Microporous organic networks bearing metal-salen spe carbonates

Journal of Materials Chemistry A 1, 5517 DOI: 10.1039/c3ta10477j

Citation Report

#	Article	IF	CITATIONS
1	Microporous Organic Network Hollow Spheres: Useful Templates for Nanoparticulate Co ₃ O ₄ Hollow Oxidation Catalysts. Journal of the American Chemical Society, 2013, 135, 19115-19118.	6.6	188
2	A metallosalen-based microporous organic polymer as a heterogeneous carbon–carbon coupling catalyst. Journal of Materials Chemistry A, 2013, 1, 14108.	5.2	57
3	Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water. Chemical Communications, 2014, 50, 14885-14888.	2.2	19
4	Crystal Engineering of an nbo Topology Metal–Organic Framework for Chemical Fixation of CO ₂ under Ambient Conditions. Angewandte Chemie - International Edition, 2014, 53, 2615-2619.	7.2	505
5	Ureaâ€Based Porous Organic Frameworks: Effective Supports for Catalysis in Neat Water. Chemistry - A European Journal, 2014, 20, 3050-3060.	1.7	85
6	Metal–Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline Inner Porosity. Journal of the American Chemical Society, 2014, 136, 6786-6789.	6.6	200
8	A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO ₂ Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 2014, 136, 15861-15864.	6.6	470
9	Synthesis of carbon embedded MFe ₂ O ₄ (M = Ni, Zn and Co) nanoparticles as efficient hydrogenation catalysts. Dalton Transactions, 2014, 43, 12077.	1.6	14
10	Application of zeolite-encapsulated Cu(ii) [H4]salen derived from [H2]salen in oxidative delignification of pulp. RSC Advances, 2014, 4, 28029.	1.7	6
11	Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO ₂ –N ₂ . Journal of Materials Chemistry A, 2014, 2, 7795-7801.	5.2	72
12	Metallosalen-based microporous organic polymers: synthesis and carbon dioxide uptake. RSC Advances, 2014, 4, 37767-37772.	1.7	14
13	Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules, 2014, 47, 2875-2882.	2.2	108
14	Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. Carbon, 2014, 73, 351-360.	5.4	79
15	Facile Fabrication of Ultrafine Palladium Nanoparticles with Size- and Location-Control in Click-Based Porous Organic Polymers. ACS Nano, 2014, 8, 5352-5364.	7.3	147
17	Direct and Postâ€5ynthesis Incorporation of Chiral Metallosalen Catalysts into Metal–Organic Frameworks for Asymmetric Organic Transformations. Chemistry - A European Journal, 2015, 21, 12581-12585.	1.7	76
18	A Metallosalenâ€based Porous Organic Polymer for Olefin Epoxidation. ChemCatChem, 2015, 7, 2340-2345.	1.8	26
19	A novel metalloporphyrin-based conjugated microporous polymer for capture and conversion of CO ₂ . RSC Advances, 2015, 5, 31664-31669.	1.7	53
20	Template synthesis of hollow MoS ₂ –carbon nanocomposites using microporous organic polymers and their lithium storage properties. Nanoscale, 2015, 7, 11280-11285.	2.8	38

#	Article	IF	CITATIONS
21	Hollow Microporous Organic Networks Bearing Triphenylamines and Anthraquinones: Diffusion Pathway Effect in Visible Light-Driven Oxidative Coupling of Benzylamines. ACS Macro Letters, 2015, 4, 669-672.	2.3	68
22	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.4	4
23	Hollow and sulfonated microporous organic polymers: versatile platforms for non-covalent fixation of molecular photocatalysts. RSC Advances, 2015, 5, 47270-47274.	1.7	29
24	Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes. Green Chemistry and Sustainable Technology, 2015, , 365-394.	0.4	2
25	Tailorable Synthesis of Porous Organic Polymers Decorating Ultrafine Palladium Nanoparticles for Hydrogenation of Olefins. ACS Catalysis, 2015, 5, 948-955.	5.5	99
26	Topology-directed design and synthesis of carbazole-based conjugated microporous networks for gas storage. RSC Advances, 2015, 5, 70904-70909.	1.7	6
27	Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chemical Communications, 2015, 51, 11814-11817.	2.2	25
28	Nicotine-derived ammonium salts as highly efficient catalysts for chemical fixation of carbon dioxide into cyclic carbonates under solvent-free conditions. RSC Advances, 2015, 5, 61179-61183.	1.7	21
29	Engineering of Sn–porphyrin networks on the silica surface: sensing of nitrophenols in water. Chemical Communications, 2015, 51, 8781-8784.	2.2	30
30	Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production. Journal of the American Chemical Society, 2015, 137, 7728-7739.	6.6	123
31	Metalââ,¬â€œOrganic Framework-Based Catalysts: Chemical Fixation of CO2 with Epoxides Leading to Cyclic Organic Carbonates. Frontiers in Energy Research, 2015, 2, .	1.2	225
32	Polypyrrole Nanofibers Supported Cr(III)(salen)Cl Catalyst: A Novel Polymer Supported Catalyst for Alternating Copolymerization of Cyclohexene Oxide with Carbon dioxide. Catalysis Letters, 2015, 145, 1913-1921.	1.4	10
33	A novel supported salenCrIIICl catalyst for alternating copolymerization of cyclohexene oxide with carbon dioxide. Catalysis Communications, 2015, 59, 116-121.	1.6	17
34	Magnetically Separable Microporous Fe–Porphyrin Networks for Catalytic Carbene Insertion into N–H Bonds. ACS Catalysis, 2015, 5, 350-355.	5.5	67
35	An effective Ni/Zn catalyst system for the chemical fixation of carbon dioxide with epoxides. Journal of CO2 Utilization, 2015, 9, 16-22.	3.3	27
36	Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates. Nanoscale Research Letters, 2016, 11, 321.	3.1	18
37	Anionic Metal–Organic Framework for Selective Dye Removal and CO ₂ Fixation. European Journal of Inorganic Chemistry, 2016, 2016, 4373-4377.	1.0	66
38	Cr(salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature And Pressure. ACS Catalysis, 2016, 6, 5012-5025.	5.5	261

#	Article	IF	CITATIONS
39	CO ₂ conversion: the potential of porous-organic polymers (POPs) for catalytic CO ₂ –epoxide insertion. Journal of Materials Chemistry A, 2016, 4, 7453-7460.	5.2	107
40	A new catalyst for the solvent-free conversion of CO 2 and epoxides into cyclic carbonate under mild conditions. Journal of CO2 Utilization, 2016, 14, 122-125.	3.3	19
41	A Cr(salen)-based metal–organic framework as a versatile catalyst for efficient asymmetric transformations. Chemical Communications, 2016, 52, 13167-13170.	2.2	48
42	A hydroxyl-functionalized microporous organic polymer for capture and catalytic conversion of CO ₂ . RSC Advances, 2016, 6, 76957-76963.	1.7	17
43	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
44	A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chemical Communications, 2016, 52, 13288-13291.	2.2	100
45	lonic Polymer Microspheres Bearing a Co ^{III} –Salen Moiety as a Bifunctional Heterogeneous Catalyst for the Efficient Cycloaddition of CO ₂ and Epoxides. Chemistry - A European Journal, 2016, 22, 8368-8375.	1.7	49
46	Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon, 2016, 99, 79-89.	5.4	159
47	Partially Interpenetrated NbO Topology Metal–Organic Framework Exhibiting Selective Gas Adsorption. Crystal Growth and Design, 2017, 17, 2711-2717.	1.4	30
48	Review: recent advances in the chemistry of metal chelate monomers. Journal of Coordination Chemistry, 2017, 70, 1468-1527.	0.8	27
49	State-of-the-Art Multifunctional Heterogeneous POP Catalyst for Cooperative Transformation of CO ₂ to Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2017, 5, 4523-4528.	3.2	105
50	A novel metalporphyrin-based microporous organic polymer with high CO ₂ uptake and efficient chemical conversion of CO ₂ under ambient conditions. Journal of Materials Chemistry A, 2017, 5, 1509-1515.	5.2	186
51	A DFT Exploration of Efficient Catalysts Based on Metal‣alen Monomers for the Cycloaddition Reaction of CO ₂ to Propylene Oxide. ChemistrySelect, 2017, 2, 4533-4537.	0.7	15
52	Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst. Journal of CO2 Utilization, 2017, 20, 243-252.	3.3	60
53	Efficient and Reusable Metal Heterogeneous Catalysts for Conversion of CO2 Prepared from a Microwave Synthetized Porous Polyiminopyridine. ChemistrySelect, 2017, 2, 9516-9522.	0.7	6
54	Hollow and microporous catalysts bearing Cr(<scp>iii</scp>)–F porphyrins for room temperature CO ₂ fixation to cyclic carbonates. Journal of Materials Chemistry A, 2017, 5, 23612-23619.	5.2	49
55	Metal-salen-bridged ionic networks as efficient bifunctional solid catalysts for chemical fixation of CO2 into cyclic carbonates. Molecular Catalysis, 2017, 439, 193-199.	1.0	18
56	Assemblies Based on Schiff Base Chemistry. , 2017, , 279-304.		4

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
57	Zn 1,3,5-benzenetricarboxylate as an efficient catalyst for the synthesis of cyclic carbonates fromÂCO ₂ . RSC Advances, 2018, 8, 9192-9201.	1.7	15
58	Carbazole-decorated covalent triazine frameworks: Novel nonmetal catalysts for carbon dioxide fixation and oxygen reduction reaction. Journal of Catalysis, 2018, 362, 1-9.	3.1	96
59	Cellulosic Cr(salen) complex as an efficient and recyclable catalyst for copolymerization of SO2 with epoxide. Carbohydrate Polymers, 2018, 194, 170-176.	5.1	20
60	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal Ions on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	3.2	27
61	Unprecedented NH ₂ -MIL-101(Al)/ <i>n</i> -Bu ₄ NBr system as solvent-free heterogeneous catalyst for efficient synthesis of cyclic carbonates <i>via</i> CO ₂ cycloaddition. Dalton Transactions, 2018, 47, 418-428.	1.6	56
62	Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO ₂ to Epoxides under Ambient Conditions. ACS Catalysis, 2018, 8, 419-450.	5.5	548
63	How Does CO ₂ React with Styrene Oxide in Co-MOF-74 and Mg-MOF-74? Catalytic Mechanisms Proposed by QM/MM Calculations. Journal of Physical Chemistry C, 2018, 122, 503-514.	1.5	25
64	Phosphasalen vs. Salen Ligands: What Does the Phosphorus Change?. European Journal of Inorganic Chemistry, 2018, 2018, 1634-1644.	1.0	15
66	Catalytic performance of Co 1,3,5-benzenetricarboxylate in the conversion of CO2 to cyclic carbonates. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 633-645.	0.8	9
67	Discrete Triptyceneâ€Based Hexakis(metalsalphens): Extrinsic Soluble Porous Molecules of Isostructural Constitution. Chemistry - A European Journal, 2018, 24, 11433-11437.	1.7	16
68	Electroactive Co(<scp>iii</scp>) salen metal complexes and the electrophoretic deposition of their porous organic polymers onto glassy carbon. RSC Advances, 2018, 8, 24128-24142.	1.7	18
69	Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future. Renewable and Sustainable Energy Reviews, 2018, 92, 570-607.	8.2	89
70	A hollow microporous organic network as aÂfiber coating for solid-phase microextraction of short-chain chlorinated hydrocarbons. Mikrochimica Acta, 2018, 185, 416.	2.5	16
71	Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catalysis, 2018, 8, 9079-9102.	5.5	196
72	Zinc 2- <i>N</i> -methyl N-confused porphyrin: an efficient catalyst for the conversion of CO ₂ into cyclic carbonates. Catalysis Science and Technology, 2019, 9, 4255-4261.	2.1	24
73	Research on Low Energy Consumption Static Postures of Bionic Feet. Applied Sciences (Switzerland), 2019, 9, 4031.	1.3	2
74	sp ² C-Dominant O-Doped Hierarchical Porous Carbon for Supercapacitor Electrodes. ACS Applied Energy Materials, 2019, 2, 7009-7018.	2.5	5
75	Highly tunable periodic imidazole-based mesoporous polymers as cooperative catalysts for efficient carbon dioxide fixation. Catalysis Science and Technology, 2019, 9, 1030-1038.	2.1	23

CITATION REPORT

#	Article	IF	CITATIONS
76	CO ₂ -fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019, 21, 406-448.	4.6	574
77	Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization, 2019, 34, 115-148.	3.3	32
78	Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coordination Chemistry Reviews, 2019, 394, 104-134.	9.5	74
79	Hyper-Cross-Linked Porous Porphyrin Aluminum(III) Tetracarbonylcobaltate as a Highly Active Heterogeneous Bimetallic Catalyst for the Ring-Expansion Carbonylation of Epoxides. ACS Applied Materials & Interfaces, 2019, 11, 18609-18616.	4.0	28
80	Metal-ligand bifunctional based Mn-catalysts for CO2 hydrogenation reaction. Molecular Catalysis, 2019, 468, 109-116.	1.0	15
81	3D Enantiomorphic Mgâ€Based Metal–Organic Frameworks as Chemical Sensor of Nitrobenzene and Efficient Catalyst for CO ₂ Cycloaddition. Chemistry - an Asian Journal, 2019, 14, 1949-1957.	1.7	26
82	Core–Shell Magnetic Amino-Functionalized Microporous Organic Network Nanospheres for the Removal of Tetrabromobisphenol A from Aqueous Solution. ACS Applied Nano Materials, 2019, 2, 1232-1241.	2.4	37
83	Metal–organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coordination Chemistry Reviews, 2019, 378, 32-65.	9.5	329
84	Optical, electrochemical, thermal, biological and theoretical studies of some chloro and bromo based metal-salophen complexes. Journal of Molecular Structure, 2020, 1200, 127107.	1.8	18
85	Iron Coordination to Hollow Microporous Metalâ€Free Disalphen Networks: Heterogeneous Iron Catalysts for CO ₂ Fixation to Cyclic Carbonates. Chemistry - A European Journal, 2020, 26, 788-794.	1.7	14
86	Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO ₂ into epoxides for cyclic carbonate formation. Catalysis Reviews - Science and Engineering, 2022, 64, 356-443.	5.7	43
87	Recent advances in CO ₂ capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites. Journal of Materials Chemistry A, 2020, 8, 18408-18424.	5.2	91
88	Metal Salen- and Salphen-Containing Organic Polymers: Synthesis and Applications. Organic Materials, 2020, 02, 182-203.	1.0	10
89	Concomitant Covalent and Noncovalent Assembly: Self-Assembly of Sublimable Caffeine in the Formation of Microporous Organic Polymer for Morphology Evolution and Enhanced Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 13900-13907.	3.2	5
90	Direct Heterogenization of Salphen Coordination Complexes to Porous Organic Polymers: Catalysts for Ring-Expansion Carbonylation of Epoxides. Inorganic Chemistry, 2020, 59, 2881-2889.	1.9	27
91	Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO ₂ fixation to cyclic carbonates. Inorganic Chemistry Frontiers, 2021, 8, 2880-2888.	3.0	16
92	A new Co-based metal-organic coordination polymer as a catalyst in chemical fixation of CO2. Polyhedron, 2021, 195, 114982.	1.0	3
93	Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213891.	9.5	80

#	Article	IF	CITATIONS
94	Lanthanideâ€Based Complexes Containing a Chiral <i>trans</i> â€1,2â€Diaminocyclohexane (DACH) Backbone: Spectroscopic Properties and Potential Applications. ChemPhotoChem, 2022, 6, .	1.5	8
95	Atomically Dispersed Highâ€Density Al–N ₄ Sites in Porous Carbon for Efficient Photodriven CO ₂ Cycloaddition. Advanced Materials, 2021, 33, e2103186.	11.1	69
96	Fe3O4@SiO2 nanoparticle-supported Co(III)-Salen composites as recyclable heterogeneous catalyst for the fixation of CO2. Ceramics International, 2021, 47, 35320-35332.	2.3	11
97	The electrochemical reduction of a flexible Mn(ii) salen-based metal–organic framework. Dalton Transactions, 2021, 50, 12821-12825.	1.6	0
98	Organic Porous Polymer Materials: Design, Preparation, and Applications. Engineering Materials and Processes, 2017, , 71-150.	0.2	1
99	Salen-Based Metal Complexes and the Physical Properties of their Porous Organic Polymers. Australian Journal of Chemistry, 2019, 72, 916.	0.5	1
100	Fabrication of Flexible Coâ€salen Integrated Polymers for Hydration of Epoxides and Alkynes via Cooperative Activation. ChemNanoMat, 2022, 8, .	1.5	4
102	Synthesis of metalloporphyrin-based porous organic polymers and their functionalization for conversion of CO ₂ into cyclic carbonates: recent advances, opportunities and challenges. Journal of Materials Chemistry A, 2021, 9, 25731-25749.	5.2	38
103	Zinc(II)porphyrin-Based Porous Ionic Polymers (PIPs) as Multifunctional Heterogeneous Catalysts for the Conversion of CO ₂ to Cyclic Carbonates. Industrial & Engineering Chemistry Research, 2022, 61, 5093-5102.	1.8	16
104	Atmospheric-Pressure Conversion of CO ₂ to Cyclic Carbonates over Constrained Dinuclear Iron Catalysts. ACS Omega, 2022, 7, 24656-24661.	1.6	8
105	Synthesis, Structure, and Heterogeneous Catalysis of a Series of Structurally Diverse Coordination Polymers Based on 5-Nitroisophthalate. Crystal Growth and Design, 2022, 22, 5645-5657.	1.4	10
106	A new synthetic strategy of Aluminium(III)-porphyrin-based conjugated microporous polymers with efficient CO2 catalytic conversion at ambient conditions. Fuel, 2023, 331, 125828.	3.4	5
107	Novel porous organic polymers functionalized by metalloporphyrin and phosphonium salts for the efficient synergistic catalysis of CO ₂ conversion under mild conditions. New Journal of Chemistry, 2022, 46, 22151-22161.	1.4	6
108	Pillar[5]arene-Based Co(III)-Loaded Covalent Organic Polymer for Efficient CO ₂ Cycloaddition under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2023, 11, 502-513.	3.2	8