Paper-based electroanalytical devices for accessible dia

MRS Bulletin 38, 309-314 DOI: 10.1557/mrs.2013.56

Citation Report

#	Article	IF	CITATIONS
1	Proteolytic Assays on Quantum-Dot-Modified Paper Substrates Using Simple Optical Readout Platforms. Analytical Chemistry, 2013, 85, 8817-8825.	3.2	73
2	A multi-anode paper-based microbial fuel cell for disposable biosensors. , 2013, , .		3
3	An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst, The, 2013, 138, 4998.	1.7	69
4	Pencilâ€Drawn Dual Electrode Detectors to Discriminate Between Analytes Comigrating on Paperâ€Based Fluidic Devices but Undergoing Electrochemical Processes with Different Reversibility. Electroanalysis, 2013, 25, 2515-2522.	1.5	66
5	Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis, 2013, 5, 2821-2836.	0.6	68
6	Low-Voltage Origami-Paper-Based Electrophoretic Device for Rapid Protein Separation. Analytical Chemistry, 2014, 86, 12390-12397.	3.2	72
7	Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst, The, 2014, 139, 2742-2747.	1.7	83
8	Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 2014, 54, 585-597.	5.3	826
9	Toward Integrated Molecular Diagnostic System (<formula formulatype="inline"><tex) 0="" etqq0="" rgbt<br="" tj="">on Biomedical Engineering, 2014, 61, 1506-1521.</tex)></formula>	Overlock 2 2.5	10 Tf 50 427 17
10	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223.	1.5	107
10	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623.	1.5 6.6	107 129
10 11 12	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623. Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649.	1.5 6.6 5.3	107 129 207
10 11 12 13	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623. Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649. Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^H Paper. Analytical Chemistry, 2014, 86, 11999-12007.	1.5 6.6 5.3 3.2	107 129 207 127
10 11 12 13 14	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623. Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649. Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^H Paper. Analytical Chemistry, 2014, 86, 11999-12007. Enhancement of Quantum Dot F¶rster Resonance Energy Transfer within Paper Matrices and Application to Proteolytic Assays. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 141-151.	1.5 6.6 5.3 3.2 1.9	107 129 207 127 5
10 11 12 13 14 15	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623. Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649. Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^H Paper. Analytical Chemistry, 2014, 86, 11999-12007. Enhancement of Quantum Dot F¶rster Resonance Energy Transfer within Paper Matrices and Application to Proteolytic Assays. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 141-151. Paper microfluidics for red wine tasting. RSC Advances, 2014, 4, 24356-24362.	1.5 6.6 5.3 3.2 1.9 1.7	 107 129 207 127 5 40
 10 11 12 13 14 15 16 	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623. Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649. Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^H Paper. Analytical Chemistry, 2014, 86, 11999-12007. Enhancement of Quantum Dot FŶrster Resonance Energy Transfer within Paper Matrices and Application to Proteolytic Assays. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 141-151. Paper microfluidics for red wine tasting. RSC Advances, 2014, 4, 24356-24362. Paper Electrochemical Device for Detection of DNA and Thrombin by Target-Induced Conformational Switching. Analytical Chemistry, 2014, 86, 6166-6170.	 1.5 6.6 5.3 3.2 1.9 1.7 3.2 	 107 129 207 127 5 40 149
10 11 12 13 14 15 16 17	Paperâ CBased Electrochemical Biosensors: From Test Strips to Paperâ CBased Microfluidics. Electroanalysis, 2014, 26, 1214-1223. Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623. Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649. Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^{H Chemistry, 2014, 86, 11999-12007. Enhancement of Quantum Dot FÃ ¶rster Resonance Energy Transfer within Paper Matrices and Application to Proteolytic Assays. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 141-151. Paper Electrochemical Device for Detection of DNA and Thrombin by Target-Induced Conformational Switching. Analytical Chemistry, 2014, 86, 6166-6170. Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochimica Acta, 2014, 146, 518-524.}	 1.5 6.6 5.3 3.2 1.9 1.7 3.2 3.2 2.6 	 107 129 207 127 52

#	Article	IF	CITATIONS
19	Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst, The, 2014, 139, 2326-2331.	1.7	63
20	Universal mobile electrochemical detector designed for use in resource-limited applications. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11984-11989.	3.3	248
21	Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014, 2, 4767-4788.	2.9	243
22	Paper-Based Potentiometric Ion Sensing. Analytical Chemistry, 2014, 86, 9548-9553.	3.2	140
23	Microfluidic paper-based devices for bioanalytical applications. Bioanalysis, 2014, 6, 89-106.	0.6	90
24	Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. Journal of Electroanalytical Chemistry, 2014, 722-723, 90-94.	1.9	57
25	Simple, Sensitive, and Quantitative Electrochemical Detection Method for Paper Analytical Devices. Analytical Chemistry, 2014, 86, 6501-6507.	3.2	82
26	Wire, Mesh, and Fiber Electrodes for Paper-Based Electroanalytical Devices. Analytical Chemistry, 2014, 86, 3659-3666.	3.2	76
27	Pen-Writing Polypyrrole Arrays on Paper for Versatile Cheap Sensors. ACS Macro Letters, 2014, 3, 86-90.	2.3	78
28	Bioinspiration: something for everyone. Interface Focus, 2015, 5, 20150031.	1.5	88
29	Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing. Scientific Reports, 2015, 5, 12893.	1.6	31
31	Simple pencilâ€drawn paperâ€based devices for oneâ€spot electrochemical detection of electroactive species in oil samples. Electrophoresis, 2015, 36, 1830-1836.	1.3	26
32	Paper-based smart microfluidics for education and low-cost diagnostics. South African Journal of Science, 2015, 111, 10.	0.3	18
33	Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst, The, 2015, 140, 5526-5535.	1.7	70
34	Spatial and Temporal Control of Information Storage in Cellulose by Chemically Activated Oscillations. ACS Applied Materials & amp; Interfaces, 2015, 7, 28708-28713.	4.0	9
35	A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 51-57.	2.0	73
36	Paper-based analytical devices for electrochemical study of the breathing process of red blood cells. Talanta, 2015, 135, 23-26.	2.9	3
37	GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes. Sensors and Actuators B: Chemical, 2015, 207, 631-639.	4.0	10

#	Article	IF	CITATIONS
38	Microscale microbial fuel cells: Advances and challenges. Biosensors and Bioelectronics, 2015, 69, 8-25.	5.3	197
39	A high-density nanowire electrode on paper for biomedical applications. RSC Advances, 2015, 5, 8680-8687.	1.7	35
40	All-Solid-State Reference Electrodes Based on Colloid-Imprinted Mesoporous Carbon and Their Application in Disposable Paper-based Potentiometric Sensing Devices. Analytical Chemistry, 2015, 87, 2981-2987.	3.2	89
41	Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Critical Reviews in Biotechnology, 2016, 36, 1-11.	5.1	101
42	Building pH Sensors into Paper-Based Small-Molecular Logic Systems for Very Simple Detection of Edges of Objects. Journal of the American Chemical Society, 2015, 137, 3763-3766.	6.6	67
43	Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab on A Chip, 2015, 15, 3707-3715.	3.1	46
44	Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst, The, 2015, 140, 7062-7081.	1.7	208
45	Effect of cationic polyelectrolytes on the performance of paper diagnostics for blood typing. Colloids and Surfaces B: Biointerfaces, 2015, 133, 189-197.	2.5	9
46	Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Advances, 2015, 5, 22256-22282.	1.7	90
47	Paperâ€Based Inkjetâ€Printed Microfluidic Analytical Devices. Angewandte Chemie - International Edition, 2015, 54, 5294-5310.	7.2	419
48	Photo-assisted inkjet printing of antibodies onto cellulose for the eco ² -friendly preparation of immunoassay membranes. RSC Advances, 2015, 5, 29786-29798.	1.7	14
49	Microfluidic paper analytical device for the chromatographic separation of ascorbic acid and dopamine. RSC Advances, 2015, 5, 93162-93169.	1.7	32
50	Detection of Hepatitis B Virus DNA with a Paper Electrochemical Sensor. Analytical Chemistry, 2015, 87, 9009-9015.	3.2	150
51	A portable, paper-based multiplexing immunosensor for detection of HIV and HCV markers in serum. , 2015, , .		0
52	Printed Electrochemical Instruments for Biosensors. ECS Journal of Solid State Science and Technology, 2015, 4, S3001-S3005.	0.9	46
53	Emerging Technologies for Next-Generation Point-of-Care Testing. Trends in Biotechnology, 2015, 33, 692-705.	4.9	583
54	Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System. ACS Applied Materials & Interfaces, 2015, 7, 19201-19209.	4.0	45
55	Recent developments in electrochemical paper-based analytical devices. Analytical Methods, 2015, 7, 7951-7960.	1.3	40

<i>ш</i>		IF	CITATIONS
#	A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays.	IГ 9.1	°
50	Sensors, 2016, 16, 1231.	2,1	0
57	A Disposable Planar Paperâ€Based Potentiometric Ionâ€Sensing Platform. Angewandte Chemie - International Edition, 2016, 55, 7544-7547.	7.2	88
58	Electrically Activated Paper Actuators. Advanced Functional Materials, 2016, 26, 2446-2453.	7.8	135
59	A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis C virus antibodies in serum. Biomicrofluidics, 2016, 10, 024119.	1.2	70
60	Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochimica Acta, 2016, 183, 1521-1542.	2.5	110
61	Microfluidic Methods for Molecular Biology. , 2016, , .		4
62	Microfluidic Paper-Based Multiplexing Biosensors for Electrochemical Detection of Metabolic Biomarkers. , 2016, , 205-218.		2
63	A flexible future for paper-based electronics. Proceedings of SPIE, 2016, , .	0.8	9
64	New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. Annual Review of Analytical Chemistry, 2016, 9, 183-202.	2.8	93
65	Paper-based biodetection using luminescent nanoparticles. Analyst, The, 2016, 141, 2838-2860.	1.7	45
66	Detection of heavy metal by paper-based microfluidics. Biosensors and Bioelectronics, 2016, 83, 256-266.	5.3	188
67	A Threeâ€Dimensional Origami Paperâ€Based Device for Potentiometric Biosensing. Angewandte Chemie, 2016, 128, 13227-13231.	1.6	8
68	A Threeâ€Dimensional Origami Paperâ€Based Device for Potentiometric Biosensing. Angewandte Chemie - International Edition, 2016, 55, 13033-13037.	7.2	142
69	Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. Lab on A Chip, 2016, 16, 3885-3897.	3.1	24
70	Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. Journal of Power Sources, 2016, 326, 410-416.	4.0	59
71	A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Mikrochimica Acta, 2016, 183, 1873-1880.	2.5	49
72	A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes. Biosensors and Bioelectronics, 2016, 86, 346-352.	5.3	54
73	A Paper-Based "Pop-up―Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Analytical Chemistry, 2016, 88, 6326-6333.	3.2	140

#	Article	IF	CITATIONS
74	Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab on A Chip, 2016, 16, 3150-3176.	3.1	192
75	Integrating Electronics and Microfluidics on Paper. Advanced Materials, 2016, 28, 5054-5063.	11.1	216
76	A Disposable Planar Paperâ€Based Potentiometric Ion‧ensing Platform. Angewandte Chemie, 2016, 128, 7670-7673.	1.6	20
77	Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors. Applied Surface Science, 2016, 364, 477-483.	3.1	7
78	A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydrate Polymers, 2016, 143, 231-238.	5.1	59
79	Bioelectrocatalytic systems for health applications. Biotechnology Advances, 2016, 34, 177-197.	6.0	48
80	Lateral-flow technology: From visual to instrumental. TrAC - Trends in Analytical Chemistry, 2016, 79, 297-305.	5.8	202
81	Electroanalytical devices with pins and thread. Lab on A Chip, 2016, 16, 112-119.	3.1	52
82	Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics, 2016, 77, 774-789.	5.3	441
83	Paper: A promising material for human-friendly functional wearable electronics. Materials Science and Engineering Reports, 2017, 112, 1-22.	14.8	128
84	Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose. Scientific Reports, 2017, 7, 40867.	1.6	27
85	Comparison of inkjet-printed silver conductors on different microsystem substrates. , 2017, , .		1
86	Electrochemical Lateral Flow Devices: Towards Rapid Immunomagnetic Assays. ChemElectroChem, 2017, 4, 880-889.	1.7	46
87	Ultrafast Paper Thermometers Based on a Green Sensing Ink. ACS Sensors, 2017, 2, 449-454.	4.0	37
88	Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics, 2017, 11, 024116.	1.2	25
89	Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC - Trends in Analytical Chemistry, 2017, 92, 32-41.	5.8	65
90	A novel candidate for wound dressing: Transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Materials Science and Engineering C, 2017, 79, 84-92.	3.8	25
91	Paper-based plasma sanitizers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5119-5124.	3.3	31

#	Article	IF	CITATIONS
92	Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering C, 2017, 78, 1231-1245.	3.8	269
93	A novel wireless paper-based potentiometric platform for monitoring glucose in blood. Lab on A Chip, 2017, 17, 2500-2507.	3.1	45
94	Faradaic Ion Concentration Polarization on a Paper Fluidic Platform. Analytical Chemistry, 2017, 89, 4294-4300.	3.2	31
95	AgInS2quantum dots for the detection of trinitrotoluene. Nanotechnology, 2017, 28, 015501.	1.3	13
97	Selfâ€Powered, Paperâ€Based Electrochemical Devices for Sensitive Pointâ€ofâ€Care Testing. Advanced Materials Technologies, 2017, 2, 1700130.	3.0	44
98	Recent developments in microfluidic paper-, cloth-, and thread-based electrochemical devices for analytical chemistry. Reviews in Analytical Chemistry, 2017, 36, .	1.5	26
99	Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting. ACS Applied Materials & Interfaces, 2017, 9, 28002-28009.	4.0	104
100	Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. Lab on A Chip, 2017, 17, 3351-3387.	3.1	39
101	Electrical Textile Valves for Paper Microfluidics. Advanced Materials, 2017, 29, 1702894.	11.1	60
102	An origami paper device for complete elimination of interferents in enzymatic electrochemical biosensors. Electrochemistry Communications, 2017, 82, 43-46.	2.3	19
103	A disposable paper-based microfluidic immunosensor based on reduced graphene oxide-tetraethylene pentamine/Au nanocomposite decorated carbon screen-printed electrodes. Sensors and Actuators B: Chemical, 2017, 252, 44-54.	4.0	66
104	Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor. Biosensors and Bioelectronics, 2017, 98, 478-485.	5.3	75
105	White blood cell counting on smartphone paper electrochemical sensor. Biosensors and Bioelectronics, 2017, 90, 549-557.	5.3	75
106	Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids. Biosensors and Bioelectronics, 2017, 90, 110-116.	5.3	54
107	Inkjet-printed conductive features for rapid integration of electronic circuits in centrifugal microfluidics. , 2017, , .		0
109	Paper and Fiber-Based Bio-Diagnostic Platforms: Current Challenges and Future Needs. Applied Sciences (Switzerland), 2017, 7, 863.	1.3	24
110	CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 2018, 30, e1705759.	11.1	46
111	Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. ACS Applied Materials & Interfaces, 2018, 10, 7362-7370.	4.0	49

#	Article	IF	CITATIONS
112	Development of a new paper based nano-biosensor using the co-catalytic effect of tyrosinase from banana peel tissue (Musa Cavendish) and functionalized silica nanoparticles for voltammetric determination of l-tyrosine. International Journal of Biological Macromolecules, 2018, 113, 648-654.	3.6	36
113	Enzymeâ€Based Glucose Sensor: From Invasive to Wearable Device. Advanced Healthcare Materials, 2018, 7, e1701150.	3.9	483
114	The Effect of Humidity on Microwave Characteristics of Screen Printed Paperâ€Based Electronics. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700689.	0.8	1
115	Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta, 2018, 179, 186-192.	2.9	83
116	Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta, 2018, 177, 176-190.	2.9	194
117	Plasmaâ€ŧreated polyethylene as electrochemical mediator for enzymatic glucose sensors: Toward bifunctional glucose and dopamine sensors. Plasma Processes and Polymers, 2018, 15, 1700133.	1.6	15
118	The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Advances, 2018, 8, 34012-34034.	1.7	97
119	Paper-based immunosensor utilizing dielectrophoretic trapping of microprobes for quantitative and label free detection using electrochemical impedance spectroscopy. Biomicrofluidics, 2018, 12, 064102.	1.2	5
120	Addressable TiO ₂ Nanotubes Functionalized Paper-Based Cyto-Sensor with Photocontrollable Switch for Highly-Efficient Evaluating Surface Protein Expressions of Cancer Cells. Analytical Chemistry, 2018, 90, 13882-13890.	3.2	74
121	In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes. PLoS ONE, 2018, 13, e0203862.	1.1	16
122	Pen-on-paper strategies for point-of-care testing of human health. TrAC - Trends in Analytical Chemistry, 2018, 108, 50-64.	5.8	47
123	A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO. Journal of the Electrochemical Society, 2019, 166, B1116-B1125.	1.3	22
124	Combining the geometry of folded paper with liquid-infused polymer surfaces to concentrate and localize bacterial solutions. Biointerphases, 2019, 14, 041005.	0.6	6
125	Chronometric Quantitation of Analytes in Paper-Based Microfluidic Devices (MicroPADs) via Enzymatic Degradation of a Metastable Biomatrix. Inventions, 2019, 4, 48.	1.3	3
126	A universal respiration sensing platform utilizing surface water condensation. Journal of Materials Chemistry C, 2019, 7, 2853-2864.	2.7	10
127	A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose, 2019, 26, 6489-6528.	2.4	95
128	Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application. Polymers, 2019, 11, 808.	2.0	21
129	From Microbial Fuel Cells to Biobatteries: Moving toward Onâ€Demand Micropower Generation for Smallâ€Scale Singleâ€Use Applications. Advanced Materials Technologies, 2019, 4, 1900079.	3.0	29

#	Article	IF	CITATIONS
130	Colorimetric sensor for determination of phosphate ions using anti-aggregation of 2-mercaptoethanesulfonate-modified silver nanoplates and europium ions. Sensors and Actuators B: Chemical, 2019, 290, 226-232.	4.0	47
131	Integrating a Plastic Glucose Biosensor Based on Arrayed Screen-Printed Electrodes Utilizing Magnetic Beads with a Microfluidic Device. IEEE Journal of the Electron Devices Society, 2019, 7, 1151-1160.	1.2	9
132	Printed Functionalities on Paper Substrates Towards Fulfilment of the ASSURED Criteria. , 2019, , 123-170.		0
133	Paper-based immunocapture for targeted protein analysis. Talanta, 2019, 195, 764-770.	2.9	12
134	Paper-based Diagnostics. , 2019, , .		6
135	High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydrate Polymers, 2020, 229, 115463.	5.1	137
136	The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Advanced Functional Materials, 2020, 30, 1906713.	7.8	178
137	Determination of glucose with an enzymatic paper-based sensor. , 2020, , 257-265.		0
140	Robotic Prototyping of Paper-Based Field-Effect Transistors with Rolled-Up Semiconductor Microtubes. IEEE/ASME Transactions on Mechatronics, 2020, , 1-1.	3.7	5
141	Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chemical Reviews, 2020, 120, 12903-12993.	23.0	227
142	Grapheneâ€AuNP Enhanced Inkjetâ€printed Silver Nanoparticle Paper Electrodes for the Detection of Nickel(II)â€Dimethylglyoxime [Ni(dmgH ₂)] Complexes by Adsorptive Cathodic Stripping Voltammetry (AdCSV). Electroanalysis, 2020, 32, 3017-3031.	1.5	15
143	Identification of CuCl2 and CuSO4 as precursors for CuCl urine activated paper battery synthesis. AIP Conference Proceedings, 2020, , .	0.3	0
144	Disposable paper strips for carboxylate discrimination. Analyst, The, 2020, 145, 3505-3516.	1.7	17
145	Disposable Paper-on-CMOS Platform for Real-Time Simultaneous Detection of Metabolites. IEEE Transactions on Biomedical Engineering, 2020, 67, 2417-2426.	2.5	10
146	Paper-based Electrochemical Flow Biosensor Using Enzyme-modified Polystyrene Particles. Chemistry Letters, 2021, 50, 147-150.	0.7	1
147	Microfluidic paper-based devices. , 2021, , 257-274.		0
148	Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review. Critical Reviews in Biotechnology, 2021, 41, 1046-1080.	5.1	25
149	Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Advanced Materials Technologies, 2021, 6, 2001023.	3.0	131

ARTICLE IF CITATIONS # Paper-Based Potentiometric Sensors for Nicotine Determination in Smokers' Sweat. ACS Omega, 2021, 6, 150 1.6 16 11340-11347. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Advanced Materials, 2021, 33, 11.1 e2007764. 152 Paper as a substrate and smart material for electronics, packaging, and robotics., 2021, , . 4 Methods for immobilizing receptors in microfluidic devices: A review. Micro and Nano Engineering, 2021, 11, 100085. Development of an affordable, portable and reliable voltametric platform for general purpose 154 2.3 4 electroanalysis. Microchemical Journal, 2021, 170, 106756. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using 1.6 Plasmonic Paper Devices. Scientific Reports, 2015, 5, 16206. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using 156 1.6 15 Plasmonic Paper Devices. Scientific Reports, 2015, 5, . Portable Electrochemical Gas Sensing System with a Paper-Based Enzyme Electrode. Telkomnika 0.6 (Telecommunication Computing Electrónics and Control), 2017, 15, 895. Application of nanomaterials in electrochemical paper-based biomedical microfluidic devices. 158 0.2 6 European Journal of BioMedical Research, 2015, 1, 9. Paper-Based Bipolar Electrochemistry. Journal of Electrochemical Science and Technology, 2013, 4, 159 146-152. Paper-Based Bipolar Electrochemistry. Journal of Electrochemical Science and Technology, 2013, 4, 160 22 0.9 146-152. Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. 1.6 Catalysts, 2021, 11, 1222. Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord. 162 0.2 1 RSC Nanoscience and Nanotechnology, 2014, , 151-190. Characterization of inkjet-printed dielectric on different substrates., 2019, , . Microfluidic manipulation by spiral hollow-fibre actuators. Nature Communications, 2022, 13, 1331. 164 5.8 34 Latex-Based Paper Devices with Super Solvent Resistance for On-the-Spot Detection of Metanil Yellow in Food Samples. Food Analytical Methods, 2022, 15, 2664-2674. A Cellulose Nanofiber Capacitive Humidity Sensor with High Sensitivity and Fast Recovery 166 1.8 2 Characteristics. Chemosensors, 2022, 10, 464. Assessment of Bio-Based Materials as a Sustainable and Scalable Alternative for Detection of <i>Plasmodium</i> spp. (Haemospororida: Plasmodiidae) Sporozoites in Field Deployable Testing. Journal of Medical Entomology, 2023, 60, 535-545.

			2
#	ARTICLE	IF	CITATIONS
168	Evaluating the performance of an inexpensive, commercially available, NFCâ€powered and smartphone controlled potentiostat for electrochemical sensing. Electroanalysis, 2023, 35, .	1.5	2
169	Disposable paper-based sensors. , 2023, , 803-860.		1
173	Sensing of biological molecules. , 2024, , 211-226.		0