CITATION REPORT List of articles citing

Integrins and metastasis

DOI: 10.4161/cam.23840 Cell Adhesion and Migration, 2013, 7, 251-61.

Source: https://exaly.com/paper-pdf/55833367/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
151	BMP-7 enhances cell migration and 🖽 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. 2014 , 9, e112636		16
150	Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. 2014 , 28, 2260-71		53
149	p53 in cell invasion, podosomes, and invadopodia. <i>Cell Adhesion and Migration</i> , 2014 , 8, 205-14	3.2	21
148	Colorectal cancer and basement membranes: clinicopathological correlations. 2014 , 2014, 580159		12
147	E-cadherin expression in Barrett® esophagus and esophageal carcinoma. 2014 , 11, 153-161		1
146	Extracellular matrix protein laminin induces matrix metalloproteinase-9 in human breast cancer cell line mcf-7. 2014 , 7, 71-8		18
145	Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling. 2014 , 768, 35-46		23
144	New and emerging factors in tumorigenesis: an overview. 2015 , 7, 225-39		24
143	A pentacyclic triterpene natural product, ursolic acid and its prodrug US597 inhibit targets within cell adhesion pathway and prevent cancer metastasis. <i>Oncotarget</i> , 2015 , 6, 9295-312	3.3	60
142	Cloning and characterization of the human integrin 🛭 gene promoter. 2015 , 10, e0121439		11
141	Bacterial genotoxins promote inside-out integrin activation, formation of focal adhesion complexes and cell spreading. 2015 , 10, e0124119		11
140	OXPHOS dysfunction regulates integrin-1 modifications and enhances cell motility and migration. 2015 , 24, 1977-90		27
139	A bibenzyl from Dendrobium ellipsophyllum inhibits migration in lung cancer cells. 2015 , 69, 565-74		11
138	Extracellular molecules involved in cancer cell invasion. <i>Cancers</i> , 2015 , 7, 238-65	6.6	34
137	n-3 PUFAs: an Elixir in Prevention of Colorectal Cancer. 2015 , 11, 141-149		7
136	GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin for efficient breast cancer metastasis. 2015 , 34, 5494-504		46
135	Inhibitory effects of proton beam irradiation on integrin expression and signaling pathway in human colon carcinoma HT29 cells. <i>International Journal of Oncology</i> , 2015 , 46, 2621-8	4.4	10

134	Tenascin-C and integrins in cancer. <i>Cell Adhesion and Migration</i> , 2015 , 9, 96-104	.2	96
133	Integrin $ lambda$ 8 sets the stage for colorectal cancer metastasis. 2015 , 34, 715-34		23
132	Cancer metastases: challenges and opportunities. 2015 , 5, 402-18		452
131	Meta-analysis of gene expression and integrin-associated signaling pathways in papillary renal cell carcinoma subtypes. <i>Oncotarget</i> , 2016 , 7, 84178-84189	.3	3
130	CC chemokine ligand 18(CCL18) promotes migration and invasion of lung cancer cells by binding to Nir1 through Nir1-ELMO1/DOC180 signaling pathway. 2016 , 55, 2051-2062		33
129	Antimetastatic activity of novel ruthenium (III) pyridine complexes. <i>Cancer Medicine</i> , 2016 , 5, 2850-2860 $_4$.8	14
128	Elucidation of the Roles of Tumor Integrin 🛭 in the Extravasation Stage of the Metastasis Cascade. 2016 , 76, 2513-24		103
127	Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. 2016 , 61, 109-18		45
126	MiR-124 inhibits the migration and invasion of human hepatocellular carcinoma cells by suppressing integrin \P expression. 2017 , 7, 40733		28
125	Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis. 2017 , 38, 2124-2134		14
124	A cell adhesive peptide from tropoelastin promotes sequential cell attachment and spreading via distinct receptors. <i>FEBS Journal</i> , 2017 , 284, 2216-2230	·7	23
123	Codonopsis lanceolata polysaccharide CLPS inhibits melanoma metastasis via regulating integrin signaling. 2017 , 103, 435-440		5
122	Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with ₩-Class integrins to promote EMT. 2017 , 36, 5681-5694		33
121	Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. 2017 , 1861, 1515-1520		36
120	LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis. 2017 , 32, 310-323.e5		52
119	Extracting Intercellular Signaling Network of Cancer Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and Single-cell Transcriptomes. 2017 , 7, 8815		44
118	Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. 2017 , 108, 1681-1692		79
117	Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells. 2017 , 1403, 92-100		14

116	Chemical Modification for Proteolytic Stabilization of the Selective Integrin RGDechi Peptide: in Vitro and in Vivo Activities on Malignant Melanoma Cells. 2017 , 60, 9874-9884		15
115	Bupleurum chinense polysaccharide inhibit adhesion of human melanoma cells via blocking 1 integrin function. 2017 , 156, 244-252		7
114	Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. Cancers, 2017, 9,	6.6	62
113	Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers, 2017, 9,	6.6	218
112	Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	78
111	Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin \blacksquare and integrin B. 2017 , 17, 553		14
110	Baicalein inhibits progression of osteosarcoma cells through inactivation of the Wnt/Latenin signaling pathway. <i>Oncotarget</i> , 2017 , 8, 86098-86116	3.3	17
109	Regulation of inside-out 🛚 -integrin activation by CDCP1. 2018 , 37, 2817-2836		14
108	Restoring the p53 'Guardian' Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9. 2018 , 36, 653-	660	27
107	Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. 2018 , 129, 37-53		81
106	Responsive Nanomicellar Theranostic Cages for Metastatic Breast Cancer. 2018 , 29, 275-286		20
105	Angiogenesis and lymphangiogenesis in corneal transplantation-A review. 2018, 63, 453-479		38
104	PEP06 polypeptide 30 exerts antitumour effect in colorectal carcinoma via inhibiting epithelial-mesenchymal transition. 2018 , 175, 3111-3130		9
103	Deciphering RGDechi peptide-BI integrin interaction mode in isolated cell membranes. 2018 , 110, e24065		4
102	Kallikrein-related peptidase 7 overexpression in melanoma cells modulates cell adhesion leading to a malignant phenotype. 2018 , 399, 1099-1105		8
101	Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. 2018 , 10, 14231-14247		11
100	Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. 2018 , 1862, 600-614		14
99	Biomechanics in Oncology. Advances in Experimental Medicine and Biology, 2018,	3.6	3

98	Differential Effects of Integrin v Knockdown and Cilengitide on Sensitization of Triple-Negative Breast Cancer and Melanoma Cells to Microtubule Poisons. 2018 , 94, 1334-1351		12
97	Single Cell Adhesion in Cancer Progression. 2018 , 1-39		
96	DACH1 inhibits glioma invasion and tumor growth via the Wnt/catenin pathway. 2018 , 11, 5853-5863		5
95	Engineered Models of Metastasis with Application to Study Cancer Biomechanics. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1092, 189-207	3.6	3
94	Silencing Formin-like 2 inhibits growth and metastasis of gastric cancer cells through suppressing internalization of integrins. 2018 , 18, 79		13
93	On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. 2018 , 14, 930-954		73
92	YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers, 2018, 10,	6.6	87
91	Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	27
90	Brain Targeting by Liposome-Biomolecular Corona Boosts Anticancer Efficacy of Temozolomide in Glioblastoma Cells. 2018 , 9, 3166-3174		34
89	Mechanobiology of metastatic cancer. 2018 , 449-494		2
88	Increased extracellular matrix density disrupts E-cadherin/Etatenin complex in gastric cancer cells. 2018 , 6, 2704-2713		29
87	Active targeting drug delivery nanocarriers: Ligands. 2019 , 19, 100370		45
86	Are Integrins Still Practicable Targets for Anti-Cancer Therapy?. Cancers, 2019, 11,	6.6	80
85	Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. <i>Cancer Letters</i> , 2019 , 461, 90-101	9.9	9
84	Markers of Cancer Cell Invasion: Are They Good Enough?. 2019 , 8,		26
83	Correlation of integrin alpha 7 with clinicopathological characteristics and survival profiles, as well as its regulatory role in cell proliferation, apoptosis, and stemness in non-small-cell lung cancer. 2019 , 33, e22973		5
82	Crabp2 Promotes Metastasis of Lung Cancer Cells via HuR and Integrin 🗓/FAK/ERK Signaling. 2019 , 9, 845		28
81	Histoepigenetic analysis of HPV- and tobacco-associated head and neck cancer identifies both subtype-specific and common therapeutic targets despite divergent microenvironments. 2019 , 38, 355	1-3568	3 ¹⁵

80	Long non-coding RNA NEAT1 can predict various malignant tumour lympha node metastasis: a meta-analysis. 2019 , 47, 2516-2520	4
79	Anticancer Effects of Constituents of Herbs Targeting Osteosarcoma. 2019 , 25, 948-955	2
78	Integrin-Induced Signal Event Contributes to Self-Assembled Monolayers on Au-Nanoparticle-Regulated Cancer Cell Migration and Invasion. 2019 , 5, 1804-1821	3
77	Integrin B II's central role in breast cancer, melanoma and glioblastoma cell aggregation revealed by antibodies with blocking activity. 2019 , 11, 691-708	5
76	Biophysical properties of cells for cancer diagnosis. 2019 , 86, 1-7	10
75	Reduced RANBP9 expression is associated with poor prognosis in colorectal cancer patients 2019 , 8, 2704-2712	
74	The role of contextual signal TGF-II inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. 2019 , 23, 187-194	4
73	The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. 2019 , 9, 1376	38
72	Proteome Profiling of Membrane-Free Stem Cell Components by Nano-LS/MS Analysis and Its Anti-Inflammatory Activity. 2019 , 2019, 4683272	4
71	Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. 2019 , 9, 1236	11
70	Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. 2019 , 109, 195-207	39
69	Deletion of TMEM268 inhibits growth of gastric cancer cells by downregulating the ITGB4 signaling pathway. 2019 , 26, 1453-1466	14
68	N-acetylglucosaminyltransferase-I as a novel regulator of epithelial-mesenchymal transition. 2019 , 33, 2823-2835	11
67	Optimization of cRGDfK ligand concentration on polymeric nanoparticles to maximize cancer targeting. 2020 , 81, 178-184	7
66	The tumor types. 2020 , 145-185	
65	Mutant p53 on the Path to Metastasis. 2020 , 6, 62-73	39
64	MicroRNA-146a suppresses tumor malignancy via targeting vimentin in esophageal squamous cell carcinoma cells with lower fibronectin membrane assembly. 2020 , 27, 102	6
63	Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers, 2020 , 12,	20

62	Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. 2020 , 8, 588066		19
61	Inadequate tissue mineralization promotes cancer cell attachment. 2020 , 15, e0237116		2
60	Fluorescence and Multiphoton Imaging for Tissue Characterization of a Model of Postmenopausal Ovarian Cancer. 2020 , 52, 993-1009		1
59	IntegrinB5 upregulated by HER2 in gastric cancer: a promising biomarker for liver metastasis. 2020 , 8, 451		3
58	Small Ones to Fight a Big Problem-Intervention of Cancer Metastasis by Small Molecules. <i>Cancers</i> , 2020 , 12,	6.6	1
57	I integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumor cell invasion. 2020 , 133,		8
56	Role of [Tc]Tc-Galacto-RGD SPECT/CT in identifying metastatic differentiated thyroid carcinoma after thyroidectomy and radioactive iodine therapy. 2020 , 88-89, 34-43		1
55	On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine. 2020 , 13, 105-119		4
54	Berberine inhibited metastasis through miR-145/MMP16 axis in vitro. 2021 , 14, 4		6
53	Multifunctional self-assembled peptide nanoparticles for multimodal imaging-guided enhanced theranostic applications against glioblastoma multiforme.		1
52	Integrin B enhances the malignancy of human colorectal cancer by increasing the TGF-Bignaling. 2021 , 32, 717-726		3
51	The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. <i>FEBS Journal</i> , 2021 , 288, 4291-4310	5.7	8
50	Integrin 21 Represents a Prognostic and Predictive Biomarker in Primary Ovarian Cancer. <i>Biomedicines</i> , 2021 , 9,	4.8	2
49	Downregulation of ITGA6 confers to the invasion of multiple myeloma and promotes progression to plasma cell leukaemia. <i>British Journal of Cancer</i> , 2021 , 124, 1843-1853	8.7	1
48	Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells. <i>Pharmaceutics</i> , 2021 , 13,	6.4	2
47	Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. <i>PLoS Computational Biology</i> , 2021 , 17, e1009081	5	6
46	Exosomal integrins and their influence on pancreatic cancer progression and metastasis. <i>Cancer Letters</i> , 2021 , 507, 124-134	9.9	7
45	Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of the matricellular protein Mindin.		O

44	Inhibition of 1 integrin induces its association with MT1-MMP and decreases MT1-MMP internalization and cellular invasiveness. <i>Cellular Signalling</i> , 2021 , 83, 109984	4.9	1
43	Ailanthoidol, a Neolignan, Suppresses TGF-🛭-Induced HepG2 Hepatoblastoma Cell Progression. <i>Biomedicines</i> , 2021 , 9,	4.8	O
42	Venom of Viperidae: A Perspective of its Antibacterial and Antitumor Potential <i>Current Drug Targets</i> , 2022 , 23, 126-144	3	1
41	Anticancer Profiling of Gambogic Acid as a Target Specific RANKL Inhibitor in Osteosarcoma Cell Line. <i>Erzincan Diversitesi Fen Bilimleri Enstit</i> Dergisi, 2021 , 14, 442-452	0.2	
40	ITGB4 as a novel serum diagnosis biomarker and potential therapeutic target for colorectal cancer. <i>Cancer Medicine</i> , 2021 , 10, 6823-6834	4.8	2
39	Hybridization of tumor homing and mitochondria-targeting peptide domains to design novel dual-imaging self-assembled peptide nanoparticles for theranostic applications. <i>Drug Delivery and Translational Research</i> , 2021 , 1	6.2	1
38	Autophagy and Tumour Metastasis. Advances in Experimental Medicine and Biology, 2020, 1207, 315-338	3.6	4
37	Beyond adhesion: Lemerging roles for integrins in control of the tumor microenvironment. <i>F1000Research</i> , 2017 , 6, 1612	3.6	35
36	SORBS1 suppresses tumor metastasis and improves the sensitivity of cancer to chemotherapy drug. <i>Oncotarget</i> , 2017 , 8, 9108-9122	3.3	18
35	Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by deregulating a c-src/FAK-associated signaling pathway. <i>Oncotarget</i> , 2017 , 8, 40922-40934	3.3	18
34	Involvement of anti-tumor and its targets in the pathogenesis of pancreatic ductal adenocarcinoma: direct regulation of and by. <i>Oncotarget</i> , 2018 , 9, 28849-28865	3.3	24
33	Identification of integrin drug targets for 17 solid tumor types. <i>Oncotarget</i> , 2018 , 9, 30146-30162	3.3	12
32	Chronic TGFIstimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin B-Akt-GSK3Isignaling. <i>Oncotarget</i> , 2016 , 7, 25366-76	3.3	19
31	Non-invasive assessment of inter-and intrapatient variability of integrin expression in metastasized prostate cancer by PET. <i>Oncotarget</i> , 2016 , 7, 28151-9	3.3	13
30	Enhancement of aberrantly modified integrin-mediated cell motility in multicellular tumor spheroids. <i>International Journal of Oncology</i> , 2020 , 56, 1490-1498	4.4	2
29	Mechanisms of Invasion and Metastasis: General Aspects and the Role of Cell Junctions, Adhesion, and Extracellular Matrix. 2016 , 1-27		
28	Mechanisms of Invasion and Metastasis: General Aspects and the Role of Cell Junctions, Adhesion, and Extracellular Matrix. 2017 , 3295-3321		
27	Extracting Intercellular Signaling Network of Cancer Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and Singlecell Transcriptomes.		О

26	Molecular Pathway and Fluorescence In Situ Hybridization Testing of ERBB2 (HER2) Gene Amplification in Invasive Ductal Carcinoma of Breast. 2019 , 237-268		
25	Transcriptome Analysis and Characterized Differentially Regulated Genes Between Treated and Untreated SaOS-2 Cells with Baicalein. <i>International Journal of Pharmacology</i> , 2020 , 16, 164-180	0.7	
24	Single Cell Adhesion in Cancer Progression. 2022 , 729-766		
23	Silencing PARG decreases invasion in CT26 cells. <i>International Journal of Clinical and Experimental Pathology</i> , 2019 , 12, 3847-3854	1.4	1
22	[Integrin 5 silencing inhibits proliferation, invasion and metastasis of human liver cancer Bel-7404 cells]. <i>Nan Fang Yi Ke Da Xue Xue Bao = Journal of Southern Medical University</i> , 2020 , 40, 893-898	0.5	
21	Roles of Integrins in Gastrointestinal Cancer Metastasis. Frontiers in Molecular Biosciences, 2021 , 8, 708	7396	Ο
20	Quantitative glycoproteomics analysis identifies novel FUT8 targets and signaling networks critical for breast cancer cell invasiveness <i>Breast Cancer Research</i> , 2022 , 24, 21	8.3	О
19	Table_1.XLSX. 2019 ,		
18	Evidence That 🛭 -Integrin Is Required for the Anti-Viability and Anti-Proliferative Effect of Resveratrol in CRC Cells <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	2
17	The Radiobiology of Particle Therapy. 2022 , 27-46		
17 16	The Radiobiology of Particle Therapy. 2022, 27-46 Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPAR MAD4 signaling. Toxicology and Applied Pharmacology, 2022, 449, 116127	4.6	1
	Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPARÆSMAD4 signaling. <i>Toxicology and Applied Pharmacology</i>	4.6	1 O
16	Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPARÆMAD4 signaling. <i>Toxicology and Applied Pharmacology</i> , 2022 , 449, 116127 Possible Metastatic Stage-Dependent ILC2 Activation Induces Differential Functions of MDSCs through IL-13/IL-13R# Signaling during the Progression of Breast Cancer Lung Metastasis. <i>Cancers</i> ,	,	
16 15	Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPAR SMAD4 signaling. <i>Toxicology and Applied Pharmacology</i> , 2022, 449, 116127 Possible Metastatic Stage-Dependent ILC2 Activation Induces Differential Functions of MDSCs through IL-13/IL-13R Signaling during the Progression of Breast Cancer Lung Metastasis. <i>Cancers</i> , 2022, 14, 3267 The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in	6.6	0
16 15 14	Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPAR MAD4 signaling. <i>Toxicology and Applied Pharmacology</i> , 2022, 449, 116127 Possible Metastatic Stage-Dependent ILC2 Activation Induces Differential Functions of MDSCs through IL-13/IL-13R Signaling during the Progression of Breast Cancer Lung Metastasis. <i>Cancers</i> , 2022, 14, 3267 The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. <i>Cell Biochemistry and Function</i> , The expression of BMP, integrin, ZEB2 in ovarian high-grade serous carcinoma in relation with	6.6	0
16 15 14	Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPAR MAD4 signaling. <i>Toxicology and Applied Pharmacology</i> , 2022, 449, 116127 Possible Metastatic Stage-Dependent ILC2 Activation Induces Differential Functions of MDSCs through IL-13/IL-13R Signaling during the Progression of Breast Cancer Lung Metastasis. <i>Cancers</i> , 2022, 14, 3267 The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. <i>Cell Biochemistry and Function</i> , The expression of BMP, integrin, ZEB2 in ovarian high-grade serous carcinoma in relation with lymph node metastasis. 2022, 40, 153-162	6.6	0 0
16 15 14 13	Dibutylstannanediyl (2Z,2?Z)-bis(4-(benzylamino)-4-oxobut-2-enoate inhibits prostate cancer progression by activating p38 MAPK/PPAR@SMAD4 signaling. <i>Toxicology and Applied Pharmacology</i> , 2022, 449, 116127 Possible Metastatic Stage-Dependent ILC2 Activation Induces Differential Functions of MDSCs through IL-13/IL-13R Signaling during the Progression of Breast Cancer Lung Metastasis. <i>Cancers</i> , 2022, 14, 3267 The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. <i>Cell Biochemistry and Function</i> , The expression of BMP, integrin, ZEB2 in ovarian high-grade serous carcinoma in relation with lymph node metastasis. 2022, 40, 153-162 The Role of PTEN in Epithelial Mesenchymal Transition. 2022, 14, 3786 Deletion of mdig enhances H3K36me3 and metastatic potential of the triple negative breast cancer	6.6	O O 2

8	Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin. 2022 , 40, 111390	Ο
7	Integrin-mediated cancer progression as a specific target in clinical therapy. 2022 , 155, 113745	О
6	The current landscape of predictive and prognostic biomarkers for immune checkpoint blockade in ovarian cancer. 13,	0
5	Chasing Uterine Cancer with NK Cell-Based Immunotherapies. 2022 , 2, 642-659	О
4	Inhibition of bladder cancer growth with homoharringtonine by inactivating integrin 8/1 -FAK/Src axis: A novel strategy for drug application. 2023 , 188, 106654	1
3	FOXM1: A small fox that makes more tracks for cancer progression and metastasis. 2023 , 92, 1-15	1
2	Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. 2023 , 49, 102662	О
1	Convection and extracellular matrix binding control interstitial transport of extracellular vesicles. 2023 , 12,	O