of Soils Contaminated with Cd, Pb and Zn using Sunflower, Corn and Castor plants. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2014, 47, 491-495.	0.1	4
1692	Phytoremediation of Heavy Metals from Water of Yamuna River by Tagetes patula, Bassica scoparia, Portulaca grandiflora. Asian Plant Research Journal, 0, , 1-14.	0.0	4
1693	Effect of soil treatment with heavy metals on the concentration of Na, K, and Cl in the shoot and root parts of fenugreek and spinach plants. AIP Conference Proceedings, 2021, , .	0.3	0
1694	Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	25
1695	One-Pot Synthesis of Some New <i>s</i> -Triazole Derivatives and Their Potential Application for Water Decontamination. ACS Omega, 2021, 6, 25574-25584.	1.6	7
1696	Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of the Total Environment, 2022, 809, 151099.	3.9	72
1697	Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries. Soil Systems, 2021, 5, 63.	1.0	7
1698	Advantages, risks and legal perspectives of GMOs in 2020s. Plant Biotechnology Reports, 2021, 15, 741-751.	0.9	9
1699	Microbial consortia for industrial waste bioremediation: an insight to related patents. International Journal of Environmental Analytical Chemistry, 2023, 103, 8441-8453.	1.8	1
1700	The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 2022, 75, 718-730.	1.0	7

#	Article	IF	CITATIONS
1701	Environmental concern, leachability and leaching modelling of fly ash and microbes: State-of-the-art review. Innovative Infrastructure Solutions, 2022, 7, 1.	1.1	0
1702	An Overview on Eco-friendly Remediation of Toxic Organic Contaminants from Textile Dyeing Industry Wastewater. Emerging Contaminants and Associated Treatment Technologies, 2022, , 425-456.	0.4	3
1703	Biostabilization techniques and applications in Civil Engineering: State-of-the-Art. Construction and Building Materials, 2021, 309, 125098.	3.2	7
1704	Phytoremediation and phytoextraction in Sub-Saharan Africa: Addressing economic and social challenges. Ecotoxicology and Environmental Safety, 2021, 226, 112864.	2.9	14
1705	Adsorption of cadmium onto illite modified by Bacillus mucilaginosus. , 2015, , .		0
1707	FitorremediaciÃ ³ n de mercurio a partir de elodea sp. IngenierÃas USBMed, 2015, 6, 42-45.	0.1	3
1708	Alterações morfofisiológicas da aplicação de metais pesados e alumÃnio em plantas jovens de seringueira. Revista Eletrônica CientÁfica Da UERGS, 2016, 2, 135-144.	0.6	1
1709	Vermicomposting Derived Liquids: Fertigation Potential in Urban Farming. International Journal of Agricultural Research, 2016, 11, 135-142.	0.0	1
1710	Effect of chelating agents on phytoextraction of Ni from contaminated Soil by Zea mays. Journal of Applied and Natural Science, 2016, 8, 1975-1980.	0.2	0
1711	Investigate the influence of halloysite and activated carbon mixtures in phytostabilization of Pb-contaminated soil with Lolium perenne L Annals of Warsaw University of Life Sciences, Land Reclamation, 2017, 49, 69-80.	0.2	0
1712	Chromium Removal from Water Using Spirodela polyrhiza. Asian Journal of Applied Sciences, 2017, 10, 145-150.	0.4	1
1713	Phytoremediation. , 2017, , 305-336.		0
1714	Phytotechnologies for Mine Site Rehabilitation. , 2017, , 203-213.		0
1715	Bioremediation of Environmental Pollutants. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 80-104.	0.3	0
1716	Prospective Sustainability of Utilization of Effective Techniques for Remediation of Heavy Metals From Textile Effluents. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 19-49.	0.3	1
1717	In Vitro Koşullarda Ceratophyllum demersum L.'un Krom (III) Akümülasyonunun Araştırılması. Kahramanmaraş Sütç¼ İmam Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	0.1	2
1718	Capabilities of Fe-Functionalized Biochar to Decrease Soil Pb and As Phytodisponibility. , 0, , .		0
1719	Role of mycorrhization in the phytoremediation of heavy metals in urban soils. Acta Horticulturae, 2018 311-314.	0.1	1

#	Article	IF	CITATIONS
1720	Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil. Current World Environment Journal, 2018, 13, 22-24.	0.2	0
1721	Toxicity, Eco-toxicity, and Phytoremediation of E-waste. Soil Biology, 2019, , 221-232.	0.6	0
1722	Fitoremedijacija – pregled stanja i perspektiva. Kemija U Industriji, 2019, 68, 447-456.	0.2	1
1723	Effects of Submerged Macrophyte Potamogeton crispus L. and Sediment Anaerobic Level on Porewater Properties of Heavy Metal Contaminated Sediment. Hans Journal of Soil Science, 2019, 07, 33-43.	0.0	0
1724	VAM-Assisted Adaptive Response and Tolerance Mechanism of Plants Under Heavy Metal Stress: Prospects for Bioremediation. , 2019, , 217-236.		1
1725	Synergism Between Microbes and Plants for Soil Contaminants Mitigation. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 101-134.	0.3	1
1726	Phytoremediation of Electronic Waste: A Mechanistic Overview and Role of Plant Secondary Metabolites. Soil Biology, 2019, , 233-252.	0.6	5
1727	Natural and Artificial Soil Amendments for the Efficient Phytoremediation of Contaminated Soil. Microorganisms for Sustainability, 2019, , 1-32.	0.4	3
1728	Risk Assessment of Trace Metals in Soils in the Vicinity of NPA Expressway Open Dump in Warri Metropolis, Delta State, Nigeria. Journal of Environmental Protection, 2019, 10, 562-576.	0.3	0
1729	Monitored Natural Attenuation Enhancements. , 2019, , 285-302.		Ο
1730	BIOPROSPECTION OF PISTIA STRATIOTES L. (ARACEAE): PROJECTION AND USE OF BIOTECHNOLOGICAL POTENTIAL. Revista GEINTEC, 2019, 9, .	0.2	0
1731	Phytoremediation: Role of Mycorrhiza in Plant Responses to Stress. , 2020, , 125-143.		0
1732	Trends in Phytomanagement of Aquatic Ecosystems and Evaluation of Factors Affecting Removal of Inorganic Pollutants from Water Bodies. , 2020, , 247-262.		0
1733	Phytoremediation of Heavy Metals/Metalloids by Native Herbaceous Macrophytes of Wetlands: Current Research and Perspectives. Springer Transactions in Civil and Environmental Engineering, 2020, , 261-284.	0.3	1
1734	Heavy Metal Accumulation in Wetland Plants and Water-Sediment Relationship in Köprüören-Kütahya. Journal of Limnology and Freshwater Fisheries Research, 0, , 76-82.	0.4	0
1735	Heavy metals, nitrates and radionuclides in milk of cows depending on their stress resistance. Regulatory Mechanisms in Biosystems, 2020, 10, 526-531.	0.5	1
1736	Phytoremediation of Lead: A Review. Radionuclides and Heavy Metals in Environment, 2020, , 171-202.	0.5	1
1737	Application of Definite Indices For Assessment of Some Heavy Metals Pollutants in surrounding Soils of Metal Recycling Companies in Sulaimani Governorate. Journal of Zankoy Sulaimani - Part A, 2020, 22, 197-216.	0.1	0

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1738	Comparative evaluation of phytoremediation potential of indian mustard (Brassica juncea) varieties under sewage irrigated sites. Journal of the Indian Society of Soil Science, 2020, 68, 450-457.	0.1	9
1739	Newer Approaches in Phytoremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 145-178.	0.3	0
1740	Genomics and Genetic Engineering to Develop Metal/Metalloid Stress-Tolerant Rice. , 2020, , 327-356.		0
1741	Heavy Metal Remediation in Wetlands. , 2020, , 1-27.		3
1742	Exploring the Interfaces between Ethnobiology and Ecotoxicology: A Novel Approach. Ethnobiology Letters, 2020, 11, 29-37.	0.5	1
1743	USE OF PERSPECTIVE VARIETIES OF BLACK CURRANT IN THE FORMATION OF PRODUCTS OF MEDICINAL AND PREVENTIVE PURPOSE. Innovacii I Prodovolʹstvennaâ Bezopasnostʹ, 2020, , 109-116.	0.1	0
1744	Artificial induction and isolation of cadmium-tolerant soil bacteria. Journal of Applied Biological Chemistry, 2020, 63, 125-129.	0.2	1
1745	A STUDY OF PHYSICAL AND ANATOMICAL CHARACTERISTICS OF THE HEAVY METAL ACCUMULATION OF JUNCUS RIGIDUS DESFONTAINES, 1798 (FAMILY, JUNCACEAE) IN BASRAH PROVINCE, SOUTHEREN OF IRAQ. Bulletin of the Iraq Natural History Museum, 2020, 16, 63-81.	0.1	0
1746	Bioaccumulation potential of In vitro regenerated plants of Ceratophyllum demersum against Chromium – A lab study. Asian Journal of Agriculture and Biology, 2020, 8, 233-239.	1.4	3
1747	Phytoremediation of Heavy Metals Using Some Selected Leguminous Crops. Journal of Advances in Biology & Biotechnology, 0, , 1-7.	0.2	0
1749	Effects of Root Bioaccumulation of Arsenic and Mercury on the Expression of the Nramp2b Gene in Prosopis Alba (Griseb). Journal of Biomedical Research & Environmental Sciences, 2020, 1, 055-063.	0.1	0
1750	Cadmium Toxicity in Plants: Recent Progress on Morpho-physiological Effects and Remediation Strategies. Journal of Soil Science and Plant Nutrition, 2022, 22, 212-269.	1.7	62
1751	Accumulation and Effect of Heavy Metals on the Germination and Growth of Salsola vermiculata L. Seedlings. Diversity, 2021, 13, 539.	0.7	12
1752	Nanobioremediation of heavy metals: Perspectives and challenges. Journal of Basic Microbiology, 2022, 62, 428-443.	1.8	12
1753	Perspectives on phytoremediation of zinc pollution in air, water and soil. Sustainable Chemistry and Pharmacy, 2021, 24, 100550.	1.6	8
1754	Phytoremediation of Contaminated Soils Using Trees. Nanotechnology in the Life Sciences, 2020, , 419-437.	0.4	0
1755	Rhizobacteria Versus Chelating Agents: Tool for Phytoremediation. Microorganisms for Sustainability, 2020, , 249-266.	0.4	0
1756	Ex-Situ Remediation of Heavy Metals Contaminated Soils Using Natural Aluminosilicate Minerals. IFMBE Proceedings, 2020, , 3-10.	0.2	0

ARTICLE IF CITATIONS Phytoremediation of Pollutants from Soil., 2020, , 155-161. 2 1757 Application of Eco-Compatibile Technology – Phytoremediation – Case Study with Phytoaccumulator Plantago lanceolata. Lecture Notes in Networks and Systems, 2020, , 770-778. 1759 Impact of Heavy Metal Contamination on Quality Environs., 2020, , 1-13. 1 Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils. Frontiers of Environmental Science and Engineering, 2021, 1760 15, 1. Chelate-assisted phytoextraction using Brassicaceae plants. Open Journal of Environmental Biology, 1761 0.1 0 2020, , 022-026. Kadmiyum ve NaCl Uygulamalarının Brokolinin (Brassica oleracea var. italica) Kuru Madde Verimi ile Cd ve Besin Elementi Alımları Üzerine Etkisi. Turkish Journal of Agricultural and Natural Sciences, 0, , . 0.1 Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, 1763 0.2 3 Application and Prospects. Microbiology and Biotechnology Letters, 2020, 48, 399-421. Effects of Heavy Metals with Different Concentrations on Some Biological Properties of Hyphantria 1764 cunea Drury (Lepidoptera: Arctiidae) Larvae. Journal of Anatolian Environmental and Animal Sciences, 0.2 1765 Role of Plant Growth Promoting Bacteria (PGPB) for Bioremediation of Heavy Metals., 2022, , 663-680. 1 Prospective Sustainability of Utilization of Effective Techniques for Remediation of Heavy Metals 1766 From Textile Effluents. , 2022, , 517-542 Phytoremediation: An alternative approach for removal of dyes., 2022, , 369-386. 1767 17 Ecotoxicity of nickel and its possible remediation., 2022, , 297-322. 1768 1769 Bioremediation of Environmental Pollutants., 2022, , 110-134. 0 Engineering plants for metal tolerance and accumulation., 2022, , 455-480. 1770 1771 Microbial-assisted phytoremediation., 2022, , 91-114. 8 An overview and assessment of the existing technological options for management and resource 1772 recovery from beach wrack and dredged sediments: An environmental and economic perspective. 28 Journal of Environmental Management, 2022, 302, 113971. A machine learning-enhanced biosensor for mercury detection based on an hydrophobin chimera. 1773 5.326 Biosensors and Bioelectronics, 2022, 196, 113696. 1774 Synergism Between Microbes and Plants for Soil Contaminants Mitigation., 2022, , 211-235.

#	Article	IF	CITATIONS
1775	Rhizoremediation of petroleum hydrocarbon–contaminated soils: A systematic review of mutualism between phytoremediation species and soil living microorganisms. , 2022, , 263-296.		10
1776	Economic feasibility of phytoremediation. , 2022, , 481-502.		4
1777	Soil Bioremediation Techniques. , 2022, , 195-210.		0
1778	Metal Hyperaccumulator Plants and Environmental Pollution. , 2022, , 681-693.		1
1779	Biomass amendments and phytoremediation of environmental pollutants. , 2022, , 139-162.		1
1780	Nano-phytoremediation for soil contamination: An emerging approach for revitalizing the tarnished resource. , 2022, , 115-138.		3
1781	Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency. Journal of Hazardous Materials, 2022, 424, 127442.	6.5	24
1782	Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Science of the Total Environment, 2022, 806, 150659.	3.9	12
1783	PHYTOREMEDIATION POTENTIAL OF LEMONGRASS (CYMBOPOGON FLEXUOSUS STAPF.) GROWN ON TANNERY SLUDGE CONTAMINATED SOIL. Applied Ecology and Environmental Research, 2020, 18, 7703-7715.	0.2	4
1784	Phytoextraction of Heavy Metals from Complex Industrial Waste Disposal Sites. Environmental Chemistry for A Sustainable World, 2020, , 341-371.	0.3	1
1785	Phytoremediation of Heavy Metals Using Salix (Willows). , 2020, , 161-174.		8
1786	Genetic Engineering to Reduce Toxicity and Increase Accumulation of Toxic Metals in Plants. , 2020, , 481-501.		1
1787	Fluoride Contaminated Groundwater. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 31-54.	0.3	0
1788	Phytoremediation of Metals by Aquatic Macrophytes. Concepts and Strategies in Plant Sciences, 2020, , 153-204.	0.6	15
1789	Effect of Plant Growth Promoting Bacteria (PGPB) on Phytoremdiation Technology. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 55-70.	0.3	0
1790	Heavy Metal-Contaminated Soils: Weeds as Potential Phytoremediation Agents—Issues and Prospects. Nanotechnology in the Life Sciences, 2020, , 179-190.	0.4	0
1791	Potential of Napier grass (Pennisetum purpureum Schumach.) for phytoremediation and biofuel production. , 2020, , 283-302.		1
1792	Biochar: A Sustainable Product for Remediation of Contaminated Soils. , 2020, , 787-799.		1

#	Article	IF	CITATIONS
1793	Effect of Heavy Metal Stress on Growth and Yields of Crop Plants: An Overview. Nanotechnology in the Life Sciences, 2020, , 57-67.	0.4	0
1794	Utilization of Aquatic Plants as Phytoremediation Agents of Tofu Liquid Waste. Asian Journal of Fisheries and Aquatic Research, 0, , 1-9.	0.0	0
1795	Phytoremediation Potential of Oilseed Crops for Lead- and Nickel-Contaminated Soil. , 2020, , 801-820.		3
1796	Wild Plants from Coastal Habitats as a Potential Resource for Soil Remediation. Soil Biology, 2020, , 121-144.	0.6	1
1797	Heavy Metal–Induced Gene Expression in Plants. , 2020, , 143-173.		5
1798	Phytomanagement of Metal(loid) Polluted Soil Using Barley and Wheat Plants. Nanotechnology in the Life Sciences, 2020, , 191-226.	0.4	0
1799	Halophytes. , 2020, , 1-16.		9
1800	Role of Phytochelatines (PCs) and Metallothionines (MTs) Genes Approaches in Plant Signalling. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 118-132.	0.3	0
1801	Phytormediation Efficiency Increased by Using Plant Growth Promoting Bacteria (PGPB) and Chelates. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 85-103.	0.3	0
1802	PHYTOTOXICITY TEST OF KEROSENE-CONTAMINATED SOIL USING BARLEY. Iraqi Journal of Agricultural Sciences, 2020, 51, .	0.1	0
1803	Verificación del método analÃŧico de espectroscopÃa de absorción atómica con horno de grafito para la cuantificación de cadmio en almendra de cacao (Theobroma cacao) Granja, 2020, 31, 46-60.	0.1	3
1804	Growth, protein expression and heavy metal uptake by tobacco under heavy metals contaminated soil. Pakistan Journal of Botany, 2020, 52, .	0.2	4
1806	Insight into the Influencing Mechanism of Endophytic Bacteria on the Adsorption of Heavy Metals by Plants: A Review. Science of Advanced Materials, 2021, 13, 1401-1414.	0.1	3
1807	Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. Journal of Hazardous Materials, 2022, 424, 127676.	6.5	19
1808	Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth. Environments - MDPI, 2021, 8, 120.	1.5	3
1809	Phytoremediation Potential of Crotalaria juncea Plants in Lead-Contaminated Soils. Journal of Agricultural Science, 2021, 13, 27.	0.1	1
1810	Abscisic acid-catabolizing bacteria: A useful tool for enhancing phytoremediation. Science of the Total Environment, 2022, 812, 151474.	3.9	13
1811	Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment. Applied Sciences (Switzerland), 2021, 11, 10348.	1.3	27

#	Article	IF	CITATIONS
1812	Antioxidant Enzyme Activities as Biomarkers of Cu and Pb Stress in Centella asiatica. Stresses, 2021, 1, 253-265.	1.8	13
1813	Vegetation drives the structure of active microbial communities on an acidogenic mine tailings deposit. PeerJ, 2020, 8, e10109.	0.9	16
1814	Facing Lethal Impacts of Industrialization via Green and Sustainable Microbial Removal of Hazardous Pollutants and Nanobioremediation. , 2021, , 133-160.		0
1817	Mechanisms and Approaches for the Removal of Heavy Metals from Acid Mine Drainage and Other Industrial Effluents. Environmental Chemistry for A Sustainable World, 2021, , 513-537.	0.3	1
1818	Nanotechnology for the Remediation of Heavy Metals and Metalloids in Contaminated Water. Environmental Chemistry for A Sustainable World, 2021, , 177-209.	0.3	0
1819	Effects of cadmium and lead on the growth and the activity of peroxidase and superoxide dismutase of blueberry plantlets in vitro. Biologia Plantarum, 0, 64, 784-788.	1.9	1
1820	Heavy metal phytoremediation: Potential and advancement. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 81-93.	0.2	0
1821	Phytoremediation: A Synergistic Interaction Between Plants and Microbes for Removal of Unwanted Chemicals/Contaminants. Rhizosphere Biology, 2021, , 199-222.	0.4	3
1822	Constructed Wetland and Microalgae: A Revolutionary Approach of Bioremediation and Sustainable Energy Production. , 2021, , 27-40.		1
1823	Phytoremediation Potential of Vetiver Grass (Vetiveria Zizanioides) in Two Mixed Heavy Metal Contaminated Soils from the Zoundweogo and Boulkiemde Regions of Burkina Faso (West Africa). Journal of Geoscience and Environment Protection, 2021, 09, 73-88.	0.2	4
1824	Microorganism. , 2022, , 175-193.		13
1825	Nanoremediation of toxic contaminants from the environment: challenges and scopes. , 2022, , 601-615.		1
1826	Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. Environmental Pollution, 2022, 293, 118510.	3.7	36
1827	Remedial technologies for future waste management. , 2022, , 305-322.		1
1828	Catalytic hydrogenolysis of As-enriched Pteris vittata L. into high quality biofuel and study on the migration of heavy metals. Fuel, 2022, 310, 122476.	3.4	2
1829	Prediction Models Founded on Soil Characteristics for the Estimated Uptake of Nine Metals by Okra Plant, Abelmoschus esculentus (L.) Moench., Cultivated in Agricultural Soils Modified with Varying Sewage Sludge Concentrations. Sustainability, 2021, 13, 12356.	1.6	4
1830	Remediation of Pb and Cd Polluted Soils with Fulvic Acid. Forests, 2021, 12, 1608.	0.9	6
1831	A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 2022, 291, 132979.	4.2	109

#	Article	IF	CITATIONS
1832	Phytoextraction of Cr(VI)-Contaminated Soil by Phyllostachys pubescens: A Case Study. Toxics, 2021, 9, 312.	1.6	10
1833	Public health implications of heavy metals in foods and drinking water in Ethiopia (2016 to 2020): systematic review. BMC Public Health, 2021, 21, 2114.	1.2	21
1834	Kosteletzkya pentacarpos: A Potential Halophyte Candidate for Phytoremediation in the Meta(loid)s Polluted Saline Soils. Plants, 2021, 10, 2495.	1.6	4
1835	Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. Toxics, 2021, 9, 304.	1.6	6
1836	Enhanced Phytoremediation of Soil Heavy Metal Pollution and Commercial Utilization of Harvested Plant Biomass: a Review. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	12
1837	A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Research, 2022, 103, 487-501.	3.0	44
1838	Detecting inorganic arsenic below WHO threshold limit; A comparative study of various sensors. International Journal of Environmental Analytical Chemistry, 2023, 103, 8890-8913.	1.8	7
1839	Phytoremediation of leachate contaminated soil: a biotechnical option for the bioreduction of heavy metals induced pollution in tropical landfill. Environmental Science and Pollution Research, 2022, 29, 22069-22081.	2.7	3
1840	Arsenic Enrichment, Heavy Metal Pollution and Associated Health Hazards in the Holocene Alluvial Plains of Southeast Punjab, India. Soil and Sediment Contamination, 2022, 31, 738-755.	1.1	3
1841	Heavy metal concentrations in floodplain soils of the Innerste River and in leaves of wild blackberries (Rubus fruticosus L. agg.) growing within and outside the floodplain: the legacy of historical mining activities in the Harz Mountains (Germany). Environmental Science and Pollution Research, 2022, 29, 22469-22482.	2.7	4
1842	Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biological Trace Element Research, 2022, 200, 4476-4492.	1.9	65
1843	A Mini-Review on the Co-growth and Interactions Among Microorganisms (Fungi and Bacteria) From Rhizosphere of Metal-Hyperaccumulators. Frontiers in Fungal Biology, 2021, 2, .	0.9	2
1844	Application of the dry and wet biomass of bryophytes for phytoremediation of metals: Batch experiments. Environmental Challenges, 2021, 5, 100382.	2.0	7
1845	Serendipita indica Mediated Drought and Heavy Metal Stress Tolerance in Plants. , 2021, , 181-194.		0
1846	Sources of Heavy Metals Pollution. Environmental Chemistry for A Sustainable World, 2021, , 419-454.	0.3	3
1847	Investigating cyanogen rich <i>Manihot esculenta</i> efficacy for Ru phytomining and application in catalytic reactions. RSC Advances, 2021, 12, 1165-1176.	1.7	2
1848	A review on nanobioremediation approaches for restoration of contaminated soil. Eurasian Journal of Soil Science, 2022, 11, 43-60.	0.2	12
1849	Removal of micropollutants from municipal wastewater by membrane bioreactors: Conventional membrane versus dynamic membrane. Journal of Environmental Management, 2022, 303, 114233.	3.8	12

1

Article	IF	CITATIONS
A re-assessment of metal pollution in the Dexing mining area in Jiangxi province, China: current status, hydro-geochemical controls, and effectiveness of remediation practices. International Journal of Environmental Science and Technology, 2022, 19, 10707-10722.	1.8	6
Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Goals. Pedosphere, 2022, 32, 198-210.	2.1	28
Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore. Environmental Pollution, 2022, 295, 118681.	3.7	9
Safe utilization of cadmium- and lead-contaminated farmland by cultivating a winter rapeseed/maize rotation compared with two phytoextraction approaches. Journal of Environmental Management, 2022, 304, 114306.	3.8	16
Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago) Tj ETQq0 0 0 r	gBT/Over 4.2	loင္ငန္တ 10 Tf 5(
Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 2022, 46, 102553.	2.6	51
Short Term Gold-Mine Tailings Exposure Induced Growth and Photosynthesis of Philippine Tung (Reutealis trisperma [Blanco]). Sains Malaysiana, 2020, 49, 2053-2063.	0.3	2
Comparison of different phytoremediation strategies for acid mine drainage (AMD). IOP Conference Series: Earth and Environmental Science, 2022, 963, 012040.	0.2	0
The effect of three types of aquatic plants on water purification and removal of cadmium under different salinity conditions in northwestern Iran. Journal of Water Supply: Research and Technology - AQUA, 2022, 71, 301-311.	0.6	1
	A re-assessment of metal pollution in the Dexing mining area in Jiangxi province, China: current status, hydro-geochemical controls, and effectiveness of remediation practices. International Journal of Environmental Science and Technology, 2022, 19, 10707-10722. Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Coals. Pedosphere, 2022, 32, 198-210. Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore. Environmental Pollution, 2022, 295, 118681. Safe utilization of cadmium- and lead-contaminated farmland by cultivating a winter rapeseed/maize rotation compared with two phytoextraction approaches. Journal of Environmental Management, 2022, 304, 114306. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago) Tj ETQq0 0 0 r Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 2022, 46, 102553. Short Term Gold-Mine Tailings Exposure Induced Growth and Photosynthesis of Philippine Tung (Reutealis trisperma [Blanco]). Sains Malaysiana, 2020, 49, 2053-2063. Comparison of different phytoremediation strategies for acid mine drainage (AMD). IOP Conference Series: Earth and Environmental Science, 2022, 963, 012040.	Are-assessment of metal pollution in the Dexing mining area in Jiangxi province, China: current status, hydro-geochemical controls, and effectiveness of remediation practices. International Journal of Environmental Science and Technology, 2022, 19, 10707-10722. 1.8 Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Goals. Pedosphere, 2022, 32, 198-210. 2.1 Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore. Environmental Pollution, 2022, 295, 118681. 3.7 Safe utilization of cadmium- and lead-contaminated farmland by cultivating a winter rapeseed/maize rotation compared with two phytoextraction approaches. Journal of Environmental Management, 2022, 304, 114306. 3.8 Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago) Tj ETQq0 0 0 rg&T_/Over 2.6 Short Term Gold-Mine Tailings Exposure Induced Growth and Photosynthesis of Philippine Tung (Reutealis trisperma [Blanco]). Sains Malaysiana, 2020, 49, 2053-2063. 0.3 Comparison of different phytoremediation strategies for acid mine drainage (AMD). IOP Conference Series: Earth and Environmental Science, 2022, 963, 012040. 0.2 The effect of three types of aquatic plants on water purification and removal of cadmium under different salinity conditions in northwestern Iran. Journal of Water Supply: Research and Technology 0.6 0.6

1859 Hi	gher plant	remediation t	to control	pollutants.	, 2022, ,	321-363
---------	------------	---------------	------------	-------------	-----------	---------

1860	Aquatic plant remediation to control pol	lution., 2022,, 365-397.
------	--	--------------------------

1861	Concentration and translocation of trace metals in Solidago gigantea in urban areas: a potential bioindicator. International Journal of Environmental Science and Technology, 2022, 19, 11729-11740.	1.8	6
1862	Production of Safer Vegetables from Heavy Metals Contaminated Soils: The Current Situation, Concerns Associated with Human Health and Novel Management Strategies. , 2022, , 301-312.		26
1863	Distribution and Characterization of Heavy Metal and Pollution Indices in Landfill Soil for Its Rehabilitation by Phytoremediation. Journal of Geoscience and Environment Protection, 2022, 10, 151-172.	0.2	1
1864	The impact of Vermicompost on Pisum sativum spp. Arvence L exposed to methylisothiazolinone. Biologia (Poland), 2022, 77, 1109-1119.	0.8	4
1865	Cu Dynamics in the Rhizosphere of Native Tropical Species: Assessing the Potential for Phytostabilization in Mining-Impacted Soils. Minerals (Basel, Switzerland), 2022, 12, 130.	0.8	2
1867	Potentially Toxic Elements' Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments - MDPI, 2022, 9, 11.	1.5	20
1868	Identification of <i>Nymphoides indica</i> and <i>Eichhornia crassipes</i> as Potential Plants for the Phytoremediation of Batik Wastewater. Key Engineering Materials, 0, 908, 361-366.	0.4	0

#	Article	IF	CITATIONS
1869	Removal of volatile organic compounds and heavy metals through the biological-based process. , 2022, , 45-64.		3
1870	Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro―and microphytes. Journal of Basic Microbiology, 2022, 62, 260-278.	1.8	25
1871	Metalliferous habitats and seed microbes affect the seed morphology and reproductive strategy of Arabidopsis halleri. Plant and Soil, 2022, 472, 175-192.	1.8	2
1873	Bioremediation of Tannery Effluent Contaminated Soil: A Green Approach. , 2022, , 283-300.		2
1874	Phytoremediation of fly ash: bioaccumulation and translocation of metals in natural colonizing vegetation on fly ash lagoons. , 2022, , 501-523.		1
1877	Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. International Journal of Phytoremediation, 2022, 24, 1310-1320.	1.7	9
1878	Phytoremediation: Background, Principle, and Application, Plant Species Used for Phytoremediation. Handbook of Environmental Chemistry, 2022, , 1.	0.2	0
1879	Environmental sustainability: Challenges and approaches. , 2022, , 243-270.		11
1880	Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN Applied Sciences, 2022, 4, 1.	1.5	15
1881	Advances in bioremediation of industrial wastewater containing metal pollutants. , 2022, , 163-177.		1
1882	Appraisal of nanotechnology for sustainable environmental remediation. , 2022, , 3-31.		0
1883	Lead tolerance and accumulation characteristics of three Hydrangea cultivars representing potential lead-contaminated phytoremediation plants. Horticulture Environment and Biotechnology, 2022, 63, 23-38.	0.7	9
1884	Stabilization of heavy metals in biochar derived from plants in antimony mining area and its environmental implications. Environmental Pollution, 2022, 300, 118902.	3.7	16
1885	Phytoremediator Potential of Ipomea asarifolia in Gold Mine Waste Treated with Iron Impregnated Biochar. Minerals (Basel, Switzerland), 2022, 12, 150.	0.8	1
1886	Willows: Cost-Effective Tools for Bioremediation of Contaminated Soils. , 2022, , 183-202.		1
1887	Bioremediation of Soil: An Overview. , 2022, , 1-16.		2
1888	Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction. Chemosphere, 2022, 294, 133842.	4.2	21
1889	Weed plants: A boon for remediation of heavy metal contaminated soil. , 2022, , 127-141.		1

#	Article	IF	CITATIONS
1890	Phytoremediation of trace elements from paper mill wastewater with Pistia stratiotes L.: Metal accumulation and antioxidant response. , 2022, , 523-537.		1
1891	Phytoremediation of heavy metals, metalloids, and radionuclides: Prospects and challenges. , 2022, , 253-276.		2
1892	Nanoparticles in biosensor development for the detection of pathogenic bacteria in water. , 2022, , 331-358.		5
1893	Ecological aspects of aquatic macrophytes for environmental pollution control: An eco-remedial approach. , 2022, , 497-523.		1
1894	Phytoremediation and environmental bioremediation., 2022,, 1-18.		0
1895	Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants. , 2022, , 19-49.		2
1896	Bamboo biochar greater enhanced Cd/Zn accumulation in Salix psammophila under non-flooded soil compared with flooded. Biochar, 2022, 4, 1.	6.2	16
1897	Phytoremediation of Heavy Metals Using Spinach (Amarantus spinosa) Grown on Contaminated Soils. African Journal of Environment and Natural Science Research, 2022, 5, 1-11.	0.1	0
1898	Bioaccumulation of heavy metals and As in maize (Zea mays L) grown close to mine tailings strongly impacts plant development. Ecotoxicology, 2022, 31, 447-467.	1.1	11
1899	The association between Pinus halepensis and the Ectomycorrhizal fungus Scleroderma enhanced the phytoremediation of a polymetal-contaminated soil. International Journal of Environmental Science and Technology, 2022, 19, 12537-12550.	1.8	2
1900	Uncovering the phytochemicals of root exudates and extracts of lead (Pb) tolerant Chrysopogon zizanioides (L.) Roberty in response to lead contamination and their effect on the chemotactic behavior of rhizospheric bacteria. Environmental Science and Pollution Research, 2022, 29, 44998-45012.	2.7	9
1901	Mercury in scarletina bolete mushroom (Neoboletus luridiformis): Intake, spatial distribution in the fruiting body, accumulation ability and health risk assessment. Ecotoxicology and Environmental Safety, 2022, 232, 113235.	2.9	5
1902	Evaluation of Nuphar lutea as bioindicator of metal pollution in freshwater ecosystems. Ecological Indicators, 2022, 136, 108633.	2.6	2
1903	Bioavailability, Accumulation and Distribution of Toxic Metals (As, Cd, Ni and Pb) and Their Impact on Sinapis alba Plant Nutrient Metabolism. International Journal of Environmental Research and Public Health, 2021, 18, 12947.	1.2	14
1904	Recent Developments in Microbe–Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Frontiers in Microbiology, 2021, 12, 731723.	1.5	30
1905	Screening of XanthiumÂstrumarium (IAPS) Growing on Abandoned Habitats in Khyber Pakhtunkhwa, Pakistan: Perspectives for Phytoremediation. Applied Sciences (Switzerland), 2021, 11, 11704.	1.3	7
1906	Evaluation of Cadmium Bioaccumulation-Related Physiological Effects in Salvinia biloba: An Insight towards Its Use as Pollutant Bioindicator in Water Reservoirs. Plants, 2021, 10, 2679.	1.6	6
1907	Phytoremediation of Heavy Metal Contaminated Soil and Water. , 2021, , 47-70.		1

#	Article	IF	CITATIONS
1908	Exploring the Potential of Plant Growth-Promoting Rhizobacteria (PGPR) in Phytoremediation. , 2021, , 467-484.		1
1911	Designer plants for climate-resilient phytoremediation. , 2022, , 227-274.		0
1912	Cd2+ Ion Adsorption and Reuse of Spent Adsorbent with N-Doped Carbon Nanoparticles Coated on Cerium Oxide Nanorods Nanocomposite for Fingerprint Detection. SSRN Electronic Journal, 0, , .	0.4	0
1913	Heavy Metal Uptake by Plant Parts of Populus Species: A Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
1915	Softwood Biochar and Eisenia Fetida (Savigny) Earthworms Promote Sorghum Bicolor Growth and the Immobilization of Potentially Toxic Elements in Contaminated Soils. SSRN Electronic Journal, 0, , .	0.4	0
1916	Green synthesized nanomaterials for greener environment. , 2022, , 385-413.		0
1917	Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. Journal of Fungi (Basel, Switzerland), 2022, 8, 176.	1.5	21
1918	Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics. Water (Switzerland), 2022, 14, 687.	1.2	1
1919	Nanotechnology: a novel and sustainable approach towards heavy metal stress alleviation in plants. Nanotechnology for Environmental Engineering, 2023, 8, 27-40.	2.0	13
1920	Sol-gel silica doped with 3-(2-naphthoyl)-1,1-dibutylselenourea, an efficient precursor for removal of Pb(II) and Zn(II) from water samples. International Journal of Environmental Analytical Chemistry, 2024, 104, 475-488.	1.8	1
1921	Study on the Application of Phytoremediation of Phosphate Content to Eutrophication in Cengklik Reservoir, Boyolali Regency. IOP Conference Series: Earth and Environmental Science, 2022, 986, 012075.	0.2	2
1922	Metallophores production by bacteria isolated from heavy metal-contaminated soil and sediment at Lerma–Chapala Basin. Archives of Microbiology, 2022, 204, 180.	1.0	3
1923	Cadmium-Tolerant Rhizospheric Bacteria of the C3/CAM Intermediate Semi-Halophytic Common Ice Plant (Mesembryanthemum crystallinum L.) Grown in Contaminated Soils. Frontiers in Plant Science, 2022, 13, 820097.	1.7	2
1924	Individual and Synergic Effects of Phosphorus and Gibberellic Acid on Organic Acids Exudation Pattern, Ultra-Structure of Chloroplast and Stress Response Gene Expression in Cu-Stressed Jute (Corchorus Capsularis L.). Journal of Plant Growth Regulation, 2023, 42, 1186-1211.	2.8	7
1925	Compost and microbial biostimulant applications improve plant growth and soil biological fertility of a grass-based phytostabilization system. Environmental Geochemistry and Health, 2023, 45, 787-807.	1.8	10
1926	The spatial–temporal impact on dissolved and particulate metals in Brunei Bay, Malaysia: Spectrometric and chemometrics approach. Marine Pollution Bulletin, 2022, 176, 113455.	2.3	1
1927	Cd and pb Co-Pollution Increased Ecological Risk and Changed Rhizosphere Characteristics of Arabidopsis Thaliana During Phytoremediation. Bulletin of Environmental Contamination and Toxicology, 2022, , 1.	1.3	0
1928	Field Studies on the Effect of Bioaugmentation with Bacillus amyloliquefaciens FZB42 on Plant Accumulation of Rare Earth Elements and Selected Trace Elements. Minerals (Basel, Switzerland), 2022, 12, 409.	0.8	5

#	Article	IF	CITATIONS
1929	Phytoremediation of cadmium-contaminated soils by Solanum nigrum L. enhanced with biodegradable chelating agents. Environmental Science and Pollution Research, 2022, 29, 56750-56759.	2.7	10
1930	Improving plant-based genotoxicity bioassay through AFLP technique for trace metal-contaminated water: insights from Myriophyllum aquaticum (Vell.) Verdc. and Cd. Environmental Science and Pollution Research, 2022, , 1.	2.7	1
1931	Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environmental Science and Pollution Research, 2022, 29, 40319-40341.	2.7	21
1932	A framework for soil microbial ecology in urban ecosystems. Ecosphere, 2022, 13, .	1.0	23
1933	Hemp Cultivation in Soils Polluted by Cd, Pb and Zn in the Mediterranean Area: Sites Characterization and Phytoremediation in Real Scale Settlement. Applied Sciences (Switzerland), 2022, 12, 3548.	1.3	6
1934	Foliar Spraying of Selenium Combined with Biochar Alleviates Cadmium Toxicity in Peanuts and Enriches Selenium in Peanut Grains. International Journal of Environmental Research and Public Health, 2022, 19, 3542.	1.2	7
1935	Understanding biochemical defense and phytoremediation potential of Leucas aspera in crude oil polluted soil. Environmental Science and Pollution Research, 2022, 29, 57579-57590.	2.7	8
1936	Resource recovery and freshwater ecosystem restoration — Prospecting for phytoremediation potential in wild macrophyte stands. Resources, Environment and Sustainability, 2022, 7, 100050.	2.9	3
1937	Potentially Toxic Metals in the High-Biomass Non-Hyperaccumulating Plant Amaranthus viridis: Human Health Risks and Phytoremediation Potentials. Biology, 2022, 11, 389.	1.3	3
1938	Phytoremediation of heavy metal pollution: Hotspots and future prospects. Ecotoxicology and Environmental Safety, 2022, 234, 113403.	2.9	47
1939	Transfer of Potentially Toxic Elements in the Soil-Plant System in Magnesite Mining and Processing Areas. Processes, 2022, 10, 720.	1.3	3
1940	Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon (PAHs)—a Review. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	22
1941	Gas Hydrate-Based Heavy Metal Ion Removal from Industrial Wastewater: A Review. Water (Switzerland), 2022, 14, 1171.	1.2	17
1943	Ectopic expression γ-glutamylcysteine synthetase of Vicia sativa increased cadmium tolerance in Arabidopsis. Gene, 2022, 823, 146358.	1.0	5
1944	Metallochaperones: A critical regulator of metal homeostasis and beyond. Gene, 2022, 822, 146352.	1.0	22
1945	Effect of monoethanolamine salt-containing dicarboxylic acid and plant growth regulators on the absorption and accumulation of mercury. Saudi Journal of Biological Sciences, 2022, 29, 3448-3455.	1.8	0
1946	Concentrations and isotopic analysis for the sources and transfer of lead in an urban atmosphere-plant-soil system. Journal of Environmental Management, 2022, 311, 114771.	3.8	9
1947	Soil contamination with permissible levels of lead negatively affects the community of plant-associated insects: A case of study with kale. Environmental Pollution, 2022, 304, 119143.	3.7	2

#	Article	IF	CITATIONS
1948	Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 2022, 8, 100203.	2.2	149
1949	Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 2022, 8, 100204.	2.2	33
1950	River morphology redistributes potentially toxic elements in acid mine drainage-impacted river sediments: Evidence, causes, and implications. Catena, 2022, 214, 106183.	2.2	5
1951	Industrial hemp (Cannabis sativa L.) for phytoremediation: Energy and environmental life cycle assessment of using contaminated biomass as an energy resource. Sustainable Energy Technologies and Assessments, 2022, 52, 102081.	1.7	6
1952	Biogeochemical cycling, tolerance mechanism and phytoremediation strategies of boron in plants: A critical review. Chemosphere, 2022, 300, 134505.	4.2	7
1953	The potency of Cassia siamea as phytostabilization in post-mining land reclamation. IOP Conference Series: Earth and Environmental Science, 2021, 882, 012072.	0.2	0
1954	Response of <i>Prosopis farcta</i> to gradually increased soil copper and cadmium levels based on an integrated investigation. International Journal of Phytoremediation, 2021, , 1-8.	1.7	0
1955	Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. International Journal of Phytoremediation, 2022, 24, 1141-1151.	1.7	5
1956	Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. Plants, 2021, 10, 2676.	1.6	5
1957	Scale-up of Mycorrhizal-Assisted Phytoremediation system from Technology Readiness Level 6 (Relevant Environment) to 7 (Operational Environment): Cost-benefits within a Circular Economy Context. , 0, , .		1
1958	Sweet sorghum for phytoremediation and bioethanol production. Journal of Leather Science and Engineering, 2021, 3, .	2.7	13
1959	Regression Models to Estimate Accumulation Capability of Six Metals by Two Macrophytes, Typha domingensis and Typha elephantina, Grown in an Arid Climate in the Mountainous Region of Taif, Saudi Arabia. Sustainability, 2022, 14, 1.	1.6	10
1960	Preparation of shrimp-based chitin blend with polyaniline for chromium (VI) removal from aqueous solution. Materials Today: Proceedings, 2022, 62, 6940-6944.	0.9	9
1961	Biodiversity of Root Endophytic Fungi from Oxyria sinensis Grown in Metal-Polluted and Unpolluted Soils in Yunnan Province, Southwestern China. Plants, 2021, 10, 2731.	1.6	2
1962	Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, 2022, 84, e252143.	0.4	21
1963	Nature-inspired ecotechnological approaches toward recycling and recovery of resources from wastewater. , 2022, , 101-145.		0
1964	Phytoremediation of micropollutants. , 2022, , 365-386.		0
1966	Asymmetric interaction and concurrent remediation of copper and atrazine by Acorus tatarinowii in an aquatic system. Journal of Hazardous Materials, 2022, 435, 128888.	6.5	5

#	Article	IF	CITATIONS
1967	Mixed-Ligand gold nanoparticles based optical sensor array for the recognition and quantification of seven toxic metals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 277, 121241.	2.0	1
1968	Phytoremediatiation of Metal and Metalloid Pollutants from Farmland: An <i>In-Situ</i> Soil Conservation. , 0, , .		1
1969	An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Frontiers in Microbiology, 2022, 13, 853407.	1.5	7
1970	Feasibility of Remediation of Heavy-Metal-Contaminated Marine Dredged Sediments by Active Capping with Enteromorpha Biochar. International Journal of Environmental Research and Public Health, 2022, 19, 4944.	1.2	3
1971	Influences of chemical treatment on sludge derived biochar; Physicochemical properties and potential sorption mechanisms of lead (II) and methylene blue. Journal of Environmental Chemical Engineering, 2022, 10, 107725.	3.3	16
1972	Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100694.	1.7	24
1973	Organic acids in conjunction with various oilseed sunflower cultivars promote Cd phytoextraction through regulating micro-environment in root zone. Industrial Crops and Products, 2022, 183, 114932.	2.5	7
1974	A mathematical model of Chenopodium album L. dynamics under copper-induced stress. Ecological Modelling, 2022, 469, 109967.	1.2	0
1986	Phytoremediation of Rare Tailings-Contaminated Soil. Journal of Renewable Materials, 2022, 10, 3351-3372.	1.1	3
1987	Environmental Friendly Technologies for Remediation of Toxic Heavy Metals: Pragmatic Approaches for Environmental Management. , 2022, , 199-223.		1
1988	Pollution and Wildlife Health. , 2022, , 177-186.		1
1989	Heavy Metal Phytoremediation Potential of Vetiver Grass and Indian Mustard Update on Enhancements and Research Opportunities. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	5
1990	Role of Phytoremediation in Enhancing Heavy Metals Tolerance: A Novel Biotechnological Approach. Current Biotechnology, 2022, 11, 94-106.	0.2	1
1992	Sustainable Treatment of Landfill Leachate Using Constructed Wetlands. , 2022, , 1006-1025.		0
1993	Are Fresh Water and Reclaimed Water Safe for Vegetable Irrigation? Empirical Evidence from Lebanon. Water (Switzerland), 2022, 14, 1437.	1.2	7
1994	Native Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon. Plants, 2022, 11, 1186.	1.6	11
1995	Throwing Copper Around: How Plants Control Uptake, Distribution, and Accumulation of Copper. Agronomy, 2022, 12, 994.	1.3	20
1996	Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics, 2022, 10, 231.	1.6	61

#	Article	IF	CITATIONS
1997	Foliar Application of Salicylic Acid and DA-6 on Swithgrass (<i>Panicum virgatum</i> L.) Grown in Pb-Contaminated Soil; Implications for Phytoextraction. Communications in Soil Science and Plant Analysis, 0, , 1-9.	0.6	1
1998	Identification and Analysis of bZIP Family Genes in Sedum plumbizincicola and Their Potential Roles in Response to Cadmium Stress. Frontiers in Plant Science, 2022, 13, 859386.	1.7	9
1999	Integrative Agronomic Paradigm for Efficient Phytoremediation of Metal-Contaminated Soil. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 246-266.	0.3	0
2000	Heavy Metals in Ground Water Affect the Human Health Global Challenge. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 139-158.	0.3	2
2001	Effects of supplementary nutrients (soil-nitrogen or foliar-iron) on switchgrass (<i>Panicum) Tj ETQq0 0 0 rgBT /O</i>	verlock 10 0.9) Tf 50 582

2002	Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. Biology, 2022, 11, 676.	1.3	31
2003	Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 2022, 303, 134788.	4.2	81
2004	Metal concentrations in wetland plant tissues influences transfer to terrestrial food webs. Ecotoxicology, 2022, , .	1.1	0
2005	Vertical fate of Cd in soil under phytoremediation by Indian mustard and tall fescue. International Journal of Phytoremediation, 2022, , 1-8.	1.7	0
2006	Genetic engineering of plants for phytoremediation: advances and challenges. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 12-30.	0.9	20
2007	Plants—Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. International Journal of Molecular Sciences, 2022, 23, 5031.	1.8	56
2008	Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. Plants, 2022, 11, 1255.	1.6	47
2009	Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in Microbiology, 2022, 13, .	1.5	62
2010	Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. Energies, 2022, 15, 3445.	1.6	9
2011	Influence of Clay Mineral Amendments Characteristics on Heavy Metals Uptake in Vetiver Grass (Chrysopogon zizanioides L. Roberty) and Indian Mustard (Brassica juncea L. Czern). Sustainability, 2022, 14, 5856.	1.6	5
2012	An overview on bioremediation technologies for soil pollution in E-waste dismantling areas. Journal of Environmental Chemical Engineering, 2022, 10, 107839.	3.3	11
2013	Cadmium phytoremediation potential of Brassica genotypes grown in Cd spiked Loamy sand soils: Accumulation and tolerance. Chemosphere, 2022, 302, 134842.	4.2	10
2014	Zero-valent iron nanoparticles and organic amendment assisted rhizoremediation of mixed contaminated soil using Brassica napus. Environmental Technology and Innovation, 2022, 28, 102621.	3.0	10

#	Article	IF	CITATIONS
2015	Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere, 2022, 302, 134900.	4.2	27
2016	Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake. Agronomy, 2022, 12, 1188.	1.3	2
2021	Environment and Green Technology. , 2022, , 111-129.		3
2023	Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes. Environments - MDPI, 2022, 9, 61.	1.5	4
2024	Bacterial biofertilizers for bioremediation: A priority for future research. , 2022, , 565-612.		1
2025	Sustainable phytoremediation of highly acidic mine spoil through economical valuable crop <i>Pelargonium graveolens</i> L. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	3
2026	Fabrication of Cross-Linked PMMA/SnO2 Nanocomposites for Highly Efficient Removal of Chromium (III) from Wastewater. Polymers, 2022, 14, 2101.	2.0	3
2027	Using spectral indices and terrain attribute datasets and their combination in the prediction of cadmium content in agricultural soil. Computers and Electronics in Agriculture, 2022, 198, 107077.	3.7	10
2028	Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. Science of the Total Environment, 2022, 838, 156128.	3.9	8
2029	First Report of the Hyperaccumulating Potential of Cadmium and Lead by Cleome rutidosperma DC. With a Brief Insight Into the Chemical Vocabulary of its Roots. Frontiers in Environmental Science, 2022, 10, .	1.5	2
2031	Role of SaPCR2 in Zn Uptake in the Root Elongation Zone of the Zn/Cd Hyperaccumulator Sedum alfredii. Life, 2022, 12, 768.	1.1	0
2032	Changes in Tillering, Nutritional Status and Biomass Yield of Panicum maximum Used for Cadmium Phytoextraction. Water, Air, and Soil Pollution, 2022, 233, .	1.1	0
2033	Leaf Functional Traits of Invasive Grasses Conferring High-Cadmium Adaptation Over Natives. Frontiers in Plant Science, 2022, 13, .	1.7	6
2034	Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Science of the Total Environment, 2022, 838, 156435.	3.9	42
2035	Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Science of the Total Environment, 2022, 838, 156417.	3.9	123
2036	Phytoextraction by Moso Bamboo under high level chromium stress in mediterranean conditions. Journal of Environmental Management, 2022, 317, 115479.	3.8	2
2037	Multi-element Simultaneous sensitization of solution cathode glow discharge atomic emission spectrometry by using portable semiconductor anode refrigeration. Talanta, 2022, 248, 123638.	2.9	6
2038	Rhizobacteria helps to explain the enhanced efficiency of phytoextraction strengthened by Streptomyces pactum. Journal of Environmental Sciences, 2023, 125, 73-81.	3.2	6

#	Article	IF	CITATIONS
2040	Emerging issues and challenges for microbes-assisted remediation. , 2022, , 47-89.		1
2041	Phytoremediation: Progress, potential, and prospects. , 2022, , 1-27.		0
2042	Genetically engineered bacteria: a novel technique for environmental decontamination. , 2022, , 181-208.		1
2043	Knowledge Mapping of the Phytoremediation of Cadmium-Contaminated Soil: A Bibliometric Analysis from 1994 to 2021. International Journal of Environmental Research and Public Health, 2022, 19, 6987.	1.2	5
2044	Influence of Brevibacillus borestelensis strains on phytoremediation potential and biomolecules contents of Jatropha curcas on diluted chromium sludge soil. Chemosphere, 2022, 305, 135345.	4.2	2
2045	An effective planting model to decrease cadmium accumulation in rice grains and plants: Intercropping rice with wetland plants. Pedosphere, 2023, 33, 355-364.	2.1	5
2046	Hartliella txitongensis (Linderniaceae), a new species from Mozambique. Kew Bulletin, 0, , .	0.4	0
2047	Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry. Sustainability, 2022, 14, 6975.	1.6	2
2048	Phytoextraction of heavy metals from tannery sludge: A cleaner approach. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	7
2049	Evaluation of phytoremediation potential of aromatic plants: A systematic review. Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 31, 100405.	0.9	5
2050	Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosphere, 2022, 305, 135457.	4.2	86
2051	Recovery of microelements from municipal sewage sludge by reed canary grass and giant miscanthus. International Journal of Phytoremediation, 2023, 25, 441-454.	1.7	9
2052	Effect of Mining on Heavy Metals Toxicity and Health Risk in Selected Rivers of Ghana. , 0, , .		2
2053	Aided Phytoremediation in Fire-Affected Forest Soil. Fire, 2022, 5, 82.	1.2	0
2054	Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. Sustainability, 2022, 14, 7266.	1.6	8
2055	Sequestration of heavy metals in soil aggregates induced by glomalin-related soil protein: A five-year phytoremediation field study. Journal of Hazardous Materials, 2022, 437, 129445.	6.5	14
2056	Cd2+ ion adsorption and re-use of spent adsorbent with N-doped carbon nanoparticles coated on cerium oxide nanorods nanocomposite for fingerprint detection. Chemical Physics Impact, 2022, 5, 100083.	1.7	13
2057	Growth and tolerance of Ilex paraguariensis A. StHil. inoculated with ectomycorrhizal fungi in copper-contaminated soil. Brazilian Journal of Environmental Sciences (Online), 2022, 57, 343-351.	0.1	Ο

ARTICLE IF CITATIONS Environmental and Health Effects of Heavy Metals and Their Treatment Methods. Emerging 2060 0.4 1 Contaminants and Associated Treatment Technologies, 2022, , 143-175. Role of legumes in phytoremediation of heavy metals., 2022, , 345-360. 2063 Effect of Metals or Trace Elements on Wheat Growth and Its Remediation in Contaminated Soil. 2064 2.8 21 Journal of Plant Growth Regulation, 2023, 42, 2258-2282. Phytoremediation of indoor formaldehyde by plants and plant material. International Journal of 2065 Phytoremediation, 2023, 25, 493-504. Phytoremediation of Heavy Metals Contaminated Soil Samples Obtained from Mechanic workshop and 2066 0.7 3 Dumpsite Using Amaranthus spinosus. Scientific African, 2022, , e01278. Antimony toxicity in soils and plants, and mechanisms of its alleviation. Environmental and 2067 24 Experimental Botany, 2022, 202, 104996. Spatio-temporal variation and assessment of trace metal contamination in sediments along the Lom 2068 River in the gold mining site of Gankombol (Adamawa Cameroon). Environmental Earth Sciences, 2022, 1.34 81, . New methodology for assessing the environmental efficiency of transport: Application to the 2069 3.9 valorization of biomass from phytoremediation. Science of the Total Environment, 2022, , 157434. Comparative remediation rate of biostimulation, bioaugmentation, and phytoremediation in 2070 hydrocarbon contaminants. International Journal of Environmental Science and Technology, 2022, 19, 1.8 11 11561-11586. Effects of 15-Year-Old Plantation on Soil Conditions, Spontaneous Vegetation, and the Trace Metal 2071 0.8 Content in Wood Products at Kipushi Tailings Dam. Frontiers in Soil Science, 0, 2, . Thinking for the future: Phytoextraction of cadmium using primed plants for sustainable soil cleanâ€up. 2072 7 2.6 Physiologia Plantarum, 2022, 174, . Response of Cajanus cajan to excess copper in the soil: tolerance and biomass production. Physiology 1.4 and Molecular Biology of Plants, 2022, 28, 1335-1345. Contribution of Artificially Synthetized Phytochelatin Encoded by the Gene PPH6HIS to Increase the 2074 0.5 4 Phytoremediative Qualities of Tobacco Plants. Russian Journal of Plant Physiology, 2022, 69, . Cadmium-Rich Plant Powder/PAN/PU Foams with Low Thermal Conductivity. Polymers, 2022, 14, 2893. Long-Term Effects of Copper Mine Tailings on Surrounding Soils and Sclerophyllous Vegetation in 2076 1.1 4 Central Chile. Water, Air, and Soil Pollution, 2022, 233, . Chromium phytoextraction using <i>Phyllostachys pubescens</i> (Moso Bamboo). International Journal of Phytoremediation, 2023, 25, 621-629. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. 2078 4.2 13 Chemosphere, 2022, 306, 135581. A novel phytoremediation technology for polluted cadmium soil: Salix integra treated with 2079 4.2 spermidine and activated carbon. Chemosphere, 2022, 306, 135582.

#	Article	IF	CITATIONS
2080	Enantioselectivity and mechanisms of chiral herbicide biodegradation in hydroponic systems. Chemosphere, 2022, 307, 135701.	4.2	3
2081	Phytoremediation potential of Gossypium hirsutum on abandoned polluted chromium sludge soil with the amalgamation of Streptomyces tritici D5. Chemosphere, 2022, 306, 135526.	4.2	4
2082	Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 2022, 214, 113821.	3.7	81
2083	Health Risk Assessment of Heavy Metals in Archaeological Soils of Tappe Rivi Impacted by Ancient Anthropogenic Activity. Chemistry Africa, 0, , .	1.2	6
2084	Psidium guajava (L.)—a Bioeconomic Plant for Restoration of Industrial Solid Waste Dump: a Green and Sustainable Approach. Water, Air, and Soil Pollution, 2022, 233, .	1.1	1
2085	Risk assessment of potential toxic metal pollution in water-sediment-submerged macrophyte systems: a case study of urban shallow lakes in Central China. Aquatic Ecology, 2022, 56, 1001-1017.	0.7	1
2086	The interactions of Cr (VI) concentrations and amendments (biochar and manure) on growth and metal accumulation of two species of Salicornia in contaminated soil. Environmental Science and Pollution Research, 2023, 30, 201-218.	2.7	3
2087	Enhanced Cadmium Phytoextraction by Rapeseed (Brassica Napus) Under Future Climate Conditions as a Consequence of Better Photosynthetic Performance. SSRN Electronic Journal, 0, , .	0.4	Ο
2088	Bacterial-mediated phytoremediation of heavy metals. , 2022, , 147-164.		0
2089	Metal polluted soil detoxification using phytoremediation technology. , 2022, , 243-260.		Ο
2090	Phytoremediation of metals: Bioconcentration and translocation factors. , 2022, , 19-37.		1
2091	Seed germination, initial growth and leaf anatomy of seedlings of four tree species grown in mine tailings in Brazil. Seed Science Research, 2022, 32, 104-113.	0.8	1
2092	Silicon reduces zinc absorption and triggers oxidative tolerance processes without impacting growth in young plants of hemp (Cannabis sativa L.). Environmental Science and Pollution Research, 2023, 30, 943-955.	2.7	2
2093	Mechanisms underlying cereal/legume intercropping as nature-based biofortification: A review. Food Production Processing and Nutrition, 2022, 4, .	1.1	4
2094	Nakedâ€eye colorimetric and optical assay of heavy metals based on nanoâ€architectured prototype of organically functionalized mesoporous titania grafted with 4â€chloroâ€2â€(4′â€methylâ€benzothiazolâ€2â€?â€ylazo)â€phenol. Applied Organometallic Chemistry, 0, , .	1.7	0
2095	Phytoremediation of 137Cs: factors and consequences in the environment. Radiation and Environmental Biophysics, 2022, 61, 341-359.	0.6	2
2097	Environmental Risk Assessment of Metal Contamination of Agricultural Soils along Major Roads of Two Peri – Urban Areas in Nasarawa State, North Central, Nigeria. Journal of Multidisciplinary Applied Natural Science, 0, , .	1.6	0
2098	Unveiling the Potential Tolerance and Physiological Response Mechanisms of Wheat after Exposure to Nickel in a Soil–Plant System. ACS Agricultural Science and Technology, 2022, 2, 941-949.	1.0	2

#	Article	IF	CITATIONS
2099	Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Environmental Science and Pollution Research, 0, , .	2.7	4
2100	Simulated herbivory enhances Cd phytoextraction efficiency of sunflowers. Plant and Soil, 0, , .	1.8	0
2101	Heavy Metal Stress–Induced Activation of Mitogen-Activated Protein Kinase Signalling Cascade in Plants. Plant Molecular Biology Reporter, 0, , .	1.0	3
2102	Insights on the advanced separation processes in water pollution analyses and wastewater treatment – A review. South African Journal of Chemical Engineering, 2022, 42, 188-200.	1.2	9
2103	Soil Pollution and Plant Efficiency Indices for Phytoremediation of Heavy Metal(loid)s: Two-Decade Study (2002–2021). Metals, 2022, 12, 1330.	1.0	10
2104	Human health risks associated with metals in paddy plant (Oryza sativa) based on target hazard quotient and target cancer risk. Environmental Geochemistry and Health, 2023, 45, 2309-2327.	1.8	3
2106	Wastewater Application in Agriculture-A Review. Water, Air, and Soil Pollution, 2022, 233, .	1.1	5
2107	A suitable deterministic modeling approach of urban stormwater nutrient, metal and organic pollutant removal in plant biofiltration. Urban Water Journal, 2022, 19, 975-991.	1.0	1
2108	Remediation of heavy metal(loid) contaminated soil through green nanotechnology. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	15
2109	Physiological and biochemical characterization of copper-toxicity tolerance mechanism in grass species native to Pampa Biome and Atlantic Forest for use in phytoremediation. Environmental Science and Pollution Research, 2023, 30, 5076-5088.	2.7	2
2110	An AHP-based evaluation system applied for phytoremediation method selection in heavy metal contaminated farmland. Journal of Hazardous Materials Advances, 2022, 7, 100138.	1.2	0
2111	Recent progress on sustainable phytoremediation of heavy metals from soil. Journal of Environmental Chemical Engineering, 2022, 10, 108482.	3.3	37
2112	Cosmopolitan cadmium hyperaccumulator Solanum nigrum: Exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. Journal of Environmental Management, 2022, 320, 115878.	3.8	10
2113	Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 2022, 183, 106740.	1.6	39
2114	Application of biochar-immobilized Bacillus sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant. Chemosphere, 2022, 307, 136084.	4.2	16
2115	Study on the Effectiveness and Mechanism of Mercapto-Modified Attapulgite for Remediation of Cadmium-Contaminated Paddy Soil. Water, Air, and Soil Pollution, 2022, 233, .	1.1	0
2116	Effects of lead pollution on bacterial communities in biofilm attached to submerged plants. Water Science and Technology, 2022, 86, 1358-1372.	1.2	1
2117	Rhizoremediation of Cd-contaminated soil using Zea mays Sturt, with heavy metal resistant rhizobacteria that alleviate Cd-induced stress in plant. Environmental Sustainability, 2022, 5, 375-387.	1.4	1

#	Article	IF	CITATIONS
2118	Evaluation of groundwater suitability in the Cretaceous Abeokuta Formation, Nigeria: Implications for water supply and public health. Groundwater for Sustainable Development, 2022, 19, 100845.	2.3	5
2119	The emerging potential of natural and synthetic algae-based microbiomes for heavy metal removal and recovery from wastewaters. Environmental Research, 2022, 215, 114238.	3.7	11
2120	The impact of tritium phytoremediation on plant health as measured by fluorescence. Journal of Environmental Radioactivity, 2022, 255, 107018.	0.9	2
2121	Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. Journal of Agriculture and Food Research, 2022, 10, 100374.	1.2	13
2122	Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress. Journal of Hazardous Materials, 2023, 441, 129843.	6.5	23
2123	Role of microorganism in phytoremediation of mine spoiled soils. , 2022, , 379-400.		0
2124	Application of phytoremediated biomass for the production of biogas. , 2022, , 315-338.		0
2125	Soil heavy metal pollution: impact on plants and methods of bioremediation. , 2022, , 73-84.		1
2126	Phytoremediation: A Sustainable Solution to Combat Pollution. , 2022, , 237-257.		0
2127	Phytoremediation using arbuscular mycorrhizal fungi. , 2022, , 73-92.		0
2128	Background level, occurrence, speciation, bioavailability, uptake detoxification mechanisms and management of Mn-polluted soil. , 2022, , 61-80.		0
2129	Integrated phytoremediation approaches for abatement of aquatic pollution and element recovery. , 2022, , 39-64.		0
2130	Biodegradation of Pollutants. , 2022, , 1-27.		0
2131	Cd in the environment: uptake, toxicity and management. , 2022, , 283-300.		1
2132	Phytoremediation potential of genetically modified plants. , 2022, , 85-100.		0
2133	Microbial augmented phytoremediation with improved ecosystems services. , 2022, , 27-62.		1
2134	Biodegradation for Metal Extraction. , 2022, , 1-36.		0
2135	Strategies for Heavy Metals Remediation from Contaminated Soils and Future Perspectives. Environmental Science and Engineering, 2022, , 615-644.	0.1	4

щ		IF	CITATIONS
# 2136	ARTICLE Role of Pb-solubilizing and plant growth-promoting bacteria in Pb uptake by plants. , 2022, , 231-270.	IF	CITATIONS
2130	Kole of Po-solubilizing and plant growth-promoting bacteria in Po uptake by plants. , 2022, , 231-270.		0
2137	Metals and metalloids stress in plants: microorganisms and phytoremediation based mitigation strategies. , 2022, , 445-484.		2
2138	Overview of phytoremediation techniques for the assessment of metal(loid)s. , 2022, , 1-14.		0
2139	CRISPR/Cas-Mediated Functional Gene Editing for Improvement in Bioremediation: An Emerging Strategy. , 2022, , 635-664.		1
2140	Physiological mechanism associated with hyperaccumulation in plants in protection against metal stress. , 2022, , 159-184.		0
2141	Plant growth promoting bacteria (PGPB): applications and challenges in bioremediation of metal and metalloid contaminated soils. , 2022, , 485-500.		2
2142	Phytoremediation and Therapeutic Potential of Neglected Plants: An Invasive Aquatic Weeds and Ornamental Plant. , 2022, , 259-290.		1
2143	Combinatorial genetic engineering approaches in phytoremediation of pollutants. , 2022, , 55-71.		0
2144	Growth and biochemical responses of vetiver grass (Vetiveria zizanioides) to magnetized water and Pb. , 2022, 92, 643-647.		0
2145	Recent trends in bioremediation of heavy metals. , 2023, , 23-53.		0
2146	Recent advances in bioremediation by metagenomics-based approach for pharmaceutical derived pollutants. , 2023, , 55-80.		1
2147	Response of Castor Seedling Roots to Combined Pollution of Cd and Zn in Soils. Sustainability, 2022, 14, 10702.	1.6	0
2148	The Tolerance, Absorption, and Transport Characteristics of Macleaya cordata in Relation to Lead, Zinc, Cadmium, and Copper under Hydroponic Conditions. Applied Sciences (Switzerland), 2022, 12, 9598.	1.3	4
2149	Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Frontiers in Microbiology, 0, 13, .	1.5	10
2150	Tobacco as an efficient metal accumulator. BioMetals, 2023, 36, 351-370.	1.8	12
2151	Physiological and biochemical responses of Brassica napus L. cultivars exposed to Cd stress. Plant, Soil and Environment, 2022, 68, 431-440.	1.0	2
2152	Biochar Shifts the Negative Effect of N Addition on Lotus corniculatus L. Growth in TEs Contaminated Soil, Regardless of Exogenous Arbuscular Mycorrhizal Fungi Inoculation. Journal of Soil Science and Plant Nutrition, 2022, 22, 4883-4896.	1.7	1
2153	Plant–Microorganism Interactions Remediate Heavy Metal-contaminated Ecosystems. , 2022, , 492-504.		0

#	Article	IF	CITATIONS
2154	Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. Journal of Cleaner Production, 2022, 379, 134043.	4.6	84
2155	Heavy metal pollution decreases the stability of microbial co-occurrence networks in the rhizosphere of native plants. Frontiers in Environmental Science, 0, 10, .	1.5	4
2156	Bioremediation techniques for heavy metal and metalloid removal from polluted lands: a review. International Journal of Environmental Science and Technology, 0, , .	1.8	0
2157	Land use and cover change (LUCC) impacts on Earth's eco-environments: Research progress and prospects. Advances in Space Research, 2023, 71, 1418-1435.	1.2	3
2158	Arbuscular Mycorrhizal Fungi (AMF) in Optimizing Nutrient Bioavailability and Reducing Agrochemicals for Maintaining Sustainable Agroecosystems. , 0, , .		6
2159	The effect of soil types on the phytoremediation of heavy metals by Phragmites australis. Journal of Environmental Engineering and Science, 0, , 1-8.	0.3	0
2160	Effect of Novosphingobium sp. CuT1 inoculation on the rhizoremediation of heavy metal- and diesel-contaminated soil planted with tall fescue. Environmental Science and Pollution Research, 2023, 30, 16612-16625.	2.7	7
2161	Stabilization mechanism of Pb with an amino- and mercapto-polymer to assist phytoremediation. Journal of Hazardous Materials, 2023, 442, 130139.	6.5	6
2162	Understanding the Effect of Irrigation with Chromium Loaded Tannery Effluent on Ocimum basilicum L. vis-a-vis Metal Uptake. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 747-756.	1.3	2
2163	Seaweed extracts as promising biostimulants for enhancing lead tolerance and accumulation in tomato (Solanum lycopersicum). Journal of Applied Phycology, 2023, 35, 459-469.	1.5	6
2164	Heavy Metal Transporters, Phytoremediation Potential, and Biofortification. , 2022, , 387-405.		1
2165	Phytoremediation and Biofortification: Contrasting yet Similar Approaches of Manipulating Plant Metal(loid) Homeostasis for Societal Benefit. , 2022, , 407-454.		0
2166	Phytoextraction of anthropogenic heavy metal contamination of the Blesbokspruit wetland: Potential of wetland macrophytes. Journal of Contaminant Hydrology, 2023, 253, 104101.	1.6	3
2167	Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life, 2022, 12, 1634.	1.1	23
2168	Can Urban Grassland Plants Contribute to the Phytoremediation of Soils Contaminated with Heavy Metals. Molecules, 2022, 27, 6558.	1.7	0
2169	Phytoremediating a Wastewater-Irrigated Soil Contaminated with Toxic Metals: Comparing the Efficacies of Different Crops. Soil Systems, 2022, 6, 77.	1.0	4
2170	Assessment of heavy metal concentration in Shallabugh wetland, Kashmir Himalaya. International Journal of Energy and Water Resources, 0, , .	1.3	0
2171	Proteomic analysis of T. qataranse exposed to lead (Pb) stress reveal new proteins with potential roles in Pb tolerance and detoxification mechanism. Frontiers in Plant Science, 0, 13, .	1.7	0

#	Article	IF	Citations
2172	Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing. Frontiers in Plant Science, 0, 13, .	1.7	1
2173	Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. Frontiers in Plant Science, 0, 13, .	1.7	3
2174	Influence of mangrove forestation on heavy metals accumulation and speciation in sediments and phytoremediation capacity of mangrove species of an artificial managed coastal Lagoon at Xiamen in China. Chemistry and Ecology, 2023, 39, 1-23.	0.6	3
2175	Effects of different water conditions on the cadmium hyperaccumulation efficiency of Rorippa sylvestris (L.) Besser and Rorippa amphibia Besser. Environmental Science and Pollution Research, 2023, 30, 20970-20979.	2.7	1
2176	Urban surface water quality and the potential of phytoremediation to improve water quality in peri-urban and urban areas in sub-Saharan Africa – a review. Water Science and Technology: Water Supply, 2022, 22, 8372-8404.	1.0	1
2177	Application of Salvinia sps. in remediation of reactive mixed azo dyes and Cr (VI) - Its pathway elucidation. Environmental Research, 2023, 216, 114635.	3.7	4
2178	The Willingness and Technology Preferences of Farmers and Their Influencing Factors for Soil Remediation. Land, 2022, 11, 1821.	1.2	3
2179	Use of Parthenium hysterophorus with synthetic chelator for enhanced uptake of cadmium and lead from contaminated soils—a step toward better public health. Frontiers in Public Health, 0, 10, .	1.3	6
2180	Nickel in the Environment: Bioremediation Techniques for Soils with Low or Moderate Contamination in European Union. Environments - MDPI, 2022, 9, 133.	1.5	10
2181	Physiological Responses and Tolerance of Halophyte Sesuvium portulacastrum L. to Cesium. Advances in Agriculture, 2022, 2022, 1-7.	0.3	1
2182	A Metagenomic Assessment of Soil Microbial Communities in a Coal Mine Spoil Dump Under Reclaimed Vegetation in La Guajira, Colombia. Journal of Soil Science and Plant Nutrition, 2022, 22, 4377-4390.	1.7	1
2183	Enhanced photoluminescence and color tuning from Rhodamine 6G-doped sol–gel glass matrix via DNA templated CdS nanoparticles. AlP Advances, 2022, 12, .	0.6	4
2184	Application for Ecological Restoration of Contaminated Soil: Phytoremediation. International Journal of Environmental Research and Public Health, 2022, 19, 13124.	1.2	10
2185	A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals. Agronomy, 2022, 12, 2587.	1.3	5
2186	Uptake of lead and zinc from soil by blackberry plants (Rubus fruticosus L. agg.) and translocation from roots to leaves. Environmental Advances, 2022, 9, 100313.	2.2	5
2187	Promising strategies of circular bioeconomy using heavy metal phytoremediated plants – A critical review. Chemosphere, 2023, 313, 137097.	4.2	7
2188	Lactic acid bacteria promoted soil quality and enhanced phytoextraction of Cd and Zn by mustard: A trial for bioengineering of toxic metal contaminated mining soils. Environmental Research, 2023, 216, 114646.	3.7	13
2189	Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content. Journal of Environmental Management, 2023, 325, 116627.	3.8	13

#	Article	IF	Citations
2190	Effects of intercropping ryegrass with hollyhock and inoculation with Bacillus thuringiensis on enhancing phytoremediation of Cd-contaminated soils. Chemosphere, 2023, 311, 136974.	4.2	9
2191	Process analysis of asymmetric interaction between copper and atrazine in a system of macrophytes. Science of the Total Environment, 2023, 857, 159652.	3.9	1
2192	Biochar and Eisenia fetida (Savigny) promote sorghum growth and the immobilization of potentially toxic elements in contaminated soils. Applied Soil Ecology, 2023, 182, 104697.	2.1	7
2193	Phytoaccumulation Potential of Three Endogenous Poaceae Species Grown on the Akouedo Landfill (Abidjan, Côte d'Ivoire). Journal of Environmental Protection, 2022, 13, 779-796.	0.3	1
2194	Heavy Metal Toxicity and Phytoremediation by the Plants of Brassicaceae Family: A Sustainable Management. Environmental Contamination Remediation and Management, 2022, , 237-264.	0.5	0
2195	Medicinal and Aromatic Plant Species with Potential for Remediation of Metal(loid)-Contaminated Soils. Environmental Contamination Remediation and Management, 2022, , 173-236.	0.5	2
2196	The active ruthenium (101) crystal plane selectively exposed by <i>in situ</i> metal hyperaccumulation on a living plant for overall water splitting. Green Chemistry, 2022, 24, 9668-9676.	4.6	4
2197	Management and Remediation of Polluted Soils Using Fertilizer, Sawdust and Horse Manure Under Changing Tropical Conditions. Water Science and Technology Library, 2022, , 205-232.	0.2	0
2198	A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere, 2023, 312, 137099.	4.2	19
2199	A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environmental Advances, 2022, 9, 100319.	2.2	18
2200	Comparative Evaluation of Technologies at a Heavy Metal Contaminated Site: The Role of Feasibility Studies. Environments - MDPI, 2022, 9, 139.	1.5	2
2201	S-Methylmethionine Effectively Alleviates Stress in Szarvasi-1 Energy Grass by Reducing Root-to-Shoot Cadmium Translocation. Plants, 2022, 11, 2979.	1.6	0
2202	Bioremediation of heavy metal polluted soil using plant growth promoting bacteria: an assessment of response. Bioremediation Journal, 0, , 1-20.	1.0	2
2203	Effect of Exogenous Plant Debris and Microbial Agents on Phytoremediation of Copper-Contaminated Soil in Shanghai. Plants, 2022, 11, 3056.	1.6	0
2204	Recycling phosphogypsum in road construction materials and associated environmental considerations: A review. Heliyon, 2022, 8, e11518.	1.4	14
2205	Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 2022, 26, 101569.	2.4	18
2206	Bibliometrics-Based: Trends in Phytoremediation of Potentially Toxic Elements in Soil. Land, 2022, 11, 2030.	1.2	2
2207	Phytoremediation potential of hybrid Pennisetum in cadmium-contaminated soil and its physiological responses to cadmium. Environmental Science and Pollution Research, 0, , .	2.7	1

# 2208	ARTICLE Effect of the Growing Season, Trichoderma, and Clinoptilolite Application on Potentially Toxic Elements Uptake by Cucumis melo L Hortscience: A Publication of the American Society for	IF 0.5	Citations
2209	Hortcultural Science, 2022, 57, 1548-1557. Phytoremediation potential of Beta vulgaris L. (Swiss chard) using soil from the vicinity of Kette-Batouri Goldmine (Eastern Cameroon). South African Journal of Botany, 2022, 151, 713-719.	1.2	5
2210	Synthesis methods and applications of palladium nanoparticles: A review. Frontiers in Nanotechnology, 0, 4, .	2.4	14
2211	Sulphur-doped carbon particles from almond shells as cheap adsorbent for efficient Cd(II) adsorption. Diamond and Related Materials, 2023, 131, 109542.	1.8	17
2212	Phytoremediation of industrial effluents assisted by plant growth promoting bacteria. Environmental Science and Pollution Research, 2023, 30, 5296-5311.	2.7	5
2213	Ecological and human health risk assessment of metals in soils and wheat along Sutlej river (India). Chemosphere, 2023, 312, 137331.	4.2	5
2214	Mining and utilization of salinity tolerant legumes in tropical coastal agroecosystems: An overview. Grass Research, 2022, 2, 1-13.	0.6	1
2215	Research status on remediation of eutrophic water by submerged macrophytes: A review. Chemical Engineering Research and Design, 2023, 169, 671-684.	2.7	25
2216	Programmable and low-cost biohybrid membrane for efficient heavy metal removal from water. Separation and Purification Technology, 2023, 306, 122751.	3.9	10
2217	Challenges and opportunities for improving the environmental quality of cadmium-contaminated soil in China. Journal of Hazardous Materials, 2023, 445, 130560.	6.5	8
2218	Woody plants have the advantages in the phytoremediation process of manganese ore with the help of microorganisms. Science of the Total Environment, 2023, 863, 160995.	3.9	13
2219	Cadmium Hyperaccumulator Potential of the Edible Cactus <i>Nopalea cochenillifera</i> . Environmental Control in Biology, 2022, 60, 205-212.	0.3	0
2220	Transcriptomic Sequencing Analysis on Key Genes and Pathways Regulating Cadmium (Cd) in Ryegrass (LoliumAperenne L.) under Different Cadmium Concentrations. Toxics, 2022, 10, 734.	1.6	2
2221	Mulching in lowland hay meadows drives an adaptive convergence of above- and below-ground traits reducing plasticity and improving biomass: A possible tool for enhancing phytoremediation. Frontiers in Plant Science, 0, 13, .	1.7	5
2222	Alternative Low-Cost Treatment for Real Acid Mine Drainage: Performance, Bioaccumulation, Translocation, Economic, Post-Harvest, and Bibliometric Analyses. Sustainability, 2022, 14, 15404.	1.6	5
2223	Unlocking the genetic control of spring wheat kernel traits under normal and heavy metals stress conditions. Plant and Soil, 2023, 484, 257-278.	1.8	6
2224	Cadmium-resistant <i>Streptomyces</i> stimulates phytoextraction potential of <i>Crotalaria juncea</i> L. in cadmium-polluted soil. International Journal of Phytoremediation, 0, , 1-10.	1.7	0
2225	A Comparative Study of the Treatment Efficiency of Floating and Constructed Wetlands for the Bioremediation of Phenanthrene-Contaminated Water. Applied Sciences (Switzerland), 2022, 12, 12122.	1.3	0

#	Article	IF	CITATIONS
2226	Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. Toxics, 2022, 10, 716.	1.6	23
2227	Integrative physiological and transcriptome analyses provide insights into the Cadmium (Cd) tolerance of a Cd accumulator: Erigeron canadensis. BMC Genomics, 2022, 23, .	1.2	8
2228	Phytoremediation of crude oil-contaminated sediment using <i>Suaeda heteroptera</i> enhanced by <i>Nereis succinea</i> and oil-degrading bacteria. International Journal of Phytoremediation, 2023, 25, 322-328.	1.7	2
2229	Diversity and activity of soil biota at a postâ€mining site highly contaminated with Zn and Cd are enhanced by metallicolous compared to nonâ€metallicolous <i>Arabidopsis halleri</i> ecotypes. Land Degradation and Development, 2023, 34, 1538-1548.	1.8	2
2230	Introducing sedum affects rootâ€soil interface phytoremediation of heavy metals in <i>lei</i> bamboo forest and potential risks from edible bamboo shoots. Land Degradation and Development, 2023, 34, 1820-1829.	1.8	1
2231	Phytoremediation of Metal-Contaminated Soils and Water in Pakistan: a Review. Water, Air, and Soil Pollution, 2023, 234, .	1.1	3
2232	Calcium acetate enhances both drought tolerance and arsenic accumulation in <i>Pteris vittata</i> . Environmental Pollutants and Bioavailability, 2023, 35, .	1.3	2
2233	Bioelectricity generation in economic crops at aquaponics system using plant microbial fuel cell. , 2022, , .		0
2234	Using pollution indices to develop a risk classification tool for gold mining contaminated soils. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 1047-1057.	0.9	1
2235	Enhancement of heavy metals desorption from the soil by eddy deep leaching in hydrocyclone. Journal of Environmental Sciences, 2024, 135, 242-251.	3.2	3
2236	Modern Aspects of Phytoremediation of Arsenic-Contaminated Soils. Environmental Science and Engineering, 2023, , 433-457.	0.1	0
2237	Metal tolerance capacity and antioxidant responses of new <i>Salix spp.</i> clones in a combined Cd-Pb polluted system. PeerJ, 0, 10, e14521.	0.9	1
2238	Reconnoitering the Efficacy of Plant Growth Promoting Rhizobacteria in Expediting Phytoremediation Potential of Heavy Metals. Journal of Plant Growth Regulation, 2023, 42, 6474-6502.	2.8	4
2239	Analysis of the concentration of heavy metals in soil, vegetables and water around the bole Lemi industry park, Ethiopia. Heliyon, 2022, 8, e12429.	1.4	5
2241	Phytoremediation of metal-contaminated bottom sediments by the common ice plant (Mesembryanthemum crystallinum L.) in Poland. Journal of Soils and Sediments, O, , .	1.5	0
2242	A Review on Removal of Heavy Metals from Contaminated Soils by Phytoremediation. Lecture Notes in Civil Engineering, 2023, , 205-211.	0.3	0
2243	Adoptar los objetivos de la restauración ecológica como meta crucial al mitigar desechos mineros: una propuesta metodológica. Acta Botanica Mexicana, 2022, , .	0.1	1
2245	Phytoremediation of toxic heavy metals in polluted soils and water of Dargai District Malakand Khyber Pakhtunkhwa, Pakistan. Brazilian Journal of Biology, 0, 84, .	0.4	3

#	Article	IF	CITATIONS
2246	Short and long-term phytoremediation capacity of aquatic plants in Cu-polluted environments. Heliyon, 2023, 9, e12805.	1.4	0
2247	The bioaccumulation potential of heavy metals by Cliricidia sepium (Fabaceae) in mine tailings. Environmental Science and Pollution Research, 2023, 30, 38982-38999.	2.7	3
2248	Multiple evaluations, risk assessment, and source identification of heavy metals in surface water and sediment of the Golmud River, northeastern Qinghai-Tibet Plateau, China. Frontiers in Environmental Science, 0, 10, .	1.5	3
2250	Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Frontiers in Microbiology, 0, 13, .	1.5	4
2251	Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania). Sustainability, 2023, 15, 1158.	1.6	6
2253	Assessment of Lead (Pb) Accumulation in Native Plants Growing on Coal Mine Site in Northeastern Vietnam. Environmental Science and Engineering, 2023, , 237-252.	0.1	1
2254	Soil flooding and its outcome on cadmium and nutrient uptake affect photosynthetic activity in Inga laurina plants. Ecotoxicology, 2023, 32, 73-81.	1.1	2
2255	Nanoparticle Mediated Plant Tolerance to Heavy Metal Stress: What We Know?. Sustainability, 2023, 15, 1446.	1.6	9
2256	Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Science of the Total Environment, 2023, 868, 161691.	3.9	18
2258	Anatomical changes caused by boron in Calopogonium mucunoides Desv. Revista Brasileira De Botanica, 2023, 46, 127-137.	0.5	2
2259	Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. Frontiers in Plant Science, 0, 13, .	1.7	33
2260	Prediction Models Based on Soil Characteristics for Evaluation of the Accumulation Capacity of Nine Metals by Forage Sorghum Grown in Agricultural Soils Treated with Varying Amounts of Poultry Manure. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	2
2261	Integrating treatment processes of coffee processing mill effluent for reclamation of secondary resources. Journal of Cleaner Production, 2023, 386, 135837.	4.6	4
2262	The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology and Innovation, 2023, 29, 103005.	3.0	12
2263	Variation in pollution status, sources, and risks of soil heavy metals in regions with different levels of urbanization. Science of the Total Environment, 2023, 866, 161355.	3.9	11
2264	A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environmental Research, 2023, 220, 115098.	3.7	15
2265	Potential of Forage Grasses in Phytoremediation of Lead through Production of Phytoliths in Contaminated Soils. Land, 2023, 12, 62.	1.2	0
2266	Effect of Heavy Metal Stress on Phenolic Compounds Accumulation in Winter Wheat Plants. Molecules, 2023, 28, 241.	1.7	26

#	Article	IF	CITATIONS
2267	Features of the Phytoremediation by Agricultural Crops of Heavy Metal Contaminated Soils. Agronomy, 2023, 13, 127.	1.3	3
2268	Innovative Resource Recovery from Industrial Sites: A Critical Review. Sustainability, 2023, 15, 489.	1.6	1
2269	PHYTOEXTRACTION OF HEAVY METALS BY HERBAL PLANTS ON TECHNOGENIC SOILS. Khimiya Rastitel'nogo Syr'ya, 2022, , 311-320.	0.0	1
2270	Field evaluation of industrial non-food crops for phytomanaging a metal-contaminated dredged sediment. Environmental Science and Pollution Research, 0, , .	2.7	0
2272	An extension of the characteristic curve model of plant species behavior in heavy metal soils. Environmental Geochemistry and Health, 0, , .	1.8	2
2273	Preparation of Heavy Metal Trapping Flocculant Polyacrylamide–Glutathione and Its Application for Cadmium Removal from Water. Polymers, 2023, 15, 500.	2.0	1
2274	Microorganism assisted synthesized metal and metal oxide nanoparticles for removal of heavy metal ions from the wastewater effluents. , 2023, , 127-148.		1
2275	Phytoremediation strategies of plants: Challenges and opportunities. , 2023, , 211-229.		1
2276	Phytoremediation of PAH- and Cu-Contaminated Soil by Cannabis sativa L.: Preliminary Experiments on a Laboratory Scale. Sustainability, 2023, 15, 1852.	1.6	4
2278	Artisanal gold mine spoil types within a common geological area and their variations in contaminant loads and human health risks. Environmental Monitoring and Assessment, 2023, 195, .	1.3	5
2280	Harnessing the potential of phytoremediation for mitigating the risk of emerging contaminants. Current Opinion in Environmental Science and Health, 2023, 32, 100448.	2.1	3
2281	Solvent-Based Soil Washing of Mercury-Contaminated Soil with Eco-friendly Washing Agents. Water, Air, and Soil Pollution, 2023, 234, .	1.1	2
2282	Effects of Bacterial and Fungal Inocula on Biomass, Ecophysiology, and Uptake of Metals of Alyssoides utriculata (L.) Medik Plants, 2023, 12, 554.	1.6	1
2283	Lead accumulation and biochemical responses in <i>Rhus chinensis</i> Mill to the addition of organic acids in lead contaminated soils. RSC Advances, 2023, 13, 4211-4221.	1.7	2
2284	Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. Environmental Pollution, 2023, 322, 121130.	3.7	6
2285	Modified Shrimp-Based Chitosan as an Emerging Adsorbent Removing Heavy Metals (Chromium, Nickel,) Tj ETQq	1 1 0.7843 1.8	314 rgBT /O
2286	Current Status of and Challenges for Phytoremediation as a Sustainable Environmental Management Plan for Abandoned Mine Areas in Korea. Sustainability, 2023, 15, 2761.	1.6	6
2287	A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology and Innovation, 2023, 30, 103043.	3.0	18

#	Article	IF	CITATIONS
2288	Selection of Potential Plants as Phytoremediation for Heavy Metals in Estuarine Ecosystem: A Systematic Review. , 2023, , 420-434.		1
2289	Kinetic and thermodynamic studies of Cd(II), Cu(II) and Ni (II) removal in ternary system using i'-Al2O3. AIP Conference Proceedings, 2023, , .	0.3	0
2290	Remediation of Polluted Soils for Managing Toxicity Stress in Crops of Dryland Ecosystems. , 2023, , 259-303.		0
2291	Bio-monitoring and Bio-remediation of the Ecological Changes in Wetlands: Case Studies from East Kolkata Wetlands. , 2023, , 583-648.		0
2292	Vetiver Grass (Chrysopogon zizanoides L.): A Hyper-Accumulator Crop for Bioremediation of Unconventional Water. Sustainability, 2023, 15, 3529.	1.6	6
2293	Estimation of phytoextraction potential of selected halophytes for accumulation of heavy metals from wetland saline soil. Rendiconti Lincei, 0, , .	1.0	1
2294	Chromium Use in Leather Industry and Chromium Removal by Biological Methods. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri EnstitA¼sü Dergisi, 2023, 6, 1006-1029.	0.2	0
2295	Hydroponic rhizofiltration of dairy wastewater by Coleus Scutellarioides & Portulaca Oleracea. Journal of Water Process Engineering, 2023, 52, 103589.	2.6	2
2296	Removal, fate, and bioavailability of fluoroquinolone antibiotics in a phytoremediation system with four wetland plants: Combing dynamic DGT and traditional methods. Science of the Total Environment, 2023, 881, 163464.	3.9	3
2297	Bioaccumulation for heavy metal removal: a review. SN Applied Sciences, 2023, 5, .	1.5	20
2298	The Impacts of Applying Cobalt and Chitosan with Various Water Irrigation Schemes at Different Growth Stages of Corn on Macronutrient Uptake, Yield, and Water Use Efficiency. Journal of Soil Science and Plant Nutrition, 2023, 23, 2770-2785.	1.7	6
2299	Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. Plants, 2023, 12, 1653.	1.6	12
2300	Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz. Sustainability, 2023, 15, 6244.	1.6	1
2301	Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 2023, 10, 100293.	1.2	3
2302	Testing the suitability for coastal green areas of three ornamental shrub species through physiological responses to the saline nebulization. Urban Forestry and Urban Greening, 2023, 84, 127920.	2.3	1
2303	Phytostabilization of soils contaminated with As, Cd, Cu, Pb and Zn: Physicochemical, toxicological and biological evaluations. , 2023, 1, 100014.		7
2304	Drought-free future climate conditions enhance cadmium phytoremediation capacity by Brassica napus through improved physiological status. Journal of Hazardous Materials, 2023, 452, 131181.	6.5	4
2305	Effects of exogenous calcium on cadmium accumulation in amaranth. Chemosphere, 2023, 326, 138435.	4.2	1

#	Article	IF	CITATIONS
2306	Toxicity of malachite green on plants and its phytoremediation: A review. Regional Studies in Marine Science, 2023, 62, 102911.	0.4	12
2307	One-Step Preparation of Novel Mn-Modified Biochar with Mn-Enriched Biomass for Efficient Adsorption of Methylene Blue. Water, Air, and Soil Pollution, 2023, 234, .	1.1	0
2308	Interaction of Plant Growth-Promoting Rhizobacteria with Sugarcane Plants for Alleviating Abiotic Stresses and Improving Crop Yields. , 2022, , 123-137.		0
2309	Trichomics: Trichomes as Natural Chemical Factories. , 2022, , 379-402.		0
2310	Evaluation of negative effect of Naphthenic acids (NAs) on physiological metabolism and polycyclic aromatic hydrocarbons adsorption of Phragmites australis. Chemosphere, 2023, 318, 137909.	4.2	2
2311	Environmentally friendly comprehensive recycling utilization technology of foundation engineering slurry. Construction and Building Materials, 2023, 368, 130400.	3.2	1
2312	Oxidative Stress Response and Metal Transport in Roots of Macleaya cordata Exposed to Lead and Zinc. Plants, 2023, 12, 516.	1.6	5
2313	Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, 2023, 319, 137917.	4.2	22
2314	Comparing the Uptake of Arsenic by Barley and Oats Growing in a Semiarid Area Irrigated with Either Groundwater or Treated Wastewater. Minerals (Basel, Switzerland), 2023, 13, 175.	0.8	1
2315	Proteomic analysis reveals differential responsive mechanisms in Solanum nigrum exposed to low and high dose of cadmium. Journal of Hazardous Materials, 2023, 448, 130880.	6.5	4
2316	Phytoremediation Techniques. Research Journal of Pharmacy and Technology, 2022, , 5359-5362.	0.2	0
2318	Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Current Opinion in Environmental Science and Health, 2023, 32, 100451.	2.1	7
2319	Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy – A review. Journal of Environmental Management, 2023, 332, 117382.	3.8	5
2320	Comparative assessment of the heavy metal phytoextraction potential of vegetables from agricultural soils: A field experiment. Heliyon, 2023, 9, e13547.	1.4	2
2321	Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants' Uptake Capacity. Toxics, 2023, 11, 158.	1.6	2
2322	Molecular Identification of Endophytic Bacteria from SilybumÂmarianum and Their Effect on BrassicaÂnapus Growth under Heavy Metal Stress. Sustainability, 2023, 15, 3126.	1.6	1
2323	Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf. Marine Pollution Bulletin, 2023, 188, 114699.	2.3	13
2324	Effect of Carbide Slag Combined with Biochar on Improving Acidic Soil of Copper Sulfide Mines. Sustainability, 2023, 15, 3206.	1.6	3

#	Article	IF	CITATIONS
2325	Soil amendments for vanadium remediation: a review of remediation of vanadium in soil through chemical stabilization and bioremediation. Environmental Geochemistry and Health, 2023, 45, 4107-4125.	1.8	4
2326	Phytoremediation of Soils Polluted byÂHeavy Metals and Metalloids: Recent Case Studies in Latin America. , 2023, , 317-332.		0
2327	Measures in the Practice of Ecosystem Restoration. , 2023, , 43-58.		0
2328	Phytoremediation and Contaminants. , 2023, , 15-48.		0
2329	Nanotechnologies and Phytoremediation: Pros and Cons. , 2023, , 403-426.		2
2330	Bioformulations for Sustainable Phytoremediation of Heavy Metal-Polluted Soil. , 2023, , 101-125.		0
2331	Applying Amendments for Metal(loid) Phytostabilization: Effects on Soil Biogeochemical and Microbiological Processes. , 2023, , 183-207.		0
2332	Effect of Coexisting lons on the Removal of Zn2+ from Aqueous Solution Using FePO4. Chemistry Africa, 0, , .	1.2	0
2333	Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil. , 2023, , 231-259.		0
2334	Remediation of Environmental Contaminants Through Phytotechnology. Water, Air, and Soil Pollution, 2023, 234, .	1.1	6
2335	Enrichment and distribution characteristics of heavy metal(loid)s in native plants of abandoned farmlands in sewage irrigation area. Environmental Science and Pollution Research, 2023, 30, 50471-50483.	2.7	5
2336	Generalist arbuscular mycorrhizal fungi dominated heavy metal polluted soils at two artisanal and small â^' scale gold mining sites in southeastern Ecuador. BMC Microbiology, 2023, 23, .	1.3	4
2337	Research progress and hotspot analysis of rhizosphere microorganisms based on bibliometrics from 2012 to 2021. Frontiers in Microbiology, 0, 14, .	1.5	0
2340	Biohazardous effect associated with various pharma-effluent discharge in a biotic system. , 2023, , 399-422.		0
2341	Biodegradation for Metal Extraction. , 2023, , 1533-1567.		0
2342	Biodegradation of Pollutants. , 2023, , 899-925.		0
2343	Accumulation of heavy metals in autochthonous plants around Bagega Artisanal Gold Mining Village and the remediation potential of selected plants. Acta Ecologica Sinica, 2023, 43, 1007-1018.	0.9	4
2344	Improving capacity for phytoremediation of Vetiver grass and Indian mustard in heavy metal (Al and) Tj ETQq1 1 Pollution Research, 2023, 30, 53577-53588.	0.784314 2.7	rgBT /Over 3

#	Article	IF	CITATIONS
2345	The effectiveness of phytoremediation using water lettuce (Pistia stratiotes) in liquid waste treatment. AIP Conference Proceedings, 2023, , .	0.3	0
2346	Studies on phytoremediation of chromated copper arsenate (CCA) using Acacia plant species (Fabaceae). International Journal of Phytoremediation, 0, , 1-7.	1.7	0
2347	Genome and Transcriptome Identification of a Rice Germplasm with High Cadmium Uptake and Translocation. Plants, 2023, 12, 1226.	1.6	1
2348	Remediation of the lead–zinc composite-contaminated soil using stabilization reagent in an industrial region of Nanjing, China. International Journal of Environmental Science and Technology, 2023, 20, 13307-13318.	1.8	1
2349	Designing Novel Strategies for Improving Old Legumes: An Overview from Common Vetch. Plants, 2023, 12, 1275.	1.6	3
2350	The inoculation with Ensifer meliloti sv. rigiduloides improves considerably the growth of Robinia pseudoacacia under lead-stress. Plant and Soil, 2024, 497, 119-137.	1.8	1
2351	Copper Phytoextraction Using Phyllostachys pubescens. Sustainability, 2023, 15, 5238.	1.6	0
2352	Phytoremediation of selected heavy metals contaminated water by Amaranthus hybridus in hydroponic system. Materials Today: Proceedings, 2023, 90, 12-17.	0.9	3
2353	The Changes of Tolerance, Accumulation and Oxidative Stress Response to Cadmium in Tobacco Caused by Introducing Datura stramonium L. Genes. Agronomy, 2023, 13, 882.	1.3	0
2355	Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches. International Journal of Phytoremediation, 2023, 25, 1699-1713.	1.7	2
2356	Phytostabilization of coalmine overburden waste rock dump slopes: current status, challenges, and perspectives. Bulletin of Engineering Geology and the Environment, 2023, 82, .	1.6	10
2357	The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture (Switzerland), 2023, 13, 735.	1.4	3
2358	Assessment of native plants for their potential to remove trace metals around Legadembi tailings dam, Southern Ethiopia. Environmental Science and Pollution Research, 2023, 30, 55615-55624.	2.7	2
2359	Biochar and sustainable environmental development towards adsorptive removal of pollutants: Modern advancements and future insight. Chemical Engineering Research and Design, 2023, 173, 715-728.	2.7	18
2360	Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Horticulture Environment and Biotechnology, 2023, 64, 709-734.	0.7	4
2361	Investigations Concerning Heavy Metals Dynamics in Reynoutria japonica HouttSoil Interactions. Toxics, 2023, 11, 323.	1.6	2
2362	Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. Plants, 2023, 12, 1502.	1.6	20
2363	Changes in Speciation and Bioavailability of Trace Elements in Sewage Sludge after the Ozonation Process. Agriculture (Switzerland), 2023, 13, 794.	1.4	0

#	Article	IF	CITATIONS
2364	Optimization of Citric Acid and EDTA Levels Under Ni Stress Using Rapeseed Brassica napus L. for Phytoremediation. Water, Air, and Soil Pollution, 2023, 234, .	1.1	3
2365	Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere, 2023, 328, 138574.	4.2	26
2366	Removal of Heavy Metals from Industrial Wastewater Using Bioremediation Approach. , 2023, , 377-407.		2
2367	A Review on Plants and Plant/Microbial Systems in Reducing Exposure. , 2023, 2, 1-7.		5
2368	Exploration of Plant Growth Promoting Rhizobacteria (PGPRs) for Heavy Metal Bioremediation and Environmental Sustainability: Recent Advances and Future Prospects. , 2023, , 29-55.		4
2369	The Evaluation of the Phytoremediation Potential of the Energy Crops in Acid Soil by Sewage Sludge Fertilization. Land, 2023, 12, 866.	1.2	1
2370	Process variables that defined the phytofiltration efficiency of invasive macrophytes in aquatic system. International Journal of Phytoremediation, 2023, 25, 1774-1792.	1.7	1
2371	Biochar amendment of a metal contaminated soil partially immobilized Zn, Pb, and Cd and reduced ryegrass uptake. Frontiers in Environmental Science, 0, 11, .	1.5	1
2372	Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere. Frontiers in Environmental Science, 0, 11, .	1.5	4
2373	Heavy Metal Concentrations and Accumulation Characteristics of Dominant Woody Plants in Iron and Leadâ^'Zinc Tailing Areas in Jiangxi, Southeast China. Forests, 2023, 14, 846.	0.9	4
2374	Natural compounds for bioremediation and biodegradation of pesticides. , 2023, , 445-488.		0
2384	Fly Ash Management Through Vermiremediation. Environmental Contamination Remediation and Management, 2023, , 241-260.	0.5	0
2385	Endophytic Microbes and Their Role in Land Remediation. Environmental Contamination Remediation and Management, 2023, , 133-164.	0.5	0
2387	Plant Assisted Bioremediation of Heavy Metal Polluted Soils. Environmental Contamination Remediation and Management, 2023, , 85-114.	0.5	2
2390	Removal of Heavy Metals using Microbial Bioremediation. , 2023, , 42-64.		0
2397	Yeast–plant interactions for phytoremediation of contaminated soils. , 2023, , 543-565.		0
2407	Biological and Eco-Friendly Cost-Effective Measure for Remediation. Environmental Science and Engineering, 2023, , 7-24.	0.1	0
2410	Toxicological implications of industrial effluents on plants: a review focusing on phytoremediation techniques. International Journal of Environmental Science and Technology, 2024, 21, 2209-2224.	1.8	1

#	Article	IF	CITATIONS
2411	Editorial: Plant-soil-microbe interactions and drivers in ecosystem development and ecological restoration. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0
2414	Effect of Immobilized Bacteria and Bidens Pilosa L on the Remediation of Heavy Metal Contaminated Soil. Environmental Science and Engineering, 2023, , 115-126.	0.1	0
2417	A critical review on phytoremediation of environmental contaminants in aquatic ecosystem. Rendiconti Lincei, 2023, 34, 749-766.	1.0	1
2422	Holistic Approach to Remediate Heavy Metals and Radionuclides. , 2023, , 113-132.		1
2423	Inorganic Nitrogen and Phosphate Removal from Port Water Using Microalgal Biotechnology Toward Sustainable Development. , 2023, , 371-391.		1
2429	Phytoremediation of Municipal Solid Waste Landfills. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2023, , 367-395.	0.1	0
2433	Acids. , 2024, , 103-107.		0
2445	Phytoremediation of Metals and Radionuclides: An Emerging Technology Toward Environment Restoration. , 2023, , 299-318.		0
2447	Phyto- & amp; Microbial- Remediation of Radioactive Waste. , 2023, , 215-241.		0
2449	Phytoremediation of Metals and Radionuclides. , 2023, , 185-214.		0
2450	Plants and Microorganisms as Useful Tool for Accumulation and Detoxification of Heavy Metals from Environment. , 2023, , 85-105.		0
2453	Use of Heavy Metals Contaminated Industrial Hemp (Cannabis Sativa L.) for Bioenergy Production. Lecture Notes in Civil Engineering, 2023, , 941-948.		0
	Lecture Notes in Civil Engineering, 2025, , 941-946.	0.3	U
2459	Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.3	0
2459 2472	Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic		
	Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment. Reviews of Environmental Contamination and Toxicology, 2023, 261, .		0
2472	Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment. Reviews of Environmental Contamination and Toxicology, 2023, 261, . Potential of microbes for the remediation of heavy metals–contaminated soil. , 2023, , 31-47.		0
2472 2473	Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment. Reviews of Environmental Contamination and Toxicology, 2023, 261, . Potential of microbes for the remediation of heavy metals–contaminated soil., 2023, , 31-47. Microbe-assisted heavy metal phytoremediation., 2023, , 187-197.		0 0 0

#	Article	IF	CITATIONS
2484	The Role of Plant Growth Promoting Bacteria on Arsenic Removal: A Review of Existing Perspectives. Environmental Science and Engineering, 2023, , 241-262.	0.1	1
2491	The combined rhizoremediation by a triad: plant-microorganism-functional materials. Environmental Science and Pollution Research, 2023, 30, 90500-90521.	2.7	3
2502	Phytoremediation toward Air Pollutants: Latest Status and Current Developments. , 0, , .		1
2513	Phytoremediation of Heavy Metals: Reaction Mechanisms and Selected Efficient Technologies of Heavy Metal Contamination. , 2023, , 245-269.		0
2514	Brassica Juncea L.: A Potential Crop for Phytoremediation of Various Heavy Metals. , 2023, , 285-311.		0
2527	Energy Decarbonization via Material-Based Circular Economy. , 2023, , 263-295.		0
2534	Soil Remediation Applications of Nanoparticles. , 2023, , 63-88.		0
2536	Fluoride as a global groundwater contaminant. , 2024, , 319-350.		2
2540	Current and emerging technologies for the remediation of difficult-to-measure radionuclides at nuclear sites. Environmental Sciences: Processes and Impacts, 2023, 25, 1909-1925.	1.7	0
2541	Phytoremediation of Xenobiotics: Principles and Applications in Environmental Pollution Removal. , 2023, , 261-290.		0
2542	Edible crop production on polluted lands for biofortification. , 2024, , 85-130.		0
2546	Bioremediation: A Substantive Potential for Clean Earth. , 2023, , 667-691.		0
2547	Phytoremediation in the Guadiamar Green Corridor (SW Spain): Trace element uptake by plants and effects on soil fungal diversity. Advances in Botanical Research, 2024, , 255-294.	0.5	0
2549	Phytoremediation of contaminants in urban soils: a review. Environmental Chemistry Letters, 0, , .	8.3	0
2551	Plant-based remediation of industrially contaminated soils: Principles and case study. Advances in Botanical Research, 2023, , .	0.5	0
2553	Phytomediated Approach for Management of Emerging Pollutants. , 2023, , 201-220.		0
2554	Biotechnological Techniques for Sustainable Waste Management. , 2023, , 689-712.		0
2556	Biological Mineral Recovery Geothermal Fluid. , 2023, , .		1

#	Article	IF	Citations
2561	Plant-Based Technologies for the Removal of Pharmaceutical and Personal Care Product (PPCP) in Soil. , 2023, , 27-48.		0
2562	Efficiency of Aquatic Plants for Remediation of Wastewater. , 2023, , 159-174.		0
2565	Heavy Metal Pollution in Water: Cause and Remediation Strategies. , 2023, , 181-204.		1
2576	Cropping systems for the extraction of metal(loid)s for industrial use. , 2024, , 259-282.		0
2584	Toxicity of Hexavalent Chromium: Review. Environmental Science and Engineering, 2023, , 191-215.	0.1	0
2586	Toxicity of Rhizospheric Chromium Contaminated Soil and Its Phytoremediation. Environmental Science and Engineering, 2023, , 293-317.	0.1	0
2591	Oxidative Stress in Lead Toxicity in Plants and Its Amelioration. Environmental Contamination Remediation and Management, 2024, , 299-333.	0.5	1
2592	Smart Fertilizer Application in Agricultural Land for Sustainable Crop Production and Consumption. , 2024, , 29-41.		0
2600	Biotechnological Approaches in Remediation of Lead Toxicity. Environmental Contamination Remediation and Management, 2024, , 277-298.	0.5	0
2604	Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. Environmental Science and Pollution Research, 2024, 31, 8354-8368.	2.7	0
2609	Occurrence, Behaviour and Transport of Heavy Metals from Industries in River Catchments. Handbook of Environmental Engineering, 2023, , 205-277.	0.2	1
2610	Biological Interventions in Bioremediation of Cadmium Poisoning. , 2024, , 121-145.		0
2611	Speciation, Mobilization, and Toxicity of Cadmium in Soil–Microbe–Plant System: An Overview. , 2024, , 31-61.		0
2614	Sustainable approaches to heavy metal removal from water. , 2024, , 179-189.		0
2618	Plant-based adsorbents for emerging pollutants removal. , 2024, , 241-262.		0
2623	Removal techniques of endocrine-disrupting chemicals in soil and sediment. , 2024, , 325-340.		0
2629	Exploring the utilization of plant biomass in addressing soil contamination by potential toxic metals through phytoremediation. , 2024, , 429-451.		0
2630	Role of endophytes in bioremediation of heavy metals. , 2024, , 149-169.		0

		CITATION R	itation Report	
#	Article		IF	Citations
2633	Potential use of microalgal metallothioneins and phytochelatins in bioremediation. , 202	24, , 367-380.		0
2634	Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils. , 2024,	, 327-348.		0
2638	In-Depth Coverage of Petroleum Waste Sources, Characteristics, Environmental Impact, Sustainable Remediation Process. Environmental Science and Engineering, 2023, , 1-38.	and	0.1	0
2639	Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. coupling with biorefinery prospects for sustainable phytotechnologies. Environmental S Pollution Research, 2024, 31, 16216-16240.	(duckweeds): cience and	2.7	0
2645	Bioremediation of Wastewater Using Hydroponics. Springer Water, 2024, , 27-64.		0.2	0
2646	Effect of Bio-Sorptive Removal of Heavy Metals from Hydroponic Solution: A Review. Sp 2024, , 325-360.	ringer Water,	0.2	0
2648	Applications of Hydroponic Systems in Phytoremediation of Wastewater. Springer Wate	er, 2024, , 91-113.	0.2	0
2649	Removal of Heavy Metals From Contaminated Water Using Hydroponics. Springer Water	r, 2024, , 197-222.	0.2	0
2650	Hydroponics: A Significant Method for Phytoremediation. Springer Water, 2024, , 1-25.		0.2	0
2654	Application of microorganisms for cross-protection against biotic and metal-induced oxi stresses in plants. , 2024, , 201-213.	dative		0