

#	Article	IF	CITATIONS
1	Load–Settlement Modeling of Axially Loaded Drilled Shafts Using CPT-Based Recurrent Neural Networks. International Journal of Geomechanics, 2014, 14, .	2.7	22
2	Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomechanics and Geoengineering, 2015, 10, 109-125.	1.8	37
3	A review of artificial intelligence applications in shallow foundations. International Journal of Geotechnical Engineering, 2015, 9, 49-60.	2.0	36
4	Emerging artificial intelligence methods in structural engineering. Engineering Structures, 2018, 171, 170-189.	5.3	543
5	Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network. SN Applied Sciences, 2019, 1, 1.	2.9	43
6	Prediction of Compaction Characteristics of Soils from Index Test's Results. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 231-248.	1.9	12
7	Prediction of geotechnical properties of clayey soils stabilised with lime using artificial neural networks (ANNs). International Journal of Geotechnical Engineering, 2019, 13, 191-203.	2.0	34
8	Prediction of collapse potential of soils using gene expression programming and parametric study. Arabian Journal of Geosciences, 2020, $13, 1$.	1.3	10
9	Improving Voting Feature Intervals for Spatial Prediction of Landslides. Mathematical Problems in Engineering, 2020, 2020, 1-15.	1.1	11
10	Design of Stiffened Slab Foundations on Reactive Soils Using 3D Numerical Modeling. International Journal of Geomechanics, 2020, 20, .	2.7	14
11	Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming. Engineering Structures, 2020, 219, 110909.	5.3	29
12	Practice of artificial intelligence in geotechnical engineering. Journal of Zhejiang University: Science A, 2020, 21, 407-411.	2.4	19
13	35ÂYears of (Al) in Geotechnical Engineering: State of the Art. Geotechnical and Geological Engineering, 2021, 39, 637-690.	1.7	72
14	A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Engineering With Computers, 2021, 37, 685-700.	6.1	83
15	Prediction of unconfined compressive strength of cement-stabilized sandy soil in Vietnam using artificial neural networks (ANNs) model. International Journal of Geotechnical Engineering, 0, , 1-11.	2.0	14
16	Landscape simulation of small towns along Huaihe River based on geographic information system and big data analysis. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
17	Emerging Resilience-Enabling Technologies. , 2021, , 207-246.		0
18	Green city economic efficiency based on cloud computing and machine learning. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	3

#	Article	IF	Citations
19	Fractal approach in expansive clay-based materials with special focus on compacted GMZ bentonite in nuclear waste disposal: a systematic review. Environmental Science and Pollution Research, 2021, 28, 43287-43314.	5.3	31
20	Coastline climate environment and coastal city English smart teaching simulation based on GIS system. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	2
21	A Parametric Numerical Study for Diagnosing the Failure of Large Diameter Bored Piles Using Supervised Machine Learning Approach. Processes, 2021, 9, 1411.	2.8	6
22	Hybridizing Neural Network with Trend-Adjusted Exponential Smoothing for Time-Dependent Resistance Forecast of Stabilized Fine Sands Under Rapid shearing. Transportation Infrastructure Geotechnology, 2023, 10, 62-81.	3.1	4
24	Artificial Neural Networks for Prediction of Steadman Heat Index. Springer Transactions in Civil and Environmental Engineering, 2021, , 293-357.	0.4	1
25	Evaluation of Neural Network Model for Estimating Pile Load Capacity. Korean Society of Hazard Mitigation, 2021, 21, 221-228.	0.2	1
26	Prediction of Compression Index of Soft Soils from the Brazilian Coast Using Artificial Neural Networks and Empirical Correlations. Soils and Rocks, 2020, 43, 109-121.	0.5	1
27	Machine learning-based failure mode identification of double shear bolted connections in structural steel. Engineering Failure Analysis, 2022, 139, 106471.	4.0	8
28	Future of machine learning in geotechnics. Georisk, 2023, 17, 7-22.	3.5	57
29	Predictive modeling of the primary settling tanks based on artificial neural networks for estimating TSS and COD as typical effluent parameters. Water Science and Technology, 2022, 85, 3451-3464.	2.5	2
30	Unpacking data-centric geotechnics. Underground Space (China), 2022, 7, 967-989.	7.5	32
31	An Artificial Intelligence Based Data-Driven Method for Forecasting Unconfined Compressive Strength of Cement Stabilized Soil by Deep Mixing Technique. Geotechnical and Geological Engineering, 2023, 41, 491-514.	1.7	9
32	Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study. Case Studies in Construction Materials, 2023, 18, e01774.	1.7	7
33	Selected AI optimization techniques and applications in geotechnical engineering. Cogent Engineering, 2023, 10, .	2.2	15
34	Empirical, Statistical, and Machine Learning Techniques for Predicting Surface Settlement Induced by Tunnelling., 2023,, 39-77.		0
35	Data-driven approximation of geotechnical dynamics to an equivalent single-degree-of-freedom vibration system based on dynamic mode decomposition. Georisk, 2023, 17, 77-97.	3.5	2
36	Al and Blockchain Synergy in Aerospace Engineering: An Impact Survey on Operational Efficiency and Technological Challenges. IEEE Access, 2023, 11, 87790-87804.	4.2	3
37	A Review on Application of Soft Computing Techniques in Geotechnical Engineering. Lecture Notes in Civil Engineering, 2024, , 313-322.	0.4	1

#	Article	IF	CITATIONS
38	Artificial neural networks for predicting soil water retention data of various Brazilian soils. Earth Science Informatics, 0 , , .	3.2	0
39	Re-evaluation of machine learning models for predicting ultimate bearing capacity of piles through SHAP and Joint Shapley methods. Neural Computing and Applications, 0, , .	5.6	0
40	Intelligent Prediction of Critical State Parameters for Non-plastic Tailings and Soils Using Evolutionary Algorithms. Mining, Metallurgy and Exploration, 2024, 41, 431-448.	0.8	0
41	Impact of waste foundry sand on drainage behavior of sandy soil: an experimental and machine learning study. , 2024, 3, .		0