Germline mutations affecting the proofreading domain colorectal adenomas and carcinomas

Nature Genetics 45, 136-144 DOI: 10.1038/ng.2503

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Calcium-Induced Contraction of the Rhizoplast of a Quadriflagellate Green Alga. Science, 1978, 202, 975-977.	6.0	185
2	Evidence for APOBEC3B mutagenesis in multiple human cancers. Nature Genetics, 2013, 45, 977-983.	9.4	660
4	Germline and somatic polymerase l̈µ and l̃´mutations define a new class of hypermutated colorectal and endometrial cancers. Journal of Pathology, 2013, 230, 148-153.	2.1	242
6	A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases. Human Mutation, 2013, 34, 1721-1726.	1.1	303
7	Decoding the Histone Code: Role of H3K36me3 in Mismatch Repair and Implications for Cancer Susceptibility and Therapy. Cancer Research, 2013, 73, 6379-6383.	0.4	36
8	Cancer Genome Landscapes. Science, 2013, 339, 1546-1558.	6.0	6,507
9	Diagnostic Cancer Genome Sequencing and the Contribution of Germline Variants. Science, 2013, 339, 1559-1562.	6.0	57
10	Personalized reproductive medicine on the brink: progress, opportunities and challenges ahead. Reproductive BioMedicine Online, 2013, 27, 611-623.	1.1	10
11	Genome-Wide Mutational Signatures of Aristolochic Acid and Its Application as a Screening Tool. Science Translational Medicine, 2013, 5, 197ra101.	5.8	233
12	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345.	13.7	1,969
12 13	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120.	13.7 9.4	1,969 6,265
12 13 14	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120. Human Pol É>-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair, 2013, 12, 954-963.	13.7 9.4 1.3	1,969 6,265 18
12 13 14 15	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120. Human Pol É>-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair, 2013, 12, 954-963. The burden of faulty proofreading in colon cancer. Nature Genetics, 2013, 45, 121-122.	13.7 9.4 1.3 9.4	1,969 6,265 18 25
12 13 14 15 16	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120. Human Pol É-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair, 2013, 12, 954-963. The burden of faulty proofreading in colon cancer. Nature Genetics, 2013, 45, 121-122. Exome Resequencing Identifies Potential Tumor-Suppressor Genes that Predispose to Colorectal Cancer. Human Mutation, 2013, 34, 1026-1034.	13.7 9.4 1.3 9.4 1.1	1,969 6,265 18 25 48
12 13 14 15 16 17	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120. Human Pol É-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair, 2013, 12, 954-963. The burden of faulty proofreading in colon cancer. Nature Genetics, 2013, 45, 121-122. Exome Resequencing Identifies Potential Tumor-Suppressor Genes that Predispose to Colorectal Cancer. Human Mutation, 2013, 34, 1026-1034. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	13.7 9.4 1.3 9.4 1.1 13.7	1,969 6,265 18 25 48 4,075
12 13 14 15 16 17 18	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120. Human Pol És-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair, 2013, 12, 954-963. The burden of faulty proofreading in colon cancer. Nature Genetics, 2013, 45, 121-122. Exome Resequencing Identifies Potential Tumor-Suppressor Genes that Predispose to Colorectal Cancer. Human Mutation, 2013, 34, 1026-1034. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nature Genetics, 2013, 45, 947-950.	13.7 9.4 1.3 9.4 1.1 13.7 9.4	1,969 6,265 18 25 48 4,075
12 13 14 15 16 17 18 18	The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501, 338-345. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120. Human Pol É-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair, 2013, 12, 954-963. The burden of faulty proofreading in colon cancer. Nature Genetics, 2013, 45, 121-122. Exome Resequencing Identifies Potential Tumor-Suppressor Genes that Predispose to Colorectal Cancer. Human Mutation, 2013, 34, 1026-1034. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nature Genetics, 2013, 45, 947-950. The growing complexity of the intestinal polyposis syndromes. American Journal of Medical Genetics, Part A, 2013, 161, 2777-2787.	 13.7 9.4 1.3 9.4 1.1 13.7 9.4 0.7 	1,969 6,265 18 25 48 4,075 151 37

#	Article	IF	CITATIONS
21	Hereditary Colorectal Cancer Registries in Canada: Report from the Colorectal Cancer Association of Canada Consensus Meeting; Montreal, Quebec; October 28, 2011. Current Oncology, 2013, 20, 273-278.	0.9	5
22	A Substitution in the Fingers Domain of DNA Polymerase δ Reduces Fidelity by Altering Nucleotide Discrimination in the Catalytic Site*. Journal of Biological Chemistry, 2013, 288, 5572-5580.	1.6	15
24	DNA polymerase É> and δ exonuclease domain mutations in endometrial cancer. Human Molecular Genetics, 2013, 22, 2820-2828.	1.4	319
25	Clinical Application of Genetics in Management of Colorectal Cancer. Intestinal Research, 2014, 12, 184.	1.0	38
26	Mutation Spectrum of Six Genes in Chinese Phenylketonuria Patients Obtained through Next-Generation Sequencing. PLoS ONE, 2014, 9, e94100.	1.1	21
27	Crystal Structure of Yeast DNA Polymerase ε Catalytic Domain. PLoS ONE, 2014, 9, e94835.	1.1	42
28	Architecture of Inherited Susceptibility to Colorectal Cancer: A Voyage of Discovery. Genes, 2014, 5, 270-284.	1.0	13
29	Mechanisms of Base Substitution Mutagenesis in Cancer Genomes. Genes, 2014, 5, 108-146.	1.0	49
30	Genetic testing for inherited polyposis syndromes. Gastrointestinal Nursing, 2014, 12, 31-35.	0.0	3
31	Genetic predisposition to colorectal cancer: Where we stand and future perspectives. World Journal of Gastroenterology, 2014, 20, 9828.	1.4	71
32	Phenotypic characterization of missense polymerase-l̂´mutations using an inducible protein-replacement system. Nature Communications, 2014, 5, 4990.	5.8	15
33	EU data protection regulation—harming cancer research. Nature Reviews Clinical Oncology, 2014, 11, 563-564.	12.5	5
34	Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. European Journal of Human Genetics, 2014, 22, 1165-1171.	1.4	27
35	Personalized sequencing and the future of medicine: discovery, diagnosis and defeat of disease. Pharmacogenomics, 2014, 15, 1771-1790.	0.6	66
36	The Protective Role of Symmetric Stem Cell Division on the Accumulation of Heritable Damage. PLoS Computational Biology, 2014, 10, e1003802.	1.5	26
37	Establishing a clinical and molecular diagnosis for hereditary colorectal cancer syndromes: Present tense, future perfect?. Castrointestinal Endoscopy, 2014, 80, 1145-1155.	0.5	7
38	Wholeâ \in exome sequencing of pancreatic neoplasms with acinar differentiation. Journal of Pathology, 2014, 232, 428-435.	2.1	151
39	Hypermutation in human cancer genomes: footprints and mechanisms. Nature Reviews Cancer, 2014, 14, 786-800.	12.8	354

	CITATION	Report	
#	Article	IF	CITATIONS
40	Genetic testing in inherited polyposis syndromes – how and why?. Colorectal Disease, 2014, 16, 595-602.	0.7	4
41	Choice of transcripts and software has a large effect on variant annotation. Genome Medicine, 2014, 6, 26.	3.6	158
42	Polymerase Proofreading-Associated Polyposis. Diseases of the Colon and Rectum, 2014, 57, 396-397.	0.7	42
43	Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium â€~Care for CMMRD' (C4CMMRD). Journal of Medical Genetics, 2014, 51, 355-365.	1.5	351
44	DNA Replication Error-Induced Extinction of Diploid Yeast. Genetics, 2014, 196, 677-691.	1.2	45
46	Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 761, 49-52.	0.4	24
47	Replicative DNA polymerase mutations in cancer. Current Opinion in Genetics and Development, 2014, 24, 107-113.	1.5	92
48	<scp>DNA</scp> content analysis of colorectal cancer defines a distinct â€~microsatellite and chromosome stable' group but does not predict response to radiotherapy. International Journal of Experimental Pathology, 2014, 95, 16-23.	0.6	7
49	Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human Molecular Genetics, 2014, 23, 3200-3211.	1.4	222
50	Estimating the heritability of colorectal cancer. Human Molecular Genetics, 2014, 23, 3898-3905.	1.4	114
51	Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, 2014, , .	0.2	1
52	Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genetics in Medicine, 2014, 16, 830-837.	1.1	281
53	Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nature Genetics, 2014, 46, 533-542.	9.4	212
54	A Common Cancer-Associated DNA Polymerase ϵ Mutation Causes an Exceptionally Strong Mutator Phenotype, Indicating Fidelity Defects Distinct from Loss of Proofreading. Cancer Research, 2014, 74, 1895-1901.	0.4	113
55	DNA Sequencing of Cancer: What Have We Learned?. Annual Review of Medicine, 2014, 65, 63-79.	5.0	41
56	DNA Testing and Molecular Screening for Colon Cancer. Clinical Gastroenterology and Hepatology, 2014, 12, 377-381.	2.4	32
57	Genomic Sequencing for Cancer Diagnosis and Therapy. Annual Review of Medicine, 2014, 65, 33-48.	5.0	35
58	The evolution of the unstable cancer genome. Current Opinion in Genetics and Development, 2014, 24, 61-67.	1.5	62

#	Article	IF	CITATIONS
59	Colorectal cancer risk variants on 11q23 and 15q13 are associated with unexplained adenomatous polyposis. Journal of Medical Genetics, 2014, 51, 55-60.	1.5	21
60	A Practical Guide to Human Cancer Genetics. , 2014, , .		8
61	Structural basis for processive DNA synthesis by yeast DNA polymerase É›. Nature Structural and Molecular Biology, 2014, 21, 49-55.	3.6	155
62	Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. Metabolism: Clinical and Experimental, 2014, 63, 1385-1389.	1.5	46
63	A Genome-wide View of Microsatellite Instability: Old Stories of Cancer Mutations Revisited with New Sequencing Technologies. Cancer Research, 2014, 74, 6377-6382.	0.4	17
64	Molecular Homology and Difference between Spontaneous Canine Mammary Cancer and Human Breast Cancer. Cancer Research, 2014, 74, 5045-5056.	0.4	110
65	A pooled analysis of the outcome of prospective colonoscopic surveillance for familial colorectal cancer. International Journal of Cancer, 2014, 134, 939-947.	2.3	22
66	Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Research, 2014, 24, 1740-1750.	2.4	244
67	How Can Next-Generation Sequencing (Genomics) Help Us in Treating Colorectal Cancer?. Current Colorectal Cancer Reports, 2014, 10, 372-379.	1.0	6
68	Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Genome Medicine, 2014, 6, 24.	3.6	75
69	New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Human Molecular Genetics, 2014, 23, 3506-3512.	1.4	135
70	The Emerging Genomic Landscape of Endometrial Cancer. Clinical Chemistry, 2014, 60, 98-110.	1.5	88
71	Molecular heterogeneity and prognostic implications of synchronous advanced colorectal neoplasia. British Journal of Cancer, 2014, 110, 1228-1235.	2.9	15
72	Mutations in POLE and survival of colorectal cancer patients – link to disease stage and treatment. Cancer Medicine, 2014, 3, 1527-1538.	1.3	56
73	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	6.0	348
74	Cancer Genomics and Inherited Risk. Journal of Clinical Oncology, 2014, 32, 687-698.	0.8	121
75	Expanding the genetic basis of copy number variation in familial breast cancer. Hereditary Cancer in Clinical Practice, 2014, 12, 15.	0.6	15
76	Cancer: Evolution Within a Lifetime. Annual Review of Genetics, 2014, 48, 215-236.	3.2	196

#	Article	IF	CITATIONS
77	Genetics of endometrial cancer. Familial Cancer, 2014, 13, 499-505.	0.9	15
78	The Clinical Evaluation of Polyposis Syndromes. Current Colorectal Cancer Reports, 2014, 10, 36-44.	1.0	Ο
79	Colon and Endometrial Cancers With Mismatch Repair Deficiency Can Arise From Somatic, Rather Than Germline, Mutations. Gastroenterology, 2014, 147, 1308-1316.e1.	0.6	328
80	Exome Sequencing in Familial Colorectal Cancer: Searching for Needles in Haystacks. Gastroenterology, 2014, 147, 554-556.	0.6	1
81	Colorectal Cancer Cell Lines Are Representative Models of the Main Molecular Subtypes of Primary Cancer. Cancer Research, 2014, 74, 3238-3247.	0.4	317
82	DNA polymerase $\hat{I}\mu$ and its roles in genome stability. IUBMB Life, 2014, 66, 339-351.	1.5	70
83	Promoterâ€specific alterations of <i>APC</i> are a rare cause for mutationâ€negative familial adenomatous polyposis. Genes Chromosomes and Cancer, 2014, 53, 857-864.	1.5	38
84	POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecologic Oncology, 2014, 134, 15-19.	0.6	159
85	A mutation in POLE predisposing to a multi-tumour phenotype. International Journal of Oncology, 2014, 45, 77-81.	1.4	61
86	Hereditary colorectal cancer syndromes. Colorectal Cancer, 2014, 3, 57-76.	0.8	5
87	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	1.6	35
88	A novel APC mosaicism in a patient with familial adenomatous polyposis. Human Genome Variation, 2015, 2, 15057.	0.4	7
89	Current Status and Clinical Studies of Familial Adenomatous Polyposis in Japan. Nihon Daicho Komonbyo Gakkai Zasshi, 2015, 68, 878-882.	0.1	0
90	<i>POLD1</i> Germline Mutations in Patients Initially Diagnosed with Werner Syndrome. Human Mutation, 2015, 36, 1070-1079.	1.1	56
91	Lynch syndrome and Lynch syndrome mimics: The growing complex landscape of hereditary colon cancer. World Journal of Gastroenterology, 2015, 21, 9253.	1.4	154
92	Clinical Application of Multigene Panels: Challenges of Next-Generation Counseling and Cancer Risk Management. Frontiers in Oncology, 2015, 5, 208.	1.3	109
93	Molecular Genetic View of Familial Adenomatous Polyposis with New Knowledge. Nihon Daicho Komonbyo Gakkai Zasshi, 2015, 68, 871-877.	0.1	0
94	Defining the Adenoma Burden in Lynch Syndrome. Diseases of the Colon and Rectum, 2015, 58, 388-392.	0.7	30

#	Article	IF	CITATIONS
95	PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New England Journal of Medicine, 2015, 372, 2509-2520.	13.9	7,696
96	Yeast DNA Polymerase ϵ Catalytic Core and Holoenzyme Have Comparable Catalytic Rates. Journal of Biological Chemistry, 2015, 290, 3825-3835.	1.6	17
97	Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair, 2015, 31, 41-51.	1.3	51
98	Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5667-5672.	3.3	60
99	Polymerase Îμ (POLE) ultra-mutated tumors induce robust tumor-specific CD4+ T cell responses in endometrial cancer patients. Gynecologic Oncology, 2015, 138, 11-17.	0.6	68
100	Genome-Based Multi-targeting of Cancer: Hype or Hope?. , 2015, , 19-56.		4
101	Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nature Communications, 2015, 6, 6605.	5.8	312
102	Topoisomerase I Alone Is Sufficient to Produce Short DNA Deletions and Can Also Reverse Nicks at Ribonucleotide Sites. Journal of Biological Chemistry, 2015, 290, 14068-14076.	1.6	52
103	International society for gastrointestinal hereditary tumours—InSiGHT. Familial Cancer, 2015, 14, 1-91.	0.9	2
104	Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects. Nucleic Acids Research, 2015, 43, 4067-4074.	6.5	28
105	Cadmium treatment suppresses DNA polymerase δ catalytic subunit gene expression by acting on the p53 and Sp1 regulatory axis. DNA Repair, 2015, 35, 90-105.	1.3	23
106	Diagnostic Approach to Hereditary Colorectal Cancer Syndromes. Clinics in Colon and Rectal Surgery, 2015, 28, 205-214.	0.5	13
107	Colon and Rectal Cancer. , 2015, , 499-514.e2.		0
108	The mutational landscape of endometrial cancer. Current Opinion in Genetics and Development, 2015, 30, 25-31.	1.5	35
109	Improved survival of patients with hypermutation in uterine serous carcinoma. Gynecologic Oncology Reports, 2015, 12, 3-4.	0.3	14
110	Next-Generation Strategies for Hereditary Colorectal Cancer Risk Assessment. Journal of Clinical Oncology, 2015, 33, 388-393.	0.8	11
111	Clinical Actionability Enhanced through Deep Targeted Sequencing of Solid Tumors. Clinical Chemistry, 2015, 61, 544-553.	1.5	85
112	ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes. American Journal of Gastroenterology, 2015, 110, 223-262.	0.2	1,204

#	Article	IF	CITATIONS
113	Prognostic Significance of POLE Proofreading Mutations in Endometrial Cancer. Journal of the National Cancer Institute, 2015, 107, 402.	3.0	229
114	Genetic Diagnosis of High-Penetrance Susceptibility for Colorectal Cancer (CRC) Is Achievable for a High Proportion of Familial CRC by Exome Sequencing. Journal of Clinical Oncology, 2015, 33, 426-432.	0.8	80
115	Clinical management of hereditary colorectal cancer syndromes. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 88-97.	8.2	99
116	The genetics of inherited predispositions to colorectal polyps: a quick guide for clinicians. Colorectal Disease, 2015, 17, 3-9.	0.7	13
118	Big Bang and context-driven collapse. Nature Genetics, 2015, 47, 196-197.	9.4	20
119	DNA polymerase 3′→5′ exonuclease activity: Different roles of the beta hairpin structure in family-B DNA polymerases. DNA Repair, 2015, 29, 36-46.	1.3	14
121	Avalanching mutations in biallelic mismatch repair deficiency syndrome. Nature Genetics, 2015, 47, 194-196.	9.4	4
122	Detection of APC mosaicism by next-generation sequencing in an FAP patient. Journal of Human Genetics, 2015, 60, 227-231.	1.1	33
123	An update on the molecular pathology of the intestinal polyposis syndromes. Diagnostic Histopathology, 2015, 21, 147-151.	0.2	1
124	Construction of therapeutically relevant human prostate epithelial fate map by utilising miRNA and mRNA microarray expression data. British Journal of Cancer, 2015, 113, 611-615.	2.9	8
125	Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology, 2015, 149, 1177-1190.e3.	0.6	337
126	POLE mutations in families predisposed to cutaneous melanoma. Familial Cancer, 2015, 14, 621-628.	0.9	43
127	Genetics and Genetic Testing in Hereditary Colorectal Cancer. Gastroenterology, 2015, 149, 1191-1203.e2.	0.6	57
128	Surgery in the era of the 'omics revolution. British Journal of Surgery, 2015, 102, e29-e40.	0.1	9
129	Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Research, 2015, 25, 1125-1134.	2.4	155
130	Volatility of Mutator Phenotypes at Single Cell Resolution. PLoS Genetics, 2015, 11, e1005151.	1.5	15
131	The Arabidopsis DNA Polymerase δ Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering. PLoS Genetics, 2015, 11, e1004975.	1.5	36
132	Genetic architecture of colorectal cancer. Gut, 2015, 64, 1623-1636.	6.1	152

#	Article	IF	CITATIONS
133	A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Scientific Reports, 2015, 5, 10566.	1.6	83
134	The Mendelian colorectal cancer syndromes. Annals of Clinical Biochemistry, 2015, 52, 690-692.	0.8	16
135	Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair. Gastroenterology, 2015, 149, 563-566.	0.6	94
136	Exploring the Mechanisms of Gastrointestinal Cancer Development Using Deep Sequencing Analysis. Cancers, 2015, 7, 1037-1051.	1.7	7
137	Replicative DNA Polymerase δbut Not ε Proofreads Errors in Cis and in Trans. PLoS Genetics, 2015, 11, e1005049.	1.5	47
138	Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2467-76.	3.3	58
139	Screening in GI Cancers: The Role of Genetics. Journal of Clinical Oncology, 2015, 33, 1721-1728.	0.8	26
140	Candidate colorectal cancer predisposing gene variants in Chinese early-onset and familial cases. World Journal of Gastroenterology, 2015, 21, 4136.	1.4	10
141	New insights into the mechanism of DNA mismatch repair. Chromosoma, 2015, 124, 443-462.	1.0	103
142	Rare germline copy number deletions of likely functional importance are implicated in endometrial cancer predisposition. Human Genetics, 2015, 134, 269-278.	1.8	13
143	Candidate locus analysis of the TERT–CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk. Human Genetics, 2015, 134, 231-245.	1.8	34
144	High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations. Familial Cancer, 2015, 14, 247-257.	0.9	14
145	A novel POLE mutation associated with cancers of colon, pancreas, ovaries and small intestine. Familial Cancer, 2015, 14, 437-448.	0.9	67
146	A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nature Genetics, 2015, 47, 668-671.	9.4	311
147	An immunogenomic stratification of colorectal cancer: Implications for development of targeted immunotherapy. Oncolmmunology, 2015, 4, e976052.	2.1	92
148	Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nature Genetics, 2015, 47, 717-726.	9.4	310
149	dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants. Proceedings of the United States of America, 2015, 112, E2457-66.	3.3	47
150	Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science, 2015, 348, 124-128.	6.0	6,756

#	Article	IF	Citations
151	Dissecting genetic and environmental mutation signatures with model organisms. Trends in Genetics, 2015, 31, 465-474.	2.9	16
152	Genetic Modulation of Neurocognitive Function in Glioma Patients. Clinical Cancer Research, 2015, 21, 3340-3346.	3.2	29
153	MicroRNA control of protein expression noise. Science, 2015, 348, 128-132.	6.0	337
154	Somatic <i>POLE</i> mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro-Oncology, 2015, 17, 1356-1364.	0.6	94
155	Hereditary colorectal cancer syndromes and genetic testing. Journal of Surgical Oncology, 2015, 111, 103-111.	0.8	15
156	Colorectal Cancer in Young Individuals: Opportunities for Prevention. Journal of Clinical Oncology, 2015, 33, 3525-3527.	0.8	7
157	Identification of novel hereditary cancer genes by whole exome sequencing. Cancer Letters, 2015, 369, 274-288.	3.2	31
158	Genetics and immunology: reinvigorated. Oncolmmunology, 2015, 4, e1029705.	2.1	7
159	The Molecular Basis of Rectal Cancer. Clinics in Colon and Rectal Surgery, 2015, 28, 053-060.	0.5	2
160	Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12534-12539.	3.3	23
161	Eukaryotic Mismatch Repair in Relation to DNA Replication. Annual Review of Genetics, 2015, 49, 291-313.	3.2	342
162	Genetic Variants That Predispose to DNA Double-Strand Breaks in Lymphocytes From a Subset of Patients With Familial Colorectal Carcinomas. Gastroenterology, 2015, 149, 1872-1883.e9.	0.6	31
163	A patient with polymerase E1 deficiency (POLE1): clinical features and overlap with DNA breakage/instability syndromes. BMC Medical Genetics, 2015, 16, 31.	2.1	26
164	Deoxyribonucleotide metabolism, mutagenesis and cancer. Nature Reviews Cancer, 2015, 15, 528-539.	12.8	148
165	Using Genetics to Identify Hereditary Colorectal Polyposis and Cancer Syndromes in Your Patient. Current Gastroenterology Reports, 2015, 17, 463.	1.1	2
166	Inherited predisposition to colorectal cancer: towards a more complete picture. Journal of Medical Genetics, 2015, 52, 791-796.	1.5	17
168	Frequency and phenotypic spectrum of germline mutations in <scp><i>POLE</i></scp> and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. International Journal of Cancer, 2015, 137, 320-331.	2.3	121
169	The pathology of hereditary polyposis syndromes. Histopathology, 2015, 66, 78-87.	1.6	17

#	Article	IF	CITATIONS
170	<i><scp>BRCA2</scp></i> gene: a candidate for clinical testing in familial colorectal cancer type X. Clinical Genetics, 2015, 87, 582-587.	1.0	36
171	Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. European Journal of Human Genetics, 2015, 23, 1080-1084.	1.4	101
172	Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations. Journal of Medical Genetics, 2015, 52, 10-16.	1.5	23
173	A clinical and genetic analysis of multiple primary cancer referrals to genetics services. European Journal of Human Genetics, 2015, 23, 581-587.	1.4	21
174	The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discovery, 2015, 5, 43-51.	7.7	1,180
175	Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Modern Pathology, 2015, 28, 505-514.	2.9	180
176	Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genetics in Medicine, 2015, 17, 131-142.	1.1	82
177	<scp>L</scp> ynchâ€ike syndrome: Characterization and comparison with EPCAM deletion carriers. International Journal of Cancer, 2015, 136, 1568-1578.	2.3	40
178	Polymerase É› (<scp><i>POLE</i></scp>) mutations in endometrial cancer: Clinical outcomes and implications for <scp>L</scp> ynch syndrome testing. Cancer, 2015, 121, 386-394.	2.0	142
179	Clinical Utility Gene Card for: Familial adenomatous polyposis (FAP) and attenuated FAP (AFAP) - update 2014. European Journal of Human Genetics, 2015, 23, 889-889.	1.4	9
180	Common colorectal cancer risk alleles contribute to the multiple colorectal adenoma phenotype, but do not influence colonic polyposis in FAP. European Journal of Human Genetics, 2015, 23, 260-263.	1.4	17
181	Genomeâ€wide CNV analysis in 221 unrelated patients and targeted highâ€ŧhroughput sequencing reveal novel causative candidate genes for colorectal adenomatous polyposis. International Journal of Cancer, 2015, 136, E578-89.	2.3	52
182	Microsatellite Instability and its Significance to Hereditary and Sporadic Cancer. , 0, , .		6
183	Cancer, a Multigenic Disease Requires Nature Derived Multi-targeted Drugs. Advances in Cancer Prevention, 2016, 01, .	0.2	0
184	Important molecular genetic markers of colorectal cancer. Oncotarget, 2016, 7, 53959-53983.	0.8	91
185	The somatic <i>POLE</i> P286R mutation defines a unique subclass of colorectal cancer featuring hypermutation, representing a potential genomic biomarker for immunotherapy. Oncotarget, 2016, 7, 68638-68649.	0.8	59
186	Clinical and molecular features of young-onset colorectal cancer. World Journal of Gastroenterology, 2016, 22, 1736.	1.4	134
187	Molecular Diagnostics for Precision Medicine in Colorectal Cancer: Current Status and Future Perspective. BioMed Research International, 2016, 2016, 1-12.	0.9	19

#	Article	IF	CITATIONS
188	Clinical Characteristics of Multiple Colorectal Adenoma Patients Without Germline APC or MYH Mutations. Journal of Clinical Gastroenterology, 2016, 50, 584-588.	1.1	18
189	Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Disease, 2016, 18, 749-762.	0.7	4
190	A Review of Whole-Exome Sequencing Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery. Human Mutation, 2016, 37, 835-846.	1.1	43
191	Increased incidence of <i>FBXW7</i> and <i>POLE</i> proofreading domain mutations in young adult colorectal cancers. Cancer, 2016, 122, 2828-2835.	2.0	41
192	Genetic Testing for Polyposis Syndromes. Clinics in Colon and Rectal Surgery, 2016, 29, 345-352.	0.5	0
193	Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis. Scientific Reports, 2016, 6, 26011.	1.6	17
194	Correspondence: SEMA4A variation and risk of colorectal cancer. Nature Communications, 2016, 7, 10611.	5.8	7
195	Correspondence: Reply to â€~SEMA4A variation and risk of colorectal cancer'. Nature Communications, 2016, 7, 10695.	5.8	2
196	Molecular Basis of Colorectal Cancer and Overview of Inherited Colorectal Cancer Syndromes. , 2016, , 383-415.		0
197	The Next Generation Sequencing and Applications in Clinical Research. Translational Bioinformatics, 2016, , 83-113.	0.0	0
198	Dynamics of replication proteins during lagging strand synthesis: A crossroads for genomic instability and cancer. DNA Repair, 2016, 42, 72-81.	1.3	7
199	The second subunit of DNA-polymerase delta is required for genomic stability and epigenetic regulation. Plant Physiology, 2016, 171, pp.01976.2015.	2.3	15
200	Advances in Hereditary Colorectal and Pancreatic Cancers. Clinical Therapeutics, 2016, 38, 1600-1621.	1.1	18
201	How Research on Human Progeroid and Antigeroid Syndromes Can Contribute to the Longevity Dividend Initiative. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025882.	2.9	16
202	Processing ribonucleotides incorporated during eukaryotic DNA replication. Nature Reviews Molecular Cell Biology, 2016, 17, 350-363.	16.1	152
203	Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunology, Immunotherapy, 2016, 65, 1249-1259.	2.0	67
204	Five endometrial cancer risk loci identified through genome-wide association analysis. Nature Genetics, 2016, 48, 667-674.	9.4	77
205	Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy. Cancer Discovery, 2016, 6, 703-713.	7.7	92

# 206	ARTICLE The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. European Journal of Human Genetics, 2016, 24, 1501-1505.	IF 1.4	Citations
207	Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer. Advances in Experimental Medicine and Biology, 2016, 916, 411-437.	0.8	11
208	Genetic predisposition to melanoma. Seminars in Oncology, 2016, 43, 591-597.	0.8	39
209	The Eukaryotic Replication Machine. The Enzymes, 2016, 39, 191-229.	0.7	30
210	Immunogenomics of Hypermutated Clioblastoma: A Patient with Germline <i>POLE</i> Deficiency Treated with Checkpoint Blockade Immunotherapy. Cancer Discovery, 2016, 6, 1230-1236.	7.7	242
212	Colorectal Adenomatous Polyposis: Heterogeneity of Susceptibility Gene Mutations and Phenotypes in a Cohort of Italian Patients. Genetic Testing and Molecular Biomarkers, 2016, 20, 777-785.	0.3	5
213	Genetic predisposition to colorectal cancer: Implications for treatment and prevention. Seminars in Oncology, 2016, 43, 536-542.	0.8	14
214	<scp><i>GREM</i></scp> <i>1</i> and <scp>POLE</scp> variants in hereditary colorectal cancer syndromes. Genes Chromosomes and Cancer, 2016, 55, 95-106.	1.5	40
215	Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. American Journal of Human Genetics, 2016, 99, 337-351.	2.6	198
216	Heritable Gastrointestinal Cancer Syndromes. Gastroenterology Clinics of North America, 2016, 45, 509-527.	1.0	15
218	Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses. Scientific Reports, 2016, 6, 23743.	1.6	40
219	Pedigree based DNA sequencing pipeline for germline genomes of cancer families. Hereditary Cancer in Clinical Practice, 2016, 14, 16.	0.6	7
220	The future of clinical cancer genomics. Seminars in Oncology, 2016, 43, 615-622.	0.8	23
221	Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis. Scientific Reports, 2016, 6, 20697.	1.6	9
222	Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nature Communications, 2016, 7, 11883.	5.8	122
223	The Role of Hereditary and Environmental Factors in Gastrointestinal Cancers. , 2016, , 1-25.		0
224	Case report: mismatch repair proficiency and microsatellite stability in gastric cancer may not predict programmed death-1 blockade resistance. Journal of Hematology and Oncology, 2016, 9, 29.	6.9	21
225	Contribution of APC and MUTYH mutations to familial adenomatous polyposis susceptibility in Hungary. Familial Cancer, 2016, 15, 85-97.	0.9	25

#	Article	IF	CITATIONS
226	The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery. Cellular Oncology (Dordrecht), 2016, 39, 491-510.	2.1	34
227	Protein oxidation, UVA and human DNA repair. DNA Repair, 2016, 44, 178-185.	1.3	113
228	POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene, 2016, 590, 128-141.	1.0	98
229	Association of a let-7 miRNA binding region of <i>TGFBR1</i> with hereditary mismatch repair proficient colorectal cancer (MSS HNPCC). Carcinogenesis, 2016, 37, 751-758.	1.3	16
230	DNA Replication—A Matter of Fidelity. Molecular Cell, 2016, 62, 745-755.	4.5	115
231	When Genome Maintenance Goes Badly Awry. Molecular Cell, 2016, 62, 777-787.	4.5	64
232	Colon cancer in hereditary syndromes. Seminars in Colon and Rectal Surgery, 2016, 27, 219-226.	0.2	0
234	Genomic profile, smoking, and response to anti-PD-1 therapy in non-small cell lung carcinoma. Molecular and Cellular Oncology, 2016, 3, e1048929.	0.3	31
235	Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Familial Cancer, 2016, 15, 281-288.	0.9	40
236	Mutation spectrum of POLE and POLD1 mutations in South East Asian women presenting with grade 3 endometrioid endometrial carcinomas. Gynecologic Oncology, 2016, 141, 113-120.	0.6	34
237	A panoply of errors: polymerase proofreading domain mutations in cancer. Nature Reviews Cancer, 2016, 16, 71-81.	12.8	292
238	Endometrial Carcinomas with <i>POLE</i> Exonuclease Domain Mutations Have a Favorable Prognosis. Clinical Cancer Research, 2016, 22, 2865-2873.	3.2	139
239	Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. European Journal of Human Genetics, 2016, 24, 1089-1092.	1.4	110
240	Low-level <i>APC</i> mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases. Journal of Medical Genetics, 2016, 53, 172-179.	1.5	51
241	Prognostic Significance of POLE Exonuclease Domain Mutations in High-Grade Endometrioid Endometrial Cancer on Survival and Recurrence: A Subanalysis. International Journal of Gynecological Cancer, 2016, 26, 933-938.	1.2	38
242	Genetic testing for hereditary cancer predisposition: BRCA1/2, Lynch syndrome, and beyond. Gynecologic Oncology, 2016, 140, 565-574.	0.6	43
243	Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 283-312.	9.6	106
244	Early and multiple origins of metastatic lineages within primary tumors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2140-2145.	3.3	157

#	Article	IF	CITATIONS
245	Rapid detection of germline mutations for hereditary gastrointestinal polyposis/cancers using HaloPlex target enrichment and high-throughput sequencing technologies. Familial Cancer, 2016, 15, 553-562.	0.9	21
246	Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Research, 2016, 44, 1669-1680.	6.5	62
247	Colorectal adenomatous polyposis syndromes: Genetic determinism, clinical presentation and recommendations for care. Bulletin Du Cancer, 2016, 103, 199-209.	0.6	8
249	Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair, 2016, 38, 147-154.	1.3	26
250	A novel mutation in the POLE2 geneÂcausing combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2016, 137, 635-638.e1.	1.5	49
251	<i>POLE</i> proofreading mutation, immune response and prognosis in endometrial cancer. Oncolmmunology, 2016, 5, e1072675.	2.1	34
252	Adenoma development in familial adenomatous polyposis and <i><scp>MUTYH</scp></i> â€associated polyposis: somatic landscape and driver genes. Journal of Pathology, 2016, 238, 98-108.	2.1	39
253	Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage. Journal of Molecular Cell Biology, 2016, 8, 244-254.	1.5	63
254	POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genetics in Medicine, 2016, 18, 325-332.	1.1	209
255	Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Research Reviews, 2017, 33, 105-114.	5.0	196
256	Hereditary nonâ€polyposis colorectal cancer/Lynch syndrome in three dimensions. ANZ Journal of Surgery, 2017, 87, 1006-1010.	0.3	4
257	An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell, 2017, 168, 830-842.e7.	13.5	66
258	Childhood cancer predisposition syndromes—A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. American Journal of Medical Genetics, Part A, 2017, 173, 1017-1037.	0.7	200
259	Hypermutated Colorectal Cancer and Neoantigen Load. , 2017, , 187-215.		3
260	Use of multigeneâ€panel identifies pathogenic variants in several <scp>CRC</scp> â€predisposing genes in patients previously tested for Lynch Syndrome. Clinical Genetics, 2017, 92, 405-414.	1.0	41
262	Current and future role of genetic screening inÂgynecologic malignancies. American Journal of Obstetrics and Gynecology, 2017, 217, 512-521.	0.7	34
263	Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Medicine, 2017, 9, 34.	3.6	2,480
264	Variability in Chromatin Architecture and Associated DNA Repair at Genomic Positions Containing Somatic Mutations. Cancer Research, 2017, 77, 2822-2833.	0.4	13

	CITATIO	N REPORT	
#	Article	IF	CITATIONS
265	Intrinsic Molecular Processes: Impact on Mutagenesis. Trends in Cancer, 2017, 3, 357-371.	3.8	4
266	Alterations in cellular metabolism triggered by <i>URA7</i> or <i>GLN3</i> inactivation cause imbalanced dNTP pools and increased mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4442-E4451.	3.3	30
267	Genetic analysis of a morphologically heterogeneous ovarian endometrioid carcinoma. Histopathology, 2017, 71, 480-487.	1.6	2
268	Identifying Lynch Syndrome in Women Presenting With Endometrial Carcinoma Under the Age of 50 Years. International Journal of Gynecological Cancer, 2017, 27, 931-937.	1.2	15
269	Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders. , 2017, , .		2
270	Improving Mutation Screening in Patients with Colorectal Cancer Predisposition Using Next-Generation Sequencing. Journal of Molecular Diagnostics, 2017, 19, 589-601.	1.2	11
271	Gastrointestinal tract cancers: Genetics, heritability and germ line mutations. Oncology Letters, 2017, 13, 1499-1508.	0.8	16
272	DNA Polymerase ε Deficiency Leading to an Ultramutator Phenotype: A Novel Clinically Relevant Entity. Oncologist, 2017, 22, 497-502.	1.9	24
273	Endometrial cancer gene panels: clinical diagnostic vs research germline DNA testing. Modern Pathology, 2017, 30, 1048-1068.	2.9	37
274	Molecular Genetics of Endometrial Carcinoma. Advances in Experimental Medicine and Biology, 2017, , .	0.8	6
275	Epidemiology of Endometrial Carcinoma: Etiologic Importance of Hormonal and Metabolic Influences. Advances in Experimental Medicine and Biology, 2017, 943, 3-46.	0.8	64
276	Non-heme dioxygenases in tumor hypoxia: They're all bound with the same fate. DNA Repair, 2017, 49, 21-25.	1.3	8
277	Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy. DNA Repair, 2017, 56, 16-25.	1.3	84
278	Hereditary or sporadic polyposis syndromes. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 409-417.	1.0	15
279	A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer. EBioMedicine, 2017, 20, 39-49.	2.7	170
280	Clinical Management and Tumor Surveillance Recommendations of Inherited Mismatch Repair Deficiency in Childhood. Clinical Cancer Research, 2017, 23, e32-e37.	3.2	157
281	The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Research, 2017, 45, 7786-7795.	6.5	78
282	Response to PD-1 Blockade in Microsatellite Stable Metastatic Colorectal Cancer Harboring a <i>POLE</i> Mutation. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 142-147.	2.3	182

#	Article	IF	CITATIONS
284	Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert Review of Molecular Diagnostics, 2017, 17, 665-685.	1.5	22
285	Elucidating the molecular basis of MSH2â€deficient tumors by combined germline and somatic analysis. International Journal of Cancer, 2017, 141, 1365-1380.	2.3	26
286	Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair, 2017, 56, 7-15.	1.3	16
287	Polymerase proofreading domain mutations: New opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency. Critical Reviews in Oncology/Hematology, 2017, 113, 242-248.	2.0	68
288	Nucleotide selectivity defect and mutator phenotype conferred by a colon cancer-associated DNA polymerase δ mutation in human cells. Oncogene, 2017, 36, 4427-4433.	2.6	22
289	The genetic basis of colonic adenomatous polyposis syndromes. Hereditary Cancer in Clinical Practice, 2017, 15, 5.	0.6	61
290	Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL). Metabolism: Clinical and Experimental, 2017, 71, 213-225.	1.5	43
291	Characterization of a novel <i>POLD1</i> missense founder mutation in a Spanish population. Journal of Gene Medicine, 2017, 19, e2951.	1.4	4
292	Pan-cancer analysis distinguishes transcriptional changes of aneuploidy from proliferation. Genome Research, 2017, 27, 501-511.	2.4	52
293	Polymerase ε (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro. Gynecologic Oncology, 2017, 144, 146-152.	0.6	55
294	Genomic pathobiology of gastric carcinoma. Pathology International, 2017, 67, 63-71.	0.6	10
296	<i><scp>POLE</scp></i> somatic mutations in advanced colorectal cancer. Cancer Medicine, 2017, 6, 2966-2971.	1.3	43
297	Hypermutated Circulating Tumor DNA: Correlation with Response to Checkpoint Inhibitor–Based Immunotherapy. Clinical Cancer Research, 2017, 23, 5729-5736.	3.2	172
298	Expanding the spectrum of germline variants in cancer. Human Genetics, 2017, 136, 1431-1444.	1.8	23
299	Genome-wide association studies of cancer: current insights and future perspectives. Nature Reviews Cancer, 2017, 17, 692-704.	12.8	285
300	Familial Colorectal Cancer Type X (FCCTX) and the correlation with various genes—A systematic review. Current Problems in Cancer, 2017, 41, 388-397.	1.0	19
301	Hypermutated tumours in the era of immunotherapy: The paradigm of personalised medicine. European Journal of Cancer, 2017, 84, 290-303.	1.3	112
302	SETD6 dominant negative mutation in familial colorectal cancer type X. Human Molecular Genetics, 2017, 26, 4481-4493.	1.4	23

#	Article	IF	CITATIONS
303	Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Molecular Genetics & Genomic Medicine, 2017, 5, 553-569.	0.6	32
304	Correlation between polymorphism of vitamin D receptor Taql and susceptibility to colorectal cancer. Medicine (United States), 2017, 96, e7242.	0.4	10
305	Genomic approaches to accelerate cancer interception. Lancet Oncology, The, 2017, 18, e494-e502.	5.1	43
306	Evidence for genetic association between chromosome 1q loci and predisposition to colorectal neoplasia. British Journal of Cancer, 2017, 117, 1215-1223.	2.9	10
307	Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort. Scientific Reports, 2017, 7, 2214.	1.6	14
308	Clinical analysis and prognosis of synchronous and metachronous multiple primary malignant tumors. Medicine (United States), 2017, 96, e6799.	0.4	81
309	NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 3.2017. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 1465-1475.	2.3	109
311	The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Critical Reviews in Oncology/Hematology, 2017, 116, 38-57.	2.0	99
312	Normally lethal amino acid substitutions suppress an ultramutator DNA Polymerase l´variant. Scientific Reports, 2017, 7, 46535.	1.6	5
313	Mutation Frequencies in Patients With Early-Onset Colorectal Cancer. JAMA Oncology, 2017, 3, 1585.	3.4	1
314	Current applications of molecular pathology in colorectal carcinoma. Applied Cancer Research, 2017, 37, .	1.0	8
315	Cancer predisposition syndromes: lessons for truly precision medicine. Journal of Pathology, 2017, 241, 226-235.	2.1	13
316	Attenuated polyposis of the large bowel: a morphologic and molecular approach. Familial Cancer, 2017, 16, 211-220.	0.9	6
317	Pathology and Molecular Pathology of Uterine and Ovarian Cancers. , 2017, , 247-278.		0
318	The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. Journal of Pathology, 2017, 241, 192-207.	2.1	11
319	A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency. Familial Cancer, 2017, 16, 67-71.	0.9	52
320	Recent Discoveries in the Genetics of Familial Colorectal CancerÂand Polyposis. Clinical Gastroenterology and Hepatology, 2017, 15, 809-819.	2.4	66
321	Expanding the genotype–phenotype spectrum in hereditary colorectal cancer by gene panel testing. Familial Cancer, 2017, 16, 195-203	0.9	55

#	Article	IF	CITATIONS
322	Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 404-412.	1.1	341
323	"New―Cancer Genes and Inherited Colorectal Cancer Risk: Caveat Emptor. Gastroenterology, 2017, 152, 12-13.	0.6	5
324	Next generation predictive biomarkers for immune checkpoint inhibition. Cancer and Metastasis Reviews, 2017, 36, 179-190.	2.7	84
325	Genetic Profiling of Cancers of the Digestive System: Biological Insights and Clinical Implications. Pathobiology, 2017, 84, 306-322.	1.9	8
326	A molecular inversion probe-based next-generation sequencing panel to detect germline mutations in Chinese early-onset colorectal cancer patients. Oncotarget, 2017, 8, 24533-24547.	0.8	12
327	Application of Next-Generation Sequencing in the Era of Precision Medicine. , 0, , .		7
328	Current and future biomarkers in colorectal cancer. Annals of Gastroenterology, 2017, 30, 613-621.	0.4	88
329	Immunotherapy for Colorectal Cancer. Cancers, 2017, 9, 50.	1.7	125
330	Risks at the DNA Replication Fork: Effects upon Carcinogenesis and Tumor Heterogeneity. Genes, 2017, 8, 46.	1.0	27
331	A Critical Balance: dNTPs and the Maintenance of Genome Stability. Genes, 2017, 8, 57.	1.0	117
332	Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences, 2017, 18, 308.	1.8	353
333	Risk of subsequent primary malignancies among patients with prior colorectal cancer: a population-based cohort study. OncoTargets and Therapy, 2017, Volume 10, 1535-1548.	1.0	13
334	Endometrial Cancer Genomics. , 2017, , 199-227.		0
335	Role of GALNT12 in the genetic predisposition to attenuated adenomatous polyposis syndrome. PLoS ONE, 2017, 12, e0187312.	1.1	10
336	Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort. Oncotarget, 2017, 8, 93450-93463.	0.8	23
337	Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro. Nucleic Acids Research, 2017, 45, 9427-9440.	6.5	4
338	<i>POLE</i> and <i>POLD1</i> screening in 155 patients with multiple polyps and early-onset colorectal cancer. Oncotarget, 2017, 8, 26732-26743.	0.8	40
339	Molecular Testing in Colorectal Cancer. , 2017, , 305-320.		3

#	Article	IF	CITATIONS
340	Applications of Next-Generation Sequencing in Cancer Research and Molecular Diagnosis. Journal of Clinical & Medical Genomics, 2017, 05, .	0.1	0
341	Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget, 2017, 8, 112103-112115.	0.8	69
342	Exceptional Chemotherapy Response in Metastatic Colorectal Cancer Associated With Hyper-Indel–Hypermutated Cancer Genome and Comutation of <i>POLD1</i> and <i>MLH1</i> . JCO Precision Oncology, 2017, 2017, 1-12.	1.5	3
343	Genotypic and phenotypic signatures to predict immune checkpoint blockade therapy response in patients with colorectal cancer. Translational Research, 2018, 196, 62-70.	2.2	9
344	Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. Ca-A Cancer Journal for Clinicians, 2018, 68, 217-231.	157.7	117
345	Early onset sporadic colorectal cancer: Worrisome trends and oncogenic features. Digestive and Liver Disease, 2018, 50, 521-532.	0.4	65
346	Genomics and emerging biomarkers for immunotherapy of colorectal cancer. Seminars in Cancer Biology, 2018, 52, 189-197.	4.3	112
347	Current Approaches to Pediatric Polyposis Syndromes. Clinics in Colon and Rectal Surgery, 2018, 31, 132-142.	0.5	6
348	Mutational signatures of DNA mismatch repair deficiency in <i>C. elegans</i> and human cancers. Genome Research, 2018, 28, 666-675.	2.4	112
349	Somatic <i>POLE</i> exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response. Journal of Pathology, 2018, 245, 283-296.	2.1	71
351	Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. Clinical Colorectal Cancer, 2018, 17, e293-e305.	1.0	55
352	Harnessing genomics to improve outcomes for women with cancer in India: key priorities for research. Lancet Oncology, The, 2018, 19, e102-e112.	5.1	14
353	An Update on Colorectal Cancer. Current Problems in Surgery, 2018, 55, 76-116.	0.6	20
354	Somatic APC mosaicism and oligogenic inheritance in genetically unsolved colorectal adenomatous polyposis patients. European Journal of Human Genetics, 2018, 26, 387-395.	1.4	26
355	Spectrum of APC and MUTYH germâ€line mutations in Russian patients with colorectal malignancies. Clinical Genetics, 2018, 93, 1015-1021.	1.0	16
356	Hereditary Cancers in Gynecology. Obstetrics and Gynecology Clinics of North America, 2018, 45, 155-173.	0.7	4
357	Functional Analysis of Cancer-Associated DNA Polymerase Îμ Variants in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1019-1029.	0.8	49
358	Polymerase epsilon mutations and concomitant β2-microglobulin mutations in cancer. Gene, 2018, 647, 31-38.	1.0	14

#	Article	IF	CITATIONS
359	Role of germline aberrations affecting <i>CTNNA1</i> , <i>MAP3K6</i> and <i>MYD88</i> in gastric cancer susceptibility. Journal of Medical Genetics, 2018, 55, 669-674.	1.5	37
360	Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nature Communications, 2018, 9, 1746.	5.8	142
361	Translational Research in Familial Colorectal Cancer Syndromes. Clinics in Colon and Rectal Surgery, 2018, 31, 161-167.	0.5	1
362	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	7.7	396
363	Clinical Trials and Progress in Metastatic Colon Cancer. Surgical Oncology Clinics of North America, 2018, 27, 349-365.	0.6	64
364	The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity. Carcinogenesis, 2018, 39, 708-718.	1.3	28
365	Sporadic endometrial adenocarcinoma with MMR deficiency due to biallelic MSH2 somatic mutations. Familial Cancer, 2018, 17, 281-285.	0.9	5
366	CNVs affecting cancer predisposing genes (CPGs) detected as incidental findings in routine germline diagnostic chromosomal microarray (CMA) testing. Journal of Medical Genetics, 2018, 55, 89-96.	1.5	7
367	Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology, 2018, 154, 181-194.e20.	0.6	32
368	The Role of the Surgical Pathologist in the Diagnosis of Gastrointestinal Polyposis Syndromes. Advances in Anatomic Pathology, 2018, 25, 1-13.	2.4	22
369	Wholeâ€exome sequencing of oral mucosal melanoma reveals mutational profile and therapeutic targets. Journal of Pathology, 2018, 244, 358-366.	2.1	52
370	Molecular insights into the classification of high-grade endometrial carcinoma. Pathology, 2018, 50, 151-161.	0.3	45
371	Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair, 2018, 61, 63-75.	1.3	4
372	<i>NTHL1</i> and <i>MUTYH</i> polyposis syndromes: two sides of the same coin?. Journal of Pathology, 2018, 244, 135-142.	2.1	63
373	Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Cancer With Microsatellite Instability? Part II—The Challenge of Programmed Death Ligand-1 Testing and Its Role in Microsatellite Instability-High Colorectal Cancer. Archives of Pathology and Laboratory Medicine, 2018, 142, 26-34.	1.2	30
374	Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1. Genetics in Medicine, 2018, 20, 890-895.	1.1	49
375	Immune profiling of microsatellite instability-high and polymerase Îμ (POLE)-mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy. Journal of Gastrointestinal Oncology, 2018, 9, 404-415.	0.6	49
376	UEG Week 2018 Oral Presentations. United European Gastroenterology Journal, 2018, 6, A1.	1.6	5

#	Article	IF	CITATIONS
377	Aggressive-Variant Microsatellite-Stable POLE Mutant Prostate Cancer With High Mutation Burden and Durable Response to Immune Checkpoint Inhibitor Therapy. JCO Precision Oncology, 2018, 2, 1-8.	1.5	9
378	DNA Polymerase Epsilon Deficiency Causes IMAGe Syndrome with Variable Immunodeficiency. American Journal of Human Genetics, 2018, 103, 1038-1044.	2.6	71
379	Characterization of MDPL Fibroblasts Carrying the Recurrent p.Ser605del Mutation in <i>POLD1</i> Gene. DNA and Cell Biology, 2018, 37, 1061-1067.	0.9	20
380	Therapy Implications of DNA Mismatch Repair Deficiency, Microsatellite Instability, and Tumor Mutation Burden. Advances in Molecular Pathology, 2018, 1, 193-208.	0.2	5
381	Molecular Lesions of Insulator CTCF and Its Paralogue CTCFL (BORIS) in Cancer: An Analysis from Published Genomic Studies. High-Throughput, 2018, 7, 30.	4.4	8
382	Inactivation of PRIM1 Function Sensitizes Cancer Cells to ATR and CHK1 Inhibitors. Neoplasia, 2018, 20, 1135-1143.	2.3	18
383	Rare loss of function variants in candidate genes and risk of colorectal cancer. Human Genetics, 2018, 137, 795-806.	1.8	10
384	Elevated expression of POLD1 is associated with poor prognosis in breast cancer. Oncology Letters, 2018, 16, 5591-5598.	0.8	20
385	Evolving Tissue and Circulating Biomarkers as Prognostic and Predictive Tools in Colorectal Cancer. Current Colorectal Cancer Reports, 2018, 14, 138-151.	1.0	0
386	Molecular Diagnostics in Clinical Oncology. Frontiers in Molecular Biosciences, 2018, 5, 76.	1.6	93
387	POLE gene hotspot mutations in advanced pancreatic cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2161-2166.	1.2	15
388	POLD1 and POLE Gene Mutations in Jewish Cohorts of Early-Onset Colorectal Cancer and of Multiple Colorectal Adenomas. Diseases of the Colon and Rectum, 2018, 61, 1073-1079.	0.7	17
389	Somatic mutation load and spectra: A record of DNA damage and repair in healthy human cells. Environmental and Molecular Mutagenesis, 2018, 59, 672-686.	0.9	19
390	SIRT1 promotes proliferation, migration, and invasion of breast cancer cell line MCF-7 by upregulating DNA polymerase delta1 (POLD1). Biochemical and Biophysical Research Communications, 2018, 502, 351-357.	1.0	46
391	Hereditary Nonpolyposis Colorectal Cancer and Cancer Syndromes: Recent Basic and Clinical Discoveries. Journal of Oncology, 2018, 2018, 1-11.	0.6	21
393	Optimization of the diagnosis of inherited colorectal cancer using NGS and capture of exonic and intronic sequences of panel genes. European Journal of Human Genetics, 2018, 26, 1597-1602.	1.4	12
394	Mechanisms of Gastrointestinal Malignancies. , 2018, , 1615-1642.		3
395	Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Computational Biology, 2018, 14, e1006290.	1.5	31

#	Article	IF	CITATIONS
396	Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. Journal of Neuro-Oncology, 2018, 140, 317-328.	1.4	107
397	Colorectal Cancers: An Update on Their Molecular Pathology. Cancers, 2018, 10, 26.	1.7	128
398	Precision Immuno-Oncology: Prospects of Individualized Immunotherapy for Pancreatic Cancer. Cancers, 2018, 10, 39.	1.7	44
399	Heterogeneous responses and resistant mechanisms to crizotinib in <i>ALK</i> â€positive advanced nonâ€small cell lung cancer. Thoracic Cancer, 2018, 9, 1093-1103.	0.8	18
400	Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences (Basel, Switzerland), 2018, 6, 31.	1.3	167
401	Probing the colorectal cancer proteome for biomarkers: Current status and perspectives. Journal of Proteomics, 2018, 187, 93-105.	1.2	46
402	Promising New Agents for Colorectal Cancer. Current Treatment Options in Oncology, 2018, 19, 29.	1.3	46
403	Genetic variants of prospectively demonstrated phenocopies in BRCA1/2 kindreds. Hereditary Cancer in Clinical Practice, 2018, 16, 4.	0.6	7
404	Genetic Testing in Hereditary Colorectal Cancer. , 2018, , 209-232.		0
405	The Molecular Basis of Lynch-like Syndrome. , 2018, , 21-41.		2
405 406	The Molecular Basis of Lynch-like Syndrome. , 2018, , 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis. , 2018, , 161-164.		2
405 406 407	The Molecular Basis of Lynch-like Syndrome. , 2018, , 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis. , 2018, , 161-164. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis. , 2018, , 113-134.		2 1 4
405 406 407 408	The Molecular Basis of Lynch-like Syndrome., 2018,, 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis., 2018,, 161-164. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis., 2018,, 113-134. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 2018, 7, 5.	1.3	2 1 4 3
405 406 407 408	The Molecular Basis of Lynch-like Syndrome., 2018, 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis., 2018, 161-164. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis., 2018, 113-134. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 2018, 7, 5. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nature Communications, 2018, 9, 3292.	1.3	2 1 4 3
405 406 407 408 409 410	The Molecular Basis of Lynch-like Syndrome. , 2018, , 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis. , 2018, , 161-164. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis. , 2018, , 113-134. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 2018, 7, 5. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nature Communications, 2018, 9, 3292. Elucidating the molecular pathogenesis of glioma: integrated germline and somatic profiling of a familial glioma case series. Neuro-Oncology, 2018, 20, 1625-1633.	1.3 5.8 0.6	2 1 4 3 153
405 406 407 408 409 410	The Molecular Basis of Lynch-like Syndrome. , 2018, , 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis. , 2018, , 161-164. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis. , 2018, , 113-134. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 2018, 7, 5. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nature Communications, 2018, 9, 3292. Elucidating the molecular pathogenesis of glioma: integrated germline and somatic profiling of a familial glioma case series. Neuro-Oncology, 2018, 20, 1625-1633. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Scientific Reports, 2018, 8, 11635.	1.3 5.8 0.6 1.6	2 1 4 3 153 12 30
 405 406 407 408 409 410 411 412 	The Molecular Basis of Lynch-like Syndrome. , 2018, , 21-41. Adenomatous Polyposis Syndromes: Unexplained Colorectal Adenomatous Polyposis. , 2018, , 161-164. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis. , 2018, , 113-134. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 2018, 7, 5. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nature Communications, 2018, 9, 3292. Elucidating the molecular pathogenesis of glioma: integrated germline and somatic profiling of a familial glioma case series. Neuro-Oncology, 2018, 20, 1625-1633. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Scientific Reports, 2018, 8, 11635. Tumor mutational burden analysis of 2,000 Japanese cancer genomes using whole exome and targeted gene panel Sequencing . Biomedical Research, 2018, 39, 159-167.	1.3 5.8 0.6 1.6	2 1 4 3 153 12 30 32

#	Article	IF	CITATIONS
414	Molecular profiling and sequential somatic mutation shift in hypermutator tumours harbouring POLE mutations. Scientific Reports, 2018, 8, 8700.	1.6	26
415	Prioritizing predictive biomarkers for gene essentiality in cancer cells with mRNA expression data and DNA copy number profile. Bioinformatics, 2018, 34, 3975-3982.	1.8	3
416	Current clinical topics of Lynch syndrome. International Journal of Clinical Oncology, 2019, 24, 1013-1019.	1.0	20
417	Essential Saccharomyces cerevisiae genome instability suppressing genes identify potential human tumor suppressors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17377-17382.	3.3	8
418	Evaluation of <i>POLE</i> and <i>POLD1</i> Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. JAMA Oncology, 2019, 5, 1504.	3.4	287
419	Contribution of New Adenomatous Polyposis Predisposition Genes in an Unexplained Attenuated Spanish Cohort by Multigene Panel Testing. Scientific Reports, 2019, 9, 9814.	1.6	9
420	Comprehensive mismatch repair gene panel identifies variants in patients with Lynchâ€like syndrome. Molecular Genetics & Genomic Medicine, 2019, 7, e850.	0.6	36
421	Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget, 2019, 10, 4018-4025.	0.8	118
422	Next-generation sequencing with comprehensive bioinformatics analysis facilitates somatic mosaic APC gene mutation detection in patients with familial adenomatous polyposis. BMC Medical Genomics, 2019, 12, 103.	0.7	20
423	Targeted next generation sequencing screening of Lynch syndrome in Tunisian population. Familial Cancer, 2019, 18, 343-348.	0.9	4
424	Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules, 2019, 9, 605.	1.8	27
425	Landscape of Germline Mutations in DNA Repair Genes for Breast Cancer in Latin America: Opportunities for PARP-Like Inhibitors and Immunotherapy. Genes, 2019, 10, 786.	1.0	13
426	DNA polymerases in the risk and prognosis of colorectal and pancreatic cancers. Mutagenesis, 2019, 34, 363-374.	1.0	3
427	Comprehensive analysis of POLE and POLD1 Gene Variations identifies cancer patients potentially benefit from immunotherapy in Chinese population. Scientific Reports, 2019, 9, 15767.	1.6	34
428	Hereditary Polyposis Syndromes. Current Treatment Options in Gastroenterology, 2019, 17, 650-665.	0.3	21
429	C. Riley Snorton. Black on Both Sides: A Racial History of Trans Identity American Historical Review, 2019, 124, 1464-1465.	0.0	0
430	Precision medicine for metastatic colorectal cancer: an evolving era. Expert Review of Gastroenterology and Hepatology, 2019, 13, 919-931.	1.4	34
431	The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Frontiers in Genetics, 2019, 10, 713.	1.1	7

#	Article	IF	CITATIONS
432	Current Perspectives in Cancer Immunotherapy. Cancers, 2019, 11, 1472.	1.7	149
433	Hereditary Colorectal Cancer Syndromes. Seminars in Oncology Nursing, 2019, 35, 58-78.	0.7	15
434	A recurrent cancer-associated substitution in DNA polymerase Îμ produces a hyperactive enzyme. Nature Communications, 2019, 10, 374.	5.8	59
435	Germline and Somatic Tumor Testing in Gynecologic Cancer Care. Obstetrics and Gynecology Clinics of North America, 2019, 46, 37-53.	0.7	8
436	Diagnostic yield and clinical utility of a comprehensive gene panel for hereditary tumor syndromes. Hereditary Cancer in Clinical Practice, 2019, 17, 5.	0.6	7
437	Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε. Nature Communications, 2019, 10, 373.	5.8	40
438	Defining the impact of mutation accumulation on replicative lifespan in yeast using cancer-associated mutator phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3062-3071.	3.3	17
439	Somatic mutational signatures in polyposis and colorectal cancer. Molecular Aspects of Medicine, 2019, 69, 62-72.	2.7	14
440	A germline mutation in Rab43 gene identified from a cancer family predisposes to a hereditary liver-colon cancer syndrome. BMC Cancer, 2019, 19, 613.	1.1	4
441	Clinicopathological and mutational analyses of colorectal cancer with mutations in the <i>POLE</i> gene. Cancer Medicine, 2019, 8, 4587-4597.	1.3	23
442	Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. Journal of Pathology, 2019, 249, 319-331.	2.1	36
443	Research progress and clinical application of predictive biomarker for immune checkpoint inhibitors. Expert Review of Molecular Diagnostics, 2019, 19, 517-529.	1.5	15
444	Development of an MSI-positive colon tumor with aberrant DNA methylation in a PPAP patient. Journal of Human Genetics, 2019, 64, 729-740.	1.1	7
445	Defective DNA Polymerase α-Primase Leads to X-Linked Intellectual Disability Associated with Severe Growth Retardation, Microcephaly, and Hypogonadism. American Journal of Human Genetics, 2019, 104, 957-967.	2.6	32
446	Mutational Processes in Hepatocellular Carcinoma: The Story of Aristolochic Acid. Seminars in Liver Disease, 2019, 39, 334-340.	1.8	24
447	Mutation analysis of POLE gene in patients with early-onset colorectal cancer revealed a rare silent variant within the endonuclease domain with potential effect on splicing. Clinical and Experimental Medicine, 2019, 19, 393-400.	1.9	9
448	Discovering novel mutation signatures by latent Dirichlet allocation with variational Bayes inference. Bioinformatics, 2019, 35, 4543-4552.	1.8	11
449	Update on genetic predisposition to colorectal cancer and polyposis. Molecular Aspects of Medicine, 2019, 69, 10-26.	2.7	113

#	Article	IF	CITATIONS
450	Immunotherapy in colorectal cancer: rationale, challenges and potential. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 361-375.	8.2	1,039
451	Insights into DNA polymerase δ's mechanism for accurate DNA replication. Journal of Molecular Modeling, 2019, 25, 80.	0.8	4
452	Low frequency of POLD1 and POLE exonuclease domain variants in patients with multiple colorectal polyps. Molecular Genetics & Genomic Medicine, 2019, 7, e00603.	0.6	8
453	Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Molecular Aspects of Medicine, 2019, 69, 27-40.	2.7	5
454	The role of inherited genetic variants in colorectal polyposis syndromes. Advances in Genetics, 2019, 103, 183-217.	0.8	10
455	Inherited Colorectal Cancer and the Genetics of Colorectal Cancer. , 2019, , 1959-1980.		2
456	Meeting report from the joint IARC–NCI international cancer seminar series: a focus on colorectal cancer. Annals of Oncology, 2019, 30, 510-519.	0.6	42
457	Advances in Identification of Susceptibility Gene Defects of Hereditary Colorectal Cancer. Journal of Cancer, 2019, 10, 643-653.	1.2	15
458	POLE proofreading defects: Contributions to mutagenesis and cancer. DNA Repair, 2019, 76, 50-59.	1.3	44
459	Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype. Cancer Cell, 2019, 35, 256-266.e5.	7.7	123
461	Germline <i>POLE</i> mutation in a child with hypermutated medulloblastoma and features of constitutional mismatch repair deficiency. Journal of Physical Education and Sports Management, 2019, 5, a004499.	0.5	19
462	POLE mutations improve the prognosis of endometrial cancer via regulating cellular metabolism through AMF/AMFR signal transduction. BMC Medical Genetics, 2019, 20, 202.	2.1	21
463	Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region. Cancer Cell International, 2019, 19, 334.	1.8	12
464	A germline MBD4 mutation was identified in a patient with colorectal oligopolyposis and early‑onset cancer: A case report. Oncology Reports, 2019, 42, 1133-1140.	1.2	9
465	Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. Journal of Pathology, 2019, 247, 574-588.	2.1	131
466	Recent Advances in the Treatment of Colorectal Cancer. , 2019, , .		2
467	Next-Generation Sequencing for Genetic Diagnosis of Hereditary Colorectal Cancer and Polyposis Syndrome. , 2019, , 115-125.		2
468	Spontaneous <i>de novo</i> germline mutations in humans and mice: rates, spectra, causes and consequences. Genes and Genetic Systems, 2019, 94, 13-22.	0.2	19

#	Article	IF	Citations
469	Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch nonâ€ <i>CDKN2A/CDK4</i> melanoma families. International Journal of Cancer, 2019, 144, 2453-2464.	2.3	33
470	The Largest Subunit of DNA Polymerase Delta Is Required for Normal Formation of Meiotic Type I Crossovers. Plant Physiology, 2019, 179, 446-459.	2.3	29
471	The Biological Basis of Aging. , 2019, , 415-444.		1
472	Novel <i>POLE</i> pathogenic germline variant in a family with multiple primary tumors results in distinct mutational signatures. Human Mutation, 2019, 40, 36-41.	1.1	21
473	Mutation Burden and I Index for Detection of Microsatellite Instability in Colorectal Cancer by Targeted Next-Generation Sequencing. Journal of Molecular Diagnostics, 2019, 21, 241-250.	1.2	37
474	Germline mutation p.N363K in POLE is associated with an increased risk of colorectal cancer and giant cell glioblastoma. Familial Cancer, 2019, 18, 173-178.	0.9	27
475	Molecular Genetics of Endometrial Carcinoma. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 339-367.	9.6	163
476	Earlyâ€onset colorectal cancer in young individuals. Molecular Oncology, 2019, 13, 109-131.	2.1	365
477	Edible Delivery Systems Based on Favorable Interactions for Encapsulation ofÂPhytochemicals. , 2019, , 727-732.		1
478	Determining the clinical validity of hereditary colorectal cancer and polyposis susceptibility genes using the Clinical Genome Resource Clinical Validity Framework. Genetics in Medicine, 2019, 21, 1507-1516.	1.1	19
479	Genotype-Phenotype Associations of APC Mutations With Pouch Adenoma in Patients With Familial Adenomatous Polyposis. Journal of Clinical Gastroenterology, 2019, 53, e54-e60.	1.1	9
480	Declining detection rates for APC and biallelic MUTYH variants in polyposis patients, implications for DNA testing policy. European Journal of Human Genetics, 2020, 28, 222-230.	1.4	12
481	Novel candidates in early-onset familial colorectal cancer. Familial Cancer, 2020, 19, 1-10.	0.9	13
482	Combined immunodeficiency caused by a loss-of-function mutation in DNA polymerase delta 1. Journal of Allergy and Clinical Immunology, 2020, 145, 391-401.e8.	1.5	28
483	The missing heritability of familial colorectal cancer. Mutagenesis, 2020, 35, 221-231.	1.0	29
484	Immune Activation in Mismatch Repair–Deficient Carcinogenesis: More Than Just Mutational Rate. Clinical Cancer Research, 2020, 26, 11-17.	3.2	61
485	Genetic Factors. , 2020, , 180-208.e11.		4
486	A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genetics in Medicine, 2020, 22, 407-415.	1.1	136

#	Article	IF	CITATIONS
487	APC transcription studies and molecular diagnosis of familial adenomatous polyposis. European Journal of Human Genetics, 2020, 28, 118-121.	1.4	5
488	Wholeâ€exome sequencing of ovarian cancer families uncovers putative predisposition genes. International Journal of Cancer, 2020, 146, 2147-2155.	2.3	12
489	Opportunities for new studies of nuclear DNA replication enzymology in budding yeast. Current Genetics, 2020, 66, 299-302.	0.8	4
490	Using linkage studies combined with wholeâ€exome sequencing to identify novel candidate genes for familial colorectal cancer. International Journal of Cancer, 2020, 146, 1568-1577.	2.3	8
491	Morphological, immunophenotypical and molecular features of hypermutation in colorectal carcinomas with mutations in DNA polymerase ε (<scp><i>POLE</i></scp>). Histopathology, 2020, 76, 366-374.	1.6	15
492	Therapeutic Targeting of the Colorectal Tumor Stroma. Gastroenterology, 2020, 158, 303-321.	0.6	51
493	Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Experimental and Molecular Pathology, 2020, 113, 104364.	0.9	15
494	High mutational burden in colorectal carcinomas with monoallelic POLE mutations: absence of allelic loss and gene promoter methylation. Modern Pathology, 2020, 33, 1220-1231.	2.9	6
495	High Tumor Mutation Burden and Other Immunotherapy Response Predictors in Breast Cancers: Associations and Therapeutic Opportunities. Targeted Oncology, 2020, 15, 127-138.	1.7	23
496	The double-edged sword of cancer mutations: exploiting neoepitopes for the fight against cancer. Mutagenesis, 2020, 35, 69-78.	1.0	1
497	WNT and Î ² -Catenin in Cancer: Genes and Therapy. Annual Review of Cancer Biology, 2020, 4, 177-196.	2.3	39
498	Interpretation of somatic <i>POLE</i> mutations in endometrial carcinoma. Journal of Pathology, 2020, 250, 323-335.	2.1	203
499	Reply to: "Development of an MSI-positive colon tumor with aberrant DNA methylation in a PPAP patient― Journal of Human Genetics, 2020, 65, 513-514.	1.1	4
500	MSH6 immunohistochemical heterogeneity in colorectal cancer: comparative sequencing from different tumor areas. Human Pathology, 2020, 96, 104-111.	1.1	17
501	Inactivating Mutations in Exonuclease and Polymerase Domains in DNA Polymerase Delta Alter Sensitivities to Inhibitors of dNTP Synthesis. DNA and Cell Biology, 2020, 39, 50-56.	0.9	6
502	Use of Family History and Genetic Testing to Determine Risk of Colorectal Cancer. Gastroenterology, 2020, 158, 389-403.	0.6	59
503	Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences. Cancer Medicine, 2020, 9, 476-486.	1.3	8
504	Presentation and Follow-up of Familial Adenomatous Polyposis: Differences Between APC and MUTYH Mutations. CirugÃa Española (English Edition), 2020, 98, 465-471.	0.1	1

#	Article	IF	CITATIONS
505	Presentación y seguimiento de poliposis adenomatosa familiar (PAF): diferencias entre las mutaciones APC y MUTYH. CirugÃa Española, 2020, 98, 465-471.	0.1	1
506	Comparison of Molecular, Clinicopathological, and Pedigree Differences Between Lynch-Like and Lynch Syndromes. Frontiers in Genetics, 2020, 11, 991.	1.1	5
507	National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. European Journal of Medical Genetics, 2020, 63, 104080.	0.7	11
508	Discordant DNA mismatch repair protein status between synchronous or metachronous gastrointestinal carcinomas: frequency, patterns, and molecular etiologies. Familial Cancer, 2020, 20, 201-213.	0.9	8
509	Medullary Pancreatic Carcinoma Due to Somatic POLE Mutation. Pancreas, 2020, 49, 999-1003.	0.5	20
510	Spontaneous Polyploids and Antimutators Compete During the Evolution of <i>Saccharomyces cerevisiae</i> Mutator Cells. Genetics, 2020, 215, 959-974.	1.2	10
511	Candidate Gene Discovery in Hereditary Colorectal Cancer and Polyposis Syndromes–Considerations for Future Studies. International Journal of Molecular Sciences, 2020, 21, 8757.	1.8	7
512	The identification of six risk genes for ovarian cancer platinum response based on global network algorithm and verification analysis. Journal of Cellular and Molecular Medicine, 2020, 24, 9839-9852.	1.6	6
513	Multiomics global landscape of stemness-related gene clusters in adipose-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 310.	2.4	8
514	Genomic alterations in Turcot syndrome: Insights from whole exome sequencing. Journal of the Neurological Sciences, 2020, 417, 117056.	0.3	1
515	Role of POLE and POLD1 in familial cancer. Genetics in Medicine, 2020, 22, 2089-2100.	1.1	76
516	Germline mutational profile of Chinese patients under 70 years old with colorectal cancer. Cancer Communications, 2020, 40, 620-632.	3.7	7
517	The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. International Journal of Molecular Sciences, 2020, 21, 6866.	1.8	20
518	Mutant POLQ and POLZ/REV3L DNA polymerases may contribute to the favorable survival of patients with tumors with POLE mutations outside the exonuclease domain. BMC Medical Genetics, 2020, 21, 167.	2.1	2
519	Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage Il colorectal cancer. , 2020, 8, e000881.		22
520	Genetic Susceptibility to Endometrial Cancer: Risk Factors and Clinical Management. Cancers, 2020, 12, 2407.	1.7	32
521	Cancers from Novel <i>Pole</i> -Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Research, 2020, 80, 5606-5618.	0.4	14
522	Germline-driven replication repair-deficient high-grade gliomas exhibit unique hypomethylation patterns. Acta Neuropathologica, 2020, 140, 765-776.	3.9	23

#	Article	IF	CITATIONS
523	<p>POLE Mutation Characteristics in a Chinese Cohort with Endometrial Carcinoma</p> . OncoTargets and Therapy, 2020, Volume 13, 7305-7316.	1.0	5
524	Impact of Helicobacter pylori Infection and Its Major Virulence Factor CagA on DNA Damage Repair. Microorganisms, 2020, 8, 2007.	1.6	9
525	Präsionsmedizin bei NSCLC im Zeitalter der Immuntherapie: Neue Biomarker zur Selektion der am besten geeigneten Therapie oder des am besten geeigneten Patienten. Karger Kompass Pneumologie, 2020, 8, 300-317.	0.0	1
526	The POLD1R689W variant increases the sensitivity of colorectal cancer cells to ATR and CHK1 inhibitors. Scientific Reports, 2020, 10, 18924.	1.6	6
527	Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with pseudomyxoma peritonei. BMC Cancer, 2020, 20, 369.	1.1	5
528	Molecular-Biology-Driven Treatment for Metastatic Colorectal Cancer. Cancers, 2020, 12, 1214.	1.7	26
529	Genetic, structural, and functional characterization of POLE polymerase proofreading variants allows cancer risk prediction. Genetics in Medicine, 2020, 22, 1533-1541.	1.1	17
530	Preliminary study on the function of the <i>POLD1</i> (<i>CDC2</i>) EXON2 c.56G>A mutation. Molecular Genetics & Genomic Medicine, 2020, 8, e1280.	0.6	2
531	Precision Medicine for NSCLC in the Era of Immunotherapy: New Biomarkers to Select the Most Suitable Treatment or the Most Suitable Patient. Cancers, 2020, 12, 1125.	1.7	43
532	POLE Mutation Spectra Are Shaped by the Mutant Allele Identity, Its Abundance, and Mismatch Repair Status. Molecular Cell, 2020, 78, 1166-1177.e6.	4.5	39
533	p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduction and Targeted Therapy, 2020, 5, 81.	7.1	14
534	A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1519-1534.	1.1	10
535	Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network. Oncogene, 2020, 39, 5031-5041.	2.6	9
536	A comprehensive custom panel evaluation for routine hereditary cancer testing: improving the yield of germline mutation detection. Journal of Translational Medicine, 2020, 18, 232.	1.8	13
537	Advances in Hereditary Colorectal Cancer: Opportunities and Challenges for Clinical Translation. Current Genetic Medicine Reports, 2020, 8, 47-60.	1.9	0
538	Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treatment Reviews, 2020, 88, 102030.	3.4	44
539	Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Translational Gastroenterology and Hepatology, 2020, 5, 48-48.	1.5	6
540	The first case report of polymerase proofreading-associated polyposis in POLD1 variant, c.1433G>A p.S478N, in Japan. Japanese Journal of Clinical Oncology, 2020, 50, 1080-1083.	0.6	4

#	Article	IF	CITATIONS
541	AGA Clinical Practice Update on Young Adult–Onset Colorectal Cancer Diagnosis and Management: Expert Review. Clinical Gastroenterology and Hepatology, 2020, 18, 2415-2424.	2.4	24
542	Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BioMed Research International, 2020, 2020, 1-19.	0.9	34
543	Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 179.	2.0	12
544	Collaborative Group of the Americas on Inherited Gastrointestinal Cancer Position statement on multigene panel testing for patients with colorectal cancer and/or polyposis. Familial Cancer, 2020, 19, 223-239.	0.9	39
545	Evaluation of POLE/POLD1 Variants as Potential Biomarkers for Immune Checkpoint Inhibitor Treatment Outcomes. JAMA Oncology, 2020, 6, 588.	3.4	1
546	Evaluation of <i> POLE/POLD1</i> Variants as Potential Biomarkers for Immune Checkpoint Inhibitor Treatment Outcomes. JAMA Oncology, 2020, 6, 589.	3.4	8
547	POLE and POLD1 germline exonuclease domain pathogenic variants, a rare event in colorectal cancer from the Middle East. Molecular Genetics & Genomic Medicine, 2020, 8, e1368.	0.6	9
548	Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer. PLoS Genetics, 2020, 16, e1008572.	1.5	27
549	Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis, 2020, 35, 261-271.	1.0	11
550	Tumors of theÂGastrointestinal System Including the Pancreas. , 2020, , 691-870.		0
551	Germline Features Associated with Immune Infiltration in Solid Tumors. Cell Reports, 2020, 30, 2900-2908.e4.	2.9	35
552	Next generation sequencing of cervical high grade dysplasia and invasive squamous cell carcinoma: A case study. Pathology Research and Practice, 2020, 216, 152863.	1.0	1
553	Colorectal Cancer in the Adolescent and Young Adult Population. JCO Oncology Practice, 2020, 16, 19-27.	1.4	29
554	<i>POLD1</i> variants leading to reduced polymerase activity can cause hearing loss without syndromic features. Human Mutation, 2020, 41, 913-920.	1.1	7
555	An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathologica, 2020, 139, 703-715.	3.9	33
556	Higher prevalence of homologous recombination deficiency in tumors from African Americans versus European Americans. Nature Cancer, 2020, 1, 112-121.	5.7	30
557	Expanding the Scope of Immunotherapy in Colorectal Cancer: Current Clinical Approaches and Future Directions. BioMed Research International, 2020, 2020, 1-24.	0.9	38
558	Prevalence of CNV-neutral structural genomic rearrangements in MLH1, MSH2, and PMS2 not detectable in routine NGS diagnostics. Familial Cancer, 2020, 19, 161-167.	0.9	11

#	Article	IF	CITATIONS
559	Regulation of the error-prone DNA polymerase $Pol^{\hat{P}}$ by oncogenic signaling and its contribution to drug resistance. Science Signaling, 2020, 13, .	1.6	26
560	Rationale and design of the POLEM trial: avelumab plus fluoropyrimidine-based chemotherapy as adjuvant treatment for stage III mismatch repair deficient or POLE exonuclease domain mutant colon cancer: a phase III randomised study. ESMO Open, 2020, 5, e000638.	2.0	47
561	Pedigree analysis of a POLD1 germline mutation in urothelial carcinoma shows a close association between different mutation burdens and overall survival. Cellular and Molecular Immunology, 2021, 18, 767-769.	4.8	2
562	<i>BRIP1</i> , a Gene Potentially Implicated in Familial Colorectal Cancer Type X. Cancer Prevention Research, 2021, 14, 185-194.	0.7	7
563	Ultraâ€nutated colorectal cancer patients with <i>POLE</i> driver mutations exhibit distinct clinical patterns. Cancer Medicine, 2021, 10, 135-142.	1.3	18
564	Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology, 2021, 160, 1164-1178.e6.	0.6	36
565	Role of Tumor Mutation Burden Analysis in Detecting Lynch Syndrome in Precision Medicine: Analysis of 2,501 Japanese Cancer Patients. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 166-174.	1.1	8
566	A truncated protein product of the germline variant of the <i>DUOX2</i> gene leads to adenomatous polyposis. Cancer Biology and Medicine, 2021, 18, 215-226.	1.4	3
567	Unraveling the genomic landscape of colorectal cancer through mutational signatures. Advances in Cancer Research, 2021, 151, 385-424.	1.9	14
568	How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers, 2021, 13, 406.	1.7	31
569	Rate volatility and asymmetric segregation diversify mutation burden in cells with mutator alleles. Communications Biology, 2021, 4, 21.	2.0	1
570	Immunotherapy in colorectal cancer: current achievements and future perspective. International Journal of Biological Sciences, 2021, 17, 3837-3849.	2.6	132
571	Advanced Techniques in Colonoscopy in Inherited Cancer Conditions. , 2021, , 1-13.		0
572	Prophylactic Resections for Genetic Predisposition of Colon and Rectum. , 2021, , 201-212.		0
573	Multi-omics analysis to identify susceptibility genes for colorectal cancer. Human Molecular Genetics, 2021, 30, 321-330.	1.4	13
574	Distinctive genomic characteristics in POLE/POLD1-mutant cancers can potentially predict beneficial clinical outcomes in patients who receive immune checkpoint inhibitor. Annals of Translational Medicine, 2021, 9, 129-129.	0.7	24
575	Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers, 2021, 13, 467.	1.7	42
576	Whole Exome Sequencing Identifies APCDD1 and HDAC5 Genes as Potentially Cancer Predisposing in Familial Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 1837.	1.8	6

#	Article	IF	CITATIONS
577	Universal germline testing among patients with colorectal cancer: clinical actionability and optimised panel. Journal of Medical Genetics, 2021, , jmedgenet-2020-107230.	1.5	11
578	Mutations in the RAS/MAPK Pathway Drive Replication Repair–Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. Cancer Discovery, 2021, 11, 1454-1467.	7.7	19
580	Germline and Somatic Whole-Exome Sequencing Identifies New Candidate Genes Involved in Familial Predisposition to Serrated Polyposis Syndrome. Cancers, 2021, 13, 929.	1.7	12
581	Management of Familial Adenomatous Polyposis. Current Treatment Options in Gastroenterology, 2021, 19, 198-210.	0.3	0
582	Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of Hematology and Oncology, 2021, 14, 24.	6.9	247
583	Identification of known and novel familial cancer genes in Swedish colorectal cancer families. International Journal of Cancer, 2021, 149, 627-634.	2.3	0
584	Use of sanger and next-generation sequencing to screen for mosaic and intronic APC variants in unexplained colorectal polyposis patients. Familial Cancer, 2022, 21, 79-83.	0.9	2
585	The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells, 2021, 10, 710.	1.8	41
586	The evolving paradigm of biomarker actionability: Histology-agnosticism as a spectrum, rather than a binary quality. Cancer Treatment Reviews, 2021, 94, 102169.	3.4	14
587	Complete Response to Pembrolizumab in Advanced Colon Cancer Harboring Somatic POLE F367S Mutation with Microsatellite Stability Status: A Case Study. OncoTargets and Therapy, 2021, Volume 14, 1791-1796.	1.0	7
588	Mutagenic mechanisms of cancer-associated DNA polymerase ϵ alleles. Nucleic Acids Research, 2021, 49, 3919-3931.	6.5	12
589	Incidence, clinicopathologic, and genetic characteristics of mismatch repair gene-mutated glioblastomas. Journal of Neuro-Oncology, 2021, 153, 43-53.	1.4	10
592	Definition and management of colorectal polyposis not associated with APC/MUTYH germline pathogenic variants: AIFEG consensus statement. Digestive and Liver Disease, 2021, 53, 409-417.	0.4	9
593	Small Bowel Epithelial Precursor Lesions: A Focus on Molecular Alterations. International Journal of Molecular Sciences, 2021, 22, 4388.	1.8	5
594	A Novel Low-Risk Germline Variant in the SH2 Domain of the SRC Gene Affects Multiple Pathways in Familial Colorectal Cancer. Journal of Personalized Medicine, 2021, 11, 262.	1.1	0
595	An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness. Viruses, 2021, 13, 985.	1.5	1
596	Underappreciated Roles of DNA Polymerase δin Replication Stress Survival. Trends in Genetics, 2021, 37, 476-487.	2.9	22
597	Clinical and epigenetic features of colorectal cancer patients with somatic POLE proofreading mutations. Clinical Epigenetics, 2021, 13, 117.	1.8	8

#	Article	IF	CITATIONS
598	The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management. Familial Cancer, 2022, 21, 197-209.	0.9	31
599	APC germline variant analysis in the adenomatous polyposis phenotype in Japanese patients. International Journal of Clinical Oncology, 2021, 26, 1661-1670.	1.0	7
601	Finding the Cause of Hereditary Disease in a Family with Adenomatous Polyposis: Why It Is Important to Accumulate Whole Exome Sequencing Data in the Russian Population. Russian Journal of Genetics, 2021, 57, 734-739.	0.2	0
602	Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2020 for the Clinical Practice of Hereditary Colorectal Cancer. International Journal of Clinical Oncology, 2021, 26, 1353-1419.	1.0	67
603	The histomorphological and molecular landscape of colorectal adenomas and serrated lesions. Pathologica, 2021, 113, 218-229.	1.3	8
604	Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genetics, 2021, 17, e1009526.	1.5	8
605	From <i>APC</i> to the genetics of hereditary and familial colon cancer syndromes. Human Molecular Genetics, 2021, 30, R206-R224.	1.4	15
606	Cancer Genomic Profiling in Colorectal Cancer: Current Challenges in Subtyping Colorectal Cancers Based on Somatic and Germline Variants. Journal of the Anus, Rectum and Colon, 2021, 5, 213-228.	0.4	2
607	The stabilized Pol31–Pol3 interface counteracts Pol32 ablation with differential effects on repair. Life Science Alliance, 2021, 4, e202101138.	1.3	1
608	Solving the enigma of POLD1 p.V295M as a potential cause of increased cancer risk. European Journal of Human Genetics, 2022, 30, 485-489.	1.4	2
609	Advances in colorectal cancer genomics and transcriptomics drive early detection and prevention. International Journal of Biochemistry and Cell Biology, 2021, 137, 106032.	1.2	5
610	POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene, 2021, 40, 5893-5901.	2.6	34
611	AXIN2-Associated Adenomatous Colorectal Polyposis. Journal of Coloproctology, 0, , .	0.1	0
612	A POLE Splice Site Deletion Detected in a Patient with Biclonal CLL and Prostate Cancer: A Case Report. International Journal of Molecular Sciences, 2021, 22, 9410.	1.8	2
613	Paired Somatic-Germline Testing of 15 Polyposis and Colorectal Cancer–Predisposing Genes Highlights the Role of APC Mosaicism in de Novo Familial Adenomatous Polyposis. Journal of Molecular Diagnostics, 2021, 23, 1452-1459.	1.2	10
614	Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nature Genetics, 2021, 53, 1434-1442.	9.4	85
615	POLE/POLD1 mutation in nonâ€exonuclease domain matters for predicting efficacy of immuneâ€checkpointâ€inhibitor therapy. Clinical and Translational Medicine, 2021, 11, e524.	1.7	6
616	Germline mutations in a DNA repair pathway are associated with familial colorectal cancer. JCI Insight, 2021, 6, .	2.3	6

#	Article	IF	CITATIONS
617	Transcriptome sequencing reveals Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability. Journal of Ethnopharmacology, 2022, 282, 114646.	2.0	6
618	Additive effects of variants of unknown significance in replication repair-associated DNA polymerase genes on mutational burden and prognosis across diverse cancers. , 2021, 9, e002336.		15
619	Child to adulthood clinical description of MDPL syndrome due to a novel variant in POLD1. European Journal of Medical Genetics, 2021, 64, 104333.	0.7	1
620	Gutting it Out: Developing Effective Immunotherapies for Patients With Colorectal Cancer. Journal of Immunotherapy, 2021, 44, 49-62.	1.2	7
621	Molecular Pathology of Endometrioid Adenocarcinoma. Molecular Pathology Library, 2017, , 65-86.	0.1	1
623	Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. Journal of Clinical Investigation, 2019, 129, 4194-4206.	3.9	41
624	Tumour Cell Heterogeneity. F1000Research, 2016, 5, 238.	0.8	91
625	Identification of Novel Candidate Genes for Early-Onset Colorectal Cancer Susceptibility. PLoS Genetics, 2016, 12, e1005880.	1.5	52
626	Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway. PLoS ONE, 2017, 12, e0170551.	1.1	50
627	Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population. PLoS ONE, 2018, 13, e0193547.	1.1	10
628	Detection of allelic variants of the <i>POLE</i> and <i>POLD1</i> genes in colorectal cancer patients. Balkan Journal of Medical Genetics, 2017, 20, 83-87.	0.5	1
629	POLE and POLD1 pathogenic variants in the proofreading domain in papillary thyroid cancer. Endocrine Connections, 2020, 9, 923-932.	0.8	7
630	First description of ultramutated endometrial cancer caused by germline loss-of-function and somatic exonuclease domain mutations in POLE gene. Genetics and Molecular Biology, 2020, 43, e20200100.	0.6	2
631	Aneuploidy related transcriptional changes in endometrial cancer link low expression of chromosome 15q genes to poor survival. Oncotarget, 2017, 8, 9696-9707.	0.8	4
632	Two novel colorectal cancer risk loci in the region on chromosome 9q22.32. Oncotarget, 2018, 9, 11170-11179.	0.8	4
633	Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels. Oncotarget, 2015, 6, 22179-22190.	0.8	44
634	NTHL1 defines novel cancer syndrome. Oncotarget, 2015, 6, 34069-34070.	0.8	21
635	Mutational profiling of colorectal cancers with microsatellite instability. Oncotarget, 2015, 6, 42334-42344.	0.8	69

#	Article	IF	CITATIONS
636	A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers. Oncotarget, 2016, 7, 7080-7095.	0.8	35
637	The chronological sequence of somatic mutations in early gastric carcinogenesis inferred from multiregion sequencing of gastric adenomas. Oncotarget, 2016, 7, 39758-39767.	0.8	20
638	Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-Tumor Phenotype Including a Predisposition to Colon and Breast Cancer. SSRN Electronic Journal, 0, , .	0.4	1
639	Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer. Current Drug Metabolism, 2020, 20, 977-987.	0.7	21
640	Familial Colorectal Cancer Type X. Current Genomics, 2017, 18, 341-359.	0.7	16
641	Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2016 for the Clinical Practice of Hereditary Colorectal Cancer (Translated Version). Journal of the Anus, Rectum and Colon, 2018, 2, S1-S51.	0.4	32
642	Human DNA polymerase delta requires an iron–sulfur cluster for high-fidelity DNA synthesis. Life Science Alliance, 2019, 2, e201900321.	1.3	25
643	Hereditary Syndromes With Signs of Premature Aging. Deutsches Ärzteblatt International, 2019, 116, 489-496.	0.6	12
644	Colorectal cancer genomic biomarkers in the clinical management of patients with metastatic colorectal carcinoma. , 2020, 1, 53-70.		5
645	New genes emerging for colorectal cancer predisposition. World Journal of Gastroenterology, 2014, 20, 1961.	1.4	34
646	Attenuated adenomatous polyposis of the large bowel: Present and future. World Journal of Gastroenterology, 2017, 23, 4135.	1.4	18
648	DNA damage tolerance: a double-edged sword guarding the genome. Translational Cancer Research, 2013, 2, 107-129.	0.4	153
649	Colorectal cancer: A review of the genome-wide association studies in the kingdom of Saudi Arabia. Saudi Journal of Gastroenterology, 2015, 21, 123.	0.5	7
650	A Phase II Study of Avelumab Monotherapy in Patients with Mismatch Repair-Deficient/Microsatellite Instability-High or <i>POLE</i> -Mutated Metastatic or Unresectable Colorectal Cancer. Cancer Research and Treatment, 2020, 52, 1135-1144.	1.3	43
651	Symptoms of colorectal cancer contributes to its localization and advancement. Progress in Health Sciences, 2019, 1, 76-82.	0.1	2
652	Mismatch repair deficiency endows tumors with a unique mutation signature and sensitivity to DNA double-strand breaks. ELife, 2014, 3, e02725.	2.8	71
653	Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair. ELife, 2018, 7, .	2.8	33
654	Hereditary Cancers and Genetics. UNIPA Springer Series, 2021, , 65-98.	0.1	0

#	Article	IF	CITATIONS
656	Danish guidelines for management of non-APC-associated hereditary polyposis syndromes. Hereditary Cancer in Clinical Practice, 2021, 19, 41.	0.6	10
657	Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene, 2021, 40, 6549-6565.	2.6	14
658	Filling the gap: A thorough investigation for the genetic diagnosis of unsolved polyposis patients with monoallelic <i>MUTYH</i> pathogenic variants. Molecular Genetics & Genomic Medicine, 2021, 9, e1831.	0.6	3
659	Hereditary Gastrointestinal Polyposis Syndromes: A Review Including Newly Identified Syndromes. , 2013, 03, .		0
662	DNA Repair Polymerases. Nucleic Acids and Molecular Biology, 2014, , 43-83.	0.2	0
663	Analysis of Cancer-Related Genes Using the Semiconductor Microchip-Based Next Generation Sequencer Yamaguchi Medical Journal, 2014, 63, 253-256.	0.1	0
666	Current and Evolving Technologies. , 2015, , 11-34.		0
669	Polymerase Proofreading Associated Polyposis, and Other New Syndromes of Hereditary Colorectal Cancer. , 2016, , 61-68.		0
672	Molecular stratification of sporadic and hereditary colorectal cancer – mini review. Rad Hrvatske Akademije Znanosti I Umjetnosti Medicinske Znanosti, 2017, 530, 73-80.	0.1	0
673	Diagnosing Hereditary Cancer Susceptibility Through Multigene Panel Testing. , 2017, , 123-153.		0
678	Personalized Cancer Immunotherapy: Today's Challenge and Tomorrow's Promise. Journal of Immunotherapy and Precision Oncology, 2018, 1, 56-67.	0.6	4
680	Clinical and genetic aspects of differential diagnostics of hereditary non-polyposis colorectal cancer. Uspehi Molekularnoj Onkologii, 2019, 6, 21-27.	0.1	0
682	Current status of the genetic susceptibility in attenuated adenomatous polyposis. World Journal of Gastrointestinal Oncology, 2019, 11, 1101-1114.	0.8	5
684	Immunotherapy in Pediatric Solid Tumors. Clinical Pediatric Hematology-Oncology, 2020, 27, 22-31.	0.0	1
686	Hereditary Endometrial Cancers. , 2020, , 77-95.		1
687	Genetic susceptibility to CRC. , 2022, , 513-518.		0
688	HereditÃæ Tumorerkrankungen – Diagnostik und Überwachungsstrategien. , 2020, , 149-171.		1
689	Advanced Techniques in Colonoscopy in Inherited Cancer Conditions. , 2022, , 471-483.		0

#	Article	IF	CITATIONS
690	Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Medicine, 2021, 13, 174.	3.6	2
691	Çanakkale İlimizdeki Jinekolojik Kanserlerde Yeni Nesil DNA Dizi Analizi ile Saptanan Mutasyon Profilleri. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 0, , .	0.2	0
692	Biomarker-directed Targeted Therapy in Colorectal Cancer. Journal of Digestive Cancer Reports, 2015, 3, 5-10.	0.0	5
693	Risk Assessment and Genetic Testing for Inherited Gastrointestinal Syndromes. Gastroenterology and Hepatology, 2019, 15, 462-470.	0.2	3
694	Malignant Melanoma: A Double Malignancy or Second Malignant Neoplasm in a Patient of Acute Lymphoblastic Leukemia Following Therapy with a Composite Karyotype. International Journal of Applied & Basic Medical Research, 2020, 10, 218-221.	0.2	0
695	Evaluation of Classic, Attenuated, and Oligopolyposis of the Colon. Gastrointestinal Endoscopy Clinics of North America, 2022, 32, 95-112.	0.6	1
696	Novel Genetic Causes of Gastrointestinal Polyposis Syndromes. The Application of Clinical Genetics, 2021, Volume 14, 455-466.	1.4	7
697	Sporadic and Inherited Colorectal Cancer: How Epidemiology and Molecular Biology Guide Screening and Treatment. , 2022, , 397-412.		0
698	Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomarker Research, 2021, 9, 85.	2.8	19
699	Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand?. Frontiers in Oncology, 2021, 11, 769305.	1.3	13
700	Genetic Cancer Susceptibility in Adolescents and Adults 25ÂYears or Younger With Colorectal Cancer. Gastroenterology, 2022, 162, 969-974.e6.	0.6	2
701	Variant profiling of colorectal adenomas from three patients of two families with MSH3-related adenomatous polyposis. PLoS ONE, 2021, 16, e0259185.	1.1	5
702	'How many is too many? Polyposis syndromes and what to do next'. Current Opinion in Gastroenterology, 2021, Publish Ahead of Print, 39-47.	1.0	0
703	The impact of DNA testing on management of patients with colorectal cancer. Annals of Gastroenterological Surgery, 2022, 6, 17-28.	1.2	3
704	Constitutional <i>POLE</i> variants causing a phenotype reminiscent of constitutional mismatch repair deficiency. Human Mutation, 2022, 43, 85-96.	1.1	8
705	A novel POLD1 pathogenic variant identified in two families with a cancer spectrum mimicking Lynch syndrome. European Journal of Medical Genetics, 2022, 65, 104409.	0.7	0
706	Biomarkers for Immunotherapy in Gastrointestinal Cancers. , 2021, , 273-296.		0
707	Diâ€genic inheritance of germline <i>POLE</i> and <i>PMS2</i> pathogenic variants causes a unique condition associated with pediatric cancer predisposition. Clinical Genetics, 2022, 101, 442-447.	1.0	5

#	Article	IF	CITATIONS
708	Nonmalignant Features Associated with Inherited Colorectal Cancer Syndromes-Clues for Diagnosis. Cancers, 2022, 14, 628.	1.7	2
709	OUP accepted manuscript. Oncologist, 2022, 27, 245-250.	1.9	1
710	Whole-Exome Sequencing Identifies a Novel Germline Variant in PTK7 Gene in Familial Colorectal Cancer. International Journal of Molecular Sciences, 2022, 23, 1295.	1.8	2
711	Worrisome Trends in Young-Onset Colorectal Cancer: Now Is the Time for Action. Indian Journal of Surgical Oncology, 2022, 13, 446-452.	0.3	3
712	OUP accepted manuscript. Oncologist, 2022, 27, 159-162.	1.9	4
713	PBK/TOPK Is a Favorable Prognostic Biomarker Correlated with Antitumor Immunity in Colon Cancers. Biomedicines, 2022, 10, 299.	1.4	3
714	Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ. Nucleic Acids Research, 2022, 50, 962-974.	6.5	7
715	Probing altered enzyme activity in the biochemical characterization of cancer. Bioscience Reports, 2022, 42, .	1.1	1
716	Clinical and Molecular Characterization of <i>POLE</i> Mutations as Predictive Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Cancers. JCO Precision Oncology, 2022, 6, e2100267.	1.5	28
717	Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treatment Reviews, 2022, 104, 102337.	3.4	6
718	Clinicopathological and molecular characterization of high-grade endometrial carcinoma with POLE mutation: a single center study. Journal of Gynecologic Oncology, 2022, 33, .	1.0	11
719	Landscape of Immunotherapy Options for Colorectal Cancer: Current Knowledge and Future Perspectives beyond Immune Checkpoint Blockade. Life, 2022, 12, 229.	1.1	15
720	Germline variant testing in serrated polyposis syndrome. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 861-869.	1.4	4
721	Mouse model and human patient data reveal critical roles for Pten and p53 in suppressing POLE mutant tumor development. NAR Cancer, 2022, 4, zcac004.	1.6	5
722	FamiliÃ ¤ er Darmkrebs, Lynch-Syndrom und gastrointestinale Polyposis-Syndrome. , 2022, , 297-312.		0
723	Lynch-like Syndrome: Potential Mechanisms and Management. Cancers, 2022, 14, 1115.	1.7	8
724	A Comprehensive Prognostic Analysis of POLD1 in Hepatocellular Carcinoma. BMC Cancer, 2022, 22, 197.	1.1	8
725	Mitochondrial dysfunction in mandibular hypoplasia, deafness and progeroid features with concomitant lipodystrophy (MDPL) patients. Aging, 2022, 14, 1651-1664.	1.4	3

#	Article	IF	CITATIONS
726	Mutational analysis of driver genes defines the colorectal adenoma: in situ carcinoma transition. Scientific Reports, 2022, 12, 2570.	1.6	5
727	Cadherin‑16 inhibits thyroid carcinoma cell proliferation and invasion. Oncology Letters, 2022, 23, 145.	0.8	3
728	Collision of germline POLE and PMS2 variants in a young patient treated with immune checkpoint inhibitors. Npj Precision Oncology, 2022, 6, 15.	2.3	11
729	<i>PLIN1</i> Haploinsufficiency Causes a Favorable Metabolic Profile. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2318-e2323.	1.8	7
730	Atezolizumab Treatment of Tumors with High Tumor Mutational Burden from MyPathway, a Multicenter, Open-Label, Phase IIa Multiple Basket Study. Cancer Discovery, 2022, 12, 654-669.	7.7	34
731	A genetic risk score of alleles related to MGUS interacts with socioeconomic position in a population-based cohort. Scientific Reports, 2022, 12, 4409.	1.6	0
732	Polymerase Epsilon-Associated Ultramutagenesis in Cancer. Cancers, 2022, 14, 1467.	1.7	9
733	Transcriptional multiomics reveals the mechanism of seed deterioration in Nicotiana tabacum L. and Oryza sativa L. Journal of Advanced Research, 2022, 42, 163-176.	4.4	5
734	Ribonucleotide Incorporation by Eukaryotic B-Family Replicases and Its Implications for Genome Stability. Annual Review of Biochemistry, 2022, 91, 133-155.	5.0	7
735	SEOM-GETTHI clinical guideline for the practical management of molecular platforms (2021). Clinical and Translational Oncology, 2022, 24, 693-702.	1.2	1
736	Solving the genetic aetiology of hereditary gastrointestinal tumour syndromes– a collaborative multicentre endeavour within the project Solve-RD. European Journal of Medical Genetics, 2022, 65, 104475.	0.7	2
737	Application of Multigene Panel Testing In Patients With High Risk for Hereditary Colorectal Cancer. Diseases of the Colon and Rectum, 2021, Publish Ahead of Print, .	0.7	1
738	Malignant melanoma: A double malignancy or second malignant neoplasm in a patient of acute lymphoblastic leukemia following therapy with a composite karyotype. International Journal of Applied & Basic Medical Research, 2020, 10, 218.	0.2	0
739	PD-1 Blockade in Solid Tumors with Defects in Polymerase Epsilon. Cancer Discovery, 2022, 12, 1435-1448.	7.7	28
744	Cancer Predisposition Genes in Adolescents and Young Adults (AYAs): a Review Paper from the Italian AYA Working Group. Current Oncology Reports, 2022, 24, 843-860.	1.8	6
745	Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. American Journal of Human Genetics, 2022, 109, 953-960.	2.6	23
748	Scrutinizing Deleterious Nonsynonymous SNPs and Their Effect on Human POLD1 Gene. Genetical Research, 2022, 2022, 1-12.	0.3	2
749	Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer. Molecular Genetics and Genomics, 2022, , 1.	1.0	1

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
750	Hereditary Colorectal Cancer. Hematology/Oncology Clinics of North America, 2022, 36, 429-447.	0.9	14
751	Identification of Germline Mutations in Genes Involved in Classic FAP in Patients from Northern Brazil. Cancer Diagnosis & Prognosis, 2022, 2, 405-410.	0.3	1
752	Whole Genome Sequencing of COPD Pedigrees Identifies a Functional Variant rs61758360T>C in Cbl-b Associated With COPD Risk. SSRN Electronic Journal, 0, , .	0.4	0
753	Whole Genome Sequencing of COPD Pedigrees Identifies a Functional Variant Rs61758360T>C in Cbl-b Associated with COPD Risk. SSRN Electronic Journal, 0, , .	0.4	0
755	High prevalence of unusual <i>KRAS</i> , <i>NRAS</i> , and <i>BRAF</i> mutations in <i>POLE</i> <scp><i>â€</i></scp> hypermutated colorectal cancers. Molecular Oncology, 2022, 16, 3055-3065.	2.1	0
756	Hypermutation as a potential predictive biomarker of immunotherapy efficacy in high-grade gliomas: a broken dream?. Immunotherapy, 0, , .	1.0	3
757	A large family with MSH3-related polyposis. Familial Cancer, 2023, 22, 49-54.	0.9	5
759	Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nature Communications, 2022, 13, .	5.8	30
760	Unusual suspects in hereditary melanoma: POT1, POLE, BAP1. Trends in Genetics, 2022, 38, 1204-1207.	2.9	4
761	Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels. Nucleic Acids Research, 2022, 50, 8023-8040.	6.5	4
762	POLE/POLD1 mutation and tumor immunotherapy. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	42
763	Extrinsic proofreading. DNA Repair, 2022, 117, 103369.	1.3	1
764	Phenotypic continuum between <scp><i>POLE</i></scp> â€related recessive disorders: A case report and literature review. American Journal of Medical Genetics, Part A, 2022, 188, 3121-3125.	0.7	0
766	Clinical implications of genetic testing in familial intermediate and late-onset colorectal cancer. Human Genetics, 0, , .	1.8	Ο
767	A score of DNA damage repair pathway with the predictive ability for chemotherapy and immunotherapy is strongly associated with immune signaling pathway in pan-cancer. Frontiers in Immunology, 0, 13, .	2.2	6
768	Nonâ€canonical binding of the <i>Chaetomium thermophilum</i> <scp>PolD4</scp> Nâ€terminal <scp>PIP</scp> motif to <scp>PCNA</scp> involves Qâ€pocket and compact 2â€fork plug interactions but no 3 ₁₀ helix. FEBS Journal, 2023, 290, 162-175.	2.2	1
769	Approach to Familial Predisposition to Colorectal Cancer. Gastroenterology Clinics of North America, 2022, 51, 593-607.	1.0	2
770	Cancérogenèse et variants faux sens pathogènes duÂdomaine exonucléasique des ADN polymérases lµ e Medecine/Sciences, 2022, 38, 763-765.	t Ĵ.o	0

#	Article	IF	CITATIONS
772	Immune-Checkpoint Inhibitors (ICIs) in Metastatic Colorectal Cancer (mCRC) Patients beyond Microsatellite Instability. Cancers, 2022, 14, 4974.	1.7	15
773	External quality assessment (EQA) for tumor mutational burden: results of an international IQN path feasibility pilot scheme. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2023, 482, 347-355.	1.4	3
775	DNA replication-associated inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2022, , .	1.5	1
776	Hereditary Colorectal Cancer Syndromes: Molecular Genetics and Precision Medicine. Biomedicines, 2022, 10, 3207.	1.4	3
778	Using canavanine resistance to measure mutation rates in Schizosaccharomyces pombe. PLoS ONE, 2023, 18, e0271016.	1.1	1
779	MULTIPLE NEUROENDOCRINE NEOPLASIA IN A PATIENT WITH TYPE I NEUROFIBROMATOSIS (NF1): REPORT OF A NEW MUTATION (NF1, EXONS 2-30 DELETION) AND LITERATURE REVIEW. Arquivos Brasileiros De Cirurgia Digestiva: ABCD = Brazilian Archives of Digestive Surgery, 0, 35, .	0.5	2
780	Whole-Genome Sequencing Reveals Mutational Signatures Related to Radiation-Induced Sarcomas and DNA-Damage-Repair Pathways. Modern Pathology, 2023, 36, 100004.	2.9	3
781	Transferrin Receptorâ€Mediated Iron Uptake Promotes Colon Tumorigenesis. Advanced Science, 2023, 10,	5.6	4
782	Unraveling the impact of a germline heterozygous POLD1 frameshift variant in serrated polyposis syndrome. Frontiers in Molecular Biosciences, 0, 10, .	1.6	2
783	The complementary roles of genome-wide approaches in identifying genes linked to an inherited risk of colorectal cancer. Hereditary Cancer in Clinical Practice, 2023, 21, .	0.6	2
784	Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers, 2023, 15, 863.	1.7	6
785	Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test?. International Journal of Molecular Sciences, 2023, 24, 2137.	1.8	12
786	Identification of specific susceptibility loci for the early-onset colorectal cancer. Genome Medicine, 2023, 15, .	3.6	0
787	From cue to meaning: The involvement of POLD1 gene in DNA replication, repair and aging. Mechanisms of Ageing and Development, 2023, 211, 111790.	2.2	2
789	POLD1 as a Prognostic Biomarker Correlated with Cell Proliferation and Immune Infiltration in Clear Cell Renal Cell Carcinoma. International Journal of Molecular Sciences, 2023, 24, 6849.	1.8	4
790	Differential protein response to different light quality conditions of industrial hemp cultivation based on DIA technology. Industrial Crops and Products, 2023, 197, 116650.	2.5	2
791	Gastrointestinal Polyposis Syndromes. , 2024, , 337-361.		0
792	Proteomic analysis predicts anti-angiogenic resistance in recurred glioblastoma. Journal of Translational Medicine, 2023, 21, .	1.8	2

#	Article	IF	CITATIONS
793	Validity of pathological diagnosis for early colorectal cancer in genetic background. Cancer Medicine, 2023, 12, 8490-8498.	1.3	2
794	A Role for the Interactions between Poll´ and PCNA Revealed by Analysis of pol3-01 Yeast Mutants. Genes, 2023, 14, 391.	1.0	0
795	A novel somatic mutation in POLE exonuclease domain associated with ultra-mutational signature and MMR deficiency in endometrial cancer: a case report. Diagnostic Pathology, 2023, 18, .	0.9	1
796	Maximal clique centrality and bottleneck genes as novel biomarkers in ovarian cancer. Biotechnology and Genetic Engineering Reviews, 0, , 1-24.	2.4	0
797	Characterization of POLE c.1373A > T p.(Tyr458Phe), causing high cancer risk. Molecular Genetics an Genomics, 0, , .	d _{1.0}	0
798	Genotype–Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Digestive Diseases and Sciences, 0, , .	1.1	2
799	Endometrial Carcinomas With Subclonal Loss of Mismatch Repair Proteins. American Journal of Surgical Pathology, 2023, 47, 589-598.	2.1	5
801	Personalized Systemic Therapies in Hereditary Cancer Syndromes. Genes, 2023, 14, 684.	1.0	4
802	The hereditary N363K POLE exonuclease mutant extends PPAP tumor spectrum to glioblastomas by causing DNA damage and aneuploidy in addition to increased mismatch mutagenicity. NAR Cancer, 2023, 5, .	1.6	1
803	Prospects of POLD1 in Human Cancers: A Review. Cancers, 2023, 15, 1905.	1.7	2
804	The Progress of Colorectal Polyposis Syndrome in Chinese Population. Clinics in Colon and Rectal Surgery, 0, , .	0.5	0
811	Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treatment and Research, 2023, , 15-47.	0.2	1
827	Case Report: Cancer spectrum and genetic characteristics of a de novo germline POLD1 p.L606M variant-induced polyposis syndrome. Frontiers in Oncology, 0, 13, .	1.3	0
828	Molecular testing in colorectal cancer. , 2024, , 339-358.		Ο