Few-Layer MoS₂ with High Broadband Pho for Use in Harsh Environments

ACS Nano 7, 3905-3911 DOI: 10.1021/nn305301b

Citation Report

#	Article	IF	CITATIONS
5	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	4.5	512
6	Hybrid ZnO NR/graphene structures as advanced optoelectronic devices with high transmittance. Nanoscale Research Letters, 2013, 8, 350.	3.1	9
7	Photoconductivity of solution-processed MoS2 films. Journal of Materials Chemistry C, 2013, 1, 6899.	2.7	99
8	Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano, 2013, 7, 5660-5665.	7.3	398
9	High-performance photocurrent generation from two-dimensional WS2 field-effect transistors. Applied Physics Letters, 2014, 104, .	1.5	88
10	Photoluminescence of MoS ₂ Prepared by Effective Grinding-Assisted Sonication Exfoliation. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	30
11	Bias-tunable dual-mode ultraviolet photodetectors for photoelectric tachometer. Applied Physics Letters, 2014, 104, .	1.5	29
12	High blue-near ultraviolet photodiode response of vertically stacked graphene-MoS2-metal heterostructures. Applied Physics Letters, 2014, 104, .	1.5	33
13	Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition. Journal of Applied Physics, 2014, 116, .	1.1	42
14	Ternary Culn ₇ Se ₁₁ : Towards Ultraâ€Thin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014, 26, 7666-7672.	11.1	43
15	25th Anniversary Article: Hybrid Nanostructures Based on Twoâ€Dimensional Nanomaterials. Advanced Materials, 2014, 26, 2185-2204.	11.1	579
16	High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale, 2014, 6, 2582-2587.	2.8	169
17	Few-Layer MoS ₂ : A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099.	7.3	1,181
18	Trilayered MoS\$_{f 2}\$ Metal –Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 30-35.	1.9	40
19	Enhancement of Photovoltaic Response in Multilayer MoS ₂ Induced by Plasma Doping. ACS Nano, 2014, 8, 5270-5281.	7.3	344
20	Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 1102-1120.	7.3	2,307
21	Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano, 2014, 8, 1263-1272.	7.3	534
22	Edge-states ferromagnetism of WS2 nanosheets. Applied Physics Letters, 2014, 104, .	1.5	42

#	Article	IF	CITATIONS
23	Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells. ACS Photonics, 2014, 1, 1264-1269.	3.2	35
24	See-Through <inline-formula><tex-math>\$hbox{Ga}_{2}hbox{O}_{3}\$</tex-math></inline-formula> Solar-Blind Photodetectors for Use in Harsh Environments. IEEE Journal of Selected Topics in Ouantum Electronics. 2014. 20. 112-117.	1.9	49
25	Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6, 10530-10535.	2.8	328
26	Role of Metal Contacts in High-Performance Phototransistors Based on WSe ₂ Monolayers. ACS Nano, 2014, 8, 8653-8661.	7.3	380
27	Inkjet Printing of MoS ₂ . Advanced Functional Materials, 2014, 24, 6524-6531.	7.8	210
28	Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609, 172-183.	1.2	141
29	Novel and Enhanced Optoelectronic Performances of Multilayer MoS ₂ –WS ₂ Heterostructure Transistors. Advanced Functional Materials, 2014, 24, 7025-7031.	7.8	388
30	Monolayer MoS ₂ Heterojunction Solar Cells. ACS Nano, 2014, 8, 8317-8322.	7.3	1,081
31	Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction. ACS Photonics, 2014, 1, 354-359.	3.2	61
32	Mechanisms of Photoconductivity in Atomically Thin MoS ₂ . Nano Letters, 2014, 14, 6165-6170.	4.5	563
33	Towards large area and continuous MoS ₂ atomic layers via vapor-phase growth: thermal vapor sulfurization. Nanotechnology, 2014, 25, 405702.	1.3	54
34	Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9, 780-793.	15.6	3,017
35	Transition Metal Embedded Two-Dimensional C ₃ N ₄ –Graphene Nanocomposite: A Multifunctional Material. Journal of Physical Chemistry C, 2014, 118, 15487-15494.	1.5	93
36	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	1.3	56
37	Synthesis and Systematic Trends in Structure and Electrical Properties of [(SnSe)1.15]m(VSe2)1, m = 1, 2, 3, and 4. Chemistry of Materials, 2014, 26, 2862-2872.	3.2	33
38	CVD-grown monolayered MoS ₂ as an effective photosensor operating at low-voltage. 2D Materials, 2014, 1, 011004.	2.0	195
39	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	7.3	112
40	Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Frontiers in Energy Research, 2014, 2, .	1.2	84

#	Article	IF	CITATIONS
41	Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Scientific Reports, 2015, 5, 16372.	1.6	174
42	Ternary SnS2–xSex Alloys Nanosheets and Nanosheet Assemblies with Tunable Chemical Compositions and Band Gaps for Photodetector Applications. Scientific Reports, 2015, 5, 17109.	1.6	54
43	Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure. Scientific Reports, 2015, 5, 16448.	1.6	88
44	Layer-transferred MoS2/GaN PN diodes. Applied Physics Letters, 2015, 107, .	1.5	69
45	Sizeâ€Dependent Optical Absorption of Layered MoS ₂ and DNA Oligonucleotides Induced Dispersion Behavior for Labelâ€Free Detection of Singleâ€Nucleotide Polymorphism. Advanced Functional Materials, 2015, 25, 3541-3550.	7.8	123
46	Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method. Vacuum, 2015, 119, 204-208.	1.6	30
47	An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions. Advanced Materials, 2015, 27, 2797-2803.	11.1	174
48	High Photoresponsivity and Short Photoresponse Times in Few-Layered WSe ₂ Transistors. ACS Applied Materials & Interfaces, 2015, 7, 12080-12088.	4.0	111
49	Infrared light gated MoS_2 field effect transistor. Optics Express, 2015, 23, 31908.	1.7	18
50	Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances. Applied Surface Science, 2015, 332, 340-345.	3.1	24
51	Flexible photodetector from ultraviolet to near infrared based on a SnS ₂ nanosheet microsphere film. Journal of Materials Chemistry C, 2015, 3, 1347-1353.	2.7	150
52	Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Scientific Reports, 2015, 5, 8130.	1.6	106
53	Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS ₂ for Fast Photodetection Application. Nano Letters, 2015, 15, 506-513.	4.5	430
54	How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7, 6944-6956.	2.8	320
55	Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Scientific Reports, 2014, 4, 6608.	1.6	351
56	Surface Plasmonâ€Enhanced Photodetection in Few Layer MoS ₂ Phototransistors with Au Nanostructure Arrays. Small, 2015, 11, 2392-2398.	5.2	359
57	Engineering Light Outcoupling in 2D Materials. Nano Letters, 2015, 15, 1356-1361.	4.5	138
58	Synthesis and Transport Properties of Large-Scale Alloy Co _{0.16} Mo _{0.84} S ₂ Bilayer Nanosheets. ACS Nano, 2015, 9, 1257-1262.	7.3	79

#	Article	IF	CITATIONS
59	Effect of focused ion beam deposition induced contamination on the transport properties of nano devices. Nanotechnology, 2015, 26, 055705.	1.3	13
60	Fabrication of Ultrathin Bi ₂ S ₃ Nanosheets for Highâ€Performance, Flexible, Visible–NIR Photodetectors. Small, 2015, 11, 2848-2855.	5.2	205
61	Electric-Field Tunable Band Offsets in Black Phosphorus and MoS ₂ van der Waals p-n Heterostructure. Journal of Physical Chemistry Letters, 2015, 6, 2483-2488.	2.1	193
62	Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS ₂ and MoS ₂ Monolayer and Few-Layer Films. ACS Nano, 2015, 9, 7142-7150.	7.3	322
63	Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS ₂ /Graphene Schottky Junction. ACS Applied Materials & Interfaces, 2015, 7, 15206-15213.	4.0	98
64	Flexible phototransistors based on graphene nanoribbon decorated with MoS2 nanoparticles. Sensors and Actuators A: Physical, 2015, 232, 285-291.	2.0	18
65	Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS ₂ Heterostructure Devices. Nano Letters, 2015, 15, 5017-5024.	4.5	150
66	Supercapacitors based on patronite–reduced graphene oxide hybrids: experimental and theoretical insights. Journal of Materials Chemistry A, 2015, 3, 18874-18881.	5.2	67
67	Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Scientific Reports, 2015, 5, 11830.	1.6	155
68	Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 2015, 1, 33-44.	2.8	597
69	Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015, 44, 3691-3718.	18.7	802
70	Layered ultrathin PbI ₂ single crystals for high sensitivity flexible photodetectors. Journal of Materials Chemistry C, 2015, 3, 4402-4406.	2.7	119
71	Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS ₂ and WS ₂ . Journal of Materials Chemistry C, 2015, 3, 5467-5473.	2.7	85
72	Novel Optical and Electrical Transport Properties in Atomically Thin WSe ₂ /MoS ₂ p–n Heterostructures. Advanced Electronic Materials, 2015, 1, 1400066.	2.6	67
73	Few-layer MoS_2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photonics Research, 2015, 3, A30.	3.4	185
74	Investigation of Band-Offsets at Monolayer–Multilayer MoS ₂ Junctions by Scanning Photocurrent Microscopy. Nano Letters, 2015, 15, 2278-2284.	4.5	141
75	Layer Number Dependence of MoS ₂ Photoconductivity Using Photocurrent Spectral Atomic Force Microscopic Imaging. ACS Nano, 2015, 9, 2843-2855.	7.3	84
76	MoS ₂ /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, Highâ€Detectivity, Selfâ€Driven Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2015, 25, 2910-2919.	7.8	554

#	Article	IF	CITATIONS
77	Comparative Study of Potential Applications of Graphene, MoS ₂ , and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015, 7, 7809-7832.	4.0	362
78	Observation of two polytypes of MoS2 ultrathin layers studied by second harmonic generation microscopy and photoluminescence. Applied Physics Letters, 2015, 106, .	1.5	39
79	Growth and optical characterization of MoS2 single crystals with different dopants. Optik, 2015, 126, 666-670.	1.4	7
80	Growth of large-area atomically thin MoS_2 film via ambient pressure chemical vapor deposition. Photonics Research, 2015, 3, 110.	3.4	17
81	Large-scale two-dimensional MoS_2 photodetectors by magnetron sputtering. Optics Express, 2015, 23, 13580.	1.7	93
82	Photovoltaic response in pristine WSe2 layers modulated by metal-induced surface-charge-transfer doping. Applied Physics Letters, 2015, 107, .	1.5	30
83	Highly Sensitive, Encapsulated MoS ₂ Photodetector with Gate Controllable Gain and Speed. Nano Letters, 2015, 15, 7307-7313.	4.5	515
84	Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Scientific Reports, 2015, 5, 12320.	1.6	79
85	Low frequency noise characteristics in multilayer WSe2 field effect transistor. Applied Physics Letters, 2015, 106, .	1.5	30
86	Pressure-Modulated Conductivity, Carrier Density, and Mobility of Multilayered Tungsten Disulfide. ACS Nano, 2015, 9, 9117-9123.	7.3	120
87	Functional Nanomaterial Devices. , 2015, , 155-193.		0
88	Enhancement of photodetection characteristics of MoS ₂ field effect transistors using surface treatment with copper phthalocyanine. Nanoscale, 2015, 7, 18780-18788.	2.8	101
89	Photocurrent Response in Multiwalled Carbon Nanotube Core–Molybdenum Disulfide Shell Heterostructures. Journal of Physical Chemistry C, 2015, 119, 24588-24596.	1.5	20
90	Black Phosphorus: Narrow Gap, Wide Applications. Journal of Physical Chemistry Letters, 2015, 6, 4280-4291.	2.1	631
91	Stable, highly-responsive and broadband photodetection based on large-area multilayered WS ₂ films grown by pulsed-laser deposition. Nanoscale, 2015, 7, 14974-14981.	2.8	274
92	Tunable electronic structures in the two-dimension SnX 2 (X = S and Se) nanosheets by stacking effects. Applied Surface Science, 2015, 356, 1200-1206.	3.1	17
93	3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions. Nano Letters, 2015, 15, 5919-5925.	4.5	33
94	New concept ultraviolet photodetectors. Materials Today, 2015, 18, 493-502.	8.3	661

#	Article	IF	CITATIONS
95	Hydrothermal Synthesis of Novel MoS ₂ /BiVO ₄ Hetero-Nanoflowers with Enhanced Photocatalytic Activity and a Mechanism Investigation. Journal of Physical Chemistry C, 2015, 119, 22681-22689.	1.5	189
96	Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today, 2015, 10, 559-592.	6.2	107
97	Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. Journal of Materials Chemistry C, 2015, 3, 10974-10980.	2.7	98
98	Organic Electronics Materials and Devices. , 2015, , .		35
99	Hybrid 2D–0D MoS ₂ –PbS Quantum Dot Photodetectors. Advanced Materials, 2015, 27, 176-180.	11.1	638
100	Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014, 4, 3826.	1.6	771
101	Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 2015, 207, 801-810.	4.0	385
102	Deep-ultraviolet-light-driven reversible doping of WS ₂ field-effect transistors. Nanoscale, 2015, 7, 747-757.	2.8	62
103	Harsh photovoltaics using InGaN/GaN multiple quantum well schemes. Nano Energy, 2015, 11, 104-109.	8.2	49
104	Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS ₂ to WTe ₂ . Nanoscale, 2015, 7, 198-208.	2.8	76
105	Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes. Scientific Reports, 2014, 4, 5209.	1.6	377
106	Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides. Applied Sciences (Switzerland), 2016, 6, 78.	1.3	96
107	Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. Journal of Semiconductors, 2016, 37, 051001.	2.0	75
108	2Dâ€Crystalâ€Based Functional Inks. Advanced Materials, 2016, 28, 6136-6166.	11.1	371
109	In Situ Fabrication of Vertical Multilayered MoS ₂ /Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. Small, 2016, 12, 1062-1071.	5.2	185
110	Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3â€Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment. Advanced Materials, 2016, 28, 6711-6718.	11.1	72
111	Atomically Thin MoS ₂ : A Versatile Nongraphene 2D Material. Advanced Functional Materials, 2016, 26, 2046-2069.	7.8	220
112	Largeâ€Area Bilayer ReS ₂ Film/Multilayer ReS ₂ Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors. Advanced Functional Materials, 2016, 26, 4551-4560	7.8	199

#	Article	IF	CITATIONS
113	Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides. Journal of Applied Physics, 2016, 120, .	1.1	34
114	Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics, 2016, 1, .	3.0	43
115	Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals. Applied Physics Letters, 2016, 109, .	1.5	15
116	Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10, 216-226.	15.6	2,779
117	Photo-Electrical Properties of Trilayer MoSe ₂ Nanoflakes. Nano, 2016, 11, 1650082.	0.5	19
118	Van der Waals stacked 2D layered materials for optoelectronics. 2D Materials, 2016, 3, 022001.	2.0	213
119	Sensitivity Enhancement of MoS2 Nanosheet based Surface Plasmon Resonance Biosensor. Procedia Engineering, 2016, 140, 134-139.	1.2	63
120	Multilayer ReS ₂ lateral p–n homojunction for photoemission and photodetection. Applied Physics Express, 2016, 9, 055201.	1.1	19
121	Trap-induced photoresponse of solution-synthesized MoS ₂ . Nanoscale, 2016, 8, 9193-9200.	2.8	52
122	Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and <i>p</i> – <i>n</i> Heterojunctions. ACS Nano, 2016, 10, 4895-4919.	7.3	308
123	Electrochemical Intercalation of Lithium Ions into NbSe ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 11390-11395.	4.0	56
124	Fiber optic humidity sensing with few layers molybdenum disulfide. Proceedings of SPIE, 2016, , .	0.8	2
125	Photodetectors based on two dimensional materials. Journal of Semiconductors, 2016, 37, 091001.	2.0	29
126	Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO ₂ nanowell/p-NiO mesoporous nanosheet heterojunctions. Journal of Materials Chemistry C, 2016, 4, 10032-10039.	2.7	168
127	Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2016, 120, 24080-24087.	1.5	20
128	n-MoS ₂ /p-Si Solar Cells with Al ₂ O ₃ Passivation for Enhanced Photogeneration. ACS Applied Materials & amp; Interfaces, 2016, 8, 29383-29390.	4.0	77
129	Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS ₂ /MoS ₂ Vertical Bilayer Heterostructures with High Lattice Mismatch. Advanced Electronic Materials, 2016, 2, 1600298.	2.6	155
130	Current-Temperature Scaling for a Schottky Interface with Nonparabolic Energy Dispersion. Physical Review Applied, 2016, 6, .	1.5	47

#	Article	IF	CITATIONS
131	Ultrafast, Broadband Photodetector Based on MoSe ₂ /Silicon Heterojunction with Vertically Standing Layered Structure Using Graphene as Transparent Electrode. Advanced Science, 2016, 3, 1600018.	5.6	210
132	Review of photo response in semiconductor transition metal dichalcogenides based photosensitive devices. Optical Materials Express, 2016, 6, 2313.	1.6	44
133	Fast Highâ€Responsivity Few‣ayer MoTe ₂ Photodetectors. Advanced Optical Materials, 2016, 4, 1750-1754.	3.6	109
134	High-Performance MoS ₂ /CuO Nanosheet-on-One-Dimensional Heterojunction Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 33955-33962.	4.0	64
135	Theoretical Study of Transition Metal Dichalcogenides. , 2016, , 157-178.		1
136	Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS ₂ With Graphene Electrodes. ACS Nano, 2016, 10, 7866-7873.	7.3	264
137	Photoinduced Schottky Barrier Lowering in 2D Monolayer WS ₂ Photodetectors. Advanced Optical Materials, 2016, 4, 1573-1581.	3.6	62
138	High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe ₂ field effect transistors without doping. Semiconductor Science and Technology, 2016, 31, 105001.	1.0	10
139	Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer. Scientific Reports, 2016, 6, 27676.	1.6	39
140	MoS2 memristor with photoresistive switching. Scientific Reports, 2016, 6, 31224.	1.6	66
141	Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor. Scientific Reports, 2016, 6, 28190.	1.6	299
142	Sequential Solvent Exchange Method for Controlled Exfoliation of MoS ₂ Suitable for Phototransistor Fabrication. ACS Applied Materials & Interfaces, 2016, 8, 31179-31191.	4.0	51
143	High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Scientific Reports, 2016, 6, 20343.	1.6	230
144	Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31460-31468.	4.0	24
145	The WS ₂ quantum dot: preparation, characterization and its optical limiting effect in polymethylmethacrylate. Nanotechnology, 2016, 27, 414005.	1.3	36
146	Modulating Electronic Properties of Monolayer MoS ₂ <i>via</i> Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano, 2016, 10, 10446-10453.	7.3	41
147	Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials. ACS Photonics, 2016, 3, 2197-2210.	3.2	217
148	Elimination of the gate and drain bias stresses in l–V characteristics of WSe2 FETs by using dual channel pulse measurement. Applied Physics Letters, 2016, 109, 053503.	1.5	9

#	Article	IF	CITATIONS
149	Ultraâ€Thin Layered Ternary Single Crystals [Sn(S <i>_x</i> Se _{1â^'} <i>_x</i>) ₂] with Bandgap Engineering for High Performance Phototransistors on Versatile Substrates. Advanced Functional Materials, 2016, 26, 3630-3638.	7.8	77
150	The electronic and optical properties of Tungsten Disulfide under high pressure. Chemical Physics Letters, 2016, 651, 257-260.	1.2	6
151	Patterned Peeling 2D MoS ₂ off the Substrate. ACS Applied Materials & Interfaces, 2016, 8, 16546-16550.	4.0	30
152	Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2. Nano Research, 2016, 9, 2623-2631.	5.8	13
153	Effect of MoO ₃ constituents on the growth of MoS ₂ nanosheets by chemical vapor deposition. Materials Research Express, 2016, 3, 065014.	0.8	22
154	Effective charge separation and enhanced photocatalytic activity by the heterointerface in MoS ₂ /reduced graphene oxide composites. RSC Advances, 2016, 6, 60318-60326.	1.7	32
155	Electrical and photo-electrical properties of MoS ₂ nanosheets with and without an Al ₂ O ₃ capping layer under various environmental conditions. Science and Technology of Advanced Materials, 2016, 17, 166-176.	2.8	36
156	Hierarchical MoS ₂ Nanosheet@TiO ₂ Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances. Small, 2016, 12, 1527-1536.	5.2	469
157	Self-Powered Broadband Photodetector using Plasmonic Titanium Nitride. ACS Applied Materials & Interfaces, 2016, 8, 4258-4265.	4.0	109
158	Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Research, 2016, 9, 72-93.	5.8	62
159	Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Research, 2016, 9, 507-516.	5.8	132
160	A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. Journal of Materials Chemistry C, 2016, 4, 630-636.	2.7	87
161	A progressive route for tailoring electrical transport in MoS2. Nano Research, 2016, 9, 380-391.	5.8	14
162	Monolayer MoS 2 /GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy, 2016, 23, 89-96.	8.2	138
163	MoS ₂ –InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity. ACS Applied Materials & Interfaces, 2016, 8, 8576-8582.	4.0	98
164	Large scale ZrS ₂ atomically thin layers. Journal of Materials Chemistry C, 2016, 4, 3143-3148.	2.7	55
165	Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 117-127.	3.0	61
166	Fabrication and current-voltage characteristics of Mo 1â~'x W x S 2 /graphene oxide heterojunction diode. Surface and Coatings Technology, 2017, 320, 520-526.	2.2	0

#	Article	IF	CITATIONS
167	Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system. Journal of Materials Chemistry C, 2017, 5, 1136-1148.	2.7	26
168	Broad-Band Photocurrent Enhancement in MoS ₂ Layers Directly Grown on Light-Trapping Si Nanocone Arrays. ACS Applied Materials & Interfaces, 2017, 9, 6314-6319.	4.0	16
169	Ultrabroadband MoS ₂ Photodetector with Spectral Response from 445 to 2717 nm. Advanced Materials, 2017, 29, 1605972.	11.1	256
170	Mo1â^' x W x S2-based photodetector fabrication and photoconductive characteristics. Japanese Journal of Applied Physics, 2017, 56, 032201.	0.8	2
171	A theoretical modeling of photocurrent generation and decay in layered MoS ₂ thin-film transistor photosensors. Journal Physics D: Applied Physics, 2017, 50, 065105.	1.3	11
172	Performance Investigation of Multilayer MoS ₂ Thin-Film Transistors Fabricated via Mask-free Optically Induced Electrodeposition. ACS Applied Materials & Interfaces, 2017, 9, 8361-8370.	4.0	20
173	2D Organic–Inorganic Hybrid Thin Films for Flexible UV–Visible Photodetectors. Advanced Functional Materials, 2017, 27, 1605554.	7.8	125
174	Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device. ACS Nano, 2017, 11, 4564-4570.	7.3	41
175	Optoelectronics based on 2D TMDs and heterostructures. Journal of Semiconductors, 2017, 38, 031002.	2.0	69
176	Lithography-free electrical transport measurements on 2D materials by direct microprobing. Journal of Materials Chemistry C, 2017, 5, 11252-11258.	2.7	6
177	Fewâ€Layered PtS ₂ Phototransistor on hâ€BN with High Gain. Advanced Functional Materials, 2017, 27, 1701011.	7.8	176
178	MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sensors and Actuators B: Chemical, 2017, 251, 180-184.	4.0	146
179	Biotunable Nanoplasmonic Filter on Few-Layer MoS ₂ for Rapid and Highly Sensitive Cytokine Optoelectronic Immunosensing. ACS Nano, 2017, 11, 5697-5705.	7.3	48
180	Electrical transport and persistent photoconductivity in monolayer MoS ₂ phototransistors. Nanotechnology, 2017, 28, 214002.	1.3	189
181	Fast, multicolor photodetection with graphene-contacted <i>p</i> -GaSe/ <i>n</i> -InSe van der Waals heterostructures. Nanotechnology, 2017, 28, 27LT01.	1.3	180
182	Recent Progress on Localized Field Enhanced Twoâ€dimensional Material Photodetectors from Ultraviolet—Visible to Infrared. Small, 2017, 13, 1700894.	5.2	234
183	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	16.0	176
184	In situ nanomechanical characterization of multi-layer MoS ₂ membranes: from intraplanar to interplanar fracture. Nanoscale, 2017, 9, 9119-9128.	2.8	39

#	Article	IF	CITATIONS
185	Enhanced dielectric deposition on single-layer MoS ₂ with low damage using remote N ₂ plasma treatment. Nanotechnology, 2017, 28, 175202.	1.3	27
186	Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. Journal Physics D: Applied Physics, 2017, 50, 164001.	1.3	20
187	Transition-metal dichalcogenide heterostructure solar cells: a numerical study. Journal of Mathematical Chemistry, 2017, 55, 50-64.	0.7	4
188	Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake. Scientific Reports, 2017, 7, 45413.	1.6	31
189	Ptâ€Nanostripâ€Enabled Plasmonically Enhanced Broad Spectral Photodetection in Bilayer MoS ₂ . Advanced Optical Materials, 2017, 5, 1700009.	3.6	43
190	Photoresponsive field-effect transistors based on multilayer SnS ₂ nanosheets. Journal of Semiconductors, 2017, 38, 034001.	2.0	23
191	Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chinese Physics B, 2017, 26, 038504.	0.7	56
192	Enhanced photoresponse of ZnO quantum dot-decorated MoS ₂ thin films. RSC Advances, 2017, 7, 16890-16900.	1.7	59
193	Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse. ACS Nano, 2017, 11, 4225-4236.	7.3	277
194	Solution assembly MoS ₂ nanopetals/GaAs n–n homotype heterojunction with ultrafast and low noise photoresponse using graphene as carrier collector. Journal of Materials Chemistry C, 2017, 5, 140-148.	2.7	36
195	Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV. Applied Physics Letters, 2017, 111, .	1.5	24
196	MoS2 based photosensor detecting both light wavelength and intensity. Sensors and Actuators A: Physical, 2017, 266, 205-210.	2.0	Ο
197	2D TiS ₂ Layers: A Superior Nonlinear Optical Limiting Material. Advanced Optical Materials, 2017, 5, 1700713.	3.6	84
198	MoS2 nanosheet photodetectors with ultrafast response. Applied Physics Letters, 2017, 111, .	1.5	47
199	Inversion Domain Boundary Induced Stacking and Bandstructure Diversity in Bilayer MoSe ₂ . Nano Letters, 2017, 17, 6653-6660.	4.5	51
200	Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS ₂ light absorbing layer. Nanotechnology, 2017, 28, 475206.	1.3	26
201	Lateral Grapheneâ€Contacted Vertically Stacked WS ₂ /MoS ₂ Hybrid Photodetectors with Large Gain. Advanced Materials, 2017, 29, 1702917.	11.1	111
202	Effects of asymmetric Schottky contacts on photoresponse in tungsten diselenide (WSe2) phototransistor. Journal of Applied Physics, 2017, 122, .	1.1	16

#	ARTICLE Fabrication of a solution-processed, highly flexible few layer MoS ₂ (n)–CuO (p)	IF	CITATIONS
203	Photoelectric response properties under UV/red light irradiation of ZnO nanorod arrays coated with vertically aligned MoS ₂ nanosheets. Nanotechnology, 2017, 28, 415202.	1.3	15
205	Environmental impact and potential health risks of 2D nanomaterials. Environmental Science: Nano, 2017, 4, 1617-1633.	2.2	68
206	Production routes, electromechanical properties and potential application of layered nanomaterials and 2D nanopolymeric composites—a review. International Journal of Advanced Manufacturing Technology, 2017, 93, 3449-3459.	1.5	12
207	Ultrathin ternary semiconductor TlGaSe ₂ phototransistors with broad-spectral response. 2D Materials, 2017, 4, 035021.	2.0	22
208	Largeâ€area growth of multiâ€layered MoS ₂ for violet (â^1⁄4405 nm) photodetector applications Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700221.	·0.8	3
209	Highly responsive photoconductance in a Sb ₂ SeTe ₂ topological insulator nanosheet at room temperature. RSC Advances, 2017, 7, 39057-39062.	1.7	32
210	TMDs – Optoelectronic Devices. , 0, , 329-343.		0
211	Synthesis of Transition Metal Dichalcogenides. , 0, , 344-358.		0
212	Optical Properties and Optoelectronic Applications of Black Phosphorus. , 0, , 435-457.		0
213	High performance broadband photodetector based on MoS2/porous silicon heterojunction. Applied Physics Letters, 2017, 111, .	1.5	31
214	Ultrahigh-Gain and Fast Photodetectors Built on Atomically Thin Bilayer Tungsten Disulfide Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 42001-42010.	4.0	26
215	Enhanced Nonlinear Saturable Absorption of MoS ₂ /Graphene Nanocomposite Films. Journal of Physical Chemistry C, 2017, 121, 27147-27153.	1.5	72
216	Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. Physical Review B, 2017, 96, .	1.1	26
217	Lateral multilayer/monolayer MoS2 heterojunction for high performance photodetector applications. Scientific Reports, 2017, 7, 4505.	1.6	35
218	High-performing MoS2-embedded Si photodetector. Materials Science in Semiconductor Processing, 2017, 71, 35-41 Layer dependence of the electronic band alignment of few-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m< td=""><td>1.9</td><td>13</td></mml:m<></mml:msub></mml:mrow></mml:math 	1.9	13
219	mathvariant="normal">S <mml:mn>2on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Si</mml:mi><mml:msub><mml:mi mathvariant="normal">O<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow></mml:math </mml:mn>	1.1	35
220	meas Development of electronic devices based on two-dimensional materials. FlatChem, 2017, 3, 43-63.	2.8	23

#	Article	IF	CITATIONS
221	As-grown two-dimensional MoS2 based photodetectors with naturally formed contacts. Applied Physics Letters, 2017, 110, .	1.5	18
222	Electric field modulation of the band structure in MoS2/WS2 van der waals heterostructure. Solid State Communications, 2017, 250, 9-13.	0.9	34
223	Concurrent Growth and Formation of Electrically Contacted Monolayer Transition Metal Dichalcogenides on Bulk Metallic Patterns. Advanced Materials Interfaces, 2017, 4, 1600599.	1.9	7
224	Highly efficient, high speed vertical photodiodes based on few-layer MoS ₂ . 2D Materials, 2017, 4, 015004.	2.0	22
225	High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions. Nanoscale Horizons, 2017, 2, 37-42.	4.1	21
226	Photodetectors Based on Twoâ€Dimensional Layered Materials Beyond Graphene. Advanced Functional Materials, 2017, 27, 1603886.	7.8	534
227	Performance Limits of the Selfâ€Aligned Nanowire Topâ€Gated MoS ₂ Transistors. Advanced Functional Materials, 2017, 27, 1602250.	7.8	37
228	Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Research, 2017, 10, 22-36.	5.8	66
229	Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring. Optics Express, 2017, 25, 28407.	1.7	35
230	Recent Advances in Electronic and Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides. Electronics (Switzerland), 2017, 6, 43.	1.8	68
231	High-performance MoS_2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Optics Letters, 2017, 42, 3335.	1.7	64
232	Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews, 2018, 47, 3100-3128.	18.7	604
233	Quantum Emitters in Hexagonal Boron Nitride Have Spectrally Tunable Quantum Efficiency. Advanced Materials, 2018, 30, e1704237.	11.1	33
234	High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 2018, 10, 5559-5565.	2.8	144
235	Efficiency enhancement of TiO ₂ self-powered UV photodetectors using a transparent Ag nanowire electrode. Journal of Materials Chemistry C, 2018, 6, 3334-3340.	2.7	71
236	Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes. Applied Surface Science, 2018, 448, 64-70.	3.1	50
237	Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Solar Energy Materials and Solar Cells, 2018, 182, 272-280.	3.0	67
238	High-Performance All 2D-Layered Tin Disulfide: Graphene Photodetecting Transistors with Thickness-Controlled Interface Dynamics. ACS Applied Materials & Interfaces, 2018, 10, 13002-13010.	4.0	32

#	Article	IF	CITATIONS
239	Hydrogen-Assisted Growth of Large-Area Continuous Films of MoS ₂ on Monolayer Graphene. ACS Applied Materials & Interfaces, 2018, 10, 7304-7314.	4.0	47
240	High Detectivity and Transparent Few‣ayer MoS ₂ /Glassyâ€Graphene Heterostructure Photodetectors. Advanced Materials, 2018, 30, e1706561.	11.1	111
241	Interstitial Moâ€Assisted Photovoltaic Effect in Multilayer MoSe ₂ Phototransistors. Advanced Materials, 2018, 30, e1705542.	11.1	48
242	Assembly and Selfâ€Assembly of Nanomembrane Materials—From 2D to 3D. Small, 2018, 14, e1703665.	5.2	56
243	A General Method for the Chemical Synthesis of Large cale, Seamless Transition Metal Dichalcogenide Electronics. Advanced Materials, 2018, 30, e1706215.	11.1	36
244	Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Science Bulletin, 2018, 63, 159-168.	4.3	207
245	Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer. Applied Physics Letters, 2018, 112, .	1.5	38
246	Light Sources and Photodetectors Enabled by 2D Semiconductors. Small Methods, 2018, 2, 1800019.	4.6	35
247	Low-power logic computing realized in a single electric-double-layer MoS 2 transistor gated with polymer electrolyte. Solid-State Electronics, 2018, 144, 1-6.	0.8	16
248	Photoresponse properties of large area MoS ₂ metal–semiconductor–metal photodetectors. Japanese Journal of Applied Physics, 2018, 57, 04FP12.	0.8	2
249	Fast photoresponse and high detectivity in copper indium selenide (Culn 7 Se 11) phototransistors. 2D Materials, 2018, 5, 015001.	2.0	24
250	Emerging technologies for high performance infrared detectors. Nanophotonics, 2018, 7, 169-197.	2.9	203
251	Ultraviolet-light-driven enhanced photoresponse of chemical-vapor-deposition grown graphene-WS2 heterojunction based FETs. Sensors and Actuators B: Chemical, 2018, 257, 263-269.	4.0	16
252	Uncooled EuSbTe ₃ photodetector highly sensitive from ultraviolet to terahertz frequencies. 2D Materials, 2018, 5, 011008.	2.0	16
253	Lowâ€Temperature Operation of Highâ€Efficiency Germanium Quantum Dot Photodetectors in the Visible and Near Infrared. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700453.	0.8	6
254	Tuning the activity of the inert MoS ₂ surface <i>via</i> graphene oxide support doping towards chemical functionalization and hydrogen evolution: a density functional study. Physical Chemistry Chemical Physics, 2018, 20, 1861-1871.	1.3	22
255	Ultrahigh, Ultrafast, and Selfâ€Powered Visibleâ€Nearâ€Infrared Optical Positionâ€Sensitive Detector Based on a CVDâ€Prepared Vertically Standing Few‣ayer MoS ₂ /Si Heterojunction. Advanced Science, 2018, 5, 1700502.	5.6	87
256	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309

#	Article	IF	CITATIONS
257	Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application. Sensors and Actuators A: Physical, 2018, 269, 355-362.	2.0	30
258	Rhenium diselenide (ReSe2) infrared photodetector enhanced by (3-aminopropyl)trimethoxysilane (APTMS) treatment. Organic Electronics, 2018, 53, 14-19.	1.4	20
259	Ultrasensitive photodetectors based on a high-quality LiInSe ₂ single crystal. Journal of Materials Chemistry C, 2018, 6, 12615-12622.	2.7	8
260	The Extremely Enhanced Photocurrent Response in Topological Insulator Nanosheets with High Conductance. Nanoscale Research Letters, 2018, 13, 371.	3.1	5
261	Zero-point motion and direct-indirect band-gap crossover in layered transition-metal dichalcogenides. Physical Review B, 2018, 98, .	1.1	11
262	Vapour transport deposition of fluorographene oxide films and electro-optical device applications. Applied Materials Today, 2018, 13, 387-395.	2.3	9
263	Two Dimensional Materials based Heterostructures for Photosensing Applications. , 2018, , .		0
264	Position sensitivity of optical nano-antenna arrays on optoelectronic devices. Nano Energy, 2018, 53, 734-744.	8.2	13
265	Multilayer ReS ₂ Photodetectors with Gate Tunability for High Responsivity and High-Speed Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 36512-36522.	4.0	86
266	Synthesis of few-layer 2H-MoSe ₂ thin films with wafer-level homogeneity for high-performance photodetector. Nanophotonics, 2018, 7, 1959-1969.	2.9	41
267	Efficient Energy Transfer across Organic–2D Inorganic Heterointerfaces. ACS Applied Materials & Interfaces, 2018, 10, 39336-39342.	4.0	27
268	Flexible photodetector based on large-area few-layer MoS2. Progress in Natural Science: Materials International, 2018, 28, 563-568.	1.8	50
269	Thin EOT MoS2 FET for Efficient Photodetection and Gas Sensing. , 2018, , .		1
270	Thickness-Dependently Enhanced Photodetection Performance of Vertically Grown SnS ₂ Nanoflakes with Large Size and High Production. ACS Applied Materials & Interfaces, 2018, 10, 18073-18081.	4.0	56
271	Solutionâ€Processed 3D RGO–MoS ₂ /Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultraâ€Broadband Photodetection. Advanced Materials, 2018, 30, e1801729.	11.1	175
272	Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. , 0, , .		5
273	Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS ₂) nanosheets overlayer. Photonics Research, 2018, 6, 485.	3.4	84
274	Ultraviolet-light-driven photoresponse of chemical vapor deposition grown molybdenum disulfide/graphene heterostructured FET. Applied Surface Science, 2018, 459, 853-859.	3.1	12

#	Article	IF	CITATIONS
275	Progress on Crystal Growth of Two-Dimensional Semiconductors for Optoelectronic Applications. Crystals, 2018, 8, 252.	1.0	7
276	Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors, 2018, 18, 1668.	2.1	26
277	Field effect properties of single-layer MoS2(1â^'x)Se2x nanosheets produced by a one-step CVD process. Journal of Materials Science, 2018, 53, 14447-14455.	1.7	11
278	Wafer-scale synthesis of a uniform film of few-layer MoS ₂ on GaN for 2D heterojunction ultraviolet photodetector. Journal Physics D: Applied Physics, 2018, 51, 374003.	1.3	49
279	Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale, 2018, 10, 16069-16078.	2.8	23
280	Optical control of polarization in ferroelectric heterostructures. Nature Communications, 2018, 9, 3344.	5.8	119
281	Extending the Spectral Responsivity of MoS ₂ Phototransistors by Incorporating Upâ€Conversion Microcrystals. Advanced Optical Materials, 2018, 6, 1800660.	3.6	25
282	A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. Npj 2D Materials and Applications, 2018, 2, .	3.9	64
283	Understanding of MoS2/GaN Heterojunction Diode and its Photodetection Properties. Scientific Reports, 2018, 8, 11799.	1.6	91
284	3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS ₂ hybrid with pyramid structure. Optics Express, 2018, 26, 21546.	1.7	92
285	Enhanced Carrier Density in a MoS ₂ /Si Heterojunction-Based Photodetector by Inverse Auger Process. IEEE Transactions on Electron Devices, 2018, 65, 4149-4154.	1.6	15
286	Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction. Applied Physics Letters, 2018, 112, .	1.5	84
287	Atomic Layer GaSe/MoS ₂ van der Waals Heterostructure Photodiodes with Low Noise and Large Dynamic Range. ACS Photonics, 2018, 5, 2693-2700.	3.2	51
288	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/MathML"altimg="si1.gif" overflow="scroll"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">MoS <mml:mn>2</mml:mn> </mml:mi </mml:msub> </mml:mrow> nanostructures grown on Au/ <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.1</td><td>37</td></mml:math>	3.1	37
289	Laser-induced photoresistance effect in Si-based vertical standing MoS ₂ nanoplate heterojunctions for self-powered high performance broadband photodetection. Journal of Materials Chemistry C, 2019, 7, 10642-10651.	2.7	24
290	Modification of MoS2 structure by means of high energy ions in connection to electrical properties and light element surface adsorption. Surfaces and Interfaces, 2019, 17, 100357.	1.5	9
291	Spectroscopic and Structural Dynamics of MoS ₂ Thin Films. Journal of Nano Research, 2019, 58, 74-79.	0.8	2
292	Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano, 2019, 13, 8804-8810.	7.3	69

#	Article	IF	CITATIONS
293	See-through metal oxide frameworks for transparent photovoltaics and broadband photodetectors. Nano Energy, 2019, 64, 103952.	8.2	35
294	Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS ₂ on Ultraflat Metals. ACS Applied Materials & Interfaces, 2019, 11, 31543-31550.	4.0	33
295	Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nature Communications, 2019, 10, 3331.	5.8	151
296	Edgeâ€Enriched Ultrathin MoS ₂ Embedded Yolkâ€Shell TiO ₂ with Boosted Charge Transfer for Superior Photocatalytic H ₂ Evolution. Advanced Functional Materials, 2019, 29, 1901958.	7.8	115
297	Broadband high responsivity large-area plasmonic-enhanced multilayer MoS ₂ on p-type silicon photodetector using Au nanostructures. Materials Research Express, 2019, 6, 105090.	0.8	4
298	Enhanced photoresponse and surface charge transfer mechanism of graphene-tungsten disulfide heterojunction. Optical Materials, 2019, 98, 109426.	1.7	1
299	Sensitive and Ultrabroadband Phototransistor Based on Twoâ€Dimensional Bi ₂ O ₂ Se Nanosheets. Advanced Functional Materials, 2019, 29, 1905806.	7.8	106
300	MoS ₂ /HfO ₂ /Siliconâ€Onâ€Insulator Dualâ€Photogating Transistor with Ambipolar Photoresponsivity for Highâ€Resolution Light Wavelength Detection. Advanced Functional Materials, 2019, 29, 1906242.	7.8	22
301	Exploring the effects of boron nitride coating on the thermal stability and photoluminescence properties of molybdenum disulfide nanospheres. Ceramics International, 2019, 45, 23694-23700.	2.3	1
302	Controlled Plasma Thinning of Bulk MoS ₂ Flakes for Photodetector Fabrication. ACS Omega, 2019, 4, 19693-19704.	1.6	16
303	Rhenium Diselenide (ReSe ₂) Nearâ€Infrared Photodetector: Performance Enhancement by Selective pâ€Doping Technique. Advanced Science, 2019, 6, 1901255.	5.6	28
304	High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals. Scientific Reports, 2019, 9, 12436.	1.6	77
305	Infrared Detectable MoS ₂ Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse. ACS Nano, 2019, 13, 10294-10300.	7.3	96
306	Ultraviolet/Visible Photodetectors Based on p–n NiO/ZnO Nanowires Decorated with Pd Nanoparticles. ACS Applied Nano Materials, 2019, 2, 6343-6351.	2.4	36
307	Enhanced wavelength-selective photoresponsivity with a MoS ₂ bilayer grown conformally on a patterned sapphire substrate. Journal of Materials Chemistry C, 2019, 7, 1622-1629.	2.7	8
308	Enhanced Photocarrier Generation with Selectable Wavelengths by Mâ€Decorated uInS ₂ Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS ₂ Bilayers. Small, 2019, 15, e1803529.	5.2	35
309	High performance photodetectors constructed on atomically thin few-layer MoSe2 synthesized using atomic layer deposition and a chemical vapor deposition chamber. Journal of Alloys and Compounds, 2019, 785, 951-957.	2.8	21
310	2D-MoS ₂ nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Advances, 2019, 1, 1387-1394.	2.2	35

#	Article	IF	CITATIONS
311	Fast Yet Quantumâ€Efficient Few‣ayer Vertical MoS ₂ Photodetectors. Advanced Electronic Materials, 2019, 5, 1900141.	2.6	16
312	Large-area MoS2-MoOx heterojunction thin-film photodetectors with wide spectral range and enhanced photoresponse. APL Materials, 2019, 7, .	2.2	24
313	Photoluminescence Quenching and SERS in Tri-layer MoS2 Flakes. Journal of Electronic Materials, 2019, 48, 5883-5890.	1.0	8
314	On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. Journal of Applied Physics, 2019, 125, 230901.	1.1	13
315	Amorphous MoS ₂ Photodetector with Ultra-Broadband Response. ACS Applied Electronic Materials, 2019, 1, 1314-1321.	2.0	65
316	Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Applied Surface Science, 2019, 490, 165-171.	3.1	79
317	Effective charge separation of inverted polymer solar cells using versatile MoS ₂ nanosheets as an electron transport layer. Journal of Materials Chemistry A, 2019, 7, 15356-15363.	5.2	19
318	Longâ€Term, Highâ€Voltage, and Highâ€Temperature Stable Dualâ€Mode, Low Dark Current Broadband Ultraviolet Photodetector Based on Solutionâ€Cast râ€GO on MBEâ€Grown Highly Resistive GaN. Advanced Optical Materials, 2019, 7, 1900340.	3.6	19
319	Atomic‣evel Customization of 4 in. Transition Metal Dichalcogenide Multilayer Alloys for Industrial Applications. Advanced Materials, 2019, 31, e1901405.	11.1	52
320	Lowâ€dimensional nanomaterial/Si heterostructureâ€based photodetectors. InformaÄnÃ-Materiály, 2019, 1, 140-163.	8.5	81
321	Robust Photodetectable Paper from Chemically Exfoliated MoS ₂ –MoO ₃ Multilayers. ACS Applied Materials & Interfaces, 2019, 11, 21445-21453.	4.0	30
322	Photonic crystallization of two-dimensional MoS ₂ for stretchable photodetectors. Nanoscale, 2019, 11, 13260-13268.	2.8	43
323	Insights into two-dimensional MoS2 sheets for enhanced CO2 photoreduction to C1 and C2 hydrocarbon products. Materials Research Bulletin, 2019, 118, 110499.	2.7	37
324	Photo sensing property of nanostructured CdS-porous silicon (PS):p-Si based MSM hetero-structure. Journal of Materials Science: Materials in Electronics, 2019, 30, 11239-11249.	1.1	5
325	Recent Progress in 2D Layered III–VI Semiconductors and their Heterostructures for Optoelectronic Device Applications. Advanced Materials Technologies, 2019, 4, 1900108.	3.0	104
326	Study of the photoresponse behavior of a high barrier Pd/MoS ₂ /Pd photodetector. Journal Physics D: Applied Physics, 2019, 52, 325102.	1.3	22
327	Balanced Photodetection in Mixed-Dimensional Phototransistors Consisting of CsPbBr3 Quantum Dots and Few-Layer MoS2. ACS Applied Nano Materials, 2019, 2, 2599-2605.	2.4	30
328	Edgeâ€Stateâ€Enhanced Ultrahigh Photoresponsivity of Graphene Nanosheetâ€Embedded Carbon Film/Silicon Heterojunction. Advanced Materials Interfaces, 2019, 6, 1802062.	1.9	9

#	Article	IF	CITATIONS
329	A high-performance hydrogen sensor based on a reverse-biased MoS ₂ /GaN heterojunction. Nanotechnology, 2019, 30, 314001.	1.3	42
330	Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Applied Surface Science, 2019, 483, 1037-1043.	3.1	80
331	MoTe ₂ van der Waals homojunction p–n diode with low resistance metal contacts. Nanoscale, 2019, 11, 9518-9525.	2.8	54
332	Sensitivity-Enhanced Fiber Plasmonic Sensor Utilizing Molybdenum Disulfide Nanosheets. Journal of Physical Chemistry C, 2019, 123, 10536-10543.	1.5	18
333	Electromagnetic Response and Energy Conversion for Functions and Devices in Lowâ€Đimensional Materials. Advanced Functional Materials, 2019, 29, 1807398.	7.8	592
334	Controlled Vapor–Solid Deposition of Millimeterâ€Size Single Crystal 2D Bi ₂ O ₂ Se for Highâ€Performance Phototransistors. Advanced Functional Materials, 2019, 29, 1807979.	7.8	143
335	Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Applied Materials Today, 2019, 15, 203-211.	2.3	45
336	CdSe/ZnS quantum dot encapsulated MoS2 phototransistor for enhanced radiation hardness. Scientific Reports, 2019, 9, 1411.	1.6	11
337	Quantum efficient fast UV photodetectors based on nanocrystalline Zn1-xPxO (x = 0.00, 0.03, 0.07) thin films deposited by pulsed laser deposition technique. Materials Science in Semiconductor Processing, 2019, 95, 7-19.	1.9	17
338	Electric field effects on the electronic structures of MoS2/antimonene van der Waals heterostructure. Solid State Communications, 2019, 293, 28-32.	0.9	8
339	Scalable Growth of High-Quality MoS2 Film by Magnetron Sputtering: Application for NO2 Gas Sensing. , 2019, , .		1
340	Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 2019, 29, 1803807.	7.8	884
341	The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722.	11.1	268
342	Surfactant-free exfoliation of multilayer molybdenum disulfide nanosheets in water. Journal of Colloid and Interface Science, 2019, 537, 28-33.	5.0	6
343	Ultrasensitive 2D Bi ₂ O ₂ Se Phototransistors on Silicon Substrates. Advanced Materials, 2019, 31, e1804945.	11.1	183
344	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	11.1	90
345	High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. Journal of Alloys and Compounds, 2019, 779, 140-146.	2.8	68
346	Contact Engineering for Dual-Gate MoS ₂ Transistors Using O ₂ Plasma Exposure. ACS Applied Electronic Materials, 2019, 1, 210-219.	2.0	40

ARTICLE IF CITATIONS # Electronic and Magnetic Properties of Transition-Metal-Doped WS₂ Monolayer; 347 1.2 6 First-Principles Investigations. IEEE Transactions on Magnetics, 2019, 55, 1-4. Ultrafast Nonlinear Optical Excitation Behaviors of Mono- and Few-Layer Two Dimensional MoS2. 348 2.5 Photonic Sensors, 2019, 9, 1-10. Layer-dependent photoresponse of 2D MoS₂ films prepared by pulsed laser deposition. 349 2.7 45 Journal of Materials Chemistry C, 2019, 7, 2522-2529. High-performance germanium quantum dot photodetectors in the visible and near infrared. Materials Science in Semiconductor Processing, 2019, 92, 19-27. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Materials 351 6.4 164 Horizons, 2020, 7, 252-262. Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed. Scripta Materialia, 2020, 176, 1-6. 2.6 Broad spectral responsivity in highly photoconductive InZnO/MoS2 heterojunction phototransistor 353 1.3 0 with ultrathin transparent metal electrode. Nanotechnology, 2020, 31, 035201. Ultra-fast and high flexibility near-infrared photodetectors based on Bi2Se3 nanobelts grown via 354 2.8 28 catalyst-free van der Waals epitaxy. Journal of Alloys and Compounds, 2020, 818, 152819. High mobility ReSe₂ field effect transistors: Schottky-barrier-height-dependent 355 2.0 36 photoresponsivity and broadband light detection with Co decoration. 2D Materials, 2020, 7, 015010. Study of the Optoelectronic Properties of Ultraviolet Photodetectors Based on Znâ€Doped CuGaO₂ Nanoplate/ZnO Nanowire Heterojunctions. Physica Status Solidi (B): Basic Research, 2020, 257, 1900684. Ultrasensitive negative capacitance phototransistors. Nature Communications, 2020, 11, 101. 357 5.8124 In-plane anisotropic electronics based on low-symmetry 2D materials: progress and prospects. 2.2 84 Nanoscale Advances, 2020, 2, 109-139. Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV 359 1.7 35 photodetectors. Journal of Materials Science, 2020, 55, 4332-4344. Recent advances in black phosphorus and transition metal dichalcogenide–based electronic and optoelectronics devices. , 2020, , 251-312. High performance complementary WS₂ devices with hybrid Gr/Ni contacts. Nanoscale, 361 2.8 27 2020, 12, 21280-21290. High broadband photoconductivity of few-layered MoS2 field-effect transistors measured using 2.8 multi-terminal methods: effects of contact resistance. Nanoscale, 2020, 12, 22904-22916. Photoresponse of Solution-Processed Molybdenum Disulfide Nanosheet-Based Photodetectors. ACS 363 2.4 7 Applied Nano Materials, 2020, 3, 10057-10066. Thermal and Photo Sensing Capabilities of Mono- and Few-Layer Thick Transition Metal 364 1.4 Dichalcogenides. Micromachines, 2020, 11, 693.

#	Article	IF	CITATIONS
365	Single-step, large-area, variable thickness sputtered WS2 film-based field effect transistors. Ceramics International, 2020, 46, 26854-26860.	2.3	9
366	Nanophotonics and optoelectronics based on two-dimensional MoS2. , 2020, , 121-137.		0
367	Time Dependence of Photocurrent in Chemical Vapor Deposition MoS ₂ Monolayer—Intrinsic Properties and Environmental Effects. Journal of Physical Chemistry C, 2020, 124, 18741-18746.	1.5	16
368	Rapid and Low-Temperature Molecular Precursor Approach toward Ternary Layered Metal Chalcogenides and Oxides: Mo _{1–<i>x</i>} W _X S ₂ and Mo _{1–<i>x</i>} W _{<i>x</i>} O ₃ Alloys (0 ≤i>x ≤). Chemistry of Materials. 2020. 32, 7895-7907.	3.2	13
369	Nonlinear optical modulation of MoS2/black phosphorus/MoS2 at 1550Ânm. Physica B: Condensed Matter, 2020, 594, 412364.	1.3	8
370	Two-dimensional functional materials: from properties to potential applications. International Journal of Smart and Nano Materials, 2020, 11, 247-264.	2.0	14
371	Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection. Micromachines, 2020, 11, 812.	1.4	8
372	Efficient NO ₂ sensing performance of a low-cost nanostructured sensor derived from molybdenite concentrate. Green Chemistry, 2020, 22, 6981-6991.	4.6	10
373	WSe ₂ Homojunction p–n Diode Formed by Photoinduced Activation of Mid-Gap Defect States in Boron Nitride. ACS Applied Materials & Interfaces, 2020, 12, 42007-42015.	4.0	34
374	A review of molybdenum disulfide (MoS ₂) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Advances, 2020, 10, 30529-30602.	1.7	211
375	Thermolytic Deposition of MoS ₂ Nanolayer for Si Solar Cell Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900993.	0.8	5
376	Synthesis of High-Quality Multilayer Hexagonal Boron Nitride Films on Au Foils for Ultrahigh Rejection Ratio Solar-Blind Photodetection. ACS Applied Materials & Interfaces, 2020, 12, 28351-28359.	4.0	27
377	Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13908-13913.	3.3	24
378	High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO ₂ nanorods. Journal of Materials Chemistry C, 2020, 8, 9646-9654.	2.7	33
379	State of the art two-dimensional materials-based photodetectors: Prospects, challenges and future outlook. Journal of Industrial and Engineering Chemistry, 2020, 89, 28-46.	2.9	11
380	The prospective application of a graphene/MoS ₂ heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Advances, 2020, 2, 3231-3243.	2.2	23
381	Hybridizing Plasmonic Materials with 2Dâ€Transition Metal Dichalcogenides toward Functional Applications. Small, 2020, 16, e1904271.	5.2	74
382	Self-Powered Ultra-Broadband and Flexible Photodetectors Based on the Bismuth Films by Vapor Deposition. ACS Applied Electronic Materials, 2020, 2, 1254-1262.	2.0	17

#	Article	IF	CITATIONS
383	Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. Journal of Materials Chemistry C, 2020, 8, 4988-5014.	2.7	18
384	Third order nonlinear optical property of WSe2 nanofilm at 800Ânm. Optical Materials, 2020, 107, 110040.	1.7	4
385	Optical-Based Thickness Measurement of MoO3 Nanosheets. Nanomaterials, 2020, 10, 1272.	1.9	12
386	Growth of monolayer and bilayer MoS2 through the solution precursor for high-performance photodetectors. Current Applied Physics, 2020, 20, 643-647.	1.1	9
387	Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 2020, 5, 3000-3005.	1.6	5
388	Delayed Charge Recombination by Openâ€Shell Organics: Its Application in Achieving Superb Photodetectors with Broadband (400–1160 nm) Ultrahigh Sensitivity and Stability. Advanced Optical Materials, 2020, 8, 1902179.	3.6	7
389	High figure of merit of monolayer Sb2Te2Se of ultra low lattice thermal conductivity. Computational Materials Science, 2020, 177, 109588.	1.4	9
390	Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coordination Chemistry Reviews, 2020, 410, 213218.	9.5	74
391	Enhancing Quantum Yield in Strained MoS ₂ Bilayers by Morphology-Controlled Plasmonic Nanostructures toward Superior Photodetectors. Chemistry of Materials, 2020, 32, 2242-2252.	3.2	24
392	Two-dimensional electronic devices modulated by the activation of donor-like states in boron nitride. Nanoscale, 2020, 12, 18171-18179.	2.8	28
393	GaSe/MoS ₂ Heterostructure with Ohmicâ€Contact Electrodes for Fast, Broadband Photoresponse, and Selfâ€Driven Photodetectors. Advanced Materials Interfaces, 2020, 7, 1901848.	1.9	28
394	A novel one-pot strategy for fabrication of PEGylated MoS2 composites for pH responsive controlled drug delivery. Journal of Molecular Liquids, 2020, 307, 112962.	2.3	4
395	Exploring conduction mechanism and photoresponse in <i>P-</i> GaN <i>/n-</i> MoS2 heterojunction diode. Journal of Applied Physics, 2020, 127, .	1.1	17
396	Controlled growth of MoS2 by atomic layer deposition on patterned gold pads. Journal of Crystal Growth, 2020, 541, 125683.	0.7	10
397	Highâ€Performance Ultravioletâ€Visible Lightâ€Sensitive 2Dâ€MoS ₂ /1Dâ€ZnO Heterostructure Photodetectors. ChemistrySelect, 2020, 5, 3438-3444.	0.7	35
398	Position-sensitive detectors based on two-dimensional materials. Nano Research, 2021, 14, 1889-1900.	5.8	14
399	Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Research, 2021, 14, 982-991.	5.8	25
400	Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. Journal of Power Sources, 2021, 481, 228865.	4.0	71

#	Article	IF	CITATIONS
401	Multifunctionalities of 2D MoS2 self-switching diode as memristor and photodetector. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114451.	1.3	15
402	Status and Outlook of Metal–Inorganic Semiconductor–Metal Photodetectors. Laser and Photonics Reviews, 2021, 15, .	4.4	67
403	Recent Progress in Short―to Longâ€Wave Infrared Photodetection Using 2D Materials and Heterostructures. Advanced Optical Materials, 2021, 9, 2001708.	3.6	118
404	Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Research, 2021, 14, 1819-1839.	5.8	14
405	Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Research, 2021, 14, 1840-1862.	5.8	36
406	Dual-sized carbon quantum dots enabling outstanding silicon-based photodetectors. Applied Surface Science, 2021, 542, 148705.	3.1	22
407	Ultra-flexible and rollable 2D-MoS ₂ /Si heterojunction-based near-infrared photodetector <i>via</i> direct synthesis. Nanoscale, 2021, 13, 672-680.	2.8	54
408	Recent advances in anisotropic two-dimensional materials and device applications. Nano Research, 2021, 14, 897-919.	5.8	69
409	A progressive journey into 2D-chalcogenide/carbide/nitride-based broadband photodetectors: recent developments and future perspectives. Journal of Materials Chemistry C, 2021, 9, 14532-14572.	2.7	19
410	MAPbI3-based efficient, transparent and air-stable broadband photodetectors. Indian Journal of Physics, 2022, 96, 903-908.	0.9	3
411	Core–Shell Singleâ€Nanowire Photodetector with Radial Carrier Transport: an Opportunity to Break the Responsivity‧peed Tradeâ€off. Advanced Electronic Materials, 2021, 7, 2000920.	2.6	7
412	An Ultrafast WSe ₂ Photodiode Based on a Lateral <i>p-i-n</i> Homojunction. ACS Nano, 2021, 15, 4405-4415.	7.3	67
413	The Highly Uniform Photoresponsivity from Visible to Near IR Light in Sb2Te3 Flakes. Sensors, 2021, 21, 1535.	2.1	6
414	Giant nonlinear optical activity in two-dimensional palladium diselenide. Nature Communications, 2021, 12, 1083.	5.8	76
415	Interface engineering of ferroelectric-gated MoS2 phototransistor. Science China Information Sciences, 2021, 64, 1.	2.7	10
416	2D Siliconâ€Based Semiconductor Si ₂ Te ₃ toward Broadband Photodetection. Small, 2021, 17, e2006496.	5.2	19
417	Photoresponse of Stacked, Multilayer MoS2 Films Assembled from Solution-Processed MoS2 Flakes. ACS Applied Nano Materials, 2021, 4, 3087-3094.	2.4	0
418	Effect of TiO ₂ layer thickness of TiO ₂ /NiO transparent photovoltaics. Progress in Photovoltaics: Research and Applications, 2021, 29, 943-952.	4.4	25

#	ARTICLE	IF	CITATIONS
419	Few-Layer MoS ₂ Photodetector Arrays for Ultrasensitive On-Chip Enzymatic Colorimetric Analysis. ACS Nano, 2021, 15, 7722-7734.	7.3	27
420	MoS2 Based Photodetectors: A Review. Sensors, 2021, 21, 2758.	2.1	77
421	MoS ₂ -PVP Nanocomposites Decorated ZnO Microsheets for Efficient Hydrogen Detection. IEEE Sensors Journal, 2021, 21, 8878-8885.	2.4	15
422	Interfacial Gated Graphene Photodetector with Broadband Response. ACS Applied Materials & Interfaces, 2021, 13, 22796-22805.	4.0	16
423	Photo-Detectors Based on Two Dimensional Materials. , 0, , .		0
424	Improved Performances of CVDâ€Grown MoS 2 Based Phototransistors Enabled by Encapsulation. Advanced Materials Interfaces, 2021, 8, 2100164.	1.9	8
425	Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral p-n homojunction. Nature Communications, 2021, 12, 3336.	5.8	63
426	Review of titanium trisulfide (TiS3): A novel material for next generation electronic and optical devices. Materials Science in Semiconductor Processing, 2021, 127, 105699.	1.9	41
427	PdPSe: Componentâ€Fusionâ€Based Topology Designer of Twoâ€Dimensional Semiconductor. Advanced Functional Materials, 2021, 31, 2102943.	7.8	15
428	Local-Field-Dependent Nonlinear Optical Absorption of Black Phosphorus Nanoflakes Hybridized by Silver Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 15448-15457.	1.5	10
429	Enhancement of Photodetective Properties on Multilayered MoS2 Thin Film Transistors via Self-Assembled Poly-L-Lysine Treatment and Their Potential Application in Optical Sensors. Nanomaterials, 2021, 11, 1586.	1.9	2
430	Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials, 2021, 14, 3283.	1.3	38
431	Micro-patterned deposition of MoS2 ultrathin-films by a controlled droplet dragging approach. Scientific Reports, 2021, 11, 13993.	1.6	5
432	Enhanced Photodetection Performance of Photodetectors Based on Indium-Doped Tin Disulfide Few Layers. ACS Applied Materials & Interfaces, 2021, 13, 35889-35896.	4.0	24
433	Electronic and Optical Properties of van der Waals Heterostructures Based on Two-Dimensional Perovskite (PEA) ₂ PbI ₄ and Black Phosphorus. ACS Omega, 2021, 6, 20877-20886.	1.6	9
435	Supramolecule Stripped MoS2 Nanosheets for Enhanced Surface Plasmon Resonance Spectroscopy Application. Bulletin of the Chemical Society of Japan, 2021, 94, 2402-2409.	2.0	2
436	Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

437	Effect of point defects on electronic and excitonic properties in Janus-MoSSe monolayer. Physical Review B, 2021, 104, .	1.1	14
-----	--	-----	----

#	Article	IF	CITATIONS
438	Two-Dimensional (2D) Materials for Next-Generation Nanoelectronics and Optoelectronics: Advances and Trends. Advances in Material Research and Technology, 2021, , 65-96.	0.3	1
439	Ultrasensitive and Broadband Allâ€Optically Controlled THz Modulator Based on MoTe ₂ /Si van der Waals Heterostructure. Advanced Optical Materials, 2020, 8, 2000160.	3.6	33
440	MoS2- and MoO3-Based Ultrathin Layered Materials for Optoelectronic Applications. Materials Horizons, 2020, , 211-244.	0.3	2
441	Multiple-layer black phosphorus phototransistor with Si microdisk resonator based on whispering gallery modes. Applied Optics, 2019, 58, 4400.	0.9	1
442	Photoluminescence enhancement and ultrafast relaxation dynamics in a low-dimensional heterostructure: effect of plasmon–exciton coupling. Optics Letters, 2018, 43, 6093.	1.7	13
443	Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker. Photonics Research, 2019, 7, 984.	3.4	28
444	Facile integration of MoS ₂ /SiC photodetector by direct chemical vapor deposition. Nanophotonics, 2020, 9, 3035-3044.	2.9	33
445	Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications. Nanophotonics, 2020, 9, 1675-1694.	2.9	44
446	Polarization-sensitive photodetectors based on three-dimensional molybdenum disulfide (MoS ₂) field-effect transistors. Nanophotonics, 2020, 9, 4719-4728.	2.9	19
447	Excitons in Two-Dimensional Materials. , 0, , .		6
448	Graphene/MoSâ,, Thin Film Based Two Dimensional Barristors With Tunable Schottky Barrier for Sensing Applications. IEEE Sensors Journal, 2021, 21, 26549-26555.	2.4	3
449	High Mobility Two-Dimensional Bismuth Oxyselenide Single Crystals with Large Grain Size Grown by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 49153-49162.	4.0	14
450	Prolonged-Photoresponse-Lifetime Ni ₂ P Nanocrystalline with Highly Exposed (001) for Efficient Photoelectrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 16439-16446.	1.9	7
451	Mechanism, Material, Design, and Implementation Principle of Two-Dimensional Material Photodetectors. Nanomaterials, 2021, 11, 2688.	1.9	17
452	Research Progress of MoS ₂ Nanosheets. Advances in Material Chemistry, 2014, 02, 49-62.	0.0	0
453	Physical issues for the next generation of nano devices. Vacuum Magazine, 2014, 1, 21-27.	0.0	0
454	Recent progress on localized-field enhanced few-layer MoS2 photodetector. , 2015, , .		0
455	Electrical Properties and Photo-response of FETs based on Few-layer WS2 Nanoflakes. , 2016, , .		0

#	Article	IF	CITATIONS
456	Enhanced nonlinear optical limiting in TiS2 dichalcogenide 2D Sheets. , 2017, , .		0
457	Cladded Surface-Plasmon-Enhanced BP Photodetector Based on the Damage-Free Metal-Semiconductor Interface. IEEE Transactions on Electron Devices, 2020, , 1-4.	1.6	5
458	Tuning the Rashba spin splitting in Janus MoSeTe and WSeTe van der Waals heterostructures by vertical strain. Journal of Magnetism and Magnetic Materials, 2022, 544, 168721.	1.0	16
459	Optically stimulated synaptic devices based on silicon-tin alloyed thin film. , 2021, , .		0
460	Enhanced photodetection performance of sputtered cupric oxide thin film through annealing process. Optical and Quantum Electronics, 2021, 53, 1.	1.5	3
461	A New Approach to Designing High-Sensitivity Low-Dimensional Photodetectors. Nano Letters, 2021, 21, 9838-9844.	4.5	12
462	Generation of a Charge Carrier Gradient in a 3C-SiC/Si Heterojunction with Asymmetric Configuration. ACS Applied Materials & amp; Interfaces, 2021, 13, 55329-55338.	4.0	9
463	Layer and material-type dependent photoresponse in WSe ₂ /WS ₂ vertical heterostructures. 2D Materials, 2022, 9, 015022.	2.0	7
464	Conformal MoS ₂ /Silicon Nanowire Array Heterojunction with Enhanced Light Trapping and Effective Interface Passivation for Ultraweak Infrared Light Detection. Advanced Functional Materials, 2022, 32, 2108174.	7.8	32
465	Electronic and Thermodynamic Properties of Zigzag MoS ₂ / MoSe ₂ and MoS ₂ / WSe ₂ Hybrid Nanoribbons: Impacts of Electric and Exchange Fields. SSRN Electronic Journal, 0, , .	0.4	Ο
466	Transparent and all oxide-based highly responsive n-n heterojunction broadband photodetector. Journal of Alloys and Compounds, 2022, 898, 162788.	2.8	15
467	All-oxide-based and metallic electrode-free artificial synapses for transparent neuromorphic computing. Materials Today Chemistry, 2022, 23, 100681.	1.7	12
468	Performance Analysis Between Graphene and MoS ₂ Based MSM Photodiode. , 2021, , .		0
469	Excitonic absorption and defect-related emission in three-dimensional MoS ₂ pyramids. Nanoscale, 2022, 14, 1179-1186.	2.8	3
470	Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors, 2022, 22, 677.	2.1	13
471	Electronic and thermodynamic properties of zigzag MoS2/ MoSe2 and MoS2/ WSe2 hybrid nanoribbons: Impacts of electric and exchange fields. Results in Physics, 2022, 34, 105253.	2.0	14
472	Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices. Advanced Functional Materials, 2022, 32, .	7.8	45
473	GaS:WS ₂ Heterojunctions for Ultrathin Two-Dimensional Photodetectors with Large Linear Dynamic Range across Broad Wavelengths. ACS Nano, 2021, 15, 19570-19580.	7.3	20

#	Article	IF	Citations
474	High-performance, self-powered flexible MoS ₂ photodetectors with asymmetric van der Waals gaps. Physical Chemistry Chemical Physics. 2022, 24, 7323-7330.	1.3	11
475	2D Cairo Pentagonal PdPS: Airâ€6table Anisotropic Ternary Semiconductor with High Optoelectronic Performance. Advanced Functional Materials, 2022, 32, .	7.8	25
476	Silicene/Silicene Oxide Nanosheets for Broadband Photodetectors. ACS Applied Nano Materials, 2022, 5, 4325-4335.	2.4	10
477	2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Advanced Photonics Research, 2022, 3, .	1.7	13
478	Ultrasensitive monolayer-MoS2 heterojunction photodetectors realized via an asymmetric Fabry-Perot cavity. Science China Materials, 2022, 65, 1861-1868.	3.5	5
479	Ultrathin Lateral 2D Photodetectors Using Transition-Metal Dichalcogenides PtSe ₂ –WS ₂ –PtSe ₂ by Direct Laser Patterning. ACS Applied Electronic Materials, 2022, 4, 1029-1038.	2.0	4
480	Large-Area Transfer of 2D TMDCs Assisted by a Water-Soluble Layer for Potential Device Applications. ACS Omega, 2022, 7, 11731-11741.	1.6	13
481	An Efficient White-Light Photodetector Based on 2D-SnS ₂ Nanosheets. IEEE Transactions on Electron Devices, 2022, 69, 1889-1893.	1.6	10
482	Optical absorption of phosphorene structure in the presence of spin–orbit coupling: mechanical strain effects. European Physical Journal Plus, 2022, 137, 1.	1.2	6
483	Perspectives of 2D Materials for Optoelectronic Integration. Advanced Functional Materials, 2022, 32,	7.8	62
484	MoS2-based absorbers with whole visible spectrum coverage and high efficiency. Scientific Reports, 2022, 12, 6313.	1.6	9
485	Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors. Molecules, 2022, 27, 2807.	1.7	4
486	Vibrational spectroscopy on solution-dispersed MoS2 for inkjet-printed photodetectors. Emergent Materials, 2022, 5, 477-487.	3.2	5
487	A sensitive photodetector: Tuning the electronic structure of the Cu2O/MoS2 heterojunction by controlling the interlayer spacing or electric field. Journal of Materials Research, 2022, 37, 1679-1687.	1.2	1
488	Thermoelectric Properties of Zigzag Mos2/Mose2 and Mos2/Mote2 Hybrid Nanoribbons: The Effects of Nanoribbon Width, Transverse Electric and External Exchange Fields. SSRN Electronic Journal, 0, , .	0.4	0
489	A Review on MX2 (MÂ=ÂMo, W and XÂ=ÂS, Se) layered material for opto-electronic devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 023001. 	0.7	5
490	Ultrafast photoresponse of vertically oriented TMD films probed in a vertical electrode configuration on Si chips. Nanoscale Advances, 2022, 4, 3243-3249.	2.2	1
491	Growth, structure, electrical and optical properties of transition metal chalcogenide crystals synthesized by improved chemical vapor transport technique for semiconductor technologies. Progress in Crystal Growth and Characterization of Materials, 2022, 68, 100578.	1.8	4

#	Article	IF	CITATIONS
492	High-temperature flexible WSe2 photodetectors with ultrahigh photoresponsivity. Nature Communications, 2022, 13, .	5.8	36
493	Strain Modulation of Optoelectronic Properties in Nanolayered Black Phosphorus: Implications for Strain-Engineered 2D Material Systems. ACS Applied Nano Materials, 2022, 5, 12189-12195.	2.4	6
494	Flexible, Transparent, and Broadband Trilayer Photodetectors Based on MoS ₂ /WS ₂ Nanostructures. ACS Applied Nano Materials, 2022, 5, 13637-13648.	2.4	14
495	Ĵμ-Ga2O3 thin films grown by metal-organic chemical vapor deposition and its application as solar-blind photodetectors. Journal of Alloys and Compounds, 2022, 925, 166632.	2.8	9
496	Programmable Photoâ€Induced Doping in 2D Materials. Advanced Materials Interfaces, 2022, 9, .	1.9	12
497	MoS2/SiNWs heterostructure based repeatable and highly responsive photodetector. Optical Materials, 2022, 133, 112918.	1.7	4
498	High-performance 2D/3D hybrid dimensional p–n heterojunction solar cell with reduced recombination rate by an interfacial layer. Journal of Materials Chemistry C, 2022, 10, 14982-14992.	2.7	5
499	Designing SnS/MoS ₂ van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Physical Chemistry Chemical Physics, 2022, 24, 21321-21330.	1.3	3
500	Identifying the effects of oxygen on the magnetism of WS ₂ nanosheets. Nanoscale, 2022, 14, 12814-12822.	2.8	2
501	Valence engineering at the interface of MoS2/Mo2C heterostructure for bionic nitrogen reduction. Chemical Engineering Journal, 2023, 452, 139515.	6.6	9
502	Data-Enhanced Deep Greedy Optimization Algorithm for the On-Demand Inverse Design of TMDC-Cavity Heterojunctions. Nanomaterials, 2022, 12, 2976.	1.9	1
503	One-Step Epitaxial Growth of Multilayer MoS ₂ /SnS ₂ Vertical Nanosheets for High-Performance Photodetectors. ACS Applied Nano Materials, 2022, 5, 14978-14986.	2.4	1
504	Effect of Mo Vacancy on the Photoresponse of Bilayer MoS ₂ Film. Applied Science and Convergence Technology, 2022, 31, 107-109.	0.3	0
505	Substrate effects on the speed limiting factor of WSe ₂ photodetectors. Physical Chemistry Chemical Physics, 2022, 24, 25383-25390.	1.3	2
506	Interfacial Assembly of Ti ₃ C ₂ T _x /ZnIn ₂ S ₄ Heterojunction for Highâ€Performance Photodetectors. Advanced Science, 2022, 9, .	5.6	4
507	High-Frequency Sheet Conductance of Nanolayered WS ₂ Crystals for Two-Dimensional Nanodevices. ACS Applied Nano Materials, 2022, 5, 15557-15562.	2.4	2
508	Crystalline Phase Effects on the Nonlinear Optical Response of MoS ₂ and WS ₂ Nanosheets: Implications for Photonic and Optoelectronic Applications. ACS Applied Nano Materials, 2022, 5, 16674-16686.	2.4	11
509	High-Speed Transition-Metal Dichalcogenides Based Schottky Photodiodes for Visible and Infrared Light Communication. ACS Nano, 2022, 16, 19187-19198.	7.3	15

#	Article	IF	CITATIONS
510	Reduced-graphene oxide decorated γ-In ₂ Se ₃ /Si heterostructure-based broadband photodetectors with enhanced figures-of-merit. Materials Advances, 2023, 4, 596-606.	2.6	3
511	Large area MoS2 films fabricated via sol-gel used for photodetectors. Optical Materials, 2023, 135, 113257.	1.7	1
512	Balance of photon management and charge collection from carbon-quantum-dot layers as self-powered broadband photodetectors. Nanoscale Advances, 2023, 5, 1086-1094.	2.2	5
513	Broadband photodetector based on MoS2/Ge heterojunction for optoelectronic applications. Vacuum, 2023, 209, 111746.	1.6	7
514	Piezoelectricity-modualted optical recombination dynamics of monolayer-MoS ₂ /GaN-film heterostructures. Nanoscale, 0, , .	2.8	0
515	Two-dimensional optoelectronic devices for silicon photonic integration. Journal of Materiomics, 2023, 9, 551-567.	2.8	3
516	High Detectivity and Fast MoS ₂ Monolayer MSM Photodetector. ACS Applied Electronic Materials, 2022, 4, 5739-5746.	2.0	9
517	Thickness-dependent Auger scattering in a single WS ₂ microcrystal probed with time-resolved terahertz near-field microscopy. Optics Letters, 2023, 48, 708.	1.7	0
518	Horizontallyâ€Oriented Growth of Organic Crystalline Nanowires on Polymer Films for Inâ€5itu Flexible Photodetectors with Visâ€NIR Response and High Bending Stability. Advanced Functional Materials, 2023, 33, .	7.8	10
519	Gold Nanorod-Activated Graphene/MoS ₂ Nanosheet-Based Photodetectors for Bidirectional Photoconductance. ACS Applied Nano Materials, 2023, 6, 1783-1795.	2.4	3
520	The oxidation enhancement photocurrent response in WSe1.95Te0.05 nanosheets. Applied Surface Science, 2023, 628, 156488.	3.1	0
521	Electrochemical sensing of carcinogenic p-dimethylamino antipyrine using sensor comprised of eco-friendly MoS2 nanosheets encapsulated by PVA capped Mn doped ZnS nanoparticle. Inorganic Chemistry Communication, 2023, 151, 110617.	1.8	10
522	Self-powered photodetectors with high detectivity based on MoSe2/Si heterojunction using ITO as the transparent electrode and highlight trapping structures. Surfaces and Interfaces, 2023, 38, 102854.	1.5	3
523	A universal growth method for high-quality phase-engineered germanium chalcogenide nanosheets. Nanoscale, 2023, 15, 4438-4447.	2.8	0
524	rerroelectric-Iunable Photoresponse in I±- <mm:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub> <mml:mi>In</mml:mi> <mml:mn>2 </mml:mn> </mml:msub> <mml:msub> <mml:m Photovoltaic Photodetectors: An <i>Ab Initio</i> Quantum Transport Study. Physical Review Applied,</mml:m </mml:msub></mm:math 	וi> £ø <td>าl:เซเ><mml:n< td=""></mml:n<></td>	าl:เซเ> <mml:n< td=""></mml:n<>
525	2023, 19, . Graphene/MoS2-Nanoribbons/Graphene Field-Effect Photodetectors: A Numerical Study. Journal of Electronic Materials, 2023, 52, 3046-3057.	1.0	2
526	PVA Capped Mn-Doped ZnS Encapsulated Nontoxic MoS ₂ Nano-Sheet Probe for the Sensitive Estimation of Cardiovascular β-Blocking Agent Acebutolol in Biomedical and Environmental Samples. Journal of the Electrochemical Society, 2023, 170, 037505.	1.3	7
527	Wafer-Scale Patterning Synthesis of Two-Dimensional WSe ₂ Layers by Direct Selenization for Highly Sensitive van der Waals Heterojunction Broadband Photodetectors. ACS Applied Materials & amp; Interfaces, 2023, 15, 12052-12060.	4.0	12

IF ARTICLE CITATIONS # Monolayer WS₂ Nanosheets Passivated with HfO₂ for Enhanced 528 2.4 7 Photodetectors. ACS Applied Nano Materials, 2023, 6, 4594-4601. Ultraflexible and Transparent MoS₂/î2-Ga₂O₃ Heterojunction-Based Photodiode with Enhanced Photoresponse by Piezo-Phototronic Effect. ACS 529 Applied Electronic Materials, 2023, 5, 2296-2308. Growth and applications of two-dimensional single crystals. 2D Materials, 2023, 10, 032001. 530 2.0 4 Some Aspects of Novel Materials from Optical to THz Engineering. Progress in Optical Science and Photonics, 2023, , 59-80. Thermally Stable and Radiationâ€Proof Visibleâ€Light Photodetectors Made from Nâ€Đoped Diamond. 532 3.6 6 Advanced Optical Materials, 2023, 11, . Advances in the Field of Two-Dimensional Crystal-Based Photodetectors. Nanomaterials, 2023, 13, 1379. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent 558 4.1 1 breakthroughs and emerging prospects of the device. Nanoscale Horizons, 2023, 9, 44-92. Progress in Photodetector Devices Utilizing Transition Metal Dichalcogenides. Journal of Materials 2.7 Chemistry C, O, , . Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. Nanoscale, 571 2.8 1 2024, 16, 2097-2120.