Effect of Different Hole Transport Materials on Recomb CH₃NH₃PbI₃Per Cells

Journal of Physical Chemistry Letters 4, 1532-1536 DOI: 10.1021/jz400638x

Citation Report

#	Article	IF	CITATIONS
1	The Swift Surge of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 2597-2598.	2.1	80
2	Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316-319.	13.7	8,542
3	Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013, 3, 18762.	1.7	405
4	Charge Transport and Recombination in Perovskite (CH ₃ NH ₃)PbI ₃ Sensitized TiO ₂ Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 2880-2884.	2.1	284
5	Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 3623-3630.	2.1	2,483
6	A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Materials, 2013, 5, e68-e68.	3.8	143
7	Perovskites and their Potential use in Solar Energy Applications. Science Progress, 2014, 97, 279-287.	1.0	12
8	CHAPTER 7. Perovskite Solar Cells. RSC Energy and Environment Series, 0, , 242-257.	0.2	3
9	Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Research, 2014, 2, 111.	3.4	89
10	Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6, 6679.	2.8	275
11	Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 5829.	2.2	132
12	Hybrid perovskites for photovoltaics: Insights from first principles. Physical Review B, 2014, 89, .	1.1	191
13	Organometal Halide Perovskites for Transformative Photovoltaics. Journal of the American Chemical Society, 2014, 136, 3713-3714.	6.6	41
14	Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy and Environmental Science, 2014, 7, 1889-1894.	15.6	151
15	A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 6305-6309.	5.2	167
16	Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‣tate Solar Cells. Advanced Functional Materials, 2014, 24, 3250-3258.	7.8	850
17	Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today, 2014, 17, 16-23.	8.3	349
18	Perovskiteâ€Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Advanced Materials, 2014, 26, 2041-2046.	11.1	637

ATION REDO

#	Article	IF	CITATIONS
19	Novel Mesoâ€Superstructured Solar Cells with a High Efficiency Exceeding 12%. Advanced Materials, 2014, 26, 2102-2104.	11.1	31
20	A Simple 3,4â€Ethylenedioxythiophene Based Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 4085-4088.	7.2	379
21	Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. Journal of Materials Chemistry A, 2014, 2, 8607.	5.2	88
22	Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014, 8, 489-494.	15.6	2,410
23	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	15.6	1,220
24	Rutile TiO2-based perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 9251.	5.2	188
25	Subâ€Nanometer Conformal TiO ₂ Blocking Layer for High Efficiency Solidâ€State Perovskite Absorber Solar Cells. Advanced Materials, 2014, 26, 4309-4312.	11.1	148
26	Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130.	23.0	669
27	CH ₃ NH ₃ Cl-Assisted One-Step Solution Growth of CH ₃ NH ₃ Pbl ₃ : Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9412-9418.	1.5	516
28	Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1628-1635.	2.1	384
29	Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80-85.	8.2	459
30	Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chemical Communications, 2014, 50, 6931.	2.2	163
31	Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy and Environmental Science, 2014, 7, 2518-2534.	15.6	694
32	Quantum Dot Solar Cells: Hole Transfer as a Limiting Factor in Boosting the Photoconversion Efficiency. Langmuir, 2014, 30, 5716-5725.	1.6	126
33	High efficiency CH3NH3PbI(3â~'x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. Journal of Power Sources, 2014, 251, 152-156.	4.0	179
34	Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters, 2014, 14, 127-133.	4.5	282
35	High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. Journal of Materials Chemistry A, 2014, 2, 5994-6003.	5.2	246
36	Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 2014, 8, 250-255.	15.6	648

#	Article	IF	CITATIONS
37	Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells. ACS Nano, 2014, 8, 362-373.	7.3	663
38	Solid-State Mesostructured Perovskite CH ₃ NH ₃ PbI ₃ Solar Cells: Charge Transport, Recombination, and Diffusion Length. Journal of Physical Chemistry Letters, 2014, 5, 490-494.	2.1	275
39	NH ₂ CHâ•NH ₂ PbI ₃ : An Alternative Organolead lodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014, 26, 1485-1491.	3.2	516
40	Electronic Structure of TiO ₂ /CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell Interfaces. Journal of Physical Chemistry Letters, 2014, 5, 648-653.	2.1	432
41	Organolead Halide Perovskite: New Horizons in Solar Cell Research. Journal of Physical Chemistry C, 2014, 118, 5615-5625.	1.5	616
42	A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy and Environmental Science, 2014, 7, 1454.	15.6	374
43	Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 680-685.	2.1	583
44	High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid perovskite absorber with a low-cost flexible substrate. Physical Chemistry Chemical Physics, 2014, 16, 6033-6040.	1.3	86
45	Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8, 133-138.	15.6	2,425
46	Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2014, 16, 1424-1429.	1.3	306
47	Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Physical Chemistry Chemical Physics, 2014, 16, 3918.	1.3	158
48	Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chemical Communications, 2014, 50, 1605.	2.2	171
49	Fabrication of Flexible Plastic Solid-State Dye-Sensitized Solar Cells Using Low Temperature Techniques. Journal of Physical Chemistry C, 2014, 118, 16352-16357.	1.5	17
50	Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18751-18757.	4.0	62
51	Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. Journal of Physical Chemistry Letters, 2014, 5, 4207-4212.	2.1	156
52	Modeling of Lead Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2014, 118, 28344-28349.	1.5	143
53	Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2408-2413.	2.1	90
54	On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4115-4121.	2.1	73

~		~	
	ION	REDU	INT
			TCT.

#	Article	IF	CITATIONS
55	MODULATING CH ₃ NH ₃ Pbl ₃ PEROVSKITE CRYSTALLIZATION BEHAVIOR THROUGH PRECURSOR CONCENTRATION. Nano, 2014, 09, 1440003.	0.5	10
56	Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4175-4186.	2.1	227
57	High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization. RSC Advances, 2014, 4, 33039.	1.7	55
58	Recent Developments in Dye ensitized Solar Cells. ChemPhysChem, 2014, 15, 3902-3927.	1.0	79
59	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	2.2	86
60	Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells. Materials Science in Semiconductor Processing, 2014, 27, 569-576.	1.9	29
61	Parameters Affecting <i>I</i> – <i>V</i> Hysteresis of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO ₂ Layer. Journal of Physical Chemistry Letters, 2014, 5, 2927-2934.	2.1	974
62	Carbazoleâ€Based Holeâ€Transport Materials for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells and Perovskite Solar Cells. Advanced Materials, 2014, 26, 6629-6634.	11.1	369
63	Multifunctional perovskite capping layers in hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 14973.	5.2	57
64	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
65	Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Applied Physics Letters, 2014, 104, .	1.5	135
66	Rate limiting interfacial hole transfer in Sb ₂ S ₃ solid-state solar cells. Energy and Environmental Science, 2014, 7, 1148-1158.	15.6	97
67	Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. Journal of Materials Chemistry A, 2014, 2, 17291-17296.	5.2	274
68	Lead Methylammonium Triiodide Perovskiteâ€Based Solar Cells: An Interfacial Chargeâ€Transfer Investigation. ChemSusChem, 2014, 7, 3088-3094.	3.6	51
69	Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic–Inorganic Lead Iodide Perovskite Solar Cell. Chemistry of Materials, 2014, 26, 4675-4678.	3.2	39
70	Radiative Recombination and Photoconversion of Methylammonium Lead Iodide Perovskite by First Principles: Properties of an Inorganic Semiconductor within a Hybrid Body. Journal of Physical Chemistry C, 2014, 118, 24843-24853.	1.5	74
71	Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Letters, 2014, 14, 5561-5568.	4.5	1,073
72	Computed and Experimental Absorption Spectra of the Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry Letters, 2014, 5, 3061-3065.	2.1	94

#	Article	IF	CITATIONS
73	Efficient organic–inorganic hybrid perovskite solar cells processed in air. Physical Chemistry Chemical Physics, 2014, 16, 24691-24696.	1.3	61
74	Perovskite solar cells involving poly(tetraphenylbenzidine)s: investigation of hole carrier mobility, doping effects and photovoltaic properties. RSC Advances, 2014, 4, 43550-43559.	1.7	30
75	AgTFSI as pâ€Type Dopant for Efficient and Stable Solidâ€State Dyeâ€Sensitized and Perovskite Solar Cells. ChemSusChem, 2014, 7, 3252-3256.	3.6	114
76	Zn ₂ SnO ₄ -Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 22991-22994.	1.5	92
77	Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Nanoscale, 2014, 6, 7072-7078.	2.8	31
78	A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy and Environmental Science, 2014, 7, 2963-2967.	15.6	668
79	Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. Journal of Materials Chemistry A, 2014, 2, 12754-12760.	5.2	174
80	Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discussions, 2014, 176, 301-312.	1.6	115
81	Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Applied Physics Letters, 2014, 104, .	1.5	232
82	Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites. APL Materials, 2014, 2, .	2.2	89
83	Holeâ€Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells. ChemSusChem, 2014, 7, 3420-3425.	3.6	139
84	Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. Journal of Physical Chemistry Letters, 2014, 5, 2357-2363.	2.1	609
85	A highly efficient mesoscopic solar cell based on CH ₃ NH ₃ Pbl _{3â^'x} Cl _x fabricated via sequential solution deposition. Chemical Communications, 2014, 50, 12458-12461.	2.2	87
86	HIGH-EFFICIENT SOLID-STATE PEROVSKITE SOLAR CELL WITHOUT LITHIUM SALT IN THE HOLE TRANSPORT MATERIAL. Nano, 2014, 09, 1440001.	0.5	34
87	Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. Journal of Physical Chemistry Letters, 2014, 5, 2189-2194.	2.1	465
88	Organolead halide perovskites: a family of promising semiconductor materials for solar cells. Science Bulletin, 2014, 59, 2092-2101.	1.7	16
89	Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. Journal of Physical Chemistry Letters, 2014, 5, 1035-1039.	2.1	2,153
91	Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 2015, 8, 3012-3028.	3.6	109

#	Article	IF	CITATIONS
92	Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Employing Nanostructured pâ€Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials, 2015, 27, 4013-4019.	11.1	485
93	Electrochemical Impedance Spectroscopic Analysis of Sensitizationâ€Based Solar Cells. Israel Journal of Chemistry, 2015, 55, 990-1001.	1.0	45
94	Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	19
95	Perovskite Solar Cells: Potentials, Challenges, and Opportunities. International Journal of Photoenergy, 2015, 2015, 1-13.	1.4	65
96	Development and Prospect of Nanoarchitectured Solar Cells. International Journal of Photoenergy, 2015, 2015, 1-11.	1.4	4
97	Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Solar Energy Materials and Solar Cells, 2015, 140, 396-404.	3.0	72
98	TiO2 nanotube structures for the enhancement of photon utilization in sensitized solar cells. Nanotechnology Reviews, 2015, 4, .	2.6	5
99	Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells. Organic Electronics, 2015, 24, 106-112.	1.4	94
100	Rational design of triazatruxene-based hole conductors for perovskite solar cells. RSC Advances, 2015, 5, 53426-53432.	1.7	64
101	Fabrication of single walled carbon nanotubes/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) layers under enhanced gravity drying. Thin Solid Films, 2015, 597, 70-76.	0.8	3
102	Spatially resolved characterization of solution processed perovskite solar cells using the LBIC technique. , 2015, , .		3
103	Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics. , 2015, , .		5
104	Spray PEDOT:PSS coated perovskite with a transparent conducting electrode for low cost scalable photovoltaic devices. Materials Research Innovations, 2015, 19, 482-487.	1.0	9
105	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
106	Interfaces in Perovskite Solar Cells. Small, 2015, 11, 2472-2486.	5.2	344
107	Organic–inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2015, 2, 315-335.	3.0	70
108	A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells. Current Applied Physics, 2015, 15, 574-579.	1.1	34
109	Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, 2015, 3, 9216-9222.	5.2	19

#	Article	IF	CITATIONS
110	Optimization of the photoactivity of conducting polymer covered ZnO nanorod composite electrodes. Journal of Solid State Electrochemistry, 2015, 19, 37-44.	1.2	4
111	Electronic Structure of CH ₃ NH ₃ PbX ₃ Perovskites: Dependence on the Halide Moiety. Journal of Physical Chemistry C, 2015, 119, 1818-1825.	1.5	127
112	Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation. Advanced Materials Interfaces, 2015, 2, 1400528.	1.9	122
113	Indolocarbazole based small molecules: an efficient hole transporting material for perovskite solar cells. RSC Advances, 2015, 5, 55321-55327.	1.7	44
114	Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 2015, 3, 16445-16452.	5.2	91
115	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
116	A tubular perovskite solar cell: improvement of charge separation at the perovskite/HTM interface. Chemical Communications, 2015, 51, 14076-14079.	2.2	15
117	First-Principles Design and Analysis of an Efficient, Pb-Free Ferroelectric Photovoltaic Absorber Derived from ZnSnO ₃ . Chemistry of Materials, 2015, 27, 5899-5906.	3.2	24
118	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78
119	Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. Journal of Materials Chemistry A, 2015, 3, 16860-16866.	5.2	92
120	Transparent conducting oxide free backside illuminated perovskite solar cells. Applied Physics Letters, 2015, 107, .	1.5	11
121	Perovskite solar cells based on small molecule hole transporting materials. Journal of Materials Chemistry A, 2015, 3, 18329-18344.	5.2	88
122	A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11940-11947.	5.2	213
123	Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective. Journal of Applied Physics, 2015, 117, .	1.1	17
124	Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Research, 2015, 8, 2474-2480.	5.8	91
125	Recent Progress on Holeâ€Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500213.	10.2	418
126	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44, 5371-5408.	18.7	725
127	Unraveling the Effect of PbI ₂ Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics, 2015, 2, 589-594.	3.2	97

#	Article	IF	CITATIONS
128	Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO ₂ : Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during <i>J</i> – <i>V</i> Hysteresis. Journal of the American Chemical Society, 2015, 137, 5087-5099.	6.6	246
129	Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications, 2015, 6, 6700.	5.8	358
130	Improved Hole-Transporting Property via HAT-CN for Perovskite Solar Cells without Lithium Salts. ACS Applied Materials & Interfaces, 2015, 7, 6406-6411.	4.0	33
131	Light Harvesting and Charge Recombination in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS Nano, 2015, 9, 4200-4209.	7.3	205
132	Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1628-1637.	2.1	78
133	Effects of Molecular Configuration on Charge Diffusion Kinetics within Hole-Transporting Materials for Perovskites Solar Cells. Journal of Physical Chemistry C, 2015, 119, 8584-8590.	1.5	40
134	Minimizing energy losses in perovskite solar cells using plasma-treated transparent conducting layers. Thin Solid Films, 2015, 593, 10-16.	0.8	18
135	Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells. Electrochimica Acta, 2015, 182, 733-741.	2.6	57
136	Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Physical Chemistry Chemical Physics, 2015, 17, 29501-29506.	1.3	36
137	Ionic Charge Transfer Complex Induced Visible Light Harvesting and Photocharge Generation in Perovskite. ACS Applied Materials & Interfaces, 2015, 7, 20280-20284.	4.0	19
138	Slow recombination in quantum dot solid solar cell using p–i–n architecture with organic p-type hole transport material. Journal of Materials Chemistry A, 2015, 3, 20579-20585.	5.2	46
139	Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3675-3681.	2.1	67
140	Ultrasensitive solution-processed broad-band photodetectors using CH ₃ NH ₃ PbI ₃ perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale, 2015, 7, 16460-16469.	2.8	106
141	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522
142	An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 2784-2793.	5.2	131
143	Hole-transport materials with greatly-differing redox potentials give efficient TiO2–[CH3NH3][PbX3] perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2335-2338.	1.3	57
144	Temperature-dependent hysteresis effects in perovskite-based solar cells. Journal of Materials Chemistry A, 2015, 3, 9074-9080.	5.2	121
145	CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material. Electrochimica Acta, 2015, 151, 21-26.	2.6	53

#	Article	IF	CITATIONS
146	Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 8981-8991.	5.2	109
147	Stable and Lowâ€Cost Mesoscopic CH ₃ NH ₃ PbI ₂ Br Perovskite Solar Cells by using a Thin Poly(3â€hexylthiophene) Layer as a Hole Transporter. Chemistry - A European Journal, 2015, 21, 434-439.	1.7	106
148	p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Transactions, 2015, 44, 3967-3973.	1.6	138
149	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	5.2	164
150	Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. Journal of Materials Chemistry A, 2015, 3, 9081-9085.	5.2	110
151	The role of (photo)electrochemistry in the rational design of hybrid conducting polymer/semiconductor assemblies: From fundamental concepts to practical applications. Progress in Polymer Science, 2015, 43, 96-135.	11.8	102
152	Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3, 8926-8942.	5.2	1,114
153	Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18, 155-162.	8.3	609
154	Integrated Design of Organic Hole Transport Materials for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401185.	10.2	59
155	Charge Carrier Dynamics in Organometal Halide Perovskite Probed by Time-Resolved Electrical Measurements. , 2016, , .		0
156	Fabrication and Characterization of Organic–Inorganic Hybrid Perovskite Devices with External Doping. , 0, , .		8
157	Ambient Air and Hole Transport Layer Free Synthesis: Towards Low Cost CH ₃ NH ₃ Pbl ₃ Solar Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	3
158	3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic–organic hybrid perovskite solar cells. Beilstein Journal of Organic Chemistry, 2016, 12, 1401-1409.	1.3	30
159	Plasmon resonance scattering at perovskite CH ₃ NH ₃ PbI ₃ coated single gold nanoparticles: evidence for electron transfer. Chemical Communications, 2016, 52, 9933-9936.	2.2	20
160	Determination of Interfacial Chargeâ€Transfer Rate Constants in Perovskite Solar Cells. ChemSusChem, 2016, 9, 1647-1659.	3.6	52
161	Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non‣piro Hole Transporting Materials for Highâ€Efficiency Mixedâ€Ion Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502536.	10.2	72
162	Electroâ€Optics of Colloidal Quantum Dot Solids for Thinâ€Film Solar Cells. Advanced Functional Materials, 2016, 26, 1253-1260.	7.8	26
163	Improve Hole Collection by Interfacial Chemical Redox Reaction at a Mesoscopic NiO/CH ₃ NH ₃ PbI ₃ Heterojunction for Efficient Photovoltaic Cells. Advanced Materials Interfaces 2016 3 1600135	1.9	18

#	Article	IF	CITATIONS
164	Holeâ€Transporting Materials for Perovskite‣ensitized Solar Cells. Energy Technology, 2016, 4, 891-938.	1.8	50
165	A comparative study of optimization of solid state dye sensitized solar cell technologies for power grid integration and off-grid operation. , 2016, , .		1
166	Improved charge carrier lifetime in planar perovskite solar cells by bromine doping. Scientific Reports, 2016, 6, 39333.	1.6	113
167	Organic-Inorganic Hybrid Perovskite Solar Cells Using Hole Transport Layer Based on α-Naphthyl Diamine Derivative. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 581-586.	0.1	3
168	Energy yield potential of perovskite-silicon tandem devices. , 2016, , .		11
169	Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells. AIP Advances, 2016, 6, .	0.6	26
170	Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells. Journal of Solid State Chemistry, 2016, 238, 223-228.	1.4	50
171	Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 2016, 23, 138-144.	8.2	253
172	Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. ChemSusChem, 2016, 9, 10-27.	3.6	267
173	F4TCNQ-doped DEPT-SC as hole transporting material for stable perovskite solar cells. Organic Electronics, 2016, 35, 171-175.	1.4	14
174	Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH ₃ NH ₃ PbI ₃ perovskites. Physical Chemistry Chemical Physics, 2016, 18, 15352-15362.	1.3	77
175	Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 12101-12108.	4.0	40
176	Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today, 2016, 3, 96-102.	2.3	83
177	Stable and durable CH ₃ NH ₃ PbI ₃ perovskite solar cells at ambient conditions. Nanotechnology, 2016, 27, 235404.	1.3	61
178	New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. Journal of Materials Chemistry A, 2016, 4, 8724-8733.	5.2	109
179	Perspectives on organolead halide perovskite photovoltaics. Journal of Photonics for Energy, 2016, 6, 032001.	0.8	4
180	The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Modern Physics Letters B, 2016, 30, 1650341.	1.0	30
181	<i>m</i> â€Methoxy Substituents in a Tetraphenylethyleneâ€Based Holeâ€Transport Material for Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2016, 22, 16636-16641. 	1.7	33

	Сітл	ation Report	
#	Article	IF	Citations
182	Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell. Electronic Materials Letters, 2016, 12, 628-637.	1.0	7
183	Moderate Humidity Delays Electron–Hole Recombination in Hybrid Organic–Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. Journal of Physical Chemistry Letters, 2016 7, 3215-3222.	, 2.1	139
184	Compact nanostructured TiO 2 deposited by aerosol spray pyrolysis for the hole-blocking layer in a CH 3 NH 3 PbI 3 perovskite solar cell. Solar Energy, 2016, 136, 515-524.	2.9	38
185	A novel asymmetric phthalocyanine-based hole transporting material for perovskite solar cells with an open-circuit voltage above 1.0 V. Synthetic Metals, 2016, 220, 462-468.	2.1	38
186	Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells. , 2016, , 53-77.		27
187	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	11.1	636
188	Time-resolved photocurrent of an organic-inorganic hybrid solar cell based on Sb2S3. Journal of the Korean Physical Society, 2016, 69, 541-546.	0.3	8
189	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600505.	1.9	18
190	Spatially Heterogeneous Chlorine Incorporation in Organic–Inorganic Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 6536-6543.	3.2	39
191	Impact of Conformality and Crystallinity for Ultrathin 4 nm Compact TiO ₂ Layers in Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600580.	1.9	19
192	Potentials and challenges towards application of perovskite solar cells. Science China Materials, 2016, 59, 769-778.	3.5	14
193	Room-temperature fabrication of multi-deformable perovskite solar cells made in a three-dimensional gel framework. RSC Advances, 2016, 6, 82933-82940.	1.7	7
194	Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer. Physica Status Solidi - Rapid Research Letters, 2016, 10, 882-889.	1.2	15
195	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016 2609-2619.	5, 9, 3.6	163
196	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	1.7	114
197	A Strategy to Simplify the Preparation Process of Perovskite Solar Cells by Coâ€deposition of a Holeâ€Conductor and a Perovskite Layer. Advanced Materials, 2016, 28, 9648-9654.	11.1	150
198	The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming <i>Spiro</i> â€OMeTAD in Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601062.	10.2	87
199	Stable Tin Chloride Perovskite Sensitized Silver Doped Titania Nanosticks Photoanode Solar Cells with Different Hole Transport Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 981-990.	1.9	2

#	Article	IF	CITATIONS
200	H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy. Scientific Reports, 2016, 6, 32434.	1.6	53
201	Synthesis and characterization of tetratriphenylamine Zn phthalocyanine as hole transporting material for perovskite solar cells. Solar Energy, 2016, 140, 60-65.	2.9	34
202	Effect of dimethylamino substituent on tetraphenylethylene-based hole transport material in perovskite solar cells. Organic Electronics, 2016, 39, 323-327.	1.4	18
203	Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Advances, 2016, 6, 108888-108895.	1.7	85
204	Boosting Efficiency and Stability of Perovskite Solar Cells with CdS Inserted at TiO ₂ /Perovskite Interface. Advanced Materials Interfaces, 2016, 3, 1600729.	1.9	35
205	3,4â€Phenylenedioxythiophene (PheDOT) Based Holeâ€Transporting Materials for Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1043-1049.	1.7	19
206	Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material. ACS Nano, 2016, 10, 6816-6825.	7.3	127
207	A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3â^'xClx solar cells by an effective Cl doping method. Nano Energy, 2016, 27, 51-57.	8.2	222
208	Porous PbI ₂ films for the fabrication of efficient, stable perovskite solar cells via sequential deposition. Journal of Materials Chemistry A, 2016, 4, 10223-10230.	5.2	56
209	Fine Tuned Nanolayered Metal/Metal Oxide Electrode for Semitransparent Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2016, 26, 1921-1929.	7.8	37
210	Advances in the structure and materials of perovskite solar cells. Research on Chemical Intermediates, 2016, 42, 625-639.	1.3	11
211	Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3970-3990.	5.2	472
212	High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Frontiers of Optoelectronics, 2016, 9, 71-80.	1.9	42
213	Compact Layer Free Perovskite Solar Cells with a High-Mobility Hole-Transporting Layer. ACS Applied Materials & Interfaces, 2016, 8, 2652-2657.	4.0	68
214	Self-powered, ultraviolet-visible perovskite photodetector based on TiO2 nanorods. RSC Advances, 2016, 6, 6205-6208.	1.7	45
215	A numerical model for charge transport and energy conversion of perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 4476-4486.	1.3	56
216	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
217	Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Applied Surface Science, 2016, 388, 82-88.	3.1	41

		15	C
#	ARTICLE	IF	CITATIONS
218	efficient perovskite solar cells. Organic Electronics, 2016, 33, 142-149.	1.4	29
219	Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5981-5989.	4.0	184
220	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360.	8.2	166
221	A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy and Environmental Science, 2016, 9, 873-877.	15.6	362
222	Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale, 2016, 8, 12892-12899.	2.8	98
223	Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy and Environmental Science, 2016, 9, 1439-1449.	15.6	126
224	Dopant-free 3,3′-bithiophene derivatives as hole transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3661-3666.	5.2	50
225	Exploring the electrochemical properties of hole transport materials with spiro-cores for efficient perovskite solar cells from first-principles. Nanoscale, 2016, 8, 6146-6154.	2.8	124
226	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
227	Efficient and stable planar perovskite solar cells with a non-hygroscopic small molecule oxidant doped hole transport layer. Electrochimica Acta, 2016, 196, 328-336.	2.6	54
228	The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 2303-2308.	1.3	7
229	Star-shaped hole transport materials with indeno[1,2-b] thiophene or fluorene on a triazine core for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1186-1190.	5.2	38
230	A facile way to prepare nanoporous Pbl ₂ films and their application in fast conversion to CH ₃ NH ₃ Pbl ₃ . RSC Advances, 2016, 6, 1611-1617.	1.7	36
231	Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Solar Energy, 2016, 124, 143-152.	2.9	94
232	High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiO _{<i>x</i>} Electron Extraction Layer. ACS Applied Materials & Interfaces, 2016, 8, 1876-1883.	4.0	40
233	Perovskite solar cells based on bottom-fused TiO ₂ nanocones. Journal of Materials Chemistry A, 2016, 4, 1520-1530.	5.2	36
234	Tetra methyl substituted Cu(II) phthalocyanine as alternative hole transporting material for organometal halide perovskite solar cells. Applied Surface Science, 2016, 360, 767-771.	3.1	50
235	Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy, 2016, 19, 88-97.	8.2	125

#	Article	IF	CITATIONS
236	Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?. Physical Chemistry Chemical Physics, 2016, 18, 331-338.	1.3	69
237	Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells. Nanoscale, 2016, 8, 6328-6334.	2.8	28
238	Efficiency enhancement in perovskite solar cell utilizing solution-processable phthalocyanine hole transport layer with thermal annealing. Organic Electronics, 2017, 43, 156-161.	1.4	39
239	Moving into the domain of perovskite sensitized solar cell. Renewable and Sustainable Energy Reviews, 2017, 72, 907-915.	8.2	20
240	A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data. Renewable and Sustainable Energy Reviews, 2017, 73, 408-422.	8.2	22
241	A simple fabrication of CH ₃ NH ₃ PbI ₃ perovskite for solar cells using low-purity PbI ₂ . Journal of Semiconductors, 2017, 38, 014004.	2.0	12
242	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	8.2	362
243	CH ₃ NH ₃ PbI ₃ films prepared by combining 1- and 2-step deposition: how crystal growth conditions affect properties. Physical Chemistry Chemical Physics, 2017, 19, 7204-7214.	1.3	16
244	Study of ethoxyethane deposition time and Co (III) complex doping on the performance of mesoscopic perovskite based solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 224-230.	3.0	14
245	Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Openâ€Circuit Voltage and Low Recombination. Advanced Energy Materials, 2017, 7, 1602358.	10.2	430
246	Synthesizing conditions for organic-inorganic hybrid perovskite using methylammonium lead iodide. Journal of Physics and Chemistry of Solids, 2017, 105, 16-22.	1.9	6
247	High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material. Scientific Reports, 2017, 7, 42564.	1.6	52
248	A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes. RSC Advances, 2017, 7, 20732-20737.	1.7	21
249	Origin and Whereabouts of Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9705-9713.	1.5	65
250	Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10917-10927.	5.2	95
251	Electrosprayed TiO ₂ nanoporous hemispheres for enhanced electron transport and device performance of formamidinium based perovskite solar cells. Nanoscale, 2017, 9, 412-420.	2.8	19
252	Femtosecond Chargeâ€Injection Dynamics at Hybrid Perovskite Interfaces. ChemPhysChem, 2017, 18, 2381-2389.	1.0	24
253	A 200-nm length TiO2 nanorod array with a diameter of 13 nm and areal density of 1100 µmâ^2 for efficient perovskite solar cells. Ceramics International, 2017, 43, 12534-12539.	2.3	15

#	Article	IF	CITATIONS
254	Performance enhancement of perovskite solar cell by controlling deposition temperature of copper phthalocyanine as a dopant-free hole transporting layer. Organic Electronics, 2017, 48, 211-216.	1.4	23
255	High-efficiency perovskite solar cells employing a conjugated donor–acceptor co-polymer as a hole-transporting material. RSC Advances, 2017, 7, 27189-27197.	1.7	27
256	Highâ€Efficiency Perovskite Solar Cell Based on Poly(3â€Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer. ChemSusChem, 2017, 10, 3854-3860.	3.6	112
257	New Efficient 1,1′â€Biâ€2â€naphthylamineâ€Based Holeâ€Transporting Materials for Perovskite Solar Cells. ChemistrySelect, 2017, 2, 4392-4397.	0.7	8
258	Enhanced Efficiency and Stability of an Aqueous Lead-Nitrate-Based Organometallic Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 14023-14030.	4.0	30
259	Effect of exchange-correlation and GW approximations on electrical property of cubic, tetragonal and orthorhombic CH3NH3PbI3. Integrated Ferroelectrics, 2017, 177, 1-9.	0.3	2
260	Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13231-13239.	4.0	97
261	Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells. Small, 2017, 13, 1700007.	5.2	36
262	Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Applied Surface Science, 2017, 410, 393-400.	3.1	47
263	Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale, 2017, 9, 4700-4706.	2.8	133
264	Characterization techniques for dye-sensitized solar cells. Energy and Environmental Science, 2017, 10, 672-709.	15.6	136
265	An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 2017, 71, 675-686.	8.2	153
266	Enhanced Charge Carrier Transport and Device Performance Through Dual-Cesium Doping in Mixed-Cation Perovskite Solar Cells with Near Unity Free Carrier Ratios. ACS Applied Materials & Interfaces, 2017, 9, 2358-2368.	4.0	28
267	Low Density of Conduction and Valence Band States Contribute to the High Open-Circuit Voltage in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 1455-1462.	1.5	57
268	Overcoming the Limitations of Sputtered Nickel Oxide for Highâ€Efficiency and Largeâ€Area Perovskite Solar Cells. Advanced Science, 2017, 4, 1700463.	5.6	168
269	Fermi level alignment by copper doping for efficient ITO/perovskite junction solar cells. Journal of Materials Chemistry A, 2017, 5, 25211-25219.	5.2	53
270	Enhanced charge carrier extraction by a highly ordered wrinkled MgZnO thin film for colloidal quantum dot solar cells. Journal of Materials Chemistry C, 2017, 5, 11111-11120.	2.7	18
271	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	5.2	40

#	Article	IF	CITATIONS
272	A facilely synthesized â€~spiro' hole-transporting material based on spiro[3.3]heptane-2,6-dispirofluorene for efficient planar perovskite solar cells. RSC Advances, 2017, 7, 41903-41908.	1.7	31
273	Three-dimensional titanium oxide nanoarrays for perovskite photovoltaics: surface engineering for cascade charge extraction and beneficial surface passivation. Sustainable Energy and Fuels, 2017, 1, 1960-1967.	2.5	13
274	Diphenylâ€2â€pyridylamineâ€6ubstituted Porphyrins as Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2017, 10, 3780-3787.	3.6	40
275	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	1.4	21
276	Mixedâ€Organicâ€Cation Tin Iodide for Leadâ€Free Perovskite Solar Cells with an Efficiency of 8.12%. Advanced Science, 2017, 4, 1700204.	5.6	404
277	Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells. Scientific Reports, 2017, 7, 6101.	1.6	93
278	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	8.2	89
279	Effect of Photogenerated Dipoles in the Hole Transport Layer on Photovoltaic Performance of Organic–Inorganic Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601575.	10.2	54
280	Solution-Processed ZnO-Based Low-Cost \$\$hbox {CH}_{3} hbox {NH}_{3} hbox {PbI}_{3}\$\$ CH 3 NH 3 PbI 3 Solar Cells by Ambient Air, Hole Transport Layer-Free Synthesis. Arabian Journal for Science and Engineering, 2017, 42, 4317-4325.	1.7	1
281	Polystyrenesulfonate Dispersed Dopamine with Unexpected Stable Semiquinone Radical and Electrochemical Behavior: A Potential Alternative to PEDOT:PSS. ACS Sustainable Chemistry and Engineering, 2017, 5, 460-468.	3.2	17
282	High Openâ€Circuit Voltages in Tinâ€Rich Lowâ€Bandgap Perovskiteâ€Based Planar Heterojunction Photovoltaics. Advanced Materials, 2017, 29, 1604744.	11.1	212
283	Device preâ€conditioning and steadyâ€state temperature dependence of CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 533-544.	4.4	17
284	Graphene and related 2D materials for high efficient and stable perovskite solar cells. , 2017, , .		8
285	Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption. Applied Sciences (Switzerland), 2017, 7, 1020.	1.3	10
286	Ultra-Thin Crystalline Silicon Solar Cells with Nickel Oxide Interlayer as Hole-selective Contact. , 2017, , .		1
287	Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap. , 0, , .		1
288	Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells. Chinese Physics B, 2018, 27, 017305.	0.7	31
289	New Metalâ^'Free Porphyrins as Holeâ^'Transporting Materials in Mesoporous Perovskite Solar Cells ChemistrySelect, 2018, 3, 2536-2541.	0.7	10

#	Article	IF	CITATIONS
290	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
291	The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI ₃ for efficient carbon-based perovskite solar cells. Nanoscale, 2018, 10, 9996-10004.	2.8	142
292	Tetraâ€Propyl‣ubstituted Copper (II) Phthalocyanine as Dopantâ€Free Hole Transporting Material for Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800050.	3.1	43
293	Determination of Carrier Lifetimes in Organic-Inorganic Hybrid Solar Cells Based on Sb2S3 by Using the Time-Resolved Photocurrent. Journal of the Korean Physical Society, 2018, 72, 709-715.	0.3	3
294	Improved Stability of Organometal Halide Perovskite Films and Solar Cells toward Humidity via Surface Passivation with Oleic Acid. ACS Applied Energy Materials, 2018, 1, 387-392.	2.5	66
295	Morphology and Optoelectronic Variations Underlying the Nature of the Electron Transport Layer in Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 602-615.	2.5	25
296	The Effect of Dopantâ€Free Holeâ€Transport Polymers on Charge Generation and Recombination in Cesium–Bismuth–Iodide Solar Cells. ChemSusChem, 2018, 11, 1114-1120.	3.6	30
297	Influence of hole transport layers on internal absorption, charge recombination and collection in HC(NH ₂) ₂ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 7922-7932.	5.2	29
298	Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT. Solar Rrl, 2018, 2, 1800013.	3.1	36
299	Controlling energy level positions in hole conducting molecular films by additives. Journal of Electron Spectroscopy and Related Phenomena, 2018, 224, 100-106.	0.8	3
300	Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 81, 2812-2822.	8.2	153
301	Tuning electronic structures of thiazolo[5,4-d]thiazole-based hole-transporting materials for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 180, 334-342.	3.0	24
302	Biosupramolecular bacteriochlorin aggregates as hole-transporters for perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 639-644.	2.0	18
303	Effect of alkyl chain length on the properties of triphenylamine-based hole transport materials and their performance in perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 1252-1260.	1.3	25
304	Effect of rubrene:P3HT bilayer on photovoltaic performance of perovskite solar cells with electrodeposited ZnO nanorods. Journal of Energy Chemistry, 2018, 27, 455-462.	7.1	32
305	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
306	Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials, 2018, 1, 133-154.	3.2	128
307	Recent advancements in compact layer development for perovskite solar cells. Heliyon, 2018, 4, e00912.	1.4	20

#	Article	IF	CITATIONS
308	Carbon Nanotubes for Quantum Dot Photovoltaics with Enhanced Light Management and Charge Transport. ACS Photonics, 2018, 5, 4854-4863.	3.2	4
309	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters, 2018, 10, 68.	14.4	50
310	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
311	Density Functional Theory Investigation of Carbon Dots as Holeâ€transport Material in Perovskite Solar Cells. ChemPhysChem, 2018, 19, 3018-3023.	1.0	18
312	Lead Vacancy Can Explain the Suppressed Nonradiative Electron–Hole Recombination in FAPbI ₃ Perovskite under Iodine-Rich Conditions: A Time-Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2018, 9, 6489-6495.	2.1	29
313	Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility. Physical Chemistry Chemical Physics, 2018, 20, 25738-25745.	1.3	4
314	Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646.	6.6	397
315	Study of transport and recombination mechanism in hole transporter free perovskite solar cell. Materials Research Express, 2018, 5, 105508.	0.8	2
316	Intramolecular and interfacial dynamics of triarylamine-based hole transport materials. Photochemical and Photobiological Sciences, 2018, 17, 722-733.	1.6	4
317	Computational Study of Ternary Devices: Stable, Low-Cost, and Efficient Planar Perovskite Solar Cells. Nano-Micro Letters, 2018, 10, 51.	14.4	53
318	Achieving High Openâ€Circuit Voltage for pâ€iâ€n Perovskite Solar Cells Via Anode Contact Engineering. Solar Rrl, 2018, 2, 1800151.	3.1	14
319	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	2.5	58
320	Tuning surface chemistry and morphology of graphene oxide by γ-ray irradiation for improved performance of perovskite photovoltaics. Carbon, 2018, 139, 564-571.	5.4	24
321	Nanocomposite (CuS) (ZnS)1 thin film back contact for CdTe solar cells: Toward a bifacial device. Solar Energy Materials and Solar Cells, 2018, 186, 227-235.	3.0	30
322	Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells. Chemistry of Materials, 2018, 30, 5264-5271.	3.2	30
323	Hole Transport Behaviour of Various Polymers and Their Application to Perovskite-Sensitized Solid-State Solar Cells. Journal of Nanomaterials, 2018, 2018, 1-6.	1.5	4
324	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
325	New hole transport materials with 1,2-dimethoxyphenyl as the terminal groups. Synthetic Metals, 2018, 244, 150-154.	2.1	3

#	Article	IF	CITATIONS
326	Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines. Journal of Materials Science, 2018, 53, 12974-12987.	1.7	9
327	Co-Ni alloy@carbon aerogels for improving the efficiency and air stability of perovskite solar cells and its hysteresis mechanism. Carbon, 2019, 154, 322-329.	5.4	12
328	Ultimate Charge Extraction of Monolayer PbS Quantum Dot for Observation of Multiple Exciton Generation. ChemPhysChem, 2019, 20, 2657-2661.	1.0	1
329	A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden–Popper Perovskite Solar Cells. Nano Letters, 2019, 19, 5237-5245.	4.5	76
330	A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18898-18905.	5.2	36
331	High irradiance performance of cesium-formamidinium-based mixed-halide perovskite for concentrator photovoltaics under various operating conditions. Journal of Physics and Chemistry of Solids, 2019, 135, 109093.	1.9	11
332	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
333	Effect of the length of anodically grown titania nanotubes on the efficiency of a moisture-stable hole transport material (HTM)-free perovskite solar cell. CrystEngComm, 2019, 21, 4798-4810.	1.3	6
334	Enhanced Raman scattering on lead iodide film. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117336.	2.0	4
335	The effect of phase purification on photovoltaic performance of perovskite solar cells. Applied Physics Letters, 2019, 115, 192105.	1.5	4
336	Investigating the properties of nano nest-like nickel oxide and the NiO/Perovskite for potential application as a hole transport material. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 045009.	0.7	15
337	A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN. Inorganic Chemistry, 2019, 58, 15824-15831.	1.9	4
338	Cs-Doped TiO ₂ Nanorod Array Enhances Electron Injection and Transport in Carbon-Based CsPbI ₃ Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 16927-16932.	3.2	35
339	Molecular Design Strategy in Developing Titanyl Phthalocyanines as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells: Peripheral or Nonperipheral Substituents?. ACS Applied Materials & Interfaces, 2019, 11, 36535-36543.	4.0	22
340	Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability. Advanced Energy Materials, 2019, 9, 1803384.	10.2	219
341	The Applications of Polymers in Solar Cells: A Review. Polymers, 2019, 11, 143.	2.0	146
342	Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Optical Materials, 2019, 94, 1-8.	1.7	19
343	Effects of Chemical Bath-Deposited TiO2 Compact Layer on the Performance of the Fully Screen-Printable Hole-Transport Material-Free Mesoscopic Perovskite Solar Cells with a Carbon Electrode, Journal of Electronic Materials, 2019, 48, 5857-5864.	1.0	1

#	Article	IF	CITATIONS
344	Improved environmental stability of HTM free perovskite solar cells by a modified deposition route. Chemical Papers, 2019, 73, 2667-2678.	1.0	8
345	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
346	Dopantâ€Free Holeâ€Transporting Layer Based on Isomerâ€Pure Tetraâ€Butylâ€Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900119.	3.1	12
347	Effect of mono-halogen-substitution on the electron transporting properties of perylene diimides: A density functional theory study. Journal of Molecular Liquids, 2019, 287, 110968.	2.3	4
348	Effective improvement of the photovoltaic performance of carbon-based perovskites solar cells by grinding process and its capacitor model. Journal of Power Sources, 2019, 422, 131-137.	4.0	14
349	Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511-515.	13.7	1,867
350	Nanophotonic enhancement and improved electron extraction in perovskite solar cells using near-horizontally aligned TiO2 nanorods. Journal of Power Sources, 2019, 417, 176-187.	4.0	17
351	Correlation between the Effectiveness of the Electron-Selective Contact and Photovoltaic Performance of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 877-882.	2.1	6
352	Halide perovskite based on hydrophobic ionic liquid for stability improving and its application in high-efficient photovoltaic cell. Electrochimica Acta, 2019, 303, 133-139.	2.6	38
353	Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 7338-7346.	5.2	41
354	Roles of UV light strength and auxiliary electric field in the photocatalytic degradation effect of organic contaminant. High Voltage, 2019, 4, 113-121.	2.7	8
355	Effect of Perovskite Precursors Molarity on Solar Cell Performance. , 2019, , .		1
356	Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material. Nanoscale, 2019, 11, 19586-19594.	2.8	26
357	Efficient planar perovskite solar cells with a conjugated random terpolymer as a novel hole-transporting material. Dyes and Pigments, 2019, 160, 930-935.	2.0	10
358	Review of current progress in inorganic hole-transport materials for perovskite solar cells. Applied Materials Today, 2019, 14, 175-200.	2.3	158
359	Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at C17-propionate residue. Dyes and Pigments, 2019, 162, 763-770.	2.0	18
360	Emerging solar cells energy trade-off: Interface engineering materials impact on stability and efficiency progress. International Journal of Energy Research, 2019, 43, 1670-1688.	2.2	13
361	P3HT/Phthalocyanine Nanocomposites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800264.	3.1	47

#	Article	IF	CITATIONS
362	Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. Electrochimica Acta, 2019, 297, 1071-1078.	2.6	12
363	Mixed Halide Perovskite Solar Cells: Progress and Challenges. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 85-112.	6.8	51
364	In situ construction of gradient heterojunction using organic VOx precursor for efficient and stable inverted perovskite solar cells. Nano Energy, 2020, 67, 104244.	8.2	44
365	Fluorine plasma treatment on carbon-based perovskite solar cells for rapid moisture protection layer formation and performance enhancement. Chemical Communications, 2020, 56, 535-538.	2.2	22
366	Hole transporting materials for perovskite solar cells and a simple approach for determining the performance limiting factors. Journal of Materials Chemistry A, 2020, 8, 1386-1393.	5.2	22
367	Conjugated Polymers as Hole Transporting Materials for Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 449-458.	2.0	9
369	Double layer mesoscopic electron contact for efficient perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 843-851.	2.5	22
370	Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109608.	8.2	83
371	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	11.1	123
372	Alkali-cation-enhanced benzylammonium passivation for efficient and stable perovskite solar cells fabricated through sequential deposition. Journal of Materials Chemistry A, 2020, 8, 19357-19366.	5.2	13
373	An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl) Tj ETQq0 0 0 rgBT	lOverlock 14.4	10 Tf 50 34
374	Modification Engineering in SnO ₂ Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Advanced Functional Materials, 2020, 30, 2004209.	7.8	98
375	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	18.7	371
376	Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells. Energies, 2020, 13, 5572.	1.6	66
377	Thiophene-Based Two-Dimensional Dion–Jacobson Perovskite Solar Cells with over 15% Efficiency. Journal of the American Chemical Society, 2020, 142, 11114-11122.	6.6	190
378	Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13, 1997-2018.	5.8	52
379	The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 2020, 44, 9839-9863.	2.2	28
380	Hybrid 2D [Pb(CH ₃ NH ₂)I ₂] _{<i>n</i>} Coordination Polymer Precursor for Scalable Perovskite Deposition. ACS Energy Letters, 2020, 5, 2305-2312.	8.8	18

#	Article	IF	CITATIONS
381	Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. Journal of Materials Chemistry A, 2020, 8, 6546-6554.	5.2	30
382	Dynamical properties of organo lead-halide perovskites and their interfaces to titania: insights from Density Functional Theory. Heliyon, 2020, 6, e03427.	1.4	4
383	Synthesis of Highly-Oriented Black CsPbl ₃ Microstructures for High-Performance Solar Cells. Chemistry of Materials, 2020, 32, 3235-3244.	3.2	23
384	Organicâ€Saltâ€Assisted Crystal Growth and Orientation of Quasiâ€2D Ruddlesden–Popper Perovskites for Solar Cells with Efficiency over 19%. Advanced Materials, 2020, 32, e2001470.	11.1	162
385	A mixed hole transport material employing a highly planar conjugated molecule for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5163-5170.	5.2	40
386	Impact of peripheral groups on novel asymmetric phthalocyanine-based hole-transporting materials for perovskite solar cells. Dyes and Pigments, 2020, 177, 108301.	2.0	8
387	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	5.2	23
388	Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals, 2020, 10, 14.	1.0	9
389	Alternative approach for efficient hole transporting electrode by depositing MWCNT layer on CZTS-MWCNT material for perovskite solar cell application. Optical Materials, 2021, 111, 110612.	1.7	5
390	Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental Science, 2021, 14, 5161-5190.	15.6	255
391	<i>N</i> Bromosuccinimide as a p-type dopant for a Spiro-OMeTAD hole transport material to enhance the performance of perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 2294-2300.	2.5	5
392	D-A-ï€-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells. Joule, 2021, 5, 249-269.	11.7	203
393	Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9175-9190.	5.2	10
394	Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar Rrl, 2021, 5, 2000713.	3.1	17
395	Coordination Strategy Driving the Formation of Compact CuSCN Holeâ€Transporting Layers for Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000777.	3.1	11
396	A Simple Cu(II) Polyelectrolyte as a Method to Increase the Work Function of Electrodes and Form Effective <i>p</i> ‶ype Contacts in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2009246.	7.8	16
397	A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021, 216, 26-47.	2.9	67
398	Multifunctional Two-Dimensional Conjugated Materials for Dopant-Free Perovskite Solar Cells with Efficiency Exceeding 22%, ACS Energy Letters, 0, , 1521-1532.	8.8	103

#	Article	IF	CITATIONS
399	Manipulating Perovskite Precursor Solidification toward 21% Pristine MAPbI ₃ Solar Cells. Solar Rrl, 2021, 5, 2100114.	3.1	8
400	Centralâ€Core Engineering of Dopantâ€Free Hole Transport Materials for Efficient nâ€iâ€p Structured Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100184.	3.1	14
401	Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells. Polyhedron, 2021, 199, 115089.	1.0	4
402	Charge transporting materials for perovskite solar cells. Rare Metals, 2021, 40, 2690-2711.	3.6	23
403	Additive-Assisted Interfacial Engineering for Efficient Carbon-Based Perovskite Solar Cell Incorporated Dopant-Free Polymeric Hole Conductor PBDT(S)-T1. ACS Applied Energy Materials, 2021, 4, 5821-5829.	2.5	10
404	Impact of Synthetic Route on Photovoltaic Properties of Isoindigoâ€Containing Conjugated Polymers. Macromolecular Chemistry and Physics, 2021, 222, 2100136.	1.1	1
405	Design of Low Bandgap CsPb _{1â^²} <i>_x</i> Sn <i>_x</i> l ₂ Br Perovskite Solar Cells with Excellent Phase Stability. Small, 2021, 17, e2101380.	5.2	42
406	Impact of carbon-based charge transporting layer on the performance of perovskite solar cells. Solar Energy, 2021, 221, 254-274.	2.9	7
407	Multi-Scalable Grain Growth via Phenyl-C60-Butyric Acid Methyl Ester Molecular Aggregation in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5985-5994.	2.5	4
408	Lewis Base Passivation Mediates Charge Transfer at Perovskite Heterojunctions. Journal of the American Chemical Society, 2021, 143, 12230-12243.	6.6	36
409	Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable ZnO nanorods and optimized perovskite morphology. Solar Energy Materials and Solar Cells, 2021, 230, 111206.	3.0	9
410	Recent advances in carbon nanomaterial-optimized perovskite solar cells. Materials Today Energy, 2021, 21, 100769.	2.5	14
411	Residual solvent extraction via chemical displacement for efficient and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 61, 8-14.	7.1	19
412	The effect of MoO3 interlayer on electro-physical characteristics of the perovskite solar cells. Synthetic Metals, 2021, 281, 116903.	2.1	4
413	Conjugated polymers as functional hole selective layers in efficient metal halide perovskite solar cells. AIMS Materials Science, 2017, 4, 956-969.	0.7	3
414	Progress of research on new hole transporting materials used in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 033301.	0.2	5
415	A review of the perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038805.	0.2	26
416	Photocatalytic Hydrogen Evolution. , 2017, , 1-41.		0

#	ARTICLE	IF	CITATIONS
417	transmittance Cd(S,O) electron transport layers stacked with ZnO hole blocking layer. Journal of Photonics for Energy, 2018, 8, 1.	0.8	1
418	Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, , .	4.0	2
419	Most Efficient Perovskite Precursors Molarity for Perovskite Solar Cell. , 2020, , .		0
420	High-Performance Perovskite Solar Cells by Doping Didodecyl Dimethyl Ammonium Bromide in the Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 13471-13481.	2.5	2
421	Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 222-246.	7.1	29
422	Perovskite Solar Cells Employing a PbSO ₄ (PbO) ₄ Quantum Dot-Doped Spiro-OMeTAD Hole Transport Layer with an Efficiency over 22%. ACS Applied Materials & Interfaces, 2022, 14, 2989-2999.	4.0	19
423	Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128072.	2.3	9
424	A short review on progress in perovskite solar cells. Materials Research Bulletin, 2022, 149, 111700.	2.7	48
425	Structural and Optical Properties Investigation of The Hybrid CZTS-MWCNT Composite Hole Transporting Material. , 2021, , .		0
427	Lowâ€Temperatureâ€Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. Advanced Energy Materials, 2022, 12, .	10.2	38
428	Poly(<i>N</i> , <i>N</i> ′â€bisâ€4â€butylphenylâ€ <i>N</i> , <i>N</i> ′â€biphenyl)benzidine as Interfacial Pass Dopantâ€Free P3HT Hole Transport Layerâ€Based Perovskite Solar Cell in Regular Mesoscopic Architecture. Energy Technology, 2022, 10, .	ivator for 1.8	2
429	Simple-Structured Low-Cost Dopant-Free Hole-Transporting Polymers for High-Stability CsPbl ₂ Br Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 13400-13409.	4.0	5
430	Enhancing Efficiency of Nonfullerene Organic Solar Cells via Using Polyelectrolyte-Coated Plasmonic Gold Nanorods as Rear Interfacial Modifiers. ACS Applied Materials & Interfaces, 2022, 14, 16185-16196.	4.0	8
431	A facile strategy for high performance air-processed perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporter. Solar Energy, 2022, 237, 153-160.	2.9	2
432	Radical doped hole transporting material for high-efficiency and thermostable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 10604-10613.	5.2	13
434	Instability of dye-sensitized solar cells using natural dyes and approaches to improving stability – An overview. Sustainable Energy Technologies and Assessments, 2022, 52, 102196.	1.7	10
437	In Situ Polymer Network in Perovskite Solar Cells Enabled Superior Moisture and Thermal Resistance. Journal of Physical Chemistry Letters, 2022, 13, 3754-3762.	2.1	14
438	Configuration of Methylammonium Lead Iodide Perovskite Solar Cell and its Effect on the Device's Performance: A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	10

#	Article	IF	CITATIONS
439	Charge transport materials for mesoscopic perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 11063-11104.	2.7	10
440	Inkjet Printing of Quasiâ€2D Perovskite Layers with Optimized Drying Protocol for Efficient Solar Cells. Advanced Materials Technologies, 2022, 7, .	3.0	10
441	Efficient and Stable Inverted Perovskite Solar Cells with Graphene Oxideâ€Modified Hole Transport Layer. Energy Technology, 2022, 10, .	1.8	4
442	Bifacial CdTe Solar Cells with Copper Chromium Oxide Backâ€Buffer Layer. Solar Rrl, 2022, 6, .	3.1	6
443	Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15725-15780.	2.7	17
444	Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 18762-18772.	5.2	17
445	Photo-enhanced growth of lead halide perovskite crystals and their electro-optical properties. RSC Advances, 2022, 12, 27775-27780.	1.7	1
446	Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. Nanomaterials, 2022, 12, 3003.	1.9	6
447	Slot-die coated scalable hole transporting layers for efficient perovskite solar modules. Journal of Materials Chemistry A, 2022, 10, 25652-25660.	5.2	9
448	Nexuses Between the Chemical Design and Performance of Small Molecule Dopantâ€Free Hole Transporting Materials in Perovskite Solar Cells. Small, 2023, 19, .	5.2	19
449	Synergetic Passivation of Metalâ€Halide Perovskite with Fluorinated Phenmethylammonium toward Efficient Solar Cells and Modules. Advanced Energy Materials, 2023, 13, .	10.2	28
450	Dopantâ€Free Twoâ€Dimensional Hole Transport Small Molecules Enable Efficient Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	20
451	Rational Regulation of Organic Spacer Cations for Quasiâ€2D Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
452	Relevance of Long Diffusion Lengths for Efficient Halide Perovskite Solar Cells. , 2023, 2, .		8
453	Synthesis and characterization of N,N′-Di-1-naphthyl-N,N′-diphenylbenzidine as a hole-transporting layer (HTL) for Perovskite solar cell applications. International Journal of Modern Physics B, 2024, 38, .	1.0	3
454	Precursor Engineering of Lead Acetate-Based Precursors for High-Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 18800-18807.	4.0	3
466	A route to carbon-sp ³ bridging spiro-molecules: synthetic methods and optoelectronic applications. Organic Chemistry Frontiers, 0, , .	2.3	0
467	A review on conventional perovskite solar cells with organic dopant-free hole transport materials: roles of chemical structure and interfacial materials in efficient devices. Journal of Materials Chemistry C, 0, , .	2.7	0

ARTICLE

IF CITATIONS