Degradation-mediated cellular traction directs stem cel three-dimensional hydrogels

Nature Materials 12, 458-465

DOI: 10.1038/nmat3586

Citation Report

#	Article	IF	CITATIONS
1	Colloid-matrix assemblies in regenerative medicine. Current Opinion in Colloid and Interface Science, 2013, 18, 393-405.	3.4	9
2	Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology, 2013, 14, 467-473.	16.1	732
3	Mesenchymal Stem Cells Exploit Extracellular Matrix as Mechanotransducer. Scientific Reports, 2013, 3, 2425.	1.6	77
4	Cell–Material Interactions Revealed Via Material Techniques of Surface Patterning. Advanced Materials, 2013, 25, 5257-5286.	11.1	424
5	The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials, 2013, 34, 9486-9495.	5.7	101
6	A Microgel Construction Kit for Bioorthogonal Encapsulation and pHâ€Controlled Release of Living Cells. Angewandte Chemie - International Edition, 2013, 52, 13538-13543.	7.2	145
7	Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science, 2013, 341, 1240104.	6.0	1,595
8	Monodisperse collagen–gelatin beads as potential platforms for 3D cell culturing. Journal of Materials Chemistry B, 2013, 1, 5128.	2.9	75
9	Heart-Specific Stiffening in Early Embryos Parallels Matrix and Myosin Expression to Optimize Beating. Current Biology, 2013, 23, 2434-2439.	1.8	176
10	How cells sense extracellular matrix stiffness: a material's perspective. Current Opinion in Biotechnology, 2013, 24, 948-953.	3.3	165
11	Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials, 2013, 34, 9657-9665.	5.7	24
12	Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials, 2013, 34, 8140-8148.	5.7	238
13	Post-degradation forces kick in. Nature Materials, 2013, 12, 384-386.	13.3	16
14	PEG-Phosphorylcholine Hydrogels As Tunable and Versatile Platforms for Mechanobiology. Biomacromolecules, 2013, 14, 2294-2304.	2.6	54
15	Photodegradable Supramolecular Hydrogels with Fluorescence Turn-On Reporter for Photomodulation of Cellular Microenvironments. Journal of the American Chemical Society, 2013, 135, 18718-18721.	6.6	146
16	Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials, 2013, 34, 9803-9811.	5.7	263
17	Rational Design of Network Properties in Guest–Host Assembled and Shear-Thinning Hyaluronic Acid Hydrogels. Biomacromolecules, 2013, 14, 4125-4134.	2.6	349
18	Review on Cell Mechanics: Experimental and Modeling Approaches. Applied Mechanics Reviews, 2013, 65, .	4.5	164

#	Article	IF	CITATIONS
19	Mesenchymal stem cell mechanobiology and emerging experimental platforms. Journal of the Royal Society Interface, 2013, 10, 20130179.	1.5	120
20	Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19336-19341.	3.3	140
22	Matrix identity and tractional forces influence indirect cardiac reprogramming. Scientific Reports, 2013, 3, 3474.	1.6	33
23	Controlling Osteogenic Stem Cell Differentiation via Soft Bioinspired Hydrogels. PLoS ONE, 2014, 9, e98640.	1.1	35
24	Biofunctionalization of Hydrogels for Engineering the Cellular Microenvironment. , 2014, , 315-348.		3
26	Restraint of the Differentiation of Mesenchymal Stem Cells by a Nonfouling Zwitterionic Hydrogel. Angewandte Chemie, 2014, 126, 12943-12948.	1.6	17
27	Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation. Physical Biology, 2014, 11, 056004.	0.8	13
28	A Bioengineered Hydrogel System Enables Targeted and Sustained Intramyocardial Delivery of Neuregulin, Activating the Cardiomyocyte Cell Cycle and Enhancing Ventricular Function in a Murine Model of Ischemic Cardiomyopathy. Circulation: Heart Failure, 2014, 7, 619-626.	1.6	53
29	Ophthalmic Uses of a Thiol-Modified Hyaluronan-Based Hydrogel. Advances in Wound Care, 2014, 3, 708-716.	2.6	34
30	Restraint of the Differentiation of Mesenchymal Stem Cells by a Nonfouling Zwitterionic Hydrogel. Angewandte Chemie - International Edition, 2014, 53, 12729-12734.	7.2	64
31	Co-Release of Cells and Polymeric Nanoparticles from Sacrificial Microfibers Enhances Nonviral Gene Delivery Inside 3D Hydrogels. Tissue Engineering - Part C: Methods, 2014, 20, 798-805.	1.1	6
32	Temperature-Responsive Poly(ε-caprolactone) Cell Culture Platform with Dynamically Tunable Nano-Roughness and Elasticity for Control of Myoblast Morphology. International Journal of Molecular Sciences, 2014, 15, 1511-1524.	1.8	44
33	Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5580-5585.	3.3	67
34	Cardiac valve cells and their microenvironment—insights from in vitro studies. Nature Reviews Cardiology, 2014, 11, 715-727.	6.1	80
35	25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 2014, 26, 85-124.	11.1	1,103
36	Topography Design Concept of a Tissue Engineering Scaffold for Controlling Cell Function and Fate Through Actin Cytoskeletal Modulation. Tissue Engineering - Part B: Reviews, 2014, 20, 609-627.	2.5	63
37	Forms, forces, and stem cell fate. Current Opinion in Cell Biology, 2014, 31, 92-97.	2.6	73
38	3D Traction Stresses Activate Protease-Dependent Invasion of Cancer Cells. Biophysical Journal, 2014, 107, 2528-2537.	0.2	77

#	Article	IF	CITATIONS
39	Control of adult stem cell behavior with biomaterials. Tissue Engineering and Regenerative Medicine, 2014, 11, 423-430.	1.6	14
40	Mechanical Cues Direct Focal Adhesion Dynamics. Progress in Molecular Biology and Translational Science, 2014, 126, 103-134.	0.9	19
41	Measuring stem cell dimensionality in tissue scaffolds. Biomaterials, 2014, 35, 2558-2567.	5.7	55
42	Micro-composite substrates for the study of cell-matrix mechanical interactions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 232-241.	1.5	22
43	Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials, 2014, 35, 1807-1815.	5.7	60
44	Mechanical memory and dosing influence stem cell fate. Nature Materials, 2014, 13, 645-652.	13.3	943
45	Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today, 2014, 19, 763-773.	3.2	53
46	Biomolecule Delivery to Engineer the Cellular Microenvironment for Regenerative Medicine. Annals of Biomedical Engineering, 2014, 42, 1557-1572.	1.3	17
47	Tissue Mimetics: Engineered Hydrogel Matrices Provide Biomimetic Environments for Cell Growth. Tissue Engineering - Part A, 2014, 20, 895-898.	1.6	27
48	Effect of Cell Density on Mesenchymal Stem Cells Aggregation in RGDâ€Alginate 3D Matrices under Osteoinductive Conditions. Macromolecular Bioscience, 2014, 14, 759-771.	2.1	52
49	Engineering liver. Hepatology, 2014, 60, 1426-1434.	3.6	46
50	Introduction to cell–hydrogel mechanosensing. Interface Focus, 2014, 4, 20130038.	1.5	173
51	Integrated Micro/Nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective. Advanced Materials, 2014, 26, 1494-1533.	11.1	121
52	Force Measurement Tools to Explore Cadherin Mechanotransduction. Cell Communication and Adhesion, 2014, 21, 193-205.	1.0	14
53	Combining insoluble and soluble factors to steer stem cell fate. Nature Materials, 2014, 13, 532-537.	13.3	76
54	Materials as stem cell regulators. Nature Materials, 2014, 13, 547-557.	13.3	794
57	Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 209-218.	1.5	74
58	Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 36, 135-142.	1.5	149

#	Article	IF	CITATIONS
59	Bioreactor technologies to support liver function in vitro. Advanced Drug Delivery Reviews, 2014, 69-70, 132-157.	6.6	116
60	Material control of stem cell differentiation: challenges in nano-characterization. Current Opinion in Biotechnology, 2014, 28, 46-50.	3.3	29
61	Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate. Biomaterials Science, 2014, 2, 381-389.	2.6	14
62	A Blood-Resistant Surgical Clue for Minimally Invasive Repair of Vessels and Heart Defects. Science Translational Medicine, 2014, 6, 218ra6.	5.8	253
63	Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 2014, 10, 104-114.	4.1	93
64	In vitro models of tumor vessels and matrix: Engineering approaches to investigate transport limitations and drug delivery in cancer. Advanced Drug Delivery Reviews, 2014, 69-70, 205-216.	6.6	60
65	Microwave-assisted synthesis and click chemistry as simple and efficient strategy for RGD functionalized hydrogels. Tetrahedron Letters, 2014, 55, 6817-6820.	0.7	22
66	Spatiotemporally Controllable and Cytocompatible Approach Builds 3D Cell Culture Matrix by Photoâ€Uncagedâ€Thiol Michael Addition Reaction. Advanced Materials, 2014, 26, 3912-3917.	11.1	85
67	Biocompatible macro-initiators controlling radical retention in microfluidic on-chip photo-polymerization of water-in-oil emulsions. Chemical Communications, 2014, 50, 112-114.	2.2	43
68	Artificial microniches for probing mesenchymal stem cell fate in 3D. Biomaterials Science, 2014, 2, 1661-1671.	2.6	45
69	Incorporation of sulfated hyaluronic acid macromers into degradable hydrogel scaffolds for sustained molecule delivery. Biomaterials Science, 2014, 2, 693-702.	2.6	46
70	One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomaterials Science, 2014, 2, 757-765.	2.6	76
71	Structural and Biochemical Modification of a Collagen Scaffold to Selectively Enhance MSC Tenogenic, Chondrogenic, and Osteogenic Differentiation. Advanced Healthcare Materials, 2014, 3, 1086-1096.	3.9	90
72	Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels. Soft Matter, 2014, 10, 9230-9236.	1.2	69
73	Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polymer Chemistry, 2014, 5, 6523-6533.	1.9	68
74	Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Biomedical Materials (Bristol), 2014, 9, 035008.	1.7	42
75	Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials, 2014, 35, 8496-8502.	5.7	37
76	Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene) Tj ETQq1 1 0.784314 r encapsulation. Journal of Materials Chemistry B, 2014, 2, 3674.	gBT /Over 2.9	lock 10 Tf 50 82

#	Article	IF	CITATIONS
77	Bis-Aliphatic Hydrazone-Linked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic Studies. Chemistry of Materials, 2014, 26, 2382-2387.	3.2	102
78	Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature Materials, 2014, 13, 979-987.	13.3	812
79	Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials. Biomaterials, 2014, 35, 8767-8779.	5.7	32
80	A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells. Biomaterials, 2014, 35, 8757-8766.	5.7	79
81	Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials, 2014, 35, 8927-8936.	5.7	226
82	Self-Organized ECM-Mimetic Model Based on an Amphiphilic Multiblock Silk-Elastin-Like Corecombinamer with a Concomitant Dual Physical Gelation Process. Biomacromolecules, 2014, 15, 3781-3793.	2.6	77
83	From In Vitro to In Situ Tissue Engineering. Annals of Biomedical Engineering, 2014, 42, 1537-1545.	1.3	73
84	A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials, 2014, 35, 5278-5293.	5.7	114
86	Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair. ACS Nano, 2014, 8, 8050-8062.	7.3	449
87	Context Clues: The Importance of Stem Cell–Material Interactions. ACS Chemical Biology, 2014, 9, 45-56.	1.6	30
88	Design and Characterization of a Synthetically Accessible, Photodegradable Hydrogel for User-Directed Formation of Neural Networks. Biomacromolecules, 2014, 15, 2808-2816.	2.6	90
89	3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering, 2014, 16, 247-276.	5.7	522
90	Matrix-driven formation of mesenchymal stem cell–extracellular matrix microtissues on soft alginate hydrogels. Acta Biomaterialia, 2014, 10, 3197-3208.	4.1	85
91	In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Journal of Controlled Release, 2014, 193, 214-227.	4.8	270
92	Chondrogenic Differentiation of Adipose-Derived Stromal Cells in Combinatorial Hydrogels Containing Cartilage Matrix Proteins with Decoupled Mechanical Stiffness. Tissue Engineering - Part A, 2014, 20, 2131-2139.	1.6	67
93	Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978.	13.3	689
94	Multiresponsive Polymer Hydrogels by Orthogonal Supramolecular Chain Cross-Linking. Macromolecules, 2014, 47, 4028-4036.	2.2	47
95	Hypoxia-inducible hydrogels. Nature Communications, 2014, 5, 4075.	5.8	142

#	Article	IF	CITATIONS
96	Architectural and Mechanical Cues Direct Mesenchymal Stem Cell Interactions with Crosslinked Gelatin Scaffolds. Tissue Engineering - Part A, 2014, 20, 3252-3260.	1.6	13
97	Time dependence of material properties of polyethylene glycol hydrogels chain extended with short hydroxy acid segments. Polymer, 2014, 55, 3894-3904.	1.8	22
98	Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. Journal of Controlled Release, 2014, 191, 63-70.	4.8	115
99	The taming of the cell: shape-memory nanopatterns direct cell orientation. International Journal of Nanomedicine, 2014, 9 Suppl 1, 117.	3.3	37
100	Materials for biological modulation, sensing, and imaging. MRS Bulletin, 2014, 39, 12-14.	1.7	1
101	Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles. Cellular and Molecular Bioengineering, 2015, 8, 445-454.	1.0	27
102	Hybrid Microgels with Thermoâ€Tunable Elasticity for Controllable Cell Confinement. Advanced Healthcare Materials, 2015, 4, 1841-1848.	3.9	32
103	Control of Mesh Size and Modulus by Kinetically Dependent Crossâ€Linking in Hydrogels. Advanced Materials, 2015, 27, 6283-6288.	11.1	47
104	Tissue Adhesive Catecholâ€Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Advanced Functional Materials, 2015, 25, 3814-3824.	7.8	351
105	Synergistic Effects of SDF-1α and BMP-2 Delivery from Proteolytically Degradable Hyaluronic Acid Hydrogels for Bone Repair. Macromolecular Bioscience, 2015, 15, 1218-1223.	2.1	61
106	Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering. Advanced Materials, 2015, 27, 3717-3736.	11.1	557
107	Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications. Stem Cells, 2015, 33, 3187-3196.	1.4	38
108	Forces of nature: understanding the role of mechanotransduction in stem cell differentiation. , 0, , 205-226.		0
109	Hydrogels with dynamically tunable properties. , 2015, , 90-109.		1
110	A Review of Cell Adhesion Studies for Biomedical and Biological Applications. International Journal of Molecular Sciences, 2015, 16, 18149-18184.	1.8	663
111	Stretchable micropost array cytometry: a powerful tool for cell mechanics and mechanobiology research. , 0, , 32-46.		0
112	Stimuli-responsive polymeric substrates for cell-matrix mechanobiology. , 0, , 186-202.		0
113	Synthesis of Biocompatible PEG Hydrogels by pH-Sensitive Potassium Acyltrifluoroborate (KAT) Amide Ligations. ACS Biomaterials Science and Engineering, 2015, 1, 456-462.	2.6	39

ARTICLE IF CITATIONS Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Scientific 15 114 1.6 Reports, 2014, 4, 5849. Stem cell mechanobiology: diverse lessons from bone marrow. Trends in Cell Biology, 2015, 25, 523-532. 3.6 Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System 116 7.8 66 with an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2015, 25, 2296-2307. A guide to mechanobiology: Where biology and physics meet. Biochimica Et Biophysica Acta - Molecular 248 Cell Research, 2015, 1853, 3043-3052. Effects of Nanoscale Spatial Arrangement of Arginine–Glycine–Aspartate Peptides on 118 4.5 62 Dedifferentiation of Chondrocytes. Nano Letters, 2015, 15, 7755-7765. Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14444-14451. 119 3.3 In-Situ Gelling Polymers. Series in Bioengineering, 2015, , . 120 0.3 3 Measurement Systems for Cell Adhesive Forces. Journal of Biomechanical Engineering, 2015, 137, 121 0.6 020908. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell 122 5.7 187 phenotype in a three-dimensional environment. Biomaterials, 2015, 49, 47-56. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. 5.1 Critical Reviews in Biotechnology, 2016, 36, 1-13. Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. Advanced 124 7.8 157 Functional Materials, 2015, 25, 2237-2242. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone 119 healing. Biomaterials, 2015, 50, 75-86. Multiresponsive Hydrogel Coassembled from Phenylalanine and Azobenzene Derivatives as 3D Scaffolds for Photoguiding Cell Adhesion and Release. ACS Applied Materials & amp; Interfaces, 2015, 7, 126 4.0 79 301-307. Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials, 2015, 127 5.7 238 50, 30-37. Supramolecular Hydrogels for Longâ€Term Bioengineered Stem Cell Therapy. Advanced Healthcare 128 3.9 62 Materials, 2015, 4, 237-244. Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical 129 3.9 54 Cues for Osteotendinous Junction Engineering. Advanced Healthcare Materials, 2015, 4, 831-837. Directing Stem Cell Differentiation by Changing the Molecular Mobility of Supramolecular Surfaces. 130 3.9 46 Advanced Healthcare Materials, 2015, 4, 215-222. Effects of Permeability and Living Space on Cell Fate and Neo-Tissue Development in Hydrogel-Based 2.1 Scaffolds: A Study With Cartilaginous Model. Macromolecular Bioscience, 2015, 15, 535-545.

#	Article	IF	CITATIONS
132	Dynamic phototuning of 3D hydrogel stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1953-1958.	3.3	247
133	Modular and orthogonal synthesis of hybrid polymers and networks. Chemical Communications, 2015, 51, 5218-5237.	2.2	40
135	From Repair to Regeneration: Biomaterials to Reprogram the Meniscus Wound Microenvironment. Annals of Biomedical Engineering, 2015, 43, 529-542.	1.3	44
136	On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 2015, 52, 26-43.	5.7	105
137	A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nature Materials, 2015, 14, 523-531.	13.3	376
138	Directed osteogenic differentiation of mesenchymal stem cell in three-dimensional biodegradable methylcellulose-based scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 135, 332-338.	2.5	14
139	Encoding Hydrogel Mechanics via Network Cross-Linking Structure. ACS Biomaterials Science and Engineering, 2015, 1, 335-344.	2.6	57
140	Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine, 2015, 10, 689-692.	1.7	36
141	Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3757-64.	3.3	149
142	Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8260-8265.	3.3	655
143	Embedded 3D Photopatterning of Hydrogels with Diverse and Complex Architectures for Tissue Engineering and Disease Models. Tissue Engineering - Part C: Methods, 2015, 21, 1188-1196.	1.1	28
144	Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nature Materials, 2015, 14, 951-960.	13.3	108
145	Ratio of total traction force to projected cell area is preserved in differentiating adipocytes. Integrative Biology (United Kingdom), 2015, 7, 1212-1217.	0.6	29
146	Traction forces mediated by integrin signaling are necessary for definitive endoderm specification. Journal of Cell Science, 2015, 128, 1961-1968.	1.2	26
147	Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomaterialia, 2015, 20, 1-9.	4.1	151
148	Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Advances, 2015, 5, 39844-39853.	1.7	82
149	Selective Proteolytic Degradation of Guest–Host Assembled, Injectable Hyaluronic Acid Hydrogels. ACS Biomaterials Science and Engineering, 2015, 1, 277-286.	2.6	79
150	Improved method for synthesis of cysteine modified hyaluronic acid for in situ hydrogel formation. Chemical Communications, 2015, 51, 9662-9665.	2.2	20

#	Article	IF	CITATIONS
151	Introduction to In Situ Forming Hydrogels for Biomedical Applications. Series in Bioengineering, 2015, , 5-35.	0.3	25
152	Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough?. Annals of Biomedical Engineering, 2015, 43, 489-500.	1.3	155
153	Influence of Biophysical Parameters on Maintaining the Mesenchymal Stem Cell Phenotype. ACS Biomaterials Science and Engineering, 2015, 1, 218-226.	2.6	43
154	Regulation of stem cell fate by nanomaterial substrates. Nanomedicine, 2015, 10, 829-847.	1.7	65
155	The Stiffness and Structure of Three-Dimensional Printed Hydrogels Direct the Differentiation of Mesenchymal Stromal Cells Toward Adipogenic and Osteogenic Lineages. Tissue Engineering - Part A, 2015, 21, 740-756.	1.6	181
156	Multi-responsive supramolecular hydrogels based on merocyanine–peptide conjugates. Organic and Biomolecular Chemistry, 2015, 13, 11492-11498.	1.5	27
157	Biomaterial-Assisted Stem Cell Engineering for Tissue Construction and Regeneration. Translational Medicine Research, 2015, , 247-273.	0.0	1
158	Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Scientific Reports, 2014, 4, 5188.	1.6	120
159	Designer hydrogels for precision control of oxygen tension and mechanical properties. Journal of Materials Chemistry B, 2015, 3, 7939-7949.	2.9	23
161	Mimicking biological phenomena in hydrogel-based biomaterials to promote dynamic cellular responses. Journal of Materials Chemistry B, 2015, 3, 7867-7880.	2.9	27
162	Hydrogels for Cell Encapsulation and Bioprinting. Pancreatic Islet Biology, 2015, , 89-108.	0.1	3
163	Gelation characteristics, physico-mechanical properties and degradation kinetics of micellar hydrogels. European Polymer Journal, 2015, 72, 566-576.	2.6	18
164	Cell-mediated fibre recruitment drives extracellular matrix mechanosensing inÂengineered fibrillar microenvironments. Nature Materials, 2015, 14, 1262-1268.	13.3	464
165	Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. Journal of Controlled Release, 2015, 219, 95-106.	4.8	103
166	Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials, 2015, 69, 174-183.	5.7	65
167	Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneÂformation. Nature Materials, 2015, 14, 1269-1277.	13.3	390
168	Bioprinting in Regenerative Medicine. Pancreatic Islet Biology, 2015, , .	0.1	5
169	Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomaterialia, 2015, 27, 151-166.	4.1	81

#	Article	IF	CITATIONS
170	Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. Journal of Materials Chemistry B, 2015, 3, 8010-8019.	2.9	111
171	Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. ACS Applied Materials & Interfaces, 2015, 7, 23015-23028.	4.0	78
172	Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells, 2015, 33, 1021-1035.	1.4	26
173	Controlled Heterogeneous Stem Cell Differentiation on a Shape Memory Hydrogel Surface. Scientific Reports, 2014, 4, 5815.	1.6	43
174	Hydrolytically Degradable Polyrotaxane Hydrogels for Drug and Cell Delivery Applications. Biomacromolecules, 2015, 16, 389-403.	2.6	25
175	Microenvironmental Control of Stem Cell Fate. , 2015, , 93-115.		0
176	Extracellular matrix elasticity and topography: Materialâ€based cues that affect cell function via conserved mechanisms. Journal of Biomedical Materials Research - Part A, 2015, 103, 1246-1258.	2.1	158
177	Controlled release of BMPâ€2 using a heparinâ€conjugated carrier system reduces <i>in vivo</i> adipose tissue formation. Journal of Biomedical Materials Research - Part A, 2015, 103, 545-554.	2.1	20
178	Evolving insights in cell–matrix interactions: Elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomaterialia, 2015, 11, 3-16.	4.1	115
179	Biological materials and molecular biomimetics – filling up the empty soft materials space for tissue engineering applications. Journal of Materials Chemistry B, 2015, 3, 13-24.	2.9	49
180	Mechanical regulation of mesenchymal stem cell differentiation. Journal of Anatomy, 2015, 227, 717-731.	0.9	179
181	Biomaterials for Cardiac Regeneration. , 2015, , .		5
182	Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels. Stem Cells International, 2016, 2016, 1-12.	1.2	20
183	Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine. , 0, , .		3
184	Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior. Frontiers in Bioengineering and Biotechnology, 2016, 4, 38.	2.0	60
185	Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction. Gels, 2016, 2, 12.	2.1	21
186	Hydrogels as Extracellular Matrix Analogs. Gels, 2016, 2, 20.	2.1	64
187	PEC-Chitosan Hydrogel with Tunable Stiffness for Study of Drug Response of Breast Cancer Cells. Polymers, 2016, 8, 112.	2.0	39

		CITATION REPORT		
#	Article		IF	Citations
188	3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers, 20	16, 8, 269.	2.0	160
189	Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from and bone marrow. Acta Biomaterialia, 2016, 42, 46-55.	n adipose tissue	4.1	52
190	3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Car Engineering. ACS Biomaterials Science and Engineering, 2016, 2, 1200-1210.	ilage Tissue	2.6	97
191	Direct influence of culture dimensionality on human mesenchymal stem cell differentia various matrix stiffnesses using a fibrous selfâ€assembling peptide hydrogel. Journal of Materials Research - Part A, 2016, 104, 2356-2368.	tion at Biomedical	2.1	53
192	Bioâ€Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics Biochemistry for Cell Encapsulation. Advanced Functional Materials, 2016, 26, 3612-30	and 520.	7.8	122
193	Click rosslinked Injectable Gelatin Hydrogels. Advanced Healthcare Materials, 2016	5, 541-547.	3.9	129
194	Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling Mineralization Properties for Bone Tissue Engineering. Advanced Healthcare Materials, 1336-1345.	; and 2016, 5,	3.9	143
195	Determining Stem Cell Fate with Hydrogels. , 2016, , 53-86.			0
196	Sliding Hydrogels with Mobile Molecular Ligands and Crosslinks as 3D Stem Cell Niche Materials, 2016, 28, 7257-7263.	. Advanced	11.1	66
197	Three-dimensional spherical spatial boundary conditions differentially regulate osteoge differentiation of mesenchymal stromal cells. Scientific Reports, 2016, 6, 21253.	nic	1.6	46
200	Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotra during myofibroblast activation. Scientific Reports, 2016, 6, 21387.	nsduction	1.6	176
201	Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogra fibroblasts into cardiomyocytes by microRNAs. Scientific Reports, 2016, 6, 38815.	mming of	1.6	68
202	3D chemical characterization of frozen hydrated hydrogels using ToF-SIMS with argon sputter depth profiling. Biointerphases, 2016, 11, 02A301.	cluster	0.6	11
203	Biomaterials for 4D stem cell culture. Current Opinion in Solid State and Materials Scie 212-224.	nce, 2016, 20,	5.6	47
204	In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithe Biomaterials Science, 2016, 4, 1123-1131.	elial cells.	2.6	39
205	Mesenchymal stem cell-induced 3D displacement field of cell-adhesion matrices with d elasticities. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 394-	iffering 400	1.5	4
206	Internalized compartments encapsulated nanogels for targeted drug delivery. Nanosca 9178-9184.	le, 2016, 8,	2.8	29
207	Capturing extracellular matrix properties inÂvitro: Microengineering materials to decip tissue level processes. Experimental Biology and Medicine, 2016, 241, 930-938.	ner cell and	1.1	25

#	Article	IF	CITATIONS
208	Integrating concepts of material mechanics, ligand chemistry, dimensionality and degradation to control differentiation of mesenchymal stem cells. Current Opinion in Solid State and Materials Science, 2016, 20, 171-179.	5.6	28
209	Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioactive Materials, 2016, 1, 18-28.	8.6	13
210	Measuring cell-generated forces: a guide to the available tools. Nature Methods, 2016, 13, 415-423.	9.0	380
211	A practical guide to hydrogels for cell culture. Nature Methods, 2016, 13, 405-414.	9.0	1,348
212	Creating biomaterials with spatially organized functionality. Experimental Biology and Medicine, 2016, 241, 1025-1032.	1.1	8
213	Enzyme-responsive polymer hydrogels for therapeutic delivery. Experimental Biology and Medicine, 2016, 241, 972-979.	1.1	125
214	Single cell migration dynamics mediated by geometric confinement. Colloids and Surfaces B: Biointerfaces, 2016, 145, 72-78.	2.5	18
215	Embryonically inspired scaffolds regulate tenogenically differentiating cells. Journal of Biomechanics, 2016, 49, 3281-3288.	0.9	35
216	An Introduction to Scaffolds, Biomaterial Surfaces, and Stem Cells. , 2016, , 1-37.		0
217	Stem Cell Differentiation Mediated by Biomaterials/Surfaces. , 2016, , 187-251.		0
219	3D graphene oxide supramolecular hybrid hydrogel with well-ordered interior microstructure prepared by a host–guest inclusion-induced self-assembly strategy. RSC Advances, 2016, 6, 94723-94730.	1.7	4
220	Polymeric Biomaterials for Tissue Regeneration. , 2016, , .		4
221	Bioadaptability: An Innovative Concept for Biomaterials. Journal of Materials Science and Technology, 2016, 32, 801-809.	5.6	56
222	Non-Covalently Stabilized Alginate Hydrogels as Functional Cell Scaffold Material. Macromolecular Bioscience, 2016, 16, 1693-1702.	2.1	16
223	High Content Imaging of Early Morphological Signatures Predicts Long Term Mineralization Capacity of Human Mesenchymal Stem Cells upon Osteogenic Induction. Stem Cells, 2016, 34, 935-947.	1.4	72
224	Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Biotechnology Journal, 2016, 11, 43-57.	1.8	49
225	Stem Cell Fate Is a Touchy Subject. Cell Stem Cell, 2016, 19, 289-290.	5.2	4
226	A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	5.5	570

ARTICLE IF CITATIONS Photo-Dimerization Induced Dynamic Viscoelastic Changes in ABA Triblock Copolymer-Based Hydrogels 227 3.2 51 for 3D Cell Culture. Chemistry of Materials, 2016, 28, 6401-6408. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of 13.3 mesenchymal stem cells. Nature Materials, 2016, 15, 1297-1306. Mechanobiological Control of Cell Fate for Applications in Cardiovascular Regenerative Medicine., 230 0 2016, , 219-253. Physical confinement signals regulate the organization of stem cells in three dimensions. Journal of the Royal Society Interface, 2016, 13, 20160613. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. 232 5.7 240 Biomaterials, 2016, 103, 314-323. Stimuliâ€Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications. Macromolecular Rapid Communications, 2016, 37, 1881-1896. 129 Design, clinical translation and immunological response of biomaterials in regenerative medicine. 234 23.3 208 Nature Reviews Materials, 2016, 1, . Response to di-functionalized hyaluronic acid with orthogonal chemistry grafting at independent modification sites in rodent models of neural differentiation and spinal cord injury. Journal of 2.9 14 Materials Chemistry B, 2016, 4, 6865-6875. Modular and Adaptable Tumor Niche Prepared from Visible Light Initiated Thiol-Norbornene 236 50 2.6 Photopolymerization. Biomacromolecules, 2016, 17, 3872-3882. Effect of Dynamic Polyrotaxane Coating on Cytoskeletal Signaling Expression of Adhering Stem Cells 0.2 and Downstream Differentiations. Advances in Science and Technology, 0, , . Ordering Single Cells and Single Embryos in 3D Confinement: A New Device for High Content 238 0.2 4 Screening. Journal of Visualized Experiments, 2016, , . Synthetic <scp>PAMPS</scp> gel activates <scp>BMP</scp>/Smad signaling pathway in <scp>ATDC</scp>5 cells, which plays a significant role in the gelâ€induced chondrogenic differentiation. Journal of Biomedical Materials Research - Part A, 2016, 104, 734-746. 2.1 BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cellular and Developmental Biology -240 0.7 4 Animal, 2016, 52, 757-771. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation. ACS 241 Nano, 2016, 10, 6667-6679. 242 Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 2016, 1, 39-55. 226 8.6 Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials, 243 249 2016, 101, 217-228. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 244 1.6 57 864-879. Sulfated Hydrogel Matrices Direct Mitogenicity and Maintenance of Chondrocyte Phenotype through 245 Activation of FGF Signaling. Advanced Functional Materials, 2016, 26, 3649-3662.

#	Article	IF	CITATIONS
246	Stemâ€Cell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation. Advanced Materials Interfaces, 2016, 3, 1500456.	1.9	40
247	Robust Biopolymeric Supramolecular "Hostâ^'Guest Macromer―Hydrogels Reinforced by <i>in Situ</i> Formed Multivalent Nanoclusters for Cartilage Regeneration. Macromolecules, 2016, 49, 866-875.	2.2	102
248	Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Acta Biomaterialia, 2016, 32, 210-222.	4.1	57
249	Thiol–ene Click Hydrogels for Therapeutic Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 165-179.	2.6	167
250	Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche. Biomaterials, 2016, 77, 44-52.	5.7	77
251	Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review. International Journal of Immunopathology and Pharmacology, 2016, 29, 3-8.	1.0	63
252	Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. Journal of Cell Biology, 2016, 212, 113-124.	2.3	100
253	Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 2016, 4, 3544-3554.	2.9	149
254	Engineering Regenerative Dextran Hydrogels for Acute Skin Wound Healing. , 2016, , 111-136.		1
255	Biomaterials approaches to modeling macrophage–extracellular matrix interactions in the tumor microenvironment. Current Opinion in Biotechnology, 2016, 40, 16-23.	3.3	26
256	Recent advances in hyaluronic acid hydrogels for biomedical applications. Current Opinion in Biotechnology, 2016, 40, 35-40.	3.3	441
257	Injectable Hydrogels for Articular Cartilage Regeneration. , 2016, , 355-376.		2
258	Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomaterialia, 2016, 35, 68-76.	4.1	164
259	High throughput screening for discovery of materials that control stem cell fate. Current Opinion in Solid State and Materials Science, 2016, 20, 202-211.	5.6	38
260	Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3185-3190.	3.3	136
261	Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomedical Materials (Bristol), 2016, 11, 022001.	1.7	82
262	Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell, 2016, 18, 39-52.	5.2	222
263	Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning. ACS Applied Materials & Amp; Interfaces, 2016, 8, 14896-14908.	4.0	107

		CITATION REPORT		
#	Article		IF	Citations
264	Improving Stem Cell Therapeutics with Mechanobiology. Cell Stem Cell, 2016, 18, 16-	19.	5.2	30
265	Polysaccharide-Based Hydrogels as Biomaterials. Springer Series on Polymer and Comp 2016, , 45-71.	bosite Materials,	0.5	12
266	Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell ac phenotype. Acta Biomaterialia, 2016, 30, 26-48.	lhesion and	4.1	152
267	Interplay of Matrix Stiffness and Cell–Cell Contact in Regulating Differentiation of S Applied Materials & Interfaces, 2016, 8, 21903-21913.	tem Cells. ACS	4.0	111
268	Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Materials, 2016, 15, 318-325.	Nature	13.3	319
269	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature M 15, 326-334.	aterials, 2016,	13.3	1,650
270	Electrically driven intracellular and extracellular nanomanipulators evoke neurogenic/cardiomyogenic differentiation in human mesenchymal stem cells. Biomat 26-43.	erials, 2016, 77,	5.7	60
271	Photochemical Patterning of Cellular Microenvironments. , 2016, , 27-46.			0
272	Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix i Matrix Biology, 2017, 57-58, 324-333.	nteractions.	1.5	99
273	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 20	17, 45, 148-163.	1.3	507
274	Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues o and species variability. Journal of Tissue Engineering and Regenerative Medicine, 2017	f xenogenicity , 11, 2876-2884.	1.3	8
275	Nanofiber scaffolds influence organelle structure and function in bone marrow stroma 105, 989-1001.	l cells. , 2017,		26
276	Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineer applications. Carbohydrate Polymers, 2017, 163, 280-291.	ing	5.1	99
277	Amplified Photodegradation of Cell‣aden Hydrogels via an Addition–Fragmentatio Reaction. Advanced Materials, 2017, 29, 1605001.	on Chain Transfer	11.1	88
278	Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, biomaterial platform. Scientific Reports, 2017, 7, 40573.	, scalable, 3D	1.6	51
279	Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engine Engineering - Part B: Reviews, 2017, 23, 451-461.	ering. Tissue	2.5	115
280	Cross-Linking Chemistry of Tyramine-Modified Hyaluronan Hydrogels Alters Mesenchy Early Attachment and Behavior. Biomacromolecules, 2017, 18, 855-864.	mal Stem Cell	2.6	48
282	Efficient In Situ Nucleophilic Thiol-yne Click Chemistry for the Synthesis of Strong Hyd Materials with Tunable Properties. ACS Macro Letters, 2017, 6, 93-97.	rogel	2.3	63

			-
#	ARTICLE	IF	CITATIONS
283	Single cell-laden protease-sensitive microniches for long-term culture in 3D. Lab on A Chip, 2017, 17, 727-737.	3.1	43
284	Development of hydrogels for regenerative engineering. Biotechnology Journal, 2017, 12, 1600394.	1.8	139
285	The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 2017, 117, 4376-4421.	23.0	424
286	Injectable Alginate Hydrogel Cross-Linked by Calcium Gluconate-Loaded Porous Microspheres for Cartilage Tissue Engineering. ACS Omega, 2017, 2, 443-454.	1.6	77
287	Optimal Environmental Stiffness for Stem Cell Mediated Ischemic Myocardium Repair. Methods in Molecular Biology, 2017, 1553, 293-304.	0.4	3
288	Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip. ACS Applied Materials & Interfaces, 2017, 9, 14606-14617.	4.0	61
289	Impact of matrix stiffness on fibroblast function. Materials Science and Engineering C, 2017, 74, 146-151.	3.8	65
290	Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Progress in Polymer Science, 2017, 71, 1-25.	11.8	379
291	Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments. Advanced Healthcare Materials, 2017, 6, 1700052.	3.9	56
292	Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. Journal of the American Chemical Society, 2017, 139, 7416-7427.	6.6	112
293	Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Biomaterials Science, 2017, 5, 1156-1173.	2.6	37
294	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
295	Effects of Functional Groups of Materials on Nonspecific Adhesion and Chondrogenic Induction of Mesenchymal Stem Cells on Free and Micropatterned Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 23574-23585.	4.0	75
296	Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials, 2017, 140, 103-114.	5.7	220
297	High-throughput generation of hyaluronic acid microgels via microfluidics-assisted enzymatic crosslinking and/or Diels–Alder click chemistry for cell encapsulation and delivery. Applied Materials Today, 2017, 9, 49-59.	2.3	49
298	A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs. Scientific Reports, 2017, 7, 3323.	1.6	98
299	Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
300	Dual Crossâ€Linked Biofunctional and Selfâ€Healing Networks to Generate Userâ€Defined Modular Gradient Hydrogel Constructs. Advanced Healthcare Materials, 2017, 6, 1700523.	3.9	30

#	Article	IF	CITATIONS
301	Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo. Seminars in Cell and Developmental Biology, 2017, 71, 84-98.	2.3	61
302	Directing Stem Cell Differentiation <i>via</i> Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array. ACS Nano, 2017, 11, 5915-5924.	7.3	89
303	A hyaluronic acid/graphene oxide hydrogel for enhanced ex vivo expansion of cord blood-derived CD34+ cells. Materials Letters, 2017, 205, 253-256.	1.3	6
304	Matrix Mechanosensing: From Scaling Concepts in 'Omics Data to Mechanisms in the Nucleus, Regeneration, and Cancer. Annual Review of Biophysics, 2017, 46, 295-315.	4.5	89
305	Chemical synthesis of biomimetic hydrogels for tissue engineering. Polymer International, 2017, 66, 1787-1799.	1.6	16
306	Combined influence of biophysical and biochemical cues on maintenance and proliferation of hematopoietic stem cells. Biomaterials, 2017, 138, 108-117.	5.7	47
307	Collagen Gels with Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS Applied Materials & Interfaces, 2017, 9, 19630-19637.	4.0	120
308	Combinatorial screening of 3D biomaterial properties that promote myofibrogenesis for mesenchymal stromal cell-based heart valve tissue engineering. Acta Biomaterialia, 2017, 58, 34-43.	4.1	24
309	New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. Current Stem Cell Reports, 2017, 3, 83-97.	0.7	5
310	Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness. Acta Biomaterialia, 2017, 58, 302-311.	4.1	85
311	Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale, 2017, 9, 10031-10037.	2.8	9
312	Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels. Acta Biomaterialia, 2017, 56, 80-90.	4.1	38
313	TopoWellPlate: A Wellâ€Plateâ€Based Screening Platform to Study Cell–Surface Topography Interactions. Advanced Biology, 2017, 1, e1700002.	3.0	16
314	Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models. Accounts of Chemical Research, 2017, 50, 703-713.	7.6	135
315	A Review of Cell-Based Strategies for Soft Tissue Reconstruction. Tissue Engineering - Part B: Reviews, 2017, 23, 336-346.	2.5	36
316	Preparation and Properties of 2, 4-2-Isocyanic Acid Methyl Ester/Poly(ϵ-caprolactone)/Diethylene Glycol Hydrogels. Journal of Macromolecular Science - Physics, 2017, 56, 245-253.	0.4	6
317	New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQqO O O rgBT /	Oyerlock 1	10 Tf 50 102

318	Bioresorbable polypeptide-based comb-polymers efficiently improves the stability and pharmacokinetics of proteins in vivo. Biomaterials Science, 2017, 5, 837-848.	2.6	45
-----	--	-----	----

#	Article	IF	CITATIONS
319	The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomaterialia, 2017, 54, 35-44.	4.1	51
320	Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Acta Biomaterialia, 2017, 49, 284-295.	4.1	107
321	Differential integrin expression regulates cell sensing of the matrix nanoscale geometry. Acta Biomaterialia, 2017, 50, 280-292.	4.1	24
322	Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomaterialia, 2017, 50, 41-55.	4.1	152
323	Influence of Cross-Linkers on the <i>in Vitro</i> Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels. ACS Applied Materials & Interfaces, 2017, 9, 3318-3329.	4.0	27
324	The diverse roles of hydrogel mechanics in injectable stem cell transplantation. Current Opinion in Chemical Engineering, 2017, 15, 15-23.	3.8	71
325	Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. Polymer, 2017, 109, 38-48.	1.8	39
326	Harnessing cell-material interaction to control cell fate: design principle of advanced functional hydrogel materials. Journal of Chemical Sciences, 2017, 129, 1807-1816.	0.7	4
327	Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nature Materials, 2017, 16, 1233-1242.	13.3	310
328	Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Materials Horizons, 2017, 4, 1020-1040.	6.4	144
329	Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nature Materials, 2017, 16, 1243-1251.	13.3	348
330	In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering. Bioactive Materials, 2017, 2, 253-259.	8.6	18
331	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
332	Thrombosisâ€Responsive Thrombolytic Coating Based on Thrombinâ€Degradable Tissue Plasminogen Activator (tâ€PA) Nanocapsules. Advanced Functional Materials, 2017, 27, 1703934.	7.8	35
333	The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process. Journal of Biomaterials Applications, 2017, 32, 492-503.	1.2	10
334	Bioprinting-Based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. ACS Biomaterials Science and Engineering, 2017, 3, 3534-3545.	2.6	98
335	Hydrogel Modulus Affects Proliferation Rate and Pluripotency of Human Mesenchymal Stem Cells Grown in Three-Dimensional Culture. ACS Biomaterials Science and Engineering, 2017, 3, 3433-3446.	2.6	33
336	Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomaterialia, 2017, 63, 190-199.	4.1	39

#	Article	IF	CITATIONS
337	Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1194-1211.	2.0	7
338	A Bioinformatics 3D Cellular Morphotyping Strategy for Assessing Biomaterial Scaffold Niches. ACS Biomaterials Science and Engineering, 2017, 3, 2302-2313.	2.6	4
339	Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nature Biomedical Engineering, 2017, 1, 758-770.	11.6	77
340	Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication. Carbohydrate Polymers, 2017, 178, 8-17.	5.1	21
341	Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels. Biomaterials Science, 2017, 5, 2231-2240.	2.6	33
342	Injectable Stem Cell Laden Open Porous Microgels That Favor Adipogenesis: In Vitro and in Vivo Evaluation. ACS Applied Materials & Interfaces, 2017, 9, 34751-34761.	4.0	30
343	Advances in intravesical drug delivery systems to treat bladder cancer. International Journal of Pharmaceutics, 2017, 532, 105-117.	2.6	58
344	Dynamic bioengineered hydrogels as scaffolds for advanced stem cell and organoid culture. MRS Communications, 2017, 7, 472-486.	0.8	25
345	Matrix degradability controls multicellularity of 3D cell migration. Nature Communications, 2017, 8, 371.	5.8	192
346	Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia, 2017, 60, 64-80.	4.1	62
347	Development of a Virtual Cell Model to Predict Cell Response to Substrate Topography. ACS Nano, 2017, 11, 9084-9092.	7.3	33
348	Selfâ€Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonateâ€Magnesium (Mg ²⁺) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking. Advanced Functional Materials, 2017, 27, 1701642.	7.8	110
349	Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Advances in Colloid and Interface Science, 2017, 247, 589-609.	7.0	72
350	Synthesis and Spatiotemporal Modification of Biocompatible and Stimuliâ€Responsive Carboxymethyl Cellulose Hydrogels Using Thiolâ€Norbornene Chemistry. Macromolecular Bioscience, 2017, 17, 1700107.	2.1	21
351	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	14.8	151
352	Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chemical Society Reviews, 2017, 46, 6255-6275.	18.7	268
353	Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 2017, 46, 6532-6552.	18.7	317
354	Use of Tethered Hydrogel Microcoatings for Mesenchymal Stem Cell Equilibrium, Differentiation, and Selfâ€Organization into Microtissues. Advanced Biology, 2017, 1, e1700116.	3.0	3

#	Article	IF	CITATIONS
355	3D microniches reveal the importance of cell size and shape. Nature Communications, 2017, 8, 1962.	5.8	145
356	Making way for neural stemness. Nature Materials, 2017, 16, 1174-1176.	13.3	2
357	Designer biomaterials for mechanobiology. Nature Materials, 2017, 16, 1164-1168.	13.3	144
358	Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 2017, 18, 728-742.	16.1	1,042
359	Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nature Biomedical Engineering, 2017, 1, .	11.6	86
360	Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light. ACS Applied Materials & Interfaces, 2017, 9, 24511-24517.	4.0	63
361	Bioinspired Hydrogels to Engineer Cancer Microenvironments. Annual Review of Biomedical Engineering, 2017, 19, 109-133.	5.7	58
362	A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions. BMC Systems Biology, 2017, 11, 55.	3.0	48
363	Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel. Colloids and Surfaces B: Biointerfaces, 2017, 149, 168-173.	2.5	52
364	Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells. Acta Biomaterialia, 2017, 48, 258-269.	4.1	64
365	Molecular Force Sensors: From Fundamental Concepts toward Applications in Cell Biology. Advanced Materials Interfaces, 2017, 4, 1600441.	1.9	30
366	Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Progress in Polymer Science, 2017, 65, 53-82.	11.8	149
367	Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. Journal of Biomedical Materials Research - Part A, 2017, 105, 640-661.	2.1	53
368	5.9 Cell Encapsulation â [~] †. , 2017, , 154-174.		3
369	Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Frontiers in Bioengineering and Biotechnology, 2017, 5, 23.	2.0	345
370	On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. , 2017, 34, 217-231.		144
371	Material and Mechanobiological Considerations for Bone Regeneration. , 2017, , 197-264.		4
372	2.9 Materials as Artificial Stem Cell Microenvironments â~†. , 2017, , 179-201.		0

#	Article	IF	CITATIONS
373	Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells. PLoS ONE, 2017, 12, e0173647.	1.1	22
374	Mechanically tuned 3 dimensional hydrogels support human mammary fibroblast growth and viability. BMC Cell Biology, 2017, 18, 35.	3.0	10
375	A comparative study of chondroitin sulfate and heparan sulfate for directing three-dimensional chondrogenesis of mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 284.	2.4	33
376	Modeling, validation and verification of three-dimensional cell-scaffold contacts from terabyte-sized images. BMC Bioinformatics, 2017, 18, 526.	1.2	4
377	7 Disc Regeneration: In Vitro Approaches and Experimental Results. , 2017, , .		0
378	Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents. International Journal of Nanomedicine, 2017, Volume 12, 7695-7707.	3.3	9
379	The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Acta Biomaterialia, 2018, 71, 37-48.	4.1	20
380	Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Biomaterials, 2018, 178, 467-480.	5.7	118
381	Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates. Biomaterials, 2018, 171, 23-33.	5.7	64
382	Engineering Proâ€Regenerative Hydrogels for Scarless Wound Healing. Advanced Healthcare Materials, 2018, 7, e1800016.	3.9	59
383	Assembly of PEG Microgels into Porous Cellâ€Instructive 3D Scaffolds via Thiolâ€Ene Click Chemistry. Advanced Healthcare Materials, 2018, 7, e1800160.	3.9	87
384	Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4631-4636.	3.3	57
385	Emerging properties of hydrogels in tissue engineering. Journal of Tissue Engineering, 2018, 9, 204173141876828.	2.3	160
386	Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nature Biomedical Engineering, 2018, 2, 540-554.	11.6	78
387	The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Biomedical Materials (Bristol), 2018, 13, 045009.	1.7	30
388	Single-Cell Microgels: Technology, Challenges, and Applications. Trends in Biotechnology, 2018, 36, 850-865.	4.9	64
389	Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomaterialia, 2018, 70, 110-119.	4.1	42
390	Polyethylene glycol–gelatin hydrogels with tuneable stiffness prepared by horseradish peroxidase-activated tetrazine–norbornene ligation. Journal of Materials Chemistry B, 2018, 6, 1394-1401.	2.9	36

	CITATION R	EPORT	
#	Article	IF	CITATIONS
391	Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 2018, 3, .	23.3	96
392	Engineering mechanical microenvironment of macrophage and its biomedical applications. Nanomedicine, 2018, 13, 555-576.	1.7	19
393	Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nature Reviews Materials, 2018, 3, .	23.3	297
394	Chondroinductive factor-free chondrogenic differentiation of human mesenchymal stem cells in graphene oxide-incorporated hydrogels. Journal of Materials Chemistry B, 2018, 6, 908-917.	2.9	38
395	Bioorthogonal Strategies for Engineering Extracellular Matrices. Advanced Functional Materials, 2018, 28, 1706046.	7.8	83
396	Protein Nanosheet Mechanics Controls Cell Adhesion and Expansion on Low-Viscosity Liquids. Nano Letters, 2018, 18, 1946-1951.	4.5	93
397	Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 2018, 9, 614.	5.8	150
398	Engineering Stem and Stromal Cell Therapies for Musculoskeletal Tissue Repair. Cell Stem Cell, 2018, 22, 325-339.	5.2	132
399	Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials, 2018, 163, 128-141.	5.7	86
400	Sprouting angiogenesis induces significant mechanical heterogeneities and ECM stiffening across length scales in fibrin hydrogels. Biomaterials, 2018, 162, 99-108.	5.7	49
401	Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Advanced Healthcare Materials, 2018, 7, 1701165.	3.9	96
402	Recent Progress in Developing Injectable Matrices for Enhancing Cell Delivery and Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1701065.	3.9	59
403	Synthesis and functionalization of chitosan built hydrogel with induced hydrophilicity for extended release of sparingly soluble drugs. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 376-396.	1.9	18
404	3D Electrophoresisâ€Assisted Lithography (3DEAL): 3D Molecular Printing to Create Functional Patterns and Anisotropic Hydrogels. Advanced Functional Materials, 2018, 28, 1703014.	7.8	13
405	Nearâ€Infrared Lightâ€Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cellâ€Instructive 3D Microenvironments. Advanced Materials, 2018, 30, 1705564.	11.1	87
406	Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nature Chemistry, 2018, 10, 251-258.	6.6	215
407	Polysaccharideâ€Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. Advanced Science, 2018, 5, 1700513.	5.6	226
408	Coordinating Thermogel for Stem Cell Spheroids and Their Cytoâ€Effectiveness. Advanced Functional Materials, 2018, 28, 1706286.	7.8	28

#	Article	IF	CITATIONS
409	Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Advanced Healthcare Materials, 2018, 7, e1700939.	3.9	105
410	Scarless wound healing: Transitioning from fetal research to regenerative healing. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e309.	5.9	91
411	Citrate chemistry and biology for biomaterials design. Biomaterials, 2018, 178, 383-400.	5.7	66
412	Impact of surface adhesion and sample heterogeneity on the multiscale mechanical characterisation of soft biomaterials. Scientific Reports, 2018, 8, 6780.	1.6	34
413	Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. Advances in Wound Care, 2018, 7, 47-56.	2.6	150
414	Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025718.	2.9	67
415	Effect of the scaffold microenvironment on cell polarizability and capacitance determined by probabilistic computations. Biomedical Materials (Bristol), 2018, 13, 025012.	1.7	7
416	Antioxidant activity and controlled drug delivery potential of tragacanth gum-cl- poly (lactic) Tj ETQq1 1 0.7 2534-2543.	'84314 rgBT 3.6	/Overlock 10 Tf 49
417	Fluorous gels of a fluorous alcohol using a low molecular weight anthracene organogelator. Journal of Fluorine Chemistry, 2018, 205, 30-34.	0.9	5
418	Toward Customized Extracellular Niche Engineering: Progress in Cellâ€Entrapment Technologies. Advanced Materials, 2018, 30, 1703948.	11.1	51
419	Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annual Review of Biomedical Engineering, 2018, 20, 21-47.	5.7	108
420	Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials, 2018, 154, 213-222.	5.7	368
421	Supramolecular polymeric biomaterials. Biomaterials Science, 2018, 6, 10-37.	2.6	129
422	Functionally-Relevant Morphological Profiling: A Tool to Assess Cellular Heterogeneity. Trends in Biotechnology, 2018, 36, 105-118.	4.9	49
423	Physical cues of biomaterials guide stem cell fate of differentiation: The effect of elasticity of cell culture biomaterials. Open Physics, 2018, 16, 943-955.	0.8	13
424	Label-free and real-time monitoring of human mesenchymal stem cell differentiation in 2D and 3D cell culture systems using impedance cell sensors. RSC Advances, 2018, 8, 31246-31254.	1.7	13
425	Chitosan–Lysozyme Conjugates for Enzyme-Triggered Hydrogel Degradation in Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2018, 10, 41138-41145.	4.0	82
426	Auditory disorders and future therapies with delivery systems. Journal of Tissue Engineering, 2018, 9, 204173141880845.	2.3	19

#	Article	IF	CITATIONS
427	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chemical Society Reviews, 2018, 47, 8639-8684.	18.7	115
428	Biomechanical Characterization at the Cell Scale: Present and Prospects. Frontiers in Physiology, 2018, 9, 1449.	1.3	59
429	Genetically Programming Stress-Relaxation Behavior in Entirely Protein-Based Molecular Networks. ACS Macro Letters, 2018, 7, 1468-1474.	2.3	28
430	Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 190.	2.0	37
431	Synthesis and 3D Printing of PEG–Poly(propylene fumarate) Diblock and Triblock Copolymer Hydrogels. ACS Macro Letters, 2018, 7, 1254-1260.	2.3	50
432	Hydrogel Biomaterials for Stem Cell Microencapsulation. Polymers, 2018, 10, 997.	2.0	101
433	Bi-directional cell-pericellular matrix interactions direct stem cell fate. Nature Communications, 2018, 9, 4049.	5.8	90
434	Recreating stem-cell niches using self-assembling biomaterials. , 2018, , 421-454.		1
435	Tuning Bulk Hydrogel Degradation by Simultaneous Control of Proteolytic Cleavage Kinetics and Hydrogel Network Architecture. ACS Macro Letters, 2018, 7, 1302-1307.	2.3	70
436	Biomechanics in Annulus Fibrosus Degeneration and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1078, 409-420.	0.8	34
437	Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications. Frontiers in Chemistry, 2018, 6, 499.	1.8	211
438	Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nature Materials, 2018, 17, 1063-1075.	13.3	181
439	Cyclic Stiffness Modulation of Cell‣aden Protein–Polymer Hydrogels in Response to Userâ€Specified Stimuli Including Light. Advanced Biology, 2018, 2, 1800240.	3.0	80
440	Dynamic PEG–Peptide Hydrogels via Visible Light and FMNâ€Induced Tyrosine Dimerization. Advanced Healthcare Materials, 2018, 7, e1800954.	3.9	20
441	Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185, 240-275.	5.7	259
442	Secondary Photocrosslinking of Click Hydrogels To Probe Myoblast Mechanotransduction in Three Dimensions. Journal of the American Chemical Society, 2018, 140, 11585-11588.	6.6	64
443	A Modular Approach to Sensitized Twoâ€₽hoton Patterning of Photodegradable Hydrogels. Angewandte Chemie, 2018, 130, 15342-15347.	1.6	15
444	A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 15122-15127.	7.2	68

#	Article	IF	CITATIONS
445	Hydrogels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	36
446	Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface, 2018, 15, 20180388.	1.5	107
447	Towards organogenesis and morphogenesis <i>in vitro</i> : harnessing engineered microenvironment and autonomous behaviors of pluripotent stem cells. Integrative Biology (United Kingdom), 2018, 10, 574-586.	0.6	7
448	Stem Cell Expansion and Fate Decision on Liquid Substrates Are Regulated by Self-Assembled Nanosheets. ACS Nano, 2018, 12, 9206-9213.	7.3	44
449	Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. Advanced Functional Materials, 2018, 28, 1802642.	7.8	58
450	Hydrogel-Based Strategies for Stem Cell Therapy. Gels Horizons: From Science To Smart Materials, 2018, , 87-112.	0.3	2
451	Self-Healing Boronic Acid-Based Hydrogels for 3D Co-cultures. ACS Macro Letters, 2018, 7, 1105-1110.	2.3	126
452	Neighboring cells override 3D hydrogel matrix cues to drive human MSC quiescence. Biomaterials, 2018, 176, 13-23.	5.7	38
453	Core–shell patterning of synthetic hydrogels <i>via</i> interfacial bioorthogonal chemistry for spatial control of stem cell behavior. Chemical Science, 2018, 9, 5394-5404.	3.7	31
454	Bioengineering strategies to accelerate stem cell therapeutics. Nature, 2018, 557, 335-342.	13.7	316
455	The Effect of Addition of Calcium Phosphate Particles to Hydrogelâ€Based Composite Materials on Stiffness and Differentiation of Mesenchymal Stromal Cells toward Osteogenesis. Advanced Healthcare Materials, 2018, 7, e1800343.	3.9	21
456	A Multiple Stimuli‣ensitive Lowâ€Molecularâ€Weight Gel with an Aggregateâ€Induced Emission Effect for Sol–Gel Transition Detection. ChemistryOpen, 2018, 7, 457-462.	0.9	4
457	Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 2018, 20, 766-774.	4.6	201
458	Enzyme-Responsive Hydrogels. Polymers and Polymeric Composites, 2018, , 1-23.	0.6	0
459	Recent Advances in Engineering the Stem Cell Microniche in 3D. Advanced Science, 2018, 5, 1800448.	5.6	83
460	RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells. Biomaterials, 2018, 181, 182-188.	5.7	64
461	3D Spatiotemporal Mechanical Microenvironment: A Hydrogelâ€Based Platform for Guiding Stem Cell Fate. Advanced Materials, 2018, 30, e1705911.	11.1	162
462	Colloidal gelatin microgels with tunable elasticity support the viability and differentiation of mesenchymal stem cells under proâ€inflammatory conditions. Journal of Biomedical Materials Research - Part A, 2018, 106, 2753-2761.	2.1	13

#	Article	IF	CITATIONS
463	Effect of Functionalized Carbon Nanotubes and their Citric Acid Polymerization on Mesenchymal Stem Cells <i>In Vitro</i> . Journal of Nanomaterials, 2018, 2018, 1-12.	1.5	8
464	Hydrogels for Directed Stem Cell Differentiation and Tissue Repair. Springer Series in Biomaterials Science and Engineering, 2018, , 73-93.	0.7	Ο
465	Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3108-3124.	2.6	31
466	Nondestructive Realâ€Time Monitoring of Enhanced Stem Cell Differentiation Using a Grapheneâ€Au Hybrid Nanoelectrode Array. Advanced Materials, 2018, 30, e1802762.	11.1	44
467	Analysis of Chirality Effects on Stem Cell Fate Using Three-dimensional Fibrous Peptide Hydrogels. ACS Applied Bio Materials, 2018, 1, 538-543.	2.3	22
468	Functional Hydrogels as Biomaterials. Springer Series in Biomaterials Science and Engineering, 2018, , .	0.7	8
469	Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers. ACS Applied Materials & Interfaces, 2018, 10, 26016-26027.	4.0	25
470	Modulating Viscoelasticity, Stiffness, and Degradation of Synthetic Cellular Niches via Stoichiometric Tuning of Covalent versus Dynamic Noncovalent Cross-Linking. ACS Central Science, 2018, 4, 971-981.	5.3	33
471	Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials, 2018, 174, 1-16.	5.7	140
472	Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials, 2018, 178, 435-447.	5.7	25
473	Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials, 2018, 174, 17-30.	5.7	61
474	It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Molecular Therapy, 2018, 26, 2087-2106.	3.7	68
475	Near-Infrared-Triggered <i>in Situ</i> Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. ACS Nano, 2018, 12, 9412-9422.	7.3	95
476	A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nature Communications, 2018, 9, 3147.	5.8	87
477	Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass. Scientific Reports, 2018, 8, 8758.	1.6	41
478	TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels. PLoS ONE, 2018, 13, e0194679.	1.1	29
479	Tissue repair and regeneration with endogenous stem cells. Nature Reviews Materials, 2018, 3, 174-193.	23.3	168
480	Tissue engineered bone mimetics to study bone disorders exÂvivo: Role of bioinspired materials. Biomaterials, 2019, 198, 107-121.	5.7	44

#	Article	IF	Citations
481	Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms. Springer Theses, 2019, , .	0.0	9
482	Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomaterialia, 2019, 97, 74-92.	4.1	88
483	Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics, 2019, 11, 407.	2.0	177
484	The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. International Journal of Biological Macromolecules, 2019, 140, 245-254.	3.6	61
485	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622.	23.3	251
486	Maintenance of stem cell viability and differentiation potential following cryopreservation within 3-dimensional hyaluronic acid hydrogels. Cryobiology, 2019, 90, 83-88.	0.3	16
487	3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate. Biomaterials, 2019, 218, 119338.	5.7	22
488	In Vivo Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Two olor NIR Imaging. Advanced Functional Materials, 2019, 29, 1903753.	7.8	45
489	Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules, 2019, 20, 3009-3020.	2.6	12
490	3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integrative Biology (United Kingdom), 2019, 11, 221-234.	0.6	33
491	Subtle Regulation of Scaffold Stiffness for the Optimized Control of Cell Behavior. ACS Applied Bio Materials, 2019, 2, 3108-3119.	2.3	25
492	Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 2019, 30, 115.	1.7	446
493	Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing. Stem Cells, 2019, 38, 231-245.	1.4	19
494	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
495	Recent advances in supramolecular hydrogels for biomedical applications. Materials Today Advances, 2019, 3, 100021.	2.5	93
496	Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs. Biomacromolecules, 2019, 20, 4502-4511.	2.6	54
497	Influence of hyaluronic acid modification on CD44 binding towards the design of hydrogel biomaterials. Biomaterials, 2019, 222, 119451.	5.7	100
498	Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function. Materials, 2019, 12, 2950.	1.3	15

#	Article	IF	CITATIONS
499	Leveraging Biomaterial Mechanics to Improve Pluripotent Stem Cell Applications for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 260.	2.0	19
500	Comparing Experimental Measurements of Limiting Current in Polymer Electrolytes with Theoretical Predictions. Journal of the Electrochemical Society, 2019, 166, A3228-A3234.	1.3	33
501	Tailoring supramolecular guest–host hydrogel viscoelasticity with covalent fibrinogen double networks. Journal of Materials Chemistry B, 2019, 7, 1753-1760.	2.9	36
502	Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis. Biomaterials Science, 2019, 7, 618-633.	2.6	37
503	Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104.	11.6	245
504	Refined assessment of the impact of cell shape on human mesenchymal stem cell differentiation in 3D contexts. Acta Biomaterialia, 2019, 87, 166-176.	4.1	10
505	Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nature Communications, 2019, 10, 529.	5.8	128
506	Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)–oxime hydrogels with invariant precursor composition, concentration, and stoichiometry. Materials Today Chemistry, 2019, 11, 244-252.	1.7	11
507	Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst, The, 2019, 144, 846-858.	1.7	64
508	Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Acta Biomaterialia, 2019, 94, 97-111.	4.1	38
509	The role of scaffolds in tissue engineering. , 2019, , 23-49.		10
510	Oxidized alginate beads for tunable release of osteogenically potent mesenchymal stromal cells. Materials Science and Engineering C, 2019, 104, 109911.	3.8	8
511	Advances in 3D single particle localization microscopy. APL Photonics, 2019, 4, .	3.0	35
512	Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space. Acta Biomaterialia, 2019, 96, 81-98.	4.1	21
513	Recent advances in the design of injectable hydrogels for stem cell-based therapy. Journal of Materials Chemistry B, 2019, 7, 3775-3791.	2.9	71
514	Injectable biomaterials for translational medicine. Materials Today, 2019, 28, 81-97.	8.3	82
515	Mechanotransduction and Growth Factor Signaling in Hydrogel-Based Microenvironments. , 2019, , 87-87.		1
516	Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. Journal of Bone and Mineral Research, 2019, 34, 1894-1909.	3.1	29

#	Article	IF	CITATIONS
517	Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and <i>in situ</i> mechanical modification. Polymer Chemistry, 2019, 10, 3180-3193.	1.9	25
518	Fibrinogenâ€Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Twoâ€Dimensional and Threeâ€Dimensional Cell Cultures. Advanced Healthcare Materials, 2019, 8, 1801436.	3.9	16
519	Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomaterialia, 2019, 92, 254-264.	4.1	67
520	Differential adhesion and fibrinolytic activity of mesenchymal stem cells from human bone marrow, placenta, and Wharton's jelly cultured in a fibrin hydrogel. Journal of Tissue Engineering, 2019, 10, 204173141984062.	2.3	12
521	Assembly of functionalized silk together with cells to obtain proliferative 3D cultures integrated in a network of ECM-like microfibers. Scientific Reports, 2019, 9, 6291.	1.6	29
522	Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Science Translational Medicine, 2019, 11, .	5.8	171
523	Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo. Acta Biomaterialia, 2019, 91, 159-172.	4.1	59
524	Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 2019, 11, 035027.	3.7	142
525	Mimicking the physical cues of the ECM in angiogenic biomaterials. International Journal of Energy Production and Management, 2019, 6, 61-73.	1.9	57
526	Engineering biomimetic and instructive materials for wound healing and regeneration. Current Opinion in Biomedical Engineering, 2019, 10, 97-106.	1.8	14
527	Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials, 2019, 210, 51-61.	5.7	179
528	Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Scientific Reports, 2019, 9, 4921.	1.6	49
529	Biomaterials to Mimic and Heal Connective Tissues. Advanced Materials, 2019, 31, e1806695.	11.1	131
530	Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials, 2019, 205, 64-80.	5.7	72
531	Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 2019, 18, 883-891.	13.3	273
532	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. Advanced Materials, 2019, 31, e1900582.	11.1	73
533	Polyrotaxane-based biointerfaces with dynamic biomaterial functions. Journal of Materials Chemistry B, 2019, 7, 2123-2129.	2.9	32
534	3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 2019, 95, 214-224.	4.1	85

#	Article	IF	CITATIONS
535	On the synthesis and characterization of biofunctional hyaluronic acid based injectable hydrogels for the repair of cartilage lesions. European Polymer Journal, 2019, 114, 47-56.	2.6	33
536	Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. Biochip Journal, 2019, 13, 8-19.	2.5	49
537	Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials, 2019, 200, 15-24.	5.7	172
538	Injectable, strongly compressible hyaluronic acid hydrogels via incorporation of Pluronic F127 diacrylate nanomicelles. Materials Letters, 2019, 243, 112-115.	1.3	12
539	Biomaterials used in stem cell therapy for spinal cord injury. Progress in Materials Science, 2019, 103, 374-424.	16.0	43
540	Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomaterialia, 2019, 95, 348-356.	4.1	117
541	A comparison of human mesenchymal stem cell osteogenesis in poly(ethylene glycol) hydrogels as a function of MMPâ€sensitive crosslinker and crosslink density in chemically defined medium. Biotechnology and Bioengineering, 2019, 116, 1523-1536.	1.7	15
542	Dynamic and Cell-Infiltratable Hydrogels as Injectable Carrier of Therapeutic Cells and Drugs for Treating Challenging Bone Defects. ACS Central Science, 2019, 5, 440-450.	5.3	166
543	Initial Cytotoxicity of Mineral Trioxide Aggregate (MTA) during Setting on Human Mesenchymal Stem Cells. Advances in Materials Science and Engineering, 2019, 2019, 1-7.	1.0	4
544	Smart injectable biogels based on hyaluronic acid bioconjugates finely substituted with poly(\hat{l}^2 -amino) Tj ETQq1 \hat{l}	L 0.78431 2.6	4 rgBT /Over
545	Dendritic Hydrogel Bioink for 3D Printing of Bacterial Microhabitat. ACS Applied Bio Materials, 2019, 2, 5941-5948.	2.3	6
546	Micro-Engineered Models of Development Using Induced Pluripotent Stem Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 357.	2.0	8
547	Hyaluronic acid-based hydrogels with independently tunable mechanical and bioactive signaling features. Biointerphases, 2019, 14, 061005.	0.6	12
548	Solution viscosity regulates chondrocyte proliferation and phenotype during 3D culture. Journal of Materials Chemistry B, 2019, 7, 7713-7722.	2.9	32
549	Cellular Volume and Matrix Stiffness Direct Stem Cell Behavior in a 3D Microniche. ACS Applied Materials & Interfaces, 2019, 11, 1754-1759.	4.0	66
550	Chemical Approaches to Dynamically Modulate the Properties of Synthetic Matrices. ACS Macro Letters, 2019, 8, 7-16.	2.3	26
551	Artificial cellular nano-environment composed of collagen-based nanofilm promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2019, 86, 247-256.	4.1	26
552	Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier. Cell Biology International, 2019, 43, 84-97.	1.4	26

		CITATION REPORT		
#	Article		IF	CITATIONS
553	4D Biomaterials for Lightâ \in Guided Angiogenesis. Advanced Functional Materials, 2019,	29, 1807734.	7.8	41
554	Amino acid functionalized pH- and temperature-sensitive biodegradable injectable hydro physicochemical characterization and in vivo degradation kinetics. International Journal Materials and Polymeric Biomaterials, 2019, 68, 891-900.	gels: synthesis, of Polymeric	1.8	2
555	Enzyme-Responsive Hydrogels. Polymers and Polymeric Composites, 2019, , 309-330.		0.6	4
556	Role of nuclear mechanosensitivity in determining cellular responses to forces and biom Biomaterials, 2019, 197, 60-71.	aterials.	5.7	37
557	A new class of biological materials: Cell membrane-derived hydrogel scaffolds. Biomateri 244-254.	als, 2019, 197,	5.7	55
558	Celatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasi Applied Bio Materials, 2019, 2, 916-929.	on. ACS	2.3	14
559	Droplet-based microfluidics for cell encapsulation and delivery. , 2019, , 307-335.			9
560	Perspective into the regulation of cellâ€generated forces toward stem cell migratior differentiation . Journal of Cellular Biochemistry, 2019, 120, 8884-8890.	and	1.2	5
561	Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enha Tissue Function. IEEE Reviews in Biomedical Engineering, 2019, 12, 333-351.	ncing Natural	13.1	38
562	Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marr mesenchymal stem cells. International Journal of Biological Macromolecules, 2020, 142,	ow-derived 332-344.	3.6	48
563	Biomaterials for Personalized Cell Therapy. Advanced Materials, 2020, 32, e1902005.		11.1	76
564	Transmission and regulation of biochemical stimulus via a nanoshell directly adsorbed or membrane to enhance chondrogenic differentiation of mesenchymal stem cell. Biotechr Bioengineering, 2020, 117, 184-193.	n the cell ology and	1.7	5
565	4D hydrogel for dynamic cell culture with orthogonal, wavelength-dependent mechanica biochemical cues. Materials Horizons, 2020, 7, 111-116.	al and	6.4	34
566	ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Proport of Biomedical Engineering, 2020, 48, 1071-1089.	erties. Annals	1.3	104
567	Voidâ€Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. Adva Functional Materials, 2020, 30, 1908349.	Inced	7.8	96
568	Interplay between degradability and integrin signaling on mesenchymal stem cell function poly(ethylene glycol) based microporous annealed particle hydrogels. Acta Biomaterialia 227-236.	n within , 2020, 101,	4.1	32
569	A collagen mimetic peptide-modified hyaluronic acid hydrogel system with enzymatically degradation for mesenchymal stem cell differentiation. Materials Science and Engineerir 110276.	/ mediated 1g C, 2020, 108,	3.8	25
570	Hyaluronic Acid Hydrogel Crosslinked with Complementary DNAs. Advances in Polymer ⁻ 2020, 2020, 1-7.	Fechnology,	0.8	12

#	ARTICLE	IF	CITATIONS
571	Robust alginate/hyaluronic acid thiolä€"yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomaterials Science, 2020, 8, 405-412.	2.6	48
572	Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative activities. Nature Communications, 2020, 11, 114.	5.8	131
573	Double Rolling Circle Amplification Generates Physically Cross-Linked DNA Network for Stem Cell Fishing. Journal of the American Chemical Society, 2020, 142, 3422-3429.	6.6	137
574	Outstanding Degradation Resistance of Hyaluronic Acid Achieved by Flavonoid Conjugations: Rheological Behavior. Macromolecular Research, 2020, 28, 351-355.	1.0	0
575	Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035691.	2.3	10
576	Well Plate Integrated Topography Gradient Screening Technology for Studying Cellâ€5urface Topography Interactions. Advanced Biology, 2020, 4, e1900218.	3.0	9
577	Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting, 2020, 18, e00073.	2.9	60
578	Mechanics-Controlled Dynamic Cell Niches Guided Osteogenic Differentiation of Stem Cells via Preserved Cellular Mechanical Memory. ACS Applied Materials & Interfaces, 2020, 12, 260-274.	4.0	30
579	Gelatin Templated Polypeptide Coâ€Cross‣inked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	3.9	112
580	Immobilized RGD concentration and proteolytic degradation synergistically enhance vascular sprouting within hydrogel scaffolds of varying modulus. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 324-349.	1.9	10
581	Speciesâ€specific consequences of an E40K missense mutation in superoxide dismutase 1 (SOD1). FASEB Journal, 2020, 34, 458-473.	0.2	5
582	Small Physical Cross-Linker Facilitates Hyaluronan Hydrogels. Molecules, 2020, 25, 4166.	1.7	5
583	Dual-crosslinked hyaluronan hydrogels with rapid gelation and high injectability for stem cell protection. Scientific Reports, 2020, 10, 14997.	1.6	20
584	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
585	Complementary techniques to analyse pericellular matrix formation by human MSC within hyaluronic acid hydrogels. Materials Advances, 2020, 1, 2888-2896.	2.6	4
586	Hydrogel Micropost Arrays with Single Post Tunability to Study Cell Volume and Mechanotransduction. Advanced Biology, 2020, 4, e2000012.	3.0	11
587	Engineered Fullâ€Length Fibronectin–Hyaluronic Acid Hydrogels for Stem Cell Engineering. Advanced Healthcare Materials, 2020, 9, e2000989.	3.9	28
588	Designing Decellularized Extracellular Matrixâ€Based Bioinks for 3D Bioprinting. Advanced Healthcare Materials, 2020, 9, e2000734.	3.9	94

#	Article	IF	CITATIONS
589	Engineering macroscale cell alignment through coordinated toolpath design using support-assisted 3D bioprinting. Journal of the Royal Society Interface, 2020, 17, 20200294.	1.5	22
590	Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Acta Biomaterialia, 2020, 114, 307-322.	4.1	89
591	Soft Hydrogels for Balancing Cell Proliferation and Differentiation. ACS Biomaterials Science and Engineering, 2020, 6, 4687-4701.	2.6	37
592	A dynamic matrix potentiates mesenchymal stromal cell paracrine function <i>via</i> an effective mechanical dose. Biomaterials Science, 2020, 8, 4779-4791.	2.6	18
594	Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. , 2020, , 1217-1236.		4
595	Hyaluronic acid and its biomedical applications: A review. Engineered Regeneration, 2020, 1, 102-113.	3.0	122
596	Modeling the effects of hyaluronic acid degradation on the regulation of human astrocyte phenotype using multicomponent interpenetrating polymer networks (mIPNs). Scientific Reports, 2020, 10, 20734.	1.6	8
597	3D scaffold materials for skin cancer modeling. , 2020, , 305-328.		1
598	Discontinuous Dewetting in a Degassed Mold for Fabrication of Homogeneous Polymeric Microparticles. ACS Applied Materials & Interfaces, 2020, 12, 53318-53327.	4.0	14
599	Hydrogel Properties May Influence Mesenchymal Stem Cell Lineage Progression Through Modulating GAPDH Activity. Regenerative Engineering and Translational Medicine, 2020, , 1.	1.6	1
600	Biomimetic Cell-Laden MeHA Hydrogels for the Regeneration of Cartilage Tissue. Polymers, 2020, 12, 1598.	2.0	6
601	Dual alginate crosslinking for local patterning of biophysical and biochemical properties. Acta Biomaterialia, 2020, 115, 185-196.	4.1	15
602	Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels. Burns and Trauma, 2020, 8, tkaa029.	2.3	33
603	Osteogenic and Adipogenic Differentiation of Mesenchymal Stem Cells in Gelatin Solutions of Different Viscosities. Advanced Healthcare Materials, 2020, 9, e2000617.	3.9	18
604	Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Current Osteoporosis Reports, 2020, 18, 526-540.	1.5	19
605	Matrix Control of Periodontal Ligament Cell Activity Via Synthetic Hydrogel Scaffolds. Tissue Engineering - Part A, 2020, 27, 733-747.	1.6	12
606	Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. Science Advances, 2020, 6, eaaz5894.	4.7	17
607	Controlled Deposition of 3D Matrices to Direct Single Cell Functions. Advanced Science, 2020, 7, 2001066.	5.6	19

#	Article	IF	CITATIONS
608	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Methods, 2020, 4, 2000500.	4.6	23
609	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	3.2	49
610	The Intersection of Mechanotransduction and Regenerative Osteogenic Materials. Advanced Healthcare Materials, 2020, 9, e2000709.	3.9	17
611	Harnessing the secreted extracellular matrix to engineer tissues. Nature Biomedical Engineering, 2020, 4, 357-363.	11.6	62
612	Graphene Hybrid Materials for Controlling Cellular Microenvironments. Materials, 2020, 13, 4008.	1.3	2
613	Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science Advances, 2020, 6, .	4.7	156
614	Photoconfigurable, Cell-Remodelable Disulfide Cross-linked Hyaluronic Acid Hydrogels. Biomacromolecules, 2020, 21, 4663-4672.	2.6	31
615	Impact of Four Common Hydrogels on Amyloid-β (Aβ) Aggregation and Cytotoxicity: Implications for 3D Models of Alzheimer's Disease. ACS Omega, 2020, 5, 20250-20260.	1.6	12
616	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	13.7	1,045
617	Modulation of Thiol–Ene Coupling by the Molecular Environment of Polymer Backbones for Hydrogel Formation and Cell Encapsulation. ACS Applied Bio Materials, 2020, 3, 6497-6509.	2.3	18
618	Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chemical Reviews, 2020, 120, 11093-11139.	23.0	61
619	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Advanced Functional Materials, 2020, 30, 2002759.	7.8	148
620	Reengineering Bone-Implant Interfaces for Improved Mechanotransduction and Clinical Outcomes. Stem Cell Reviews and Reports, 2020, 16, 1121-1138.	1.7	15
621	Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 597661.	2.0	62
622	Mammary epithelial morphogenesis in 3D combinatorial microenvironments. Scientific Reports, 2020, 10, 21635.	1.6	4
623	Transparent PDMS Bioreactors for the Fabrication and Analysis of Multi-Layer Pre-vascularized Hydrogels Under Continuous Perfusion. Frontiers in Bioengineering and Biotechnology, 2020, 8, 568934.	2.0	13
624	<p>ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 10029-10043.	3.3	26
625	Creating <i>In Vitro</i> Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. Tissue Engineering - Part B: Reviews, 2021, 27, 514-529.	2.5	14

#	Article	IF	CITATIONS
626	Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Biomedical Materials (Bristol), 2020, 15, 065005.	1.7	19
627	Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells, 2020, 38, 948-959.	1.4	5
628	Recent developments in nanocellulose and nanohydrogel matrices—towards stem cell research and development. , 2020, , 315-328.		2
629	Twin-Airy Point-Spread Function for Extended-Volume Particle Localization. Physical Review Letters, 2020, 124, 198104.	2.9	23
630	Three-dimensional traction microscopy accounting for cell-induced matrix degradation. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112935.	3.4	11
631	Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment. Polymer Journal, 2020, 52, 861-870.	1.3	55
632	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	23.0	161
633	Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Frontiers in Physiology, 2020, 11, 365.	1.3	14
634	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	11.1	50
635	BMPâ€⊇ Signaling and Mechanotransduction Synergize to Drive Osteogenic Differentiation via YAP/TAZ. Advanced Science, 2020, 7, 1902931.	5.6	66
636	Osteogenic differentiation of BMSCs on MoS2 composite nanofibers with different cell seeding densities. Applied Nanoscience (Switzerland), 2020, 10, 3703-3716.	1.6	18
637	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51
638	The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chemical Reviews, 2020, 120, 11056-11092.	23.0	37
639	Engineered Biomaterial Platforms to Study Fibrosis. Advanced Healthcare Materials, 2020, 9, e1901682.	3.9	53
640	Elastinâ€Like Recombinamers: Deconstructing and Recapitulating the Functionality of Extracellular Matrix Proteins Using Recombinant Protein Polymers. Advanced Functional Materials, 2020, 30, 1909050.	7.8	29
641	Dual Functional Lysozyme–Chitosan Conjugate for Tunable Degradation and Antibacterial Activity. ACS Applied Bio Materials, 2020, 3, 2334-2343.	2.3	29
642	Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication. Journal of Polymer Science, 2020, 58, 1288-1298.	2.0	20
643	In Situ 3D-Printing using a Bio-ink of Protein–photosensitizer Conjugates for Single-cell Manipulation. ACS Applied Bio Materials, 2020, 3, 2378-2384.	2.3	8

ARTICLE IF CITATIONS Matrix stiffness-regulated cellular functions under different dimensionalities. Biomaterials Science, 2.6 40 644 2020, 8, 2734-2755. Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioengineering, 2020, 4, 645 3.3 010906. Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Frontiers in Cell and 646 1.8 28 Developmental Biology, 2020, 8, 70. Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell 647 3.9 Spreading and Is Inhibited by FGFâ€2. Advanced Healthcare Materials, 2020, 9, 1901669. Sweat gland regeneration: Current strategies and future opportunities. Biomaterials, 2020, 255, 648 5.7 14 120201. Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. Materials Science and Engineering C, 2020, 116, 111158. 649 3.8 Role of Changes in State of Bound Water and Tissue Stiffness in Development of Age-Related Diseases. 650 2.0 10 Polymers, 2020, 12, 1362. Control of fibroblast shape in sequentially formed 3D hybrid hydrogels regulates cellular responses 3.8 20 to microenvironmental cues. NPG Asia Materials, 2020, 12, . Long-range mechanical coupling of cells in 3D fibrin gels. Molecular Biology of the Cell, 2020, 31, 652 0.9 32 1474-1485. In vivo degradation rate of alginate–chitosan hydrogels influences tissue repair following physeal 1.6 injury. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2484-2494. Visible Lightâ€Responsive Dynamic Biomaterials: Going Deeper and Triggering More. Advanced Healthcare 654 3.9 68 Materials, 2020, 9, e1901553. Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness. Advanced Healthcare Materials, 2020, 9, 1901593. Enhanced regeneration of osteochondral defects by using an aggrecanase-1 responsively degradable and N-cadherin mimetic peptide-conjugated hydrogel loaded with BMSCs. Biomaterials Science, 2020, 8, 656 2.6 15 2212-2226. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543. 14.8 494 Dimensionality changes actin network through lamin A/C and zyxin. Biomaterials, 2020, 240, 119854. 658 5.715 A novel cross-linked nanoparticle with aggregation-induced emission properties for cancer cell imaging. Journal of Materials Chemistry B, 2020, 8, 2431-2437. Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 2020, 660 7.8 76 30, 1909009. Stiffness and topography of biomaterials dictate cellâ€matrix interaction in musculoskeletal cells at the bioâ€interface: A concise progress review. Journal of Biomedical Materials Research - Part B Applied 1.6 Biomaterials, 2020, 108, 2426-2440.

#	Article	IF	CITATIONS
662	Alteration of cell motility dynamics through collagen fiber density in photopolymerized polyethylene glycol hydrogels. International Journal of Biological Macromolecules, 2020, 157, 414-423.	3.6	6
663	Microfluidic Synthesis of Injectable Angiogenic Microgels. Cell Reports Physical Science, 2020, 1, 100047.	2.8	10
664	Adipose tissue engineering. , 2020, , 393-423.		26
665	Three-dimensional scaffolds. , 2020, , 343-360.		12
666	Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomaterialia, 2020, 108, 56-66.	4.1	95
667	A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomaterials Science, 2020, 8, 3359-3369.	2.6	32
668	Gelatin-Based Microribbon Hydrogels Support Robust MSC Osteogenesis across a Broad Range of Stiffness. ACS Biomaterials Science and Engineering, 2020, 6, 3454-3463.	2.6	13
669	Polysaccharide-Based Bioink Formulation for 3D Bioprinting of an In Vitro Model of the Human Dermis. Nanomaterials, 2020, 10, 733.	1.9	64
670	Collagen Stiffness and Architecture Regulate Fibrotic Gene Expression in Engineered Adipose Tissue. Advanced Biology, 2020, 4, e1900286.	3.0	26
671	Transcription factor 7-like 2 promotes osteogenic differentiation and boron-induced bone repair via lipocalin 2. Materials Science and Engineering C, 2020, 110, 110671.	3.8	18
672	Rapid analysis of cell-generated forces within a multicellular aggregate using microsphere-based traction force microscopy. Soft Matter, 2020, 16, 4192-4199.	1.2	7
673	Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix Microenvironmental Cues. Advanced Healthcare Materials, 2021, 10, e2001176.	3.9	16
674	Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cellular and Molecular Life Sciences, 2021, 78, 447-467.	2.4	157
675	Bioprinting of Small-Diameter Blood Vessels. Engineering, 2021, 7, 832-844.	3.2	37
676	Dynamic covalent hydrogels as biomaterials to mimic the viscoelasticity of soft tissues. Progress in Materials Science, 2021, 120, 100738.	16.0	131
677	Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials, 2021, 269, 120356.	5.7	50
678	Let's Talk About Sex—Biological Sex Is Underreported in Biomaterial Studies. Advanced Healthcare Materials, 2021, 10, e2001034.	3.9	26
679	Thermoâ€Triggered In Situ Chitosanâ€Based Gelation System for Repeated and Enhanced Sonodynamic Therapy Post a Single Injection. Advanced Healthcare Materials, 2021, 10, e2001208.	3.9	21

ARTICLE IF CITATIONS # Dynamic cell-adaptable hydrogels with a moderate level of elasticity promote 3D development of 680 2.3 9 encapsulated cells. Applied Materials Today, 2021, 22, 100892. Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. 5.7 Biomaterials, 2021, 268, 120572. Physicochemical Properties in 3D Hydrogel Modulate Cellular Reprogramming into Induced 682 7.8 9 Pluripotent Stem Cells. Advanced Functional Materials, 2021, 31, 2007041. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomaterials Science, 2021, 9, 1547-1573. Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. Advanced NanoBiomed 684 1.7 11 Research, 2021, 1, 2000022. Effects of biophysical cues of 3D hydrogels on mesenchymal stem cells differentiation. Journal of Cellular Physiology, 2021, 236, 2268-2275. Hydrogel as Bio-Ink for Organ Regeneration. Gels Horizons: From Science To Smart Materials, 2021, , 686 0.3 2 165-179. User-defined, temporal presentation of bioactive molecules on hydrogel substrates using 2.6 supramolecular coiled coil complexes. Biomaterials Science, 2021, 9, 4374-4387. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural 689 protein-based hydrogels. Proceedings of the National Academy of Sciences of the United States of 3.3 61 America, 2021, 118, . Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. Journal of Materials Chemistry B, 2021, 9, 1521-1535. A Fiber Alginate Co-culture Platform for the Differentiation of mESC and Modeling of the Neural 691 1.4 9 Tube. Frontiers in Neuroscience, 2020, 14, 524346. Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell 6.4 mechanosensing in 3D and bone regeneration. Materials Horizons, 2021, 8, 1722-1734. Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 2021, 56, 180-191. 693 3.1 54 In Vitro 3D Models of Tunable Stiffness. Methods in Molecular Biology, 2021, 2294, 27-42. 694 0.4 Self-Assembly and Genetically Engineered Hydrogels. Advances in Biochemical 695 0.6 1 Engineering/Biotechnology, 2021, 178, 169-196. Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Current Molecular Medicine, 2021, 20, 675-691. Temperature-activated PRPâ€"cryogel for long-term osteogenesis of adipose-derived stem cells to 697 3.24 promote bone repair. Materials Chemistry Frontiers, 2021, 5, 396-405. Dynamic Mechanical Control of Alginate-Fibronectin Hydrogels with Dual Crosslinking: Covalent and 698 Ionic. Polymers, 2021, 13, 433.

#	Article	IF	CITATIONS
699	Tissue repair with natural extracellular matrix (ECM) scaffolds. , 2021, , 11-37.		1
700	Extracellular scaffold design for ultra-soft microtissue engineering. Light Advanced Manufacturing, 2021, 2, 1-13.	2.2	3
701	Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Reviews and Reports, 2021, 17, 1294-1311.	1.7	16
702	Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomaterials Science and Engineering, 2023, 9, 3742-3759.	2.6	5
703	Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep. Science Translational Medicine, 2021, 13, .	5.8	56
704	Hyaluronic Acid Hydrogel with Adjustable Stiffness for Mesenchymal Stem Cell 3D Culture via Related Molecular Mechanisms to Maintain Stemness and Induce Cartilage Differentiation. ACS Applied Bio Materials, 2021, 4, 2601-2613.	2.3	35
708	Clustering and Hierarchical Organization of 3D Printed Poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 50 Macromolecules, 2021, 54, 3458-3468.	7 Td (fuma 2.2	arate)- <i>bloc 14</i>
709	Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 2021, 270, 120662.	5.7	33
710	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	5.1	32
711	Nanocomposite hyaluronic acid-based hydrogel for the treatment of esophageal fistulas. Materials Today Bio, 2021, 10, 100109.	2.6	9
712	Dynamic Endothelial Stalk Cell–Matrix Interactions Regulate Angiogenic Sprout Diameter. Frontiers in Bioengineering and Biotechnology, 2021, 9, 620128.	2.0	14
713	A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis. Advanced Functional Materials, 2021, 31, 2010225.	7.8	21
714	3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Scientific Reports, 2021, 11, 4876.	1.6	23
715	A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomaterialia, 2021, 122, 145-159.	4.1	35
716	Biological function following radical photo-polymerization of biomedical polymers and surrounding tissues: Design considerations and cellular risk factors. Applied Physics Reviews, 2021, 8, 011301.	5.5	13
717	Hydrogel Models with Stiffness Gradients for Interrogating Pancreatic Cancer Cell Fate. Bioengineering, 2021, 8, 37.	1.6	11
718	A Biphasic Osteovascular Biomimetic Scaffold for Rapid and Selfâ€6ustained Endochondral Ossification. Advanced Healthcare Materials, 2021, 10, 2100070.	3.9	12
719	The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering, 2021, 8, 50.	1.6	11

#	Article	IF	CITATIONS
721	Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nature Protocols, 2021, 16, 2418-2449.	5.5	64
722	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	4.1	29
723	Guest–Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. ACS Biomaterials Science and Engineering, 2021, 7, 4164-4174.	2.6	28
724	A hydrogel reveals an elusive cancer stem cell. Cell Death and Disease, 2021, 12, 415.	2.7	0
725	Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Applied Materials & Interfaces, 2021, 13, 20947-20959.	4.0	15
726	Measuring cellular contraction: Current progress and a future in bioelectronics. APL Materials, 2021, 9, .	2.2	9
727	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	5.7	4
728	Urineâ€derived stem cells loaded onto a chitosanâ€optimized biphasic calciumâ€phosphate scaffold for repairing large segmental bone defects in rabbits. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2014-2029.	1.6	12
729	Covalently Crosslinked Hydrogels via Stepâ€Crowth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Advanced Materials, 2021, 33, e2006362.	11.1	95
730	Design Challenges in Polymeric Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617141.	2.0	82
731	Extracellular Matrix Remodeling in Stem Cell Culture: A Potential Target for Regulating Stem Cell Function. Tissue Engineering - Part B: Reviews, 2022, 28, 542-554.	2.5	5
732	The Mechanical Interplay Between Differentiating Mesenchymal Stem Cells and Gelatin-Based Substrates Measured by Atomic Force Microscopy. Frontiers in Cell and Developmental Biology, 2021, 9, 697525.	1.8	6
733	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	23.0	161
734	Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 347.	2.4	11
735	Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nature Communications, 2021, 12, 3514.	5.8	92
736	Sexâ€Specific Response to Combinations of Shear Stress and Substrate Stiffness by Endothelial Cells In Vitro. Advanced Healthcare Materials, 2021, 10, e2100735.	3.9	12
737	Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D. ACS Applied Materials & Interfaces, 2021, 13, 30420-30433.	4.0	18
738	Advances in Extracellular Matrix-Mimetic Hydrogels to Guide Stem Cell Fate. Cells Tissues Organs, 2022, 211, 703-720.	1.3	11

#	Article	IF	CITATIONS
739	Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nature Biomedical Engineering, 2022, 6, 54-66.	11.6	24
740	Advanced Human BBBâ€onâ€aâ€Chip: A New Platform for Alzheimer's Disease Studies. Advanced Healthcare Materials, 2021, 10, e2002285.	3.9	18
741	The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697981.	2.0	12
742	Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment. Cancers, 2021, 13, 3286.	1.7	11
743	Anisotropically Functionalized Aptamer-DNA Nanostructures for Enhanced Cell Proliferation and Target-Specific Adhesion in 3D Cell Cultures. Biomacromolecules, 2021, 22, 3138-3147.	2.6	6
744	Cell encapsulated and microenvironment modulating microbeads containing alginate hydrogel system for bone tissue engineering. Progress in Biomaterials, 2021, 10, 131-150.	1.8	7
745	The role of physical cues in the development of stem cell-derived organoids. European Biophysics Journal, 2022, 51, 105-117.	1.2	20
746	Highly Permeable DNA Supramolecular Hydrogel Promotes Neurogenesis and Functional Recovery after Completely Transected Spinal Cord Injury. Advanced Materials, 2021, 33, e2102428.	11.1	85
747	Biomechanical cues as master regulators of hematopoietic stem cell fate. Cellular and Molecular Life Sciences, 2021, 78, 5881-5902.	2.4	18
748	Biofabrication of Cell-Laden Gelatin Methacryloyl Hydrogels with Incorporation of Silanized Hydroxyapatite by Visible Light Projection. Polymers, 2021, 13, 2354.	2.0	10
749	Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomaterialia, 2021, 128, 1-20.	4.1	36
750	Uniaxial Cyclic Stretching Promotes Chromatin Accessibility of Gene Loci Associated With Mesenchymal Stem Cells Morphogenesis and Osteogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 664545.	1.8	9
751	Surface charge-dependent osteogenic behaviors of edge-functionalized graphene quantum dots. Chemical Engineering Journal, 2021, 417, 128125.	6.6	25
752	Natural Polymeric Scaffolds for Tissue Engineering Applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2144-2194.	1.9	25
753	Chitosan-anthracene hydrogels as controlled stiffening networks. International Journal of Biological Macromolecules, 2021, 185, 165-175.	3.6	14
754	Biodegradable polymer hydrogelâ€based tissue adhesives: AÂreview. Biosurface and Biotribology, 2021, 7, 163-179.	0.6	13
755	Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomaterialia, 2021, 133, 126-138.	4.1	16
756	Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 2022, 10, 397-404.	8.6	41

#	Article	IF	CITATIONS
757	Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers, 2021, 13, 3154.	2.0	20
758	Thiolactone-Functional Pullulan for <i>In Situ</i> Forming Biogels. Biomacromolecules, 2021, 22, 4262-4273.	2.6	5
760	Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomaterialia, 2021, 132, 52-82.	4.1	5
761	Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomaterialia, 2021, 132, 4-22.	4.1	27
762	Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomaterialia, 2021, 132, 188-216.	4.1	21
763	Fabricating Robust Constructs with Internal Phase Nanostructures via Liquidâ€inâ€Liquid 3D Printing. Macromolecular Rapid Communications, 2021, 42, e2100445.	2.0	9
764	Mechanics of 3D Cell–Hydrogel Interactions: Experiments, Models, and Mechanisms. Chemical Reviews, 2021, 121, 11085-11148.	23.0	62
765	Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive Materials, 2021, 6, 4110-4140.	8.6	191
766	ROS-scavenging hybrid hydrogel for genetically engineered stem cell delivery and limb ischemia therapy. Chemical Engineering Journal, 2021, 425, 131504.	6.6	10
767	Biomaterial control of adipose-derived stem/stromal cell differentiation. , 2022, , 313-346.		0
768	Dynamic cell instructive platforms. , 2021, , 171-217.		1
769	Dynamic light scattering microrheology for soft and living materials. Soft Matter, 2021, 17, 1929-1939.	1.2	25
770	Conformal single cell hydrogel coating with electrically induced tip streaming of an AC cone. Biomaterials Science, 2021, 9, 3284-3292.	2.6	7
771	Hydrostatic Pressure Regulates the Volume, Aggregation and Chondrogenic Differentiation of Bone Marrow Derived Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619914.	2.0	19
772	The Plasticity of Nanofibrous Matrix Regulates Fibroblast Activation in Fibrosis. Advanced Healthcare Materials, 2021, 10, e2001856.	3.9	12
774	Stimuliâ€Responsive Biomaterials: Scaffolds for Stem Cell Control. Advanced Healthcare Materials, 2021, 10, e2001125.	3.9	81
775	A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. Journal of Cellular Physiology, 2020, 235, 6377-6392.	2.0	12
776	Biomimetic Surfaces for Cell Engineering. Springer Series in Biomaterials Science and Engineering, 2016, , 543-569.	0.7	1

#	Article	IF	CITATIONS
777	Biological Characterization and Applications. Springer Theses, 2019, , 105-125.	0.0	1
778	Bio Mimicking of Extracellular Matrix. Advances in Experimental Medicine and Biology, 2019, 1174, 371-399.	0.8	10
779	Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems. Acta Biomaterialia, 2020, 111, 254-266.	4.1	18
780	VE-cadherin functionalized injectable PAMAM/HA hydrogel promotes endothelial differentiation of hMSCs and vascularization. Applied Materials Today, 2020, 20, 100690.	2.3	13
781	CHAPTER 4. Designing Enzyme-responsive Biomaterials. RSC Soft Matter, 2020, , 76-125.	0.2	2
782	Viscoelastic hydrogels for 3D cell culture. Biomaterials Science, 2017, 5, 1480-1490.	2.6	230
786	Precise 3D particle localization over large axial ranges using secondary astigmatism. Optics Letters, 2020, 45, 2466.	1.7	22
787	Cell-Mediated Degradation Regulates Human Mesenchymal Stem Cell Chondrogenesis and Hypertrophy in MMP-Sensitive Hyaluronic Acid Hydrogels. PLoS ONE, 2014, 9, e99587.	1.1	57
788	In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2. PLoS ONE, 2015, 10, e0127722.	1.1	47
789	Biomaterials for intervertebral disc regeneration: past performance and possible future strategies. , 2015, 30, 210-231.		25
790	The Synthesis of RGD-functionalized Hydrogels as a Tool for Therapeutic Applications. Journal of Visualized Experiments, 2016, , .	0.2	8
791	Engineering induction of singular neural rosette emergence within hPSC-derived tissues. ELife, 2018, 7,	2.8	81
792	Regulation of stem cell fate using nanostructure-mediated physical signals. Chemical Society Reviews, 2021, 50, 12828-12872.	18.7	35
793	Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomaterialia, 2022, 140, 43-75.	4.1	38
794	StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nature Communications, 2021, 12, 6132.	5.8	22
795	Mechanical Memory Impairs Adipose-Derived Stem Cell (ASC) Adipogenic Capacity After Long-Term In Vitro Expansion. Cellular and Molecular Bioengineering, 2021, 14, 397-408.	1.0	7
796	The Application of Cartilage Tissue Engineering with Cell-Laden Hydrogel in Plastic Surgery: A Systematic Review. Tissue Engineering and Regenerative Medicine, 2022, 19, 1-9.	1.6	8
797	Engineering of Photomanipulatable Hydrogels for Translational Medicine. , 2014, , 957-981.		0

#	Article	IF	Citations
798	Design Concept of Topographical and Mechanical Properties of Synthetic Extracellular Matrix to Control Cell Functions and Fates Through Actin Cytoskeletal Modulation. Frontiers of Biomechanics, 2015, , 159-186.	0.1	1
799	Emerging Engineering Strategies for Studying the Stem Cell Niche. Pancreatic Islet Biology, 2015, , 57-106.	0.1	0
800	Micropost Methods for Cell Biomechanics of the Cardiovascular System. , 2015, , 309-328.		0
801	Chitosan: Drug Release and Bone Tissue Engineering. , 0, , 1722-1734.		0
802	Measurement of 3D Deformation Field of ECM Generated by Mesenchymal Stem Cell Using DVC Method. Conference Proceedings of the Society for Experimental Mechanics, 2018, , 9-14.	0.3	0
804	Mechanical Load Transfer at the Cellular Level. Frontiers of Biomechanics, 2019, , 159-179.	0.1	0
806	Morphological landscapes from high content imaging reveal cytokine priming strategies that enhance mesenchymal stromal cell immunosuppression. Biotechnology and Bioengineering, 2022, 119, 361-375.	1.7	11
807	In vitro disease and organ model. , 2020, , 629-668.		0
808	Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening. Acta Biomaterialia, 2022, 138, 112-123.	4.1	18
809	Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels, 2021, 7, 199.	2.1	21
810	Functional requirements for polymeric implant materials in head and neck surgery. Clinical Hemorheology and Microcirculation, 2020, 76, 179-189.	0.9	0
812	Mechanistically Scoping Cellâ€Free and Cellâ€Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. Advanced Materials, 2022, 34, e2107922.	11.1	5
813	Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering. International Journal of Biological Macromolecules, 2022, 194, 903-913.	3.6	11
814	Injectable, viscoelastic hydrogel precisely regulates developmental tissue regeneration. Chemical Engineering Journal, 2022, 434, 133860.	6.6	11
815	Spatiotemporal control of myofibroblast activation in acoustically-responsive scaffolds via ultrasound-induced matrix stiffening. Acta Biomaterialia, 2022, 138, 133-143.	4.1	10
816	Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophysical Reviews, 2021, 13, 1245-1271.	1.5	1
817	Mechanobiological Strategies to Enhance Stem Cell Functionality for Regenerative Medicine and Tissue Engineering. Frontiers in Cell and Developmental Biology, 2021, 9, 747398.	1.8	25
818	Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio, 2022, 13, 100186.	2.6	129

	CITATION	REPORT	
#	Article	IF	Citations
819	Biologically-inspired Stimuli-responsive DDS. Biomaterials Science Series, 2018, , 265-283.	0.1	0
820	Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli. Biomedical Materials (Bristol), 2022, 17, 025001.	1.7	4
821	Engineered in vitro models: mimicking in vivo physiology. , 2022, , 555-609.		0
822	In Vivo Imaging of Implanted Hyaluronic Acid Hydrogel Biodegradation. Methods in Molecular Biology, 2022, 2394, 743-765.	0.4	2
823	Responsive biomaterials for 3D bioprinting: A review. Materials Today, 2022, 52, 112-132.	8.3	64
824	Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chemical Society Reviews, 2022, 51, 28-42.	18.7	11
826	3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cuâ€Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. Small, 2022, 18, e2104996.	5.2	52
827	Stimuli-responsive materials: A smart way to study dynamic cell responses. Smart Materials in Medicine, 2022, 3, 257-273.	3.7	32
828	Magnesium Oxide Nanoparticle Coordinated Phosphate-Functionalized Chitosan Injectable Hydrogel for Osteogenesis and Angiogenesis in Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 7592-7608.	4.0	51
829	Chondrocyte Spheroids Laden in GelMA/HAMA Hybrid Hydrogel for Tissue-Engineered Cartilage with Enhanced Proliferation, Better Phenotype Maintenance, and Natural Morphological Structure. Gels, 2021, 7, 247.	2.1	18
830	Magnetic alignment of injectable hydrogel scaffolds for spinal cord injury repair. Biomaterials Science, 2022, 10, 2237-2247.	2.6	15
831	Dissolvable microgel-templated macroporous hydrogels for controlled cell assembly. Materials Science and Engineering C, 2022, 134, 112712.	3.8	13
832	Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 2022, 23, 2662.	1.8	23
833	Nonswelling and Hydrolytically Stable Hydrogels Uncover Cellular Mechanosensing in 3D. Advanced Science, 2022, 9, e2105325.	5.6	11
834	Soft Hydrogel Environments that Facilitate Cell Spreading and Aggregation Preferentially Support Chondrogenesis of Adult Stem Cells. Macromolecular Bioscience, 2022, 22, e2100365.	2.1	10
835	Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 713934.	1.8	7
836	Influence of extracellular cues of hydrogel biomaterials on stem cell fate. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1324-1347.	1.9	2
837	Injectable Hydrogels for Articular Cartilage and Nucleus Pulposus Repair: Status Quo and Prospects. Tissue Engineering - Part A, 2022, 28, 478-499.	1.6	13

#	Article	IF	CITATIONS
838	Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. International Journal of Molecular Sciences, 2022, 23, 3265.	1.8	11
839	Interplay between mechanics and signalling in regulating cell fate. Nature Reviews Molecular Cell Biology, 2022, 23, 465-480.	16.1	68
840	Cryopreservation of network bioactivity and multi-lineage stromal cell differentiation potential within three-dimensional synthetic hydrogels. Cryobiology, 2022, 105, 41-49.	0.3	5
841	Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology. Advanced Healthcare Materials, 2022, 11, e2200011.	3.9	14
842	Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6, 426.	7.1	274
843	Degradation-Dependent Stress Relaxing Semi-Interpenetrating Networks of Hydroxyethyl Cellulose in Gelatin-PEG Hydrogel with Good Mechanical Stability and Reversibility. Gels, 2021, 7, 277.	2.1	18
844	Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules, 2022, 23, 1350-1365.	2.6	29
845	<i>Egr1</i> is a 3D matrix–specific mediator of mechanosensitive stem cell lineage commitment. Science Advances, 2022, 8, eabm4646.	4.7	20
846	Spatial and Temporal Modulation of Cell Instructive Cues in a Filamentous Supramolecular Biomaterial. ACS Applied Materials & Interfaces, 2022, 14, 17042-17054.	4.0	11
847	Viscoelastic Biomaterials for Tissue Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 289-300.	1.1	19
848	Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell, 2022, 29, 678-691.	5.2	28
850	A Novel Autoinduction Biomarker Assay for Measuring <i>In Situ</i> TGF-β Activity in Cartilage: Applications in Mechanobiology and Tissue Engineering. SSRN Electronic Journal, 0, , .	0.4	0
851	Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomaterials Science, 2022, 10, 3393-3409.	2.6	58
852	Porous Scaffold-Hydrogel Composites Spatially Regulate 3D Cellular Mechanosensing. Frontiers in Medical Technology, 2022, 4, 884314.	1.3	2
853	How is mechanobiology involved in bone regenerative medicine?. Tissue and Cell, 2022, 76, 101821.	1.0	6
854	Hyperelastic, shapeâ€memorable, and ultraâ€cellâ€adhesive degradable polycaprolactoneâ€polyurethane copolymer for tissue regeneration. Bioengineering and Translational Medicine, 2022, 7, .	3.9	10
855	Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics, 2022, 14, 993.	2.0	12
856	Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	18

#	Article	IF	CITATIONS
857	Cell-controlled dynamic surfaces for skeletal stem cell growth and differentiation. Scientific Reports, 2022, 12, 8165.	1.6	3
858	A cell retrievable strategy for harvesting extracellular matrix as active biointerface. Journal of Materials Science and Technology, 2022, , .	5.6	3
859	Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Science and Technology of Advanced Materials, 2022, 23, 393-412.	2.8	30
860	Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering. Gels, 2022, 8, 389.	2.1	22
862	Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. Journal of Materials Chemistry B, 2022, 10, 5696-5722.	2.9	5
863	An Appearance Dataâ€Driven Model Visualizes Cell State and Predicts Mesenchymal Stem Cell Regenerative Capacity. Small Methods, 0, , 2200087.	4.6	1
864	A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy. Journal of Cell Science, 2022, 135, .	1.2	8
865	Materials and extracellular matrix rigidity highlighted in tissue damages and diseases: Implication for biomaterials design and therapeutic targets. Bioactive Materials, 2023, 20, 381-403.	8.6	11
866	Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells, 2022, 11, 2310.	1.8	12
867	Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering. ACS Omega, 2022, 7, 26353-26367.	1.6	5
868	Dynamic Hydrogel. Biomaterials Science Series, 2022, , 239-264.	0.1	0
869	N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism. Acta Biomaterialia, 2022, 150, 83-95.	4.1	7
870	Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair. Acta Biomaterialia, 2022, 151, 148-162.	4.1	26
871	Adhesive peptide and polymer density modulate 3D cell traction forces within synthetic hydrogels. Biomaterials, 2022, 288, 121710.	5.7	3
872	A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy. Cell Death and Disease, 2022, 13, .	2.7	13
873	Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture. Biomaterials, 2022, 289, 121802.	5.7	17
874	Skin biomechanics: a potential therapeutic intervention target to reduce scarring. Burns and Trauma, 2022, 10, .	2.3	13
875	Engineered 3D Matrices with Spatiotemporally Tunable Properties. Biomaterials Science Series, 2022, , 282-308.	0.1	0

		CITATION REPORT	
#	Article	IF	CITATIONS
876	Injectable hydrogel with immobilized BMP-2 mimetic peptide for local bone regeneration. , 0, 1, .		4
877	Chemical strategies to engineer hydrogels for cell culture. Nature Reviews Chemistry, 2022, 6, 726-	744. 13.8	64
878	Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Acta Biomaterialia, 2023, 165, 4-18.	4.1	22
879	In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration. Biofabrication, 2022, 14, 045016.	3.7	15
880	IL-10-Functionalized Hydrogels Support Immunosuppressive Dendritic Cell Phenotype and Function ACS Biomaterials Science and Engineering, 2022, 8, 4341-4353.	2.6	2
882	Advances toward transformative therapies for tendon diseases. Science Translational Medicine, 202 14, .	2, 5.8	11
883	Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Polymers, 2022, 14, 3788.	2.0	7
884	Matrix-enabled mechanobiological modulation of osteoimmunology. Matter, 2022, 5, 3194-3224.	5.0	1
885	Intermittent compressive force regulates human periodontal ligament cell behavior via yes-associate protein. Heliyon, 2022, 8, e10845.	2d 1.4	4
887	Trilayered Hydrogel Scaffold for Vocal Fold Tissue Engineering. Biomacromolecules, 2022, 23, 4469-4480.	2.6	2
888	Programmable integrin and N-cadherin adhesive interactions modulate mechanosensing of mesenchymal stem cells by cofilin phosphorylation. Nature Communications, 2022, 13, .	5.8	18
889	Crystal Growth of 3D Poly(<i>ε</i> â€caprolactone) Based Bone Scaffolds and Its Effects on the Ph Properties and Cellular Interactions. Advanced Science, 2023, 10, .	ysical 5.6	5
890	Curved Nanofiber Network Induces Cellular Bridge Formation to Promote Stem Cell Mechanotransduction. Advanced Science, 2023, 10, .	5.6	19
891	Hydrogel platform capable of molecularly resolved pulling on cells for mechanotransduction. Materials Today Bio, 2022, 17, 100476.	2.6	1
892	An injectable and self-strengthening nanogel encapsuled hydrogel gene delivery system promotes degenerative nucleus pulposus repair. Composites Part B: Engineering, 2023, 250, 110469.	5.9	15
893	Chapter 14. Tissue Engineered Models of Metastasis: Focus on Bone Metastasis. Biomaterials Scien Series, 2022, , 384-414.	ce 0.1	0
894	Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels. Acta Biomaterialia, 2023, 155, 258-270.	4.1	5
895	Selfâ€Forming Norborneneâ€Tetrazine Hydrogels with Independently Tunable Properties. Macromo Bioscience, 2023, 23, .	lecular 2.1	2

#	Article	IF	CITATIONS
896	Engineered hydrogels for mechanobiology. Nature Reviews Methods Primers, 2022, 2, .	11.8	37
897	Deterministic Single Cell Encapsulation in Asymmetric Microenvironments to Direct Cell Polarity. Advanced Science, 2023, 10, .	5.6	6
898	Delivery of Induced Neural Stem Cells Through Mechanoâ€Tuned Silk–Collagen Hydrogels for the Recovery of Contused Spinal Cord in Rats. Advanced Healthcare Materials, 2023, 12, .	3.9	3
899	Supercharged Protein Nanosheets for Cell Expansion on Bioemulsions. ACS Applied Materials & Interfaces, 2023, 15, 2760-2770.	4.0	6
900	Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. International Materials Reviews, 2023, 68, 901-942.	9.4	15
901	Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot. Science Robotics, 2023, 8, .	9.9	13
903	Advances in Medical Imaging for Wound Repair and Regenerative Medicine. , 2023, , 57-76.		1
904	Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Advanced Science, 2023, 10, .	5.6	23
906	Mechanical Evaluation of Hydrogel–Elastomer Interfaces Generated through Thiol–Ene Coupling. ACS Applied Polymer Materials, 2023, 5, 1364-1373.	2.0	0
907	Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials, 2023, 296, 122091.	5.7	1
908	Instructional materials that control cellular activity through synthetic Notch receptors. Biomaterials, 2023, 297, 122099.	5.7	10
909	Programmable Tissue Folding Patterns in Structured Hydrogels. Advanced Materials, 0, , .	11.1	5
910	Modulusâ€dependent effects on neurogenic, myogenic, and chondrogenic differentiation of human mesenchymal stem cells in threeâ€dimensional hydrogel cultures. Journal of Biomedical Materials Research - Part A, 2023, 111, 1441-1458.	2.1	0
911	Elastomeric platform with surface wrinkling patterns to control cardiac cell alignment. Journal of Biomedical Materials Research - Part A, 2023, 111, 1228-1242.	2.1	0
912	Snake venom-defined fibrin architecture dictates fibroblast survival and differentiation. Nature Communications, 2023, 14, .	5.8	2
913	Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Advanced Healthcare Materials, 2023, 12, .	3.9	7
914	Compressional stress stiffening & softening of soft hydrogels – how to avoid artefacts in their rheological characterisation. Soft Matter, 2023, 19, 2053-2057.	1.2	2
915	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72

#	Article	IF	CITATIONS
916	Cartilage Lacunaâ€Inspired Microcarriers Drive Hyaline Neocartilage Regeneration. Advanced Materials, 2023, 35, .	11.1	8
917	Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. Biocell, 2023, 47, 789-808.	0.4	0
918	Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration. Biomaterials Research, 2023, 27, .	3.2	8
919	Programming of Multicellular Patterning with Mechanoâ€Chemically Microstructured Cell Niches. Advanced Science, 2023, 10, .	5.6	4
920	Effects of Univariate Stiffness and Degradation of DNA Hydrogels on the Transcriptomics of Neural Progenitor Cells. Journal of the American Chemical Society, 2023, 145, 8954-8964.	6.6	6
921	Applications and Advances of Multicellular Tumor Spheroids: Challenges in Their Development and Analysis. International Journal of Molecular Sciences, 2023, 24, 6949.	1.8	5
922	Suppression of auto-fluorescence from high-resolution 3D polymeric architectures fabricated via two-photon polymerization for cell biology applications. Micro and Nano Engineering, 2023, 19, 100188.	1.4	4
923	Biology and therapeutic potential of mesenchymal stem cell extracellular vesicles in axial spondyloarthritis. Communications Biology, 2023, 6, .	2.0	2
924	How Hydrogel Stiffness Affects Adipogenic Differentiation of Mesenchymal Stem Cells under Controlled Morphology. ACS Applied Bio Materials, 2023, 6, 3441-3450.	2.3	2
925	Encapsulation of stem cells. , 2023, , 481-524.		1
946	Hyaluronic acid in tissue engineering. , 2023, , 585-607.		0
948	Designing self-healing hydrogels for biomedical applications. Materials Horizons, 2023, 10, 3929-3947.	6.4	15
965	Versatile Hydrogels in Regenerative Medicine. , 2023, , 61-166.		0
966	Stem Cell Differentiation Mediated by Biomaterials/Surfaces. , 2023, , 307-375.		0
967	An Introduction to Scaffolds, Biomaterial Surfaces, and Stem Cells. , 2023, , 1-38.		0
973	Chiral nanomaterials in tissue engineering. Nanoscale, 2024, 16, 5014-5041.	2.8	0