Ionic liquid thermal stabilities: decomposition mechani

Chemical Society Reviews 42, 5963 DOI: 10.1039/c3cs60071h

Citation Report

#	ARTICLE	IF	CITATIONS
2	Ionic liquids of superior thermal stability. Chemical Communications, 2013, 49, 7590.	2.2	93
3	An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis. Bioresource Technology, 2013, 146, 144-151.	4.8	31
4	The unprecedented synthesis of novel spiro-1,2,4-triazolidinones. RSC Advances, 2013, 3, 25723.	1.7	32
5	Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Physical Chemistry Chemical Physics, 2013, 15, 20480.	1.3	217
7	Properties and Green Aspects of Ionic Liquids. , 2014, , 1-93.		4
8	DOSS [–] Based QAILs: As Both Neat Lubricants and Lubricant Additives with Excellent Tribological Properties and Good Detergency. Industrial & Engineering Chemistry Research, 2014, 53, 17952-17960.	1.8	63
9	Thermal Properties of Macrocyclic Polyethers: Implications for the Design of Crown Ether-Based Ionic Liquids. Separation Science and Technology, 2014, 49, 2847-2855.	1.3	11
10	Electrochemical Energy Storage Device with a Lewis Acidic AlBr ₃ â``1-Ethyl-3-methylimidazolioum Bromide Room-Temperature Ionic Liquid. Journal of the Electrochemical Society, 2014, 161, A908-A914.	1.3	19
11	Thermal stabilities and decomposition mechanism of amino- and hydroxyl-functionalized ionic liquids. Thermochimica Acta, 2014, 578, 59-67.	1.2	52
12	PEC-functionalized NHC ligands for efficient and recyclable palladium-catalyzed Suzuki reactions in water. Transition Metal Chemistry, 2014, 39, 221-224.	0.7	7
13	Electrocarboxylation of acetophenone in ionic liquids: the influence of proton availability on product distribution. Green Chemistry, 2014, 16, 2242-2251.	4.6	44
14	Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.	18.7	399
15	Di―and Tricationic Organic Salts: An Overview of Their Properties and Applications. European Journal of Organic Chemistry, 2014, 2014, 4201-4223.	1.2	60
16	Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. Journal of Molecular Liquids, 2014, 190, 151-158.	2.3	64
17	Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Industrial & Engineering Chemistry Research, 2014, 53, 8651-8664.	1.8	594
18	Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials, 2014, 271, 50-56.	6.5	137
19	Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids. Journal of Chemical Thermodynamics, 2014, 69, 19-26.	1.0	36
20	Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with Cyano-Functionalized Anions. Journal of Physical Chemistry A, 2014, 118, 11119-11132.	1.1	49

λτιών Ρέρω

#	Article	IF	CITATIONS
21	Low-Viscosity Tetramethylguanidinum-Based Ionic Liquids with Different Phenolate Anions: Synthesis, Characterization, and Physical Properties. Journal of Chemical & Engineering Data, 2014, 59, 4031-4038.	1.0	16
22	Ionic liquid as a recyclable and efficient medium for lipase-catalyzed asymmetric cross aldol reaction. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 100-110.	1.8	27
23	Water in Ionic Liquids at Electrified Interfaces: The Anatomy of Electrosorption. ACS Nano, 2014, 8, 11685-11694.	7.3	146
24	Probing the effect of electron donation on CO2 absorbing 1,2,3-triazolide ionic liquids. RSC Advances, 2014, 4, 12748.	1.7	21
25	Predicting the hygroscopicity of imidazolium-based ILs varying in anion by hydrogen-bonding basicity and acidity. RSC Advances, 2014, 4, 5169.	1.7	32
26	The electrochemical reduction of 1-bromo-4-nitrobenzene at zinc electrodes in a room-temperature ionic liquid: a facile route for the formation of arylzinc compounds. Physical Chemistry Chemical Physics, 2014, 16, 4478.	1.3	10
27	The effects of counterion composition on the rheological and conductive properties of mono- and diphosphonium ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 20608-20617.	1.3	14
28	Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. Physical Chemistry Chemical Physics, 2014, 16, 1967-1976.	1.3	75
29	Vaporization of the prototypical ionic liquid BMImNTf2 under equilibrium conditions: a multitechnique study. Physical Chemistry Chemical Physics, 2014, 16, 15653.	1.3	35
30	Anion-Based pH Responsive Ionic Liquids: Design, Synthesis, and Reversible Self-Assembling Structural Changes in Aqueous Solution. Langmuir, 2014, 30, 3971-3978.	1.6	54
31	Halogen-Free Bis(imidazolium)/Bis(ammonium)-Di[bis(salicylato)borate] Ionic Liquids As Energy-Efficient and Environmentally Friendly Lubricant Additives. ACS Applied Materials & Interfaces, 2014, 6, 15318-15328.	4.0	126
32	Evolved Gas Analysis by Mass Spectrometry. Applied Spectroscopy Reviews, 2014, 49, 635-665.	3.4	44
33	A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel. RSC Advances, 2014, 4, 50998-51001.	1.7	42
34	Self-recovering stimuli-responsive macrocycle-equipped supramolecular ionogels with unusual mechanical properties. Organic and Biomolecular Chemistry, 2014, 12, 503-510.	1.5	25
35	Thermophysical Properties of Imidazolium-Based Ionic Liquids: The Effect of Aliphatic versus Aromatic Functionality. Journal of Chemical & Engineering Data, 2014, 59, 2717-2724.	1.0	61
36	Measurement of High-Pressure Densities and Atmospheric Viscosities of Ionic Liquids: 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and 1-Hexyl-3-methylimidazolium Chloride. Journal of Chemical & Engineering Data, 2014, 59, 709-717.	1.0	52
37	lonic liquids confined in porous matrices: Physicochemical properties and applications. Progress in Materials Science, 2014, 64, 73-120.	16.0	264
38	Physicochemical and Thermal Properties for a Series of 1-Alkyl-4-methyl-1,2,4-triazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 9944-9951.	1.2	27

#	Article	IF	CITATIONS
39	Direct Synthesis of Nitrogen-Doped Carbon Materials from Protic Ionic Liquids and Protic Salts: Structural and Physicochemical Correlations between Precursor and Carbon. Chemistry of Materials, 2014, 26, 2915-2926.	3.2	156
40	Long-term thermal stability of some 1-butyl-1-methylpyrrolidinium ionic liquids. Journal of Chemical Thermodynamics, 2014, 74, 51-57.	1.0	52
41	Multiwalled carbon nanotube–polyelectrolyte gels: Preparation and swelling behavior for organic solvents. Solid State Ionics, 2014, 257, 32-37.	1.3	4
42	Structural factors controlling thermal stability of imidazolium ionic liquids with 1- n -butyl-3-methylimidazolium cation on γ-Al 2 O 3. Thermochimica Acta, 2014, 589, 131-136.	1.2	38
43	Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresource Technology, 2014, 166, 471-478.	4.8	25
44	Enhanced gravimetric CO ₂ capacity and viscosity for ionic liquids with cyanopyrrolide anion. AICHE Journal, 2015, 61, 2280-2285.	1.8	34
45	Halogen-free ionic liquids: effect of chelated orthoborate anion structure on their lubrication properties. RSC Advances, 2015, 5, 25287-25294.	1.7	50
46	A simple and convenient method to synthesize N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride in an ionic liquid. Carbohydrate Polymers, 2015, 130, 325-332.	5.1	52
47	Organic–Inorganic Hybrid Membranes Based on Sulfonated Poly(ether ether ketone) and Tetrabutylphosphonium Bromide Ionic Liquid for PEM Fuel Cell Applications. European Journal of Inorganic Chemistry, 2015, 2015, 1282-1289.	1.0	7
48	Influence of electric potentials on friction of sliding contacts lubricated by an ionic liquid. Physical Chemistry Chemical Physics, 2015, 17, 10339-10342.	1.3	36
49	A multi-iodine doped strategy for ionic conductivity enhancement of crown ether functionalized ionic liquids. RSC Advances, 2015, 5, 107185-107191.	1.7	3
50	Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Advances, 2015, 5, 81362-81370.	1.7	119
51	A model to predict maximum tolerable temperatures of metal-oxide-supported 1- n -butyl-3-methylimidazolium based ionic liquids. Chemical Engineering Science, 2015, 123, 588-595.	1.9	21
52	Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides. Thermochimica Acta, 2015, 604, 129-136.	1.2	76
53	A microwave assisted one pot synthesis of novel ammonium based dicationic ionic liquids. RSC Advances, 2015, 5, 12139-12143.	1.7	17
54	Capture of Opiates by Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 440-453.	0.6	1
55	Influence of Temperature on Supercapacitor Components. SpringerBriefs in Applied Sciences and Technology, 2015, , 27-69.	0.2	1
56	Electrochemical performance of 0.5Li2MnO3–0.5Li(Mn0.375Ni0.375Co0.25)O2 composite cathode inÂpyrrolidinium-based ionic liquid electrolytes. Journal of Power Sources, 2015, 294, 22-30.	4.0	16

#	Article	IF	CITATIONS
57	Tribological Performance of PTFE-based Coating Modified with Microencapsulated [HMIM][NTf2] Ionic Liquid. Tribology Letters, 2015, 59, 1.	1.2	51
58	High performance epoxy composites cured with ionic liquids. Journal of Industrial and Engineering Chemistry, 2015, 31, 192-198.	2.9	58
59	Opportunities and shortcomings of ionic liquids in single-drop microextraction. TrAC - Trends in Analytical Chemistry, 2015, 72, 153-168.	5.8	59
60	Ionic liquids as dynamic templating agents for sol–gel silica systems: synergistic anion and cation effect on the silica structured growth. Journal of Sol-Gel Science and Technology, 2015, 76, 414-427.	1.1	18
61	Selective Separation of Aromatics from Paraffins and Cycloalkanes Using Morpholinium-Based Ionic Liquid. Journal of Chemical & Engineering Data, 2015, 60, 1634-1641.	1.0	21
62	The effect of counteranion on the physicochemical and thermal properties of 4-methyl-1-propyl-1,2,4-triazolium ionic liquids. Journal of Molecular Liquids, 2015, 210, 286-292.	2.3	21
63	Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. RSC Advances, 2015, 5, 27814-27822.	1.7	54
64	Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy & Fuels, 2015, 29, 2616-2644.	2.5	777
65	Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic and Biomolecular Chemistry, 2015, 13, 5450-5459.	1.5	24
66	Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO2 separation. Journal of Membrane Science, 2015, 483, 155-165.	4.1	92
67	Bis-imidazolium and benzimidazolium based gemini-type ionic liquids structure: synthesis and antibacterial evaluation. RSC Advances, 2015, 5, 92602-92617.	1.7	22
68	Branched isomeric 1,2,3-triazolium-based ionic liquids: new insight into structure–property relationships. Physical Chemistry Chemical Physics, 2015, 17, 29834-29843.	1.3	16
69	Liquid range temperature of ionic liquids as potential working fluids for absorption heat pumps. Journal of Chemical Thermodynamics, 2015, 91, 127-135.	1.0	43
70	The electrochemical oxidation of toluene catalysed by Co(<scp>ii</scp>) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Physical Chemistry Chemical Physics, 2015, 17, 30983-30987.	1.3	5
71	Facile One-Pot Synthesis of Flavanones Using Tetramethylguanidinum-Based Ionic Liquids as Catalysts. Catalysis Letters, 2015, 145, 1830-1836.	1.4	3
72	Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides. Langmuir, 2015, 31, 9163-9176.	1.6	67
73	Recent development of ionic liquid stationary phases for liquid chromatography. Journal of Chromatography A, 2015, 1420, 1-15.	1.8	70
74	Long-term thermal stabilities of ammonium ionic liquids designed as potential absorbents of ammonia. RSC Advances, 2015, 5, 41278-41284.	1.7	16

#	Article	IF	CITATIONS
75	lonic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages. Russian Chemical Reviews, 2015, 84, 875-890.	2.5	90
76	Synthesis and physical properties of tris(dialkylamino)cyclopropenium bistriflamide ionic liquids. RSC Advances, 2015, 5, 39565-39579.	1.7	25
77	Evaluation of Thermophysical Properties of Functionalized Imidazolium Thiocyanate Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 12428-12437.	1.8	45
78	Long-term thermal stability of selected ionic liquids in nitrogen and hydrogen atmosphere. Thermochimica Acta, 2015, 600, 82-88.	1.2	61
79	Ionic liquids: not always innocent solvents for cellulose. Green Chemistry, 2015, 17, 231-243.	4.6	159
80	Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides. Molecules, 2016, 21, 1355.	1.7	12
81	Tunable Aryl Alkyl Ionic Liquids with Weakly Coordinating Tetrakis((1,1,1,3,3,3â€hexafluoropropanâ€2â€yl)oxy)borate [B(hfip) ₄] Anions. Chemistry - A European Journal, 2016, 22, 10044-10049.	1.7	16
82	Phase Transitions, Decomposition Temperatures, Viscosities, and Densities of Phosphonium, Ammonium, and Imidazolium Ionic Liquids with Aprotic Heterocyclic Anions. Journal of Chemical & Engineering Data, 2016, 61, 2897-2914.	1.0	43
83	Fast and selective separation of carbon dioxide from dilute streams by pressure swing adsorption using solid ionic liquids. Faraday Discussions, 2016, 192, 511-527.	1.6	20
84	Diacetylenes with Ionicâ€Liquidâ€Like Substituents: Associating a Polymerizing Cation with a Polymerizing Anion in a Single Precursor for the Synthesis of Nâ€Doped Carbon Materials. Chemistry - A European Journal, 2016, 22, 1682-1695.	1.7	7
85	Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces. Science China Chemistry, 2016, 59, 594-600.	4.2	2
86	Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. Journal of Thermal Analysis and Calorimetry, 2016, 125, 143-154.	2.0	80
87	Enhancing the stability of ionic liquid media for cellulose processing: acetal protection or carbene suppression?. Green Chemistry, 2016, 18, 3758-3766.	4.6	32
88	Molecular dynamics simulations of temperature-dependent structures and dynamics of ethylammonium nitrate protic ionic liquid: The role of hydrogen bond. Chemical Physics, 2016, 472, 105-111.	0.9	31
89	Effect of dual functional ionic liquids on the thermal degradation of poly(vinyl chloride). Polymer Degradation and Stability, 2016, 129, 12-18.	2.7	6
90	Universal mass spectrometric analysis of poly(ionic liquid)s. Chemical Science, 2016, 7, 4912-4921.	3.7	16
91	Physicochemical properties of fatty acid based ionic liquids. Journal of Chemical Thermodynamics, 2016, 100, 156-164.	1.0	34
92	Advances in the conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts. RSC Advances, 2016, 6, 98874-98892.	1.7	106

#	Article	IF	CITATIONS
93	Biobased Ionic Liquids with Abietate Anion. ACS Sustainable Chemistry and Engineering, 2016, 4, 6543-6550.	3.2	33
94	Biofriendly ionic liquids for starch plasticization: a screening approach. RSC Advances, 2016, 6, 90331-90337.	1.7	36
95	Influence of Epoxy Group in 2-Pyrrolidonium Ionic Liquid Interactions and Thermo-Physical Properties with Ethanoic or Propanoic Acid at Various Temperatures. ACS Sustainable Chemistry and Engineering, 2016, 4, 4951-4964.	3.2	13
96	Understanding Spectroscopic Features of Trihexyltetradecylphosphonium Chloride. ChemistrySelect, 2016, 1, 741-747.	0.7	5
97	Triggering the Chemical Instability of an Ionic Liquid under High Pressure. Journal of Physical Chemistry B, 2016, 120, 9097-9102.	1.2	6
98	The hype with ionic liquids as solvents. Chemical Physics Letters, 2016, 661, 6-12.	1.2	121
99	Interactions of [BMIM][BF ₄] with Metal Oxides and Their Consequences on Stability Limits. Journal of Physical Chemistry C, 2016, 120, 20089-20102.	1.5	33
100	Studies of Volumetric and Transport Properties of Ionic Liquid–Water Mixtures and Its Viability To Be Used in Absorption Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 5068-5077.	3.2	15
101	High temperature electrical energy storage: advances, challenges, and frontiers. Chemical Society Reviews, 2016, 45, 5848-5887.	18.7	268
102	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67.	2.3	35
102 103	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67. Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166.	2.3 0.7	35 4
102 103 104	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67. Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166. Applications of Ionic Liquids. , 2016, , 1-58.	2.3 0.7	35 4 13
102 103 104	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67. Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166. Applications of Ionic Liquids. , 2016, , 1-58. Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Physical Chemistry Chemical Physics, 2016, 18, 22458-22466.	2.3 0.7 1.3	35 4 13 27
102 103 104 105	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67. Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166. Applications of Ionic Liquids. , 2016, , 1-58. Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Physical Chemistry Chemical Physics, 2016, 18, 22458-22466. Synthesis, characterization, and application of phosphonium ionic liquids. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1470-1471.	2.3 0.7 1.3 0.8	35 4 13 27 5
102 103 104 105 106	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67. Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166. Applications of Ionic Liquids. , 2016, , 1-58. Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Physical Chemistry Chemical Physics, 2016, 18, 22458-22466. Synthesis, characterization, and application of phosphonium ionic liquids. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1470-1471. Preparation and Properties of Câ+X (X: O, N, S) Based Distillable Ionic Liquids and Their Application for Rare Earth Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6258-6262.	2.3 0.7 1.3 0.8 3.2	 35 4 13 27 5 24
102 103 104 105 106 107	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67.Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166.Applications of Ionic Liquids. , 2016, , 1-58.Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Physical Chemistry Chemical Physics, 2016, 18, 22458-22466.Synthesis, characterization, and application of phosphonium ionic liquids. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1470-1471.Preparation and Properties of Câ+X (X: O, N, S) Based Distillable Ionic Liquids and Their Application for Rare Earth Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6258-6262.Physicochemical Properties of Ether-Functionalized Ionic Liquids: Understanding Their Irregular Variations with the Ether Chain Length. Industrial & amp; Engineering Chemistry Research, 2016, 55, 11589-11596.	2.3 0.7 1.3 0.8 3.2 1.8	 35 4 13 27 5 24 40
 102 103 104 105 106 107 108 109 	Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. Journal of Molecular Liquids, 2016, 223, 60-67. Syntheses and Physical Properties of Novel Betainium-type Ionic Liquids Derived from Amino Acids. Chemistry Letters, 2016, 45, 164-166. Applications of Ionic Liquids. , 2016, , 1-58. Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Physical Chemistry Chemical Physics, 2016, 18, 22458-22466. Synthesis, characterization, and application of phosphonium ionic liquids. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1470-1471. Preparation and Properties of Câ+X (X: O, N, S) Based Distillable Ionic Liquids and Their Application for Rare Earth Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6258-6262. Physicochemical Properties of Ether-Functionalized Ionic Liquids: Understanding Their Irregular Variations with the Ether Chain Length. Industrial & amp; Engineering Chemistry Research, 2016, 55, 11589-11596. Synthesis of Thermally Stable Geminal Dicationic Ionic Liquids and Related Ionic Compounds: An Examination of Physicochemical Properties by Structural Modification. Chemistry of Materials, 2016,	2.3 0.7 1.3 0.8 3.2 1.8 3.2	 35 4 13 27 5 24 40 77

#	Article	IF	CITATIONS
111	Stability studies of ionic liquid [EMIm][NTf ₂] under short-term thermal exposure. RSC Advances, 2016, 6, 48462-48468.	1.7	12
112	Study on Nanometer-Thick Room-Temperature Ionic Liquids (RTILs) for Application as the Media Lubricant in Heat-Assisted Magnetic Recording (HAMR). Industrial & Engineering Chemistry Research, 2016, 55, 6391-6397.	1.8	16
113	Physicochemical and electrochemical properties of a new series of protic ionic liquids with N-chloroalkyl functionalized cations. RSC Advances, 2016, 6, 55144-55158.	1.7	17
114	Comparison between polymerized ionic liquids synthesized using chain-growth and step-growth mechanisms used as stationary phase in gas chromatography. Journal of Chromatography A, 2016, 1451, 135-144.	1.8	19
115	Benzyl- and Vinyl-Functionalized Imidazoium Ionic Liquids for Selective Separating Aromatic Hydrocarbons from Alkanes. Industrial & Engineering Chemistry Research, 2016, 55, 747-756.	1.8	37
116	Thermally stable bis(trifluoromethylsulfonyl)imide salts and their mixtures. New Journal of Chemistry, 2016, 40, 7157-7161.	1.4	25
117	New Alkylether–Thiazolium Room-Temperature Ionic Liquid Lubricants: Surface Interactions and Tribological Performance. ACS Applied Materials & Interfaces, 2016, 8, 18631-18639.	4.0	32
118	Effect of anion chain length on physicochemical properties of N,N-dimethylethanolammonium based protic ionic liquids. Fluid Phase Equilibria, 2016, 415, 1-7.	1.4	29
119	Influence of perfluoroalkyl-chains on the surface properties of 1-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids. Journal of Molecular Liquids, 2016, 216, 246-258.	2.3	18
120	Mechanistic outlook on thermal degradation of 1,3-dialkyl imidazolium ionic liquids and organoclays. RSC Advances, 2016, 6, 9421-9428.	1.7	20
121	1-Alkyl-3-methyl-1,2,3-triazolium [NTf2] ionic liquids: synthesis and properties. Tetrahedron Letters, 2016, 57, 206-209.	0.7	12
122	Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts. Physical Chemistry Chemical Physics, 2016, 18, 3339-3351.	1.3	13
123	Effects of Operating Temperature on the Electrical Performance of a Li-air Battery operated with Ionic Liquid Electrolyte. Electrochimica Acta, 2016, 194, 317-329.	2.6	28
124	Endurance strategies for the preparation of high temperature polymer electrolyte membranes by UV polymerization of 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide for fuel cell applications. International Journal of Hydrogen Energy, 2016, 41, 3981-3993.	3.8	27
125	A microporous silk carbon–ionic liquid composite for the electrochemical sensing of dopamine. Analyst, The, 2016, 141, 2447-2453.	1.7	18
126	Ionic liquids for mass spectrometry: Matrices, separation and microextraction. TrAC - Trends in Analytical Chemistry, 2016, 77, 122-138.	5.8	67
127	Loblolly pine pretreatment by ionic liquid-glycerol mixtures. Biomass Conversion and Biorefinery, 2016, 6, 247-260.	2.9	6
128	Hydrodynamics of organic and ionic liquids in a slurry bubble column reactor operated at elevated temperatures. Chemical Engineering Journal, 2016, 286, 348-360.	6.6	39

#	Article	IF	CITATIONS
129	Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role. Advances in Colloid and Interface Science, 2016, 230, 13-28.	7.0	100
130	An efficient synthesis of anti-microbial 1,2,4-triazole-3-thiones promoted by acidic ionic liquid. Research on Chemical Intermediates, 2016, 42, 4171-4180.	1.3	22
131	Reusable proline-based ionic liquid catalyst for the simple synthesis of 2-arylbenzothiazoles in a biomass medium. Research on Chemical Intermediates, 2016, 42, 2035-2045.	1.3	15
132	Synthesis of Highâ€Purity Imidazolium Tetrafluoroborates and Bis(oxalato)borates. Chemistry - A European Journal, 2017, 23, 2261-2264.	1.7	5
133	Efficient and Reversible Absorption of Sulfur Dioxide of Flue Gas by Environmentally Benign and Stable Quaternary Ammonium Inner Salts in Aqueous Solutions. Energy & Fuels, 2017, 31, 1786-1792.	2.5	15
134	Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 2017, 117, 7132-7189.	23.0	1,201
135	Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 5415-5427.	1.5	46
136	Are Ionic Liquids Chemically Stable?. Chemical Reviews, 2017, 117, 7113-7131.	23.0	463
137	Thermokinetics of alkyl methylpyrrolidinium [NTf2] ionic liquids. Journal of Thermal Analysis and Calorimetry, 2017, 129, 261-270.	2.0	27
138	The corrosion and lubrication properties of 2-Mercaptobenzothiazole functionalized ionic liquids for bronze. Tribology International, 2017, 114, 121-131.	3.0	50
139	Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose, 2017, 24, 3191-3207.	2.4	63
140	Thermophysical Characterization of Ionic Liquids Based on the Perfluorobutanesulfonate Anion: Experimental and Softâ€SAFT Modeling Results. ChemPhysChem, 2017, 18, 2012-2023.	1.0	23
141	Highly Efficient Carbon Monoxide Capture by Carbanionâ€Functionalized Ionic Liquids through Câ€ S ite Interactions. Angewandte Chemie, 2017, 129, 6947-6951.	1.6	26
142	Highly Efficient Carbon Monoxide Capture by Carbanionâ€Functionalized Ionic Liquids through Câ€Site Interactions. Angewandte Chemie - International Edition, 2017, 56, 6843-6847.	7.2	83
143	An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 2017, 19, 3078-3102.	4.6	296
144	Colloidal lattices of environmentally responsive microgel particles at ionic liquid–water interfaces. Journal of Colloid and Interface Science, 2017, 504, 440-447.	5.0	5
145	Comprehensive Insights into the Thermal Stability, Biodegradability, and Combustion Chemistry of Pyrrolidiniumâ€Based Ionic Liquids. ChemSusChem, 2017, 10, 3146-3159.	3.6	44
146	Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry, 2017, 375, 63.	3.0	105

#	Article	IF	CITATIONS
147	Ionic liquid-based organically modified silica for the development of new electrorheological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 311-319.	2.3	20
148	Toward an Understanding of the Mechanisms behind the Formation of Liquid–liquid Systems formed by Two Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 3015-3019.	2.1	17
149	CO2/N2 separation using alumina supported membranes based on new functionalized ionic liquids. Separation and Purification Technology, 2017, 182, 59-68.	3.9	24
150	Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic liquids. Chemical Engineering Journal, 2017, 323, 473-482.	6.6	76
151	Microscopic characterization of amino acid ionic liquids - water mixtures. Journal of Molecular Liquids, 2017, 236, 81-92.	2.3	10
152	Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications. Chemical Reviews, 2017, 117, 6881-6928.	23.0	264
153	Hydrothermal and Solvothermal Syntheses. , 2017, , 73-104.		107
154	Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chemical Engineering Journal, 2017, 314, 508-514.	6.6	84
155	Nanoconfined Ionic Liquids. Chemical Reviews, 2017, 117, 6755-6833.	23.0	499
156	Isoconversional kinetic analysis applied to five phosphonium cation-based ionic liquids. Thermochimica Acta, 2017, 648, 62-74.	1.2	14
157	Synthesis and antioxidant properties of dicationic ionic liquids. New Journal of Chemistry, 2017, 41, 530-539.	1.4	19
158	Lipidic ionic liquid stationary phases for the separation of aliphatic hydrocarbons by comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2017, 1481, 127-136.	1.8	26
159	Toward the Elucidation of the Competing Role of Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-methylimidazolium Hexafluorophosphate under Effusion Conditions. Journal of Physical Chemistry B, 2017, 121, 10382-10393.	1.2	25
160	Sodium Lactate Aqueous Solution, A Green and Stable Absorbent for Desulfurization of Flue Gas. Industrial & Engineering Chemistry Research, 2017, 56, 13844-13849.	1.8	7
161	Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brnsted acid. RSC Advances, 2017, 7, 41546-41551.	1.7	59
162	An efficient phosphonate-based ionic liquid on flame retardancy and mechanical property of epoxy resin. Journal of Materials Science, 2017, 52, 13992-14003.	1.7	43
163	Facile Synthesis of Indolizines via 1,3-Dipolar Cycloadditions in [Omim]Br: The Promotion of the Reaction through Noncovalent Interactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 9279-9285.	3.2	35
164	Organic electrolyte solutions as versatile media for the dissolution and regeneration of cellulose.	4.6	40

#	Article	IF	CITATIONS
165	Thermal Breakdown Kinetics of 1-Ethyl-3-Methylimidazolium Ethylsulfate Measured Using Quantitative Infrared Spectroscopy. Applied Spectroscopy, 2017, 71, 2626-2631.	1.2	2
166	Aqueous and Templateâ€Free Synthesis of Meso–Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide. ChemSusChem, 2017, 10, 4144-4149.	3.6	30
167	Lubrication capabilities of amino acid based ionic liquids as green bio-lubricant additives. Journal of Molecular Liquids, 2017, 244, 219-225.	2.3	38
168	Tetrabutylphosphonium Bromide Catalyzed Dehydration of Diols to Dienes and Its Application in the Biobased Production of Butadiene. ACS Catalysis, 2017, 7, 5802-5809.	5.5	27
169	Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nature Chemistry, 2017, 9, 862-867.	6.6	234
170	Nanoscopic Study on Aliphatic Choline-Based Naphthenic Acid Ionic Liquids: Structural and Dynamical Properties. Journal of Physical Chemistry B, 2017, 121, 7946-7962.	1.2	7
171	An evaluation of anion suitability for use in ionic liquids with long-term, high-temperature thermal stability. New Journal of Chemistry, 2017, 41, 7844-7848.	1.4	17
172	Model-free kinetics applied to evaluate the long-term thermal stability of three [NTf2] anion-based ionic liquids. Thermochimica Acta, 2017, 656, 70-84.	1.2	17
174	Effect of Fluorinated Anion on the Physicochemical, Rheological and Solvatochromic Properties of Protic and Aprotic Ionic Liquids: Experimental and Computational Study. ChemistrySelect, 2017, 2, 11653-11658.	0.7	8
175	Dicationic polysiloxane ionic liquids. Russian Chemical Bulletin, 2017, 66, 1269-1277.	0.4	10
176	The effect of structural modifications on the thermal stability, melting points and ion interactions for a series of tetraaryl-phosphonium-based mesothermal ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 31560-31571.	1.3	19
177	Investigation of the Thermophysical Properties of AMPS-Based Aprotic Ionic Liquids for Potential Application in CO ₂ Sorption Processes. Journal of Chemical & Engineering Data, 2017, 62, 4160-4168.	1.0	10
178	Synthesis, thermal stability, and computed bond dissociation energies of tetraarylphosphonium-based mesothermal ionic liquids bearing a quinoline ring system. Tetrahedron Letters, 2017, 58, 4628-4631.	0.7	14
179	Tunable aryl alkyl ionic liquids (TAAILs) based on 1-aryl-3,5-dimethyl-1H-pyrazoles. Journal of Molecular Liquids, 2017, 248, 314-321.	2.3	10
180	Thermally robust: triarylsulfonium ionic liquids stable in air for 90 days at 300 °C. RSC Advances, 2017, 7, 7623-7630.	1.7	23
181	Thin Film Properties of Ammonium Sulfonate Ionic Liquids Having a Long Alkyl Chain. Bulletin of the Chemical Society of Japan, 2017, 90, 188-194.	2.0	3
182	Ionic liquid and nanoparticle hybrid systems: Emerging applications. Advances in Colloid and Interface Science, 2017, 244, 54-70.	7.0	148
183	Photoinitiated polymerization in ionic liquids and its application. Polymer International, 2017, 66, 366-381.	1.6	31

#	Article	IF	CITATIONS
184	Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 2017, 117, 6834-6880.	23.0	706
185	Avoid the PCB mistakes: A more sustainable future for ionic liquids. Journal of Hazardous Materials, 2017, 324, 773-780.	6.5	63
186	Lubricating property of cyano-based ionic liquids against hard materials. Journal of Mechanical Science and Technology, 2017, 31, 5745-5750.	0.7	7
187	Recent Applications of Ionic Liquids in the Sol-Gel Process for Polymer–Silica Nanocomposites with Ionic Interfaces. Colloids and Interfaces, 2017, 1, 5.	0.9	33
188	Adsorptive Purification of Ionic Liquids andÂtheirÂReuse in Cellulose Processing. Chemie-Ingenieur-Technik, 2017, 89, 1661-1669.	0.4	4
189	Lubrication Mechanism of Halogen-Free Ionic Liquids. Tribology Online, 2017, 12, 155-161.	0.2	13
190	Novel chiral ionic liquids stationary phases for the enantiomer separation of chiral acid by highâ€performance liquid chromatography. Chirality, 2018, 30, 670-679.	1.3	18
191	Syntheses and Properties of Methoxy and Nitrile Functionalized Imidazolium Tris(pentafluoroethyl)trifluorophosphate Ionic Liquids. Journal of Chemical & Engineering Data, 2018, 63, 1135-1145.	1.0	5
192	Ionothermal synthesis of crystalline microporous aluminophosphates: Systematic study on the conditions affecting the framework type. Microporous and Mesoporous Materials, 2018, 266, 204-213.	2.2	11
193	Ionic Liquids as Additives to Polystyrene- <i>Block</i> Poly(Methyl Methacrylate) Enabling Directed Self-Assembly of Patterns with Sub-10 nm Features. ACS Applied Materials & Interfaces, 2018, 10, 16747-16759.	4.0	29
194	Robust Organocatalysts for the Cleavage of Vegetable Oil Derivatives to Aldehydes through Retrobenzoin Condensation. Chemistry - A European Journal, 2018, 24, 8141-8150.	1.7	13
195	A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. Journal of Chemical Thermodynamics, 2018, 121, 97-111.	1.0	59
196	Thermal, electrochemical and radiolytic stabilities of ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 8382-8402.	1.3	248
197	"Solvent-in-salt―systems for design of new materials in chemistry, biology and energy research. Chemical Society Reviews, 2018, 47, 1250-1284.	18.7	151
198	Physicochemical properties of branched-chain dicationic ionic liquids. Journal of Molecular Liquids, 2018, 256, 247-255.	2.3	41
199	Dicationic ionic liquid thermal decomposition pathways. Analytical and Bioanalytical Chemistry, 2018, 410, 4645-4655.	1.9	28
200	Conversion of lactide to acrylic acid by a phosphonium ionic liquid and acid cocatalyst. Catalysis Science and Technology, 2018, 8, 1468-1474.	2.1	17
201	Impact of Anions on the Partition Constant, Self-Diffusion, Thermal Stability, and Toxicity of Dicationic Ionic Liquids. ACS Omega, 2018, 3, 734-743.	1.6	14

#	Article	IF	CITATIONS
202	Glycerol-based ionic liquids: Crucial microwaves-assisted synthetic step for solketal amines. Journal of Molecular Liquids, 2018, 252, 218-224.	2.3	8
203	Thermal influence on the electrochemical behavior of a supercapacitor containing an ionic liquid electrolyte. Electrochimica Acta, 2018, 263, 249-260.	2.6	38
204	Thermal stability of trihexyl(tetradecyl)phosphonium chloride. Physical Chemistry Chemical Physics, 2018, 20, 2444-2456.	1.3	46
205	A novel and simple approach for predicting activation energy of thermolysis of some selected ionic liquids. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2383-2390.	2.0	4
206	Cosolvent effect on physical properties of 1,3-dimethyl imidazolium dimethyl phosphate and some theoretical insights on cellulose dissolution. Journal of Molecular Liquids, 2018, 265, 114-120.	2.3	12
207	Ionic liquids: a brief history. Biophysical Reviews, 2018, 10, 691-706.	1.5	658
208	A theoretical study on mixtures of amino acid-based ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10213-10223.	1.3	11
209	Making good on a promise: ionic liquids with genuinely high degrees of thermal stability. Chemical Communications, 2018, 54, 5019-5031.	2.2	35
210	Improvement in lubricating properties of TritonX-100/n-C 10 H 21 OH/H 2 O lamellar liquid crystals with the amphiphilic ionic liquid 1-alkyl-3-methylimidazolium hexafluorophosphate. Journal of Colloid and Interface Science, 2018, 522, 200-207.	5.0	14
211	Thermodynamic properties of selenoether-functionalized ionic liquids and their use for the synthesis of zinc selenide nanoparticles. Dalton Transactions, 2018, 47, 5083-5097.	1.6	14
212	Interfacial properties of the ionic liquid [bmim][triflate] over a wide range of temperatures. RSC Advances, 2018, 8, 10115-10123.	1.7	15
213	Supercritical carbon dioxide and imidazolium based ionic liquids applied during the sol–gel process as suitable candidates for the replacement of classical organic solvents. Journal of Supercritical Fluids, 2018, 132, 76-82.	1.6	12
214	Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chemical Engineering Journal, 2018, 334, 817-828.	6.6	144
215	Long chain imidazolium ionic liquid and magnetite nanoparticle interactions at the oil/water interface. Journal of Petroleum Science and Engineering, 2018, 160, 363-371.	2.1	28
216	Thermal stability of aprotic ionic liquids as potential lubricants. Comparison with synthetic oil bases. Journal of Chemical Thermodynamics, 2018, 116, 185-196.	1.0	37
217	Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials. International Journal of Biological Macromolecules, 2018, 108, 333-341.	3.6	61
218	Effects of Alkyl Chain Length of Sulfate and Phosphate Anion-Based Ionic Liquids on Tribochemical Reactions. Tribology Letters, 2018, 66, 1.	1.2	21
219	The roles of graphene in advanced Li-ion hybrid supercapacitors. Journal of Energy Chemistry, 2018, 27, 43-56.	7.1	64

#	Article	IF	CITATIONS
220	Recent Advances in Pd atalyzed Cross oupling Reaction in Ionic Liquids. European Journal of Organic Chemistry, 2018, 2018, 1284-1306.	1.2	94
221	Ternary Mixtures of Sulfolanes and Ionic Liquids for Use in High-Temperature Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 2612-2620.	3.2	10
222	Lubricating mechanism of cyano-based ionic liquids on nascent steel surface. Tribology International, 2018, 119, 474-480.	3.0	26
223	Evaluation of Friction Behavior and Surface Interactions of Cyano-Based Ionic Liquids under Different Sliding Contacts and High Vacuum Condition. Lubricants, 2018, 6, 69.	1.2	4
224	Long-term Isothermal Stability of Deep Eutectic Solvents. BioResources, 2018, 13, .	0.5	22
225	Synthesis and physicochemical characterization of room temperature ionic liquids and their application in sodium ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 29412-29422.	1.3	21
226	Thermokinetics of SO ₃ H-functionalized dicationic ionic liquids: Effect of anions. IOP Conference Series: Materials Science and Engineering, 0, 458, 012072.	0.3	5
227	Hydroxyl-containing imidazolium ionic liquids. Russian Chemical Bulletin, 2018, 67, 1621-1626.	0.4	11
228	Understanding Electric Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale. ACS Applied Materials & Interfaces, 2018, 10, 43211-43218.	4.0	21
229	Thermal hazard analysis and thermokinetic calculation of 1,3-dimethylimidazolium nitrate via TG and VSP2. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2367-2374.	2.0	7
231	Synthesis and Properties of Magnetic Aryl-Imidazolium Ionic Liquids with Dual BrÃ,nsted/Lewis Acidity. Materials, 2018, 11, 2539.	1.3	13
232	Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nature Communications, 2018, 9, 5222.	5.8	96
233	Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO2)0.8–(Sb2O4)0.2 anodes. Journal of Electroanalytical Chemistry, 2018, 829, 116-128.	1.9	30
234	Application of ionic liquids in thermosetting polymers: Epoxy and cyanate ester resins. EXPRESS Polymer Letters, 2018, 12, 898-917.	1.1	25
235	Thermal and spectral characterization and stability of mixtures of ionic liquids [EMIM]Ac and [BMIM]Ac with ethanol, methanol, and water at ambient conditions and at elevated temperatures and pressures. Thermochimica Acta, 2018, 669, 126-139.	1.2	23
236	1,4â€Piperazinium Hydrogen Sulfate {[Hâ€pi]HSO ₄ } a Novel Diâ€Cationic Ionic Liquid: Synthesis, Characterization and Its Applications as a Catalyst in Various Organic Transformations. ChemistrySelect, 2018, 3, 11585-11592.	0.7	11
237	Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis. Renewable and Sustainable Energy Reviews, 2018, 97, 436-455.	8.2	134
238	Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process. Applied Energy, 2018, 230, 734-749.	5.1	62

#	Article	IF	CITATIONS
239	Synthesis, thermophysical properties, Hammett acidity and COSMO-RS study of camphorsulfonate-based Brönsted acidic ionic liquids. Journal of Molecular Liquids, 2018, 271, 621-630.	2.3	8
240	Porphyrinic Ionic Liquid Dyes: Synthesis and Characterization. ChemistryOpen, 2018, 7, 659-663.	0.9	5
241	A Preliminary Experiment of Non-Catalytic Transesterification: Thermal Analysis of Palm Oil and Biodiesel at Different Ratio. International Journal of Engineering and Technology(UAE), 2018, 7, 190.	0.2	3
242	Non-isothermal decomposition kinetics of pyridinium nitrate under nitrogen atmosphere. Thermochimica Acta, 2018, 665, 85-91.	1.2	16
243	Thermal stability of choline based amino acid ionic liquids. Journal of Molecular Liquids, 2018, 266, 597-602.	2.3	33
244	Liquid window of some biologically-active ionic liquids. Journal of Chemical Thermodynamics, 2018, 126, 1-10.	1.0	12
245	Synthesis and properties of symmetrical N,N′-bis(alkyl)imidazolium bromotrichloroferrate(III) paramagnetic, room temperature ionic liquids with high short-term thermal stability. Journal of Molecular Liquids, 2018, 265, 701-710.	2.3	13
246	Efficient synthesis of sec-butanol from sec-butyl acetate under mild conditions with the basic ionic liquid catalysts. Chemical Engineering Journal, 2018, 354, 599-605.	6.6	13
247	Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids. Journal of Thermal Analysis and Calorimetry, 2018, 133, 683-693.	2.0	16
248	Determination of Extractant Solubility in Ionic Liquids by Thermogravimetric Analysis. Solvent Extraction and Ion Exchange, 2018, 36, 304-314.	0.8	3
249	Supported bicyclic amidine ionic liquids as a potential CO2/N2 separation medium. Journal of Membrane Science, 2018, 565, 203-212.	4.1	24
250	Thermal Resilience of Imidazolium-Based Ionic Liquids—Studies on Short- and Long-Term Thermal Stability and Decomposition Mechanism of 1-Alkyl-3-methylimidazolium Halides by Thermal Analysis and Single-Photon Ionization Time-of-Flight Mass Spectrometry. Journal of Physical Chemistry B, 2018, 122, 8738-8749	1.2	33
251	Imidazolium-Based Ionic Liquid: An Efficient, Normalized, and Recyclable Platform for Rh(III)-Catalyzed Directed C–H Carbenoid Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 13473-13479.	3.2	23
252	Intermolecular Interactions and Vibrational Perturbations within Mixtures of 1-Ethyl-3-methylimidazolium Thiocyanate and Water. Journal of Physical Chemistry C, 2018, 122, 27673-27680.	1.5	12
253	lonic Liquid-Containing Pickering Emulsions Stabilized by Graphene Oxide-Based Surfactants. Langmuir, 2018, 34, 10114-10122.	1.6	53
254	Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chemical Engineering Journal, 2018, 354, 208-219.	6.6	178
255	Solubility-switchable Ionic Liquids: A Control of Hydrophilicity and Hydrophobicity Using a Protective Group. Chemistry Letters, 2018, 47, 1079-1081.	0.7	11
256	Stripping Voltammetry at the Interface between two Immiscible Electrolyte Solutions: A Review Paper. Electroanalysis, 2018, 30, 2210-2221.	1.5	12

#	Article	IF	CITATIONS
257	Physicochemical properties, Brönsted acidity and ecotoxicity of imidazolium-based organic salts: Non-toxic variants of protic ionic liquids. Journal of Molecular Liquids, 2018, 269, 178-186.	2.3	17
258	Thermal stability of dialkylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids: <i>ex situ</i> bulk heating to complement <i>in situ</i> mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 16786-16800.	1.3	16
259	Rapid, comprehensive screening of ionic liquids towards sustainable applications. Sustainable Energy and Fuels, 2019, 3, 2798-2808.	2.5	35
260	Tailoring nitrogen content in doped carbon by a facile synthesis with ionic liquid precursors for lithium ion batteries. Applied Surface Science, 2019, 494, 532-539.	3.1	15
261	Synthesis and characterization of analogues of glycine-betaine ionic liquids with the 4-chlorosalicylate anion and their use in the extraction of copper(<scp>ii</scp>) ions. New Journal of Chemistry, 2019, 43, 14818-14828.	1.4	5
262	Green Synthesis of Privileged Benzimidazole Scaffolds Using Active Deep Eutectic Solvent. Molecules, 2019, 24, 2885.	1.7	40
263	New dual functionalized zwitterions and ionic liquids; Synthesis and cellulose dissolution studies. Journal of Molecular Liquids, 2019, 292, 111353.	2.3	24
264	Thermophysical and electrochemical properties of 1–alkyl–3–(3–butenyl)imidazolium bromide ionic liquids. Journal of Chemical Thermodynamics, 2019, 139, 105871.	1.0	15
265	Utilizing imidazole based ionic liquid as an environmentally friendly process for enhancement of the epoxy coating/graphene oxide composite corrosion resistance. Journal of Industrial and Engineering Chemistry, 2019, 79, 353-363.	2.9	54
266	Interfacial Structure and Boundary Lubrication of a Dicationic Ionic Liquid. Langmuir, 2019, 35, 15444-15450.	1.6	32
267	Environmental sustainability of cellulose-supported solid ionic liquids for CO2 capture. Green Chemistry, 2019, 21, 4100-4114.	4.6	19
268	Insights into the levulinate-based ionic liquid class: synthesis, cellulose dissolution evaluation and ecotoxicity assessment. New Journal of Chemistry, 2019, 43, 13010-13019.	1.4	32
269	Application of ionic liquids in microextraction techniques: Current trends and future perspectives. TrAC - Trends in Analytical Chemistry, 2019, 119, 115614.	5.8	66
270	Epoxy-Containing Ionic Liquids with Tunable Functionality. Molecules, 2019, 24, 2591.	1.7	1
271	The Ionic Liquid Property Explorer: An Extensive Library of Task-Specific Solvents. Data, 2019, 4, 88.	1.2	15
272	Surface active fatty acid ILs: Influence of the hydrophobic tail and/or the imidazolium hydroxyl functionalization on aggregates formation. Journal of Molecular Liquids, 2019, 289, 111155.	2.3	34
273	Structural Factors Determining Thermal Stability Limits of Ionic Liquid/MOF Composites: Imidazolium Ionic Liquids Combined with CuBTC and ZIF-8. Industrial & Engineering Chemistry Research, 2019, 58, 14124-14138.	1.8	40
274	A BrÃ,nsted Acidic Ionic Liquid as an Efficient and Selective Catalyst System for Bioderived High Molecular Weight Poly(ethylene 2,5â€furandicarboxylate). ChemSusChem, 2019, 12, 4927-4935.	3.6	26

#	Article	IF	CITATIONS
275	[Cp*Rh ^{III}] in an Ionic Liquid as a Highly Efficient and Recyclable Catalytic Medium for Regio― and Diastereoselective Csp ³ –H Carbenoid Insertion. European Journal of Organic Chemistry, 2019, 2019, 7448-7451.	1.2	2
276	Recycling of 1,2-Dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide Ionic Liquid by Stacked Cation and Anion Exchange Adsorption-Desorption. Separations, 2019, 6, 29.	1.1	6
277	Thermal behavior analysis as a valuable tool for comparing ionic liquids of different classes. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3335-3345.	2.0	37
278	Water addition enhanced thermal stability of alkylimidazolium acetate in Ionosolv treatment of lignin. International Journal of Biological Macromolecules, 2019, 141, 1055-1064.	3.6	11
279	Toward Practical Li Metal Batteries: Importance of Separator Compatibility Using Ionic Liquid Electrolytes. ACS Applied Energy Materials, 2019, 2, 6655-6663.	2.5	29
280	Reaction parameters dependence of the CO2/epoxide coupling reaction catalyzed by tunable ionic liquids, optimization of comonomer-alternating enhancement pathway. Journal of CO2 Utilization, 2019, 33, 500-512.	3.3	8
281	<i>110th Anniversary:</i> Properties of Imidazolium-Based Ionic Liquids Bearing Both Benzylic and <i>n</i> -Alkyl Substituents. Industrial & Engineering Chemistry Research, 2019, 58, 17956-17964.	1.8	18
282	Ionic Liquid Forms of Mesotrione with Enhanced Stability and Reduced Leaching Risk. ACS Sustainable Chemistry and Engineering, 2019, 7, 16620-16628.	3.2	28
283	Densities and viscosities of, and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide. Journal of Chemical Thermodynamics, 2019, 139, 105883.	1.0	34
284	New ionic liquids with fluorous anions for supported liquid membranes and characterization. Journal of Fluorine Chemistry, 2019, 227, 109365.	0.9	4
285	Using evolved gas analysis – mass spectrometry to characterize adsorption on a nanoparticle surface. Nanoscale Advances, 2019, 1, 2740-2747.	2.2	4
286	Ionic Liquid-Nanostructured Poly(Methyl Methacrylate). Nanomaterials, 2019, 9, 1376.	1.9	13
287	Ultra-high thermal stability perarylated ionic liquids as gas chromatographic stationary phases for the selective separation of polyaromatic hydrocarbons and polychlorinated biphenyls. Journal of Chromatography A, 2019, 1604, 460466.	1.8	20
288	Energy storage inspired by nature – ionic liquid iron–sulfur clusters as electrolytes for redox flow batteries. Dalton Transactions, 2019, 48, 1941-1946.	1.6	18
289	Oxidative stability and thermal performance of ester based lube oil with lithium salt additives. Applied Thermal Engineering, 2019, 150, 1328-1336.	3.0	9
291	Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices. Energy Storage Materials, 2019, 18, 1-9.	9.5	23
292	Investigation of a family of structurally-related guanidinium ionic liquids through XPS and thermal analysis. Journal of Molecular Liquids, 2019, 277, 280-289.	2.3	10
293	A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids. Analyst, The, 2019, 144, 543-549.	1.7	19

ARTICLE IF CITATIONS # Green alternative treatment for cellulosic fibers: ionic liquid modification of Abelmoschus esculentusfibers with methyl-tri-n-butyl ammonium methyl sulphate. Materials Research Express, 2019, 294 0.8 9 6,085104. Friction Control by Applying Electric Potential under Lubrication with Ionic Liquids. Tribology 0.2 Online, 2019, 14, 71-77 Efficient and Reversible Nitric Oxide Absorption by Low-Viscosity, Azole-Derived Deep Eutectic 296 1.0 17 Solvents. Journal of Chemical & amp; Engineering Data, 2019, 64, 3068-3077. Nitrogenâ€doped carbons derived from poly(ionic liquid)s with various backbones and cations. Polymer International, 2019, 68, 1599-1609. In-Depth Physico-Chemical and Structural Investigation of a Dicarboxylic Acid/Choline Chloride Natural Deep Eutectic Solvent (NADES): A Spotlight on the Importance of a Rigorous Preparation 298 3.2 12 Procedure. ACS Sustainable Chemistry and Engineering, 2019, , . Supported molten-salt membranes for carbon dioxide permeation. Journal of Materials Chemistry A, 299 5.2 2019, 7, 12951-12973. Synthesis, characterization, ecotoxicity and biodegradability evaluations of novel biocompatible 300 4.2 50 surface active lauroyl sarcosinate ionic liquids. Chemosphere, 2019, 229, 349-357. Thermal Stability and Non-isothermal Kinetic Analysis of Suspension Poly(vinyl chloride) Films Formulated with Phosphonium-Based Ionic Liquids. Industrial & amp; Engineering Chemistry Research, 1.8 2019, 58, 8525-8535. Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through 302 thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared 2.0 11 spectrometry. Journal of Thermal Analysis and Calorimetry, 2019, 138, 489-499. Protic Ionic Liquids Based on the Alkyl-Imidazolium Cation: Effect of the Alkyl Chain Length on 1.2 Structure and Dynamics. Journal of Physical Chemistry B, 2019, 123, 4044-4054. An appraisal of the thermal decomposition mechanisms of ILs as potential lubricants. Lubrication 304 0.9 10 Science, 2019, 31, 229-238. Influence of Water on Tribolayer Growth When Lubricating Steel with a Fluorinated Phosphonium 1.2 Dicyanamide Ionic Liquid. Lubricants, 2019, 7, 27. Synthesis and characterization of analogues of glycine-betaine ionic liquids and their use in the formation of aqueous biphasic systems. Fluid Phase Equilibria, 2019, 494, 239-245. 306 1.4 14 Recovery of Butanol from ABE Fermentation Broth with Hydrophobic Functionalized Ionic Liquids as Extractants. ACS Sustainable Chemistry and Engineering, 2019, 7, 9318-9329. 3.2 16 Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 308 2.2 39 frameworks. Microporous and Mesoporous Materials, 2019, 284, 98-110. Density Functional Theory Descriptors for Ionic Liquids and the Introduction of a Coulomb 309 1.1 Correction. Journal of Physical Chemistry A, 2019, 123, 4188-4200. Liquid range of ionic liquid – Metal salt mixtures for electrochemical applications. Journal of 310 1.0 18 Chemical Thermodynamics, 2019, 134, 164-174. Adding Solvent into Ionic Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance. ACS Applied Materials & amp; Interfaces, 2019, 11, 13822-13830.

#	Article	IF	CITATIONS
312	Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids. Journal of Molecular Structure, 2019, 1186, 68-79.	1.8	29
313	Physicochemical Properties of Various 2-Hydroxyethylammonium Sulfonate -Based Protic Ionic Liquids and Their Potential Application in Hydrodeoxygenation. Frontiers in Chemistry, 2019, 7, 196.	1.8	14
314	Ionic liquid-based nanofluids (ionanofluids) for thermal applications: an experimental thermophysical characterization. Pure and Applied Chemistry, 2019, 91, 1309-1340.	0.9	29
315	Reactivity of oilâ€soluble IL with silicon surface at elevated temperature. Lubrication Science, 2019, 31, 151-162.	0.9	1
316	Thermal and oxidative decomposition of ibuprofen-based ionic liquids. Journal of Molecular Liquids, 2019, 284, 647-657.	2.3	9
317	Physicochemical properties and theoretical studies of novel fragile ionic liquids based on N-allyl-N,N-dimethylethylammonium cation. Journal of Molecular Liquids, 2019, 284, 522-535.	2.3	6
318	Insight into the structure and interaction properties of 1-propylnitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and chloroform mixtures. Journal of Molecular Liquids, 2019, 283, 748-755.	2.3	9
319	Efficient cellulose dissolution in a tertiary [EHEMIM]-[EMIM]OAc-water system. Journal of Molecular Liquids, 2019, 281, 236-242.	2.3	1
320	Pickering Emulsion-Templated Encapsulation of Ionic Liquids for Contaminant Removal. ACS Applied Materials & Interfaces, 2019, 11, 9612-9620.	4.0	48
321	Synthesis of Guerbet ionic liquids and extractants as β-branched biosourceable hydrophobes. Organic and Biomolecular Chemistry, 2019, 17, 9778-9791.	1.5	6
322	Structure–Property Relationship for 1-Isopropyl-3-methylimidazolium- and 1- <i>tert</i> -Butyl-3-methylimidazolium-Based Ionic Liquids: Thermal Properties, Densities, Viscosities, and Quantum Chemical Calculations. Journal of Chemical & Engineering Data, 2019, 64, 5857-5868.	1.0	3
323	Predicting Melting Points of Biofriendly Choline-Based Ionic Liquids with Molecular Dynamics. Applied Sciences (Switzerland), 2019, 9, 5367.	1.3	7
324	Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy and Environmental Science, 2019, 12, 3247-3287.	15.6	129
325	An insight into the intermolecular vibrational modes of dicationic ionic liquids through far-infrared spectroscopy and DFT calculations. RSC Advances, 2019, 9, 30269-30276.	1.7	11
326	Influence of Anion Variations on Morphological, Spectral, and Physical Properties of the Propidium Luminophore. Journal of Physical Chemistry A, 2019, 123, 111-119.	1.1	9
327	A family of chiral ionic liquids from the natural pool: Relationships between structure and functional properties and electrochemical enantiodiscrimination tests. Electrochimica Acta, 2019, 298, 194-209.	2.6	38
328	Kinetic stability of imidazolium cations and ionic liquids: A frontier molecular orbital approach. Journal of Molecular Liquids, 2019, 276, 721-727.	2.3	23
329	A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustainable Chemistry and Engineering, 2019, 7, 2933-2942.	3.2	310

#	Article	IF	CITATIONS
330	Solid and Solid‣ike Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces. Advanced Materials Interfaces, 2019, 6, 1800899.	1.9	72
331	Surface behavior of low-temperature molten salt mixtures during the transition from liquid to solid. Journal of Molecular Liquids, 2019, 275, 290-296.	2.3	3
332	Tuning the interphase adhesion in highâ€density polyethylene–silica nanocomposites with ionic liquids. Journal of Applied Polymer Science, 2019, 136, 47366.	1.3	2
334	Advances of Ionic Liquids in Analytical Chemistry. Analytical Chemistry, 2019, 91, 505-531.	3.2	180
335	Lithium ion conducting polymerized ionic liquid pentablock terpolymers as solid-state electrolytes. Polymer, 2019, 161, 128-138.	1.8	16
336	Ionic liquids for electrochemical energy storage devices applications. Journal of Materials Science and Technology, 2019, 35, 674-686.	5.6	161
337	Screening of protic ionic liquids for sugarcane bagasse pretreatment. Fuel, 2019, 235, 1506-1514.	3.4	66
338	Thermophysical properties of choline and pyridinium based ionic liquids as advanced materials for energy applications. Journal of Chemical Thermodynamics, 2020, 141, 105947.	1.0	20
339	Removal of methylene blue by new tunable aryl/alkyl ionic liquids/salts (TAAILs) from aqueous solution. Separation Science and Technology, 2020, 55, 3299-3306.	1.3	1
340	A combination of FTIR and DFT to study the microscopic structure and hydrogen-bonding interaction properties of the [BMIM][BF4] and water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117624.	2.0	21
341	The structure and interaction properties of two task-specific ionic liquids and acetonitrile mixtures: A combined FTIR and DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117641.	2.0	25
342	Thermal stability assessment of 4-amino-1,2,4-triazole picrate using thermal analysis method. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2155-2163.	2.0	9
343	Implementation of imidazolium and ammonium based ionic liquids and the effect on electrical conductivity of polypropylene fabrics. Polymer-Plastics Technology and Materials, 2020, 59, 130-140.	0.6	2
344	Encapsulation of Ionic Liquids for Tailored Applications. ACS Applied Materials & Interfaces, 2020, 12, 5169-5176.	4.0	36
345	Kinetic analysis of microwave-enhanced cellulose dissolution in ionic solvents. Physical Chemistry Chemical Physics, 2020, 22, 1003-1010.	1.3	21
346	Assessing the thermal properties of [Bmim]NO3 through thermokinetic calculations and the energy equilibrium method. Chemical Engineering Research and Design, 2020, 134, 270-276.	2.7	8
347	Imidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture. Microporous and Mesoporous Materials, 2020, 294, 109916.	2.2	42
348	Removal of phenolic pollutants from wastewater streams using ionic liquids. Separation and Purification Technology, 2020, 236, 116310.	3.9	53

#	Article	IF	CITATIONS
349	Surface resistivity, surface wettability and thermal stability of the 1-ethyl-2,3-dimethylimidazolium ethyl sulfate and methyl-tri-n-butylammonium methyl sulfate modified polyethylene. Polymer-Plastics Technology and Materials, 2020, 59, 722-732.	0.6	1
350	Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO2, CH4, N2, H2 or Mixtures of These Gases from Various Gas Streams. Molecules, 2020, 25, 4274.	1.7	31
351	Why ionic liquids coated ZnO nanocomposites emerging as environmental remediates: Enhanced photo-oxidation of 4-nitroaniline and encouraged antibacterial behavior. Journal of Molecular Liquids, 2020, 319, 114107.	2.3	12
352	Structural and Ion Dynamics in Fluorine-Free Oligoether Carboxylate Ionic Liquid-Based Electrolytes. Journal of Physical Chemistry B, 2020, 124, 9690-9700.	1.2	12
353	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	23.0	294
354	Effect of temperature on irreversible and reversible heat generation rates in ionic liquid-based electric double layer capacitors. Electrochimica Acta, 2020, 338, 135802.	2.6	16
355	lonic liquids of superior thermal stability. Validation of PPh ₄ ⁺ as an organic cation of impressive thermodynamic durability. RSC Advances, 2020, 10, 20521-20528.	1.7	3
356	Tuning the Cation–Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 6657-6663.	1.2	8
357	Solid (cyanomethyl)trimethylammonium salts for electrochemically stable electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 14721-14735.	5.2	9
358	Sol-gel processing of VO2 (M) in supercritical CO2 and supercritical CO2/ ionic liquid biphasic system. Journal of Supercritical Fluids, 2020, 165, 104989.	1.6	6
359	Potential Application of Ionic Liquids for Electrodeposition of the Material Targets for Production of Diagnostic Radioisotopes. Materials, 2020, 13, 5069.	1.3	6
360	Adding salt to expand voltage window of humid ionic liquids. Nature Communications, 2020, 11, 5809.	5.8	60
361	An Overview on the potential application of ionic liquids in shale stabilization processes. Journal of Natural Gas Science and Engineering, 2020, 81, 103480.	2.1	35
362	Stability of ionic liquids in BrÃ,nsted-basic media. Green Chemistry, 2020, 22, 5225-5252.	4.6	38
363	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210
364	Insights into the Properties and Potential Applications of Renewable Carbohydrate-Based Ionic Liquids: A Review. Molecules, 2020, 25, 3285.	1.7	31
365	Microscopic properties of two 1-(2′-hydroxylethyl)-3-methylimidazolium-based ionic liquids and methanol mixtures. Journal of Molecular Liquids, 2020, 313, 113578.	2.3	5
366	Synthesis of ricinoleate anion based ionic liquids and their application as green lubricating oil additives. Journal of Saudi Chemical Society, 2020, 24, 742-753.	2.4	9

#	Article	IF	CITATIONS
367	Exploring the corrosion inhibition capability of FAP-based ionic liquids on stainless steel. Royal Society Open Science, 2020, 7, 200580.	1.1	5
368	Imidazolium Ionic Liquid as Organic Spacer for Tuning the Excitonic Structure of 2D Perovskite Materials. ACS Energy Letters, 2020, 5, 3617-3627.	8.8	24
369	Application of Ionic Liquids for Chemical Demulsification: A Review. Molecules, 2020, 25, 4915.	1.7	61
370	Thermolysis of Organofluoroborate Ionic Liquids to NHC-Organofluoroborates. ACS Sustainable Chemistry and Engineering, 2020, 8, 16386-16390.	3.2	2
371	Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chemical Reviews, 2020, 120, 10454-10515.	23.0	173
372	Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides. ACS Symposium Series, 2020, , 3-29.	0.5	6
373	Synthesis and physioelectrochemical characterization of triethylammonium bisulphate ionic liquid and the role of the electrode surface oxides during ethanol oxidation. Chemical Physics Letters, 2020, 758, 137902.	1.2	5
374	Decomposition temperatures and vapour pressures of selected ionic liquids for electrochemical applications. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1791-1797.	2.0	11
375	Theoretical and experimental studies on the thermal decomposition of 1-butyl-3-methylimidazolium dibutyl phosphate. Journal of Loss Prevention in the Process Industries, 2020, 65, 104162.	1.7	8
376	Concentrating water-soluble ionic liquids from aqueous solutions: Osmotic distillation with hydrophobic membranes. Journal of Membrane Science, 2020, 608, 118222.	4.1	11
377	QSPR Modeling of Liquidâ€liquid Equilibria in Twoâ€phase Systems of Water and Ionic Liquid. Molecular Informatics, 2020, 39, e2000001.	1.4	4
378	Developing New Inexpensive Room-Temperature Ionic Liquids with High Thermal Stability and a Greener Synthetic Profile. ACS Omega, 2020, 5, 12637-12648.	1.6	22
379	Imidazolium-Based Ionic Liquids Introduced into π-Electron Donors: Highly Efficient Toluene Capture. ACS Sustainable Chemistry and Engineering, 2020, 8, 9058-9069.	3.2	48
380	NH3 absorption performance and reversible absorption mechanisms of protic ionic liquids with six-membered N-heterocyclic cations. Separation and Purification Technology, 2020, 248, 117087.	3.9	34
381	Development of novel hybrid ionic fluids for efficient CO2 capture and cellulose dissolution. Journal of Molecular Liquids, 2020, 312, 113477.	2.3	14
382	Novel Solvent Systems for Biomass Fractionation Based on Hydrogenâ€Bond Interaction: A Minireview. Advanced Sustainable Systems, 2020, 4, 2000085.	2.7	17
383	One-pot synthesis of symmetric imidazolium ionic liquids <i>N</i> , <i>N</i> -disubstituted with long alkyl chains. RSC Advances, 2020, 10, 21071-21081.	1.7	7
384	Linear burn rate of green ionic liquid multimode monopropellant. Combustion and Flame, 2020, 219, 212-224.	2.8	12

ARTICLE IF CITATIONS # Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation 385 1.8 54 Techniques. International Journal of Molecular Sciences, 2020, 21, 4253. Applications of phosphonium-based ionic liquids in chemical processes. Journal of the Iranian Chemical Society, 2020, 17, 1775-1917. 1.2 Universal Method for Energy-Saving Absorption of SO₂ with Absorbents Adjusted by 387 2.5 1 Lactic Acid. Energy & amp; Fuels, 2020, 34, 3976-3980. New alkoxymethyl-functionalized pyridinium-based chiral ionic liquids: synthesis, characterization 388 and properties. Ćhemical Papers, 2020, 74, 2951-2963. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives 389 7.2 48 Using a Rh@SILP Catalyst. Angewandte Chemie - International Edition, 2020, 59, 11977-11983. Electrolytes for Lithium (Sodium) Batteries Based on Ionic Liquids: Highlighting the Key Role Played by 2.4 the Anion. Batteries and Supercaps, 2020, 3, 793-827. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives 391 1.6 5 Using a Rh@SILP Catalyst. Angewandte Chemie, 2020, 132, 12075-12081. Overview of lonogels in Flexible Electronics. Chemical Record, 2020, 20, 948-967. 2.9 On the way to greener furanic-aliphatic poly(ester amide)s: Enzymatic polymerization in ionic liquid. 393 22 1.8 Polymer, 2020, 205, 122662. Comparing the Thermal and Electrochemical Stabilities of Two Structurally Similar Ionic Liquids. 394 1.7 Molecules, 2020, 25, 2388. Nitrogen and sulfur co-doped mesoporous carbon derived from ionic liquid as high-performance 395 2.2 21 anode material for sodium ion batteries. Microporous and Mesoporous Materials, 2020, 306, 110433. Properties of Dicationic Disiloxane Ionic Liquids. Molecules, 2020, 25, 2949. 396 1.7 Ionic Liquid Stabilized 2,2,6,6-Tetramethylpiperidine 1-Oxyl Catalysis for Alcohol Oxidation. ACS 397 3.2 12 Sustainable Chemistry and Engineering, 2020, 8, 4489-4498. High-temperature heterogeneous catalysis in platinum nanoparticle – molten salt suspensions. Catalysis Science and Technology, 2020, 10, 625-629. 398 2.1 Synthesis and characterization of physicochemical properties of new ether-functionalized amino acid 399 2.326 ionic liquids. Journal of Molecular Liquids, 2020, 304, 112718. Hydrogen bond promoted thermal stability enhancement of acetate based ionic liquid. Chinese Journal of Chemical Engineering, 2020, 28, 1293-1301. Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic 401 liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: Synthesis, 3.8 57 characterization, in-vitro and in-vivo studies. Materials Science and Engineering C, 2020, 111, 110791. Commercial Applications of Ionic Liquids. Green Chemistry and Sustainable Technology, 2020, , . 44

#	Article	IF	CITATIONS
403	Osmotic pressure as driving force for recovering ionic liquids from aqueous solutions. Journal of Membrane Science, 2020, 599, 117835.	4.1	16
404	Inner Layer Capacitance of Organic Electrolytes from Constant Voltage Molecular Dynamics. Journal of Physical Chemistry C, 2020, 124, 2907-2922.	1.5	25
405	Thermal stability and flammability assessment of 1-ethyl-2, 3-dimethylimidazolium nitrate. Chemical Engineering Research and Design, 2020, 135, 219-227.	2.7	24
406	Palladium Acetate/[CPy][Br]: An Efficient Catalytic System towards the Synthesis of Biologically Relevant Stilbene Derivatives via Heck Crossâ€Coupling Reaction ChemistrySelect, 2020, 5, 4251-4262.	0.7	12
407	Influence of Carboxylate Anions on Phase Behavior of Choline Ionic Liquid Mixtures. Molecules, 2020, 25, 1691.	1.7	10
408	Real-time monitoring of intracellular pH in live cells with fluorescent ionic liquid. Analytica Chimica Acta, 2020, 1111, 132-138.	2.6	18
409	Analysis and characterisation of 1-butyl-3-methylimidazolium hexafluorophosphate as a humectant of nitrocellulose. Journal of Molecular Liquids, 2020, 303, 112617.	2.3	8
410	Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis. Journal of Molecular Liquids, 2020, 306, 112911.	2.3	41
411	Autocatalyzed interfacial thiol–isocyanate click reactions for microencapsulation of ionic liquids. Journal of Materials Science, 2020, 55, 9119-9128.	1.7	11
412	Silica-immobilized ionic liquid BrÃ,nsted acids as highly effective heterogeneous catalysts for the isomerization of <i>n</i> -heptane and <i>n</i> -octane. RSC Advances, 2020, 10, 15282-15292.	1.7	14
413	Ionic liquid screening for CO2 capture and H2S removal from gases: The syngas purification case. Chemical Engineering Science, 2021, 230, 116199.	1.9	65
414	Exploiting isohexide scaffolds for the preparation of chiral ionic liquids tweezers. Journal of Molecular Liquids, 2021, 322, 114528.	2.3	13
415	In-situ observation of tribo-decomposition behavior of ionic liquids composed of phosphonium-cation and cyano-anion using quadrupole mass spectrometer. Tribology International, 2021, 153, 106547.	3.0	13
416	The physicochemical properties and structure of alkylammonium protic ionic liquids of RnH4-nNX (n = 1–3) family. A mini–review. Journal of Molecular Liquids, 2021, 321, 114350.	2.3	31
417	Investigation of Temperature, Composition, and Alkyl Chain-Dependent Molecular Interactions between Imidazolium-Based Ionic Liquids and Aniline: A Study of Experimental and Theoretical Thermophysical Properties. Journal of Chemical & Engineering Data, 2021, 66, 154-169.	1.0	4
418	Forward osmosis with direct contact membrane distillation using tetrabutylphosphonium p-toluenesulfonate as an effective and safe thermo-recyclable osmotic agent for seawater desalination. Chemosphere, 2021, 263, 128070.	4.2	20
419	The interplay between molecular structure and dielectric propertiesin ionic liquids: A comparative study. Journal of Molecular Liquids, 2021, 324, 114674.	2.3	4
420	Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions. , 2021, , 643-673.		0

#	Article	IF	CITATIONS
421	Aiding the versatility of simple ammonium ionic liquids by the synthesis of bioactive 1,2,3,4-tetrahydropyrimidine, 2-aminothiazole and quinazolinone derivatives. New Journal of Chemistry, 2021, 45, 6724-6738.	1.4	8
422	Investigation of the influence of natural deep eutectic solvents (NaDES) in the properties of chitosan-stabilised films. Materials Advances, 2021, 2, 3954-3964.	2.6	12
423	Ionic liquids and plastic crystals utilising the oxazolidinium cation: the effect of ether functionality in the ring. Materials Chemistry Frontiers, 2021, 5, 6014-6026.	3.2	7
424	A review of the thermophysical properties and potential of ionic liquids for thermal applications. Journal of Materials Chemistry A, 2021, 9, 15861-15879.	5.2	68
425	Understanding liquid–liquid equilibria in binary mixtures of hydrocarbons with a thermally robust perarylphosphonium-based ionic liquid. RSC Advances, 2021, 11, 31328-31338.	1.7	2
426	lonic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environmental Chemistry Letters, 2021, 19, 1205-1228.	8.3	48
427	Transition anionic complex in trihexyl(tetradecyl)phosphonium-bis(oxalato)borate ionic liquid – revisited. Physical Chemistry Chemical Physics, 2021, 23, 6190-6203.	1.3	17
428	Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids. Acta Chimica Sinica, 2021, 79, 443.	0.5	0
429	Controlling surface chemistry and mechanical properties of metal ionogels through Lewis acidity and basicity. Journal of Materials Chemistry A, 2021, 9, 4679-4686.	5.2	3
430	Mixing divalent ionic liquids: effects of charge and side-chains. Physical Chemistry Chemical Physics, 2021, 23, 4624-4635.	1.3	7
431	Dicationic disiloxane ionic liquids as heat transfer agents in vacuo. Russian Chemical Bulletin, 2021, 70, 301-308.	0.4	2
432	Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes, 2021, 9, 337.	1.3	74
433	Thermo-mechanical, antimicrobial and biocompatible properties of PVC blends based on imidazolium ionic liquids. Materials Science and Engineering C, 2021, 122, 111920.	3.8	15
434	Insights on the speed of sound in ionic liquid binary mixtures: Investigation of influential parameters and construction of predictive models. Journal of Molecular Liquids, 2021, 326, 115067.	2.3	2
435	Intelligently Thermoresponsive Ionic Liquid toward Molecular Firefighting and Thermal Energy Management. ACS Applied Materials & Interfaces, 2021, 13, 15680-15689.	4.0	6
436	Heat generation in electric double layer capacitors with neat and diluted ionic liquid electrolytes under large potential window between 5 and 80°C. Journal of Power Sources, 2021, 488, 229368.	4.0	16
437	Group-assisted purification chemistry principles to access highly substituted zwitterionic furans via fast, concise, and efficient one-pot three-component assembly. Chemistry of Heterocyclic Compounds, 2021, 57, 239-244.	0.6	5
438	Ionic liquid-assisted synthesis of F-doped titanium dioxide nanomaterials with high surface area for multi-functional catalytic and photocatalytic applications. Applied Catalysis A: General, 2021, 613, 118029.	2.2	14

#	Articie	IF	CITATIONS
439	Ion conformation and orientational order in a dicationic ionic liquid crystal studied by solid-state nuclear magnetic resonance spectroscopy. Scientific Reports, 2021, 11, 5985	1.6	10
440	Molecular simulations of charged complex fluids: A review. Chinese Journal of Chemical Engineering, 2021, 31, 206-226.	1.7	11
441	Cetylpyridinium picrate: Spectroscopy, conductivity and DFT investigation of the structure of a new ionic liquid. Journal of Molecular Structure, 2021, 1229, 129803.	1.8	5
442	Long-term thermal stability of fatty acid anion-based ionic liquids. Journal of Molecular Liquids, 2021, 328, 115492.	2.3	8
443	Linking the Thermal and Electronic Properties of Functional Dicationic Salts with Their Molecular Structures. ACS Sustainable Chemistry and Engineering, 2021, 9, 6224-6234.	3.2	8
444	Sugar-Based Ionic Liquids: Multifaceted Challenges and Intriguing Potential. Molecules, 2021, 26, 2052.	1.7	34
445	Influence of counteranion and humidity on the thermal, mechanical and conductive properties of covalently crosslinked ionenes. Polymer, 2021, 222, 123641.	1.8	5
446	Thermal stability and decomposition mechanism of dicationic imidazolium-based ionic liquids with carboxylate anions. Journal of Molecular Liquids, 2021, 330, 115618.	2.3	23
447	Thermal Stability and Decomposition Kinetics of 1-Alkyl-2,3-Dimethylimidazolium Nitrate Ionic Liquids: TGA and DFT Study. Materials, 2021, 14, 2560.	1.3	9
448	Synthesis, thermal behavior and kinetic study of N-morpholinium dicationic ionic liquids by thermogravimetry. Journal of Molecular Liquids, 2021, 332, 115662.	2.3	29
449	Evaluating the hazardous impact of ionic liquids – Challenges and opportunities. Journal of Hazardous Materials, 2021, 412, 125215.	6.5	82
450	Formation and stabilization of nanosized Pd particles in catalytic systems: lonic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coordination Chemistry Reviews, 2021, 437, 213860.	9.5	36
451	Studies on Amino Acid Type Protic Ionic Liquid Comprising N-2-Ethylhexylethylenediaminium Cation Coupled with the dl-Hexanoylalaninate Anion. Journal of Solution Chemistry, 2021, 50, 941-953.	0.6	0
452	Ion Transport and Electrochemical Properties of Fluorine-Free Lithium-Ion Battery Electrolytes Derived from Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 7769-7780.	3.2	12
453	Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chemical Engineering, 2021, 2, 174-186.	3.3	193
454	Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angewandte Chemie - International Edition, 2021, 60, 22148-22165.	7.2	107
455	Thermal decomposition of N-butyl-N-methyl pyrrolidinium tetrafluoroborate and N-butyl-N-methyl pyrrolidinium hexafluorophosphate: Py-GC–MS and DFT study. Journal of Molecular Liquids, 2021, 333, 115978.	2.3	5
456	Betaine and l-carnitine ester bromides: Synthesis and comparative study of their thermal behaviour and surface activity. Journal of Molecular Liquids, 2021, 334, 115988.	2.3	14

#	Article	IF	CITATIONS
457	Ionische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese. Angewandte Chemie, 2021, 133, 22320-22338.	1.6	4
458	1-Ethyl-3-methylimidazolium acetate ionic liquid as simple and efficient catalytic system for the oxidative depolymerization of alkali lignin. International Journal of Biological Macromolecules, 2021, 183, 285-294.	3.6	18
459	Extraction of lanthanides and actinides present in spent nuclear fuel and in electronic waste. Journal of Molecular Liquids, 2021, 336, 116006.	2.3	24
460	State-of-the-art ionic liquid & ionanofluids incorporated with advanced nanomaterials for solar energy applications. Journal of Molecular Liquids, 2021, 336, 116563.	2.3	41
461	Review—High-Pressure Carbon Dioxide Separation Using Ionic Liquids: A CO ₂ -Electrocatalysis Perspective. Journal of the Electrochemical Society, 2021, 168, 086502.	1.3	7
462	Drug anion based surface active ionic liquids: Molecular interactions, surface activity and micellization behavior in aqueous solutions. Journal of Molecular Liquids, 2021, 336, 116345.	2.3	3
463	Thin Film Properties of Thermally Stable Protic Ionic Liquids. Bulletin of the Chemical Society of Japan, 2021, 94, 2054-2059.	2.0	2
464	Influence of experimental conditions on the electrochemical window. Case study on bis(trifluoromethylsulfonyl)imide-based ionic liquids. Electrochemistry Communications, 2021, 130, 107107.	2.3	16
465	A hybrid descriptor based QSPR model to predict the thermal decomposition temperature of imidazolium ionic liquids using Monte Carlo approach. Journal of Molecular Liquids, 2021, 338, 116465.	2.3	26
466	Reaction kinetics of glycidyl trimethyl ammonium chloride and chitosan in 1-allyl-3-methylimidazolium chloride. Journal of the Indian Chemical Society, 2021, 98, 100129.	1.3	2
467	Capsules with polyurea shells and ionic liquid cores for <scp>CO₂</scp> capture. Journal of Polymer Science, 2021, 59, 2980-2989.	2.0	11
468	Ester-Containing Imidazolium-Type Ionic Liquid Crystals Derived from Bio-based Fatty Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 12687-12698.	3.2	3
469	Density, Speeds of Sound, and Refractive Index of Pure and Binary Mixtures of Ionic Liquids Based on Imidazolium Cations and Tetrafluoroborate Anions with Cyclohexylamine. Journal of Chemical & Engineering Data, 2021, 66, 3802-3814.	1.0	3
470	Ionic liquid facilitated melting of the metal-organic framework ZIF-8. Nature Communications, 2021, 12, 5703.	5.8	74
471	Thermal hazard and decomposition kinetics of 1-butyl-2,3-dimethylimidazolium nitrate via TGA/DSC and FTIR. Journal of Loss Prevention in the Process Industries, 2021, 72, 104562.	1.7	16
472	Boundary lubricity of phosphonium bisoxalatoborate ionic liquids. Tribology International, 2021, 161, 107075.	3.0	11
473	Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers. Journal of Physical Chemistry C, 2021, 125, 20204-20218.	1.5	16
474	The Mizoroki-Heck reaction in mesoionic 1-butyl-3-methyltetrazolium-5-olate. Tetrahedron, 2021, 99, 132450.	1.0	1

#	Article	IF	Citations
475	Thermal stability and exothermic behaviour of imidazole ionic liquids with different anion types under oxidising and inert atmospheres. Journal of Molecular Liquids, 2021, 343, 117691.	2.3	14
476	Facile Synthesis of Novel Polyethyleneimine Functionalized Polymeric Protic Ionic Liquids (PolyEâ€ILs) with Protagonist Properties for Acid Catalysis. ChemistrySelect, 2021, 6, 9616-9624.	0.7	10
477	Thermal stability of ionic liquids in nitrogen and air environments. Journal of Chemical Thermodynamics, 2021, 161, 106560.	1.0	18
478	Spectroscopic characterization andthermal decomposition kinetics of 1,3-dibutyl-imidazolium bromide synthesized through a solvent-free and one-pot method. Journal of Molecular Liquids, 2021, 339, 117266.	2.3	7
479	Impacts of TGA furnace parameters for prediction of long-term thermal stability of ionic liquids. Thermochimica Acta, 2021, 704, 178917.	1.2	7
480	Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions. Journal of Molecular Liquids, 2021, 339, 117278.	2.3	13
481	Synthesis and characterization of analogues of glycine-betaine surface-active ionic liquids. Journal of Molecular Liquids, 2021, 342, 117440.	2.3	10
482	Experimental and DFT studies on foam performances of lauryl ether sulfate-based anionic surface active ionic liquids. Journal of Molecular Liquids, 2021, 342, 117519.	2.3	5
483	Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnology Advances, 2021, 51, 107702.	6.0	42
484	Physicochemical and tribological performances of GAILs as lubricants for copper and aluminum friction counterfaces. Journal of Molecular Liquids, 2021, 342, 117371.	2.3	0
485	Dissolution and functionalization of celluloses using 1,2,3-triazolium ionic liquid. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100109.	1.6	4
486	Absorption separation of fluorinated refrigerant gases with ionic liquids: Equilibrium, mass transport, and process design. Separation and Purification Technology, 2021, 276, 119363.	3.9	37
487	Design of concentrated colloidal dispersions of iron oxide nanoparticles in ionic liquids: Structure and thermal stability from 25 to 200°C. Journal of Colloid and Interface Science, 2022, 607, 584-594.	5.0	11
488	Investigations on enhanced ionic conduction in ionic liquid dispersed sol-gel derived LiTi2(PO4)3. Materials Research Bulletin, 2022, 145, 111555.	2.7	9
489	Inducing thermoreversible optical transitions in urethane-acrylate systems <i>via</i> ionic liquid incorporation for stretchable smart devices. Journal of Materials Chemistry A, 2021, 9, 13615-13624.	5.2	11
491	Commercial Aspects of Biomass Deconstruction with Ionic Liquids. Green Chemistry and Sustainable Technology, 2020, , 87-127.	0.4	9
492	Thermal Stability of Ionic Liquids. , 2020, , 1-13.		6
493	Analysis of kinetics of thermal decomposition of melamine blended with phosphorous ionic liquid by green approach. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2821-2831.	2.0	20

#	ARTICLE Molecular simulation of the separation of toluene and p-xylene with the thermally-robust ionic	IF	Citations
494	liquid triphenyl-p-phenyl sulfonyl phenyl phosphonium. Chemical Engineering Science, 2020, 224, 115790.	1.9	8
495	food products. Journal of Food Composition and Analysis, 2020, 91, 103528.	1.9	22
496	Aqueous-phase green synthesis of formate-based ionic liquids and their thermophysical properties. Journal of Molecular Liquids, 2019, 279, 370-377.	2.3	2
497	New amphiphilic pyridinium ionic liquids for demulsification of water Arabic heavy crude oil emulsions. Journal of Molecular Liquids, 2020, 312, 113407.	2.3	34
498	Thermally-Stable Imidazolium Dicationic Ionic Liquids with Pyridine Functional Groups. ACS Sustainable Chemistry and Engineering, 2020, 8, 8762-8772.	3.2	25
499	Crystal Lattice Design of H ₂ O-Tolerant n-Type Semiconducting Dianionic Naphthalenediimide Derivatives. Journal of the American Chemical Society, 2021, 143, 1046-1060.	6.6	14
500	Ionic liquid lubricants: when chemistry meets tribology. Chemical Society Reviews, 2020, 49, 7753-7818.	18.7	220
501	Ionic liquids and thermosetting polymers: a critical survey. Polymer Journal, 2018, 40, 3-15.	0.3	1
502	Thermal stability of imidazolium-based ionic liquids. French-Ukrainian Journal of Chemistry, 2016, 4, 51-64.	0.1	15
503	Prospects and Design Insights of Neat Ionic Liquids as Supercapacitor Electrolytes. Frontiers in Energy Research, 2021, 9, .	1.2	17
504	Characterization of membrane wetting phenomenon by ionic liquid via ultrasonic time-domain reflectometry (UTDR). Journal of Membrane Science, 2022, 641, 119949.	4.1	4
505	Ionic liquidâ€modified materials as polymer electrolyte membrane and electrocatalyst in fuel cell application: An update. International Journal of Energy Research, 2022, 46, 2166-2211.	2.2	10
506	Design and optimization of extractive distillation of benzene– <i>n</i> â€propanol with ionic liquid as entrainer. Journal of Chemical Technology and Biotechnology, 2022, 97, 299-311.	1.6	5
507	Sulfur dioxide absorption characteristics of aqueous amino acid solutions. Journal of Industrial and Engineering Chemistry, 2022, 105, 491-501.	2.9	8
508	Syntheses and characterization of few bio-ionic liquids comprising of cholinium cation and plant derived carboxylic acids as anions. Journal of the Indian Chemical Society, 2021, 98, 100205.	1.3	5
509	Thermal Considerations for Supercapacitors. SpringerBriefs in Applied Sciences and Technology, 2015, , 11-26.	0.2	0
510	Photoinitiators in Ionic Liquids. RSC Polymer Chemistry Series, 2018, , 287-296.	0.1	0
511	Electrocatalytic Reduction of CO2 in Ionic Liquid-Based Electrolytes. , 2019, , 1-15.		0

#	Article	IF	CITATIONS
513	Ionic Liquids-Based Aqueous Lubricants: Emulsion Stability to Enhancement of Surface Wettability and Tribological Properties. Industrial & Engineering Chemistry Research, 2021, 60, 333-342.	1.8	8
514	Renaturation of Lyophilized Concanavalin a Treated in Water Content Controlled Hydrated Ionic Liquids. Applied Sciences (Switzerland), 2021, 11, 57.	1.3	2
515	Synthesis, characterization and electrochemistry of triethyl ammonium sulphate ionic liquid. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1099-1111.	1.4	4
516	Impact of cationic molecular length of ionic liquid electrolytes on cell performance of 18650 supercapacitors. Chemical Communications, 2021, 57, 13712-13715.	2.2	3
517	Ionic liquids. , 2021, , 427-451.		5
518	Ionic liquids as gas chromatography stationary phases. , 2022, , 171-202.		2
519	Tunable ionic liquids as oil-soluble precursors of dispersed catalysts for suspended-bed hydrocracking of heavy residues. Fuel, 2022, 313, 122664.	3.4	23
520	Effect of alkyl chain length and temperature on volumetric, acoustic and apparent molar properties of pyrrolidinium based ionic liquids in acetonitrile. Journal of Molecular Liquids, 2022, 348, 118067.	2.3	6
521	Emerging impacts of ionic liquids on eco-environmental safety and human health. Chemical Society Reviews, 2021, 50, 13609-13627.	18.7	35
522	Thermal decomposition of amino acid ionic liquids: Mechanism insight. Journal of Molecular Liquids, 2022, 349, 118486.	2.3	6
523	Are ionic liquids eco-friendly?. Renewable and Sustainable Energy Reviews, 2022, 157, 112039.	8.2	81
524	Ionic liquids for sustainable energy-storage devices. , 2022, , 189-205.		0
525	Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium. Molecules, 2022, 27, 441.	1.7	6
526	Understanding the physicochemical and transport properties of pyrazolium based ionic liquids bearing iodide and triiodide anions. Journal of Molecular Liquids, 2022, 346, 118270.	2.3	5
527	Sustainability of green solvents – review and perspective. Green Chemistry, 2022, 24, 410-437.	4.6	95
528	Phosphonium-based ionic liquids as antifungal agents for conservation of heritage sandstone. RSC Advances, 2022, 12, 1922-1931.	1.7	3
529	Bubble-Templated Design of Superelastic Cellulose Foam as a Durable Ionotropic Sensor. ACS Sustainable Chemistry and Engineering, 2022, 10, 1714-1721.	3.2	7
530	Liquid–Liquid Phase Equilibrium and Ion-Exchange Exploration for Aqueous Two-Phase Systems of ([C4mim]Cl + K2CO3 or K3C6H5O7 + water) at Different Temperatures. Journal of Solution Cl 2022, 51, 320-344.	ne mis try,	1

ARTICLE IF CITATIONS # Effect of structural variation in biomass-derived nonfluorinated ionic liquids electrolytes on the 531 7.1 14 performance of supercapacitors. Journal of Energy Chemistry, 2022, 69, 174-184. Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. Journal 2.3 of Molecular Liquids, 2022, 352, 118700. 533 Thermal Stability of Ionic Liquids: Effect of Metals. Applied Sciences (Switzerland), 2022, 12, 1652. 2 1.3 Thermophysical, Acoustic, and Refractive Properties of Pure and Binary Mixtures Composed of Imidazolium-Based Ionic Liquids and PEG 600. Journal of Chemical & amp; Engineering Data, 2022, 67, 534 1.0 594-606. Thermal conductivity of the ionic liquid [<scp>HMIm</scp>][<scp>Tf₂N</scp>] with 535 1.8 5 compressed carbon dioxide. AICHE Journal, 2022, 68, . Effect of the cation structure on the properties of homobaric imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2022, 24, 6453-6468. 1.3 Ammonium-, phosphonium- and sulfonium-based 2-cyanopyrrolidine ionic liquids for carbon dioxide 537 1.3 11 fixation. Physical Chemistry Chemical Physics, 2022, 24, 9659-9672. Introduction of Ionic Liquids as Highly Efficient Plasticizers and Flame Retardants of Cellulose 2.4 Triacetate Films. Journal of Polymers and the Environment, 2022, 30, 2905-2918. 540 Cellulose-based fiber spinning processes using ionic liquids. Cellulose, 2022, 29, 3079-3129. 2.4 47 A review of recent advances of ionic liquids as lubricants for tribological and thermal applications. 541 Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2023, 1.0 237, 3-26. Highlyâ€fluorinated Triaminocyclopropenium Ionic Liquids. Chemistry - an Asian Journal, 2022, , . 542 1.7 1 Overview: Effective Separation of Oxygen-, Nitrogen-, and Sulfur-Containing Aromatics in High-Temperature Coal Tar by Ionic Liquids and Deep Eutectic Solvents: Experimental and 1.8 Computational. Industrial & amp; Engineering Chemistry Research, 2022, 61, 4481-4492. Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants. Tribology Letters, 544 1.2 8 2022, 70, 1. Onâ€Surface Metathesis of an Ionic Liquid on Ag(111). Chemistry - A European Journal, 2022, , . 545 1.7 Reaction mode on the green construction process and corresponding thermal stability evaluation of 546 2.0 2 ionic liquid. Journal of Thermal Analysis and Calorimetry, 0, , 1. Poly(p-phenylene vinylene-b-ethylene glycol) dispersed in butyltrimethylammonium bis(trifluoromethanesulfonyl)imide as luminescent ionic liquids. Materials Chemistry and Physics, 547 2022, 284, 126021. Trialkylmethylammonium molybdate ionic liquids as novel oil-soluble precursors of dispersed metal 548 1.9 19 catalysts for slurry-phase hydrocracking of heavy oils. Chemical Engineering Science, 2022, 253, 117516. Application of deep eutectic solvents in water treatment processes: A review. Journal of Water 549 Process Engineering, 2022, 47, 102663.

ARTICLE IF CITATIONS # Imidazolium room-temperature ionic liquids with alkoxymethyl substituent: A quest for improved 550 6.6 7 microbiological selectivity. Chemical Engineering Journal, 2022, 442, 136062. Monolayer MoS₂ Synaptic Transistors for High-Temperature Neuromorphic Applications. 4.5 Nano Létters, 2021, 21, 10400-10408. Imidazolium-Catalyzed Formation of Bisphenol A Polycarbonate with a Reduced Level of Branching. 552 1.8 6 Industrial & amp; Engineering Chemistry Research, 2021, 60, 17928-17941. Ionic Liquids: Design and Applications. Methods in Pharmacology and Toxicology, 2022, , 179-210. 554 0.1 Understanding the Dynamics of Cellulose Dissolved in an Ionic Liquid Solvent Under Shear and 555 2.6 6 Extensional Flows. Biomacromolecules, 2022, 23, 1958-1969. Super Base Derived Ionic Liquids: A Useful Tool in Organic Synthesis. Current Organic Chemistry, 2022, 26, 1237-1263. Dicationic Bis-Pyridinium Hydrazone-Based Amphiphiles Encompassing Fluorinated Counteranions: 557 1.7 4 Synthesis, Characterization, TGA-DSC, and DFT Investigations. Molecules, 2022, 27, 2492. Thiol–ene ionogels based on polymerizable imidazolium ionic liquids. Polymer Chemistry, 2022, 13, 559 1.9 3154-3170. The influence of ionic liquid concentration on microcrystalline cellulose modification. 560 1.6 8 Carbohydrate Polymer Technologies and Applications, 2022, 3, 100211. Modification of magnetite nanoparticles surface with multifunctional ionic liquids for coomassie brilliant blue R-250 dye removal from aqueous solutions. Journal of Molecular Liquids, 2022, 358, 2.3 119195. Understanding of benzimidazole based ionic liquid as an efficient corrosion inhibitor for carbon 562 9 2.3steel: Experimental and theoretical studies. Journal of Molecular Liquids, 2022, 358, 119204. Amino acid-based dicationic ionic liquids as complex crop protection agents. Journal of Molecular 2.3 Liquids, 2022, 360, 119357. Synthesis and Characterization of Fluorinated Phosphonium Ionic Liquids to Use as New Engineering 564 1.0 0 Solvents. ChemEngineering, 2022, 6, 38. Enhanced oxidative depolymerization of lignin in cooperative imidazolium-based ionic liquid binary mixtures. Bioresource Technology, 2022, 357, 127333. 4.8 Investigation of evaporation characteristics of ionic liquids/H2O and MWCNT ionanofluids/H2O 566 mixture based on their viscosity and chemical properties. International Journal of Thermal Sciences, 2 2.6 2022, 179, 107682. Molecular Simulation of Poly(Vdf-Hfp) Copolymer with Imidazolium-Based Ionic Liquid as an Effective Medium for Biogas Separation. SSRN Electronic Journal, 0, , . Gelatin and Tannic Acid Based longels for Muscle Activity Recording and Stimulation Electrodes. ACS 568 2.6 12 Biomaterials Science and Engineering, 2022, 8, 2598-2609. 569 Ultrafast Dynamics of Ionic Liquid Drops Impacting on Heated Surfaces. SSRN Electronic Journal, 0, , . 0.4

#	Article	IF	Citations
570	Biobutanol separation using ionic liquids as a green solvent. , 2022, , 291-322.		1
571	NMR and Theoretical Study of In-Pore Diffusivity of Ionic Liquid–Solvent Mixtures. Journal of Physical Chemistry B, 2022, 126, 4889-4898.	1.2	3
572	Temperature-Dependent Electrochemical Stability Window of Bis(trifluoromethanesulfonyl)imide and Bis(fluorosulfonyl)imide Anion Based Ionic Liquids. Frontiers in Chemistry, 0, 10, .	1.8	8
573	Effect of Ion Pair on Contact Angle for Phosphonium Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 4354-4363.	1.2	1
574	Zinc oxide nanoparticles coated with benzimidazole based ionic liquid performing as an efficient CO2 capture: Experimental and Theoretical studies. Journal of Molecular Structure, 2022, 1265, 133466.	1.8	3
575	Ionic Liquids-Assisted Solvent Extraction of Precious Metals from Chloride Solutions. Separation and Purification Reviews, 2023, 52, 242-261.	2.8	13
576	Gel Polymer Electrolytes Based on Crosslinked Networks by the Introduction of an Ionic Liquid Crosslinker with Ethylene Oxide Arms. ACS Applied Energy Materials, 2022, 5, 8381-8390.	2.5	5
577	Reviewâ \in "Ionic Liquids Applications in Flow Batteries. Journal of the Electrochemical Society, 0, , .	1.3	5
578	Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
579	Investigations of potential ionic liquid phases for chromatographic processes using spectroscopic and thermal techniques. Journal of Molecular Liquids, 2022, 363, 119820.	2.3	1
580	POSS-based ionic liquid lubricants with excellent resistance to atomic oxygen irradiation. Tribology International, 2022, 175, 107788.	3.0	3
581	Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future?. Angewandte Chemie, 2022, 134, .	1.6	18
582	Thermal stability limits of imidazolium, piperidinium, pyridinium, and pyrrolidinium ionic liquids immobilized on metal oxides. Journal of Molecular Liquids, 2022, 363, 119804.	2.3	7
583	Fundamental investigations at the nexus of ionic liquids and mass spectrometry. International Journal of Mass Spectrometry, 2022, 479, 116896.	0.7	0
584	Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43,	2.0	16
585	Thermal Hazard Analysis and Chemical Incompatibility Test with Novel Custom High-Pressure Crucibles Made from Commonly Used Metals and Alloys. Journal of Chemical Health and Safety, 2022, 29 441-447	1.1	2
586	Dicationic Ionic Liquids As Heat Transfer Fluids in Vacuum. Russian Journal of Physical Chemistry A, 2022, 96, 1465-1473.	0.1	4
587	Thermal Decomposition, Low Temperature Phase Transitions and Vapor Pressure of Less Common Ionic Liquids Based on the Bis(trifuoromethan <u>esulfonyl)imide Anion. Materials, 2022, 15, 5255.</u>	1.3	3

#	Article	IF	CITATIONS
588	Dicationic Imizadoliumâ€Based Tetrafluoroborate Ionic Liquids: Synthesis and Hydrothermal Stability Study. ChemistrySelect, 2022, 7, .	0.7	2
589	Effective Absorption Mechanism of SO ₂ and NO ₂ in the Flue Gas by Ammonium-Bromide-Based Deep Eutectic Solvents. ACS Omega, 2022, 7, 29171-29180.	1.6	5
590	Effects of Anion and Cross-Linker on the Surface Hydrophilicity and Selective Solvent-Induced Swelling of Poly(ionic liquid) Elastomers. ACS Applied Polymer Materials, 2022, 4, 6623-6629.	2.0	4
591	Comprehensive investigation of two environmentally-friendly imidazolium nitrate ionic liquids: from calorimetry to thermal risk evaluation. Journal of Thermal Analysis and Calorimetry, 2023, 148, 4913-4925.	2.0	1
592	Ionic Liquid/Deep Eutectic Solvent-Mediated Ni-Based Catalysts and Their Application in Water Splitting Electrocatalysis. Catalysts, 2022, 12, 928.	1.6	7
593	Structural effects of amino acid-based ionic liquids on thermophysical properties, and antibacterial and cytotoxic activity. Journal of Molecular Liquids, 2022, 364, 120054.	2.3	2
594	Molecular simulation of poly(VDF-HFP) copolymer with imidazolium-based ionic liquid as an effective medium for biogas separation. Journal of Molecular Liquids, 2022, 366, 120287.	2.3	6
595	Thermal decomposition and volatility of ionic liquids: Factors, evaluation and strategies. Journal of Molecular Liquids, 2022, 366, 120336.	2.3	19
596	Simple but effective: Liquid superlubricity with high load capacity achieved by ionic liquids. Materials Today Nano, 2022, 20, 100257.	2.3	3
597	Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. Journal of Molecular Liquids, 2022, 367, 120407.	2.3	4
598	Guidelines for a correct evaluation of Deep Eutectic Solvents thermal stability. Current Research in Green and Sustainable Chemistry, 2022, 5, 100333.	2.9	18
599	Growing Impact of Ionic Liquids in Heterocyclic Chemistry. , 2022, , 113-176.		1
600	Thermal, chemical, electrochemical, radiolytic and biological stability of ionic liquids and deep eutectic solvents. New Journal of Chemistry, 2022, 46, 17640-17668.	1.4	23
601	Electroactive bio-based chiral tweezers:attractive selectors for enantioselective voltammetry. Electrochimica Acta, 2022, , 141191.	2.6	1
602	Annealing, solvation, and mirror-plating effects in phosphonium chloroaluminate ionic liquids. Nano Research, 0, , .	5.8	0
603	Switchable deep eutectic solvents as efficient and sustainable recycling media for carbon fiber reinforced polymer composite waste. Journal of Cleaner Production, 2022, 378, 134334.	4.6	5
604	Impact of Shell Composition on Dye Uptake by Capsules of Ionic Liquid. Langmuir, 2022, 38, 13849-13856.	1.6	4
605	Anion Effects on Thermophysical and Thermochemical Properties of Triaminocyclopropenium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2022, 67, 3602-3615.	1.0	2

#	Article	IF	CITATIONS
606	Boron-containing ionic liquid functionalized Mo-MOF/graphene oxide hybrid for improving fire safety and maintaining mechanical properties for epoxy resin. Applied Surface Science, 2023, 611, 155736.	3.1	12
607	Designing Thermally Stable Organocatalysts for Poly(ethylene terephthalate) Synthesis: Toward a One-Pot, Closed-Loop Chemical Recycling System for PET. Macromolecules, 2022, 55, 10628-10639.	2.2	13
608	Experimental and theoretical studies of 1-Benzyl pyridazinium bromide as green inhibitor for mild steel corrosion. E-Prime, 2022, 2, 100054.	2.1	4
609	Application of Ionic Liquids in Rechargeable Li-Ion Batteries: A Comprehensive Guide to Design, Synthesis and Computational Aspects. , 0, , .		0
610	Importance of Anion–Anion Pairing for Capacitance of Carbon/Ionic Liquid Interfaces. Journal of Physical Chemistry C, 2022, 126, 20213-20225.	1.5	4
611	Optimized preparation, thermal characterization and microwave absorption properties of deep eutectic solvents made by choline chloride and hydrated salts of alkali earth metals. Journal of Molecular Liquids, 2023, 371, 121104.	2.3	3
612	Evaluation of thermal properties and process hazard of 1-hexyl-3-methylimidazolium nitrate through thermodynamic calculations and equilibrium methods. Journal of Thermal Analysis and Calorimetry, 2023, 148, 4977-4984.	2.0	1
613	Synergistic effect of novel ionic liquid/graphene complex on the flame retardancy of epoxy nanocomposites. Carbon Letters, 2023, 33, 501-516.	3.3	4
614	CO2 capture using dicationic ionic liquids (DILs): Molecular dynamics and DFT-IR studies on the role of cations. Journal of Chemical Physics, 2023, 158, .	1.2	1
615	A review of encapsulated ionic liquids for CO2 capture. Journal of Molecular Liquids, 2023, 374, 121266.	2.3	16
616	Ionic Liquids with Benzenesulfonate Anions: Nonfluorinated, Thermally Stable Anion Options. , 2023, 1, 690-695.		1
617	Physicoâ€Chemical Properties of Magnetic Dicationic Ionic Liquids with Tetrahaloferrate Anions. ChemistryOpen, 2023, 12, .	0.9	3
618	Tunable Aryl Alkyl Ionic Liquid Supported Synthesis of Platinum Nanoparticles and Their Catalytic Activity in the Hydrogen Evolution Reaction and in Hydrosilylation. Molecules, 2023, 28, 405.	1.7	3
619	Bridging the crystal and solution structure of a series of lipid-inspired ionic liquids. Soft Matter, 2023, 19, 749-765.	1.2	1
620	Best practices for electrochemical characterization of supercapacitors. Journal of Energy Chemistry, 2023, 80, 265-283.	7.1	12
621	Process hazard assessment of energetic ionic liquid with kinetic evaluation and thermal equilibrium. Journal of Loss Prevention in the Process Industries, 2023, 81, 104972.	1.7	3
622	Physical properties and nanostructuring of long-chained homobaric imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2023, 25, 6316-6325.	1.3	2
623	Imidazolium based ionic liquid-phase green catalytic reactions. Green Chemistry, 2023, 25, 1237-1260.	4.6	19

#	Article	IF	CITATIONS
624	Synthesis and characterization of two novel diethylamine-based dicationic Brönsted acidic ionic liquids and evaluation of their catalytic and antibacterial behavior. Research on Chemical Intermediates, 2023, 49, 1405-1425.	1.3	1
625	Insights into the Absorption of Hydrocarbon Gases in Phosphorus-Containing Ionic Liquids. Journal of Physical Chemistry B, 0, , .	1.2	2
626	Catalytic Cracking of Polylactic Acid to Acrylic Acid. Chinese Journal of Chemistry, 2023, 41, 2071-2076.	2.6	6
627	Comparison of physicochemical properties of choline chloride-based deep eutectic solvents for CO2 capture: Progress and outlook. Journal of Molecular Liquids, 2023, 376, 121436.	2.3	7
628	Evaluating thermal decomposition of ionic liquids and deep eutectic solvents for reliable and consistent thermal analysis: Issues, factors, classifications and suggestions. Thermochimica Acta, 2023, 723, 179471.	1.2	5
629	Development of thermally-stable NIR absorbing films based on heptamethine cyanine dyes with bistriflimide anion. Progress in Organic Coatings, 2023, 178, 107473.	1.9	1
630	Molecular modelling of ionic liquids: Perfluorinated anionic species with enlarged halogen substitutions. Journal of Molecular Liquids, 2023, 378, 121599.	2.3	3
631	Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway. Journal of Energy Chemistry, 2023, 81, 321-338.	7.1	17
632	Evaporation and thermal decomposition of 1-ethyl-3-methylimidazolium chloride. Journal of Molecular Liquids, 2023, 380, 121733.	2.3	0
633	Phosphine-based ionic liquids for CO2 chemical fixation: Improving stability and activity by asymmetric flexible steric hindrance. Journal of Environmental Chemical Engineering, 2023, 11, 109883.	3.3	3
634	Nitrogen doped porous carbon with high rate performance for lithium ion storage. Journal of Electroanalytical Chemistry, 2023, 932, 117254.	1.9	4
635	Tribochemistry of imidazolium and phosphonium bis(oxalato)borate ionic liquids: Understanding the differences. Tribology International, 2023, 181, 108263.	3.0	8
636	How Does Electronic Polarizability or Scaled-Charge Affect the Interfacial Properties of Room Temperature Ionic Liquids?. Journal of Physical Chemistry B, 2023, 127, 1264-1275.	1.2	6
637	Abiotic Degradation of Ionic Liquids (ILs). , 2022, , 1-8.		0
638	Product and Solvent Recovery in Ionic Liquid-Based Biomass Pretreatment Processes. , 2022, , 1103-1114.		0
639	Thermal Stability of Ionic Liquids. , 2022, , 1288-1299.		0
640	Electrocatalytic Reduction of CO2 in Ionic Liquid-Based Electrolytes. , 2022, , 343-357.		0
641	Anion Effect on Forward Osmosis Performance of Tetrabutylphosphonium-Based Draw Solute Having a Lower Critical Solution Temperature. Membranes, 2023, 13, 211.	1.4	2

#	Article	IF	CITATIONS
642	Polymer Blends Based on 1-Hexadecyl-3-methyl Imidazolium 1,3-Dimethyl 5-Sulfoisophthalate Ionic Liquid: Thermo-Mechanical, Surface Morphology and Antibacterial Properties. Polymers, 2023, 15, 970.	2.0	0
643	Ionothermal Crystallization of SAPO-11 Using Novel Pyridinium Ionic Liquid and Its Catalytic Activity in Esterification of Levulinic Acid into Ethyl Levulinate. Catalysts, 2023, 13, 433.	1.6	0
644	Ionic Liquids as Working Fluids for Heat Storage Applications: Decomposition Behavior of N-Butyl-N-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Materials, 2023, 16, 1762.	1.3	0
645	Exploring the influence of the type of anion in imidazolium ionic liquids on its thermal stability. Journal of Thermal Analysis and Calorimetry, 2023, 148, 4985-4995.	2.0	6
646	Effect of cation alkyl chain length on 3-sulfopropylmethacrylate-based draw solutes having lower critical solution temperature. RSC Advances, 2023, 13, 8291-8298.	1.7	4
647	A review of imidazolium ionic liquid-based phase change materials for low and medium temperatures thermal energy storage and their applications. , 2023, 1, 100010.		4
648	Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules, 2023, 28, 3051.	1.7	3
649	Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field. Processes, 2023, 11, 1121.	1.3	1
650	Ionic Liquids and Deep-Eutectic Solvents in Extractive Metallurgy: Mismatch Between Academic Research and Industrial Applicability. Journal of Sustainable Metallurgy, 2023, 9, 423-438.	1.1	22
651	Effect of 1-butyl-3-methylimidazolium hexafluorophosphate as the humectant on the thermal decomposition of nitrocellulose. Journal of Thermal Analysis and Calorimetry, 2023, 148, 5695-5708.	2.0	2
663	Investigation of thermal stability of ionic liquids through thermo gravimetric analysis. , 2023, , 245-265.		0
664	Recent advances in the use of ionic liquids in the CO2 conversion to CO and C2+ hydrocarbons. Clean Technologies and Environmental Policy, 2024, 26, 11-29.	2.1	0
687	Adsorption of Ionic Liquids from Aqueous Streams on Activated Carbon. , 2023, , 234-257.		0
705	Substitution of Solvents by Safer Products. , 2024, , 1545-1655.		0
707	Ionic liquid-based electrolyte in supercapacitors. AIP Conference Proceedings, 2024, , .	0.3	0
709	Natural gas dehydration using ionic liquids. , 2024, , 111-142.		0