The Road for Nanomaterials Industry: A Review of Carb Postâ€Treatment, and Bulk Applications for Composite

Small 9, 1237-1265 DOI: 10.1002/smll.201203252

Citation Report

#	Article	IF	CITATIONS
1	Carbon Nanotubes: An Example of Multiscale Development—A Mechanistic View from the Subnanometer to the Meter Scale. Angewandte Chemie - International Edition, 2013, 52, 9372-9387.	7.2	38
2	Aligned Carbon Nanotubeâ€Silicon Sheets: A Novel Nanoâ€architecture for Flexible Lithium Ion Battery Electrodes. Advanced Materials, 2013, 25, 5109-5114.	11.1	232
3	Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge. Physical Chemistry Chemical Physics, 2013, 15, 18815.	1.3	61
4	Facile Synthesis of Hierarchical Networks Composed of Highly Interconnected V ₂ O ₅ Nanosheets Assembled on Carbon Nanotubes and Their Superior Lithium Storage Properties. ACS Applied Materials & Interfaces, 2013, 5, 12394-12399.	4.0	75
6	Robust growth of herringbone carbon nanofibers on layered double hydroxide derived catalysts and their applications as anodes for Li-ion batteries. Carbon, 2013, 62, 393-404.	5.4	46
7	In Situ Monitoring the Role of Working Metal Catalyst Nanoparticles for Ultrahigh Purity Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2013, 23, 5066-5073.	7.8	27
8	Carbon nanotubes in emulsion-templated porous polymers: Polymer nanoparticles, sulfonation, and conductivity. Journal of Polymer Science Part A, 2013, 51, 4369-4377.	2.5	27
10	Electrospun Nanomaterials: Biotechnology, Food, Water, Environment, and Energy. Conference Papers in Materials Science, 2013, 2013, 1-14.	0.1	11
11	Three-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications. Frontiers in Energy Research, 2014, 2, .	1.2	14
12	Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Advances, 2014, 4, 54115-54121.	1.7	28
13	Hierarchical Vineâ€Treeâ€Like Carbon Nanotube Architectures: Inâ€Situ CVD Selfâ€Assembly and Their Use as Robust Scaffolds for Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 7051-7058.	11.1	104
14	Doping effects of manganese on the catalytic performance and structure of NiMgO catalysts for controllabe synthesis of multi-walled carbon nanotubes. Journal of Energy Chemistry, 2014, 23, 781-788.	7.1	16
15	Nickel sulfide/graphene/carbon nanotube composites as electrode material for the supercapacitor application in the sea flashing signal system. Journal of Marine Science and Application, 2014, 13, 462-466.	0.7	24
16	Supramolecular Assemblies of Nucleoside Functionalized Carbon Nanotubes: Synthesis, Film Preparation, and Properties. Chemistry - A European Journal, 2014, 20, 5397-5402.	1.7	10
17	Characterization of Exposure to Carbon Nanotubes in an Industrial Setting. Annals of Occupational Hygiene, 2015, 59, 586-99.	1.9	16
18	Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells. Frontiers in Bioengineering and Biotechnology, 2014, 2, 45.	2.0	75
19	Microtubes made of carbon nanotubes. Carbon, 2014, 68, 818-820.	5.4	23
20	Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sensors and Actuators B: Chemical, 2014, 192, 459-466.	4.0	33

ARTICLE IF CITATIONS # Progress in flexible lithium batteries and future prospects. Energy and Environmental Science, 2014, 7, 15.6 1,312 21 1307-1338. Spaser Made of Graphene and Carbon Nanotubes. ACS Nano, 2014, 8, 2431-2438. 23 Emerging double helical nanostructures. Nanoscale, 2014, 6, 9339-9354. 2.8 40 Cathode materials based on carbon nanotubes for high-energy-density lithium \hat{e} "sulfur batteries. 24 84 Carbon, 2014, 75, 161-168. Upcycling waste plastics into carbon nanomaterials: A review. Journal of Applied Polymer Science, 25 1.3 216 2014, 131, . Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon, 2014, 71, 206-217. 5.4 361 Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and 27 Interconnected Micro/Mesopores for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2014, 7.8 495 24, 2772-2781. Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuelâ€Cell Reactions. 28 1.8 174 ChemCatChem, 2014, 6, 26-45. Nitrogenâ€Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on 29 Bifunctional Natural Catalysts and Their Applications as Scaffolds for Highâ€Rate Lithiumâ€Sulfur 11.1 534 Batteries. Advanced Materials, 2014, 26, 6100-6105. Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. Journal of Power Sources, 2014, 253, 124 263-268. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur 31 8.2 366 batteries. Nano Energy, 2014, 4, 65-72. Toward Full Exposure of "Active Sites†Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity. Advanced Functional Materials, 2014, 24, 332 5956-5961. Air Filtration in the Free Molecular Flow Regime: A Review of High fficiency Particulate Air Filters 33 5.2 279 Based on Carbon Nanotubes. Small, 2014, 10, 4543-4561. Multi-walled carbon nanotube induced co-continuity of poly(ether ether ketone)/polyimide blends for high performance conductive materials. RSC Advances, 2014, 4, 42175-42182. 1.7 Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur 35 5.283 batteries. Journal of Materials Chemistry A, 2014, 2, 10869-10875. High yield, controlled synthesis of graphitic networks from dense micro emulsions. Chemical 2.2 Communications, 2014, 50, 11848-11851. CaH2-assisted low temperature synthesis of metallic magnetic nanoparticle-loaded multiwalled 37 9 2.2carbon nanotubes. Chemical Communications, 2014, 50, 6866. Flux and surfactant directed facile thermal conversion synthesis of hierarchical porous MgO for 38 1.3 efficient adsorption and catalytic growth of carbon nanotubes. CrystEngComm, 2014, 16, 308-318.

#	Article	IF	CITATIONS
39	Direct Voltammetric Determination of Redoxâ€Active Iron in Carbon Nanotubes. ChemPhysChem, 2014, 15, 3819-3823.	1.0	6
40	Controlled Syntheses of Various Palladium Alloy Nanoparticles Dispersed in Single-Walled Carbon Nanohorns by One-Step Formation Using an Arc Discharge Method. Industrial & Engineering Chemistry Research, 2014, 53, 4732-4738.	1.8	15
41	Synthesis of Fullerene-like WS ₂ Nanoparticles in a Particulately Fluidized Bed: Kinetics and Reaction Phase Diagram. Industrial & Engineering Chemistry Research, 2014, 53, 592-600.	1.8	9
42	Hematite nanorods with tunable porous structure: Facile hydrothermal-calcination route synthesis, optical and photocatalytic properties. Powder Technology, 2014, 266, 113-119.	2.1	38
43	State of the Art of Singleâ€Walled Carbon Nanotube Synthesis on Surfaces. Advanced Materials, 2014, 26, 5898-5922.	11.1	71
44	Ni _{0.33} Mn _{0.33} Co _{0.33} Fe ₂ O ₄ nanoparticles anchored on oxidized carbon nanotubes as advanced anode materials in Li-ion batteries. RSC Advances, 2014, 4, 33769-33775.	1.7	4
45	Hydrothermal–thermal conversion synthesis of hierarchical porous MgO microrods as efficient adsorbents for lead(ii) and chromium(vi) removal. RSC Advances, 2014, 4, 30542-30550.	1.7	28
46	Building Robust Carbon Nanotube-Interweaved-Nanocrystal Architecture for High-Performance Anode Materials. ACS Nano, 2014, 8, 9265-9273.	7.3	46
47	Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfurâ€Containing Guest for Highly Stable Lithiumâ€Sulfur Batteries: Mechanistic Insight into Capacity Degradation. Advanced Materials Interfaces, 2014, 1, 1400227.	1.9	351
48	Effect of hydrodynamic diameter on the sieving of waterborne carbon nanotubes by porous membranes. Journal of Membrane Science, 2014, 470, 470-478.	4.1	9
49	Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. Journal of Power Sources, 2014, 267, 831-873.	4.0	138
50	Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 129-145.	1.5	128
51	One-Pot Synthesis of Metal–Carbon Nanotubes Network Hybrids as Highly Efficient Catalysts for Oxygen Evolution Reaction of Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 10089-10098.	4.0	40
52	Hierarchical Carbon Nanotube/Carbon Black Scaffolds as Short- and Long-Range Electron Pathways with Superior Li-Ion Storage Performance. ACS Sustainable Chemistry and Engineering, 2014, 2, 200-206.	3.2	58
53	Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment. Nano Letters, 2014, 14, 4997-5003.	4.5	19
54	Green, Noncorrosive, Easy Scale-Up Hydrothermal–Thermal Conversion: A Feasible Solution to Mass Production of Magnesium Borate Nanowhiskers. ACS Sustainable Chemistry and Engineering, 2014, 2, 836-845.	3.2	15
55	Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon. Applied Surface Science, 2014, 301, 488-491.	3.1	17
56	Spin-orbit effects in carbon nanotubes – Analytical results. European Physical Journal B, 2014, 87, 1.	0.6	12

#	Article	IF	Citations
57	Facile preparation and characterization of free-standing stiff carbon-based composite films with excellent performance. Composites Part A: Applied Science and Manufacturing, 2014, 56, 72-79.	3.8	2
58	Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium–sulfur batteries. Journal of Power Sources, 2014, 261, 264-270.	4.0	86
59	Improvement of carbon nanotube stability by high temperature oxygen/chlorine gas treatment. Carbon, 2014, 76, 275-284.	5.4	10
60	Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Applied Catalysis B: Environmental, 2014, 158-159, 140-149.	10.8	76
61	Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon, 2014, 66, 134-143.	5.4	16
62	The Catalytic Pathways of Hydrohalogenation over Metalâ€Free Nitrogenâ€Doped Carbon Nanotubes. ChemSusChem, 2014, 7, 723-728.	3.6	114
63	Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA. Bioelectrochemistry, 2014, 99, 8-16.	2.4	33
64	Single-step synthesis of carbon nanotubes/iron/iron oxide composite films through inert-ambient CVD using ferric acetylacetonate as a precursor. RSC Advances, 2015, 5, 59463-59471.	1.7	16
65	Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Physical Review B, 2015, 91, .	1.1	65
66	Strain-modified RKKY interaction in carbon nanotubes. Physical Review B, 2015, 92, .	1.1	5
67	Sublattice segregation of hydrogen adsorbates in carbon nanotubes. Physical Review B, 2015, 92, .	1.1	4
68	Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Scientific Reports, 2015, 5, 17553.	1.6	35
69	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
70	Multi-walled carbon nanotubes: biodegradation by gastric agentsin vitroand effect on murine intestinal system. IOP Conference Series: Materials Science and Engineering, 2015, 98, 012008.	0.3	1
71	Fabrication and dielectric properties of poly(ether ether ketone)/polyimide blends with selectively distributed multi-walled carbon nanotubes. Polymer International, 2015, 64, 1555-1559.	1.6	19
72	Impact of Carbon Nano-Onions on Hydra vulgaris as a Model Organism for Nanoecotoxicology. Nanomaterials, 2015, 5, 1331-1350.	1.9	57
73	Influence of graphene on the cell morphology and mechanical properties of extruded polystyrene foam. Journal of Cellular Plastics, 2015, 51, 413-426.	1.2	35
74	A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries. Nanoscale, 2015, 7, 11286-11290.	2.8	19

#	Article	IF	CITATIONS
75	Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicology in Vitro, 2015, 29, 352-362.	1.1	60
76	Cholinesterase Inhibitors. , 2015, , 761-778.		3
77	Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology, 2015, 9, 658-676.	1.6	128
78	Fluidizedâ€bed CVD of unstacked doubleâ€layer templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61, 747-755.	1.8	48
79	Effects of nanotube size and roof-layer coating on viscoelastic properties of hybrid diamond-like carbon and carbon nanotube composites. Carbon, 2015, 86, 163-173.	5.4	11
80	Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes. Electrochimica Acta, 2015, 161, 427-435.	2.6	118
81	Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: Catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. Catalysis Today, 2015, 249, 244-251.	2.2	48
82	Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Archives of Toxicology, 2015, 89, 621-633.	1.9	87
83	A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon, 2015, 92, 15-25.	5.4	68
84	Facile approach to prepare Pt decorated SWNT/graphene hybrid catalytic ink. Materials Research Bulletin, 2015, 67, 215-219.	2.7	2
85	Polycaprolactone/multi-wall carbon nanotube nanocomposites prepared by in situ ring opening polymerization: Decomposition profiling using thermogravimetric analysis and analytical pyrolysis–gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2015, 115, 125-131.	2.6	14
86	Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity. ACS Nano, 2015, 9, 7488-7496.	7.3	107
87	Combined and Distinct Contributions of Different Carbon Nano-Forms in Polypropylene. Macromolecular Materials and Engineering, 2015, 300, 611-626.	1.7	3
88	Recent advances in synthesis of reshaped Fe and Ni particles at the tips of carbon nanofibers and their catalytic applications. Catalysis Today, 2015, 249, 2-11.	2.2	21
89	Mechanical and electrical properties of low SWNT content 3YTZP composites. Journal of the European Ceramic Society, 2015, 35, 2351-2359.	2.8	11
90	Prediction of thermal resistances and heat conduction of carbon nanotube aerogels in various permeated gases. Chemical Physics Letters, 2015, 627, 116-120.	1.2	11
91	Effective thermal conductivity of carbon nanotube-based nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55, 76-81.	2.7	52
92	Trench structure assisted alignment in ultralong and dense carbon nanotube arrays. Journal of Materials Chemistry C, 2015, 3, 2215-2222.	2.7	14

#	Article	IF	Citations
93	Analysis of metal catalyst content in magnetically filtered SWCNTs by SQUID magnetometry. Journal of Materials Science, 2015, 50, 2544-2553.	1.7	7
94	Amorphous titanate-crosslinking N-rich carbon hybrid with 3D channels for fast lithium storage. RSC Advances, 2015, 5, 34088-34093.	1.7	5
95	Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.	5.2	122
96	Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 2015, 44, 3295-3346.	18.7	586
97	Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries. Journal of Materials Science, 2015, 50, 7843-7865.	1.7	31
98	Recent progress in micro-scale energy storage devices and future aspects. Journal of Materials Chemistry A, 2015, 3, 22507-22541.	5.2	169
99	Cadmium ion sorption from aqueous solutions by high surface area ethylenediaminetetraacetic acid- and diethylene triamine pentaacetic acid-treated carbon nanotubes. RSC Advances, 2015, 5, 71144-71152.	1.7	25
100	Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode. ACS Applied Materials & Interfaces, 2015, 7, 24256-24264.	4.0	67
101	Rational recipe for bulk growth of graphene/carbon nanotube hybrids: New insights from in-situ characterization on working catalysts. Carbon, 2015, 95, 292-301.	5.4	18
102	Perforated Metal Oxide–Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties. ACS Nano, 2015, 9, 10173-10185.	7.3	91
103	In situ preparation of reinforced polyimide nanocomposites with the noncovalently dispersed and matrix compatible MWCNTs. Composites Part A: Applied Science and Manufacturing, 2015, 78, 341-349.	3.8	15
104	A smart self-regenerative lithium ion supercapacitor with a real-time safety monitor. Energy Storage Materials, 2015, 1, 146-151.	9.5	28
105	Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small, 2015, 11, 126-133.	5.2	69
106	Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale, 2015, 7, 1791-1795.	2.8	88
107	The winding road for carbon nanotubes in nanomedicine. Materials Today, 2015, 18, 12-19.	8.3	115
108	Perspectives of Nano arbon Based Engineering Materials. Advanced Engineering Materials, 2015, 17, 124-137.	1.6	53
109	Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-290.	18.7	997
110	Dye‧ensitized Solar Cell Counter Electrodes Based on Carbon Nanotubes. ChemPhysChem, 2015, 16, 53-65.	1.0	72

#	Article	IF	CITATIONS
111	Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Analytica Chimica Acta, 2015, 853, 77-94.	2.6	101
112	Dithiafulvenyl-grafted phenylene ethynylene polymers as selective and reversible dispersants for single-walled carbon nanotubes. Chemical Communications, 2015, 51, 149-152.	2.2	20
113	Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon, 2015, 81, 1-19.	5.4	106
114	Functionalization of Carbon Nanotubes with Stimuli- Responsive Molecules and Polymers. , 0, , .		1
115	Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells. PLoS ONE, 2016, 11, e0158571.	1.1	14
116	The dispersion, solubilization and stabilization in "solution―of single-walled carbon nanotubes. RSC Advances, 2016, 6, 68760-68787.	1.7	41
117	Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Advanced Energy Materials, 2016, 6, 1600554.	10.2	183
118	Influence of diaminobenzoylâ€functionalized multiwalled carbon nanotubes on the nonisothermal curing kinetics, dynamic mechanical properties, and thermal conductivity of epoxy–anhydride composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
119	Effect of carbon nanotube dispersion and network formation on thermal conductivity of thermoplastic polyurethane/carbon nanotube nanocomposites. Polymer Engineering and Science, 2016, 56, 394-407.	1.5	26
120	Direct Growth of MoS ₂ Microspheres on Ni Foam as a Hybrid Nanocomposite Efficient for Oxygen Evolution Reaction. Small, 2016, 12, 2975-2981.	5.2	114
121	A Carbonâ€5ulfur Hybrid with Pomegranateâ€like Structure for Lithiumâ€5ulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 1343-1347.	1.7	17
122	Intraperitoneal Injection Is Not a Suitable Administration Route for Single-Walled Carbon Nanotubes in Biomedical Applications. Dose-Response, 2016, 14, 155932581668132.	0.7	4
123	Modification of the surface of carbon fibers with multi-walled carbon nanotubes and its effect on mechanical characteristics of composites with epoxy resin. Russian Journal of Applied Chemistry, 2016, 89, 1969-1977.	0.1	3
124	Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting. Nanotechnology, 2016, 27, 335605.	1.3	5
125	Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon, 2016, 106, 260-278.	5.4	99
126	A Versatile Method for Uniform Dispersion of Nanocarbons in Metal Matrix Based on Electrostatic Interactions. Nano-Micro Letters, 2016, 8, 54-60.	14.4	26
127	In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes. Archives of Toxicology, 2016, 90, 2231-2248.	1.9	34
128	Net energy benefits of carbon nanotube applications. Applied Energy, 2016, 173, 624-634.	5.1	38

#	Article	IF	CITATIONS
129	Automated quantification of one-dimensional nanostructure alignment on surfaces. Nanotechnology, 2016, 27, 235701.	1.3	7
130	Towards a holistic environmental impact assessment of carbon nanotube growth through chemical vapour deposition. Journal of Cleaner Production, 2016, 129, 384-394.	4.6	36
131	Carbon nanotube modification of microbial fuel cell electrodes. Biosensors and Bioelectronics, 2016, 85, 536-552.	5.3	116
132	Dramatic enhancement of double-walled carbon nanotube quality through a one-pot tunable purification method. Carbon, 2016, 110, 292-303.	5.4	14
133	Silicon Nanocrystal/Nanocarbon Hybrids. , 2016, , 543-561.		1
134	Enhanced growth of carbon nanotube bundles in a magnetically assisted fluidized bed chemical vapor deposition. Carbon, 2016, 108, 404-411.	5.4	22
135	Unveil the Sizeâ€Đependent Mechanical Behaviors of Individual CNT/SiC Composite Nanofibers by In Situ Tensile Tests in SEM. Small, 2016, 12, 4486-4491.	5.2	20
136	Molecular dynamics simulations of simple aromatic compounds adsorption on single-walled carbon nanotubes. RSC Advances, 2016, 6, 80972-80980.	1.7	8
137	One-Step and Templateless Electropolymerization Process Using Thienothiophene Derivatives To Develop Arrays of Nanotubes and Tree-like Structures with High Water Adhesion. ACS Applied Materials & Interfaces, 2016, 8, 22732-22743.	4.0	36
138	Extremophiles as sources of inorganic bio-nanoparticles. World Journal of Microbiology and Biotechnology, 2016, 32, 156.	1.7	35
139	Synthesis, Classification, and Properties of Nanomaterials. , 2016, , 83-133.		20
140	Controlled synthesis and growth mechanism of Bi2O3/YSZ solid electrolyte materials. Ceramics International, 2016, 42, 16262-16265.	2.3	5
141	Tunable electromechanical coupling of a carbon nanotube-reinforced variable cross-section nanoswitch with a piezoelectric effect. Journal Physics D: Applied Physics, 2016, 49, 335304.	1.3	7
142	Transient absorption microscopy: advances in chemical imaging of photoinduced dynamics. Laser and Photonics Reviews, 2016, 10, 62-81.	4.4	64
143	Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon, 2016, 109, 694-710.	5.4	189
144	Toward highly thermally conductive all-carbon composites: Structure control. Carbon, 2016, 109, 575-597.	5.4	132
145	Role of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ï€</mml:mi><mml:mtext>â^²hybridization in a 300-K organic-magnetic interface: Metal-free phthalocyanine single molecules on a bcc Fe(001) whisker. Physical Review B, 2016, 94, .</mml:mtext></mml:mrow></mml:math 	l:mtext>< 1.1	mml:mi>d
146	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409

#	Article	IF	CITATIONS
147	"Smart poisoning―of Co/SiO2catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale, 2016, 8, 17705-17713.	2.8	32
148	Carbon nanotubes in Li-ion batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 12-40.	1.7	127
149	Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic. Chemical Engineering Research and Design, 2016, 103, 107-114.	2.7	83
150	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for Highâ€Sulfurâ€Loading Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 6351-6358.	7.8	216
151	Parametric study of waste chicken fat catalytic chemical vapour deposition for controlled synthesis of vertically aligned carbon nanotubes. Cogent Physics, 2016, 3, .	0.7	4
152	Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Particle and Fibre Toxicology, 2016, 13, 60.	2.8	79
153	Mass production of CNTs using CVD multi-quartz tubes. Journal of Mechanical Science and Technology, 2016, 30, 5135-5141.	0.7	38
154	From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires. Composites Science and Technology, 2016, 137, 94-101.	3.8	58
155	Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells. ChemSusChem, 2016, 9, 296-301.	3.6	7
156	Nanodräte in Chemo―und Biosensoren: aktueller Stand und Fahrplan für die Zukunft. Angewandte Chemie, 2016, 128, 1286-1302.	1.6	10
157	Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future. Angewandte Chemie - International Edition, 2016, 55, 1266-1281.	7.2	237
158	Amperometric detection of nitrite in water samples by use of electrodes consisting of palladium-nanoparticle-functionalized multi-walled carbon nanotubes. Journal of Colloid and Interface Science, 2016, 478, 413-420.	5.0	57
159	Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: A two-stage agglomeration model and experimental evidence. Powder Technology, 2016, 301, 412-420.	2.1	37
160	Electrochemical synthesis and characterization of poly(3-hexylthiophene)/single-walled carbon nanotube array hybrid materials. Journal of Solid State Electrochemistry, 2016, 20, 3179-3187.	1.2	5
161	Control of product nature and morphology by adjusting the hydrogen content in a continuous chemical vapor deposition process for carbon nanotube synthesis. Carbon, 2016, 107, 171-179.	5.4	44
162	Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. Journal of Occupational and Environmental Hygiene, 2016, 13, 915-923.	0.4	9
163	DLS and zeta potential – What they are and what they are not?. Journal of Controlled Release, 2016, 235, 337-351.	4.8	2,428
164	Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale, 2016, 8, 13437-13444.	2.8	15

#	Article	IF	CITATIONS
165	A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 2137-2146.	5.2	59
166	The influence of target erosion grade in the optoelectronic properties of AZO coatings growth by magnetron sputtering. Applied Surface Science, 2016, 380, 218-222.	3.1	15
167	Fullerene-like MoSe ₂ nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage. Nanoscale, 2016, 8, 4209-4216.	2.8	131
168	UHMWPE Matrix Composites. , 2016, , 369-397.		4
169	Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TrAC - Trends in Analytical Chemistry, 2016, 80, 387-415.	5.8	49
170	Enhanced Li–S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode. ACS Nano, 2016, 10, 1050-1059.	7.3	289
171	Flexible hybrid carbon nanotube sponges embedded with SnS ₂ from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. RSC Advances, 2016, 6, 30098-30105.	1.7	26
172	Synthesis and catalytic activity of heteroatom doped metal-free single-wall carbon nanohorns. Chemical Communications, 2016, 52, 5391-5393.	2.2	18
173	Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid). Journal of Molecular Structure, 2016, 1117, 140-146.	1.8	12
174	Simulation of mechanical performance limits and failure of carbon nanotube composites. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 025012.	0.8	14
175	High-field emission performance of a NiFe ₂ O ₄ /rGO/CNT tertiary nanocomposite. RSC Advances, 2016, 6, 26745-26751.	1.7	11
176	Continuous Preparation of Carbon Nanotube Film and Its Applications in Fuel and Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7818-7825.	4.0	23
177	Magnetic impurities in single-walled carbon nanotubes and graphene: a review. Analyst, The, 2016, 141, 2639-2656.	1.7	32
178	Dramatically enhancing the yield of carbon nanotubes by simply adding oxygen-containing molecules in solid-state synthesis. Chemical Communications, 2016, 52, 2976-2979.	2.2	3
179	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
180	A one-step electrodeposition of homogeneous and vertically aligned nanotubes with parahydrophobic properties (high water adhesion). Journal of Materials Chemistry A, 2016, 4, 3197-3203.	5.2	55
181	Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale, 2016, 8, 9890-9918.	2.8	74
182	One-pot Aerosol Synthesis of Carbon Nanotube-Zn2GeO4 Composite Microspheres for Enhanced Lithium-ion Storage Properties. Electrochimica Acta, 2016, 190, 766-774.	2.6	18

#	Article	IF	CITATIONS
183	Efficient adsorption of organic dyes on a flexible single-wall carbon nanotube film. Journal of Materials Chemistry A, 2016, 4, 1191-1194.	5.2	48
184	Synthesis, characterization and photoinduced charge separation of carbon nanohorn–oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics, 2016, 18, 1828-1837.	1.3	8
185	Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon, 2016, 98, 157-161.	5.4	21
186	Synthesis, Purification and Functionalization of Carbon Nanotubes for Biotechnological Applications. Nanomedicine and Nanotoxicology, 2016, , 139-163.	0.1	1
187	Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777.	5.4	301
188	Review on Polymer/Carbon Nanotube Composite Focusing Polystyrene Microsphere and Polystyrene Microsphere/Modified CNT Composite: Preparation, Properties, and Significance. Polymer-Plastics Technology and Engineering, 2016, 55, 582-603.	1.9	20
189	Review on the nanoparticle fluidization science and technology. Chinese Journal of Chemical Engineering, 2016, 24, 9-22.	1.7	59
190	Generation and characterization of aerosols released from sanding composite nanomaterials containing carbon nanotubes. NanoImpact, 2017, 5, 41-50.	2.4	11
191	Nano-engineered joining employing surface modified graphite nanomaterials. Journal of Industrial and Engineering Chemistry, 2017, 48, 16-23.	2.9	1
192	Resonantly Enhanced Nonlinear Optical Probes of Oxidized Multiwalled Carbon Nanotubes at Supported Lipid Bilayers. Journal of Physical Chemistry B, 2017, 121, 1321-1329.	1.2	10
193	Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 259-264.	1.3	32
194	Advances in Production and Applications of Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 18.	3.0	64
195	Synthesis and Supercapacitor Application of Alkynyl Carbon Materials Derived from CaC ₂ and Polyhalogenated Hydrocarbons by Interfacial Mechanochemical Reactions. ACS Applied Materials & Interfaces, 2017, 9, 3895-3901.	4.0	61
196	3D urchin-like black TiO _{2â^'x} /carbon nanotube heterostructures as efficient visible-light-driven photocatalysts. RSC Advances, 2017, 7, 453-460.	1.7	35
197	Filling Single-Walled Carbon Nanotubes with Lutetium Chloride: A Sustainable Production of Nanocapsules Free of Nonencapsulated Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 2501-2508.	3.2	17
198	Controlled synthesis of hollow porous carbon spheres for enrichment and simultaneous determination of nine bisphenols from real samples. Talanta, 2017, 167, 428-435.	2.9	20
199	Flexible, sandwich-like CNTs/NiCo ₂ O ₄ hybrid paper electrodes for all-solid state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5886-5894.	5.2	82
200	H 2 -rich gases production from Catalytic Decomposition of Biogas: Viability of the process associated to the co-production of carbon nanofibers. International Journal of Hydrogen Energy, 2017, 42, 23484-23493.	3.8	7

#	Article	IF	CITATIONS
201	Mechanical and electrical behavior of rubber nanocomposites under static and cyclic strain. Composites Science and Technology, 2017, 142, 1-9.	3.8	45
202	Generic Mechanochemical Grafting Strategy toward Organophilic Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 7666-7674.	4.0	11
203	Electrochemiluminescence DNA biosensor based onÂthe use of gold nanoparticle modified graphite-like carbon nitride. Mikrochimica Acta, 2017, 184, 2587-2596.	2.5	17
204	Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Scientific Reports, 2017, 7, 46519.	1.6	134
205	Review on High‣oading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
206	Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Frontiers of Chemical Science and Engineering, 2017, 11, 280-289.	2.3	25
207	Acute Nanoparticle Exposure to Vocal Folds: A Laboratory Study. Journal of Voice, 2017, 31, 662-668.	0.6	1
208	Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon, 2017, 119, 502-510.	5.4	35
209	Degradation of oxidized multi-walled carbon nanotubes in water via photo-Fenton method and its degradation mechanism. Chemical Engineering Journal, 2017, 323, 37-46.	6.6	31
210	Printing of highly conductive carbon nanotubes fibres from aqueous dispersion. Materials and Design, 2017, 116, 16-20.	3.3	12
211	Effects of Temperature and Shear on the Adsorption of Surfactants on Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 14339-14348.	1.5	8
212	Simple preparation of birnessite-type MnO2 nanoflakes with multi-walled carbon nanotubes for the sensitive detection of hydrogen peroxide. Ionics, 2017, 23, 3219-3226.	1.2	12
213	Graphitic nanocapsules: design, synthesis and bioanalytical applications. Nanoscale, 2017, 9, 10529-10543.	2.8	10
214	A model for catalytic synthesis of carbon nanotubes in a fluidized-bed reactor: Effect of reaction heat. Chemical Engineering Journal, 2017, 329, 305-311.	6.6	17
215	A sensitive Pb ²⁺ testing method based on aptamer-functionalized peroxidase-like 3D-flower MoS ₂ microspheres. New Journal of Chemistry, 2017, 41, 7052-7060.	1.4	15
216	Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nature Nanotechnology, 2017, 12, 557-563.	15.6	215
217	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46, 3661-3715.	18.7	153
218	High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon, 2017, 118, 413-421.	5.4	83

#	Article	IF	CITATIONS
219	Electrochemical deposition of carbon nanotubes from CO ₂ in CaCl ₂ –NaCl-based melts. Journal of Materials Chemistry A, 2017, 5, 6219-6225.	5.2	45
220	The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel. Chemical Engineering Journal, 2017, 314, 388-395.	6.6	56
221	Bottom-Up Assembly of Molecular Nanostructures by Means of Ferroelectric Lithography. Langmuir, 2017, 33, 475-484.	1.6	7
222	Carbonâ€Based Microbialâ€Fuelâ€Cell Electrodes: From Conductive Supports to Active Catalysts. Advanced Materials, 2017, 29, 1602547.	11.1	252
223	Computational design of two-dimensional nanomaterials for charge modulated CO2/H2 capture and/or storage. Energy Storage Materials, 2017, 8, 169-183.	9.5	25
224	Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.	8.2	183
225	Trends in Adsorption Energies of the Oxygenated Species on Single Platinum Atom Embedded in Carbon Nanotubes. Catalysis Letters, 2017, 147, 2689-2696.	1.4	10
226	Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules, 2017, 50, 8002-8009.	2.2	13
227	Open Resonator Electric Spaser. ACS Nano, 2017, 11, 12573-12582.	7.3	52
228	Effect of acid-treatment and colloidal-processing conditions on the room temperature mechanical and electrical properties of 3YTZP/MWNT ceramic nanocomposites. Ceramics International, 2017, 43, 16560-16568.	2.3	3
229	Overcoming Catalyst Residue Inhibition of the Functionalization of Single-Walled Carbon Nanotubes via the Billups–Birch Reduction. ACS Applied Materials & Interfaces, 2017, 9, 37972-37980.	4.0	18
230	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry, 2017, 26, 1077-1093.	7.1	287
231	Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts. Carbon, 2017, 124, 637-641.	5.4	15
232	Enhanced Stability of Immobilized Platinum Nanoparticles through Nitrogen Heteroatoms on Doped Carbon Supports. Chemistry of Materials, 2017, 29, 8670-8678.	3.2	44
233	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
234	Iron-Oxide-Filled Carbon Nanotubes. , 2017, , 293-313.		1
235	Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS Omega, 2017, 2, 3958-3965.	1.6	73
236	Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell. Journal of Experimental Nanoscience, 2017, 12, 363-383.	1.3	11

#	Article	IF	CITATIONS
237	Interaction between polymer-coated carbon nanotubes with coarse-grained computations. Chemical Physics Letters, 2017, 685, 77-83.	1.2	2
238	Effective thermal transport properties in multiphase biological systems containing carbon nanomaterials. RSC Advances, 2017, 7, 13615-13622.	1.7	18
239	Solarâ€Lightâ€Driven Photocatalytic Activity of Novel Sn@Câ€Dotsâ€Modified TiO ₂ Catalyst. ChemistrySelect, 2017, 2, 6683-6688.	0.7	20
240	Nano-bio interactions between carbon nanomaterials and blood plasma proteins: why oxygen functionality matters. NPG Asia Materials, 2017, 9, e422-e422.	3.8	29
241	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
242	Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresource Technology, 2017, 244, 698-707.	4.8	299
243	A micro-sized Si–CNT anode for practical application <i>via</i> a one-step, low-cost and green method. RSC Advances, 2017, 7, 54844-54851.	1.7	12
244	Comparison of chemical, ultrasonic and thermal regeneration of carbon nanotubes for acetaminophen, ibuprofen, and triclosan adsorption. RSC Advances, 2017, 7, 52719-52728.	1.7	24
245	Influence of defects induced by chemical treatment on the electrical and thermal conductivity of nanofluids containing carboxyl-functionalized multi-walled carbon nanotubes. RSC Advances, 2017, 7, 49937-49946.	1.7	28
246	Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides. RSC Advances, 2017, 7, 53570-53577.	1.7	54
247	Assembly of carbon nanotubes into microparticles with tunable morphologies using droplets in a non-equilibrium state. RSC Advances, 2017, 7, 17773-17780.	1.7	6
248	Rapid production of carbon nanotubes: a review on advancement in growth control and morphology manipulations of flame synthesis. Journal of Materials Chemistry A, 2017, 5, 25144-25170.	5.2	46
249	Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation. MRS Bulletin, 2017, 42, 809-818.	1.7	13
250	Nd doped Fe3C nanoparticles: The structure, morphology and magnetic properties. Journal of Alloys and Compounds, 2017, 723, 295-300.	2.8	4
251	Roles of carbon nanotubes in novel energy storage devices. Carbon, 2017, 122, 462-474.	5.4	157
252	Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes. Toxicology and Applied Pharmacology, 2017, 329, 347-357.	1.3	12
253	Nanomaterials and their Classification. Advanced Structured Materials, 2017, , 3-45.	0.3	32
254	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98

#	ARTICLE	IF	CITATIONS
255	Growth of Aligned Carbon Nanotubes and Their Applications. , 2017, , 381-403.		5
257	Challenge and Opportunities of Carbon Nanotubes. , 2017, , 433-476.		9
258	Utilization of cotton as carbon nanostructure precursor by pyrolysis method. IOP Conference Series: Earth and Environmental Science, 2017, 60, 012017.	0.2	0
259	Carbon Nanotubes in Targeting and Delivery of Drugs. , 2017, , 389-426.		5
260	Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries. Energies, 2017, 10, 1844.	1.6	8
261	Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers, 2017, 5, 39.	1.8	26
262	Flexible Fiber and Fabric Batteries. Advanced Materials Technologies, 2018, 3, 1700302.	3.0	25
263	Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 2018, 22, 949-978.	2.4	243
264	Diffusion of alkali metal atoms (Li, Na, K) on aluminum nitride and boron nitride nanocages; a density functional theory study. Journal of Molecular Liquids, 2018, 259, 249-259.	2.3	27
265	Evolution of Nanoparticles in the Gas Phase during the Floating Chemical Vapor Deposition Synthesis of Carbon Nanotubes. Journal of Physical Chemistry C, 2018, 122, 6437-6446.	1.5	17
266	Gas–solid fluidization of cohesive powders. Chemical Engineering Research and Design, 2018, 133, 347-387.	2.7	86
267	Capillary electrophoresis analysis of affinity to assess carboxylation of multi-walled carbon nanotubes. Analytica Chimica Acta, 2018, 1027, 149-157.	2.6	9
268	The electron properties of infinite length single-walled silicon nanotubes are studied by density functional theory. Superlattices and Microstructures, 2018, 123, 20-29.	1.4	8
269	The electron properties of infinite length single-walled silicon nanotubes are studied by density functional theory. Superlattices and Microstructures, 2018, 123, 88-93.	1.4	1
270	Reinforcing epoxy resin with nitrogen doped carbon nanotube: A potential lightweight structure material. Journal of Materials Science and Technology, 2018, 34, 2205-2211.	5.6	22
271	Single-Walled Carbon Nanotube-in-Binary-Polymer Nanofiber Structures and Their Use as Carbon Precursors for Electrochemical Applications. Journal of Physical Chemistry C, 2018, 122, 4189-4198.	1.5	17
272	Tunable piezoelectric performance of flexible PVDF based nanocomposites from MWCNTs/graphene/MnO2 three-dimensional architectures under low poling electric fields. Composites Part A: Applied Science and Manufacturing, 2018, 107, 536-544.	3.8	39

#	Article	IF	CITATIONS
273	Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occupational and Environmental Medicine, 2018, 75, 351-358.	1.3	36
274	Carbon Nanotube Fabrication Based on Animal Red Blood Cells. Solid State Phenomena, 0, 271, 64-69.	0.3	0
275	Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne Cycloaddition. Macromolecules, 2018, 51, 755-762.	2.2	22
276	Carbon Dioxide Promotes Dehydrogenation in the Equimolar C 2 H 2 O 2 Reaction to Synthesize Carbon Nanotubes. Small, 2018, 14, 1703482.	5.2	8
277	Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion–Image Interactions. Journal of Physical Chemistry B, 2018, 122, 1545-1550.	1.2	4
278	Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018, 39, 011010.	2.0	56
279	Decomposable <i>s</i> â€Tetrazine Copolymer Enables Singleâ€Walled Carbon Nanotube Thin Film Transistors and Sensors with Improved Sensitivity. Advanced Functional Materials, 2018, 28, 1705568.	7.8	36
280	Nanocomposites based on tubular and onion nanostructures of molybdenum and tungsten disulfides: inorganic design, functional properties and applications. Russian Chemical Reviews, 2018, 87, 251-271.	2.5	15
281	Functionalization of polyfluorene-wrapped carbon nanotubes <i>via</i> copper-mediated azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 2873-2879.	1.9	23
282	Water-assisted, electron-beam induced activation of carbon nanotube catalyst supports for mask-less, resist-free patterning. Carbon, 2018, 135, 270-277.	5.4	6
283	Recent Progress on the Dispersion and the Strengthening Effect of Carbon Nanotubes and Graphene-Reinforced Metal Nanocomposites: A Review. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 1-46.	6.8	112
284	Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective. Polymers for Advanced Technologies, 2018, 29, 8-21.	1.6	62
285	Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes. Carbon, 2018, 126, 544-551.	5.4	31
286	Largeâ€scale oxidation of multiâ€walled carbon nanotubes in fluidized bed from ozoneâ€containing gas mixtures. Canadian Journal of Chemical Engineering, 2018, 96, 688-695.	0.9	1
287	Influence of the Growth Temperature on the Defective Structure of the Multiâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700255.	0.7	12
288	Selective synthesis of single walled carbon nanotubes on metal (iron, nickel or cobalt) sulfate-based catalysts. Carbon, 2018, 129, 128-136.	5.4	21
289	Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018, 64, 219-253.	15.8	184
290	Vertically aligned carbon nanotubes: production and applications for environmental sustainability. Green Chemistry, 2018, 20, 5245-5260.	4.6	35

#	Article	IF	CITATIONS
291	Facile grown carbon nanotubes as thermo-electrochemical cell electrodes by chemical vapor deposition at atmospheric pressure. IOP Conference Series: Earth and Environmental Science, 2018, 121, 042027.	0.2	1
292	Sum Frequency Generation Vibrational Spectroscopy Using Evanescent Waves—Toward Probing Irregular and Complex Surfaces of Mesoscopic-Scale Materials. Analytical Chemistry, 2018, 90, 14222-14229.	3.2	9
293	Robust and Flexible Cellulose Nanofiber/Multiwalled Carbon Nanotube Film for High-Performance Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2018, 57, 17152-17160.	1.8	62
294	Carbon Nanotube Wind Turbine Blades: How Far Are We Today from Laboratory Tests to Industrial Implementation?. ACS Applied Nano Materials, 2018, 1, 6542-6555.	2.4	11
295	A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano, 2018, 3, 28-47.	2.3	59
296	Pt Supported on Carbonâ€coating Antimony Tin Oxide as Anode Catalyst for Direct Methanol Fuel Cell. Fuel Cells, 2018, 18, 763-770.	1.5	10
298	Conversion of Spent Coffee Beans to Electrode Material for Vanadium Redox Flow Batteries. Batteries, 2018, 4, 56.	2.1	20
299	Preparation of stimulusâ€responsive, polyfluoreneâ€wrapped carbon nanotubes via palladium cross coupling. Journal of Polymer Science Part A, 2018, 56, 2723-2729.	2.5	6
300	Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS Omega, 2018, 3, 13935-13943.	1.6	14
301	Interplay between Fe-Titanate Nanotube Fragmentation and Catalytic Decomposition of C2H4: Formation of C/TiO2 Hybrid Interfaces. Inorganics, 2018, 6, 55.	1.2	8
302	Thermal Conductivity of Carbon Nanotubes and Assemblies. Advances in Heat Transfer, 2018, 50, 43-122.	0.4	13
303	Synthesis and electrochemical analysis of novel IrO2 nanoparticle catalysts supported on carbon nanotube for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 18095-18104.	3.8	48
304	A Single Input Multiple Output (SIMO) Variation-Tolerant Nanosensor. ACS Sensors, 2018, 3, 1782-1788.	4.0	8
305	Reinforcing epoxy resin with activated carbon: A way of high rate of quality and price. Composites Communications, 2018, 9, 54-57.	3.3	9
306	Carbon-coated molybdenum carbide nanosheets derived from molybdenum disulfide for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12610-12617.	3.8	27
307	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano, 2018, 12, 5266-5273.	7.3	51
308	Cold Sintered Ceramic Nanocomposites of 2D MXene and Zinc Oxide. Advanced Materials, 2018, 30, e1801846.	11.1	149
309	Metallic Nanocrystal Ripening on Inorganic Surfaces. ACS Omega, 2018, 3, 6533-6539.	1.6	3

ARTICLE IF CITATIONS # The asbestos-carbon nanotube analogy: An update. Toxicology and Applied Pharmacology, 2018, 361, 310 1.3 70 68-80 311 The Potential Human Health and Environmental Issues of Nanomaterials., 2018, 1049-1054. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis. Frontiers in Immunology, 2018, 312 2.2 53 9, 1120. Carbon-Based Polymer Nanocomposites as Electrodes for Microbial Fuel Cells. , 2018, , 361-390. 313 The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites. 314 3.2 33 Chemistry of Materials, 2018, 30, 5245-5255. Carbon Nanotubes Derived from Yeast-Fermented Wheat Flour and Their Energy Storage Application. 3.2 ACS Sustainable Chemistry and Engineering, 2018, 6, 11386-11396. Chirality-controlled synthesis of single-walled carbon nanotubesâ€"From mechanistic studies toward 317 8.3 34 experimental realization. Materials Today, 2018, 21, 845-860. Wet-Spun Graphene Sheets as Flexible Heat Spreaders for Efficient Thermal Management., 2018, , . 318 Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 319 23.0 239 8655-8769. Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials, 2018, 10.2 8, 1801804. Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> strain-promoted 321 1.9 20 azide–alkyne cýcloaddition. Polymer Chemistry, 2018, 9, 4460-4467. Wetâ€toâ€Dry Hybrid Spinning of Graphene Fiber Inspired by Spider Silk Production Mechanisms. Advanced 1.9 Materials Interfaces, 2018, 5, 1800585 Epoxy resin nanocomposites with hydroxyl (OH) and amino (NH2) functionalized boron nitride 323 2.2 20 nanotubes. Nanocomposites, 2018, 4, 10-17. Multifunctional mixed valence N-doped CNT@MFe₂O₄ hybrid nanomaterials: from engineered one-pot coprecipitation to application in energy storage paper supercapacitors. 324 2.8 Nanoscale, 2018, 10, 12820-12840. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber 325 1.6 91 nanocomposites. Scientific Reports, 2018, 8, 9005. Methods of dispersion and stabilization of several nanomaterials in water. Ferroelectrics, 2018, 527, 133-148. Smart dispersion: Validation of OCT and impedance spectroscopy as solutions for in-situ dispersion 327 1.39 analysis of CNP/EP-composites. Materialia, 2018, 1, 185-197. The Regulating Role of Carbon Nanotubes and Graphene in Lithiumâ€lon and Lithium–Sulfur Batteries. 11.1 339 Advanced Materials, 2019, 31, e1800863.

		LFORT	
#	Article	IF	CITATIONS
329	1D Carbonâ€Based Nanocomposites for Electrochemical Energy Storage. Small, 2019, 15, e1902348.	5.2	73
330	Carbon Nanotube Coated Conductors. ACS Applied Electronic Materials, 2019, 1, 1797-1806.	2.0	6
331	Carbon Allotropes as Anode Material for Lithiumâ€ion Batteries. Advanced Materials Technologies, 2019, 4, 1900307.	3.0	50
332	Stretchable and Resilient Conductive Films on Polydimethylsiloxane from Reactive Polymer-Single-Walled Carbon Nanotube Complexes for Wearable Electronics. ACS Applied Nano Materials, 2019, 2, 4968-4973.	2.4	7
333	Spongy acetylenic carbon material prepared by ball milling CaC2 and chlorinated rubber — Its mercury adsorption and electrochemical property. Chinese Journal of Chemical Engineering, 2019, 27, 1988-1995.	1.7	2
334	Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. ACS Nano, 2019, 13, 8736-8748.	7.3	28
335	Electrophoretic Fabrication of Robust Carbon Nanotube "Buckyfilms―for Flexible Electronics. ACS Applied Nano Materials, 2019, 2, 5190-5199.	2.4	3
336	Foam Injection Molding of Conductive-Filler/Polymer Composites. , 2019, , 115-148.		0
337	Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy and Environmental Science, 2019, 12, 2924-2956.	15.6	176
338	Carbonâ€Based Nanocages: A New Platform for Advanced Energy Storage and Conversion. Advanced Materials, 2020, 32, e1904177.	11.1	84
339	A Coaxialâ€Interweaved Hybrid Lithium Metal Anode for Longâ€Lifespan Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1901932.	10.2	73
340	A Bifunctional and Freeâ€Standing Organic Composite Film with High Flexibility and Good Tensile Strength for Tribological and Electrochemical Applications. Advanced Materials Technologies, 2019, 4, 1900617.	3.0	21
342	In Vivo Activation and Pro-Fibrotic Function of NF-κB in Fibroblastic Cells During Pulmonary Inflammation and Fibrosis Induced by Carbon Nanotubes. Frontiers in Pharmacology, 2019, 10, 1140.	1.6	35
344	Carbon Nanotube Assembly and Integration for Applications. Nanoscale Research Letters, 2019, 14, 220.	3.1	199
345	Integration of inflammation, fibrosis, and cancer induced by carbon nanotubes. Nanotoxicology, 2019, 13, 1244-1274.	1.6	57
346	Research and Development in Carbon Fibers and Advanced High-Performance Composites Supply Chain in Europe: A Roadmap for Challenges and the Industrial Uptake. Journal of Composites Science, 2019, 3, 86.	1.4	71
347	In-line monitoring of carbon nanoparticle epoxy dispersion processes. Production Engineering, 2019, 13, 373-390.	1.1	4
348	Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon, 2019, 146, 224-231.	5.4	75

#	Article	IF	CITATIONS
349	Research progress in materials-oriented chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 917-927.	2.3	2
350	Supercritical Fluids as Reaction Media for Scalable Production of Carbon Nanomaterials. ACS Applied Nano Materials, 2019, 2, 1009-1017.	2.4	4
351	Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell. Materials Science for Energy Technologies, 2019, 2, 600-606.	1.0	26
352	Fabrication of three-dimensional graphene anode for augmenting performance in microbial fuel cells. Carbon Resources Conversion, 2019, 2, 134-140.	3.2	40
353	Synthesis and characterization of DGEBA composites reinforced with Cu/Ag modified carbon nanotubes. Heliyon, 2019, 5, e01733.	1.4	4
354	Direct injection of SWCNTs into liquid after supercritical nitrogen treatment. Carbon, 2019, 152, 66-69.	5.4	4
355	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	5.6	314
356	Physically Unclonable Function by an All-Printed Carbon Nanotube Network. ACS Applied Electronic Materials, 2019, 1, 1162-1168.	2.0	22
357	Quasi-in-situ sizing of nanoparticles by laser-induced incandescence during the floating chemical vapor deposition synthesis of carbon nanotubes. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	0
358	Structure and adsorptive property of carbon materials derived from thermal and mechanochemical reaction of CaC2 and chlorinated polymers. Chemical Engineering Journal, 2019, 372, 181-190.	6.6	18
359	A spark discharge generator for scalable aerosol CVD synthesis of single-walled carbon nanotubes with tailored characteristics. Chemical Engineering Journal, 2019, 372, 462-470.	6.6	30
360	Sirtuin 6 inhibits MWCNTs-induced epithelial-mesenchymal transition in human bronchial epithelial cells via inactivating TGF-β1/Smad2 signaling pathway. Toxicology and Applied Pharmacology, 2019, 374, 1-10.	1.3	18
361	Effects of Various Carbon Nanotubes on Soil Bacterial Community Composition and Structure. Environmental Science & Technology, 2019, 53, 5707-5716.	4.6	41
362	Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an Acidochromic Switch via Azide–Alkyne Cycloaddition. ACS Applied Polymer Materials, 2019, 1, 797-803.	2.0	15
363	Optimizing Dispersion, Exfoliation, Synthesis, and Device Fabrication of Inorganic Nanomaterials Using Hansen Solubility Parameters. ChemPhysChem, 2019, 20, 1069-1097.	1.0	29
364	Coconutâ€Shellâ€Derived Carbon/Carbon Nanotube Composite for Fluoride Adsorption from Aqueous Solution. Clean - Soil, Air, Water, 2019, 47, 1800286.	0.7	32
365	Validation of alkaline oxidation as a pre-treatment method for elemental quantification in single-walled carbon nanotubes. Analytical Methods, 2019, 11, 1884-1890.	1.3	8
366	Understanding the influence of carbon nanomaterials on microbial communities. Environment International, 2019, 126, 690-698.	4.8	94

#	Article	IF	CITATIONS
367	Carbonâ€Nanotubeâ€Based Electrical Conductors: Fabrication, Optimization, and Applications. Advanced Electronic Materials, 2019, 5, 1800811.	2.6	72
368	Nanostructured Thermoset/Thermoset Blends Compatibilized with an Amphiphilic Block Copolymer. Macromolecules, 2019, 52, 3104-3114.	2.2	11
369	Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7â´x nanowires. Journal of Materials Science: Materials in Electronics, 2019, 30, 9045-9050.	1.1	19
370	Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2019, 166, A473-A479.	1.3	16
371	Microscopic Analysis and Characterization of Natural Rubber Containing Carbon Fillers. , 2019, , 225-251.		0
372	A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation. Nano Energy, 2019, 59, 102-109.	8.2	26
373	Carbon Isotopic Measurements of Nanotubes to Differentiate Carbon Sources. ACS Omega, 2019, 4, 22108-22113.	1.6	0
374	Carbon materials for traffic power battery. ETransportation, 2019, 2, 100033.	6.8	37
375	Transport of food- and catalytic-grade titanium dioxide nanoparticles in controlled field streams with varying streambed and biofilm conditions. Environmental Science: Nano, 2019, 6, 3454-3466.	2.2	2
376	Thermal and electrical transport properties in multi-walled carbon nanotube-coated ZnO tetrapods and self-entangled multi-walled carbon nanotube tubes. Carbon, 2019, 144, 423-432.	5.4	17
377	Fracture toughness improvement of multi-wall carbon nanotubes/graphene sheets reinforced cement paste. Construction and Building Materials, 2019, 200, 530-538.	3.2	63
378	Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. Journal of Energy Chemistry, 2019, 38, 119-146.	7.1	20
379	Optimization of Carbon Nanotubes as Conductive Additives for Highâ€Energyâ€Density Electrodes for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1800845.	1.8	25
380	Synthesis and characterization of CuO/ZnO/CNTs thin films on copper substrate and its photocatalytic applications. OpenNano, 2019, 4, 100025.	1.8	74
381	Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes: A review of the current technologies, challenges and prospects. Chemical Engineering Research and Design, 2019, 122, 68-82.	2.7	74
382	Impacts of molybdenum-, nickel-, and lithium- oxide nanomaterials on soil activity and microbial community structure. Science of the Total Environment, 2019, 652, 202-211.	3.9	40
383	Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Advanced Materials, 2019, 31, e1800680.	11.1	46
384	Carbon Nanotubes and Their Polymer Nanocomposites. , 2019, , 145-175.		15

#	Article	IF	CITATIONS
385	Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents. Journal of Materials Science, 2019, 54, 4546-4558.	1.7	3
386	Perspective to the Potential Use of Graphene in Liâ€ion Battery and Supercapacitor. Chemical Record, 2019, 19, 1256-1262.	2.9	17
387	Anchoring of triethanolamine–Cu(II) complex on magnetic carbon nanotube as a promising recyclable catalyst for the synthesis of 5-substituted 1H-tetrazoles from aldehydes. Molecular Diversity, 2020, 24, 319-333.	2.1	17
388	Polymer composite for antistatic application in aerospace. Defence Technology, 2020, 16, 107-118.	2.1	159
389	Fine-tuning of spark-discharge aerosol CVD reactor for single-walled carbon nanotube growth: The role of ex situ nucleation. Chemical Engineering Journal, 2020, 383, 123073.	6.6	20
390	A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. Journal of Molecular Liquids, 2020, 297, 111793.	2.3	99
391	Multifunctional nanocomposite clusters enabled by amphiphilic/bioactive natural polysaccharides. Chemical Engineering Journal, 2020, 379, 122406.	6.6	11
392	Carbon nanotube: Controlled synthesis determines its future. Science China Materials, 2020, 63, 16-34.	3.5	16
393	Direct growth of multiwall carbon nanotube on metal catalyst by chemical vapor deposition: In situ nucleation. Surface and Coatings Technology, 2020, 381, 125109.	2.2	20
394	Modeling of cancer photothermal therapy using nearâ€infrared radiation and functionalized graphene nanosheets. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3275.	1.0	12
395	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	11.1	198
396	Composites of palladium nanoparticles and graphene oxide as a highly active and reusable catalyst for the hydrogenation of nitroarenes. Microporous and Mesoporous Materials, 2020, 296, 110014.	2.2	34
397	A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 2222-2245.	5.2	59
398	An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin. Journal of Materials Science and Technology, 2020, 40, 24-30.	5.6	18
399	A review of cellulose nanomaterials incorporated fruit coatings with improved barrier property and stability: Principles and applications. Journal of Food Process Engineering, 2020, 43, e13344.	1.5	20
400	Study of Dispersions of Carbon Nanotubes Modified by the Method of Rapid Expansion of Supercritical Suspensions. Molecules, 2020, 25, 4061.	1.7	8
401	Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. International Materials Reviews, 2021, 66, 533-562.	9.4	52
402	Vertically Aligned Carbon Nanotube Membranes: Water Purification and Beyond. Membranes, 2020, 10, 273.	1.4	14

#	Article	IF	CITATIONS
403	Catalytic decomposition of methane by two-step cascade catalytic process: Simultaneous production of hydrogen and carbon nanotubes. Chemical Engineering Research and Design, 2020, 163, 96-106.	2.7	11
404	Adsorption in the context of water purification. , 2020, , 67-100.		6
405	Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application. Environmental Technology and Innovation, 2020, 20, 101056.	3.0	89
406	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	6.4	186
407	Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers, 2020, 12, 3320.	1.7	22
408	NH ₃ Sensor Based on 2D Wormlike Polypyrrole/Graphene Heterostructures for a Self-Powered Integrated System. ACS Applied Materials & Interfaces, 2020, 12, 38674-38681.	4.0	38
409	Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Advances, 2020, 2, 4199-4211.	2.2	8
410	Stretchable conductors made of single wall carbon nanotubes self-grafted on polymer films. Journal of Physics: Conference Series, 2020, 1548, 012023.	0.3	0
411	Temperature differentiated synthesis of hierarchically structured N,S-Doped carbon nanotubes/graphene hybrids as efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 848, 156528.	2.8	8
412	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
413	Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. Journal of Electroanalytical Chemistry, 2020, 877, 114501.	1.9	12
414	Synthesis and characterization of the immobilized polythiophene on magnetic carbon nanotube as a prominent catalyst for the synthesis of dihydropyrimidinone and octahydroquinazolinone derivatives. Research on Chemical Intermediates, 2020, 46, 4955-4969.	1.3	13
416	Temperature dependence of single-walled carbon nanotube migration in epoxy resin under DC electric field. Journal of Materials Science, 2020, 55, 16220-16233.	1.7	3
417	Catalytic <scp>HTL</scp> â€derived biochar and solâ€gel synthesized (Mn, Ti)â€oxides for asymmetric supercapacitors. International Journal of Energy Research, 2020, 44, 12546-12558.	2.2	7
418	Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation. Frontiers in Immunology, 2020, 11, 552613.	2.2	23
419	Prediction model for determining the optimum operational parameters in laser forming of fiber-reinforced composites. Advances in Manufacturing, 2020, 8, 242-251.	3.2	11
420	Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 1791-1811.	6.9	80
421	Carbon nanotubes as light absorbers in digital light processing three-dimensional printing of SiCN ceramics from preceramic polysilazane. Ceramics International, 2020, 46, 19393-19400.	2.3	29

#	Article	IF	CITATIONS
422	Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects. Carbon, 2020, 168, 748-845.	5.4	102
423	Coordinating mechanical performance and fire safety of epoxy resin via functionalized nanodiamond. Diamond and Related Materials, 2020, 108, 107964.	1.8	9
424	Assessing the environmental impact and payback of carbon nanotube supported CO2 capture technologies using LCA methodology. Journal of Cleaner Production, 2020, 270, 122465.	4.6	26
425	Cobalt-Embedded N-Doped Carbon Nanostructures for Oxygen Reduction and Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 6354-6366.	2.4	22
426	Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. Science of the Total Environment, 2020, 720, 137582.	3.9	16
427	Microenvironmental Alterations in Carbon Nanotube-Induced Lung Inflammation and Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 126.	1.8	7
428	Carboxylated single-walled carbon nanotubes as a semiconductor for adsorption of acrylamide in mainstream cigarette smoke. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114299.	1.3	14
429	Nitrate hydrogenation by microtubular CNT-made catalytic membrane contactor. Chemical Engineering Journal, 2020, 401, 126142.	6.6	6
430	Nanomaterials applications. , 2020, , 435-453.		6
431	Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology, 2020, 192, 108102.	3.8	82
432	Hierarchical and scalable integration of nanostructures for energy and environmental applications: a review of processing, devices, and economic analyses. Nano Futures, 2020, 4, 012002.	1.0	12
433	Dielectric properties of the mixed spins (S=5/2, $if=2$) and ($if=5/2$ and S= 2) in nanotube system: A Monte Carlo study. Solid State Communications, 2020, 310, 113851.	0.9	23
434	Detection of Silver Nanoparticles Using Green Synthesis of Fluorescent Nitrogen-Doped Carbon Dots. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 379-387.	0.7	6
435	Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. Inorganics, 2020, 8, 6.	1.2	46
436	Life Cycle Greenhouse Gas Emissions of Long and Pure Carbon Nanotubes Synthesized via On-Substrate and Fluidized-Bed Chemical Vapor Deposition. ACS Sustainable Chemistry and Engineering, 2020, 8, 1730-1740.	3.2	24
437	Structure Design and Composition Engineering of Carbonâ€Based Nanomaterials for Lithium Energy Storage. Advanced Energy Materials, 2020, 10, 1903030.	10.2	122
438	Catalytic methane technology for carbon nanotubes and graphene. Reaction Chemistry and Engineering, 2020, 5, 991-1004.	1.9	16
439	Stimuli-responsive superhydrophobic films driven by solvent vapor for electric switch and liquid manipulation. Chemical Engineering Journal, 2020, 394, 124919.	6.6	23

#	Article	IF	CITATIONS
440	15 Years of <i>Small</i> : Research Trends in Nanosafety. Small, 2020, 16, e2000980.	5.2	37
441	Electrochemiluminescence revealing that HNO3-oxidized single-walled carbon nanotubes are essentially tubular graphene quantum dot-nanoassemblies. Applied Surface Science, 2020, 525, 146432.	3.1	10
442	Safer-by-design for nanomaterials. , 2020, , 215-237.		3
443	Three-dimensional Co ₉ S ₈ nanotube network/sulfur composite cathode with enhanced lithium-sulfur battery performance. Nanotechnology, 2020, 31, 295404.	1.3	4
444	Investigating vibrations of viscoelastic fluid-conveying carbon nanotubes resting on viscoelastic foundation using a nonlocal fractional Timoshenko beam model. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2021, 235, 30-40.	0.5	1
445	Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: Microbial community structure, enzyme activities, and metabolism process. Journal of Hazardous Materials, 2021, 401, 123270.	6.5	41
446	Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal, 2021, 407, 127191.	6.6	212
447	Nano–Enabled sensors for detection of arsenic in water. Water Research, 2021, 188, 116538.	5.3	46
448	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	4.6	71
449	Divergent thinking and its application in biomass carbon electrode preparation. Renewable and Sustainable Energy Reviews, 2021, 138, 110564.	8.2	11
450	Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities. Journal of Hazardous Materials, 2021, 410, 124550.	6.5	15
451	Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 2021, 138, 110490.	8.2	219
452	Superfast ice crystal-assisted synthesis of NiFe2O4 and ZnFe2O4 nanostructures for flexible high-energy density asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853, 157129.	2.8	25
453	Advances in Carbon-Based Nanocomposites for Deep Adsorptive Desulfurization. , 2021, , 1809-1831.		Ο
454	Several carbon-coated Ga ₂ O ₃ anodes: efficient coating of reduced graphene oxide enhanced the electrochemical performance of lithium ion batteries. Dalton Transactions, 2021, 50, 3660-3670.	1.6	14
456	Nanomaterials and Human Health: An Overview. Environmental Chemistry for A Sustainable World, 2021, , 165-180.	0.3	2
457	Natural silk for energy and sensing applications: a review. Environmental Chemistry Letters, 2021, 19, 2141-2155.	8.3	23
458	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45

#	Article	IF	CITATIONS
459	A new type of flexible energy harvesting device working with micro water droplets achieving high output. Journal of Materials Chemistry A, 2021, 9, 23555-23562.	5.2	7
460	Monochromatic Carbon Nanotube Tangles Grown by Microfluidic Switching between Chaos and Fractals. ACS Nano, 2021, 15, 5129-5137.	7.3	5
461	Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries. Ionics, 2021, 27, 667-675.	1.2	5
462	Artificial neural network, Pareto optimization, and Taguchi analysis for the synthesis of single-walled carbon nanotubes. Carbon Trends, 2021, 2, 100016.	1.4	13
463	Multiwalled Carbon Nanotube Buckypaper/Polyacrylonitrile Nanofiber Composite Membranes for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2021, 4, 729-738.	2.4	29
464	Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy, 2021, 80, 105552.	8.2	91
465	Design of a Class of New sp ² – sp ³ Carbons Constructed by Graphite and Diamond Building Blocks. Chinese Physics Letters, 2021, 38, 028102.	1.3	15
466	Global scale life cycle environmental impacts of single- and multi-walled carbon nanotube synthesis processes. International Journal of Life Cycle Assessment, 2021, 26, 656-672.	2.2	21
467	Thermotropic liquid crystals with low-dimensional carbon allotropes. Nano Express, 2021, 2, 012002.	1.2	16
468	Stretchable Energy Storage Devices Based on Carbon Materials. Small, 2021, 17, e2005015.	5.2	34
469	Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 2021, 48, 135-154.	8.3	46
470	High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS Nano, 2021, 15, 4728-4746.	7.3	14
471	2D MXenes: Tunable Mechanical and Tribological Properties. Advanced Materials, 2021, 33, e2007973.	11.1	278
472	Effects of Ionic Liquid and Biomass Sources on Carbon Nanotube Physical and Electrochemical Properties. Sustainability, 2021, 13, 2977.	1.6	4
473	Nanocarbon for Energy Material Applications: N ₂ Reduction Reaction. Small, 2021, 17, e2007055.	5.2	26
474	Graphene-Based Nanomaterials as the Cathode for Lithium-Sulfur Batteries. Molecules, 2021, 26, 2507.	1.7	18
475	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angewandte Chemie - International Edition, 2021, 60, 14528-14535.	7.2	98
476	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angewandte Chemie, 2021, 133, 14649-14656.	1.6	18

#	Article	IF	CITATIONS
477	Synthesis of Highly-Dispersed Graphene Oxide Nanoribbons–Functionalized Carbon Nanotubes–Graphene Oxide (GNFG) Complex and Its Application in Enhancing the Mechanical Properties of Cementitious Composites. Nanomaterials, 2021, 11, 1669.	1.9	16
478	Cleanly Removable Surfactant for Carbon Nanotubes. Chemistry of Materials, 2021, 33, 4551-4557.	3.2	14
479	Safe-by-Design in Engineering: An Overview and Comparative Analysis of Engineering Disciplines. International Journal of Environmental Research and Public Health, 2021, 18, 6329.	1.2	12
480	Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries. Jom, 2021, 73, 2516-2524.	0.9	17
481	Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics, 2021, 13, 1174.	2.0	48
482	Carbon Nanotube (CNTs): Structure, Synthesis, Purification, Functionalisation, Pharmacology, Toxicology, Biodegradation and Application as Nanomedicine and Biosensor. , 2021, 001, .		3
483	Recent development in shape memory based perovskite materials for energy conversion and storage applications. International Journal of Energy Research, 2021, 45, 20545-20558.	2.2	8
484	Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy & Fuels, 2021, 35, 12845-12868.	2.5	193
485	Stainless steel cloth modified by carbon nanoparticles of Chinese ink as scalable and high-performance anode in microbial fuel cell. Chinese Chemical Letters, 2021, 32, 2499-2502.	4.8	15
486	Multiscale modeling and numerical analyses of the electric conductivity of <scp>CNT</scp> /polymer nanocomposites taking into account the tunneling effect. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, e2955.	1.2	4
487	Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials. Journal of Alloys and Compounds, 2021, 876, 160112.	2.8	31
488	Efficient charge carrier control on single walled carbon nanotube thin film transistors using water soluble polymer coatings. Journal of Materials Science: Materials in Electronics, 2021, 32, 23923-23934.	1.1	1
489	Recent Advancements in Carbon Nano-Infused Cementitious Composites. Materials, 2021, 14, 5176.	1.3	7
490	Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. Journal of Hazardous Materials, 2021, 417, 125984.	6.5	47
492	Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer. Renewable and Sustainable Energy Reviews, 2021, 148, 111367.	8.2	61
493	Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. Journal of Hazardous Materials, 2021, 417, 125959.	6.5	22
494	Nanomaterials for automotive outer panel components: a review. European Physical Journal Plus, 2021, 136, 1.	1.2	34
495	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering B: Solid-State Materials for Advanced	1.7	40

#	Article	IF	CITATIONS
496	Sorting and decoration of semiconducting single-walled carbon nanotubes <i>via</i> the quaternization reaction. RSC Advances, 2021, 11, 2898-2904.	1.7	3
497	Nano-mesh superstructure in single-walled carbon nanotube/polyethylene nanocomposites, and its impact on rheological, thermal and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105972.	3.8	11
498	Topological carbon materials: A new perspective. Physics Reports, 2020, 868, 1-32.	10.3	42
499	Trends in Carbon, Oxygen, and Nitrogen Core in the X-ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. Journal of Physical Chemistry C, 2021, 125, 973-988.	1.5	30
500	Improved porosity and ionic sorption capacity of carbon particles prepared by spray pyrolysis from an aqueous sucrose/NaHCO ₃ /TEOS solution. RSC Advances, 2017, 7, 21314-21322.	1.7	9
501	Carbon Nanotubes Conjugated Mesoporous Tungsten Trioxide as Anode Electrocatalyst for Microbial Fuel Cells. ECS Journal of Solid State Science and Technology, 2020, 9, 115010.	0.9	7
502	Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations. PLoS ONE, 2016, 11, e0157264.	1.1	104
503	Fabrication of Poly (Toluidine Blue O) Functionalized Multiwalled Carbon Nanotubes on Glassy Carbon Electrode for Hydrazine Detection. International Journal of Electrochemical Science, 2018, 13, 4901-4910.	0.5	5
504	Carbon-Based Nanomaterials for Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2016, , 154-179.	0.2	6
505	Highly durable silica-coated Pt/carbon nanotubes for proton-exchange membrane fuel cells application. Japanese Journal of Applied Physics, 2016, 55, 01AE23.	0.8	3
506	Ecological Drawbacks of Nanomaterials Produced on an Industrial Scale: Collateral Effect on Human and Environmental Health. Water, Air, and Soil Pollution, 2021, 232, 435.	1.1	16
507	A simple method to grow millimeters long vertically aligned carbon nanotube forests. Diamond and Related Materials, 2021, 120, 108637.	1.8	6
508	Preparation and electrochemical properties of Co2SnO4/graphene composites. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 198201.	0.2	2
509	C60 to CNT- CNF – Buckypaper: Wonder Platforms for Nanomedicine Applications. Journal of Nanomedicine Research, 2015, 2, .	1.8	0
510	Development of SDS Modified Graphite Electrode for Effective Oxidation of Methanol and Ethanol. Open Journal of Applied Sciences, 2016, 06, 853-859.	0.2	1
511	Auf Nanostrukturen beruhende innovative elektronische Bauelemente. , 2017, , 257-300.		0
512	Structural Formulation of As-grown Vertically Aligned Nanostructures to Multifunctional Thin-Film Frameworks through Controlled Mechanical Rolling. Journal of the Korean Society of Manufacturing Technology Engineers, 2016, 25, 266-270.	0.1	0
513	12 Current Topics in Graphene and Carbon Nanotube Research. , 2016, , 223-246.		0

#	Article	IF	CITATIONS
514	Building a Bridge for Carbon Nanotubes from Nanoscale Structure to Macroscopic Application. Journal of the American Chemical Society, 2021, 143, 18805-18819.	6.6	25
515	Advances in Carbon-Based Nanocomposites for Deep Adsorptive Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2020, , 63-91.	0.2	0
516	NiFe/Al2O3/Fe-frame catalyst for COx-free hydrogen evolution from catalytic decomposition of methane: Performance and kinetics. Chemical Engineering Journal, 2022, 436, 133366.	6.6	4
517	A Tunable Metamaterial Joint for Mechanical Shock Applications Inspired by Carbon Nanotubes. Applied Sciences (Switzerland), 2021, 11, 11139.	1.3	1
518	Electrochemical remediation of perfluoroalkyl substances from water. Electrochimica Acta, 2022, 403, 139635.	2.6	19
519	Electrically Conductive Silicone-Based Nanocomposites Incorporated with Carbon Nanotubes and Silver Nanowires for Stretchable Electrodes. ACS Omega, 2021, 6, 31876-31890.	1.6	4
520	Fibrous cathode materials for advanced sodium-chalcogen batteries. Energy Storage Materials, 2022, 45, 265-280.	9.5	15
521	Facile Premixed Flame Synthesis C@Fe ₂ 0 ₃ /SWCNT as Superior Free-Standing Anode for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
522	Carbon Nanotubes: General Introduction. , 2022, , 1-13.		0
523	Effective electrical conductivity of CNT/polymer nanocomposites. , 2020, , .		1
524	Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials, 2022, 315, 125100.	3.2	67
525	Functionalization of Fiber Devices: Materials, Preparations and Applications. Advanced Fiber Materials, 2022, 4, 324-341.	7.9	29
526	Effects of one-dimensional nanomaterial polyaniline nanorods on earthworm biomarkers and soil enzymes. Environmental Science and Pollution Research, 2022, 29, 35217-35229.	2.7	6
527	Zinc-chromium layered double hydroxides anchored on carbon nanotube and biochar for ultrasound-assisted photocatalysis of rifampicin. Ultrasonics Sonochemistry, 2022, 82, 105875.	3.8	22
528	Binding Capabilities of Different Genetically Engineered pVIII Proteins of the Filamentous M13/Fd Virus and Single-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 398.	1.9	6
529	Commercialization of single-source precursors: Applications, intellectual property, and technology transfer. , 2022, , 563-600.		2
530	Electrophoretic deposition of carbon nanotubes on aluminium for capacitor application. Surface Engineering, 2022, 38, 1-7.	1.1	2
531	Ultrasensitive multiwall carbon nanotube-mesoporous MCM-41 hybrid-based platform for the electrochemical detection of ascorbic acid Analyst, The, 2022, , .	1.7	3

#	Article	IF	CITATIONS
533	Stable Twoâ€dimensional Nanoconfined Ionic Liquids with Highly Efficient Ionic Conductivity. Small, 2022, 18, e2108026.	5.2	18
534	Ultrasensitive, Transparent, Flexible, and Ecofriendly NO ₂ Gas Sensors Enabled by Oxidized Single-Walled Carbon Nanotube Bundles on Cellulose with Engineered Surface Roughness. ACS Sustainable Chemistry and Engineering, 2022, 10, 3227-3235.	3.2	15
535	Facile premixed flame synthesis C@Fe2O3/SWCNT as superior free-standing anode for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 905, 164247.	2.8	14
536	Designing the nonlinear mechanical response of graphyne structures: A finite element structural mechanics approach. Materials Today Communications, 2022, 31, 103386.	0.9	2
537	Recent trends on electrochemical carbon-based nanosensors for sensitive assay of pesticides. Trends in Environmental Analytical Chemistry, 2022, 34, e00158.	5.3	25
538	Technologies for the production of renewable natural gas from organic wastes and their opportunities in existing Canadian pipelines. Fuel Communications, 2022, 11, 100056.	2.0	5
539	Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. Chemosphere, 2022, 299, 134468.	4.2	18
540	Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. Journal of Hazardous Materials, 2022, 433, 128826.	6.5	79
541	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
542	Advances in Precise Structure Control and Assembly toward the Carbon Nanotube Industry. Advanced Functional Materials, 2022, 32, .	7.8	12
543	Formation of Carbon Materials by the Oxidative Pyrolysis of Methane on Resistive Catalysts. Kinetics and Catalysis, 2022, 63, 27-42.	0.3	0
544	Carbon Nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted face masks. Ionics, 2022, 28, 3489-3500.	1.2	26
545	Construction of ZrN enhanced Ni-W microcrystalline film and exploration of its wear and corrosion resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129002.	2.3	7
546	Molecular dynamics simulation of cross-linked carbon nanotube for water treatment. Journal of Molecular Liquids, 2022, 357, 119157.	2.3	1
548	碳纳米ç®jåj«åèšå•̂物基å⁻¼çfå∰ææ–™çš"ç"ç©¶èį›å±•. Chinese Science Bulletin, 2022, , .	0.4	1
549	The promoter role of sulfur in carbon nanotube growth. Dalton Transactions, 2022, 51, 9256-9264.	1.6	5
550	Building a flexible and applicable sodium ion full battery based on self-supporting large-scale CNT films intertwined with ultra-long cycling NiCo ₂ S ₄ . Nanoscale, 2022, 14, 10226-10235.	2.8	6
551	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35

#	Article	IF	CITATIONS
552	Repurposing Fischer-Tropsch and natural gas as bridging technologies for the energy revolution. Energy Conversion and Management, 2022, 267, 115882.	4.4	17
553	Highly conductive CNT aerogel synthesized <i>via</i> an inert FC-CVD technique: a step towards a greener approach. Reaction Chemistry and Engineering, 2022, 7, 1921-1930.	1.9	4
554	Electrical Conductivity of Cotton Fabrics Treated by Silica-Based Ionic LiquidsÂ. Silicon, 0, , .	1.8	0
555	Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges. ACS Applied Nano Materials, 2022, 5, 8649-8679.	2.4	6
556	Vertically Aligned Multiwalled Carbon Nanotube/Cu Catalysts for CO ₂ Electroreduction. ACS Applied Nano Materials, 2022, 5, 10399-10408.	2.4	2
557	Fundamentals of bio-electrochemical systems for wastewater treatment: Challenges and opportunities for resource recovery. , 2022, , 3-22.		0
558	Nanotube Functionalization: Investigation, Methods and Demonstrated Applications. Materials, 2022, 15, 5386.	1.3	18
559	Mechanism of resistance relaxation and hysteresis in viscoelastic piezoresistive polymer nanocomposites. International Journal of Mechanics and Materials in Design, 2022, 18, 769-783.	1.7	7
560	Selected-Area Fabrication of a Single-Walled Carbon Nanotube Schottky Junction with Tunable Gate Rectification. Journal of Physical Chemistry Letters, 2022, 13, 7541-7546.	2.1	1
561	Supported Iridiumâ€based Oxygen Evolution Reaction Electrocatalysts ―Recent Developments. ChemCatChem, 2022, 14, .	1.8	14
562	Understanding the role of graphene oxide nanoribbons–functionalized carbon nanotubes–graphene oxide (CNFG) complex in enhancing the fire resistance of cementitious composites. Construction and Building Materials, 2022, 348, 128637.	3.2	12
563	First-principles study on the effect of atomic swap on the electronic properties and quantum capacitance of Sc2CF2 monolayer. Vacuum, 2022, 204, 111371.	1.6	4
564	Carbon nanostructures and 2D transition metal dichalcogenides. , 2022, , 537-556.		2
565	The hitchhiker's guide to dynamic ion–solvent clustering: applications in differential ion mobility spectrometry. Physical Chemistry Chemical Physics, 2022, 24, 20594-20615.	1.3	9
566	Morphology and topography of nanotubes. , 2022, , 355-420.		0
567	Effective Self-Support Growth of Spring-Like Carbon Nanotube Arrays with Ultra-Large Specific Surface Area. Nano, 2022, 17, .	0.5	1
568	Recent Advances in Titanium Carbide MXene (Ti ₃ C ₂ T _{<i>x</i>}) Cathode Material for Lithium–Air Battery. ACS Applied Energy Materials, 2022, 5, 11933-11946.	2.5	9
569	MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols, 2022, 17, 2990-3027.	5.5	128

#	Article	IF	CITATIONS
570	The impact of biofilms and dissolved organic matter on the transport of nanoparticles in field-scale streams. Water Research, 2022, 226, 119206.	5.3	0
571	Electrical Conduction in CoWO ₄ Flanked by Carbon and ZnFe ₂ O ₄ Nanoparticulate Assembly and a Poly(ethylene oxide) Gel for Enhanced Electrochemical Activity. ACS Applied Energy Materials, 2022, 5, 13520-13534.	2.5	3
572	Recent progress and future perspectives on graphene oxide nanoribbons: Dispersion, structure assembly, and applications. APL Materials, 2022, 10, .	2.2	4
573	Selective adsorption and separation of light hydrocarbon gases in VI/IV dipeptide crystals. Microporous and Mesoporous Materials, 2022, 345, 112284.	2.2	1
574	Highly sensitive electrochemical detection of paracetamol based on MnO2/MWCNTs-NH2 composite. Inorganic Chemistry Communication, 2022, 146, 110105.	1.8	3
575	Carbon Nanotubes: General Introduction. , 2022, , 1321-1333.		0
577	Enhanced UV Protection, Heavy Metal Detection, and Antibacterial Properties of Biomass-Derived Carbon Dots Coated on Protective Fabrics. ACS Applied Bio Materials, 2022, 5, 5790-5799.	2.3	6
578	Balancing the Overall Performance of Poly(vinyl alcohol)/MXene Composite Organohydrogels for Flexible Strain Sensors. ACS Applied Polymer Materials, 2023, 5, 370-380.	2.0	4
579	Unravelling the sensory capability of MWCNT-reinforced nanocomposites: Experimental and numerical investigations. Carbon, 2023, 204, 147-161.	5.4	2
580	Biosensor for Detecting Biomolecules. , 2023, , 87-122.		1
581	Intercalation Pseudocapacitance of Cation-Exchanged Molybdenum-Based Polyoxometalate for the Fast and Stable Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2023, 15, 9350-9361.	4.0	4
582	Additive Manufacturing of Carbon Using Commodity Polypropylene. Advanced Materials, 2023, 35, .	11.1	11
583	Preparation of Tough, Binderâ€Free, and Selfâ€Supporting LiFePO ₄ Cathode by Using Monoâ€Dispersed Ultraâ€Long Singleâ€Walled Carbon Nanotubes for Highâ€Rate Performance Liâ€Ion Battery. Advanced Science, 2023, 10, .	5.6	11
584	Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS Omega, 2023, 8, 10656-10668.	1.6	5
585	Effect of heat treatment on the electrical conductivity of carbon–nitrogen onion nanomaterial based on the interpolyelectrolyte complex lignosulfonate–chitosan. Wood Science and Technology, 0, , .	1.4	1
586	Effect of the Platinum Mass Content in a Catalyst and the State of the Support Surface on the Path of the Oxygen Reduction Reaction in Alkaline Electrolyte. Russian Journal of Electrochemistry, 2023, 59, 12-23.	0.3	0
601	In-House Electrochemical Synthesis of Graphene and Its Exploration as an Anticorrosive Coating on Copper. Springer Proceedings in Materials, 2023, , 1-15.	0.1	0

	CHAID		
#	Article	IF	Citations
604	Carbon Nanostructures Functionalization for Air Filtration and Purification. , 2023, , 1-38.		0
611	Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions. Frontiers in Energy, 0, , .	1.2	Ο
616	A Review on IoT Energy Storage with Nanocarbon Materials: Requirements, State-of-the-Art, Challenges, and Future Scope. Engineering Materials, 2024, , 41-69.	0.3	0