Applications of nanotechnology in water and wastewate

Water Research 47, 3931-3946

DOI: 10.1016/j.watres.2012.09.058

Citation Report

#	Article	IF	CITATIONS
1	A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chemical Engineering Journal, 2013, 233, 258-264.	6.6	102
2	Luminescence recognition material as an INHIBIT logic gate in presence of Pb2+ and Cu2+ ions in aqueous solutions. Sensors and Actuators B: Chemical, 2013, 186, 396-406.	4.0	8
3	ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	15
4	Statistical Parameters Effects on Photocatalytic Degradation of Rhodamine 6G Dye with Hexagonal Zinc Oxide Nanorods Synthesized via Solution Process. Journal of Electronic Materials, 2014, 43, 4266-4274.	1.0	3
5	Opportunities and challenges of nanotechnology in the green economy. Environmental Health, 2014, 13, 78.	1.7	112
6	Nanofiltration of oily wastewater containing salt; experimental studies and optimization using response surface methodology. Desalination and Water Treatment, 0, , 1-14.	1.0	5
7	Electrospun Nanofiber Membranes and Their Applications in Water and Wastewater Treatment. Lecture Notes in Nanoscale Science and Technology, 2014, , 111-143.	0.4	8
8	Regulating surface wettability of PEO/PLLA composite electrospun nanofibrous membrane for liquid phase filtration. , 2014, , .		O
9	Synergistic effects of TiO ₂ and Cu ₂ O in UV/TiO ₂ /zeolite-based systems on photodegradation of bisphenol A. Environmental Technology (United Kingdom), 2014, 35, 1851-1857.	1,2	8
10	Photoluminescence Studies in II-VI Nanoparticles Embedded in Polymer Matrix. Defect and Diffusion Forum, 2014, 357, 95-126.	0.4	3
12	Sustainable Nanotechnology. , 2014, , 395-424.		2
13	High Adsorption Capacity for Cationic Dye Removal and Antibacterial Properties of Sonochemically Synthesized Ag ₂ WO ₄ Nanorods. European Journal of Inorganic Chemistry, 2014, 2014, 5724-5732.	1.0	61
14	Preparation of Ag-loaded octahedral Bi2WO6 photocatalyst and its photocatalytic activity. Russian Journal of Physical Chemistry A, 2014, 88, 2424-2428.	0.1	5
15	Effective Photocatalytic Degradation of Methyl Orange Utilizing ZnS/TiO ₂ /Chitosan Films under Simulated Solar Irradiation. Applied Mechanics and Materials, 0, 675-677, 520-523.	0.2	1
16	Nanoapplications – From geckos to human health. Medical Writing, 2014, 23, 198-203.	0.0	0
17	A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering, 2014, 2014, 1-24.	1.0	501
18	Modulation of persistent organic pollutant toxicity through nutritional intervention: Emerging opportunities in biomedicine and environmental remediation. Science of the Total Environment, 2014, 491-492, 11-16.	3.9	37
19	Effective surface immobilization of nanoparticles using bubbles generated by sonication. Colloid and Polymer Science, 2014, 292, 275-279.	1.0	1

#	ARTICLE	IF	CITATIONS
20	Low-temperature processing of thin films based on rutile TiO2 nanoparticles for UV photocatalysis and bacteria inactivation. Journal of Materials Science, 2014, 49, 786-793.	1.7	15
21	Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chemical Engineering Journal, 2014, 249, 111-120.	6.6	77
22	Kinetics, thermodynamics and regeneration of molybdenum adsorption in aqueous solutions with NaOCl-oxidized multiwalled carbon nanotubes. Journal of Industrial and Engineering Chemistry, 2014, 20, 2521-2527.	2.9	41
23	"Green―colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Applied Catalysis B: Environmental, 2014, 158-159, 269-279.	10.8	143
24	Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chemical Engineering Journal, 2014, 242, 341-347.	6.6	99
25	Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 2014, 336, 97-109.	4.0	734
26	Electrodeposition technique-dependent photoelectrochemical and photocatalytic properties of an In2S3/TiO2 nanotube array. Physical Chemistry Chemical Physics, 2014, 16, 4361.	1.3	35
27	Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 2014, 453, 435-462.	4.1	318
28	Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 2014, 468-469, 1014-1027.	3.9	605
29	Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 2014, 354, 160-179.	4.0	210
30	Optically Active Microspheres Constructed by Helical Substituted Polyacetylene and Used for Adsorption of Organic Compounds in Aqueous Systems. ACS Applied Materials & Emp; Interfaces, 2014, 6, 19041-19049.	4.0	21
31	Facile synthesis and characterization of ZrO ₂ nanoparticles prepared by the AOP/hydrothermal route. RSC Advances, 2014, 4, 38484.	1.7	42
32	Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environmental Nanotechnology, Monitoring and Management, 2014, 1-2, 36-49.	1.7	127
33	Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: An enhanced eco-friendly water disinfection approach. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1125-1133.	0.9	41
35	Model-based analysis of micropolar nanofluid flow over a stretching surface. European Physical Journal Plus, 2014, 129, 1.	1.2	65
36	Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology. Journal of Membrane Biology, 2014, 247, 815-826.	1.0	23
37	Paramagnetic Iron-Doped Hydroxyapatite Nanoparticles with Improved Metal Sorption Properties. A Bioorganic Substrates-Mediated Synthesis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3937-3946.	4.0	72
38	Current approaches of the management of mercury poisoning: need of the hour. DARU, Journal of Pharmaceutical Sciences, 2014, 22, 46.	0.9	78

3

#	ARTICLE	IF	Citations
39	Removal of Total Organic Carbon from Sewage Wastewater Using Poly(ethylenimine)-Functionalized Magnetic Nanoparticles. Langmuir, 2014, 30, 1036-1044.	1.6	34
40	Effect of Adsorption Nonlinearity on the pH–Adsorption Profile of Ionizable Organic Compounds. Langmuir, 2014, 30, 1994-2001.	1.6	30
41	A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere, 2014, 107, 163-174.	4.2	271
42	Nanotechnology for Water Treatment and Purification. Lecture Notes in Nanoscale Science and Technology, 2014, , .	0.4	29
43	Hybrid multiwalled carbon nanotube â^' Laponite sorbent for removal of methylene blue from aqueous solutions. Journal of Colloid and Interface Science, 2014, 431, 241-249.	5.0	20
44	Recovery of gold from aqueous solutions by taurine modified cellulose: An adsorptive–reduction pathway. Chemical Engineering Journal, 2014, 255, 97-106.	6.6	90
45	Simple and facile synthesis of amino functionalized hollow core–mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chemical Engineering Journal, 2014, 251, 441-451.	6.6	95
46	Sorption of organophosphate esters by carbon nanotubes. Journal of Hazardous Materials, 2014, 273, 53-60.	6.5	44
47	Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors, 2014, 4, 172-188.	2.3	142
48	Adapting the use of Fe3O4 nanoparticles in large-scale water treatment facilities. Materials Research Society Symposia Proceedings, 2014, 1708, 13.	0.1	0
49	Current Progress of Nanomaterial/Polymer Mixed-Matrix Membrane for Desalination., 2015,, 516-537.		1
50	Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 045003.	0.7	13
51	Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability. Journal of Visualized Experiments, 2015, , e52715.	0.2	1
52	Effects of Calcination Process on Photocatalytic Activity of TiO2/MCM- 41 Photocatalyst. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	4
53	Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. Journal of Environmental Health Science & Engineering, 2015, 13, 55.	1.4	25
54	Elucidating Adsorption Mechanisms of Phthalate Esters upon Carbon Nanotubes/Graphene and Natural Organic Acid Competitive Effects in Water by <scp>DFT</scp> and <scp>MD</scp> Calculations. Bulletin of the Korean Chemical Society, 2015, 36, 1631-1636.	1.0	7
55	Size-controlled synthesis of superparamagnetic iron-oxide and iron-oxide/iron/carbon nanotube nanocomposites by supersonic plasma expansion technique. Journal Physics D: Applied Physics, 2015, 51, 195003.	1.3	5
56	Kinetics of Nutrient Removal by Nano Zero-Valent Iron under Different Biochemical Environments. Water Environment Research, 2015, 87, 483-490.	1.3	6

#	Article	IF	Citations
57	Applications of Nanotechnology. Journal of Nanomedicine & Biotherapeutic Discovery, 2015, 05, .	0.6	5
58	REMOVAL OF CRESOL RED AND REACTIVE BLACK 5 DYES BY USING SPENT TEA LEAVES AND SUGARCANE BAGGASE POWDER. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.3	1
59	Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 2015, 8, 1.	4.6	398
60	Influence of solution pH, supporting electrolyte presence and solid content on the stability of aqueous nanosilica suspension. Journal of Industrial and Engineering Chemistry, 2015, 30, 71-76.	2.9	20
61	Green engineered ZnO nanopowders by <i>Banyan Tree</i> and <i>E. tirucalli</i> plant latex: auto ignition route, photoluminescent and photocatalytic properties. Materials Research Express, 2015, 2, 035011.	0.8	30
62	Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 2015, 165, 172-178.	1.9	28
63	Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment. Journal of Hazardous Materials, 2015, 299, 27-34.	6.5	50
64	The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 2015, 134, 232-240.	4.2	440
66	Photocatalytic Degradation of Methylene Blue Using TiO ₂ /Carbon Nanoparticles Fabricated by Electrical Arc Discharge in Liquid Medium. Advanced Materials Research, 0, 1123, 285-288.	0.3	6
67	Nanotechnology Solutions for Global Water Challenges. ACS Symposium Series, 2015, , 375-411.	0.5	9
68	Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	15
69	Photocatalytical Deactivation of Pathogens for Municipal Wastewater Reusing. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	3
70	Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI). Journal of Nanoparticle Research, 2015, 17, 1.	0.8	4
71	Effects of nanosilica immobilised microbes on NH4+-N removal of aquaculture effluent. Materials Research Innovations, 2015, 19, S5-600-S5-605.	1.0	0
72	Review on Applications of Nanoparticles in Landfill Leachate Treatment. Applied Mechanics and Materials, 0, 802, 525-530.	0.2	8
73	Bactericidal Performance of Chlorophyllin-Copper Hydrotalcite Compounds. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	15
74	Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat. Journal of Environmental Sciences, 2015, 28, 29-36.	3.2	55
75	Enhanced Permeability, Selectivity, and Antifouling Ability of CNTs/Al ₂ O ₃ Membrane under Electrochemical Assistance. Environmental Science & Environmenta	4.6	128

#	ARTICLE	IF	CITATIONS
76	Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Advances, 2015, 5, 18881-18887.	1.7	99
77	Methacrylate monolith chromatography as a tool for waterborne virus removal. Journal of Chromatography A, 2015, 1381, 118-124.	1.8	9
78	Reuse of the treated textile wastewater and membrane brine in the wet textile processes: distorting effects on the cotton fabric. Desalination and Water Treatment, 2015, 56, 997-1009.	1.0	9
79	Bactericidal Mechanisms Revealed for Rapid Water Disinfection by Superabsorbent Cryogels Decorated with Silver Nanoparticles. Environmental Science & Environmental Science & 2015, 49, 2310-2318.	4.6	77
80	Hierarchical hybrid carbon nano-structures as robust and reusable adsorbents: Kinetic studies with model dye compound. Chemical Engineering Journal, 2015, 268, 197-207.	6.6	45
81	Green Approach for Photocatalytic Cu(II)-EDTA Degradation over TiO ₂ : Toward Environmental Sustainability. Environmental Science & Environmental Sustainability. Environmental Science & Env	4.6	98
82	Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Advances, 2015, 5, 14610-14630.	1.7	796
83	Potential evaluation and perspectives on using sponge-like superabsorbent cryogels for onsite water treatment in emergencies. Desalination and Water Treatment, 2015, 53, 1506-1515.	1.0	16
84	Study on the kinetics and mechanism of the catalytic oxidation reaction of Mn2+ using clinoptilolite supported Î-MnO2 nano-catalyst. Chemical Engineering Research and Design, 2015, 94, 65-71.	2.7	7
85	Tailored Synthesis of Photoactive TiO ₂ Nanofibers and Au/TiO ₂ Nanofiber Composites: Structure and Reactivity Optimization for Water Treatment Applications. Environmental Science & Environmental Scienc	4.6	98
86	Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination, 2015, 365, 117-125.	4.0	85
87	Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes. Applied Clay Science, 2015, 107, 220-229.	2.6	69
88	Facile synthesis of BiOF/Bi2O3/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance. Journal of Alloys and Compounds, 2015, 633, 256-264.	2.8	50
89	Responses of Microbial Communities to Single-Walled Carbon Nanotubes in Phenol Wastewater Treatment Systems. Environmental Science & Environmental Sci	4.6	81
90	Modeling Photo-oxidative Degradation of Aromatics in Water. Optimization Study Using Response Surface and Structural Relationship Approaches. Industrial & Engineering Chemistry Research, 2015, 54, 5427-5441.	1,8	12
91	Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance. Journal of Membrane Science, 2015, 493, 66-79.	4.1	47
92	Laser direct writing of crystalline Fe2O3 atomic sheets on steel surface in aqueous medium. Applied Surface Science, 2015, 351, 148-154.	3.1	17
93	Industrial Applications of Nanoparticles – A Prospective Overview. Materials Today: Proceedings, 2015, 2, 456-465.	0.9	71

#	Article	IF	CITATIONS
94	Influence of nanoimprint lithography on membrane structure and performance. Polymer, 2015, 69, 129-137.	1.8	39
95	Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere, 2015, 141, 100-111.	4.2	129
96	Removal of Copper lons from Aqueous Solutions via Adsorption on Carbon Nanocomposites. ACS Applied Materials & Distribution (2015), 7, 15674-15680.	4.0	85
97	Fixed bed adsorption of diquat dibromide from aqueous solution using carbon nanotubes. RSC Advances, 2015, 5, 61508-61512.	1.7	33
98	Optimization of photocatalytic degradation of meloxicam using titanium dioxide nanoparticles: application to pharmaceutical wastewater analysis, treatment, and cleaning validation. Environmental Science and Pollution Research, 2015, 22, 15516-15525.	2.7	14
99	Application of Low-Cost Materials Coated with Silver Nanoparticle as Water Filter in Escherichia coli Removal. Water Quality, Exposure, and Health, 2015, 7, 617-625.	1.5	33
100	Facile preparation of rosin-based biochar coated bentonite for supporting l±-Fe ₂ O ₃ nanoparticles and its application for Cr(<scp>vi</scp>) adsorption. Journal of Materials Chemistry A, 2015, 3, 4595-4603.	5.2	82
101	Using Butanol Fermentation Wastewater for Biobutanol Production after Removal of Inhibitory Compounds by Micro/Mesoporous Hyper-Cross-Linked Polymeric Adsorbent. ACS Sustainable Chemistry and Engineering, 2015, 3, 702-709.	3.2	40
102	A bibliometric analysis of research on arsenic in drinking water during the 1992–2012 period: An outlook to treatment alternatives for arsenic removal. Journal of Water Process Engineering, 2015, 6, 105-119.	2.6	51
103	Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Advances, 2015, 5, 27009-27017.	1.7	64
104	Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44, 5861-5896.	18.7	1,236
105	Nanotechnology Applied in Agriculture: Controlled Release of Agrochemicals. , 2015, , 103-118.		24
106	Nano-photocatalysts based on ZnS quantum dots/chitosan for the photodegradation of dye pollutants. IOP Conference Series: Materials Science and Engineering, 2015, 76, 012003.	0.3	10
107	Advances in water treatment byÂmicrofiltration, ultrafiltration, and nanofiltration. , 2015, , 83-128.		34
108	Arsenic removal by nanoparticles: a review. Environmental Science and Pollution Research, 2015, 22, 8094-8123.	2.7	142
109	A high-throughput and selective method for the measurement of surface areas of silver nanoparticles. Analyst, The, 2015, 140, 2618-2622.	1.7	3
110	Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. Journal of Hazardous Materials, 2015, 294, 177-185.	6.5	287
111	Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. Journal of Membrane Science, 2015, 487, 117-126.	4.1	233

#	Article	IF	Citations
112	Deposition Corrosion of Galvanized Steel in the Presence of Copper. Corrosion, 2015, , .	0.5	3
113	Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Advances in Colloid and Interface Science, 2015, 225, 229-240.	7.0	147
114	Recent trends in nanomaterials applications in environmental monitoring and remediation. Environmental Science and Pollution Research, 2015, 22, 18333-18344.	2.7	126
115	Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of Euphorbia milii. BMC Complementary and Alternative Medicine, 2015, 15, 160.	3.7	41
116	The Reagent-sorption Technology of Water Treatment. Physics Procedia, 2015, 72, 89-92.	1.2	6
117	Super-Paramagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications. Solid State Phenomena, 0, 241, 139-176.	0.3	26
118	Novel anti-microbial membrane for desalination pretreatment: A silver nanoparticle-doped carbon nanotube membrane. Desalination, 2015, 376, 82-93.	4.0	67
119	Radiation Induced Effects on Properties of Semiconducting Nanomaterials. Solid State Phenomena, 0, 239, 1-36.	0.3	8
120	Nanotechnologies for Production of High Performance Cellulosic Paper. Advanced Structured Materials, 2015, , 137-172.	0.3	0
121	Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. Journal of Hazardous Materials, 2015, 299, 711-718.	6.5	137
122	On the Choice of Batch or Fixed Bed Adsorption Processes for Wastewater Treatment. Industrial & Lamp; Engineering Chemistry Research, 2015, 54, 8579-8586.	1.8	57
123	Basic science of water: Challenges and current status towards a molecular picture. Nano Research, 2015, 8, 3085-3110.	5.8	27
124	Preparation and characterization of PES/SiO2 composite ultrafiltration membrane for advanced water treatment. Korean Journal of Chemical Engineering, 2015, 32, 2319-2329.	1.2	47
125	Rational design of nanomaterials for water treatment. Nanoscale, 2015, 7, 17167-17194.	2.8	176
126	Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology, 2015, 197, 348-355.	4.8	180
127	Rapid MPN-Qpcr Screening for Pathogens in Air, Soil, Water, and Agricultural Produce. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	12
128	Gallic acid magnetic nanoparticles for photocatalytic degradation of meloxicam: synthesis, characterization and application to pharmaceutical wastewater treatment. RSC Advances, 2015, 5, 104981-104990.	1.7	15
129	Synthesis of Mn ₃ O ₄ /CeO ₂ Hybrid Nanotubes and Their Spontaneous Formation of a Paper-like, Free-Standing Membrane for the Removal of Arsenite from Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26291-26300.	4.0	41

#	Article	IF	CITATIONS
130	Adsorption mechanism of poly(vinyl alcohol) at the mixed oxide Cu x O y \hat{a} \in "SiO 2 /aqueous solution interface. Applied Surface Science, 2015, 356, 905-910.	3.1	8
131	High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. Journal of Membrane Science, 2015, 476, 373-383.	4.1	223
132	Magnetic Biochar Decorated with ZnS Nanocrytals for Pb (II) Removal. ACS Sustainable Chemistry and Engineering, 2015, 3, 125-132.	3.2	180
133	Review: is interplay between nanomaterial and membrane technology the way forward for desalination?. Journal of Chemical Technology and Biotechnology, 2015, 90, 971-980.	1.6	57
134	Remediation of $17-\hat{l}_{\pm}$ -ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator. Water Research, 2015, 72, 305-314.	5.3	62
135	Graphene in the Fe ₃ O ₄ nano-composite switching the negative influence of humic acid coating into an enhancing effect in the removal of arsenic from water. Environmental Science: Water Research and Technology, 2015, 1, 77-83.	1.2	49
136	Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/FeO composite nanofibers. Chemical Engineering Journal, 2015, 260, 716-729.	6.6	83
137	Xenobiotic Compounds Present in Soil and Water: A Review on Remediation Strategies. , 2016, 6, .		47
138	Sorption Profile of Phosphorus Ions onto ZnO Nanorods Synthesized via Sonic Technique. Journal of Engineering (United States), 2016, 2016, 1-9.	0.5	29
139	Morphology of Modified Biochar and Its Potential for Phenol Removal from Aqueous Solutions. Frontiers in Environmental Science, 2016, 4, .	1.5	57
140	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 2016, 13, 62.	1.2	320
141	Stable Photocatalytic Paints Prepared from Hybrid Core-Shell Fluorinated/Acrylic/TiO2 Waterborne Dispersions. Crystals, 2016, 6, 136.	1.0	19
142	Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene. Molecules, 2016, 21, 953.	1.7	11
143	Nanotecnologia e água no Brasil. Acta Scientiarum Human and Social Sciences, 2016, 38, 153.	0.1	3
144	Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	43
145	Poly(lactic acid) fibers obtained by solution blow spinning: Effect of a greener solvent on the fiber diameter. Journal of Applied Polymer Science, 2016, 133, .	1.3	28
146	Multifunctional magnetic oleic acid-coated MnFe ₂ O ₄ /polystyrene Janus particles for water treatment. Journal of Materials Chemistry A, 2016, 4, 11768-11774.	5.2	40
147	Reusable and Longâ€Lasting Active Microcleaners for Heterogeneous Water Remediation. Advanced Functional Materials, 2016, 26, 4152-4161.	7.8	66

#	ARTICLE	IF	Citations
148	Coâ€transport of Pesticide Acetamiprid and Silica Nanoparticles in Biocharâ€Amended Sand Porous Media. Journal of Environmental Quality, 2016, 45, 1749-1759.	1.0	14
149	Chapter 8 Arsenic in the Environment Source, Characteristics, and Technologies for Pollution Elimination. Advances in Industrial and Hazardous Wastes Treatment Series, 2016, , 255-288.	0.0	0
151	Nanotechnology for Sustainable Agriculture in India. Sustainable Agriculture Reviews, 2016, , 243-280.	0.6	9
152	Removal of Ni(II) and Cu(II) from aqueous solutions using †green' zero-valent iron nanoparticles produced by oak and mulberry leaf extracts. Water Science and Technology, 2016, 74, 2115-2123.	1.2	20
153	Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles. AIP Conference Proceedings, 2016, , .	0.3	1
154	Rational Design of Next-generation Nanomaterials and Nanodevices for Water Applications. , 2016, , .		2
155	Rapid synthesis of silver nanoparticles by <i>Pseudomonas stutzeri</i> isolated from textile soil under optimised conditions and evaluation of their antimicrobial and cytotoxicity properties. IET Nanobiotechnology, 2016, 10, 367-373.	1.9	36
156	Potential Application of Biochar for Bioremediation of Contaminated Systems. , 2016, , 221-246.		11
157	Cadmium Removal from Aqueous Solution by a Deionization Supercapacitor with a Birnessite Electrode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34405-34413.	4.0	67
158	Chapter 2 Nano-Bioremediation Applications of Nanotechnology for Bioremediation. Advances in Industrial and Hazardous Wastes Treatment Series, 2016, , 27-48.	0.0	10
159	Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chemical Engineering Journal, 2016, 294, 353-361.	6.6	47
160	Removal of Th(IV), Ni(II)and Fe(II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane. Research on Chemical Intermediates, 2016, 42, 4055-4076.	1.3	30
161	Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environmental Science and Pollution Research, 2016, 23, 13298-13307.	2.7	34
162	Interfacial polymerization on PES hollow fiber membranes using mixed diamines for nanofiltration removal of salts containing oxyanions and ferric ions. Desalination, 2016, 394, 176-184.	4.0	72
163	Aminated glycidyl methacrylates as a support media for goethite nanoparticle enabled hybrid sorbents for arsenic removal: From copolymer synthesis to full-scale system modeling. Resource-efficient Technologies, 2016, 2, 15-22.	0.1	4
164	Use of hybrid composite particles prepared using alkoxysilane-functionalized amphiphilic polymer precursors for simultaneous removal of various pollutants from water. Chemosphere, 2016, 156, 302-311.	4.2	26
165	Investigating promises of nanotechnology for development: A case study of the travelling of smart nano water filter in Zimbabwe. Technology in Society, 2016, 46, 40-48.	4.8	4
166	Rhodamine B removal using polyanilineâ€supported zeroâ€valent iron powder in the presence of dissolved oxygen. Environmental Progress and Sustainable Energy, 2016, 35, 48-55.	1.3	14

#	Article	IF	CITATIONS
167	Understanding bioenergy production and optimisation at the nanoscale $\hat{a} \in \text{``a review. Journal of}$ Experimental Nanoscience, 2016, 11, 762-775.	1.3	29
168	Environmental application of nanotechnology: air, soil, and water. Environmental Science and Pollution Research, 2016, 23, 13754-13788.	2.7	265
169	An eco-friendly physicocultural-based rapid synthesis of selenium nanoparticles. RSC Advances, 2016, 6, 48420-48426.	1.7	14
170	Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: prediction of isotherm and kinetic parameters. Desalination and Water Treatment, 0, , 1-14.	1.0	16
171	Textile dye degradation using nano zero valent iron: A review. Journal of Environmental Management, 2016, 177, 341-355.	3.8	253
172	Photodegradation of ibuprofen by TiO 2 co-doping with urea and functionalized CNT irradiated with visible light $\hat{a} \in \text{``Effect}$ of doping content and pH. Chemosphere, 2016, 155, 471-478.	4.2	60
173	Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. Ultrasonics Sonochemistry, 2016, 32, 440-448.	3.8	59
174	Study methods for disinfection water for injection. Proceedings of SPIE, 2016, , .	0.8	1
175	Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles. Journal of Colloid and Interface Science, 2016, 475, 96-103.	5.0	13
176	Removal of rubidium ions by polyaniline nanocomposites modified with cobalt-Prussian blue analogues. Journal of Environmental Chemical Engineering, 2016, 4, 2440-2449.	3.3	42
177	Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	318
178	Reducing environmental impacts of metal (hydr)oxide nanoparticle embedded anion exchange resins using anticipatory life cycle assessment. Environmental Science: Nano, 2016, 3, 1351-1360.	2.2	21
179	Nanomaterials-enabled water and wastewater treatment. NanoImpact, 2016, 3-4, 22-39.	2.4	286
180	Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry. Water Research, 2016, 106, 146-154.	5.3	43
181	Halloysite for Adsorption and Pollution Remediation. Developments in Clay Science, 2016, 7, 606-627.	0.3	14
182	Application of Cryogels in Water and Wastewater Treatment. , 2016, , 335-364.		1
183	Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science: Nano, 2016, 3, 1241-1253.	2.2	101
184	Biomedical Waste: Its Effects and Safe Disposal. , 2016, , 95-108.		1

#	Article	IF	CITATIONS
185	Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal. Journal of Membrane Science, 2016, 520, 1-7.	4.1	47
186	Photocatalytic and magnetic titanium dioxide/polystyrene/magnetite composite hybrid polymer particles. Journal of Polymer Science Part A, 2016, 54, 3350-3356.	2.5	12
187	Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresource Technology, 2016, 219, 451-457.	4.8	106
188	Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 2016, 306, 1116-1137.	6.6	1,004
189	Combination and hybridisation of treatments in dye wastewater treatment: A review. Journal of Environmental Chemical Engineering, 2016, 4, 3618-3631.	3.3	98
190	A natural extract of tobacco rob as scale and corrosion inhibitor in artificial seawater. Desalination, 2016, 398, 198-207.	4.0	73
191	A One-Step and Scalable Continuous-Flow Nanoprecipitation for Catalytic Reduction of Organic Pollutants in Water. Industrial & Engineering Chemistry Research, 2016, 55, 9851-9856.	1.8	11
192	Nanotechnology to Remove Contaminants. Sustainable Agriculture Reviews, 2016, , 101-128.	0.6	2
193	Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, 2016, , .	0.6	13
194	Nanomaterials for Monitoring and Remediation of Water Pollution. Sustainable Agriculture Reviews, 2016, , 207-233.	0.6	2
195	Modification of TiO2 to enhance photocatalytic degradation of organics in aqueous solutions. Journal of Environmental Chemical Engineering, 2016, 4, 4072-4082.	3.3	41
196	Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents. Environmental Science: Nano, 2016, 3, 1206-1214.	2.2	16
197	Emerging nanomaterials for the application of selenium removal for wastewater treatment. Environmental Science: Nano, 2016, 3, 982-996.	2.2	80
199	Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chemical Engineering Journal, 2016, 303, 539-546.	6.6	331
200	MoO ₃ nanoparticle anchored graphene as bifunctional agent for water purification. Materials Research Express, 2016, 3, 105003.	0.8	3
201	Microbial toxicity of different functional groups-treated carbon nanotubes., 2016,, 33-70.		7
202	Adsorption isotherms and mechanisms of Cu(<scp>ii</scp>) sorption onto TEMPO-mediated oxidized cellulose nanofibers. RSC Advances, 2016, 6, 107759-107767.	1.7	18
203	A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Scientific Reports, 2016, 6, 22069.	1.6	267

#	Article	IF	CITATIONS
204	Synthesis of calcium alginate nanoparticles for removal of lead ions from aqueous solutions. Russian Journal of Applied Chemistry, 2016, 89, 1177-1182.	0.1	2
205	Implications of Engineered Nanomaterials in Drinking Water Sources. Journal - American Water Works Association, 2016, 108, E1.	0.2	20
206	Conventional and Alternative Disinfection Methods of Legionella in Water Distribution Systems – Review. Construction Science, 2016, 19, .	0.1	4
207	Sensor systems based on ion exchange membranes for analysis of multicomponent solutions. Petroleum Chemistry, 2016, 56, 987-1005.	0.4	3
208	Surfaceâ€Nanoengineered Bacteria for Efficient Local Enrichment and Biodegradation of Aqueous Organic Wastes: Using Phenol as a Model Compound. Advanced Materials, 2016, 28, 2916-2922.	11.1	28
209	The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay. Journal of Hazardous Materials, 2016, 317, 416-429.	6.5	37
210	Developments in photocatalytic antibacterial activity of nano TiO2: A review. Korean Journal of Chemical Engineering, 2016, 33, 1989-1998.	1.2	200
211	Modified Sol–Gel Based Nanostructured Zirconia Thin Film: Preparation, Characterization, Photocatalyst and Corrosion Behavior. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 932-942.	1.9	16
212	Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): A comparative study. Chemical Engineering Journal, 2016, 304, 79-88.	6.6	73
213	Photochemically assisted one-pot synthesis of PMMA embedded silver nanoparticles: antibacterial efficacy and water treatment. RSC Advances, 2016, 6, 56674-56683.	1.7	16
214	Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Research on Chemical Intermediates, 2016, 42, 6959-6973.	1.3	14
215	Sorption of indium (III) onto carbon nanotubes. Ecotoxicology and Environmental Safety, 2016, 130, 81-86.	2.9	51
216	Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic Ag AgX (XÂ=ÂCl, Br, I) composite photocatalyst under visible light irradiation. Water Research, 2016, 99, 149-161.	5.3	122
217	The interactions of UV and/or H2O2 treated CNTOH and CNTCOOH with environmental fulvic acids. Environmental Research, 2016, 150, 173-181.	3.7	4
218	Novel magnetic core–shell Ce–Ti@Fe ₃ O ₄ nanoparticles as an adsorbent for water contaminants removal. RSC Advances, 2016, 6, 56913-56917.	1.7	14
219	PAMAM dendrimers with porphyrin core: synthesis and metal-chelating behavior. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 84, 49-60.	0.9	17
220	Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis. Desalination and Water Treatment, 2016, 57, 1344-1353.	1.0	9
221	Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview. Water Research, 2016, 92, 22-37.	5.3	289

#	ARTICLE	IF	CITATIONS
222	Electrochemical carbon nanotube filters for water and wastewater treatment. Nanotechnology Reviews, $2016, 5, .$	2.6	35
223	One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water. Applied Surface Science, 2016, 366, 67-77.	3.1	89
224	Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water. RSC Advances, 2016, 6, 10565-10583.	1.7	54
225	Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution. Chemosphere, 2016, 150, 765-771.	4.2	52
226	Photocatalytic degradation of methyl orange and real wastewater by silver doped mesoporous TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 142-149.	2.0	62
227	Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications. RSC Advances, 2016, 6, 1231-1242.	1.7	99
228	Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 2016, 286, 640-662.	6.6	612
229	Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight. ACS Applied Materials & Samp; Interfaces, 2016, 8, 142-151.	4.0	37
230	Arsenate uptake by Al nanoclusters and other Al-based sorbents during water treatment. Water Research, 2016, 88, 844-851.	5. 3	35
231	Removal of coliform bacteria from industrial wastewaters using polyelectrolytes/silver nanoparticles self-assembled thin films. Journal of Environmental Chemical Engineering, 2016, 4, 137-146.	3.3	26
232	Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 9-21.	2.3	65
233	Thermally resistant and electrically conductive PES/ITO nanocomposite membrane. Journal of Membrane Science, 2016, 500, 151-160.	4.1	48
234	Occurrence, impacts and removal of emerging substances of concern from wastewater. Environmental Technology and Innovation, 2016, 5, 161-175.	3.0	75
235	Synthesis and application of magnetite polyacrylamide amino-amidoxime nano-composites as adsorbents for water pollutants. Journal of Polymer Research, 2016, 23, 1.	1.2	27
236	Fabrication of a high-flux sulfonated polyamide nanofiltration membrane: Experimental and dissipative particle dynamics studies. Journal of Membrane Science, 2016, 505, 119-129.	4.1	68
237	Efficient visible light photocatalytic degradation of 17α-ethinyl estradiol by a multifunctional Ag–AgCl/ZnFe ₂ O ₄ magnetic nanocomposite. RSC Advances, 2016, 6, 32761-32769.	1.7	60
238	Study on synthesis and properties of composite mesoporous TiO2/MCM-41 photocatalysts. Materials Technology, 2016, 31, 423-429.	1.5	1
239	Preparation of engineered carbon nanotube materials and its application in water treatment for removal of hydrophobic natural organic matter (NOM). Desalination and Water Treatment, 2016, 57, 24855-24866.	1.0	8

#	Article	IF	CITATIONS
240	Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater. Industrial & Damp; Engineering Chemistry Research, 2016, 55, 4195-4207.	1.8	46
241	Removal of As(III) and Cr(VI) from aqueous solutions using "green―zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecological Engineering, 2016, 90, 42-49.	1.6	129
242	Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules, 2016, 86, 570-586.	3.6	241
243	Metal ions doped and polythiophene coated nanophotocatalysts: Synthesis and spectroscopic characterization for H2 production and dye degradation. Optik, 2016, 127, 4741-4745.	1.4	11
244	A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles. Journal of Colloid and Interface Science, 2016, 469, 164-176.	5.0	48
245	Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer. Environmental Technology (United Kingdom), 2016, 37, 2099-2112.	1.2	24
246	Nanosized yolk–shell Fe3O4@Zr(OH) spheres for efficient removal of Pb(II) from aqueous solution. Journal of Hazardous Materials, 2016, 309, 1-9.	6.5	42
247	Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?. Coordination Chemistry Reviews, 2016, 315, 90-111.	9.5	575
248	Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Research, 2016, 95, 134-141.	5.3	62
249	Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. Biofouling, 2016, 32, 383-395.	0.8	38
250	Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?. Journal of Molecular Liquids, 2016, 218, 174-185.	2.3	231
251	Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. Journal of Colloid and Interface Science, 2016, 466, 128-137.	5.0	115
252	Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks. Environmental Science & Environmental Sc	4.6	265
253	Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. Environmental Science & Environme	4.6	95
254	Synthesis and characterization of magnetron sputtered ZrO 2 nanoparticles: Decontamination of 2-choloro ethyl ethyl sulphide and dimethyl methyl phosphonate. Journal of Environmental Chemical Engineering, 2016, 4, 219-229.	3.3	25
255	Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident. Environmental Science and Pollution Research, 2016, 23, 2249-2263.	2.7	44
256	Sustainability assessment of regional water resources under the DPSIR framework. Journal of Hydrology, 2016, 532, 140-148.	2.3	161
257	Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016, 157, 141-161.	3.9	977

#	Article	IF	CITATIONS
258	Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment. Separation and Purification Reviews, 2016, 45, 141-167.	2.8	78
259	Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environmental Science: Water Research and Technology, 2016, 2, 43-70.	1.2	187
260	Maghemite nanosorbcats for methylene blue adsorption and subsequent catalytic thermo-oxidative decomposition: Computational modeling and thermodynamics studies. Journal of Colloid and Interface Science, 2016, 461, 396-408.	5.0	52
261	Investigation of one-dimensional multi-functional zwitterionic Ag nanowires as a novel modifier for PVDF ultrafiltration membranes. New Journal of Chemistry, 2016, 40, 441-446.	1.4	16
262	Impact of solution chemistry on the properties and bactericidal activity of silver nanoparticles decorated on superabsorbent cryogels. Journal of Colloid and Interface Science, 2016, 461, 104-113.	5.0	8
263	Global Bioethics: The Impact of the UNESCO International Bioethics Committee. Advancing Global Bioethics, 2016, , .	0.8	5
264	Sedimentation of TiO ₂ nanoparticles in aqueous solutions: influence of pH, ionic strength, and adsorption of humic acid. Desalination and Water Treatment, 2016, 57, 18817-18824.	1.0	18
265	Fabrication and antifouling behaviour of a carbon nanotube membrane. Materials and Design, 2016, 89, 549-558.	3.3	77
266	A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 2016, 42, 2-14.	1.9	484
267	Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification. Talanta, 2016, 146, 237-243.	2.9	44
268	Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination?. Desalination, 2016, 380, 100-104.	4.0	125
269	Preparation of multi-walled carbon nanotube-doped TiO ₂ composite and its application in petroleum refinery wastewater treatment. Desalination and Water Treatment, 2016, 57, 14443-14452.	1.0	16
270	Synthesis and characterization of mackinawite nanocrystals (FeS _m) and their application in recovery of aqueous Hg(II) solution. Desalination and Water Treatment, 2016, 57, 6594-6603.	1.0	1
271	Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3. Journal of Saudi Chemical Society, 2017, 21, 664-672.	2.4	47
272	Removal of nickel ions by adsorption on nano-bentonite: Equilibrium, kinetics, and thermodynamics. Journal of Dispersion Science and Technology, 2017, 38, 757-767.	1.3	22
273	Mixed Matrix Membranes for Water Purification Applications. Separation and Purification Reviews, 2017, 46, 62-80.	2.8	134
274	Hydrophilicity effect on CO ₂ /CH ₄ separation using carbon nanotube membranes: insights from molecular simulation. Molecular Simulation, 2017, 43, 502-509.	0.9	5
275	Graphene and its nanocomposites as a platform for environmental applications. Chemical Engineering Journal, 2017, 315, 210-232.	6.6	108

#	Article	IF	CITATIONS
276	Graphene Oxide: A Novel 2â€Dimensional Material in Membrane Separation for Water Purification. Advanced Materials Interfaces, 2017, 4, 1600918.	1.9	154
277	Fouling in membrane bioreactors: An updated review. Water Research, 2017, 114, 151-180.	5.3	773
278	Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal. Ecotoxicology and Environmental Safety, 2017, 138, 292-297.	2.9	52
279	Synthesis and photocatalytic application of TiO 2 nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelatingÂagents. Materials Chemistry and Physics, 2017, 192, 108-124.	2.0	27
280	rGO-stabilized MnO/N-doped carbon nanofibers for efficient removal of Pb(II) ion and catalytic degradation of methylene blue. Journal of Materials Science, 2017, 52, 5117-5132.	1.7	23
281	Cytotoxicity of NiO nanoparticles and its conversion inside Chlorella vulgaris. Chemical Research in Chinese Universities, 2017, 33, 107-111.	1.3	6
282	Introduction of amine terminated dendritic structure to graphene oxide using Poly(propylene Imine) dendrimer to evaluate its organic contaminant removal. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 285-297.	2.7	18
283	Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. International Journal of Biological Macromolecules, 2017, 99, 29-36.	3.6	21
284	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 2017, 4, 767-781.	2.2	202
285	Remediation of Emerging Pollutants in Contaminated Wastewater and Aquatic Environments: Biomassâ€Based Technologies. Clean - Soil, Air, Water, 2017, 45, 1700101.	0.7	41
286	Review of nanotechnology value chain for water treatment applications in Mexico. Resource-efficient Technologies, 2017, 3, 1-11.	0.1	34
288	Experimental and computational modeling studies on silica-embedded NiO/MgO nanoparticles for adsorptive removal of organic pollutants from wastewater. RSC Advances, 2017, 7, 14021-14038.	1.7	18
289	Small Solutions to Large Problems? Nanomaterials and Nanocomposites in Effluent, Water, and Land Management., 2017,, 39-52.		2
290	Recent advances of nanomaterial-based membrane for water purification. Applied Materials Today, 2017, 7, 144-158.	2.3	154
291	l-cysteine-reduced graphene oxide/poly(vinyl alcohol) ultralight aerogel as a broad-spectrum adsorbent for anionic and cationic dyes. Journal of Materials Science, 2017, 52, 5807-5821.	1.7	47
292	Synthesis of nano-ZnO by wire explosion process and its photocatalytic activity. Journal of Environmental Chemical Engineering, 2017, 5, 1676-1684.	3.3	14
293	Selective solid phase extraction and determination of trace Pd(II) using multi-walled carbon nanotubes modified with 8-aminoquinoline. Journal of Molecular Liquids, 2017, 232, 139-146.	2.3	23
294	Facile fabrication of CuO/Cu ₂ 0 composites with high catalytic performances. New Journal of Chemistry, 2017, 41, 2964-2972.	1.4	20

#	ARTICLE	IF	CITATIONS
295	Adsorption Isotherm Models, Kinetics Study, and Thermodynamic Parameters of Ni(II) and Zn(II) Removal from Water Using the LbL Technique. Journal of Chemical & Engineering Data, 2017, 62, 839-850.	1.0	55
296	Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 2017, 4, 37-59.	2.6	739
297	The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption. Environmental Research, 2017, 155, 1-6.	3.7	11
298	Application potential of carbon nanomaterials in water and wastewater treatment: A review. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 116-133.	2.7	220
299	Nanotechnologies for Environmental Remediation. , 2017, , .		17
300	Nanotechnology-based filters for cost-effective drinking water purification in developing countries. , 2017, , 169-208.		0
301	Role of Magnetic Nanoparticles in Providing Safe and Clean Water to Each Individual., 2017,, 281-316.		4
302	Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance. Environmental Science & Environmental	4.6	81
303	Dye rejection membranes prepared from oxidized graphite particles. Canadian Journal of Chemistry, 2017, 95, 1103-1109.	0.6	4
304	Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology, 2017, 53, 10-17.	2.0	154
305	Silver–magnetic nanocomposites for water purification. Environmental Chemistry Letters, 2017, 15, 367-386.	8.3	23
306	An overview of nanomaterials applied for removing dyes from wastewater. Environmental Science and Pollution Research, 2017, 24, 15882-15904.	2.7	172
307	An artificial neural network (ANN)-based framework for the Cr removal from the spiked water samples by chitosan oligosaccharide-coated iron oxide nanoparticles. Nanotechnology for Environmental Engineering, 2017, 2, 1.	2.0	6
308	Nanoantimicrobials in Food Industry. , 2017, , 223-243.		11
309	Capacity flexibility evaluation of a reciprocating-switcher energy recovery device for SWRO desalination system. Desalination, 2017, 416, 45-53.	4.0	16
310	Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe 3 O 4 and Ce-Ti oxide nanoparticles. Science of the Total Environment, 2017, 598, 949-958.	3.9	62
311	Synchronous steam generation and heat collection in a broadband Ag@TiO 2 core–shell nanoparticle-based receiver. Applied Thermal Engineering, 2017, 121, 617-627.	3.0	78
312	Preparation and characterization of polyethylenimine-functionalized pyroxene nanoparticles and its application in wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 525, 20-30.	2.3	31

#	ARTICLE	IF	CITATIONS
313	Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal. Microporous and Mesoporous Materials, 2017, 248, 222-233.	2.2	48
314	Glucose reinforced Fe3O4@cellulose mediated amino acid: Reusable magnetic glyconanoparticles with enhanced bacteria capture efficiency. Carbohydrate Polymers, 2017, 170, 190-197.	5.1	22
315	Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes. Separation and Purification Technology, 2017, 184, 119-127.	3.9	43
316	Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes. Science of the Total Environment, 2017, 598, 258-271.	3.9	69
317	Nanomaterials for water pollution monitoring and remediation. Environmental Chemistry Letters, 2017, 15, 23-27.	8.3	92
318	Comparison of Hydrophilicity and Mechanical Properties of Nanocomposite Membranes with Cellulose Nanocrystals and Carbon Nanotubes. Environmental Science & Environmental Scie	4.6	99
319	Nano-Particle-Mediated Wastewater Treatment: a Review. Current Pollution Reports, 2017, 3, 17-30.	3.1	30
320	Positively Charged Nanofiltration Membrane with Dendritic Surface for Toxic Element Removal. ACS Sustainable Chemistry and Engineering, 2017, 5, 784-792.	3.2	93
322	Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants., 2017,, 321-347.		1
323	Carbon Modified with Vanadium Nanoparticles for Hydrogen Peroxide Electrogeneration. Electrocatalysis, 2017, 8, 311-320.	1.5	9
324	Bioinorganic antimicrobial strategies in the resistance era. Coordination Chemistry Reviews, 2017, 351, 76-117.	9.5	124
325	Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures, 2017, , .	0.1	13
326	Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 2017, 11, 591-612.	1.6	244
327	Synthesis of a novel magnetic Fe3O4/ \hat{l}^3 -Al2O3 hybrid composite using electrode-alternation technique for the removal of an azo dye. Applied Surface Science, 2017, 423, 383-393.	3.1	30
328	A novel technique for establishing soil topographic index thresholds in defining hydrologically sensitive areas in landscapes. Journal of Environmental Management, 2017, 200, 391-399.	3.8	11
329	Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods. Nanotechnology, 2017, 28, 365701.	1.3	10
330	Self-standing Ag2O@YSZ-TiO2 p-n nanoheterojunction composite nanofibrous membranes with superior photocatalytic activity. Composites Communications, 2017, 5, 13-18.	3.3	26
331	Recent Progress in the Development of Semiconductorâ€Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Advanced Sustainable Systems, 2017, 1, 1700006.	2.7	144

#	Article	IF	CITATIONS
332	Fabrication of PVA coated PES/PVDF nanocomposite membranes embedded with in situ formed magnetite nanoparticles for removal of metal ions from aqueous solutions. New Journal of Chemistry, 2017, 41, 6405-6414.	1.4	21
333	Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 2017, 5, 2782-2799.	3.3	1,066
334	A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae. Lab on A Chip, 2017, 17, 2459-2469.	3.1	63
335	Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy. Applied Water Science, 2017, 7, 3937-3948.	2.8	41
336	Complex Magnetic Nanostructures. , 2017, , .		6
337	Removing lead ions from aqueous solutions by the thiosemicarbazide grafted multi-walled carbon nanotubes. Water Science and Technology, 2017, 76, 302-310.	1.2	5
339	Chitosan microspheres as a template for TiO ₂ and ZnO microparticles: studies on mechanism, functionalization and applications in photocatalysis and H ₂ S removal. RSC Advances, 2017, 7, 19373-19383.	1.7	25
340	Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies. International Journal of Biological Macromolecules, 2017, 102, 232-240.	3.6	80
341	Chromium removal using adsorptive membranes composed of electrospun plasma-treated functionalized polyethylene terephthalate (PET) with chitosan. Journal of Environmental Chemical Engineering, 2017, 5, 2366-2377.	3.3	27
344	A novel luminescent chemical sensor for the determination of Pb2+ and Cu2+ ions. Sensors and Actuators B: Chemical, 2017, 247, 296-304.	4.0	4
345	The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon. Science of the Total Environment, 2017, 586, 1219-1227.	3.9	10
346	Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chemical Engineering Journal, 2017, 320, 389-404.	6.6	90
347	Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO 2 macrobead photocatalysts for water treatment. Journal of Environmental Chemical Engineering, 2017, 5, 1763-1770.	3.3	61
348	Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 2017, 524, 502-528.	4.1	156
349	Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies. Chemosphere, 2017, 171, 231-239.	4.2	47
350	A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere, 2017, 171, 192-201.	4.2	124
351	Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO ₂ nanofibers for degradation of organic compounds. Catalysis Science and Technology, 2017, 7, 570-580.	2.1	134
352	Pairing micropollutants and clay-composite sorbents for efficient water treatment: Filtration and modeling at a pilot scale. Applied Clay Science, 2017, 137, 225-232.	2.6	17

#	Article	IF	CITATIONS
353	Nanoparticle-Enhanced Hydraulic-Fracturing Fluids: A Review. SPE Production and Operations, 2017, 32, 186-195.	0.4	62
354	Synthesis of chitosan-functionalized MCM-41-A and its performance in Pb(II) removal from synthetic water. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 537-545.	2.7	21
355	Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology, 2017, 28, 042001.	1.3	69
356	Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydrate Polymers, 2017, 159, 94-107.	5.1	149
357	Facile fabrication of Cu-exchanged ZnS nanoadsorbents for highly efficient removal of contaminants. Journal of Environmental Chemical Engineering, 2017, 5, 4431-4440.	3.3	12
358	A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. Environmental Science & Env	4.6	110
359	How Water's Properties Are Encoded in Its Molecular Structure and Energies. Chemical Reviews, 2017, 117, 12385-12414.	23.0	284
360	Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control. Environmental Science: Nano, 2017, 4, 2248-2266.	2.2	65
361	Recent advances in nanomaterials for water protection and monitoring. Chemical Society Reviews, 2017, 46, 6946-7020.	18.7	441
362	Bioinspired coating of TiO ₂ nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polymer Chemistry, 2017, 8, 6570-6580.	1.9	17
363	Computer simulation of water desalination through boron nitride nanotubes. Physical Chemistry Chemical Physics, 2017, 19, 30031-30038.	1.3	28
364	Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 1836-1876.	6.6	524
365	Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum, 2017, 146, 259-265.	1.6	87
366	Metatitanic Acid Pseudomorphs after Titanyl Sulfates: Nanostructured Sorbents and Precursors for Crystalline Titania with Desired Particle Size and Shape. Crystal Growth and Design, 2017, 17, 6762-6769.	1.4	13
367	Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Advances, 2017, 7, 40158-40178.	1.7	93
368	Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 9-19.	2.3	66
369	Green Applications of Carbon Nanostructures produced by Plasma Techniques. MRS Advances, 2017, 2, 2647-2659.	0.5	10
370	A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications. Journal of Membrane Science, 2017, 544, 351-358.	4.1	86

#	Article	IF	CITATIONS
371	Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Separation and Purification Technology, 2017, 188, 399-422.	3.9	403
372	Carbon and CNT fabricated carbon substrates for TiO 2 nanoparticles immobilization with industrial perspective of continuous photocatalytic elimination of dye molecules. Journal of Industrial and Engineering Chemistry, 2017, 55, 149-163.	2.9	35
373	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environmental Science & Enhance 2017, 51, 10274-10281.	4.6	129
375	Multifunctional graphene/poly(vinyl alcohol) aerogels: In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils. Carbon, 2017, 123, 354-363.	5.4	89
376	Nanomaterial Impact, Toxicity and Regulation in Agriculture, Food and Environment. Sustainable Agriculture Reviews, 2017, , 205-242.	0.6	6
378	The fate, behaviour and effect of WO 3 nanoparticles on the functionality of an aerobic treatment unit. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 199-208.	1.7	5
379	Effect of Blend Ratio on Morphology and Swelling Properties of PVA/Chitosan Nanofibers. Materials Science Forum, 0, 901, 79-84.	0.3	8
380	Application of organic-inorganic hybrid composite particle for removal of heavy metal ions from aqueous solution and its toxicity evaluation. European Polymer Journal, 2017, 95, 335-347.	2.6	14
381	Degradation of $17\hat{l}_{\pm}$ -ethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels. Water Research, 2017, 125, 32-41.	5.3	45
382	Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catalysis Science and Technology, 2017, 7, 4548-4569.	2.1	223
383	Scalable Chitosan-Graphene Oxide Membranes: The Effect of GO Size on Properties and Cross-Flow Filtration Performance. ACS Omega, 2017, 2, 8751-8759.	1.6	45
384	Photocatalytic application of Pd-ZnO-exfoliated graphite nanocomposite for the enhanced removal of acid orange 7 dye in water. Solid State Sciences, 2017, 74, 118-124.	1.5	13
385	Cystoseira myricaas for mercury (II) uptake: Isotherm, kinetics, thermodynamic, response surface methodology and fuzzy modeling. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 247-257.	2.7	15
386	Effects of heat treatment of TiO2 nanofibers on the morphological structure of PVDF nanocomposite membrane under UV irradiation. Journal of Water Process Engineering, 2017, 20, 193-200.	2.6	18
387	Study of the photodegradation of brilliant green on mechanically activated powders of zinc oxide. Technical Physics, 2017, 62, 1709-1713.	0.2	2
388	Benchmarking the scientific research on wastewater-energy nexus by using bibliometric analysis. Environmental Science and Pollution Research, 2017, 24, 27613-27630.	2.7	18
389	Water purification by polymer nanocomposites: an overview. Nanocomposites, 2017, 3, 47-66.	2.2	194
390	Insights from a Systematic Search for Information on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveillance Systems. Food and Environmental Virology, 2017, 9, 361-382.	1.5	36

#	Article	IF	CITATIONS
391	A Mini-review of Carbonaceous Nanomaterials for Removal of Contaminants from Wastewater. IOP Conference Series: Earth and Environmental Science, 2017, 68, 012003.	0.2	37
392	Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Research, 2017, 123, 353-360.	5.3	127
393	Photo-catalytic activity of hydrophilic-modified TiO 2 for the decomposition of methylene blue and phenol. Current Applied Physics, 2017, 17, 1557-1563.	1.1	18
394	Photocatalytic study and superparamagnetic nature of Zn-doped MgFe 2 O 4 colloidal size nanocrystals prepared by solvothermal reflux method. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 456-465.	1.7	53
395	Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction. Advanced Powder Technology, 2017, 28, 2256-2264.	2.0	26
396	A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 2017, 241, 1091-1113.	2.3	250
397	Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater. Science of the Total Environment, 2017, 601-602, 1008-1014.	3.9	19
398	Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chemical Engineering Journal, 2017, 327, 941-952.	6.6	79
399	Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury(II) ions from wastewater: Combined experimental and density functional theoretical approach. Chemical Engineering Journal, 2017, 313, 899-911.	6.6	79
400	Biogenic synthesis of nano-biomaterial for toxic naphthalene photocatalytic degradation optimization and kinetics studies. International Biodeterioration and Biodegradation, 2017, 119, 587-594.	1.9	24
401	A comprehensive physico-chemical study on the molecular structure effects of sulfonated polyamide thin-film composites. Molecular Systems Design and Engineering, 2017, 2, 57-66.	1.7	7
402	Most simple preparation of an inkjet printing of silver nanoparticles on fibrous membrane for water purification: Technological and commercial application. Journal of Industrial and Engineering Chemistry, 2017, 46, 273-278.	2.9	32
403	Study of the antimicrobial and antifouling properties of different oxide surfaces. Environmental Science and Pollution Research, 2017, 24, 9847-9858.	2.7	9
404	A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes. Journal of Alloys and Compounds, 2017, 695, 382-395.	2.8	59
405	Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 215, 37-55.	1.7	405
406	Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination, 2017, 401, 1-15.	4.0	91
407	Oxidation of aqueous organic pollutants using a stable copper nanoparticle suspension. Canadian Journal of Chemical Engineering, 2017, 95, 343-352.	0.9	19
408	Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnology, 2017, 11, 213-224.	1.9	77

#	Article	IF	CITATIONS
409	Investigation of the Electromagnetic Enhancement for the Abatement of Hexavalent Chromium Using Magnetite as Adsorbent. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 859-865.	0.7	2
410	Synthesis of Agâ€NPs impregnated cellulose composite material: its possible role in wound healing and photocatalysis. IET Nanobiotechnology, 2017, 11, 477-484.	1.9	21
411	Removal of Pollutants from Water by Using Single-Walled Carbon Nanotubes (SWCNTs) and Multi-walled Carbon Nanotubes (MWCNTs). Arabian Journal for Science and Engineering, 2017, 42, 261-269.	1.7	19
412	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	4.2	24
413	Hydrothermal-assisted sol–gel synthesis of Cd-doped TiO2 nanophotocatalyst for removal of acid orange from wastewater. Journal of Sol-Gel Science and Technology, 2017, 81, 556-569.	1.1	30
414	Elimination of copper and nickel from wastewater by electrooxidation method. Journal of Magnetism and Magnetic Materials, 2017, 422, 84-92.	1.0	19
415	Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Research, 2017, 10, 145-156.	5.8	20
416	Antimicrobial nanomaterials against biofilms: an alternative strategy. Environmental Reviews, 2017, 25, 225-244.	2.1	37
417	Understanding the performance of microbial community induced by ZnO nanoparticles in enhanced biological phosphorus removal system and its recoverability. Bioresource Technology, 2017, 225, 279-285.	4.8	25
418	Nanotechnology for sustainable wastewater treatment and use for agricultural production: A comparative long-term study. Water Research, 2017, 110, 66-73.	5.3	29
419	Rational design and synthesis of molecular-sieving, photocatalytic, hollow fiber membranes for advanced water treatment applications. Journal of Membrane Science, 2017, 524, 163-173.	4.1	37
420	Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds. Water Research, 2017, 110, 354-365.	5.3	29
421	Fenton-Like Degradation of Methylene Blue by Ultrasonically Dispersed Nano Zero-Valent Metals. Environmental Processes, 2017, 4, 169-182.	1.7	11
422	Preparation of electrospun affinity membrane and cross flow system for dynamic removal of anionic dye from colored wastewater. Fibers and Polymers, 2017, 18, 2387-2399.	1.1	18
423	Morphological change based Optical studies of Zinc sulphide Nanophosphor. Materials Today: Proceedings, 2017, 4, 12157-12167.	0.9	1
424	Growth of Hematite Nanostructures in Iron Foil for Environmental Cleaning. Solid State Phenomena, 0, 266, 101-104.	0.3	3
425	Preparation of PVA/TiO ₂ Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conference Series: Materials Science and Engineering, 2017, 202, 012011.	0.3	24
426	Synthesis of Cotton Fibers Impregnated with Bactericidal Hydrotalcites to be used in Medical Textile Supplies. MRS Advances, 2017, 2, 3787-3795.	0.5	1

#	Article	IF	CITATIONS
427	Photodegradation of Rhodamine 6G by Amorphous TiO2 Films Grown on Polymethylmethacrylate by Magnetron Sputtering. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 1022-1027.	0.3	3
428	Donnan-Potential Sensors Based on Zirconia-Modified Nafion Membranes Treated under Different Conditions for the Determination of Amino Acids with Several Nitrogen-Containing Groups. Petroleum Chemistry, 2017, 57, 1250-1257.	0.4	1
429	Nanotechnology in the Water Industry, Part 1: Occurrence and Risks. Journal - American Water Works Association, 2017, 109, 30-37.	0.2	6
430	Current Perspectives on Biomedical Waste Management: Rules, Conventions and Treatment Technologies. Indian Journal of Medical Microbiology, 2017, 35, 157-164.	0.3	49
431	A Photocatalytic Rotating Disc Reactor with TiO2 Nanowire Arrays Deposited for Industrial Wastewater Treatment. Molecules, 2017, 22, 337.	1.7	8
432	Review: <i>BTEX compounds in water – future trends and directions for water treatment</i> . Water S A, 2017, 43, 602.	0.2	41
433	Nanoparticles and their potential application as antimicrobials in the food industry., 2017,, 567-601.		10
434	Photocatalytic Treatment Techniques using Titanium Dioxide Nanoparticles for Antibiotic Removal from Water., 0,,.		5
435	Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment., 2017,, 33-74.		119
436	Nanotechnology in Microbial Food Safety. , 2017, , 245-265.		5
437	Nanotechnology for drinking water purification. , 2017, , 75-118.		20
438	Application of nanotechnology in drinking water purification. , 2017, , 119-167.		6
439	Nanoparticle Incorporation into Desalination and Water Treatment Membranesâ€"Potential Advantages and Challenges. , 2017, , 261-303.		1
440	Prospects and State-of-the-Art of Carbon Nanotube Membranes in Desalination Processes. , 2017, , 305-339.		0
441	Nanotechnology in Water Treatment. , 2017, , 513-536.		2
442	Nanotechnology depollution of heavy metals present in potable water., 2017,, 551-586.		4
443	Formulation of Laccase Nanobiocatalysts Based on Ionic and Covalent Interactions for the Enhanced Oxidation of Phenolic Compounds. Applied Sciences (Switzerland), 2017, 7, 851.	1.3	14
444	An Affordable Microsphere-Based Device for Visual Assessment of Water Quality. Biosensors, 2017, 7, 31.	2.3	1

#	Article	IF	Citations
445	Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study. Bioinorganic Chemistry and Applications, 2017, 2017, 1-11.	1.8	30
446	Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles. Journal of Nanotechnology, 2017, 2017, 1-6.	1.5	5
447	Biosynthesis of Metal and Metal Oxide Nanoparticles for Food Packaging and Preservation: A Green Expertise., 2017,, 293-316.		9
448	Effect of the Mg/Al Ratio on Activated Sol-Gel Hydrotalcites for Photocatalytic Degradation of 2,4,6-Trichlorophenol. International Journal of Photoenergy, 2017, 2017, 1-9.	1.4	2
449	Metal Oxide Polymer Nanocomposites in Water Treatments. , 0, , .		12
450	Development and characterization of a hybrid mesoporous material infused with metallic oxide nanoparticles for water treatment. Nanomaterials and Nanotechnology, 2017, 7, 184798041772742.	1.2	1
451	Fe-sericite-alginate composite beads: Preparation characterization and eco-friendly application for removal of arsenate and lead from petroleum industry wastewater. , 2017, , .		0
452	Treatment of Tannery Wastewater with Nano-Electrocoagulation Process. , 2017, 07, .		1
453	Green Biosynthesis of CdS Nanoparticles Using Yeast Cells for Fluorescence Detection of Nucleic Acids and Electrochemical Detection of Hydrogen Peroxide. International Journal of Electrochemical Science, 2017, 12, 618-628.	0.5	13
454	Recent advances in using magnetic materials for environmental applications., 2017,, 1-32.		1
455	Nanoscale development and its application in multidisciplinary area: An African perspective. African Journal of Biotechnology, 2017, 16, 193-208.	0.3	1
456	Reusable Magnetic Nanocomposite Sponges for Removing Oil from Water Discharges. Journal of Ship Production and Design, 2017, 33, 227-236.	0.2	7
457	Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator. Biochemical Engineering Journal, 2018, 133, 205-213.	1.8	63
458	Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere, 2018, 201, 716-729.	4.2	108
460	Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsystems and Nanoengineering, 2018, 4, .	3.4	71
461	Siver Nanoparticles Toxicity in Brine Shrimp and its Histopathological Analysis. International Journal of Nanoscience, 2018, 17, 1850007.	0.4	15
462	Determination of N -nitrosamines in water by nano iron-porphyrinated poly(amidoamine) dendrimer MCM-41 generation-3 through solid phase membrane tip extraction and HPLC. Environmental Technology and Innovation, 2018, 10, 102-110.	3.0	11
463	Model calibration and feedâ€forward control of the wastewater treatment plant – case study for CLUJâ€Napoca WWTP. Water and Environment Journal, 2018, 32, 164-172.	1.0	7

#	Article	IF	CITATIONS
464	Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology, 2018, 12, 423-438.	1.6	64
465	A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants. Science of the Total Environment, 2018, 633, 989-998.	3.9	16
466	Adsorption performance of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) by aminated solution-blown polyacrylonitrile micro/nanofibers. Water Science and Technology, 2018, 2017, 378-389.	1.2	19
467	Green synthesis of the Fe3O4@polythiophen-Ag magnetic nanocatalyst using grapefruit peel extract: Application of the catalyst for reduction of organic dyes in water. Journal of Molecular Liquids, 2018, 262, 248-254.	2.3	31
468	Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. Journal of Water and Health, 2018, 16, 171-180.	1.1	39
469	A mechanistic study of stable dispersion of titanium oxide nanoparticles by humic acid. Water Research, 2018, 135, 85-94.	5. 3	18
470	Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin. Advances in Experimental Medicine and Biology, 2018, 1048, 251-262.	0.8	24
471	State estimation of wastewater treatment plants based on model approximation. Computers and Chemical Engineering, 2018, 111, 79-91.	2.0	28
472	A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 2018, 81, 209-237.	11.8	483
473	Nanoparticles in household level water treatment: An overview. Separation and Purification Technology, 2018, 199, 260-270.	3.9	79
474	Enhanced adsorption at ZnO nanoflakes@zeolite core shell interface: A study of changing adsorption dynamics. Journal of Environmental Chemical Engineering, 2018, 6, 1424-1433.	3.3	8
475	Insight into wastewater decontamination using polymeric adsorbents. Journal of Environmental Chemical Engineering, 2018, 6, 1651-1672.	3.3	97
476	Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Science of the Total Environment, 2018, 627, 1253-1263.	3.9	236
477	Polymeric Nanocomposites (PNCs) for Wastewater Remediation: An Overview. Polymer-Plastics Technology and Engineering, 2018, 57, 1801-1827.	1.9	24
478	Multifunctional Bismuth Oxychloride/Mesoporous Silica Composites for Photocatalysis, Antibacterial Test, and Simultaneous Stripping Analysis of Heavy Metals. ACS Omega, 2018, 3, 973-981.	1.6	32
479	Intelligent environmental nanomaterials. Environmental Science: Nano, 2018, 5, 811-836.	2.2	54
480	The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment. RSC Advances, 2018, 8, 4239-4248.	1.7	38
481	A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies. Journal of Membrane Science, 2018, 550, 470-479.	4.1	32

#	Article	IF	CITATIONS
483	Monodisperse CNT Microspheres for High Permeability and Efficiency Flowâ€Through Filtration Applications. Advanced Materials, 2018, 30, e1706503.	11.1	23
485	Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 2018, 9, 569.	5.8	197
486	Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso–macroporous nanospheres. Applied Nanoscience (Switzerland), 2018, 8, 125-135.	1.6	34
487	Remediation of water and wastewater by using engineered nanomaterials: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 537-554.	0.9	47
488	Membrane technology for water purification. Environmental Chemistry Letters, 2018, 16, 343-365.	8.3	71
489	Thin films containing oxalate-capped iron oxide nanomaterials deposited on glass substrate for fast Fenton degradation of some micropollutants. Environmental Science and Pollution Research, 2018, 25, 6802-6813.	2.7	5
490	Synthesis, characterisation and photocatalytic performance of ZnS coupled Ag2S nanoparticles: A remediation model for environmental pollutants. Arabian Journal of Chemistry, 2018, 11, 827-837.	2.3	28
491	ZnAl layered double hydroxides impregnated with eucalyptus oil as efficient hybrid materials against multi-resistant bacteria. Applied Clay Science, 2018, 153, 61-69.	2.6	31
492	A Very Highly Efficient Magnetic Nanomaterial for the Removal of PAHs from Aqueous Media. Small, 2018, 14, 1702573.	5.2	15
494	BiVO4 /N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system. Ecotoxicology and Environmental Safety, 2018, 151, 118-126.	2.9	67
495	Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Scientific Reports, 2018, 8, 784.	1.6	131
496	Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. AICHE Journal, 2018, 64, 2181-2188.	1.8	66
497	Controlled synthesis of silkworm cocoon-like \hat{l} ±-Fe2O3 and its adsorptive properties for organic dyes and Cr(VI). Materials Research Bulletin, 2018, 100, 302-307.	2.7	13
498	Nanomaterials Reactivity and Applications for Wastewater Cleanup. Environmental Chemistry for A Sustainable World, 2018, , 255-275.	0.3	2
499	Water Remediation by Nanofiltration and Catalytic Degradation. SpringerBriefs in Environmental Science, 2018, , 99-107.	0.3	2
500	Development of a Superparamagnetic Laccase Nanobiocatalyst for the Enzymatic Biotransformation of Xenobiotics. Journal of Environmental Engineering, ASCE, 2018, 144, 04018007.	0.7	8
501	Polymeric platform for the growth of chemically anchored ZnO nanostructures by ALD. RSC Advances, 2018, 8, 521-530.	1.7	7
502	Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes. Journal of Membrane Science, 2018, 550, 246-253.	4.1	34

#	Article	IF	CITATIONS
503	Magnetic flocculation for nanoparticle separation and catalyst recycling. Environmental Science: Nano, 2018, 5, 509-519.	2.2	19
504	<i>In situ</i> preparation of magnetite/cuprous oxide/poly(AMPS/NIPAm) for removal of methylene blue from waste water. Polymer International, 2018, 67, 471-480.	1.6	12
505	Roomâ€Temperature Synthesis and Enhanced Photocatalytic Performance of BiOCl Microsphere. ChemistrySelect, 2018, 3, 4512-4521.	0.7	12
506	Synergistic Toxicity Produced by Mixtures of Biocompatible Gold Nanoparticles and Widely Used Surfactants. ACS Nano, 2018, 12, 5312-5322.	7.3	70
507	Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydrate Polymers, 2018, 195, 136-142.	5.1	86
508	Subsystem decomposition and distributed moving horizon estimation of wastewater treatment plants. Chemical Engineering Research and Design, 2018, 134, 405-419.	2.7	25
509	Magnetic Zinc Ferrite–Alginic Biopolymer Composite: As an Alternative Adsorbent for the Removal of Dyes in Single and Ternary Dye System. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1688-1705.	1.9	24
510	Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. Chemical Engineering Research and Design, 2018, 133, 235-242.	2.7	55
511	Utilization of nano-cryptomelane for the removal of cobalt, cesium and lead ions from multicomponent system: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2018, 352, 1-16.	6.5	31
512	Study of Pb (II) adsorption from aqueous solutions by TiO2 functionalized with hydroxide ethyl aniline (PHEA/n-TiO2). Journal of Molecular Liquids, 2018, 263, 294-302.	2.3	27
513	A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Advances, 2018, 8, 10040-10056.	1.7	65
514	From Molecules and Clusters of Atoms toÂSolid State Properties. , 2018, , 219-226.		1
515	Effect of MWCNT Filler on Properties and Flux of Chitosan/ PEG based Nanocomposites Membranes. MATEC Web of Conferences, 2018, 156, 04001.	0.1	4
516	Layered Double Hydroxide/Chitosan Nanocomposite Beads as Sorbents for Selenium Oxoanions. Industrial & Double Hydroxide Chemistry Research, 2018, 57, 4978-4987.	1.8	42
517	Evaluation of advanced oxidation processes for water and wastewater treatment $\hat{a} \in A$ critical review. Water Research, 2018, 139, 118-131.	5.3	1,891
518	Synthesis of finest superparamagnetic carbon-encapsulated magnetic nanoparticles by a plasma expansion method for biomedical applications. Journal of Alloys and Compounds, 2018, 749, 768-775.	2.8	13
519	Sensor technologies for the energy-water nexus – A review. Applied Energy, 2018, 210, 451-466.	5.1	51
520	Multi-disciplinarity breeds diversity: the influence of innovation project characteristics on diversity creation in nanotechnology. Journal of Technology Transfer, 2018, 43, 458-481.	2.5	9

#	Article	IF	Citations
521	Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water. Environmental Technology (United) Tj ETQq0 0 C	rgBZT/Ove	erl ov k 10 Tf 5
522	Synthesis of novel resin containing carbamothiolylimidamide group and application for Cr(VI) removal. Polymer Bulletin, 2018, 75, 963-983.	1.7	14
523	Simultaneous removal of Cu ²⁺ and Cr ³⁺ ions from aqueous solution based on Complexation with Eriochrome cyanineâ€R and derivative spectrophotometric method. Applied Organometallic Chemistry, 2018, 32, e3918.	1.7	11
524	Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environmental Science: Nano, 2018, 5, 27-47.	2.2	211
525	Use of nanoparticles for dye adsorption: Review. Journal of Dispersion Science and Technology, 2018, 39, 836-847.	1.3	102
526	Synthesis of hydrophilic carbon nanotubes by grafting poly(methyl methacrylate) via click reaction and its effect on poly(vinylidene fluoride)-carbon nanotube composite membrane properties. Applied Surface Science, 2018, 435, 79-90.	3.1	26
527	Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids. Advanced Structured Materials, 2018, , 73-95.	0.3	2
528	Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 2018, 28, 47-56.	2.1	292
529	Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Journal of Environmental Sciences, 2018, 63, 174-197.	3.2	205
530	Renewable biomass derived hierarchically porous carbonaceous sponges and their magnetic nanocomposites for removal of organic molecules from water. Journal of Industrial and Engineering Chemistry, 2018, 58, 334-342.	2.9	25
531	Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chemical Engineering Journal, 2018, 333, 66-75.	6.6	52
532	Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. International Journal of Biological Macromolecules, 2018, 107, 283-289.	3.6	95
533	Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental Chemistry Letters, 2018, 16, 43-58.	8.3	144
534	A review of the application of agricultural wastes as precursor materials for the adsorption of perand polyfluoroalkyl substances: A focus on current approaches and methodologies. Environmental Technology and Innovation, 2018, 9, 100-114.	3.0	77
535	Co-precipitation of magnetic Fe3O4 nanoparticles onto carbon nanotubes for removal of copper ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 56-63.	2.7	65
536	Generation of TiO 2 nanoparticle-based acacia saturated eggshell bio-composite for pathogen removal. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 50-57.	1.7	3
537	Stream transport of iron and phosphorus by authigenic nanoparticles in the Southern Piedmont of the U.S Water Research, 2018, 130, 312-321.	5.3	16
538	Removal of lead (II) from aqeouos waste using (CD-PCL-TiO2) bio-nanocomposites. International Journal of Biological Macromolecules, 2018, 109, 136-142.	3.6	34

#	Article	IF	CITATIONS
539	Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. Journal of Membrane Science, 2018, 548, 559-571.	4.1	109
540	Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environmental Science: Nano, 2018, 5, 11-26.	2.2	57
541	Magnetic Zinc Ferrite–Chitosan Bio-Composite: Synthesis, Characterization and Adsorption Behavior Studies for Cationic Dyes in Single and Binary Systems. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 880-898.	1.9	41
542	Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 2018, 336, 386-396.	6.6	425
543	Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 28-42.	5.0	40
544	Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews, 2018, 356, 147-164.	9.5	362
545	Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environmental Chemistry Letters, 2018, 16, 11-34.	8.3	63
546	TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 2018, 341, 404-423.	6.5	173
547	Mixing of Particles in Micromixers under Different Angles and Velocities of the Incoming Water. Proceedings (mdpi), 2018, 2, 577.	0.2	8
549	Fabrication of Nanofiber Filtration Membranes Using Polyethylene Terephthalate (PET): A Review. Journal of Membrane Science & Technology, 2018, 08, .	0.5	7
550	Selective Filtration of Fluids in Materials with Slit-Shaped Nanopores. Physical Mesomechanics, 2018, 21, 538-545.	1.0	4
551	Interaction of Ultrafast Laser Pulses With Nanostructure Surfaces. , 2018, , 420-432.		1
552	Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Advances, 2018, 8, 37915-37938.	1.7	61
553	Graphene, electrospun membranes and granular activated carbon for eliminating heavy metals, pesticides and bacteria in water and wastewater treatment processes. Analyst, The, 2018, 143, 5629-5645.	1.7	62
554	A versatile colloidal Janus platform: surface asymmetry control, functionalization, and applications. Chemical Communications, 2018, 54, 12726-12729.	2.2	23
555	Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environmental Science: Nano, 2018, 5, 2784-2808.	2.2	96
556	Pulsed electrochemical and electroless techniques for efficient removal of Sb and Pb from water. Environmental Science: Water Research and Technology, 2018, 4, 2179-2190.	1.2	12
557	Preparation of flower-like MgO via spray drying with high adsorption performance. IOP Conference Series: Materials Science and Engineering, 2018, 423, 012085.	0.3	5

#	Article	IF	CITATIONS
558	Lead ions sorption using magnetically modified sorbent based on titanium dioxide powder. Materials Today: Proceedings, 2018, 5, S61-S70.	0.9	0
559	Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment. Materials Today: Proceedings, 2018, 5, 15550-15558.	0.9	31
560	6. Governance of nanoagriculture and nanofoods. , 2018, , 88-100.		0
561	Stabilization of PVA/Chitosan/TiO ₂ Nanofiber Membrane with Heat Treatment and Glutaraldehyde Crosslink. IOP Conference Series: Materials Science and Engineering, 2018, 367, 012004.	0.3	9
562	Bimetallic Fe–Cu Nanocomposites on Sand Particles for the Inactivation of Clinical Isolates and Point-of-Use Water Filtration. ACS Applied Bio Materials, 2018, 1, 2153-2166.	2.3	11
563	The photocatalytic degradation of methylene blue using graphene oxide (GO)/ZnO nanodrums. AIP Conference Proceedings, 2018, , .	0.3	10
564	Wastewater Treatment Using Membrane Technology. , 0, , .		33
566	Engineered Nanoparticles: Are They an Inestimable Achievement or a Health and Environmental Concern?., 2018,, 183-212.		4
567	Manganese oxides and their application to metal ion and contaminant removal from wastewater. Journal of Water Process Engineering, 2018, 26, 264-280.	2.6	114
568	Efficiency of polymer/nanocarbon-based nanocomposite membranes in water treatment techniques. Journal of the Chinese Advanced Materials Society, 2018, 6, 508-526.	0.7	8
569	Directional Control of the Structural Adsorption Properties of Clays by Magnetite Modification. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	27
570	Graphene Oxide-PES-Based Mixed Matrix Membranes for Controllable Antibacterial Activity against <i>Salmonella typhi</i> and Water Treatment. International Journal of Polymer Science, 2018, 2018, 1-12.	1.2	14
571	Nanotechnology: A New Scientific Outlook for Bioremediation of Dye Effluents. Nanotechnology in the Life Sciences, 2018, , 355-368.	0.4	0
572	Functionalized carbon nanotubes for adsorptive removal of water pollutants. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 61-69.	1.7	14
573	A REVIEW ON INDIAN TRIBAL PLANTS AND THEIR BIOGENIC PROPERTIES. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 43.	0.3	0
574	Nanotechnology-As antibacterial and heavy metal removal in waste water treatment-A review. AIP Conference Proceedings, 2018, , .	0.3	2
575	Study of Pb ion adsorption on (n, 0) CNTs (n=4, 5, 6). Nanotechnology Reviews, 2018, 7, 469-473.	2.6	4
576	A response surface methodology for optimization of 2,4-dichlorophenoxyacetic acid removal from synthetic and drainage water: a comparative study. Environmental Science and Pollution Research, 2018, 25, 34277-34293.	2.7	35

#	Article	IF	Citations
577	Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future., 2018, , 59-116.		34
578	The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review. Water Research, 2018, 147, 60-72.	5.3	190
579	Comparison of facile synthesized N doped, B doped and undoped ZnO for the photocatalytic removal of Rhodamine B. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 457-466.	1.7	24
580	Recent Application of the Various Nanomaterials and Nanocatalysts for the Heavy Metals' Removal from Wastewater. Nano, 2018, 13, 1830006.	0.5	15
581	Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. Journal of Environmental Chemical Engineering, 2018, 6, 6468-6478.	3.3	70
582	Giant Microgels with CO ₂ -Induced On–Off, Selective, and Recyclable Adsorption for Anionic Dyes. ACS Applied Materials & Interfaces, 2018, 10, 38073-38083.	4.0	34
583	Green synthesis of manganese nanoparticles: Applications and future perspective–A review. Journal of Photochemistry and Photobiology B: Biology, 2018, 189, 234-243.	1.7	116
584	Rationally Fabricated Nanomaterials for Desalination and Water Purification. , 0, , .		6
585	CuO Coated Electrochemically Generated Textile Wastewater Sludge and CuO Coated GAC as Potential Nano-adsorbents for Color Removal from Real Textile Wastewater. Oriental Journal of Chemistry, 2018, 34, 2144-2151.	0.1	2
586	Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 355-364.	2.0	29
587	Amino functionalized silica nanoparticles incorporated thin film nanocomposite membrane with suppressed aggregation and high desalination performance. Polymer, 2018, 154, 200-209.	1.8	24
588	Treatment of Palm Oil Mill Effluent Using Membrane Bioreactor: Novel Processes and Their Major Drawbacks. Water (Switzerland), 2018, 10, 1165.	1.2	27
589	Noble metal-modified titania with visible-light activity for the decomposition of microorganisms. Beilstein Journal of Nanotechnology, 2018, 9, 829-841.	1.5	36
590	Consumption of ammonia-nitrogen by aob in immobilized batch culture. Journal of Fundamental and Applied Sciences, 2018, 9, 257.	0.2	0
591	Effect of structure, morphology and chemical composition of Zn-Al, Mg/Zn-Al and Cu/Zn-Al hydrotalcites on their antifungal activity against A. niger. Journal of Environmental Chemical Engineering, 2018, 6, 3376-3383.	3.3	18
592	Electrospun Filters for Organic Pollutants Removal. , 2018, , 115-150.		2
593	Application of asymmetric Si3N4 hollow fiber membrane for cross-flow microfiltration of oily waste water. Journal of the European Ceramic Society, 2018, 38, 4384-4394.	2.8	54
594	Magnetite nanoparticles functionalized with polypyrrole by pulsed sono-electrocrystallization and their applications for water treatment. Journal of Materials Science: Materials in Electronics, 2018, 29, 12466-12476.	1.1	10

#	Article	IF	CITATIONS
595	Efficient removal of cadmium and lead ions from water by hydrogels modified with cystine. Journal of Environmental Chemical Engineering, 2018, 6, 3962-3970.	3.3	27
596	Water purification by using Adsorbents: A Review. Environmental Technology and Innovation, 2018, 11, 187-240.	3.0	651
597	Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass. Environmental Science and Pollution Research, 2018, 25, 21024-21035.	2.7	23
598	Current Methods for the Remediation of Acid Mine Drainage Including Continuous Removal of Metals From Wastewater and Mine Dump. , 2018, , 103-114.		18
599	Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. European Journal of Inorganic Chemistry, 2018, 2018, 3443-3461.	1.0	28
600	Surface and pore modification of tripolyphosphate-crosslinked chitosan/polyethersulfone composite nanofiltration membrane; characterization and performance evaluation. Korean Journal of Chemical Engineering, 2018, 35, 1867-1877.	1.2	14
601	Recent Advances in the Synthesis of Metal Oxide (MO) Nanostructures. , 2018, , 255-281.		10
602	PMRs in Photodegradation of Organic Contaminants. , 2018, , 189-208.		3
603	Advanced Nanomaterials for Green Energy. , 2018, , 457-472.		14
604	Mechanism of humic acid fouling in a photocatalytic membrane system. Journal of Membrane Science, 2018, 563, 531-540.	4.1	46
605	Inactivation of an urban wastewater indigenous <i>Escherichia coli</i> strain by cerium doped zinc oxide photocatalysis. RSC Advances, 2018, 8, 26124-26132.	1.7	18
606	Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology, 2018, 13, 642-650.	15.6	745
607	Cellulose Based Green Adsorbents for Pollutant Removal from Wastewater. Environmental Chemistry for A Sustainable World, 2018, , 127-157.	0.3	2
608	Impact of TiO2 and TiO2/g-C3N4 Nanocomposite to Treat Industrial Wastewater. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 280-291.	1.7	23
609	Polymer nanocomposites for water treatments. , 2018, , 569-595.		10
610	Nanotechnology Applications for Environmental Industry. , 2018, , 894-907.		39
611	Engineered Nanomaterial in Environmental Industry. , 2018, , 971-985.		1
612	A comprehensive review on the use of second generation TiO2 photocatalysts: Microorganism inactivation. Chemosphere, 2018, 211, 420-448.	4.2	90

#	Article	IF	CITATIONS
613	A novel Fe(OH)3/g-C3N4 composite membrane for high efficiency water purification. Journal of Membrane Science, 2018, 564, 372-381.	4.1	41
614	What Are the Effective Reactants in the Plasma-Induced Wastewater Treatment?. Journal of the Electrochemical Society, 2018, 165, E454-E459.	1.3	11
615	High efficiency removal of As(III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars. Ecotoxicology and Environmental Safety, 2018, 162, 616-624.	2.9	33
616	Design of Experiments Applied to Antibiotics Degradation by Fenton's Reagent. , 2018, , .		2
617	Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal., 2018, , 441-463.		13
618	Synthesis, characterization and application of green seaweed mediated silver nanoparticles (AgNPs) as antibacterial agents for water disinfection. Water Science and Technology, 2018, 78, 235-246.	1.2	30
619	The Environmental Impact of Magnetic Nanoparticles Under the Perspective of Carbon Footprint., 2018, , 45-77.		1
620	Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review. Marine Drugs, 2018, 16, 65.	2.2	308
621	Progress of Nanocomposite Membranes for Water Treatment. Membranes, 2018, 8, 18.	1.4	178
622	Recent Advances in Nanoporous Membranes for Water Purification. Nanomaterials, 2018, 8, 65.	1.9	136
623	Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water. Chemical Engineering Journal, 2018, 352, 469-476.	6.6	129
624	High adsorption performance of \hat{l}^2 -cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 4634-4643.	3.3	83
625	Application and testing of risk screening tools for nanomaterial risk analysis. Environmental Science: Nano, 2018, 5, 1844-1858.	2.2	7
626	A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. Journal of Water Process Engineering, 2018, 25, 96-104.	2.6	40
627	Biofouling of polysulfone and polysulfone-graphene oxide nanocomposite membrane and foulant removal. Materials Research Express, 2018, 5, 065322.	0.8	10
628	Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal. International Journal of Environmental Science and Technology, 2018, 15, 1831-1842.	1.8	2
629	Study on Photocatalytic Properties of TiO ₂ Nanoparticle in various pH condition. Journal of Physics: Conference Series, 2018, 1011, 012069.	0.3	51
630	Intercepting signalling mechanism to control environmental biofouling. 3 Biotech, 2018, 8, 364.	1.1	4

#	Article	IF	CITATIONS
631	Cellulose and Nanocellulose Produced from Lignocellulosic Residues by Reactive Extrusion. ACS Symposium Series, 2018, , 227-242.	0.5	3
632	A simple synthesis of magnetic ammonium 12-molybdophosphate/graphene oxide nanocomposites for rapid separation of Cs+ from water. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 955-966.	0.7	4
633	Technological Prospection on Membranes Containing Silver Nanoparticles for Water Disinfection. Recent Patents on Nanotechnology, 2018, 12, 3-12.	0.7	8
634	Review of global sanitation development. Environment International, 2018, 120, 246-261.	4.8	61
635	Application of clay ceramics and nanotechnology in water treatment: A review. Cogent Engineering, 2018, 5, 1476017.	1.1	33
636	Engineered nanomaterials for wastewater treatment: current and future trends. , 2018, , 129-168.		18
637	Tunable Ion Sieving of Graphene Membranes through the Control of Nitrogen-Bonding Configuration. Nano Letters, 2018, 18, 5506-5513.	4.5	52
638	Clean water generation with switchable dispersion of multifunctional Fe3O4-reduced graphene oxide particles. Progress in Natural Science: Materials International, 2018, 28, 422-429.	1.8	20
639	Nanoporous Sorbents for the Removal and Recovery of Phosphorus from Eutrophic Waters: Sustainability Challenges and Solutions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12542-12561.	3.2	63
640	Carbon Nanotubes for Clean Water. Carbon Nanostructures, 2018, , .	0.1	4
642	Preparation of cellulose acetate membrane coated by PVA/Fe3O4 nanocomposite thin film: an in situ procedure. Colloid and Polymer Science, 2018, 296, 1213-1223.	1.0	16
643	Thermodynamics of sorption of platinum on superparamagnetic nanoparticles functionalized with mercapto groups. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1261-1266.	2.0	6
644	Singlet Oxygen Photosensitizing Materials for Pointâ€ofâ€Use Water Disinfection with Solar Reactors. ChemPhotoChem, 2018, 2, 512-534.	1.5	60
645	Photocatalysis of cobalt zinc ferrite nanorods under solar light. Research on Chemical Intermediates, 2018, 44, 5941-5951.	1.3	9
646	Membrane Bioreactors for Wastewater Treatment. Comprehensive Analytical Chemistry, 2018, 81, 151-200.	0.7	26
647	Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes and Pigments, 2018, 159, 49-71.	2.0	188
648	Simulation of water purification using magnetically ultra-responsive micro- and nanoscavengers. Journal of Water Process Engineering, 2018, 24, 63-73.	2.6	4
649	Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity. Environmental Pollution, 2018, 241, 701-709.	3.7	2

#	Article	IF	CITATIONS
650	Optical assays based on colloidal inorganic nanoparticles. Analyst, The, 2018, 143, 3249-3283.	1.7	58
651	Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coordination Chemistry Reviews, 2018, 372, 31-51.	9.5	32
652	Synthesis, characterization and application of nanoparticles in wastewater treatment. Indian Chemical Engineer, 2019, 61, 77-86.	0.9	6
653	Nanoparticles: An Emerging Weapon for Mitigation/Removal of Various Environmental Pollutants for Environmental Safety., 2019, , 359-395.		1
654	Regeneration and reuse of polymeric nanocomposites in wastewater remediation: the future of economic water management. Polymer Bulletin, 2019, 76, 647-681.	1.7	21
655	Adsorption characteristics of toxic chromium(VI) from aqueous media onto nanosized silver nanoparticles-treated activated carbon. Separation Science and Technology, 2019, 54, 494-506.	1.3	10
656	Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology, 2019, 209, 307-337.	3.9	243
657	Nanotechnology-based water quality management for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 65-121.	8.3	105
658	Optimal Pseudo-Average Order Kinetic Model for Correlating the Removal of Nickel Ions by Adsorption on Nanobentonite. Arabian Journal for Science and Engineering, 2019, 44, 159-168.	1.7	8
659	The effect of thermal activation for natural zeolite on the performance of ceramic membrane as Pb ²⁺ ion adsorption. Journal of Physics: Conference Series, 2019, 1170, 012055.	0.3	2
660	New generation graphene oxide for removal of polycyclic aromatic hydrocarbons., 2019,, 241-266.		7
661	Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, 2019, , .	0.3	5
662	Antibacterial and antiviral potential of colloidal Titanium dioxide (TiO ₂) nanoparticles suitable for biological applications. Materials Research Express, 2019, 6, 105409.	0.8	78
663	Continuous Flow Removal of Anionic Dyes in Water by Chitosan-Functionalized Iron Oxide Nanoparticles Incorporated in a Dextran Gel Column. Nanomaterials, 2019, 9, 1164.	1.9	19
664	Visible light driven photocatalytic degradation enhanced by $\hat{l}\pm\hat{l}^2$ phase heterojunctions on electrospun Bi2O3 nanofibers. Journal of Alloys and Compounds, 2019, 806, 1060-1067.	2.8	32
665	Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish. Science of the Total Environment, 2019, 693, 133540.	3.9	29
666	Two-Dimensional Covalent Organic Frameworks (COFs) for Membrane Separation: a Mini Review. Industrial & Separation: a Mini Review. 15394-15406.	1.8	124
667	Three-step synthesis of PdO/TiO2. Russian Chemical Bulletin, 2019, 68, 1451-1453.	0.4	3

#	ARTICLE	IF	CITATIONS
668	Investigation on the Properties and Distribution of Air Voids in Porous Asphalt with Relevance to the Pb(II) Removal Performance. Advances in Materials Science and Engineering, 2019, 2019, 1-13.	1.0	5
669	Fast and efficient adsorptive removal of organic dyes and active pharmaceutical ingredient by microporous carbon: Effect of molecular size and charge. Chemical Engineering Journal, 2019, 378, 122218.	6.6	89
670	Sorption of Heavy Metals on Clay Minerals and Oxides: A Review. , 0, , .		22
671	Removal of lead and copper ions from water using powdered <i>Zygophyllum coccineum</i> biomass. International Journal of Phytoremediation, 2019, 21, 1457-1462.	1.7	8
672	Collision of emerging and traditional methods for antibiotics removal: Taking constructed wetlands and nanotechnology as an example. NanoImpact, 2019, 15, 100175.	2.4	24
673	Inorganic nanomaterials in polymeric water decontamination membranes. International Journal of Plastics Technology, 2019, 23, 1-11.	2.9	10
674	Systematic evaluation of TiO2-GO-modified ceramic membranes for water treatment: Retention properties and fouling mechanisms. Chemical Engineering Journal, 2019, 378, 122138.	6.6	65
675	Synthesis of noval gold nanomaterials and it's detection of sewage. Water Practice and Technology, 2019, 14, 365-370.	1.0	O
676	The missing link between carbon nanotubes, dissolved organic matter and organic pollutants. Advances in Colloid and Interface Science, 2019, 271, 101993.	7.0	11
677	Water disinfection using Ag nanoparticle–CuO nanowire co-modified 3D copper foam nanocomposites in high flow under low voltages. Environmental Science: Nano, 2019, 6, 2801-2809.	2.2	18
678	In-situ synthesis of TiO2 nanoparticles in ACF: Photocatalytic degradation under continuous flow. Solar Energy, 2019, 189, 35-44.	2.9	59
679	Surface modification of a cellulose acetate membrane using a nanocomposite suspension based on magnetic particles. Cellulose, 2019, 26, 7995-8006.	2.4	7
680	A comprehensive integrated catchment-scale monitoring and modelling approach for facilitating management of water quality. Environmental Modelling and Software, 2019, 120, 104489.	1.9	37
681	Graphene Composites for Lead Ions Removal from Aqueous Solutions. Applied Sciences (Switzerland), 2019, 9, 2925.	1.3	28
682	Iron oxide nanoparticles improved biocompatibility and removal of middle molecule uremic toxin of polysulfone hollow fiber membranes. Journal of Applied Polymer Science, 2019, 136, 48234.	1.3	14
683	Immobilization of Pb2+ and Cr3+ using bentonite-sulfoaluminate cement composites. Construction and Building Materials, 2019, 225, 868-878.	3.2	16
684	Enhanced production of short-chain fatty acids from waste activated sludge by addition of magnetite under suitable alkaline condition. Bioresource Technology, 2019, 289, 121713.	4.8	30
685	Fault detection of sludge bulking using a self-organizing type-2 fuzzy-neural-network. Control Engineering Practice, 2019, 90, 27-37.	3.2	28

#	Article	IF	Citations
686	Cu2O cubic and polyhedral structures versus commercial powder: Shape effect on photocatalytic activity under visible light. Journal of Saudi Chemical Society, 2019, 23, 1016-1023.	2.4	15
687	xmins:mmi= http://www.w3.org/1998/Math/MathML display= inline id= d1e1011 altimg="si3.svg"> <mml:msub><mml:mrow< td=""><td>3.0</td><td>23</td></mml:mrow<></mml:msub>	3.0	23
688	Applications of Nanoparticles in Wastewater Treatment. Nanotechnology in the Life Sciences, 2019, , 395-418.	0.4	71
689	Nanotechnology and it's applications in environmental remediation: an overview. Vegetos, 2019, 32, 227-237.	0.8	19
690	Easy conversion of BiOCl plates to flowers like structure to enhance the photocatalytic degradation of endocrine disrupting compounds. Materials Research Express, 2019, 6, 125537.	0.8	6
691	Applications of nano-biotechnology for sustainable water purification. , 2019, , 313-340.		9
692	Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environmental Pollution, 2019, 255, 113354.	3.7	34
696	Numerical Analysis with Keller-Box Scheme for Stagnation Point Effect on Flow of Micropolar Nanofluid over an Inclined Surface. Symmetry, 2019, 11, 1379.	1.1	10
697	Comparison of different nanoprocesses and industrial waste-based adsorbents such as red mud, steel slag, and fly ashes for treating wastewater nanomaterial contaminants., 2019, , 107-136.		3
698	Characterization of Rhodamine 110 adsorbed on carbon-based electrospun nanofibers decorated with gold nanoparticles by Raman spectroscopy and SERS. Materials Research Express, 2019, 6, 125012.	0.8	1
700	Modified-Nano-Adsorbents for Nitrate Efficient Removal: A Review. Journal of Applied Membrane Science & Technology, 2019, 23, .	0.3	1
701	Microwave Assisted Synthesis of CdS Sub-microspheres for Degradation of Chlorophenols under Solar Light Irradiation. Russian Journal of Physical Chemistry A, 2019, 93, 2167-2173.	0.1	1
702	Destruction of recalcitrant nanomaterials contaminants in industrial wastewater., 2019, , 137-158.		5
705	Applications of Nanotechnology in Water and Wastewater Treatment: A Review. Asian Journal of Water, Environment and Pollution, 2019, 16, 81-86.	0.4	67
706	A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2019, 7, 103477.	3.3	64
707	Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers. Membranes, 2019, 9, 98.	1.4	54
708	Clay nano-adsorbent: structures, applications and mechanism for water treatment. SN Applied Sciences, 2019, 1, 1.	1.5	82
709	Visible Light Photocatalytic Functional TiO ₂ /PVDF Nanofibers for Dye Pollutant Degradation. Particle and Particle Systems Characterization, 2019, 36, 1900091.	1.2	16

#	Article	IF	Citations
710	Green synthesis of magnetic nanoparticles using leaf extracts of Aloe vera and Kalanchoe daigremontiana to remove divalent mercury from natural waters. Journal of Physics: Conference Series, 2019, 1247, 012021.	0.3	3
711	Nano- and microparticles-induced effect on activated sludge properties. International Journal of Environmental Science and Technology, 2019, 16, 8663-8670.	1.8	7
712	Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 2019, 22, e00128.	1.7	74
713	A two-step strategy for high-efficiency fluorescent dye removal from wastewater. Npj Clean Water, 2019, 2, .	3.1	10
714	Recent Progresses in Application of Membrane Bioreactors in Production of Biohydrogen. Membranes, 2019, 9, 100.	1.4	33
715	Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101354.	1.5	49
716	Enhanced photocatalytic performance of Ru-doped spinel nanoferrites for treating recalcitrant organic pollutants in wastewater. Journal of Sol-Gel Science and Technology, 2019, 92, 760-774.	1.1	17
717	Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research, 2019, 179, 108792.	3.7	309
718	Macroscopic and modeling evidence for nickel(II) adsorption onto selected manganese oxides and boehmite. Journal of Water Process Engineering, 2019, 32, 100964.	2.6	29
719	Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 2019, 48, 463-487.	18.7	967
720	Sunlight active U ₃ O ₈ @ZnO nanocomposite superfast photocatalyst: synthesis, characterization and application. Nanoscale Advances, 2019, 1, 481-485.	2.2	4
721	Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery. Water Research, 2019, 153, 134-143.	5.3	64
722	Adsorptive filtration of As(III) from drinking water by CuFe ₂ O ₄ particles embedded in carbon nanotube membranes. Journal of Chemical Technology and Biotechnology, 2019, 94, 2816-2825.	1.6	14
723	Nanotechnology for water treatment: A green approach. , 2019, , 485-512.		20
724	Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 2019, 103, 180-234.	16.0	382
725	Rapid and Efficient Coacervate Extraction of Cationic Industrial Dyes from Wastewater. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7472-7478.	4.0	47
726	Arsenic (III) removal from water by hydroxyapatiteâ€bentonite clayâ€nanocrystalline cellulose. Environmental Progress and Sustainable Energy, 2019, 38, 13147.	1.3	25
727	Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures. Microchemical Journal, 2019, 146, 534-543.	2.3	9

#	Article	IF	Citations
728	From Scrap to Functional Materials: Exploring Green and Sustainable Chemistry Approach in the Undergraduate Laboratory. Journal of Chemical Education, 2019, 96, 535-539.	1,1	8
729	Design and fabrication of nanocomposite-based polyurethane filter for―â€improving municipal waste water quality and removing organic pollutants. Adsorption Science and Technology, 2019, 37, 95-112.	1.5	7
730	Facile Preparation of Self-Assembled Polydopamine-Modified Electrospun Fibers for Highly Effective Removal of Organic Dyes. Nanomaterials, 2019, 9, 116.	1.9	78
731	Microwaveâ€Assisted Modification of Nanoalumina with Vitamin B3 as an Ecoâ€Friendly Nanosorbent for Trace Metals. Clean - Soil, Air, Water, 2019, 47, 1900022.	0.7	O
732	High-performance and acid-tolerant polyethylenimine-aminated polyvinyl chloride fibers: fabrication and application for recovery of platinum from acidic wastewaters. Journal of Environmental Chemical Engineering, 2019, 7, 102839.	3.3	25
733	Modeling in Adsorption: Fundamentals and Applications. , 2019, , 85-118.		27
734	Porous boron nitride nanoribbons with large width as superior adsorbents for rapid removal of cadmium and copper ions from water. New Journal of Chemistry, 2019, 43, 3280-3290.	1.4	20
735	Optimization of Silver Ion Release from Silver-Ceramic Porous Media for Household Level Water Purification. Water (Switzerland), 2019, 11, 816.	1.2	8
738	Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends in Environmental Analytical Chemistry, 2019, 24, e00067.	5.3	70
739	Morphology, Modification and Characterisation of Electrospun Polymer Nanofiber Adsorbent Material Used in Metal Ion Removal. Journal of Polymers and the Environment, 2019, 27, 1843-1860.	2.4	44
740	Characterization of CuO-bacterial cellulose nanohybrids fabricated by in-situ and ex-situ impregnation methods. Carbohydrate Polymers, 2019, 222, 114995.	5.1	49
741	Microbe Decontamination of Water., 2019, , 151-185.		O
742	Nanotechnology: Let the Land Not Be Parched. , 2019, , 335-353.		0
743	Green synthesis of biomass-derived activated carbon/Fe-Zn bimetallic nanoparticles from lemon (Citrus limon (L.) Burm. f.) wastes for heterogeneous Fenton-like decolorization of Reactive Red 2. Journal of Environmental Chemical Engineering, 2019, 7, 103231.	3.3	41
744	A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. Journal of Environmental Management, 2019, 246, 214-228.	3.8	97
745	Nanotechnology for Phytoremediation of Heavy Metals: Mechanisms of Nanomaterial-Mediated Alleviation of Toxic Metals., 2019,, 315-327.		9
746	Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 2019, 246, 101-118.	3.8	568
747	Recent advances in nanomaterial-based sensors as tool for environmental monitoring., 2019,, 391-403.		0

#	Article	IF	CITATIONS
748	Enhanced antipressure ability through graphene oxide membrane by intercalating g ₃ N ₄ nanosheets for water purification. AICHE Journal, 2019, 65, e16699.	1.8	54
749	Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 2019, 13, 6431-6437.	7.3	181
750	Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Research, 2019, 160, 313-329.	5.3	141
751	Facile synthesis of hollow mesoporous MgO spheres via spray-drying with improved adsorption capacity for Pb(II) and Cd(II). Environmental Science and Pollution Research, 2019, 26, 18825-18833.	2.7	35
752	Persulfate activation towards organic decomposition and Cr(VI) reduction achieved by a novel CQDs-TiO2â^'x/rGO nanocomposite. Chemical Engineering Journal, 2019, 373, 238-250.	6.6	95
7 53	Introduction into nanotechnology and microbiology. Methods in Microbiology, 2019, 46, 1-18.	0.4	16
754	Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon, 2019, 5, e01577.	1.4	54
7 55	Systematic Review of Fish Ecology and Anthropogenic Impacts in South American Estuaries: Setting Priorities for Ecosystem Conservation. Frontiers in Marine Science, 2019, 6, .	1.2	39
756	The anatomy of bacteria-inspired nanonetworks: Molecular nanomachines in message dissemination. Nano Communication Networks, 2019, 21, 100244.	1.6	6
757	Metal oxide nanoparticles in removing residual pharmaceutical products and pathogens from water and wastewater., 2019,, 561-589.		6
758	Photocatalytic water disinfection under the artificial solar light by fructose-modified TiO2. Chemical Engineering Journal, 2019, 372, 203-215.	6.6	34
759	Preparation of cysteamine-modified cellulose nanocrystal adsorbent for removal of mercury ions from aqueous solutions. Cellulose, 2019, 26, 4971-4985.	2.4	38
760	Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale, 2019, 11, 9819-9839.	2.8	35
761	Surface Modification of Spinel Ferrite with Biopolymer for Adsorption of Cationic and Anionic Dyes in Single and Ternary Dye System. Fibers and Polymers, 2019, 20, 739-751.	1.1	21
762	Synthesis, characterization, and photocatalytic activity of silver and zinc co-doped TiO2 nanoparticle for photodegradation of methyl orange dye in aqueous solution. Canadian Journal of Chemistry, 2019, 97, 642-650.	0.6	12
763	Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose. Journal of Nanomaterials, 2019, 2019, 1-31.	1.5	70
764	Facet-mediated interaction between humic acid and TiO ₂ nanoparticles: implications for aggregation and stability kinetics in aquatic environments. Environmental Science: Nano, 2019, 6, 1754-1764.	2.2	10
765	Selectivity and efficient Pb and Cd ions removal by magnetic MFe2O4 (M=Co, Ni, Cu and Zn) nanoparticles. Materials Chemistry and Physics, 2019, 232, 254-264.	2.0	37

#	Article	IF	CITATIONS
766	Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance. Journal of Membrane Science, 2019, 582, 335-341.	4.1	28
767	Selective capture models and mechanisms of Pb(II) from wastewater using tannic-functionalized nickel-iron oxide Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 265-273.	2.3	19
768	UV-Driven Antifouling Paper Fiber Membranes for Efficient Oil–Water Separation. Industrial & Didustrial & Engineering Chemistry Research, 2019, 58, 5186-5194.	1.8	35
769	Environmental Remediation Applications of Carbon Nanotubes and Graphene Oxide: Adsorption and Catalysis. Nanomaterials, 2019, 9, 439.	1.9	117
770	Molecular simulations of carbon-based materials for selected CO2 separation and water treatment processes. Fluid Phase Equilibria, 2019, 492, 10-25.	1.4	19
771	Exploitation of Nanoparticles as Photocatalysts for Clean and Environmental Applications. Environmental Chemistry for A Sustainable World, 2019, , 279-319.	0.3	2
772	SiO2 nanoparticles modified Si3N4 hollow fiber membrane for efficient oily wastewater microfiltration. Journal of Water Process Engineering, 2019, 29, 100799.	2.6	17
773	Renewable Biomassâ€Derived Hierarchically Porous Carbonaceous Sponge (CS)/gâ€C ₃ N ₄ Composites as Adsorption and Photocatalytic Materials. ChemistrySelect, 2019, 4, 3233-3240.	0.7	1
774	Nanowires versus nanosheets – Effects of NiCo2O4 nanostructures on ceramic membrane permeability and fouling potential. Separation and Purification Technology, 2019, 215, 644-651.	3.9	13
775	Polydopamine Nanoparticle-Coated Polysulfone Porous Granules as Adsorbents for Water Remediation. ACS Omega, 2019, 4, 4839-4847.	1.6	25
776	Efficient removal of dyes from water by high flux and superior antifouling polyethersulfone hollow fiber membranes modified with ZnO/cGO nanohybrid. Journal of Water Process Engineering, 2019, 29, 100783.	2.6	36
777	Combustion synthesis of porous MgO and its adsorption properties. International Journal of Industrial Chemistry, 2019, 10, 89-96.	3.1	34
778	Nanotechnology in Decontamination. , 2019, , 119-137.		1
779	Phytase-Fe3O4 nanoparticles-loaded microcosms of silica for catalytic remediation of phytate-phosphorous from eutrophic water bodies. Environmental Science and Pollution Research, 2019, 26, 14988-15000.	2.7	10
780	Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite. Royal Society Open Science, 2019, 6, 181294.	1.1	35
781	Covellite (CuS) Production from a Real Acid Mine Drainage Treated with Biogenic H2S. Metals, 2019, 9, 206.	1.0	9
782	Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Science of the Total Environment, 2019, 668, 566-576.	3.9	118
783	Preparation of magnetite and silver poly(2â€acrylamidoâ€2â€methyl propane sulfonic acid―co â€acrylamide) nanocomposites for adsorption and catalytic degradation of methylene blue water pollutant. Polymer International, 2019, 68, 1164-1177.	1.6	10

#	Article	IF	CITATIONS
784	In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles. Chemosphere, 2019, 224, 816-826.	4.2	18
785	Polymer-Based Magnetic Nanocomposites for the Removal of Highly Toxic Hexavalent Chromium from Aqueous Solutions. Environmental Chemistry for A Sustainable World, 2019, , 189-227.	0.3	8
786	AgCl/Ag functionalized cotton fabric: An effective plasmonic hybrid material for water disinfection under sunlight. Solar Energy, 2019, 183, 653-664.	2.9	16
787	Preparation of Polymer Membranes by In Situ Interfacial Polymerization. International Journal of Polymer Science, 2019, 2019, 1-13.	1.2	24
788	Use of Nanoparticles for the Disinfection of Desalinated Water. Water (Switzerland), 2019, 11, 559.	1.2	12
789	Applications of Nanotechnology in Daily Life. Interface Science and Technology, 2019, , 113-143.	1.6	75
790	Application of Nano-Photocatalysts for Degradation and Disinfection of Wastewater. Nanotechnology in the Life Sciences, 2019, , 249-261.	0.4	1
791	Porous, pH-Responsive, and Reusable Hydrogel Beads of Bovine Serum Albumin_Au Hybrid as Smart Nanofactories for the Removal of Organic and Inorganic Pollutants from Water: A Detailed Demonstration by Spectroscopy and Microscopy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7965-7973.	4.0	16
792	New Technologies to Remove Halides from Water: An Overview. Nanotechnology in the Life Sciences, 2019, , 147-180.	0.4	5
793	Innovative Seizure of Metal/Metal Oxide Nanoparticles in Water Purification: A Critical Review of Potential Risks. Critical Reviews in Analytical Chemistry, 2019, 49, 534-541.	1.8	8
794	Nanotechnology: The Technology for Efficient, Economic, and Ecological Treatment of Contaminated Water. Nanotechnology in the Life Sciences, 2019, , 381-405.	0.4	1
795	Silver Nanoparticles as a Biocide for Water Treatment Applications. Nanotechnology in the Life Sciences, 2019, , 407-419.	0.4	4
796	Nanotechnology Explored for Water Purification. Nanotechnology in the Life Sciences, 2019, , 181-193.	0.4	0
797	Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes. , 2019, , 25-46.		21
798	Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study. Journal of Hazardous Materials, 2019, 369, 191-198.	6.5	41
799	Increasing activated sludge aggregation by magnetite nanoparticles addition. Water Science and Technology, 2019, 79, 993-999.	1.2	10
800	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2019, , 441-468.		3
801	Electrochemical Characterization of Magnetite with Agarose-Stabilized Powder Disk Electrodes and Potentiometric Methods. ACS Earth and Space Chemistry, 2019, 3, 688-699.	1.2	11

#	Article	IF	Citations
802	Synthesis of Poly(methyl methacrylate) Grafted Multiwalled Carbon Nanotubes via a Combination of RAFT and Alkyne-Azide Click Reaction. Applied Sciences (Switzerland), 2019, 9, 603.	1.3	14
803	Highly Effective Disinfection of E. coli Using the Nanohybrids Ti1â^'xNixO2/CNTs. Journal of Electronic Materials, 2019, 48, 2653-2659.	1.0	0
804	Greywater Treatment Using Single and Combined Adsorbents for Landscape Irrigation. Environmental Processes, 2019, 6, 43-63.	1.7	26
805	Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products., 2019,, 183-202.		10
806	Nanofiber immobilized CeO2/dendrimer nanoparticles: An efficient photocatalyst in the visible and the UV. Applied Surface Science, 2019, 479, 608-618.	3.1	34
807	Nanocarbon and its composites for water purification. , 2019, , 711-731.		11
808	Nanotechnology From Engineers to Toxicologists. International Journal of Applied Nanotechnology Research, 2019, 4, 1-25.	1.1	3
810	High-efficiency visible-light-driven Ag3PO4 photocatalysts modified by conjugated polyvinyl alcohol derivatives. Materials Research Express, 2019, 6, 125558.	0.8	4
811	Integrated Electrocoagulation and Tight Ultrafiltration Membrane for Wastewater Reclamation and Reuse. Reaktor, 2019, 18, 209-215.	0.2	3
812	Hybrid Ionic Silver and Magnetite Microgels Nanocomposites for Efficient Removal of Methylene Blue. Molecules, 2019, 24, 3867.	1.7	11
813	Effective Adsorption of Methylene Blue dye onto Magnetic Nanocomposites. Modeling and Reuse Studies. Applied Sciences (Switzerland), 2019, 9, 4563.	1.3	48
814	Characterizing colloidal metals in drinking water by field flow fractionation. Environmental Science: Water Research and Technology, 2019, 5, 2202-2209.	1.2	17
815	Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials, 2019, , .	0.3	4
816	Nanostructured Polymer Composites for Water Remediation. Engineering Materials, 2019, , 275-306.	0.3	5
817	Nanotechnology Characterization Tools for Environment, Health, and Safety. , 2019, , .		2
818	Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) lons from Aqueous Environments. International Journal of Environmental Research and Public Health, 2019, 16, 4596.	1.2	14
819	White and Red Brazilian São Simão's Kaolinite–TiO2 Nanocomposites as Catalysts for Toluene Photodegradation from Aqueous Solutions. Materials, 2019, 12, 3943.	1.3	9
821	Reactive Mesoporous pH-Sensitive Amino-Functionalized Silica Nanoparticles for Efficient Removal of Coomassie Blue Dye. Nanomaterials, 2019, 9, 1721.	1.9	11

#	Article	IF	Citations
822	Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019, 12, 4671.	1.6	56
823	Modern and Emerging Methods of Wastewater Treatment. Ecowise, 2019, , 223-247.	0.1	4
824	Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements. Journal of Hazardous Materials, 2019, 362, 358-367.	6.5	42
825	Construction of <i>in situ</i> self-assembled FeWO ₄ /g-C ₃ N ₄ nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Advances, 2019, 1, 322-333.	2.2	64
826	Alginate-based composites for environmental applications: a critical review. Critical Reviews in Environmental Science and Technology, 2019, 49, 318-356.	6.6	253
827	A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. Chemosphere, 2019, 219, 766-783.	4.2	92
828	Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: A review. Chemical Engineering Journal, 2019, 360, 912-928.	6.6	85
829	Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling, 2019, 142, 177-188.	5. 3	7 3
830	Reliable quantification of mercury in natural waters using surface modified magnetite nanoparticles. Chemosphere, 2019, 220, 565-573.	4.2	8
831	Novel nanocomposite polyethersulfone- antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties. Polymer, 2019, 163, 48-56.	1.8	43
832	A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling. Water Research, 2019, 151, 54-63.	5. 3	73
833	Preparation and Characterization of Thin-Film Nanocomposite Membrane with High Flux and Antibacterial Performance for Forward Osmosis. Industrial & Engineering Chemistry Research, 2019, 58, 897-907.	1.8	13
834	TiO ₂ Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3006-3015.	4.0	71
835	Applications of Nanotechnology and Biotechnology for Sustainable Water and Wastewater Treatment. Energy, Environment, and Sustainability, 2019, , 405-430.	0.6	13
836	Actinia-like multifunctional nanocoagulant for single-step removal of water contaminants. Nature Nanotechnology, 2019, 14, 64-71.	15.6	89
837	Nanotechnology for Water Remediation. Environmental Chemistry for A Sustainable World, 2019, , 195-211.	0.3	16
838	Carbon Nanotubes for Advancing Separation Membranes. , 2019, , 333-359.		1
839	Carbon Nanotube and Graphene Oxide Based Membranes. , 2019, , 361-381.		3

#	Article	IF	CITATIONS
840	Nanoscale Materials for Arsenic Removal From Water., 2019, , 707-733.		7
841	New Generation Nano-Based Adsorbents for Water Purification. , 2019, , 783-798.		3
842	Unexpected Favorable Role of Ca ²⁺ in Phosphate Removal by Using Nanosized Ferric Oxides Confined in Porous Polystyrene Beads. Environmental Science & Environmental	4.6	88
843	Smart photoactive soft materials for environmental cleaning and energy production through incorporation of nanophotocatalyst on polymers and textiles. Polymers for Advanced Technologies, 2019, 30, 235-253.	1.6	17
844	Assessment of the Risk Associated with E. coli Bacterial Intrusion in Drinking Water Distribution Networks. Arabian Journal for Science and Engineering, 2019, 44, 4161-4168.	1.7	1
845	Preferential adsorption of selenium oxyanions onto {1 1 0} and {0 1 2} nano-hematite facets. Journal of Colloid and Interface Science, 2019, 537, 465-474.	5.0	40
846	Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites. International Journal of Biological Macromolecules, 2019, 123, 539-548.	3.6	73
847	Green synthesis of pH-responsive Al2O3 nanoparticles: Application to rapid removal of nitrate ions with enhanced antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 205-215.	2.0	54
848	Sustainable carbon microtube derived from cotton waste for environmental applications. Chemical Engineering Journal, 2019, 361, 1605-1616.	6.6	32
849	Application of Nanomaterials for the Removal of Heavy Metal From Wastewater., 2019,, 137-157.		27
850	Nanomaterialsâ€"State of Art, New Challenges, and Opportunities. , 2019, , 1-24.		12
851	Polymer/Carbon Nanotubes Mixed Matrix Membranes for Water Purification. , 2019, , 87-110.		11
852	Environmental Nanotechnology. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
853	Nanoengineered Materials for Water and Wastewater Treatments. , 2019, , 303-335.		3
854	Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 2019, 14, 93-126.	1.7	376
855	Nanodiamonds: Emerging face of future nanotechnology. Carbon, 2019, 143, 678-699.	5.4	105
856	Efficient removal of Cd(II), Cu(II), Pb(II), and Zn(II) from wastewater and natural water using submersible device. Environmental Science and Pollution Research, 2019, 26, 6368-6377.	2.7	5
857	Sulfonated polyether sulfone reinforced multiwall carbon nanotubes composite for the removal of lead in wastewater. Applied Nanoscience (Switzerland), 2019, 9, 1695-1705.	1.6	14

#	Article	IF	CITATIONS
858	A Review on Nanoparticles as Boon for Biogas Producersâ€"Nano Fuels and Biosensing Monitoring. Applied Sciences (Switzerland), 2019, 9, 59.	1.3	52
859	Natural polymer based composite membranes for water purification: a review. Polymer-Plastics Technology and Materials, 2019, 58, 1295-1310.	0.6	22
860	On chelating surfactants: Molecular perspectives and application prospects. Journal of Molecular Liquids, 2019, 278, 688-705.	2.3	46
861	Recent advances in the development of tailored functional materials for the treatment of pesticides in aqueous media: A review. Journal of Industrial and Engineering Chemistry, 2019, 70, 51-69.	2.9	49
862	Porous Polymers as Multifunctional Material Platforms toward Taskâ€Specific Applications. Advanced Materials, 2019, 31, e1802922.	11.1	315
863	Role of zinc oxide nanoparticles for effluent treatment using Pseudomonas putida and Pseudomonas aureofaciens. Bioprocess and Biosystems Engineering, 2019, 42, 187-198.	1.7	21
864	Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. Journal of Environmental Management, 2019, 231, 734-748.	3.8	94
865	Pd–Co alloy as an efficient recyclable catalyst for the reduction of hazardous 4-nitrophenol. Research on Chemical Intermediates, 2019, 45, 815-832.	1.3	19
866	Novel magnetic core-shell nanoparticles for the removal of polychlorinated biphenyls from contaminated water sources. Materials Chemistry and Physics, 2019, 223, 68-74.	2.0	18
867	Antifouling performance and mechanisms in an electrochemical ceramic membrane reactor for wastewater treatment. Journal of Membrane Science, 2019, 570-571, 355-361.	4.1	47
868	Activated carbon supported nanoscale zero-valent iron composite: Aspects of surface structure and composition. Materials Chemistry and Physics, 2019, 222, 369-376.	2.0	15
869	Overview of Potential Applications of Nano-Biotechnology in Wastewater and Effluent Treatment. , 2019, , 87-100.		11
870	Surface enriched nanofiber mats for efficient adsorption of Cr(VI) inspired by nature. Journal of Environmental Chemical Engineering, 2019, 7, 102817.	3.3	27
871	Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Science of the Total Environment, 2019, 656, 808-833.	3.9	150
872	Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 185-192.	2.7	26
873	Carbon Nanotubes as Plant Growth Regulators. , 2019, , 23-42.		15
874	Physicochemical Perturbation of Plants on Exposure to Metal Oxide Nanoparticle., 2019,, 323-352.		3
875	ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chemical Engineering Journal, 2019, 358, 540-551.	6.6	170

#	Article	IF	CITATIONS
876	Oil spill cleanup employing magnetite nanoparticles and yeast-based magnetic bionanocomposite. Journal of Environmental Management, 2019, 230, 405-412.	3.8	55
877	Construction of novel Z-scheme flower-like Bi2S3/SnIn4S8 heterojunctions with enhanced visible light photodegradation and bactericidal activity. Applied Surface Science, 2019, 465, 212-222.	3.1	78
878	Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Science of the Total Environment, 2019, 651, 1199-1218.	3.9	255
879	Engineered nanomaterials for water decontamination and purification: From lab to products. Journal of Hazardous Materials, 2019, 363, 295-308.	6.5	147
880	New generation nanomaterials for water desalination: A review. Desalination, 2019, 451, 2-17.	4.0	279
881	NiO and CoO nanoparticles mediated biological hydrogen production: Effect of Ni/Co oxide NPs-ratio. Bioresource Technology Reports, 2019, 5, 364-368.	1.5	20
882	Synthesis, characterization and application of antioxidants nanoparticles incorporated polymeric membranes. Separation Science and Technology, 2019, 54, 247-257.	1.3	2
883	Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 2019, 12, 4897-4919.	2.3	499
884	Advances in Bioremediation of Toxic Heavy Metals and Radionuclides in Contaminated Soil and Aquatic Systems., 2020,, 21-52.		1
885	3D Grapheneâ€Based Macrostructures for Water Treatment. Advanced Materials, 2020, 32, e1806843.	11.1	158
886	Magnetic polyresorcinol@CoFe2O4@MnS nanoparticles for adsorption of Pb(II), Ag(I), Cr(VI) and bacteria from water solution. Polymer Bulletin, 2020, 77, 1893-1911.	1.7	4
887	Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Critical Reviews in Environmental Science and Technology, 2020, 50, 135-215.	6.6	36
888	Modern Age Waste Water Problems. , 2020, , .		4
889	Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review. Journal of Cleaner Production, 2020, 242, 118409.	4.6	194
890	Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors, 2020, , .	1.2	30
891	Preparation, characterization, and performance evaluation of sepiolite-based nanocomposite membrane for desalination. Journal of Industrial and Engineering Chemistry, 2020, 82, 164-172.	2.9	9
892	Magnetophoresis in Bio-Devices. Microtechnology and MEMS, 2020, , 309-361.	0.2	1
894	Synthesizing of Fe decorated graphene sponge for environmental applications. Journal of Dispersion Science and Technology, 2020, 41, 461-469.	1.3	4

#	Article	IF	CITATIONS
895	Adsorptive removal of alizarin dye from wastewater using maghemite nanoadsorbents. Separation Science and Technology, 2020, 55, 2433-2448.	1.3	26
896	Green Synthesis of Nanoparticles and Their Applications in Water and Wastewater Treatment., 2020,, 349-379.		44
897	Nanoparticles based Surface Plasmon Enhanced Photocatalysis. Environmental Chemistry for A Sustainable World, 2020, , 133-143.	0.3	6
898	Green Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	5
899	Green Nanotechnology for the Environment and Sustainable Development. Environmental Chemistry for A Sustainable World, 2020, , 13-46.	0.3	48
900	Metal Oxide Nanostructured Materials for Water Treatment: Prospectives and Challenges. , 2020, , 213-231.		1
901	Fresh Water Pollution Dynamics and Remediation. , 2020, , .		34
902	Wonders of Nanotechnology for Remediation of Polluted Aquatic Environs. , 2020, , 319-339.		24
904	Nanocomposite coatings on steel for enhancing the corrosion resistance: A review. Journal of Composite Materials, 2020, 54, 681-701.	1.2	61
905	Remediation of bio-refinery wastewater containing organic and inorganic toxic pollutants by adsorption onto chitosan-based magnetic nanosorbent. Water Quality Research Journal of Canada, 2020, 55, 36-51.	1.2	24
906	Reaction intermediates during the photocatalytic degradation of emerging contaminants under visible or solar light. , 2020, , $163-193$.		0
907	Porous antimicrobial starch particles containing N-halamine functional groups. Carbohydrate Polymers, 2020, 229, 115546.	5.1	17
908	NiO.9MnO.1Fe2O4 nanoparticles preparation and sunlight-utilized photocatalytic activity. Research on Chemical Intermediates, 2020, 46, 1297-1306.	1.3	0
909	Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment. Water Science and Technology, 2020, 81, 1354-1364.	1.2	25
910	Potential Applications of Nanofibers in Beverage Industry. , 2020, , 333-368.		9
911	Adsorption of ciprofloxacin on carbon nanotubes: Insights from molecular dynamics simulations. Journal of Molecular Liquids, 2020, 298, 111977.	2.3	46
912	Effect of gradient profile in ceramic membranes on filtration characteristics: Implications for membrane development. Journal of Membrane Science, 2020, 595, 117576.	4.1	42
913	Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Materials Science and Engineering C, 2020, 107, 110314.	3.8	155

#	ARTICLE	IF	CITATIONS
914	DNA as a bioligand supported on magnetite for grafting palladium nanoparticles for crossâ€coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5357.	1.7	12
915	Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications. Environmental Science: Water Research and Technology, 2020, 6, 491-514.	1.2	55
916	Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere, 2020, 247, 125847.	4.2	102
917	Magnetic tubular carbon nanofibers as efficient Cu(II) ion adsorbent from wastewater. Journal of Cleaner Production, 2020, 252, 119825.	4.6	58
918	Pb(II) uptake onto nylon microplastics: Interaction mechanism and adsorption performance. Journal of Hazardous Materials, 2020, 386, 121960.	6.5	243
919	Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination, 2020, 478, 114178.	4.0	162
920	A novel ultralight 3D-Mn(OH)4 porous material for heavy metal ions removal from water. Separation and Purification Technology, 2020, 238, 116426.	3.9	18
921	Fabrication of Ag quantum dot/Snln ₄ S ₈ Schottky junction with enhanced photocatalytic inactivation of <i>E. coli</i> under visible light excitation. Journal Physics D: Applied Physics, 2020, 53, 085103.	1.3	4
922	Promoting mercury removal from desulfurization slurry via S-doped carbon nitride/graphene oxide 3D hierarchical framework. Separation and Purification Technology, 2020, 239, 116515.	3.9	35
923	Applications of layered double hydroxide biopolymer nanocomposites. , 2020, , 599-676.		2
924	Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution. Journal of Materials Science: Materials in Electronics, 2020, 31, 1616-1633.	1.1	28
925	Magnetite nanoparticles as efficient materials for removal of glyphosate from water. Nature Sustainability, 2020, 3, 129-135.	11.5	72
926	FeO nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus) Tj ETQqO 0 0 rgBT	/Qverlock	10 Tf 50 262
927	Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for Constructing Optical Nanoagents. Angewandte Chemie, 2020, 132, 10208-10214.	1.6	15
928	Nanocrystalline hematite \hat{l}_{\pm} -Fe2O3 synthesis with different precursors and their composites with graphene oxide. Ceramics International, 2020, 46, 8227-8237.	2.3	18
929	Preparation and performance characterization of ceramic/silver nanoparticle composite in water purification. International Journal of Applied Ceramic Technology, 2020, 17, 1522-1530.	1.1	4
930	Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for Constructing Optical Nanoagents. Angewandte Chemie - International Edition, 2020, 59, 10122-10128.	7.2	47
931	Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnology Reports (Amsterdam, Netherlands), 2020, 25, e00410.	2.1	32

#	Article	IF	CITATIONS
932	Design, operation, performance evaluation and mathematical optimization of a vermifiltration pilot plan for domestic wastewater treatment. Journal of Environmental Chemical Engineering, 2020, 8, 103587.	3.3	18
933	Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose, 2020, 27, 1975-1988.	2.4	50
934	Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV). Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 515-537.	0.7	26
935	Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—A review. Journal of Environmental Chemical Engineering, 2020, 8, 103572.	3.3	63
936	Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arabian Journal of Chemistry, 2020, 13, 4661-4672.	2.3	81
937	Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution. Journal of Materials Research and Technology, 2020, 9, 498-506.	2.6	73
938	Experimental and DFT study of selective adsorption mechanisms of Pb(II) by UiO-66-NH2 modified with 1,8-dihydroxyanthraquinone. Journal of Industrial and Engineering Chemistry, 2020, 83, 111-122.	2.9	53
939	Fabrication and characterization of polyvinylidene fluoride/zinc oxide membranes with antibacterial property. Journal of Water Supply: Research and Technology - AQUA, 2020, 69, 122-133.	0.6	7
940	Application of magnetic nanoparticles for water purification. Environmental Advances, 2020, 2, 100010.	2.2	31
941	Synthesis of Walnut Shaped V ₂ O ₃ Particles and Its Photocatalytic Activity for Methylene Blue Degradation Under Visible Light Irradiation. Journal of Nanoscience and Nanotechnology, 2020, 20, 4322-4326.	0.9	2
943	A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety. Processes, 2020, 8, 1125.	1.3	7
945	Effects of ZnO nanoparticles on the Giant freshwater prawn (Macrobrachium rosenbergii, de Man,) Tj ETQq1 activity. Animal Reproduction Science, 2020, 221, 106603.	1 0.784314 0.5	rgBT /Overloc 10
946	Use of nanohybrid nanomaterials in water treatment: highly efficient removal of ranitidine. RSC Advances, 2020, 10, 37050-37063.	1.7	10
947	Catalytic Removal of Alizarin Red Using Chromium Manganese Oxide Nanorods: Degradation and Kinetic Studies. Catalysts, 2020, 10, 1150.	1.6	16
948	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment. , 2020, 2, 1532-1544.		47
949	Evaluation of visible-light driven photocatalytic reaction by porphyrin coupled TiO2 nanotubes obtained via rapid breakdown anodization. Journal of Environmental Chemical Engineering, 2020, 8, 104382.	3.3	15
950	Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. Journal of Water Process Engineering, 2020, 38, 101652.	2.6	47
951	Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar. Microporous and Mesoporous Materials, 2020, 309, 110573.	2.2	61

#	Article	IF	CITATIONS
952	Synthesis, characterization and desalination study of polyvinyl chloride-co-vinyl acetate/cellulose acetate membranes integrated with surface modified zeolites. Microporous and Mesoporous Materials, 2020, 309, 110579.	2.2	35
953	Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation. Environmental Science: Nano, 2020, 7, 3255-3278.	2.2	13
954	Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118122.	2.0	57
955	Graphene-supported organic-inorganic layered double hydroxides and their environmental applications: A review. Journal of Cleaner Production, 2020, 273, 122980.	4.6	47
956	Nano-enabled technologies for wastewater remediation. , 2020, , 1-17.		2
957	Zn-doped CdSe nanoparticles: Impact of synthesis conditions on photocatalytic activity. Environmental Technology and Innovation, 2020, 20, 101126.	3.0	10
958	Particle movement and fluid behavior visualization using an optically transparent 3D-printed micro-hydrocyclone. Biomicrofluidics, 2020, 14, 064106.	1.2	8
959	Role of metallic nanoparticles in water remediation with special emphasis on sustainable synthesis: a review. Nanotechnology for Environmental Engineering, 2020, 5, 1.	2.0	19
960	Polypyrrole coated tin oxide nanocomposite: an efficient dye adsorbent and microbial disinfectant. Journal of Dispersion Science and Technology, 2020, , 1-13.	1.3	1
961	Nanomaterials and nanotechnology for water treatment: recent advances. Inorganic and Nano-Metal Chemistry, 2021, 51, 1615-1645.	0.9	26
962	A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. Npj Clean Water, 2020, 3, .	3.1	68
963	Removal and Oxidation of As(III) from Water Using Iron Oxide Coated CTAB as Adsorbent. Polymers, 2020, 12, 1687.	2.0	18
964	Biosynthesis and characterization of lead selenide semiconductor nanoparticles (PbSe NPs) and its antioxidant and photocatalytic activity. Arabian Journal of Chemistry, 2020, 13, 8411-8423.	2.3	20
965	Fouling control in MBR in a sustainable perspective. , 2020, , 21-57.		5
966	Toxicity effects of multi-walled carbon nanotubes (MWCNTs) nanomaterial on the common carp (Cyprinus carpio L. 1758) in laboratory conditions. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 237, 108832.	1.3	11
967	Two-Dimensional Nanostructures for Advanced Applications. ACS Symposium Series, 2020, , 1-31.	0.5	2
968	Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters, 2020, 18, 2055-2068.	8.3	279
969	Nanotechnology for Bioengineers. Synthesis Lectures on Biomedical Engineering, 2020, 15, 1-109.	0.1	0

#	Article	IF	Citations
970	Novel carbon nano-onions from paraffinum liquidum for rapid and efficient removal of industrial dye from wastewater. Environmental Science and Pollution Research, 2020, 27, 43845-43864.	2.7	17
972	The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Small, 2020, 16, e2003691.	5.2	66
973	Embedding of L–Arginine into graphene oxide (GO) for endotoxin removal from water: Modeling and optimization approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125491.	2.3	24
974	Platform selection of engineered nanomaterials for water decontamination applications. Environmental Science: Nano, 2020, 7, 3641-3654.	2.2	11
975	Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. Nanomaterials, 2020, 10, 2065.	1.9	37
976	Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Advances in Colloid and Interface Science, 2020, 286, 102298.	7.0	139
978	Degradation of 4-chlorophenol from aqueous solution using ultrasound/persulphate: prediction by RSM. International Journal of Environmental Analytical Chemistry, 2022, 102, 6030-6040.	1.8	4
979	A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Reviews in Environmental Science and Biotechnology, 2020, 19, 751-778.	3.9	65
980	A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Advances, 2020, 10, 32740-32820.	1.7	55
981	Enhancing photocatalytic performance by sonication and surfactant addition on the synthesis process of PVA/TiO2 nanofibers membranes by electrospinning method. AIP Conference Proceedings, 2020, , .	0.3	1
982	Scientific mapping on the convergence of innovation and sustainability (innovability): 1990–2018. Kybernetes, 2020, ahead-of-print, .	1.2	15
983	Research progress in the environmental application of magnesium hydroxide nanomaterials. Surfaces and Interfaces, 2020, 21, 100701.	1.5	19
984	Multifunctional Magnetic Oxide Nanoparticle (MNP) Core-Shell: Review of Synthesis, Structural Studies and Application for Wastewater Treatment. Molecules, 2020, 25, 4110.	1.7	15
985	Magnetically recoverable carbon-coated iron carbide with arsenic adsorptive removal properties. SN Applied Sciences, 2020, 2, 1.	1.5	6
986	Wastewater Treatment by a Polymeric Bioflocculant and Iron Nanoparticles Synthesized from a Bioflocculant. Polymers, 2020, 12, 1618.	2.0	10
987	Mechanisms and efficacy of disinfection in ceramic water filters: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2934-2974.	6.6	14
988	Expand, relocate, or underground? Social acceptance of upgrading wastewater treatment plants. Environmental Science and Pollution Research, 2020, 27, 45618-45628.	2.7	12
990	Preparation of thermally stable magnetic poly(urethane-imide)/nanocomposite containing \hat{l}^2 -cyclodextrin cavities as new adsorbent for lead and cadmium. Journal of Polymer Research, 2020, 27, 1.	1.2	3

#	Article	IF	Citations
991	Green Graphene–Chitosan Sorbent Materials for Mercury Water Remediation. Nanomaterials, 2020, 10, 1474.	1.9	18
993	2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. ACS Symposium Series, 2020, , 93-116.	0.5	5
994	The Applications of 2D Nanomaterials in Energy-Related Process. ACS Symposium Series, 2020, , 219-251.	0.5	1
995	Nanocomposites Based on Biopolymer for Biomedical and Antibacterial Applications. ACS Symposium Series, 2020, , 375-391.	0.5	4
996	Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects. Environmental Science and Pollution Research, 2020, 27, 41199-41224.	2.7	12
997	A new magnetic \hat{i}^2 -cyclodextrin polyurethane nanocomposite for the removal of organic pollutants in wastewater. Iranian Polymer Journal (English Edition), 2020, 29, 933-942.	1.3	1
998	2D Materials for Supercapacitor and Supercapattery Applications. ACS Symposium Series, 2020, , 33-47.	0.5	6
999	Recent Advancements and Key Challenges of Graphene for Flexible Supercapacitors. ACS Symposium Series, 2020, , 49-77.	0.5	7
1000	2D Nanostructured Materials for High Performance Electrochemical Supercapacitors. ACS Symposium Series, 2020, , 79-92.	0.5	3
1001	Application of 2D Nanomaterials as Fluorescent Biosensors. ACS Symposium Series, 2020, , 117-141.	0.5	10
1002	Functionalized Two-Dimensional Nanomaterials for Biosensing and Bioimaging. ACS Symposium Series, 2020, , 143-165.	0.5	1
1003	Electrocatalysts Derived from 2D Mxenes for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Symposium Series, 2020, , 167-189.	0.5	0
1004	Application of 2D Graphene-Based Nanomaterials for Pollutant Removal from Advanced Water and Wastewater Treatment Processes. ACS Symposium Series, 2020, , 191-217.	0.5	10
1005	State-of-the-Art Applications of 2D Nanomaterials in Energy Storage. ACS Symposium Series, 2020, , 253-293.	0.5	5
1006	2D Layered Structure of Bismuth Oxyhalides for Advanced Applications. ACS Symposium Series, 2020, , 295-315.	0.5	7
1007	Cutting Edge Materials of Two-Dimensional Platinum Diselenide. ACS Symposium Series, 2020, , 317-345.	0.5	1
1008	Metal and Metal Matrix 2D Nanomaterial Composites: Attractive Alternatives for EMI Shielding Applications. ACS Symposium Series, 2020, , 347-373.	0.5	2
1009	Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. ACS Symposium Series, 2020, , 393-420.	0.5	3

#	Article	IF	Citations
1010	The Main Drivers to Face the Challenges of Increasing the Intelligence of Sanitary Sewage Systems in Brazilian Cities. Water (Switzerland), 2020, 12, 3478.	1.2	4
1011	Energyâ€"Water Nexus: Integration, Monitoring, KPIs Tools and Research Vision. Energies, 2020, 13, 6697.	1.6	3
1012	Review of combined nano zero valent metal oxidation and ozone for degradation of wastewater. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012094.	0.2	0
1013	Achievements in hybrid processes for wastewater and water treatment. , 2020, , 239-262.		6
1014	Present status of hybrid materials for potable water decontamination: a review. Environmental Science: Water Research and Technology, 2020, 6, 3214-3248.	1.2	19
1015	Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules, 2020, 25, 2016.	1.7	63
1016	Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. International Journal of Environmental Science and Technology, 2020, 17, 4389-4406.	1.8	60
1017	Porous Al2O3-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment. Nanomaterials, 2020, 10, 845.	1.9	11
1018	Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment. Journal of Environmental Management, 2020, 270, 110816.	3.8	39
1019	Application of silver nanoparticles toward Co(II) and Pb(II) ions contaminant removal in groundwater. Applied Water Science, 2020, $10,1.$	2.8	16
1020	Magnetic hydrogel composites based on crossâ€linked poly (acrylic acid) used as a recyclable adsorbent system for nitrates. Water and Environment Journal, 2020, 34, 916-928.	1.0	3
1021	Nanostructured membranes for water treatments. , 2020, , 129-150.		4
1023	Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose, 2020, 27, 6719-6746.	2.4	45
1024	Progress in the Research of the Toxicity Effect Mechanisms of Heavy Metals on Freshwater Organisms and Their Water Quality Criteria in China. Journal of Chemistry, 2020, 2020, 1-12.	0.9	60
1025	Nanoadsorbents for wastewater treatment: nextÂgeneration biotechnological solution. International Journal of Environmental Science and Technology, 2020, 17, 4095-4132.	1.8	64
1026	Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy, 2020, 10, 759.	1.3	9
1027	Recent trends and research strategies for treatment of water and wastewater in India., 2020, , 139-168.		1
1028	In-situ crosslinked AEMs with self-assembled nanostructure for acid recovery. Separation and Purification Technology, 2020, 247, 116927.	3.9	20

#	Article	IF	CITATIONS
1029	Synthesis and Characterization of Triamine modified coated Iron Sand Hybrid Nanomaterials originating from Kendal Coast. Jurnal Kimia Sains Dan Aplikasi, 2020, 23, 68-74.	0.1	1
1030	How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater?. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	38
1031	Effect of hesperidin conjugated with golden nanoparticles on phagocytic activity: In vitro study. AIP Conference Proceedings, 2020, , .	0.3	18
1032	Nanoadsorbents for water and wastewater remediation. Science of the Total Environment, 2020, 739, 139903.	3.9	187
1033	Accumulation and toxicity of multi-walled carbon nanotubes in Xenopus tropicalis tadpoles. Chemosphere, 2020, 257, 127205.	4.2	10
1035	Functional Nanofibers and Their Applications. Industrial & Engineering Chemistry Research, 2020, 59, 5439-5455.	1.8	41
1036	Endophytic fungi mediated biofabrication of nanoparticles and their potential applications. , 2020, , 325-341.		6
1037	Green Synthesis of Silver Nanoparticles Using Tea Leaves from Three Different Elevations. ChemistrySelect, 2020, 5, 4239-4246.	0.7	18
1038	A scientometric review of the research on the impacts of climate change on water quality during 1998–2018. Environmental Science and Pollution Research, 2020, 27, 14322-14341.	2.7	21
1039	Vacuum-assisted assembly of iron cage intercalated layered double hydroxide composite membrane for water purification. Journal of Membrane Science, 2020, 603, 118032.	4.1	14
1040	Nanotechnology to remove polychlorinated biphenyls and polycyclic aromatic hydrocarbons from water: a review. Environmental Chemistry Letters, 2020, 18, 729-746.	8.3	32
1041	A Comprehensive review on the hierarchical performances of eco-friendly and functionally advanced modified and recyclable carbon materials. Journal of the Iranian Chemical Society, 2020, 17, 1521-1537.	1.2	5
1042	Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrasonics Sonochemistry, 2020, 65, 105058.	3.8	55
1043	Ceramic nanocomposite membranes and membrane fouling: A review. Water Research, 2020, 175, 115674.	5.3	241
1044	Reduction of clean fracturing fluid filtration loss by viscosity enhancement using nanoparticles: Is it feasible?. Chemical Engineering Research and Design, 2020, 156, 414-424.	2.7	7
1045	Enhancing Chromium (VI) removal from synthetic and real tannery effluents by using diatomite-embedded nanopyroxene. Chemosphere, 2020, 252, 126523.	4.2	20
1046	On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model. Mechanics Based Design of Structures and Machines, 2022, 50, 1030-1053.	3.4	12
1047	Effect of External Moving Torque on Dynamic Stability of Carbon Nanotube. Journal of Nano Research, 0, 61, 118-135.	0.8	8

#	Article	IF	Citations
1048	Role of Nanomaterials in the Treatment of Wastewater: A Review. Water (Switzerland), 2020, 12, 495.	1.2	418
1049	Efficiency evaluation of the photocatalytic degradation of telmisartan anti-hypertensive drug with Fenton, photo-Fenton and recyclable TiO2 heterogeneous catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 1141-1154.	0.8	4
1050	Nanomaterials in wastewater treatments. , 2020, , 185-206.		3
1051	Sonochemical synthesis of ZnS nanolayers on the surface of microbial cells and their application in the removal of heavy metals. Journal of Hazardous Materials, 2020, 400, 123161.	6.5	23
1052	Biosynthesis of zinc oxide nanoparticles using Hylocereus undatus fruit peel extract against clinical pathogens. Materials Today: Proceedings, 2022, 48, 164-168.	0.9	7
1053	Magnetic Porous Controlled Fe3O4–Chitosan Nanostructure: An Ecofriendly Adsorbent for Efficient Removal of Azo Dyes. Nanomaterials, 2020, 10, 1194.	1.9	35
1054	A novel molybdenum oxide–Starbon catalyst for wastewater remediation. Journal of Materials Chemistry A, 2020, 8, 14519-14527.	5.2	19
1055	Lithospherically sorbed cyclodiene insecticide sustainable remediation via green adsorbent derived from <i>Arachis hypogaea</i> shells. Chemistry and Ecology, 2020, 36, 766-784.	0.6	0
1056	A mesoporous encapsulated nanozyme for decontaminating two kinds of wastewater and avoiding secondary pollution. Nanoscale, 2020, 12, 14465-14471.	2.8	28
1057	Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and) Tj ETQq1 1 0.784314 Research, 2020, 27, 34862-34905.	rgBT /Ove 2.7	rlock 10 Tf 5 27
1058	Preparation and characterization of polyzwitterionic hydrogel coated polyamideâ€based mixed matrix membrane for heavy metal ions removal. Journal of Applied Polymer Science, 2020, 137, 49595.	1.3	21
1059	Applications of bionanocomposites in agriculture. , 2020, , 485-504.		5
1060	Detection and removal of biological contaminants in water. , 2020, , 69-110.		5
1061	Theory and simulation developments of confined mass transport through graphene-based separation membranes. Physical Chemistry Chemical Physics, 2020, 22, 6032-6057.	1.3	19
1062	Agglomeration of Viruses by Cationic Lignin Particles for Facilitated Water Purification. ACS Sustainable Chemistry and Engineering, 2020, 8, 4167-4177.	3.2	51
1063	Hybrid nanocomposites of carboxymethyl cellulose cross-linked by in-situ formed Cu2O nanoparticles for photocatalytic applications. Journal of Organometallic Chemistry, 2020, 914, 121180.	0.8	12
1064	Advanced methods for activated carbon from agriculture wastes; a comprehensive review. International Journal of Environmental Analytical Chemistry, 2022, 102, 134-158.	1.8	30
1065	Deposition of spherical and bracelet-like Cu2O nanoparticles within the matrix of anion exchangers via reduction of tetrachlorocuprate anions. Journal of Environmental Chemical Engineering, 2020, 8, 103722.	3.3	9

#	Article	IF	CITATIONS
1066	The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry, 2020, 12, 239.	1.1	31
1067	Nanocelluloseâ€Enabled Membranes for Water Purification: Perspectives. Advanced Sustainable Systems, 2020, 4, 1900114.	2.7	118
1068	Irrigation of Zea mays with UASB-treated textile wastewater; effect on early irrigation of Zea mays with UASB-treated textile wastewater; effect on early growth and physiology. Environmental Science and Pollution Research, 2020, 27, 15305-15324.	2.7	8
1069	Magnetic nanoparticle-based nanocontainers for water treatment. , 2020, , 487-498.		O
1070	Advanced nanostructured membranes. , 2020, , 295-308.		1
1071	Interaction of Chlorophyll with Titanium Dioxide and Iron Oxide Nanoparticles: A Temperature Dependent Fluorescence Quenching Study. Analytical Letters, 2020, 53, 1851-1870.	1.0	5
1072	BiVO4, a ternary metal oxide as an efficient photocatalytic material., 2020,, 245-266.		0
1073	Green synthesis of TiO2 and its photocatalytic activity. , 2020, , 11-61.		15
1074	Application of carbon nanomaterials in plant biotechnology. Materials Today: Proceedings, 2020, 30, 340-345.	0.9	16
1075	Ultimate Eradication of the Ciprofloxacin Antibiotic from the Ecosystem by Nanohybrid GO/O-CNTs. ACS Omega, 2020, 5, 4457-4468.	1.6	24
1076	Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. Water Research, 2020, 173, 115581.	5.3	56
1077	Methylene Blue Catalytic Degradation Using Silver and Magnetite Nanoparticles Functionalized with a Poly(ionic liquid) Based on Quaternized Dialkylethanolamine with 2-Acrylamido-2-methylpropane Sulfonate- <i>co</i> -Vinylpyrrolidone. ACS Omega, 2020, 5, 2829-2842.	1.6	52
1078	Food-grade particle stabilized pickering emulsion using modified sago (Metroxylon sagu) starch nanocrystal. Journal of Food Engineering, 2020, 280, 109974.	2.7	57
1079	Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	39
1080	Applications and impact of nanocellulose based adsorbents. Cellulose, 2020, 27, 2967-2990.	2.4	72
1081	Molecularly imprinted microparticles (microMIPs) embedded with reduced graphene oxide for capture and destruction of E. coli in drinking water. Materials Science and Engineering C, 2020, 110, 110672.	3.8	9
1082	Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 2020, 408, 213180.	9.5	389
1083	The role of magnetic MOFs nanoparticles in enhanced iron coagulation of aquatic dissolved organic matter. Chemosphere, 2020, 247, 125921.	4.2	33

#	Article	IF	CITATIONS
1084	Treatment of simulated chromium-contaminated wastewater using polyethylenimine-modified zero-valent iron nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108, 92-101.	2.7	23
1085	Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 2020, 173, 115467.	5.3	71
1086	Degradation kinetics of isoproturon and its subsequent products in contact with TiO2 functionalized silica nanofibers. Chemical Engineering Journal, 2020, 387, 124143.	6.6	17
1087	Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles. Materials Research Express, 2020, 7, 015086.	0.8	66
1088	Anthracene removal from water samples using a composite based on metal-organic-frameworks (MIL-101) and magnetic nanoparticles (Fe ₃ O ₄). Nanotechnology, 2020, 31, 195707.	1.3	15
1089	Facile synthesis of ZnO-SnO2 anchored ZIF-8 nanocomposite: a potential photocatalyst. Environmental Science and Pollution Research, 2020, 27, 25103-25118.	2.7	10
1090	Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. Food Engineering Reviews, 2020, 12, 268-289.	3.1	54
1091	Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials, 2020, 13, 1679.	1.3	64
1092	Photocatalytic activity and water purification performance of in situ and ex situ synthesized bacterial celluloseâ€CuO nanohybrids. Water Environment Research, 2020, 92, 1334-1349.	1.3	8
1093	Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials, 2020,	0.3	1
1094	Application of nanoparticles for inorganic water purification. , 2020, , 221-243.		4
1095	Various water-treatment technologies for inorganic contaminants: current status and future aspects., 2020,, 273-295.		20
1096	3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. Journal of Membrane Science, 2020, 606, 118138.	4.1	53
1097	Iron oxide nanoparticles modified with ionic liquid as an efficient adsorbent for fluoride removal from groundwater. Environmental Technology and Innovation, 2020, 19, 100842.	3.0	20
1098	MWCNTs attached neodymium doped-ZnO photocatalysts for efficient removal of dyes from wastewater. SN Applied Sciences, 2020, 2, 1.	1.5	11
1099	Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through an adsorption process using C-phenylcalix[4]pyrogallolarene material. Journal of Environmental Chemical Engineering, 2020, 8, 103971.	3.3	72
1100	Photo-reduction enables catalyst regeneration in Fenton reaction on an Fe ₂ O ₃ -decorated TiO ₂ nanotube-based photocatalyst. Dalton Transactions, 2020, 49, 6730-6737.	1.6	14
1101	Adsorption of Selected Metals Ions in Solution Using Nano-Bentonite Particles: Isotherms and Kinetics. Environmental Processes, 2020, 7, 463-477.	1.7	15

#	Article	IF	CITATIONS
1102	Nanoparticles in plants: morphophysiological, biochemical, and molecular responses., 2020,, 289-322.		12
1103	On permeability of corrugated pore membranes. AIP Advances, 2020, 10, 045317.	0.6	1
1104	Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. Materials, 2020, 13, 1687.	1.3	46
1105	Photodegradation of pharmaceutical waste by nano-materials as photocatalysts., 2020, , 143-152.		5
1106	Immobilization of L-methionine \hat{l}^3 -lyase on different cellulosic materials and its potential application in green-selective synthesis of volatile sulfur compounds. Journal of Environmental Chemical Engineering, 2020, 8, 103870.	3.3	42
1107	Nylon-6/poly(propylene imine) dendrimer hybrid nanofibers: an effective adsorbent for the removal of anionic dyes. Journal of the Textile Institute, 2021, 112, 444-454.	1.0	8
1108	Nanotechnologyâ€based wastewater treatment. Water and Environment Journal, 2021, 35, 123-132.	1.0	52
1109	Enhanced photocatalysis of TiO2 by aluminum plasmonic. Catalysis Today, 2021, 376, 162-167.	2.2	11
1110	Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. Journal of Membrane Science, 2021, 618, 118634.	4.1	11
1111	Photocatalytic properties of CaTi2O5 via a facile additive-free aqueous strategy with different pH values. Rare Metals, 2021, 40, 1746-1752.	3.6	3
1112	Multiwalled <scp>CNTs</scp> for <scp>Cr(VI)</scp> removal from industrial wastewater: An advanced study on adsorption, kinetics, thermodynamics for the comparison between the embedded and nonâ€embedded carboxyl group. Canadian Journal of Chemical Engineering, 2021, 99, 281-293.	0.9	13
1114	Utilization of gel-type polystyrene host for immobilization of nano-sized hydrated zirconium oxides: A new strategy for enhanced phosphate removal. Chemosphere, 2021, 263, 127938.	4.2	26
1115	Ball-like nickel hydroxide nanoparticles: Electro-synthesis, characterization, and application. Materials Today Communications, 2021, 26, 101714.	0.9	5
1116	Oxidation of ammonia using immobilised FeCu for water treatment. Separation and Purification Technology, 2021, 254, 117612.	3.9	15
1117	Porous network ZrO2/ZnFe2O4 nanocomposite with heterojunction towards industrial water purification under sunlight: Enhanced charge separation and elucidation of photo-mechanism. Ceramics International, 2021, 47, 14845-14861.	2.3	17
1118	A rapid microwave-assisted synthesis of silver nanoparticles using Ziziphus jujuba Mill fruit extract and their catalytic and antimicrobial properties. Chemical Papers, 2021, 75, 1341-1354.	1.0	16
1119	Fabrication of Polyethersulfone/Functionalized MWCNTs Nanocomposite and Investigation its Efficiency as an Adsorbent of Pb(II) Ions. Arabian Journal for Science and Engineering, 2021, 46, 6259-6273.	1.7	8
1120	Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies. Journal of Alloys and Compounds, 2021, 866, 157461.	2.8	33

#	Article	IF	CITATIONS
1121	Modifying ceramic membranes with in situ grown iron oxide nanoparticles and their use for oily water treatment. Journal of Membrane Science, 2021, 617, 118641.	4.1	23
1122	Membrane-based colorimetric flow-injection system for online free chlorine monitoring in drinking water. Sensors and Actuators B: Chemical, 2021, 327, 128905.	4.0	10
1123	Removal of phenolic contaminants from water by in situ coated surfactant on Keggin-aluminum nanocluster and biodegradation. Chemosphere, 2021, 269, 128692.	4.2	22
1124	An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. Journal of Water Process Engineering, 2021, 40, 101827.	2.6	46
1125	Chitosan nanocomposites for water treatment by fixed-bed continuous flow column adsorption: A review. Carbohydrate Polymers, 2021, 255, 117398.	5.1	56
1126	Stabilization mechanism of arsenic-sulfide slag by density functional theory calculation of arsenic-sulfide clusters. Journal of Hazardous Materials, 2021, 410, 124567.	6.5	9
1127	Effects of copper in Daphnia are modulated by nanosized titanium dioxide and natural organic matter: what is the impact of aging duration?. Environmental Science and Pollution Research, 2021, 28, 13991-13999.	2.7	4
1128	Bioremediation of heavy metals from wastewater using nanomaterials. Environment, Development and Sustainability, 2021, 23, 9617-9640.	2.7	46
1129	Graphene oxide biopolymer aerogels for the removal of lead from drinking water using a novel nano-enhanced ion exchange cascade. Ecotoxicology and Environmental Safety, 2021, 208, 111422.	2.9	30
1130	Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, 2021, 3, 25-46.	3.9	72
1131	Green chemistry and its applications in hospital wastewater and its treatment., 2021,, 271-298.		0
1132	Integration of ozone, UV/H2O2 and GAC in a multi-barrier treatment for secondary effluent polishing: Reuse parameters and micropollutants removal. Science of the Total Environment, 2021, 759, 143498.	3.9	9
1133	Co-transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups. Journal of Hazardous Materials, 2021, 409, 124477.	6.5	21
1134	Sequential Ultrafiltration-Catalysis Membrane for Excellent Removal of Multiple Pollutants in Water. Environmental Science & S	4.6	87
1135	Novel polyvinylidene fluoride/lead-doped zinc oxide adsorptive membranes for enhancement of the removal of reactive textile dye. International Journal of Environmental Science and Technology, 2021, 18, 2793-2804.	1.8	5
1136	Synthesis and characterization of gold nanoparticles (AuNPs) and ZnO decorated zirconia as a potential adsorbent for enhanced arsenic removal from aqueous solution. Journal of Molecular Structure, 2021, 1228, 129482.	1.8	11
1137	Potential Application of Iron Oxide Nanoparticles Synthesized by Co-Precipitation Technology as a Coagulant for Water Treatment in Settling Tanks. Mining, Metallurgy and Exploration, 2021, 38, 269-276.	0.4	10
1138	Comparison of bio-clogging characteristics of geotextiles in MSW and bottom ash co-disposal landfills. Waste Management, 2021, 120, 459-466.	3.7	7

#	Article	IF	CITATIONS
1139	Removal of 2,4-dichlorophenoxyacetic acid from aqueous samples using electrospun polyacrylonitrile nanofiber-based supported liquid membrane transport. Journal of the Iranian Chemical Society, 2021, 18, 631-639.	1.2	3
1140	Environmental Remediation Through Carbon Based Nano Composites. Green Energy and Technology, 2021, , .	0.4	10
1141	Synthesis of NiO nanoparticles by thermal routes for adsorptive removal of crystal violet dye from aqueous solutions. International Journal of Environmental Analytical Chemistry, 2021, 101, 1126-1144.	1.8	9
1142	Photocatalytic Degradation of Dyes in Wastewater Using Metal Organic Frameworks. Environmental Chemistry for A Sustainable World, 2021, , 261-285.	0.3	1
1143	Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. , 2021, , 101-122.		26
1144	Improvement of Adsorbing Properties of Magnetic Nanomaterials by Bioorganic Substrate-mediating Synthesis., 2021,, 54-75.		0
1145	Nanostructured microporous membranes for advanced water and wastewater treatment., 2021,, 3-23.		0
1146	Current Water Treatment Technologies: An Introduction. , 2021, , 1-35.		0
1147	Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water. , 0, , .		3
1148	Kinetic Approach by Photocurrent Measurements to the Photoelectrocatalytic Oxidation of an Anionic Surfactant Using an S,N-TiO2/Ti Electrode: Distinguishing Between Direct and Indirect Mechanisms. Topics in Catalysis, 2021, 64, 26-35.	1.3	1
1149	Recent progress in hybrid nanocomposites containing chitosan/metal oxide as innovative adsorbents for water remediation. , 2021, , 437-454.		0
1150	Broad spectrum application of nanotechnology for wastewater treatment. , 2021, , 715-738.		0
1152	High-sorption terpyridine–graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater. Nanoscale, 2021, 13, 10490-10499.	2.8	16
1153	Nanomembranes for ultrapurification and water treatment. , 2021, , 657-691.		4
1154	Role of Enzymes From Microbes in the Treatment of Recalcitrant From Industries., 2021,, 878-903.		0
1155	Fundamentals and Sources of Magnetic Nanocomposites and Their Sorption Properties. , 2021, , 636-655.		0
1156	Nanotechnology and its application: a review., 2021,, 1-33.		21
1157	A meta-analysis framework to assess the role of units in describing nanoparticle toxicity. NanoImpact, 2021, 21, 100277.	2.4	6

#	Article	IF	Citations
1158	Coarse-grained molecular dynamics simulations of nanoplastics interacting with a hydrophobic environment in aqueous solution. RSC Advances, 2021, 11, 27734-27744.	1.7	4
1159	Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- A review. Ceramics International, 2021, 47, 1526-1550.	2.3	97
1160	Select applications of nanomaterials for water purification., 2021,, 339-357.		2
1161	Prospective of functionalized nanomaterials in environmental science: A nanotechnological approach., 2021,, 13-60.		1
1162	Nanotechnologies for wastewater treatment. , 2021, , 1-12.		0
1163	Use of chalcogenides-based nanomaterials for wastewater treatment including bacterial disinfection and organic contaminants degradation., 2021,, 243-259.		2
1164	Metal Oxides as Decontaminants of Water and Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 1-28.	0.3	0
1165	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	3.7	61
1166	Application of Metal and Metal Oxide Nanoparticles as Potential Antibacterial Agents. Energy, Environment, and Sustainability, 2021, , 121-140.	0.6	2
1167	Recent advancements and challenges in the field of nanotechnology for wastewater treatment, recycle, and reuse., 2021,, 407-430.		0
1168	Membrane Applications. Lecture Notes in Nanoscale Science and Technology, 2021, , 199-343.	0.4	3
1169	Removal of per- and polyfluoroalkyl substances from aqueous media using synthesized silver nanocomposite-activated carbons. Journal of Environmental Health Science & Engineering, 2021, 19, 217-236.	1.4	10
1170	Facile preparation and characterization of a novel visible-light-responsive Rb ₂ Hgl ₄ nanostructure photocatalyst. RSC Advances, 2021, 11, 30849-30859.	1.7	7
1171	Introduction to nanomaterials for wastewater treatment. , 2021, , 3-25.		2
1172	Nanobiotechnology for Bioremediation. , 2021, , 67-88.		2
1173	Nanoengineered iron oxide-based sorbents for separation of various water pollutants: current status, opportunities and future outlook. Environmental Science: Water Research and Technology, 2021, 7, 818-860.	1.2	10
1174	Arsenic Removal Using Nanoparticles from Groundwater: A Review. , 2021, , 1-15.		0
1175	Environmental Nanotechnology: Its Applications, Effects and Management., 2021,, 47-72.		1

#	ARTICLE	IF	CITATIONS
1176	Nanotechnological Developments in Nanofiber-Based Membranes Used for Water Treatment Applications. Environmental Chemistry for A Sustainable World, 2021, , 205-259.	0.3	0
1177	Nanotechnology: A smart translation of ingredients in the agriculture industry. , 2021, , 47-65.		0
1178	Impact of Engineered Nanoparticles on Microbial Communities, Soil Health and Plants. Advances in Science, Technology and Innovation, 2021, , 201-215.	0.2	2
1179	Nanomaterials and Their Role in Removing Contaminants from Wastewaterâ€"A Critical Review. Advanced Sciences and Technologies for Security Applications, 2021, , 135-159.	0.4	3
1180	Nanomaterials for treatment of air pollutants. , 2021, , 313-339.		2
1181	Magnetic hybrid nanoparticles for environmental remediation. , 2021, , 591-615.		0
1182	Phytonanotechnology: a greener approach for biomedical applications. , 2021, , 43-86.		7
1183	Nanotechnology for water processing. , 2021, , 335-360.		4
1184	Application of nanotechnology in membrane-based wastewater treatment: a critical review. , 2021, , 119-145.		1
1185	Nanomaterials for Environmental Engineering and Energy Applications. , 2021, , 2723-2746.		0
1186	Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation., 2021,, 1264-1294.		0
1187	Recovery of Nanomaterials from Agricultural and Industrial Wastes for Water Treatment Applications. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 385-417.	1.4	6
1188	Crystallinity and photocatalytic properties of BiVO ₄ /halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution. Nanotechnology, 2021, 32, 135602.	1.3	17
1189	Potential risk and safety concern of nanomaterials used for wastewater treatment., 2021,, 59-83.		0
1190	Introduction, basic principles, mechanism, and challenges of photocatalysis., 2021, , 137-154.		6
1191	Composites leading to a clean and green future. , 2021, , 253-285.		2
1192	Nanotechnology in water management. , 2021, , 141-180.		0
1193	Application of nanotechnology in the remediation of heavy metal toxicity., 2021,, 359-373.		4

#	Article	IF	Citations
1194	An overview of nanotechnology in water treatment applications and combating climate change. , 2021, , 191-212.		6
1195	Exploration of green technology for arsenic removal from groundwater by oxidation and adsorption using arsenic-oxidizing bacteria and metal nanoparticles., 2021,, 177-211.		2
1196	Current physicochemical treatment technologies available for remediation of different types of heavy metals from wastewater., 2021,, 301-322.		0
1197	Metal Oxides for Removal of Arsenic Contaminants from Water. Environmental Chemistry for A Sustainable World, 2021, , 147-194.	0.3	1
1198	Beta-FeOOH nanoparticles: a promising nano-based material for water treatment and remediation. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	16
1199	Recyclable Iron Oxide Loaded Poly (Methyl Methacrylate) Core/Polyethyleneimine Shell Nanoparticle as Antimicrobial Nanomaterial for Zoonotic Pathogen Controls. Journal of Cluster Science, 2022, 33, 567-577.	1.7	5
1200	Carbon-based nanomaterials for wastewater treatment. , 2021, , 367-384.		1
1201	Current Water Treatment Technologies: An Introduction. , 2021, , 2033-2066.		О
1202	Nanomaterial-Incorporated Polymer Composites for Industrial Effluent: From Synthesis to Application. , 2021, , 998-1012.		0
1203	Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Sciences: Processes and Impacts, 2021, 23, 213-239.	1.7	97
1204	Environmental applications of magnetic nanoparticles. , 2021, , 529-545.		0
1205	Aerogels for waterborne pollutants purification. , 2021, , 109-124.		5
1206	Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water., 2021, , 325-361.		2
1207	Surface Engineering of Nanofiber Membranes via Electrospinning-Embedded Nanoparticles for Wastewater Treatment. Springer Series on Polymer and Composite Materials, 2021, , 251-283.	0.5	1
1208	Nanomaterials for adsorption of pollutants and heavy metals: Introduction, mechanism, and challenges., 2021,, 343-366.		7
1209	Ultrasonically Assisted In Situ Deposition of ZnO Nano Particles on Cotton Fabrics for Multifunctional Textiles. Fibers and Polymers, 2021, 22, 77-86.	1.1	14
1210	Nanomaterials for wastewater treatment: Concluding remarks., 2021,, 1125-1157.		10
1211	Wastewater Treatment and Role of Green Synthesized Metal Oxide Nanocomposites. , 2021, , 1743-1783.		0

#	Article	IF	CITATIONS
1212	Green Synthesis of Zero Valent Iron (ZVI) using Tea Leaves Extract and its Application as Fenton like Catalyst for Textile Dyes Removal. Asian Journal of Chemistry, 2021, 33, 963-968.	0.1	1
1213	Hybrid Nanocomposites Based on Graphene and Titanium Dioxide for Wastewater Treatment. Composites Science and Technology, 2021, , 213-238.	0.4	5
1214	The process for the removal of micropollutants using nanomaterials. , 2021, , 957-1007.		2
1215	Management of Waste Using Nanotechnology. , 2021, , 253-279.		0
1216	Comparison of chitosan based nano-adsorbents for dairy industry wastewater treatment through response surface methodology and artificial neural network models. Water Science and Technology, 2021, 83, 1250-1264.	1.2	10
1217	Template synthesis of ordered mesoporous MgO with superior adsorption for Pb(II) and Cd(II). Environmental Science and Pollution Research, 2021, 28, 31630-31639.	2.7	4
1218	Latex-Based Membrane for Oily Wastewater Filtration: Study on the Sulfur Concentration Effect. Applied Sciences (Switzerland), 2021, 11, 1779.	1.3	7
1219	Electrochemical Detection of Environmental Pollutants Based on Graphene Derivatives: A Review. Frontiers in Materials, 2021, 7, .	1.2	38
1220	Effects of carbonaceous susceptors on microwave pretreatment of waste activated sludge and subsequent anaerobic digestion. Bioresource Technology Reports, 2021, 13, 100641.	1.5	2
1221	Fluorimetric detection of distinct lyotropic anion interactions on nanoscopic surfaces. Journal of Molecular Liquids, 2021, 324, 114711.	2.3	0
1222	Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes. Membranes, 2021, 11, 116.	1.4	14
1223	Preparation of flexible electrospun AOPAN/PVDF membranes for removing Pb2+ from water. Applied Water Science, 2021, 11, 1.	2.8	6
1224	Microfluidic Desalination: A New Era Towards Sustainable Water Resources. ChemBioEng Reviews, 2021, 8, 121-133.	2.6	6
1225	Functionalization of Commercial Electrospun Veils with Zinc Oxide Nanostructures. Nanomaterials, 2021, 11, 418.	1.9	2
1226	Shifting entrepreneurial landscape and development performance of water startups in emerging water markets. PLoS ONE, 2021, 16, e0246282.	1.1	3
1227	Graphene composites in photocatalytic oxidation of aqueous organic contaminants – A state of art. Chemical Engineering Research and Design, 2021, 146, 136-160.	2.7	29
1228	Antimicrobial activity of silver-coated hollow poly(methylmethacrylate) microspheres for water decontamination. Environmental Sciences Europe, 2021, 33, .	2.6	9
1229	A Journey of Laser-Induced Graphene in Water Treatment. , 2021, 6, 159.		20

#	Article	IF	CITATIONS
1230	Sorption behavior of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) on four kinds of nano-materials. Science of the Total Environment, 2021, 757, 144064.	3.9	9
1231	Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. Applied Sciences (Switzerland), 2021, 11, 1926.	1.3	59
1232	rGO-Bi2MoO6 heterostructure: synthesis, characterization and utilization as a visible light active photocatalyst for the degradation of tetracycline. Journal of Materials Science: Materials in Electronics, 2021, 32, 9822-9840.	1.1	1
1233	Recent development in antimicrobial activity of biopolymer-inorganic nanoparticle composites with water disinfection potential: a comprehensive review. Environmental Science and Pollution Research, 2021, 28, 26252-26268.	2.7	3
1234	Graphene-Based Membranes for Water and Wastewater Treatment: A Review. ACS Applied Nano Materials, 2021, 4, 3274-3293.	2.4	80
1235	Ligninolytic activity of the <i>Penicillium chrysogenum</i> and <i>Pleurotus ostreatus</i> fungi involved in the biotransformation of synthetic multi-walled carbon nanotubes modify its toxicity. Peerl, 2021, 9, e11127.	0.9	0
1236	Atık Sularda Boya Giderimi İçin Fonsiyonellenmiş Nanoselüloz Esaslı Adsorbanlar. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 0, , .	0.5	1
1237	Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. Membranes, 2021, 11, 246.	1.4	38
1238	Review on double-edged sword nature of arsenic: its path of exposure, problems, detections, and possible removal techniques. International Journal of Environmental Analytical Chemistry, 2023, 103, 2512-2532.	1.8	3
1239	Effect of Initial Water Flux on the Performance of Anaerobic Membrane Bioreactor: Constant Flux Mode versus Varying Flux Mode. Membranes, 2021, 11, 203.	1.4	3
1240	The efficiency of removal of organophosphorus malathion pesticide using functionalized multi-walled carbon nanotube: Impact of Dissolved Organic Matter (DOM). Separation Science and Technology, 2022, 57, 1-12.	1.3	7
1241	An assessment on the effect of titanium dioxide & iron oxide nano-particles in industrial waste water decontamination. IOP Conference Series: Materials Science and Engineering, 2021, 1114, 012076.	0.3	1
1242	Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules, 2021, 26, 1797.	1.7	158
1243	Synthesis and Study of the Properties of Photocatalytic Compositions Based on Sro/Bi ₂ O ₃ and (Bio) ₂ CO ₃ Solid Solutions with Modifying Additives of Transition Metals Cu, Mn, Fe. Solid State Phenomena, 0, 316, 981-986.	0.3	0
1245	Heavy Metals in the Environment and Health Impact. , 0, , .		9
1247	A comprehensive review on the role of some important nanocomposites for antimicrobial and wastewater applications. International Journal of Environmental Science and Technology, 2022, 19, 2221-2246.	1.8	17
1248	Composite of magnetite and Zn/Al layered double hydroxide as a magnetically separable adsorbent for effective removal of humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126159.	2.3	9
1250	Nitrogen-doped and hierarchically porous carbon derived from spent coffee ground for efficient adsorption of organic dyes. Carbon Letters, 2021, 31, 1249-1260.	3.3	11

#	Article	IF	CITATIONS
1251	An Investigation of Photocatalytic Activity of Coatings Based on Strontium Bismuthate Deposited on a Ceramic Carrier. Solid State Phenomena, 0, 316, 987-992.	0.3	1
1252	Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arabian Journal of Chemistry, 2021, 14, 103104.	2.3	50
1253	New Functionalized Macroparticles for Environmentally Sustainable Biofilm Control in Water Systems. Antibiotics, 2021, 10, 399.	1.5	2
1254	Sulfonated poly ether ether ketone (SPEEK) based composite cation exchange membranes for salt removal from brackish water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126157.	2.3	12
1255	Water treatment via non-membrane inorganic nanoparticles/cellulose composites. Materials Today, 2021, 50, 329-357.	8.3	32
1256	Validation of pilot-scale phosphate polishing removal from surface water by lanthanum-based polymeric nanocomposite. Chemical Engineering Journal, 2021, 412, 128630.	6.6	22
1257	Adsorption of Crude Oil Spill from Aqueous Solution using Agro-Wastes as Adsorbents. Journal of Scientific Research and Reports, 0, , 27-52.	0.2	2
1258	Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: Improvement of antifouling and self-cleaning performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126230.	2.3	22
1260	A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds, 2021, 863, 158734.	2.8	309
1262	Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling. Environmental Science & Environmental Science & 2021, 55, 6984-6994.	4.6	25
1263	A critical review on limitations and enhancement strategies associated with biohydrogen production. International Journal of Hydrogen Energy, 2021, 46, 16565-16590.	3.8	55
1264	Theoretical study of small aromatic molecules adsorbed in pristine and functionalised graphene. Journal of Molecular Modeling, 2021, 27, 193.	0.8	8
1265	Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. Plants, 2021, 10, 929.	1.6	12
1266	Electrochemical investigations of hydrochloric acid corrosion for carbon steel and coating effect by Poly (butyl Methacrylate)-grafted alginate/Fe3O4. Arabian Journal of Chemistry, 2021, 14, 103100.	2.3	8
1267	Total iron removal from aqueous solution by using modified clinoptilolite. Ain Shams Engineering Journal, 2021, 13, 101495-101495.	3.5	4
1268	Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability, 2021, 13, 5717.	1.6	66
1269	A Systematic Review of Biosynthesized Metallic Nanoparticles as a Promising Anti-Cancer-Strategy. Cancers, 2021, 13, 2818.	1.7	75
1270	Feasibility of using magnetic nanoparticles in water disinfection. Journal of Environmental Management, 2021, 288, 112410.	3.8	7

#	Article	IF	CITATIONS
1271	Development of novel multifunctional adsorbent by effectively hosting both zwitterionic surfactant and hydrated ferric oxides in montmorillonite. Science of the Total Environment, 2021, 774, 144974.	3.9	6
1272	Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere, 2021, 272, 129492.	4.2	129
1274	Fabrication of PVA/Ag-TiO2 nanofiber mats for visible-light-active photocatalysis. Results in Physics, 2021, 25, 104205.	2.0	11
1275	Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering, 2021, 41, 101993.	2.6	113
1276	Biogenic synthesis of gold and silver nanoparticles used in environmental applications: A review. Trends in Environmental Analytical Chemistry, 2021, 30, e00129.	5.3	48
1278	Fabrication of mesoporous WO3-SBA-15 catalysts and enhanced photocatalytic degradation of harmful dyes. Optik, 2021, 235, 166599.	1.4	25
1279	Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water. Chinese Journal of Chemical Engineering, 2022, 45, 15-21.	1.7	16
1280	Effects of the carbon nanotube and polymer amounts on ultrafiltration membranes. Environmental Engineering Research, 2022, 27, 210626-0.	1.5	4
1281	Recovery and recycle of wastewater contaminated with heavy metals using adsorbents incorporated from waste resources and nanomaterials-A review. Chemosphere, 2021, 273, 129677.	4.2	37
1283	Bioactive components from <i>Moringa oleifera</i> seeds: production, functionalities and applications – a critical review. Critical Reviews in Biotechnology, 2022, 42, 271-293.	5.1	34
1284	Study of the oxidation process of divalent iron in aqueous solutions during aeration through ceramic membranes modified by layered double hydroxides. IOP Conference Series: Earth and Environmental Science, 2021, 815, 012018.	0.2	0
1285	One Step In-Situ Synthesis of Zinc Oxide Nanoparticles for Multifunctional Cotton Fabrics. Materials, 2021, 14, 3956.	1.3	10
1286	A new combined framework for sustainable development using the DPSIR approach and numerical modeling. Geoscience Frontiers, 2021, 12, 101169.	4.3	53
1287	A nanomaterial integrated technology approach to enhance the energy-water-food nexus. Renewable and Sustainable Energy Reviews, 2021, 145, 111118.	8.2	14
1288	Elimination of dyes by catalytic reduction in the absence of light: A review. Journal of Materials Science, 2021, 56, 15572-15608.	1.7	47
1289	Calcium-enhanced retention of humic substances by carbon nanotube membranes: Mechanisms and implication. Journal of Membrane Science, 2021, 629, 119273.	4.1	9
1290	The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: Enzyme activity, microbial property, metabolic pathway and functional genes. Journal of Hazardous Materials, 2021, 413, 125295.	6.5	13
1291	New magnetic cellulose nanobiocomposites for Cu(II), Cd(II) and Pb(II) ions removal: kinetics, thermodynamics and analytical evaluation. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	18

#	Article	IF	CITATIONS
1292	Freezing assisted in situ growth of nano-confined ZIF-8 composite membrane for dye removal from water. Journal of Membrane Science, 2021, 632, 119352.	4.1	17
1293	Synthesis and characterization of nanozeolite from (agro)industrial waste for application in heterogeneous photocatalysis. Environmental Science and Pollution Research, 2022, 29, 3794-3807.	2.7	28
1294	Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chemical Engineering Journal, 2021, 417, 129237.	6.6	116
1295	Recent trends in water purification using electrospun nanofibrous membranes. International Journal of Environmental Science and Technology, 2022, 19, 9149-9176.	1.8	28
1296	A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials, 2021, 14, 4702.	1.3	95
1298	Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 2021, 25, 101280.	2.4	133
1299	The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. Science of the Total Environment, 2021, 780, 146496.	3.9	7
1300	Enhancement of Cd(II) electrosorption using electrosorption process with manganese oxide nanomaterial electrodeposited. Desalination, 2022, 521, 115307.	4.0	8
1301	Water Disinfection Using Silver and Zinc Oxide Nanoparticles. Journal of Nano Research, 0, 69, 105-121.	0.8	1
1302	Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies. International Journal of Biological Macromolecules, 2021, 185, 66-76.	3.6	37
1303	Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics. Ceramics International, 2021, 47, 33875-33885.	2.3	45
1304	Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 2021, 418, 129481.	6.6	217
1305	Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. Journal of Nanobiotechnology, 2021, 19, 256.	4.2	102
1306	Investigation of Bioimpacts of Metallic and Metallic Oxide Nanostructured Materials: Size, Shape, Chemical Composition, and Surface Functionality: A Review. Particle and Particle Systems Characterization, 2021, 38, 2100112.	1.2	8
1307	Spherical Nucleic Acids: Integrating Nanotechnology Concepts into General Chemistry Curricula. Journal of Chemical Education, 2021, 98, 3090-3099.	1.1	3
1308	Adsorptive removal of antibiotic ofloxacin in aqueous phase using rGO-MoS2 heterostructure. Journal of Hazardous Materials, 2021, 417, 125982.	6.5	42
1309	Eco-Friendly Ferrimagnetic-Humic Acid Nanocomposites as Superior Magnetic Adsorbents. Materials, 2021, 14, 5125.	1.3	3
1310	Remediation of heavy metals in contaminated soil by using nanoâ€bentonite, nanoâ€hydroxyapatite, and nanoâ€composite. Land Degradation and Development, 2021, 32, 4562-4573.	1.8	6

#	Article	IF	CITATIONS
1311	Dyes adsorption from aqueous media through the nanotechnology: A review. Journal of Materials Research and Technology, 2021, 14, 2195-2218.	2.6	107
1312	Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion in Chemical Engineering, 2021, 33, 100709.	3.8	3
1313	Polysaccharide-based (nano)materials for Cr(VI) removal. International Journal of Biological Macromolecules, 2021, 188, 950-973.	3.6	63
1314	In situ nanoremediation of soils and groundwaters from the nanoparticle's standpoint: A review. Science of the Total Environment, 2021, 791, 148324.	3.9	42
1315	Bismuth phosphinato incorporated antibacterial filter paper for drinking water disinfection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127167.	2.3	6
1316	Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. Journal of Environmental Chemical Engineering, 2021, 9, 106160.	3.3	74
1317	A review on disinfection technologies for controlling the antibiotic resistance spread. Science of the Total Environment, 2021, 797, 149150.	3.9	37
1318	Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices—a review. Chemosphere, 2021, 282, 131056.	4.2	23
1319	Fabrication of cellulose@Mg(OH)2 composite filter via interfacial bonding and its trapping effect for heavy metal ions. Chemical Engineering Journal, 2021, 426, 130812.	6.6	24
1320	Potential nanomaterials-based detection and treatment methods for aqueous chloroform. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100487.	1.7	1
1321	A novel SPR based Fe@Ag core–shell nanosphere entrapped on starch matrix an optical probe for sensing of mercury(II) ion: A nanomolar detection, wide pH range and real water sample application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120204.	2.0	7
1322	Improved growth of nano tin ferrites with their decoration on carbon foam for wastewater treatment. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100546.	1.7	2
1323	Scenario oriented strategies for phosphorus management by using environmental nanotechnology. Current Opinion in Chemical Engineering, 2021, 34, 100720.	3.8	0
1324	Application of nanomaterial in wastewater treatment: recent advances and future perspective. , 2022, , $515-542$.		5
1325	Microbial nanotechnology: New horizons in food science and technology. , 2022, , 303-313.		0
1326	Advanced applications and current status of green nanotechnology in the environmental industry. , 2022, , 303-340.		1
1327	Applications of TiO2 in sensor devices. , 2021, , 527-581.		4
1328	Low-Cost Nanoparticles for Remediation of Arsenic Contaminated Water and Soils., 2021,, 217-251.		2

#	Article	IF	CITATIONS
1329	Potential utilization of zinc nanoparticles for wastewater treatment., 2021,, 437-466.		0
1330	Applications of coagulation-flocculation and nanotechnology in water treatment., 2021,, 533-558.		4
1331	Dye Removal Ability of Pure and Doped Graphitic Carbon Nitride. Current Analytical Chemistry, 2021, 17,	0.6	2
1332	Silver and zinc oxide nanoparticle disinfection in water treatment applications: synergy and water quality influences. H2Open Journal, 2021, 4, 114-128.	0.8	6
1333	Incorporation of Cellulose Nanomaterials into Membrane Materials for Water Treatment., 2021,, 3581-3601.		0
1334	Promising Antimicrobial and Azo Dye Removal Activities of Citric Acid-Functionalized Magnesium Ferrite Nanoparticles. Journal of Cluster Science, 2022, 33, 197-213.	1.7	13
1335	Green-synthesized nanoparticles for treatment of wastewater: an environmentally sustainable pollution remediation technology., 2021,, 29-70.		1
1336	Novel photocatalytic techniques for organic dye degradation in water. , 2021, , 1-22.		0
1337	Electroâ€'crystallized NiO nanoparticles for riverâ€'water treatment applications. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
1338	Wastewaterâ€"Sources, Toxicity, and Their Consequences to Human Health. , 2021, , 3-33.		47
1339	Wastewater Reuse in Peri-Urban Agriculture Ecosystem: Current Scenario, Consequences, and Control Measures., 2021,, 121-146.		1
1340	Advanced approaches for heavy metals removal from industrial wastewater., 2021,, 403-440.		3
1341	Efficient techniques for the removal of toxic heavy metals from wastewater., 2021,, 611-630.		0
1342	Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. Environmental Science and Pollution Research, 2021, 28, 7710-7741.	2.7	32
1343	Nanotechnology From Engineers to Toxicologists. , 2021, , 1-29.		0
1344	Nanomaterials for aquatic contamination sensing and remediation., 2021,, 67-89.		1
1345	A strategy for assembling the multilayer polymeric nanofibers on nonwoven fabric with controlled porosity. Journal of the Textile Institute, 2022, 113, 224-233.	1.0	1
1346	Adsorption of T.N.T. from Wastewater Using Ni-Oxide and Cu-Oxide Nanoparticles. Mediterranean Journal of Chemistry, 2021, 11, 43.	0.3	2

#	Article	IF	CITATIONS
1347	Nanotechnology-based filtration membranes for removal of pollutants from drinking water. , 2021, , 231-251.		0
1348	Achieving Circular Economy Through P&C-Nano: Sustainability and Supply Chain Perspectives. , 2021, , 1581-1600.		0
1349	Nano-Adsorbents in Wastewater Treatment for Phosphate and Nitrate Removal. Environmental Chemistry for A Sustainable World, 2021, , 339-370.	0.3	0
1350	A review of advantages and challenges of using engineered nanoparticles for waste and wastewater treatments. International Journal of Environmental Science and Technology, 2021, 18, 3295-3306.	1.8	7
1351	Application of Sustainable Nanocomposites for Water Purification Process., 2019, , 387-412.		33
1352	Application of Sustainable Nanocomposites in Membrane Technology. , 2019, , 935-960.		7
1353	Biomedical Applications of MXenes. , 2019, , 503-524.		11
1354	Nanotechnology in Wastewater and the Capacity of Nanotechnology for Sustainability. Environmental Chemistry for A Sustainable World, 2020, , 1-45.	0.3	4
1355	Nanotechnology and Waste Water Treatment. , 2020, , 153-177.		4
1356	Some Effective Methods for Treatment of Wastewater from Cu Production. Environmental Chemistry for A Sustainable World, 2021, , 313-440.	0.3	1
1357	Degradation of Pesticides Residue by Engineered Nanomaterials. Sustainable Agriculture Reviews, 2021, , 259-310.	0.6	5
1358	Dust of Wonder, Dust of Doom: A Landscape of Nanotechnology, Nanoethics, and Sustainable Development. Advancing Global Bioethics, 2016, , 101-123.	0.8	5
1359	Applications of Nanoparticles in the Treatment of Wastewater. , 2017, , 1-25.		4
1360	Estuarine Ecoclines and the Associated Fauna: Ecological Information as the Basis for Ecosystem Conservation. Coastal Research Library, 2017, , 479-512.	0.2	9
1361	Carbon Nanotube in Water Treatment. Carbon Nanostructures, 2017, , 23-54.	0.1	12
1362	Nanoremediation for Sustainable Crop Production. Sustainable Agriculture Reviews, 2017, , 335-363.	0.6	19
1363	Applications of Nanoparticles in the Treatment of Wastewater. , 2019, , 275-299.		1
1364	Tools and Techniques for Purification of Water Using Nano Materials. , 2019, , 285-322.		2

#	Article	IF	CITATIONS
1365	Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management., 2017, , 73-97.		33
1366	Sustainable Waste Water Treatment Technologies. Textile Science and Clothing Technology, 2018, , 1-25.	0.4	2
1367	Environmental Remediation: Microbial and Nonmicrobial Prospects., 2019,, 379-409.		2
1368	Nanobioremediation: An Emerging Approach for a Cleaner Environment. , 2020, , 309-363.		11
1369	Nanotechnology: An Efficient Technique of Contaminated Water Treatment. Springer Transactions in Civil and Environmental Engineering, 2021, , 251-270.	0.3	1
1370	Performance assessment of modified clinoptilolite and magnetic nanotubes on sulfate removal and potential application in natural river samples. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 97, 51-63.	0.9	4
1371	Potential of Nanotechnology for Rural Applications. Arabian Journal for Science and Engineering, 2020, 45, 5011-5042.	1.7	11
1372	Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chemical Engineering Journal, 2020, 398, 125587.	6.6	38
1373	Changes in nutrient removal and flocs characteristics generated by presence of ZnO nanoparticles in activated sludge process. Chemosphere, 2017, 182, 672-680.	4.2	14
1374	Enhancement of photodegradation efficiency of PVA/TiO2 nanofiber composites via plasma treatment. Materials Today Communications, 2020, 24, 101183.	0.9	18
1375	CHAPTER 16. Nanocellulose: A Novel Support for Water Purification. RSC Detection Science, 0, , 456-476.	0.0	3
1376	Cytotoxicity properties of functionalised carbon nanotubes on pathogenic bacteria. IET Nanobiotechnology, 2019, 13, 597-601.	1.9	27
1377	Composite of bentonite/CoFe2O4/hydroxyapatite for adsorption of Pb (II). Materials Research Express, 2020, 7, 115501.	0.8	12
1378	Pyrolytic formation and photoactivity of reactive oxygen species in a SiO2/carbon nanocomposite from kraft lignin. F1000Research, 2018, 7, 1574.	0.8	2
1379	A review of nanomaterials based membranes for removal of contaminants from polluted waters. Membrane Water Treatment, 2014, 5, 123-146.	0.5	15
1381	Transition Metals Ni2+, Fe3+ Incorporated Modified ZnO Thick Film Sensors to Monitor the Environmental and Industrial Pollutant Gases. Oriental Journal of Chemistry, 2020, 36, 1049-1065.	0.1	11
1382	Daytime radiative cooler using porous TiO2: new approach. Applied Optics, 2020, 59, 9400.	0.9	6
1383	Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing. Photonics Research, 2019, 7, 1249.	3.4	25

#	Article	IF	CITATIONS
1384	Review of the use of mesoporous silicas for removing dye from textile wastewater. European Journal of Environmental Sciences, 2014, 4, 116-130.	0.6	32
1385	Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1027-1039.	1.4	19
1386	Applications of iron oxide nano composite in waste water treatment–dye decolourisation and anti‒microbial activity. MOJ Drug Design Development & Therapy, 2018, 2, .	0.1	7
1387	Nanotechnology Commercialization: Prospects in India. Journal of Materials Science and Nanotechnology, 2014, 1, .	0.2	4
1388	Photodegradation study of TiO2 and ZnO in suspension using miniaturized tests. Revista Materia, 2019, 24, .	0.1	7
1389	Mercury Removal From Aqueous Solutions With Chitosan-Coated Magnetite Nanoparticles Optimized Using the Box-Behnken Design. Jundishapur Journal of Natural Pharmaceutical Products, 2014, 9, e15913.	0.3	42
1390	Removal of Chromium from a Tannery Wastewater by Using a Maghemite Nanoparticles. International Journal of Environmental Science and Development, 2017, 8, 696-702.	0.2	7
1391	Advancements in Technologies for Water Treatment. International Journal of ChemTech Research, 2018, 11, 260-276.	0.1	1
1392	Nanoparticles: a Novel Approach for Sustainable Agro-productivity. Environment Biodiversity and Soil Security, 2019, 3, 30-40.	0.1	16
1393	Current Trend in the Application of Nanoparticles for Waste Water Treatment and Purification: A Review. Current Organic Synthesis, 2017, 14, 206-226.	0.7	37
1394	Recent Advances in Water Treatment Using Graphene-based Materials. Mini-Reviews in Organic Chemistry, 2020, 17, 74-90.	0.6	6
1395	Advanced membrane materials for desalination: carbon nanotube and graphene. Materials Research Foundations, 2017, , 322-342.	0.2	2
1396	Potentially toxic elements determination and chemical-microbiological analysis of potable water in Taxco de Alarcón, Guerrero. Revista Mexicana De Ciencias Geologicas, 2019, 36, 147-158.	0.2	4
1397	Synthesis, Characterization and Application of Nano-adsorbent Materials in the Sorption of Pb(II), Ni(II), Co(II), Mn(II), Li(I) from Aqueous Solution. Journal of Advances in Chemistry, 2014, 10, 3053-3067.	0.1	2
1398	Photocatalytic Degradation of Pharmaceuticals Using TiO ₂ Based Nanocomposite Catalyst-Review. Civil and Environmental Engineering Reports, 2019, 29, 1-33.	0.2	19
1399	APPLICATIONS OF NANOTECHNOLOGY IN WATER TREATMENT. Revista Conhecimento Online, 0, 1, 03.	0.0	9
1400	An Overview of Adsorption Technique for Heavy Metal Removal from Water/Wastewater: A Critical Review. International Journal of Pure and Applied Sciences, 2017, 3, 10-19.	0.3	103
1401	Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment. Minerals (Basel, Switzerland), 2021, 11, 15.	0.8	10

#	Article	IF	CITATIONS
1402	New Nanohybrid Based on Hydrolyzed Polyacrylamide and Silica Nanoparticles: Morphological, Structural and Thermal Properties. Polymers, 2020, 12, 1152.	2.0	25
1403	From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes. Sustainability, 2020, 12, 4115.	1.6	28
1404	Formation peculiarities of iron (III) acetate: potential precursor for iron metal-organic frameworks (MOFs). Lithuanian Journal of Physics, 2016, 56, .	0.1	16
1405	Recent Trends and Advancement in Nanotechnology for Water and Wastewater Treatment. Advances in Civil and Industrial Engineering Book Series, 2016, , 208-252.	0.2	3
1406	Risks and Preventive Measures of Nanotechnology. , 2017, , 1605-1623.		1
1407	Nano-Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 202-219.	0.3	19
1408	Nano-Catalysis Process for Treatment of Industrial Wastewater. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 229-251.	0.3	1
1409	Current Approaches of Nanotechnology for Potential Drinking Water Purification. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 307-324.	0.3	1
1410	Advancing the Understanding of Environmental Transformations, Bioavailability and Effects of Nanomaterials, an International US Environmental Protection Agency—UK Environmental Nanoscience Initiative Joint Program. Journal of Environmental Protection, 2018, 09, 385-404.	0.3	5
1411	Preparation and Characterization of Polyvinyl Butyral Nanofibers Containing Silver Nanoparticles. Journal of Materials Science and Chemical Engineering, 2016, 04, 8-12.	0.2	3
1412	Fabrication And Characterization Of Efficient Hybrid Photocatalysts Based On Titania And Graphene For Acid Orange Seven Dye Degradation Under UV Irradiation. Advanced Materials Letters, 2014, 5, 163-171.	0.3	18
1413	Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies. Polish Journal of Microbiology, 2016, 65, 161-170.	0.6	3
1414	Graphene and graphene oxide in the oil and gas industry. AGH Drilling Oil Gas, 2017, 34, 731.	0.1	5
1415	Magnetic Iron-Containing Carbon Materials as Sorbents for the Removal of Pollutants from Aquatic Media (A Review). Solid Fuel Chemistry, 2021, 55, 285-305.	0.2	5
1416	Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose, 2021, 28, 10715-10739.	2.4	83
1417	Nanotechnology and Environment Study. Earthline Journal of Chemical Sciences, 0, , 249-260.	0.0	1
1418	Recent progress on adsorption and membrane separation for organic contaminants on multi-dimensional graphene. Materials Today Chemistry, 2021, 22, 100603.	1.7	7
1419	Highly porous cryogels loaded with bimetallic nanoparticles as an efficient antimicrobial agent and catalyst for rapid reduction of water-soluble organic contaminants. Journal of Environmental Chemical Engineering, 2021, 9, 106510.	3.3	21

#	Article	IF	CITATIONS
1420	Nanotechnology in Contemporary Mine Water Issues. Lecture Notes in Nanoscale Science and Technology, 2014, , 307-361.	0.4	2
1422	The Social Determinants of Water Consumption in Australian Cities. Global Issues in Water Policy, 2015, , 283-296.	0.1	1
1423	Resinas poliméricas reticuladas com ação biocida: atual estado da arte. Polimeros, 2015, 25, 414-423.	0.2	3
1424	Risks and Preventive Measures of Nanotechnology. Advances in Civil and Industrial Engineering Book Series, 2016, , 253-276.	0.2	0
1425	Wastewater Treatment Technologies and Recent Developments. , 2016, , 1-36.		0
1426	$\hat{a}-3/4$ Wastewater Treatment Technologies and Recent Developments. , 2016, , 39-74.		0
1427	Nanotechnology Applications. Green Chemistry and Chemical Engineering, 2016, , 105-143.	0.0	0
1428	The Impact of Nanotechnology on Environment. Advances in Medical Technologies and Clinical Practice Book Series, 2017, , 153-193.	0.3	0
1429	Nanomaterials for Adsorption and Heterogeneous Reaction in Water Decontamination., 2017, , 183-219.		0
1430	Recent Trends and Advancement in Nanotechnology for Water and Wastewater Treatment. , 2017, , 1745-1779.		1
1431	Ecotoxicity and Toxicity of Nanomaterials with Potential for Wastewater Treatment Applications. , $2017, 1182-1216$.		0
1432	The Impact of Nanotechnology on Environment. , 2017, , 1659-1689.		2
1433	Optimization of spillway routes of city aryk networks into open drains in Shymkent. International Journal of Advanced and Applied Sciences, 2017, 4, 111-119.	0.2	0
1435	Effect of periodicity in the optimization of fine tuned dipolar plasmonic structures for SERS., 2017,,.		0
1436	Biotesting of plasma-chemically activated water with the use of hydrobionts. Eastern-European Journal of Enterprise Technologies, 2017, 4, 44-50.	0.3	5
1437	Composite Nanofibers for Removing Water Pollutants: Fabrication Techniques. , 2018, , 1-29.		0
1438	Role of Enzymes From Microbes in the Treatment of Recalcitrant From Industries. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 395-420.	0.3	1
1439	Nanobiotechnology for Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 259-284.	0.3	4

#	Article	IF	CITATIONS
1441	romoting Functionalized Multi Walled Carbon Nano Tubes Using neem and flax oil for Resentence Pathogenic Bacteria. Biosciences, Biotechnology Research Asia, 2018, 15, 301-310.	0.2	3
1442	Achieving Circular Economy Through P&C-Nano: Sustainability and Supply Chain Perspectives. , 2019, , 1-20.		1
1443	Nanomaterials for Removal of Toxic Metals Ions from the Water. Advanced Structured Materials, 2019, , 159-174.	0.3	2
1444	Evaluation of antimicrobial action of silver composite microspheres based on styrene-divinylbenzene copolymer. Polimeros, 2019, 29, .	0.2	0
1445	Splendid Role of Nanoparticles as Antimicrobial Agents in Wastewater Treatment. Microorganisms for Sustainability, 2019, , 119-136.	0.4	0
1446	Nanostructured Membranes for Water Purification. Engineering Materials, 2019, , 243-274.	0.3	2
1447	Wastewater Treatment and Role of Green Synthesized Metal Oxide Nanocomposites. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 268-307.	0.3	0
1448	Synthesis and Characterization of C-TiO2 Nanomaterials Via Carbon Assistance Method. Current Nanoscience, 2019, 15, 260-266.	0.7	2
1449	Nanobiotechnology Advances in Medicine, Agriculture and Other Important Areas: Applications and Future Perspectives. Biotechnology, 2019, 18, 89-97.	0.5	2
1450	Materials in Emerging Water Pollutants Detection. Advanced Functional Materials and Sensors, 2020, , 255-275.	1.2	0
1451	Collection and treatment of domestic wastewater: a critical review of the achieved results. Vestnik MGSU, 2019, , 1365-1407.	0.2	1
1452	Nanomateriales celulósicos para la adsorción de contaminantes emergentes. Tecnura, 2019, 23, 13-20.	0.1	8
1453	Advances in Agronanotechnology and Future Prospects. Nanotechnology in the Life Sciences, 2020, , 85-104.	0.4	0
1454	Bioelectrochemical System for Bioremediation and Energy Generation. , 2020, , 365-391.		0
1455	Advanced Nanomaterials for Water Engineering and Treatment., 2020,, 642-675.		0
1456	Composition and Arrangement of Carbon-Derived Membranes for Purifying Wastewater. Green Energy and Technology, 2021, , 157-173.	0.4	0
1457	QSPR Modeling of Adsorption of Pollutants by Carbon Nanotubes (CNTs). Methods in Pharmacology and Toxicology, 2020, , 477-511.	0.1	0
1458	Aspects of nanomaterials for civil and military applications. Part 2. Their use and concerns arising from their release into the natural environment. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2020, , 17-36.	0.2	0

#	Article	IF	CITATIONS
1459	Incorporation of Cellulose Nanomaterials into Membrane Materials for Water Treatment., 2021, , 1-21.		0
1460	Sugarcane bagasse biochar with nanomagnetite: a novel composite for heavy metals pollutants removal. Egyptian Journal of Chemistry, 2020, .	0.1	3
1461	Nano-Bioremediation., 2022, , 135-149.		10
1462	Synthesis of <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>. 2 ⊉nml:mr</td><td>`™></td></mml:math>	. 2 ⊉ nml:mr	` ™ >
1463	Synthesis and Fabrication of Photoactive Nanocomposites Electrodes for the Degradation of Wastewater Pollutants. Engineering Materials, 2020, , 19-38.	0.3	0
1464	Achieving Circular Economy Through P&C-Nano: Sustainability and Supply Chain Perspectives. , 2020, , 1-20.		O
1466	Nanotechnology for Water and Wastewater Treatment Using Graphene Semiconductor Composite Materials. Environmental Chemistry for A Sustainable World, 2020, , 1-34.	0.3	3
1467	Synthesis and characterization of magnetic oxide nanoparticles and corresponding thin films for wastewaters treatment. Analele Universit $\mathring{A}f\grave{E}$ ii Ovidius Constan \grave{E} 2: Seria Chimie, 2020, 31, 122-131.	0.2	3
1468	Layered Rare-Earth Hydroxide Unilameller Nanosheets: Synthesis, Characterization, and Adsorption. Journal of Chemistry, 2020, 2020, 1-11.	0.9	3
1471	Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 242-271.	0.3	O
1472	Nanofertilizers., 2020,, 125-152.		9
1474	Nanomaterials for Environmental Engineering and Energy Applications. , 2020, , 1-24.		2
1475	Nanotechnology: A Modern Technique for Pollution Abatement. , 2020, , 295-311.		3
1476	Biogenic metal nanoparticles with microbes and their applications in water treatment: a review. Environmental Science and Pollution Research, 2022, 29, 3213-3229.	2.7	7
1477	Ecotoxicity and Toxicity of Nanomaterials with Potential for Wastewater Treatment Applications. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 294-329.	0.3	0
1478	Fundamentals and Sources of Magnetic Nanocomposites and Their Sorption Properties. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 58-83.	0.3	O
1479	Advanced Nanomaterials for Water Engineering and Treatment. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 84-126.	0.3	0
1480	Performance of Chitosan Micro/Nanoparticles to Remove Hexavalent Chromium From Residual Water. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 262-288.	0.3	0

#	Article	IF	CITATIONS
1481	Facing Lethal Impacts of Industrialization via Green and Sustainable Microbial Removal of Hazardous Pollutants and Nanobioremediation., 2021,, 133-160.		0
1482	Removal of Pesticides Using Carbon-Based Nanocomposite Materials. Green Energy and Technology, 2021, , 365-385.	0.4	3
1483	Manufacturing and Characterization of Carbon-Based Nanocomposite Membrane for Water Cleaning. Green Energy and Technology, 2021, , 387-402.	0.4	1
1484	Pb doped ZnO nanoparticles for the sorption of Reactive Black 5 textile azo dye. Water Science and Technology, 2020, 82, 2576-2591.	1.2	5
1485	A Review for Potential Applications of Zeolite-Based Nanocomposites in Removal of Heavy Metals and Escherichia coli from Drinking Water. Nanotechnologies in Russia, 2020, 15, 686-700.	0.7	3
1486	Nanostructured Composite Catalyst for Electrochemical Water Splitting: Significantly Improved for Hydrogen Evolution Reaction. Sensor Letters, 2020, 18, 842-852.	0.4	O
1487	Porous multicomponent chitosan/poly ($\hat{l}\mu$ -caprolactone)-block poly (ethylene glycol)/SiO2 aerogel@polydopamine membrane for Congo red adsorption. Materials Today Chemistry, 2022, 23, 100661.	1.7	11
1489	Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment., 2021, 1, 48-58.		21
1490	Recent developments and application of bimetallic based materials in water purification. Environmental Challenges, 2021, 5, 100405.	2.0	17
1491	Commercial Gel-Type Ion Exchange Resin Enables Large-Scale Production of Ultrasmall Nanoparticles for Highly Efficient Water Decontamination. Engineering, 2021, , .	3.2	1
1492	Polymeric Hydrogelsâ€"A Promising Platform in Enhancing Water Security for a Sustainable Future. Advanced Materials Interfaces, 2021, 8, 2100580.	1.9	46
1493	Ceramized Fabrics and Their Integration in a Semi-Pilot Plant for the Photodegradation of Water Pollutants. Catalysts, 2021, 11, 1418.	1.6	5
1495	Emerging Nano-Structured Metal Oxides for Detoxification of Organic Pollutants Towards Environmental Remediation: Overview and Future Aspects. Environmental Chemistry for A Sustainable World, 2022, , 151-186.	0.3	0
1496	Spherical MoO ₃ Nanoparticles for Photocatalytic Removal of Eriochrome Black T. ACS Applied Nano Materials, 2021, 4, 12766-12778.	2.4	11
1497	Bio-applications and biotechnological applications of nanodiamonds. Journal of Materials Research and Technology, 2021, 15, 6175-6189.	2.6	10
1498	Water Purification by Carbon Quantum Dots. Environmental Footprints and Eco-design of Products and Processes, 2022, , 113-160.	0.7	1
1499	Rapid determination of three textile surfactants in environmental samples by modeling excitation-emission second-order data with multi-way calibration methods. Environmental Science and Pollution Research, 2022, 29, 25869-25880.	2.7	3
1500	Cellulose-Based Materials for Water Remediation: Adsorption, Catalysis, and Antifouling. Frontiers in Chemical Engineering, 2021, 3, .	1.3	41

#	Article	IF	CITATIONS
1502	Carbon Nanotubes for Environmental Remediation Applications. , 2021, , 1-30.		1
1503	Mineralization of Recalcitrant Pollutants from Wastewater by Solar Nano-photocatalysis. Chemistry in the Environment, 2021, , 357-390.	0.2	0
1504	Molecular dynamics modeling and simulation of water desalination through a double-walled carbon nanotube with Moiré pattern. Journal of Micromechanics and Molecular Physics, 2022, 07, 39-47.	0.7	3
1505	Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. Environmental Science and Pollution Research, 2022, 29, 9640.	2.7	5
1506	A novel Fe-rectorite composite catalyst synergetic photoinduced peroxymonosulfate activation for efficient degradation of antibiotics. Chemosphere, 2022, 289, 133211.	4.2	15
1507	Degradation of local Brilliant Blue R dye in presence of polyvinylidene fluoride/MWCNTs/TiO2 as photocatalysts and plasma discharge. Journal of Environmental Chemical Engineering, 2022, 10, 106854.	3.3	17
1508	Carbon nanotubes ornamented hollow polymethyl methacrylate microspheres for turbidity removal from water. Journal of Environmental Management, 2022, 304, 114242.	3.8	2
1509	Synthesis of magnetic multi-walled carbon nanotubes via facile and solvent-free direct doping method for water remediation. Journal of Water Process Engineering, 2022, 45, 102487.	2.6	4
1510	Integrated groundwater management using a comprehensive conceptual framework. Journal of Hydrology, 2022, 605, 127363.	2.3	23
1511	Study of photo catalytical, antimicrobial activity, dielectric and ac impedance properties of Zn doped Mg nanoferrites synthesized from citrate gel auto combustion method. Materials Chemistry and Physics, 2022, 278, 125648.	2.0	19
1512	A critical review on treatment of saline wastewater with emphasis on electrochemical based approaches. Chemical Engineering Research and Design, 2022, 158, 625-643.	2.7	18
1513	Effect of atom transfer radical polymerization reaction time on PCB binding capacities of Styrene-CMA/QMA Core-Shell iron oxide nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 277, 115577.	1.7	1
1514	Removal of microcystins from water and primary treatment technologies – A comprehensive understanding based on bibliometric and content analysis, 1991–2020. Journal of Environmental Management, 2022, 305, 114349.	3.8	13
1515	Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. Chemosphere, 2022, 292, 133380.	4.2	12
1516	3D printing of TiO2 nano particles containing macrostructures for As(III) removal in water. Science of the Total Environment, 2022, 815, 152754.	3.9	10
1517	Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. Materials, 2021, 14, 7500.	1.3	33
1518	Adsorption of Cadmium Heavy Metal in Water by Using Orange Peel. Lecture Notes in Civil Engineering, 2022, , 409-417.	0.3	1
1520	A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater. Journal of Basic Microbiology, 2022, 62, 361-375.	1.8	15

#	Article	IF	CITATIONS
1521	Bioremoval of PVP-coated silver nanoparticles using Aspergillus niger: the role of exopolysaccharides. Environmental Science and Pollution Research, 2022, 29, 31501-31510.	2.7	4
1522	Heavy metal contamination in the river ecosystem. , 2022, , 37-50.		3
1523	Biotechnological and nano-biotechnological approaches in treatment of textile effluents. , 2022, , 221-240.		0
1524	An introduction to cost-effective technologies for solid waste and wastewater treatment., 2022, , 1-8.		1
1525	Visible-Light-Driven Reduced Graphite Oxide as a Metal-Free Catalyst for Degradation of Colored Wastewater. Nanomaterials, 2022, 12, 374.	1.9	2
1526	Case study of the in-situ restoration of black-odorous water by combined process of forced aeration and biological contact oxidation. Water Science and Technology, 2022, 85, 827-838.	1.2	9
1527	Biophotocatalytic Reduction of CO2 in Anaerobic Biogas Produced from Wastewater Treatment Using an Integrated System. Catalysts, 2022, 12, 76.	1.6	9
1528	Application of green nanocomposites in removal of toxic chemicals, heavy metals, radioactive materials, and pesticides from aquatic water bodies. , 2022, , 321-346.		1
1529	Advance modification of polyacrylonitrile nanofibers for enhanced removal of hexavalent chromium from water. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
1530	A New Nanocomposite from Vesuvian Slope Pinecones for Azo-Dyes Removal. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 1965-1976.	1.8	2
1531	Spatial simulation of groundwater recharge in an arid region (Biskra, SE Algeria). Euro-Mediterranean Journal for Environmental Integration, 2022, 7, 103-117.	0.6	1
1532	Nanostructured Materials: A Review on Its Application in Water Treatment. Minerals, Metals and Materials Series, 2022, , 1172-1180.	0.3	22
1533	Application of bacterial bioflocculant for the synthesis of biocapped metal nanoparticles and their multifunctional features., 2022,, 155-192.		0
1534	Environmental and safety aspects of bionanotechnology. , 2022, , 605-650.		0
1535	Nanoparticles in biosensor development for the detection of pathogenic bacteria in water. , 2022, , 331-358.		5
1536	Arsenic Removal Using Nanoparticles from Groundwater: A Review. , 2022, , 1911-1925.		О
1537	Agricultural Bio-wastes: A Potent Sustainable Adsorbent for Contaminant Removal., 2022,, 571-591.		0
1538	Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 2022, 34, e2110079.	11.1	106

#	Article	IF	CITATIONS
1539	Development and Characterization of Silver-Doped Multi-Walled Carbon Nanotube Membranes for Water Purification Applications. Membranes, 2022, 12, 179.	1.4	3
1540	Nanocatalyst in remediating environmental pollutants. Chemical Physics Impact, 2022, 4, 100064.	1.7	27
1541	Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation. Microporous and Mesoporous Materials, 2022, 333, 111733.	2.2	4
1542	A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. Journal of Environmental Chemical Engineering, 2022, 10, 107325.	3.3	26
1543	Recent advances in adsorptive removal of wastewater pollutants by chemically modified metal oxides: A review. Journal of Water Process Engineering, 2022, 46, 102641.	2.6	40
1544	Charge-Controllable Mussel-Inspired Magnetic Nanocomposites for Selective Dye Adsorption and Separation. SSRN Electronic Journal, 0, , .	0.4	O
1545	Microbes incorporated nanomaterials for water purification. , 2022, , 439-459.		1
1546	Influence of Ultrasonication on the Properties of Hybrid Electrospun Polyacrylonitrile and Silver Nanoparticles Fibers and Their Potential Use in Water Decontamination. Communications in Computer and Information Science, 2022, , 176-188.	0.4	1
1548	Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Current Research in Green and Sustainable Chemistry, 2022, 5, 100306.	2.9	31
1549	Treatment of petroleum wastewater using solar power-based photocatalysis. , 2022, , 161-170.		O
1550	Electrospun Nanofiber-Based Composites for Arsenic Removal in Water and Wastewater. Springer Series in Materials Science, 2022, , 145-174.	0.4	0
1551	Nanotechnology and its importance in the field of microbiology. Methods in Microbiology, 2022, , .	0.4	O
1552	Polymer-based nano-enhanced microfiltration/ultrafiltration membranes., 2022,, 81-118.		0
1554	Green nanotechnology for the environment. , 2022, , 461-478.		5
1555	Biogenic nanoparticles and their application for removal of organic contaminants from water and wastewater., 2022,, 211-218.		1
1556	Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery. Bioengineering, 2022, 9, 95.	1.6	11
1557	Effect of Different Nanoparticles Silver, Iron Oxide and Titanium Oxide to Control Corrosion by <i>Desulfovibrio</i> Sp.Isolated from Oil Fields., 2022,,.		0
1558	Multi-template molecularly imprinted polymer hybrid nanoparticles for selective analysis of nonsteroidal anti-inflammatory drugs and analgesics in biological and pharmaceutical samples. Environmental Science and Pollution Research, 2022, 29, 47416-47435.	2.7	5

#	Article	IF	CITATIONS
1559	Crystalline nanocellulose based sustainable nanoscopic composite membrane production: removal of metal ions from water. Cellulose, $0, 1$.	2.4	0
1560	Citric Acid-Functionalized CuO Nanoparticles Alter Biochemical Responses in Candyland Red Tomato (<i>Solanum lycopersicum</i>). ACS Agricultural Science and Technology, 2022, 2, 359-370.	1.0	5
1561	Lightâ€Controlled Ionic/Molecular Transport through Solidâ€State Nanopores and Nanochannels. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
1562	Recent Advances in Detection and Removal of Heavy Metals from Contaminated Water. ChemBioEng Reviews, 2022, 9, 351-369.	2.6	36
1563	Synthesis, Characterization and Application of AlTiZrO4 Nanomaterial. International Journal of Advanced Research in Science, Communication and Technology, 0, , 57-65.	0.0	0
1564	Impact of electrolyte solution on electrochemical oxidation treatment of Escherichia coli K-12 by boron-doped diamond electrodes. Letters in Applied Microbiology, 2022, 74, 924-931.	1.0	2
1565	Assessment of M5 model tree for prediction of azithromycin antibiotic removal by multi-wall carbon nanotubes in a fixed-bed column system. Journal of Water Supply: Research and Technology - AQUA, 2022, 71, 533-545.	0.6	2
1566	Novel adsorbents in remediation of hazardous environmental pollutants: Progress, selectivity, and sustainability prospects. Cleaner Materials, 2022, 3, 100054.	1.9	14
1567	A Review on Bismuth Oxyhalide (BiOX, X=Cl, Br, I) Based Photocatalysts for Wastewater Remediation. Frontiers in Catalysis, 2022, 2, .	1.8	15
1568	Perspectives on the Development of Filter Media for Point of Use Water Filters: Case Study of Arsenate Removal. Frontiers in Chemistry, 2022, 10, 826440.	1.8	0
1569	In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution. Nanomaterials, 2022, 12, 1199.	1.9	6
1570	Recent Advances in Synthesis, Characterization, and Application of Nanotechnology in Wastewater Treatment- A Review. Nanoscience and Nanotechnology - Asia, 2022, 12, .	0.3	3
1571	Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. Environmental Science and Pollution Research, 2022, 29, 42560-42600.	2.7	5
1572	Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. Journal of the Indian Chemical Society, 2022, 99, 100429.	1.3	7
1573	Investigation of nanomagnetic biocomposite sorbent extracted from Cystoseria myricaas algae for copper uptake. Inorganic Chemistry Communication, 2022, 139, 109404.	1.8	1
1574	Upscaled engineered functional microfibrillated cellulose flat sheet membranes for removing charged water pollutants. Separation and Purification Technology, 2022, 289, 120745.	3.9	7
1575	Review on arsenic removal using biochar-based materials. Groundwater for Sustainable Development, 2022, 17, 100740.	2.3	26
1576	Recent trends in application of nanoscale zero-valent metals and metal single atoms in membrane processes. Journal of Environmental Chemical Engineering, 2022, 10, 107457.	3.3	16

#	Article	IF	CITATIONS
1577	Visible-light-driven double-shell SnIn4S8/TiO2 heterostructure with enhanced photocatalytic activity for MO removal and Cr(VI) cleanup. Applied Surface Science, 2022, 587, 152867.	3.1	31
1578	Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments. Sustainable Materials and Technologies, 2022, 32, e00406.	1.7	27
1579	Scaled-up development of recyclable Pd@ZnO/CuO nanostructure for efficient removal of arsenic from wastewater. Journal of Molecular Structure, 2022, 1260, 132828.	1.8	1
1580	Review of oilfield produced water treatment technologies. Chemosphere, 2022, 298, 134064.	4.2	53
1581	Charge-controllable mussel-inspired magnetic nanocomposites for selective dye adsorption and separation. Chemosphere, 2022, 300, 134404.	4.2	9
1582	Application of Nano Technology in Waste Water Treatment. Lecture Notes in Civil Engineering, 2022, , 423-432.	0.3	2
1583	Carbon Nanotube Based Membranes for Filtration. , 2022, , 1-31.		0
1584	Recent advances in applications of hybrid natural polymers as adsorbent for perfluorinated compounds removal â€" review paper. Journal of Polymer Research, 2022, 29, 1.	1.2	4
1585	Carbon nanomaterial-based aerogels for improved removal of copper(<scp>ii</scp>), zinc(<scp>ii</scp>), and lead(<scp>ii</scp>) ions from water. Environmental Science Advances, 2022, 1, 208-215.	1.0	1
1586	Electrochemical membrane technology for disinfection. , 2022, , 141-162.		0
1587	Nanotechnology Enabled Multifunctional Materials for Removal of Toxicants from Wastewater. Handbook of Environmental Chemistry, 2022, , 233-254.	0.2	1
1588	Microcontaminants in wastewater. , 2022, , 315-329.		32
1589	Integrated technologies for wastewater treatment. , 2022, , 433-457.		0
1590	Sustainable membranes with FNs: Current and emerging research trends. , 2022, , 159-183.		2
1591	Nanostructured materials for water/wastewater remediation., 2022,, 413-432.		0
1592	Unfunctionalized and Functionalized Multiwalled Carbon Nanotubes/Polyamide Nanocomposites as Selective-Layer Polysulfone Membranes. Polymers, 2022, 14, 1544.	2.0	3
1593	Mesoporous carbon structure impregnated with 2D engineered zirconium: A sustainable adsorbent for the removal of dyes from the aqueous solution. Journal of Environmental Management, 2022, 314, 115009.	3.8	3
1595	The interaction mechanisms of co-existing polybrominated diphenyl ethers and engineered nanoparticles in environmental waters: A critical review. Journal of Environmental Sciences, 2023, 124, 227-252.	3.2	17

#	Article	IF	CITATIONS
1596	Prospects of carbon nanomaterial-based sensors for sustainable future., 2022, , 417-428.		1
1598	Nanomaterials in polymeric membranes for water treatment applications. Separation Science and Technology, 2022, , 255-280.	0.0	0
1600	Remediation of heavy metals with nanomaterials. Separation Science and Technology, 2022, , 97-138.	0.0	0
1601	Overview of separations of water pollutants with nanotechnology. Separation Science and Technology, 2022, , 1-11.	0.0	3
1602	Biosensors as an effective tool for detection of emerging water and wastewater pollutants. , 2022, , 39-54.		1
1603	Importance of nanomaterials in water purification. Separation Science and Technology, 2022, , 13-36.	0.0	0
1604	Tuning the Fe(II)/hydroxide Ratio during Synthesis of Magnetite Nanoparticles to Maximize Cr(VI) Uptake Capacity. Water (Switzerland), 2022, 14, 1335.	1.2	1
1605	Nanotechnology for Clean and Safe Water: (A Review). Oriental Journal of Chemistry, 2022, 38, 227-237.	0.1	0
1606	Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability, 2022, 14, 5222.	1.6	14
1607	Hollow core-shell Z-scheme heterojunction on self-floating carbon fiber cloth with robust photocatalytic-photothermal performance. Journal of Cleaner Production, 2022, 360, 132166.	4.6	11
1608	Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials. Chemosphere, 2022, 302, 134930.	4.2	10
1609	Recent Advances of Nanotechnology in Mitigating Emerging Pollutants in Water and Wastewater: Status, Challenges, and Opportunities. Water, Air, and Soil Pollution, 2022, 233, .	1.1	8
1610	Recent advances in epoxy coatings for corrosion protection of steel: Experimental and modelling approach-A review. Materials Today: Proceedings, 2022, 62, 1658-1663.	0.9	9
1611	Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – A review. Environmental Pollution, 2022, 306, 119377.	3.7	45
1612	Heterogeneous UV disinfection aided by ZnO/Al ₂ O ₃ composites for inhibiting antibiotic resistant bacteria photoreactivation and gene recovery. Environmental Science: Nano, 2022, 9, 2488-2499.	2.2	3
1614	Advance remediation technologies for the removal of organochlorine from water and wastewater. , 2022, , 295-310.		1
1615	Remediation of pesticide residues from contaminated water using various nanomaterials and nanocomposites., 2022,, 229-251.		0
1616	Mixing of Fe3O4 nanoparticles under electromagnetic and shear conditions for wastewater treatment applications. Journal of Water Supply: Research and Technology - AQUA, 2022, 71, 671-681.	0.6	3

#	Article	IF	CITATIONS
1617	Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water. Nanomaterials, 2022, 12, 1764.	1.9	19
1618	A review on degradation of organic dyes by using metal oxide semiconductors. Environmental Science and Pollution Research, 2023, 30, 71912-71932.	2.7	29
1619	Physico-magnetic properties and dynamics of magnetite (Fe3O4) nanoparticles (MNPs) under the effect of permanent magnetic fields in contaminated water treatment applications. Separation and Purification Technology, 2022, 296, 121342.	3.9	11
1620	Microwave hydrothermal synthesis and antibacterial activity of cocklebur-shaped Cu ₄ O ₃ microparticles. Functional Materials Letters, 0, , .	0.7	0
1621	Removal of Pb2+, Cr3+ and Hg2+ ions from aqueous solutions using SiO2 and amino-functionalized SiO2 particles. Journal of Sol-Gel Science and Technology, 2022, 103, 290-308.	1.1	7
1622	Evaluation of a novel integrated membrane biological aerated filter for water reclamation: A practical experience. Chemosphere, 2022, 303, 134916.	4.2	3
1625	Titanium-based photocatalytic coatings for bacterial disinfection: The shift from suspended powders to catalytic interfaces. Surfaces and Interfaces, 2022, 32, 102078.	1.5	9
1627	Emerging nanotechnology based advanced techniques for wastewater treatment. Chemosphere, 2022, 303, 135050.	4.2	21
1628	Facile synthesis of cinnamic acid sensitized rice husk biochar for removal of organic dyes from wastewaters: Batch experimental and theoretical studies. Materials Chemistry and Physics, 2022, 288, 126327.	2.0	14
1629	Photocatalytic degradation of methyl red using seaweed mediated zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102384.	1.5	10
1630	Evolutionary game analysis of water-saving behavior of energy enterprises and food producers from the perspective of water-energy-food nexus. Journal of Water and Climate Change, 2022, 13, 2459-2478.	1.2	2
1632	ARSENIC REMOVAL TECHNOLOGIES: MAPPING GLOBAL RESEARCH ACTIVITIES (1970-2019). Kocaeli Journal of Science and Engineering, 0, , .	0.3	0
1633	Microstructure and Separation Performance of Mixed-Matrix Reverse Osmosis Membranes Filled with Cellulose Nanofibers-Hybridized Ti3c2tx. SSRN Electronic Journal, 0, , .	0.4	0
1634	Remediation of polycyclic aromatic hydrocarbon-contaminated soils using microbes and nanoparticles: A review. Pedosphere, 2023, 33, 93-104.	2.1	4
1635	A CNT/PVA film supported TFC membranes for improvement of mechanical properties and chemical cleaning stability: A new insight to an alternative to the polymeric support. Journal of Membrane Science, 2022, 658, 120753.	4.1	6
1636	A mini-review of nanocellulose-based nanofiber membranes incorporating carbon nanomaterials for dye wastewater treatment. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100714.	1.7	4
1637	Understanding and Utilizing Reactive Oxygen Reservoirs in Atomic Layer Deposition of Metal Oxides with Ozone. Chemistry of Materials, 2022, 34, 5584-5597.	3.2	4
1642	Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from <i>Rosmarinus officinalis</i> extract. Green Chemistry Letters and Reviews, 2022, 15, 460-473.	2.1	31

#	Article	IF	CITATIONS
1644	A review on the use of cellulose nanomaterials for wastewater remediation of heavy metal ions. International Journal of Environmental Science and Technology, 2023, 20, 3421-3436.	1.8	7
1646	Recent advances in nanomaterial developments for efficient removal of Hg(II) from water. Environmental Science and Pollution Research, 2022, 29, 62851-62869.	2.7	3
1647	Review of biological treatment solutions and role of nanoparticles in the treatment of wastewater generated by diverse industries. Nanotechnology for Environmental Engineering, 2022, 7, 699-711.	2.0	6
1648	Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorganic Chemistry Communication, 2022, 143, 109610.	1.8	23
1650	Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds. Environmental Pollution, 2022, 309, 119805.	3.7	24
1651	Highâ€density polyethylene/zinc oxide nanocomposite with antibacterial and <scp>antiâ€UV</scp> radiation properties to reduce evaporation from free surface waters. Polymer Composites, 0, , .	2.3	0
1652	Recent advances in the application of nanocatalysts in Câ \in N coupling reactions. Applied Organometallic Chemistry, 2023, 37, .	1.7	4
1653	Research methodologies for improving urban water supply to protect public health. Current Directions in Water Scarcity Research, 2022, , 397-423.	0.2	0
1654	Nano-silica from kaolinitic clay used as adsorbent for anionic and cationic dyes removal: linear and non-linear regression isotherms and kinetics studies. Annals of Civil and Environmental Engineering, 2022, 6, 008-018.	0.1	8
1655	Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Frontiers in Environmental Science, 0, 10, .	1.5	13
1656	A comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology -based solutions. Biotechnology and Genetic Engineering Reviews, 0, , 1-26.	2.4	16
1657	Making Pb Adsorption-Saturated Attapulgite with Excellent Photocatalysis Properties through a Vulcanization Reaction and Its Application for MB Wastewater Degradation. International Journal of Environmental Research and Public Health, 2022, 19, 10457.	1.2	5
1658	Multifunctional biogenic Al-doped zinc oxide nanostructures synthesized using bioreductant chaetomorpha linum extricate exhibit excellent photocatalytic and bactericidal ability in industrial effluent treatment. Biomass Conversion and Biorefinery, 0, , .	2.9	2
1660	Biosafety, Optimization, and Application of Bioflocculant-Synthesized Zinc Oxide Nanoparticles. BioNanoScience, 2022, 12, 1289-1304.	1.5	3
1661	Quantification of Internal Resistance Contributions of Sediment Microbial Fuel Cells Using Petroleum-Contaminated Sediment Enriched with Kerosene. Catalysts, 2022, 12, 871.	1.6	1
1662	A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites. Chemosphere, 2022, 308, 136107.	4.2	20
1663	Application of chitosan-Acacia nilotica bio-composite for wastewater treatment and significance of RSM-model for parametric optimization. International Journal of Environmental Science and Technology, 2023, 20, 7487-7500.	1.8	1
1665	In-situ assembled amino-quinone network of nanofiltration membrane for simultaneously enhanced trace organic contaminants separation and antifouling properties. Journal of Membrane Science, 2022, 661, 120891.	4.1	11

#	Article	IF	CITATIONS
1666	Efficient removal of Pb(II) ions by using 2-acetylthiophene-modified graphene oxide from aqueous solution. Materials Today Sustainability, 2022, 20, 100212.	1.9	2
1667	Integrated electrocoagulation–photoelectrocatalytic oxidation for effective treatments of aqueous solution bisphenol-A using green-synthesized ZnO nanoparticles. Chemical Papers, 2023, 77, 169-183.	1.0	5
1668	Alignment of MXene based membranes to enhance water purification. Journal of Membrane Science, 2022, 662, 120965.	4.1	21
1669	Nanotechnology for Bioengineers. Synthesis Lectures on Biomedical Engineering, 2020, , .	0.1	1
1670	Carbon Nanotubes Reinforced Polymeric Hybrid Materials for Water Purification. Composites Science and Technology, 2022, , 197-223.	0.4	0
1671	Preparation of 1D, 2D, and 3D nanomaterials for water treatment., 2022,, 1-22.		1
1672	Optimal Subsystem Decomposition andÂResilient Distributed State Estimation forÂWastewater Treatment Plants., 2022,, 299-322.		0
1673	Synthesis of polyaspartic acid-capped 2-aminoethylamino acid as a green water treatment agent and study of its inhibition performance and mechanism for calcium scales. RSC Advances, 2022, 12, 24596-24606.	1.7	6
1674	A Novel Quorum-Sensing Inhibition Strategy Based on Controlling the Transmembrane Transport and Extracellular Accumulation of Quorum Sensing Signals. SSRN Electronic Journal, 0, , .	0.4	0
1675	Ceramic membranes with <i>in situ</i> doped iron oxide nanoparticles for enhancement of antifouling characteristics and organic removal. Environmental Science: Water Research and Technology, 2022, 8, 2856-2872.	1.2	3
1676	Metal oxide nanocomposites in water and wastewater treatment., 2022,, 479-522.		0
1677	Nanoparticles, Nanofibers and Metal-Organic Frameworks (Mofs) as Contaminants Removal in Wastewater Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1679	Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry. Chemical Engineering Journal, 2023, 452, 139509.	6.6	18
1680	Sensor placement for wastewater treatment plants: a computationally efficient algorithm. , 2022, , .		1
1681	Facile Preparation and Analytical Utility of ZnO/Date Palm Fiber Nanocomposites in Lead Removal from Environmental Water Samples. Molecules, 2022, 27, 5592.	1.7	2
1682	Facile synthesis of hydrous zirconia-impregnated chitosan beads as a filter medium for efficient removal of phosphate from water. Cellulose, 2022, 29, 8749-8768.	2.4	6
1683	Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. Membranes, 2022, 12, 915.	1.4	4
1684	Function of Nanomaterials in Removing Heavy Metals for Water and Wastewater Remediation: A Review. Environments - MDPI, 2022, 9, 123.	1.5	28

#	Article	IF	CITATIONS
1686	Effectiveness Assessment of the Electrophysical and Acoustic Methods of Water Purification and Wastewater Treatment in the Food Industry. Food Industry, 2022, 7, 65-82.	0.3	0
1688	Osmotic and Filtration Processes for the Removal of Emerging Water Pollutants. , 2022, , 268-289.		1
1689	Nanotechnology and Water. , 2022, , 47-73.		0
1690	Fabrication of a waste cotton fabrics-based nanosystem for simultaneous removal of Cu(II) and Pb(II). Chemosphere, 2022, 309, 136601.	4.2	2
1691	Remediation of Chromium Heavy Metal Ion by Green Synthesized Nanocomposites. , 2023, , 1-30.		1
1692	Macroscopic liquid-like three-dimensional graphene oxide-based derivatives for efficient copper ion adsorption in water treatment. Journal of Materials Science, 2022, 57, 19756-19768.	1.7	2
1693	Decontamination of toxic Pb+2, Cd+2, and Ni+2 from the liquid medium using modified apple juice industrial biomass: isotherm and kinetic study. Biomass Conversion and Biorefinery, $0,$	2.9	1
1694	Application of Surface Modified Carbon Nanotubes for Water Purification. ACS Symposium Series, 0, , 71-99.	0.5	0
1695	Surfactant-modified adsorptive electrospun nanofiber membrane impregnated with akageneite for phosphorus recovery from wastewater. Journal of Environmental Chemical Engineering, 2022, 10, 108786.	3.3	5
1696	Efficient removal of arsenic and phosphate contaminants by diatomite-modified schwertmannite. Journal of Environmental Chemical Engineering, 2022, 10, 108808.	3.3	1
1697	Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Advances in Colloid and Interface Science, 2022, 310, 102796.	7.0	6
1698	Green Remediation for Sustainable Environment. Environmental Contamination Remediation and Management, 2022, , 313-341.	0.5	0
1699	Carbon Nanotube–Based Membranes for Filtration. , 2022, , 2039-2069.		0
1700	Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. , 2023, 78, 163-178.		12
1701	On the Choice of Different Water Model in Molecular Dynamics Simulations of Nanopore Transport Phenomena. Membranes, 2022, 12, 1109.	1.4	0
1702	Recovery of dyes and salts from highly concentrated (dye and salt) mixed water using nano-filtration ceramic membranes. Heliyon, 2022, 8, e11543.	1.4	3
1703	Degradation of phenolic pollutants by persulfate-based advanced oxidation processes: metal and carbon-based catalysis. Reviews in Chemical Engineering, 2023, 39, 1269-1298.	2.3	3
1704	Novel adsorptive methods for the effective arsenic(III) removal from polluted water. Biomass Conversion and Biorefinery, 0, , .	2.9	0

#	Article	IF	Citations
1705	Emerging applications of nanotechnology in context to immunology: A comprehensive review. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	9
1706	Green synthesis of zero-valent iron nanoparticles by Cleistocalyx operculatus leaf extract using microfluidic device for degradation of the Rhodamine B dye. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 045007.	0.7	0
1707	A Review on Cement-Based Composites for Removal of Organic/Heavy Metal Contaminants from Water. Catalysts, 2022, 12, 1398.	1.6	1
1708	Environmentally friendly cost-effective removal of heavy metals from polluted water by carbon nanotube. International Journal of Environmental Science and Technology, 0, , .	1.8	0
1709	Carbon Nanotubes for Environmental Remediation Applications. , 2022, , 1845-1873.		0
1710	Emerging Technologies for Treatment of Wastewaters. , 2022, , 859-918.		0
1711	Efficiency of Ferritin bio-nanomaterial in reducing the pollutants level of water in the underground corridors of metro rail using GIS. Scientific Reports, 2022, 12, .	1.6	0
1712	Continuous Flow Photooxidative Degradation of Azo Dyes with Biomassâ€derived Carbon Dots. ChemPhotoChem, 0, , .	1.5	1
1713	Removal of natural organic matter fractions by adsorptive asymmetric ceramic membrane functionalized with in situ phytogenic nanoscale zero valent iron: Performance and Fenton cleaning strategy. Environmental Progress and Sustainable Energy, 0, , .	1.3	0
1714	Anti-Infective and Toxicity Properties of Carbon Based Materials: Graphene and Functionalized Carbon Nanotubes. Microorganisms, 2022, 10, 2439.	1.6	3
1715	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	1.6	3
1716	Metal Ion and Dye Adsorption Potential of Grafted Co-polymer of Polysaccharides for the Treatment of Wastewater. Current Applied Polymer Science, 2022, 5, 190-211.	0.2	0
1717	A review on arsenic pollution, toxicity, health risks, and management strategies using nanoremediation approaches. Reviews on Environmental Health, 2022, .	1.1	3
1718	Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chemistry and Chemical Technology, 2022, 16, 639-651.	0.2	0
1719	Magnetic-Transition-Metal Oxides Modified Pollen-Derived Porous Carbon for Enhanced Absorption Performance. International Journal of Environmental Research and Public Health, 2022, 19, 16740.	1.2	3
1720	COF-Based Composites: Extraordinary Removal Performance for Heavy Metals and Radionuclides from Aqueous Solutions. Reviews of Environmental Contamination and Toxicology, 2022, 260, .	0.7	32
1721	Preparation, phase analysis and electrochemistry of magnetite (Fe3O4) and maghemite (\hat{I}^3 -Fe2O3) nanoparticles. International Journal of Electrochemical Science, 2022, 17, 22124.	0.5	2
1722	Nano-Enabled Remediation of Arsenic-Bearing Water and Wastewater. Environmental Science and Engineering, 2023, , 271-289.	0.1	0

#	Article	IF	CITATIONS
1723	Nanomaterials for Water Remediation: An Efficient Strategy for Prevention of Metal(loid) Hazard. Water (Switzerland), 2022, 14, 3998.	1.2	6
1724	Robust superhydrophobic ceramic fiber braid for oil water separation. Ceramics International, 2023, 49, 11725-11729.	2.3	4
1725	Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. Journal of the Iranian Chemical Society, 2023, 20, 775-791.	1,2	8
1726	Optical and Electrical Properties of Low-Dimensional Crystalline Materials: A Review. Crystals, 2023, 13, 108.	1.0	3
1727	Nanomaterials for Removal of Organophosphorus Pesticides from Wastewater. , 2023, , 583-617.		0
1728	Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers, 2023, 15, 482.	2.0	17
1729	Fabrication and Investigation of Acid Functionalized CNT Blended Nanocomposite Hollow Fiber Membrane for High Filtration and Antifouling Performance in Ultrafiltration Process. Membranes, 2023, 13, 70.	1.4	3
1730	Efficient detection and treatment of pharmaceutical contaminants to produce clean water for better health and environmental. Journal of Cleaner Production, 2023, 387, 135798.	4.6	18
1731	A review on different arsenic removal techniques used for decontamination of drinking water. Environmental Pollutants and Bioavailability, 2023, 35, .	1.3	15
1732	Application of microbial nanobiotechnology for combating water pollution. , 2023, , 365-380.		0
1733	Environmental impacts of nanoparticles: pros, cons, and future prospects., 2023,, 493-528.		2
1734	Nano-engineered composites based on carbon nitride as potential agents for the remediation of water with micropollutants., 2023,, 87-115.		2
1735	Inorganic pollutants and their degradation with nanomaterials., 2023,, 57-95.		0
1736	Nanomedicine: New Frontiers in Fighting Microbial Infections. Nanomaterials, 2023, 13, 483.	1.9	6
1737	Nanotechnology as sustainable strategy for remediation of soil contaminants, air pollutants, and mitigation of food biodeterioration., 2023, , 3-16.		0
1738	Synthesis of phytoextract-mediated Ag-doped graphitic carbon nitride (Ag@GCN) for photocatalytic degradation of dyes. Environmental Science and Pollution Research, 2023, 30, 25650-25662.	2.7	12
1739	Green synthesized nanonutrients for sustainable crop growth. , 2023, , 275-288.		1
1740	Advanced fungal bio-based materials for remediation of toxic metals in aquatic ecosystems. , 2023, , 35-62.		0

#	Article	IF	CITATIONS
1741	Sodium alginate nanoadsorbents for wastewater treatment: synthesis and characterizations. , 2023, , 235-271.		0
1742	SALINITY REMOVAL OF RECLAIMED WASTEWATER USING NATURAL AND MODIFIED ZEOLITE AND NANO ZEOLITE PARTICLES., 2022,,.		0
1743	Combating climate change with nanoparticles. , 2023, , 259-292.		0
1744	Alleviating environmental pollution with nanoparticles: current advances and future perspectives., 2023,, 241-258.		0
1745	Highly permeable and durable mixed-matrix reverse osmosis membranes filled with cellulose nanofibers-hybridized Ti3C2T. Desalination, 2023, 551, 116412.	4.0	4
1746	Efficient detoxification of textile wastewater by applying Chenopodium album nanoparticles and its application in simulated metal-bearing effluents removal. Environmental Science and Pollution Research, 2023, 30, 60890-60906.	2.7	4
1747	Development of carbon nanotube-metal organic framework (MOF) hybrid antiviral microfiltration membrane. Separation and Purification Technology, 2023, 315, 123766.	3.9	5
1748	Nanovertenergie: Bactericidal polymer nanocomposite beads for carcinogenic dye removal from aqueous solution. Journal of Molecular Structure, 2023, 1284, 135232.	1.8	1
1749	CuxO@Cu mesh electrode with $\{1\ 1\ 1\}$ facet for efficient photo-electro-Fenton reaction and low voltage robustness. Applied Surface Science, 2023, 626, 157187.	3.1	7
1750	Consumer Nanoproducts for the Remediation of Environmental Problem. , 2022, , 1-17.		0
1751	Mediation of Nanotechnology and Biotechnology: An Emerging Pathway for the Treatment of Environmental Pollution. , 2023, , 1-44.		0
1752	An Overview on Exploitation of Graphene-Based Membranes: From Water Treatment to Medical Industry, Including Recent Fighting against COVID-19. Microorganisms, 2023, 11, 310.	1.6	4
1753	Sewage Treatment Using Nanoparticles. , 0, , .		1
1754	Study of the bactericidal properties of ZnO/Ag ⁰ nanoparticles in the treatment of raw sewage effluents. International Journal of Ceramic Engineering & Science, 2023, 5, .	0.5	0
1755	On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. Journal of Molecular Liquids, 2023, 376, 121416.	2.3	43
1756	Quantum dots: chemical applications. , 2023, , 421-437.		0
1757	Nanotechnology in Management of Environmental Contaminants. , 2023, , 383-401.		0
1758	Reductive Oligomerization of Nitroaniline Catalyzed by Fe ₃ O ₄ Spheres Decorated with Group 11 Metal Nanoparticles. ACS Omega, 2023, 8, 7459-7469.	1.6	0

#	Article	IF	CITATIONS
1759	Preparation and Characterization of Novel Organic–Inorganic Hydroxyapatite (PAM-HA) Composites and Its Adsorption Properties. Science of Advanced Materials, 2022, 14, 1550-1557.	0.1	4
1760	Nanocatalyst Mediated Biodiesel Production from Waste Lipid as Feedstock: A Review. , 0, , .		0
1761	Enhanced photocatalytic NOM removal in photo-assisted coagulation-flocculation process using TiO2 nano-catalyst coated on settling tank. International Journal of Environmental Science and Technology, 2023, 20, 3661-3672.	1.8	О
1762	Integrating ecofriendly nanomaterials with deep-bed filtration for cleaning up industrial wastewater. , 2023, , 63-99.		0
1763	Phytosynthesized nanoparticles for cancer diagnosis and treatment., 2023,, 65-85.		0
1764	Significance of nanoscale in macro-scale in various sectors such as agriculture, environment, and human health., 2023,, 239-261.		0
1765	A Review on the Immediate Advancement of the Internet of Things in Wireless Telecommunications. IEEE Access, 2023, 11, 21020-21048.	2.6	3
1766	Antimicrobial properties of heterojunction BiSnSbO6-ZnO composites in wastewater treatment. Environmental Science and Pollution Research, 2023, 30, 55498-55512.	2.7	1
1767	Textile-based piezocatalytic platform for organics degradation under low-frequency water flow. Journal of Materials Chemistry A, 2023, 11, 7596-7604.	5.2	6
1768	A comprehensive review on synthesis of dihydropyrimidione via Biginelli reaction catalyzed by reusable magnetic nanocatalyst (from 2020–till date). Applied Organometallic Chemistry, 2023, 37, .	1.7	5
1769	Integrated Plasmonic Gold Nanoparticle Dimer Array for Sustainable Solar Water Disinfection. ACS Applied Nano Materials, 2023, 6, 5568-5577.	2.4	3
1770	CoFe2O4@HaP as Magnetic Heterostructures for Sustainable Wastewater Treatment. Materials, 2023, 16, 2594.	1.3	6
1771	Green Supply Chains: A Comparative Efficiency Analysis in the Gulf and Beyond. Gulf Studies, 2023, , 475-492.	0.2	0
1772	Achieving the Sustainable Development Goals Through Water and Sanitation: Do Information and Communication Technologies (ICTs) Matter for Africa?. Journal of the Knowledge Economy, 0, , .	2.7	2
1773	Management of wastewater and other environmental issues using smart nanomaterials. , 2023, , 489-503.		5
1774	Thermodynamics of Azo Dye Adsorption on a Newly Synthesized Titania-Doped Silica Aerogel by Cogelation: A Comparative Investigation with Silica Aerogels and Activated Charcoal. ACS Omega, 2023, 8, 13285-13299.	1.6	6
1775	Reviewâ€"CNT-Based Water Purification and Treatment Strategies. ECS Journal of Solid State Science and Technology, 2023, 12, 041004.	0.9	1
1776	Nanobioremediation: A Sustainable Approach for Wastewater Treatment. , 2023, , 429-445.		0

#	Article	IF	CITATIONS
1777	Hexavalent chromium reduction and Rhodamine B degradation by visible-light-driven photocatalyst of stannum indium sulfide-samarium vanadate. Npj Clean Water, 2023, 6, .	3.1	14
1778	Adsorption-enhanced processes for the treatment of oily wastewater. , 2023, , 125-152.		O
1779	Removal of Toluidine blue in water using green synthesized nanomaterials. South African Journal of Chemical Engineering, 2023, 45, 42-50.	1.2	1
1780	Manganese spinel ferritesâ€composite nanotubes impregnated thermally endured cellulose acetate membranes for superior desalination application. Asia-Pacific Journal of Chemical Engineering, 2023, 18, .	0.8	1
1781	A review on the synthesis and application of magnetic nanoadsorbents to the treatment of oilfield produced water. Brazilian Journal of Chemical Engineering, $0, \cdot, \cdot$	0.7	1
1782	Kinetics of simultaneous degradation of brilliant green and methyl orange using biosynthesized high functional Ag nanoparticles. Zeitschrift Fur Physikalische Chemie, 2023, 237, 599-616.	1.4	11
1783	Performance of TiO2-Based Tubular Membranes in the Photocatalytic Degradation of Organic Compounds. Membranes, 2023, 13, 448.	1.4	1
1784	Mediation of Nanotechnology and Biotechnology: An Emerging Pathway for the Treatment of Environmental Pollution., 2023,, 2457-2500.		O
1785	Remediation of Chromium Heavy Metal Ion by Green Synthesized Nanocomposites., 2023,, 1193-1222.		0
1788	Nanomaterials-Based Sustainable Wastewater Treatment Strategies for a Sustainable Planet. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 15-39.	0.3	0
1789	Consumer Nanoproducts for the Remediation of Environmental Problem., 2023, , 1569-1585.		0
1792	Applications of engineered magnetite nanoparticles for water pollutants removal., 2023,, 23-68.		О
1794	Nanomaterials in Combating Water Pollution and Related Ecotoxicological Risk. Environmental Contamination Remediation and Management, 2023, , 139-172.	0.5	1
1795	Nanotechnology: Emerging Opportunities and Regulatory Aspects in Water Treatment. Environmental Contamination Remediation and Management, 2023, , 173-209.	0.5	0
1803	Nanotechnological interventions for sustainable effluent management solutions., 2023,, 245-259.		0
1805	Nanotechnology for Bioremediation of Industrial Wastewater Treatment., 2023,, 105-131.		1
1807	Effluent Xenobiotics and Prospects of Biogenic Zinc Oxide Nanoparticles for the Treatment of Textile Dye Effluent., 2023,, 55-75.		0
1816	Waste Management Using Nanotechnology. Impact of Meat Consumption on Health and Environmental Sustainability, 2023, , 1-23.	0.4	O

#	Article	IF	Citations
1817	The effect of Membrane technology and nanotechnology in wastewater treatment., 2023,, 341-358.		0
1819	Nanosorbents – A Nanotechnological Approach for the Treatment of Heavy Metal Contamination in Wastewater. , 2023, , 279-299.		0
1820	Applications of Nanomaterials for Water Treatment: Current Trends and Future Scope., 2023,, 145-175.		0
1821	Role of Nanomaterials in the Treatment of Wastewater. , 2023, , 125-144.		1
1826	Remediation and recycling of inorganic acids and their green alternatives for sustainable industrial chemical processes. Environmental Science Advances, 2023, 2, 1306-1339.	1.0	0
1830	Applications of Magnetic Nanomaterials for Wastewater Treatment. Engineering Materials, 2023, , 129-169.	0.3	0
1831	Agricultural applications of bionanocomposites. , 2024, , 327-350.		0
1843	Electrospun Nanofibers for Water Purification as Catalyst. Nanostructure Science and Technology, 2023, , 123-151.	0.1	0
1844	Electrospun Nanofibers Adsorbent for Water Purification. Nanostructure Science and Technology, 2023, , 75-121.	0.1	0
1847	Nanomaterials: A Double-edged Sword as Pollution Busters or Pollutants?., 2023,, 29-62.		0
1861	Concluding Remarks and Future Perspectives of Nanosponges in Environmental Remediation. , 2023, , 449-473.		0
1862	Carbon nanotubes–based nanoadsorbents in wastewater treatment. , 2023, , 103-141.		0
1866	Nanoparticles and Nanocomposites for Heavy Metals Removal. Advances in Sustainability Science and Technology, 2023, , 139-161.	0.4	0
1873	Overview of Methods and Processes Used in Wastewater Treatment. , 2023, , 289-301.		0
1876	Nano-Bioremediation: An Emerging Weapon for Emerging Pollutants., 2023,, 273-291.		0
1886	Application of Silver-Doped Nanomaterials for Wastewater Treatment., 2024,, 313-332.		0
1887	Evaluation of Coagulation-Flocculation Treatment Technologies in Palm Oil Effluent Management. Handbook of Environmental Engineering, 2023, , 509-551.	0.2	0
1891	A Futuristic Approach on the Multifunctionality of Nanomaterials. Advances in Chemical and Materials Engineering Book Series, 2024, , 1-36.	0.2	0

#	Article	IF	CITATIONS
1894	Bio-char as an adsorbent for wastewater purification. , 0, , .		0
1897	Sustainable approaches to heavy metal removal from water. , 2024, , 179-189.		0
1898	Nano-adsorbent based solutions for wastewater treatmentâ€"an overview. , 2024, , 401-424.		0
1903	Irrigating With Treated Wastewater., 2024, , .		0
1904	Potential of nano-phytoremediation of heavy metal contaminated soil: emphasizing the role of mycorrhizal fungi in the amelioration process. International Journal of Environmental Science and Technology, 2024, 21, 6405-6428.	1.8	0
1905	Multifaceted and Diverse Applications of Nanocomposites. Advances in Chemical and Materials Engineering Book Series, 2024, , 67-101.	0.2	0
1913	Scope of nanotechnology in agriculture and environment. , 2024, , 3-39.		0
1917	Nanoscale solutions for a macro impact: environmental applications unveiled., 2024, , 41-56.		0