CALHM1 ion channel mediates purinergic neurotransm tastes

Nature

495, 223-226

DOI: 10.1038/nature11906

Citation Report

#	Article	IF	CITATIONS
1	Regulation of connexin―and pannexinâ€based channels by postâ€ŧranslational modifications. Biology of the Cell, 2013, 105, 373-398.	0.7	57
2	Neurosensory transmission without a synapse: new perspectives on taste signaling. BMC Biology, 2013, 11, 42.	1.7	13
3	We've had important advances in the connexin/pannexin field, yet there is still much to do. Neuropharmacology, 2013, 75, 467-470.	2.0	0
4	Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing. Neuroscience, 2013, 250, 166-180.	1.1	6
5	Spices: The Savory and Beneficial Science of Pungency. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 164, 1-76.	0.9	125
6	How do taste cells lacking synapses mediate neurotransmission? <scp>CALHM < /scp>1, a voltageâ€gated <scp>ATP < /scp> channel. BioEssays, 2013, 35, 1111-1118.</scp></scp>	1.2	66
7	Pou2f3/Skn-1a Is Necessary for the Generation or Differentiation of Solitary Chemosensory Cells in the Anterior Nasal Cavity. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2154-2156.	0.6	41
8	Tasting the bitter and the sweet, honeybee memories, and visualizing calcium throughout entire astrocytes. Journal of General Physiology, 2013, 141, 511-512.	0.9	3
9	Wing (Ib) cells in frog taste discs detect dietary unsaturated fatty acids. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 434-440.	0.8	1
10	Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: Gap junctions versus hemichannels. Neuropharmacology, 2013, 75, 491-505.	2.0	78
11	Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4692-4707.	1,1	32
12	Taste dysfunction in BTBR mice due to a mutation of <i>ltpr3 </i> , the inositol triphosphate receptor 3 gene. Physiological Genomics, 2013, 45, 834-855.	1.0	23
13	CLHM-1 is a Functionally Conserved and Conditionally Toxic Ca2+-Permeable Ion Channel in Caenorhabditis elegans. Journal of Neuroscience, 2013, 33, 12275-12286.	1.7	34
14	De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16229-16234.	3.3	101
15	Role of the ectonucleotidase NTPDase2 in taste bud function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14789-14794.	3.3	90
16	Role of connexin 32 hemichannels in the release of ATP from peripheral nerves. Glia, 2013, 61, 1976-1989.	2.5	28
17	Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Frontiers in Pharmacology, 2013, 4, 88.	1.6	190
18	A taste for ATP: neurotransmission in taste buds. Frontiers in Cellular Neuroscience, 2013, 7, 264.	1.8	73

#	Article	IF	Citations
19	Regulation of Extracellular ATP in Human Erythrocytes Infected with Plasmodium falciparum. PLoS ONE, 2014, 9, e96216.	1.1	23
20	A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds. PLoS ONE, 2014, 9, e112152.	1.1	22
21	Investigation of olfactory function in a Panx1 knock out mouse model. Frontiers in Cellular Neuroscience, 2014, 8, 266.	1.8	23
22	Sweet Taste-Sensing Receptors Expressed in Pancreatic \hat{l}^2 -Cells: Sweet Molecules Act as Biased Agonists. Endocrinology and Metabolism, 2014, 29, 12.	1.3	40
23	Taste Receptor Gene Expression Outside the Gustatory System. Topics in Medicinal Chemistry, 2014, , 1-34.	0.4	7
24	Taste Bud Homeostasis in Health, Disease, and Aging. Chemical Senses, 2014, 39, 3-16.	1.1	117
25	Maltodextrin and Fat Preference Deficits in "Taste-Blind" P2X2/P2X3 Knockout Mice. Chemical Senses, 2014, 39, 507-514.	1.1	19
26	Cellâ€typeâ€dependent action potentials and voltageâ€gated currents in mouse fungiform taste buds. European Journal of Neuroscience, 2014, 39, 24-34.	1.2	18
27	Intrinsic properties and regulation of Pannexin 1 channel. Channels, 2014, 8, 103-109.	1.5	53
28	Pannexin1 channels act downstream of P2X ₇ receptors in ATP-induced murine T-cell death. Channels, 2014, 8, 142-156.	1.5	49
29	Expression of adenosine A2b receptor in rat type II and III taste cells. Histochemistry and Cell Biology, 2014, 141, 499-506.	0.8	16
30	Peripheral Coding of Taste. Neuron, 2014, 81, 984-1000.	3.8	357
31	Synaptic communication and signal processing among sensory cells in taste buds. Journal of Physiology, 2014, 592, 3387-3392.	1.3	32
32	Purinergic neuron-glia interactions in sensory systems. Pflugers Archiv European Journal of Physiology, 2014, 466, 1859-1872.	1.3	38
33	Mechanosensitive release of adenosine 5′â€triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: A mechanism for purinergic involvement in chronic strain. Glia, 2014, 62, 1486-1501.	2.5	140
34	Purinergic Signaling and Blood Vessels in Health and Disease. Pharmacological Reviews, 2014, 66, 102-192.	7.1	251
35	Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales. Genome Biology and Evolution, 2014, 6, 1254-1265.	1.1	113
36	Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Molecular and Cellular Endocrinology, 2014, 394, 70-79.	1.6	44

#	Article	IF	CITATIONS
37	TRPs in Taste and Chemesthesis. Handbook of Experimental Pharmacology, 2014, 223, 827-871.	0.9	107
38	Chemotherapeutic Drugs Induce ATP Release via Caspase-gated Pannexin-1 Channels and a Caspase/Pannexin-1-independent Mechanism. Journal of Biological Chemistry, 2014, 289, 27246-27263.	1.6	72
39	Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141079.	1.2	44
40	Salty Taste Deficits in CALHM1 Knockout Mice. Chemical Senses, 2014, 39, 515-528.	1.1	38
41	Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiology and Behavior, 2014, 126, 25-29.	1.0	34
42	Hunting for connexin hemichannels. FEBS Letters, 2014, 588, 1205-1211.	1.3	153
43	Macronutrient selection by seven inbred mouse strains and three taste-related knockout strains. Physiology and Behavior, 2014, 135, 49-54.	1.0	6
44	Sinonasal Solitary Chemosensory Cells "Taste―the Upper Respiratory Environment to Regulate Innate Immunity. American Journal of Rhinology and Allergy, 2014, 28, 366-373.	1.0	43
45	Carbenoxolone-sensitive and cesium-permeable potassium channel in the rod cells of frog taste discs. Biochemistry and Biophysics Reports, 2015, 4, 175-179.	0.7	0
46	Expression of the synaptic exocytosisâ€regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction. Journal of Neurochemistry, 2015, 133, 806-814.	2.1	10
48	Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. Journal of Physiology, 2015, 593, 1857-1871.	1.3	75
49	Depolarization-induced Intracellular Free Calcium Concentration Increases Show No Desensitizing Effect in Rat Odontoblasts. Bulletin of Tokyo Dental College, The, 2015, 56, 131-134.	0.1	1
50	Functional diversity of primate bitter taste receptors. Hikaku Seiri Seikagaku(Comparative Physiology) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
51	Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning. Neurology Research International, 2015, 2015, 1-13.	0.5	26
52	Reception of Aversive Taste. Integrative and Comparative Biology, 2015, 55, 507-517.	0.9	12
53	ATP release through pannexon channels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140191.	1.8	190
54	Normal Taste Acceptance and Preference of PANX1 Knockout Mice. Chemical Senses, 2015, 40, 453-459.	1.1	26
55	Chemical Senses. , 2015, , 1-23.		0

#	ARTICLE	IF	CITATIONS
56	Connexin43 hemichannels mediate secondary cellular damage spread from the trauma zone to distal zones in astrocyte monolayers. Glia, 2015, 63, 1185-1199.	2.5	27
57	Taste perception, associated hormonal modulation, and nutrient intake. Nutrition Reviews, 2015, 73, 83-91.	2.6	101
58	Modulation of Microglial Process Convergence Toward Neuronal Dendrites by Extracellular Calcium. Journal of Neuroscience, 2015, 35, 2417-2422.	1.7	113
59	Taste receptors. , 2015, , 297-329.		0
60	Glucagonâ€like peptideâ€1 is specifically involved in sweet taste transmission. FASEB Journal, 2015, 29, 2268-2280.	0.2	75
61	Molecular evidence for the loss of three basic tastes in penguins. Current Biology, 2015, 25, R141-R142.	1.8	51
62	The endocrinology of taste receptors. Nature Reviews Endocrinology, 2015, 11, 213-227.	4.3	101
63	Calcium signaling in taste cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2025-2032.	1.9	15
64	Benzothiazepine CGP37157 and its 2′-isopropyl analogue modulate Ca2+ entry through CALHM1. Neuropharmacology, 2015, 95, 503-510.	2.0	19
65	Honing in on the ATP Release Channel in Taste Cells:. Chemical Senses, 2015, 40, 449-451.	1.1	3
66	Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities. Chemical Senses, 2015, 40, 461-467.	1.1	24
67	CALHM1 ion channel elicits amyloid- \hat{l}^2 clearance by insulin-degrading enzyme in cell lines and <i>in vivo</i> in the mouse brain. Journal of Cell Science, 2015, 128, 2330-2338.	1.2	32
68	Purinergic signalling in the enteric nervous system (An overview of current perspectives). Autonomic Neuroscience: Basic and Clinical, 2015, 191, 141-147.	1.4	18
69	Three-dimensional Imaging Reveals New Compartments and Structural Adaptations in Odontoblasts. Journal of Dental Research, 2015, 94, 945-954.	2.5	32
70	CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span. Chemical Senses, 2015, 40, 373-379.	1.1	10
71	Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds. Journal of Neuroscience, 2015, 35, 12714-12724.	1.7	22
72	The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity. Current Allergy and Asthma Reports, 2015, 15, 72.	2.4	53
73	Progress and renewal in gustation: new insights into taste bud development. Development (Cambridge), 2015, 142, 3620-3629.	1.2	134

#	ARTICLE	IF	Citations
74	Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. Chemosensory Perception, 2015, 8, 61-77.	0.7	1
75	How taste works: cells, receptors and gustatory perception. Cellular and Molecular Biology Letters, 2015, 20, 699-716.	2.7	33
76	Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nature Communications, 2015, 6, 7965.	5.8	159
77	Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Human Molecular Genetics, 2015, 24, 5330-5344.	1.4	128
78	Leptin's Effect on Taste Bud Calcium Responses and Transmitter Secretion. Chemical Senses, 2015, 40, 217-222.	1.1	13
79	Heightened Avidity for Trisodium Pyrophosphate in Mice Lacking Tas1r3. Chemical Senses, 2015, 40, 53-59.	1.1	5
80	Postsynaptic P2X3â€containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. Journal of Physiology, 2015, 593, 1113-1125.	1.3	74
81	Taste receptors in innate immunity. Cellular and Molecular Life Sciences, 2015, 72, 217-236.	2.4	113
82	ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets. Cellular and Molecular Neurobiology, 2015, 35, 1-6.	1.7	72
83	Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Archiv European Journal of Physiology, 2015, 467, 843-863.	1.3	89
84	An Interesting Tour of New Research Results on Umami and Umami Compounds. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	1
85	G Protein–Coupled Taste Transduction. , 2016, , 271-285.		3
86	Gut Nutrient Sensing. , 2016, , 359-373.		1
87	ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB Journal, 2016, 30, 3489-3500.	0.2	30
88	Active Caspase-1 Induces Plasma Membrane Pores That Precede Pyroptotic Lysis and Are Blocked by Lanthanides. Journal of Immunology, 2016, 197, 1353-1367.	0.4	148
89	Into rather unexplored terrain—transcellular transport across the blood–brain barrier. Glia, 2016, 64, 1097-1123.	2.5	118
90	CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Scientific Reports, 2016, 6, 24250.	1.6	30
91	Adeno-Associated Virus-Mediated Gene Transfer into Taste CellsIn Vivo. Chemical Senses, 2016, 42, bjw101.	1.1	5

#	Article	IF	Citations
92	Bitter taste receptors: Extraoral roles in pathophysiology. International Journal of Biochemistry and Cell Biology, 2016, 77, 197-204.	1.2	85
93	Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying. International Review of Cell and Molecular Biology, 2016, 323, 71-106.	1.6	20
94	Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs. Development (Cambridge), 2016, 143, 2012-24.	1.2	14
95	Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 305-319.	1.3	14
96	Maltodextrin and sucrose preferences in sweet-sensitive (C57BL/6J) and subsensitive (129P3/J) mice revisited. Physiology and Behavior, 2016, 165, 286-290.	1.0	6
97	Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochemistry and Cell Biology, 2016, 146, 673-683.	0.8	25
98	Glutamate: Tastant and Neuromodulator in Taste Buds. Advances in Nutrition, 2016, 7, 823S-827S.	2.9	15
99	Distinct purinergic signaling pathways in prepubescent mouse spermatogonia. Journal of General Physiology, 2016, 148, 253-271.	0.9	14
100	Is the Association Between Sweet and Bitter Perception due to Genetic Variation?. Chemical Senses, 2016, 41, 737-744.	1.1	21
101	When, where and how? Focus on neuronal calcium dysfunctions in Alzheimer's Disease. Cell Calcium, 2016, 60, 289-298.	1.1	31
102	Title is missing!. Kagaku To Seibutsu, 2016, 54, 246-247.	0.0	0
103	Calcium homeostasis modulator (CALHM) ion channels. Pflugers Archiv European Journal of Physiology, 2016, 468, 395-403.	1.3	76
104	The function of glucagon-like peptide-1 in the mouse peripheral taste system. Journal of Oral Biosciences, 2016, 58, 10-15.	0.8	3
105	Taste of Fat: A Sixth Taste Modality?. Physiological Reviews, 2016, 96, 151-176.	13.1	191
106	Molecular mechanism of sweetness sensation. Physiology and Behavior, 2016, 164, 453-463.	1.0	92
107	Expression of serotonin receptor genes in cranial ganglia. Neuroscience Letters, 2016, 617, 46-51.	1.0	3
108	Maltodextrin Acceptance and Preference in Eight Mouse Strains. Chemical Senses, 2016, 41, 45-52.	1.1	12
109	Phosphoinositide signaling in somatosensory neurons. Advances in Biological Regulation, 2016, 61, 2-16.	1.4	18

#	Article	IF	CITATIONS
110	A role for airway taste receptor modulation in the treatment of upper respiratory infections. Expert Review of Respiratory Medicine, 2016, 10, 157-170.	1.0	10
111	Hemichannel-mediated release of lactate. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1202-1211.	2.4	77
112	miR-9 Mediates CALHM1-Activated ATP-P2X7R Signal in Painful Diabetic Neuropathy Rats. Molecular Neurobiology, 2017, 54, 922-929.	1.9	28
113	Extraoral bitter taste receptors in health and disease. Journal of General Physiology, 2017, 149, 181-197.	0.9	158
114	Taste Sensing Systems Influencing Metabolic Consequences. Current Oral Health Reports, 2017, 4, 79-86.	0.5	3
115	Drug-Induced Taste Disorders In Clinical Practice And Preclinical Safety Evaluation. Toxicological Sciences, 2017, 156, kfw263.	1.4	22
116	Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signalling, 2017, 13, 387-404.	1.1	68
117	The NH ₂ terminus regulates voltage-dependent gating of CALHM ion channels. American Journal of Physiology - Cell Physiology, 2017, 313, C173-C186.	2.1	21
118	Glucose elicits cephalic-phase insulin release in mice by activating K _{ATP} channels in taste cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R597-R610.	0.9	48
119	Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications, 2017, 8, 14733.	5.8	136
120	Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents. Chemical Senses, 2017, 42, 343-359.	1.1	16
121	Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells. Journal of Neurophysiology, 2017, 117, 1865-1876.	0.9	22
122	Expression and localization of pannexin-1 and CALHM1 in porcine bladder and their involvement in modulating ATP release. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R763-R772.	0.9	19
125	Does eating good-tasting food influence body weight?. Physiology and Behavior, 2017, 170, 27-31.	1.0	13
126	Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Molecular Metabolism, 2017, 6, 1480-1492.	3.0	57
127	TRPC1, TRPC3, and TRPC4 in Rat Orofacial Structures. Cells Tissues Organs, 2017, 204, 293-303.	1.3	4
128	Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice. Chemical Senses, 2017, 42, 759-767.	1.1	22
129	The repertoire of bitter taste receptor genes in Ovalentaria fish. Environmental Biology of Fishes, 2017, 100, 1489-1496.	0.4	1

#	Article	IF	CITATIONS
130	CALHM1-Mediated ATP Release and Ciliary Beat Frequency Modulation in Nasal Epithelial Cells. Scientific Reports, 2017, 7, 6687.	1.6	34
131	Dynamics of angiogenesis in ischemic areas of the infarcted heart. Scientific Reports, 2017, 7, 7156.	1.6	69
132	Taste buds: cells, signals and synapses. Nature Reviews Neuroscience, 2017, 18, 485-497.	4.9	371
133	Postâ€translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel. Journal of Physiology, 2017, 595, 6121-6145.	1.3	23
134	Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts. Frontiers in Physiology, 2017, 8, 3.	1.3	12
135	Taste Receptors Mediate Sinonasal Immunity and Respiratory Disease. International Journal of Molecular Sciences, 2017, 18, 437.	1.8	15
136	Phosphorus Taste Involves T1R2 and T1R3. Chemical Senses, 2017, 42, 425-433.	1.1	13
137	CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Neuron, 2018, 98, 547-561.e10.	3.8	137
138	Taste of glucose elicits cephalic-phase insulin release in mice. Physiology and Behavior, 2018, 192, 200-205.	1.0	17
139	Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds. British Journal of Pharmacology, 2018, 175, 1039-1053.	2.7	18
140	TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E772-E781.	3.3	100
141	Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews, 2018, 47, 322-356.	18.7	372
142	From appetite setpoint to appetition: 50 years of ingestive behavior research. Physiology and Behavior, 2018, 192, 210-217.	1.0	16
143	Quantum-confined superfluid: From nature to artificial. Science China Materials, 2018, 61, 1027-1032.	3.5	73
144	Opening a "Wide―Window onto Taste Signal Transmission. Neuron, 2018, 98, 456-458.	3.8	4
145	Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2018, 43, 367-378.	1.1	7
146	Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1060-1069.	2.4	9
147	TRPM5 in the battle against diabetes and obesity. Acta Physiologica, 2018, 222, e12949.	1.8	38

#	ARTICLE	IF	CITATIONS
148	DNA methylation patterns at sweet taste transducing genes are associated with BMI and carbohydrate intake in an adult population. Appetite, 2018, 120, 230-239.	1.8	25
149	Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Molecular Psychiatry, 2018, 23, 883-891.	4.1	59
150	A self-powered brain-linked biosensing electronic-skin for actively tasting beverage and its potential application in artificial gustation. Nanoscale, 2018, 10, 19987-19994.	2.8	21
151	Role of Taste Receptors as Sentinels of Innate Immunity in the Upper Airway. Journal of Pathogens, 2018, 2018, 1-8.	0.9	24
152	Innate and acquired tolerance to bitter stimuli in mice. PLoS ONE, 2018, 13, e0210032.	1.1	19
153	Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. Current Topics in Membranes, 2018, 81, 125-176.	0.5	27
154	Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. Journal of the American Chemical Society, 2018, 140, 16048-16052.	6.6	76
155	Self-Assembled Porphyrin Nanofiber Membrane-Decorated Alumina Channels for Enhanced Photoelectric Response. ACS Nano, 2018, 12, 11169-11177.	7.3	48
156	The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2018, 4, 200-208.	0.7	31
157	The Pannexin1 membrane channel: distinct conformations and functions. FEBS Letters, 2018, 592, 3201-3209.	1.3	62
158	Bioinspired Ionic Diodes: From Unipolar to Bipolar. Advanced Functional Materials, 2018, 28, 1801079.	7.8	82
159	Greater reductions in fat preferences in CALHM1 than CD36 knockout mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R576-R585.	0.9	16
160	ATP Release Channels. International Journal of Molecular Sciences, 2018, 19, 808.	1.8	151
161	The Role of Taste Receptors in Airway Innate Immune Defense. Sinusitis, 2018, 3, 6.	0.2	1
162	Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Science Signaling, 2018, 11, .	1.6	69
163	Role of lipolysis in postoral and oral fat preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R434-R441.	0.9	11
164	Cationic control of Panx1 channel function. American Journal of Physiology - Cell Physiology, 2018, 315, C279-C289.	2.1	18
165	Bitter Taste Receptors for Asthma Therapeutics. Frontiers in Physiology, 2019, 10, 884.	1.3	36

#	Article	IF	Citations
166	Insights on modulators in perception of taste modalities: a review. Nutrition Research Reviews, 2019, 32, 231-246.	2.1	19
167	Merkel Cells Release Glutamate Following Mechanical Stimulation: Implication of Glutamate in the Merkel Cell-Neurite Complex. Frontiers in Cellular Neuroscience, 2019, 13, 255.	1.8	16
168	A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosensors and Bioelectronics, 2019, 145, 111673.	5.3	53
169	Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Scientific Reports, 2019, 9, 8834.	1.6	8
170	Regulation of immune responses by tuft cells. Nature Reviews Immunology, 2019, 19, 584-593.	10.6	153
171	AAV-Mediated Gene Delivery to Taste Cells of the Tongue. Methods in Molecular Biology, 2019, 1950, 299-307.	0.4	3
172	Mechanosensitive ATP release in the lungs: New insights from real-time luminescence imaging studies. Current Topics in Membranes, 2019, 83, 45-76.	0.5	8
173	Functional food development: Insights from TRP channels. Journal of Functional Foods, 2019, 56, 384-394.	1.6	12
174	CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Scientific Reports, 2019, 9, 2681.	1.6	28
175	Immune Responses Alter Taste Perceptions: Immunomodulatory Drugs Shape Taste Signals during Treatments. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 684-691.	1.3	1
176	The structures and gating mechanism of human calcium homeostasis modulatorÂ2. Nature, 2019, 576, 163-167.	13.7	64
177	A Pharmacological Perspective on the Study of Taste. Pharmacological Reviews, 2019, 71, 20-48.	7.1	12
178	Extracellular nucleotides and nucleosides as signalling molecules. Immunology Letters, 2019, 205, 16-24.	1.1	154
179	Spilanthol Enhances Sensitivity to Sodium in Mouse Taste Bud Cells. Chemical Senses, 2019, 44, 91-103.	1.1	9
180	Therapeutic potential of ectopic olfactory and taste receptors. Nature Reviews Drug Discovery, 2019, 18, 116-138.	21.5	188
181	Threeâ€dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. Journal of Comparative Neurology, 2020, 528, 756-771.	0.9	49
182	Extracellular Nucleotides and P2 Receptors in Renal Function. Physiological Reviews, 2020, 100, 211-269.	13.1	58
183	A subset of taste receptor cells express biocytinâ€permeable channels activated by reducing extracellular Ca ²⁺ concentration. European Journal of Neuroscience, 2020, 51, 1605-1623.	1.2	8

#	Article	IF	CITATIONS
184	Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends in Food Science and Technology, 2020, 96, 222-232.	7.8	40
185	Structure-Function Analyses of Human Bitter Taste Receptors—Where Do We Stand?. Molecules, 2020, 25, 4423.	1.7	13
186	Novel insights in the genetics of steroid-sensitive nephrotic syndrome in childhood. Pediatric Nephrology, 2021, 36, 2165-2175.	0.9	11
187	An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Archiv European Journal of Physiology, 2020, 472, 1667-1691.	1.3	6
188	Purinergic Modulation of Activity in the Developing Auditory Pathway. Neuroscience Bulletin, 2020, 36, 1285-1298.	1.5	9
189	Cryo-EM structure of the calcium homeostasis modulator 1 channel. Science Advances, 2020, 6, eaba8161.	4.7	17
190	Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies. Science Advances, 2020, 6, eaba8105.	4.7	32
191	Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 2020, 9, 2496.	1.8	126
192	A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genetics, 2020, 16, e1008925.	1.5	32
193	Microphysiology of Taste Buds. , 2020, , 187-210.		5
194	Computational Study of the Ion and Water Permeation and Transport Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel. Frontiers in Molecular Biosciences, 2020, 7, 565797.	1.6	26
195	Optogenetic Stimulation of Type I GAD65 ⁺ Cells in Taste Buds Activates Gustatory Neurons and Drives Appetitive Licking Behavior in Sodium-Depleted Mice. Journal of Neuroscience, 2020, 40, 7795-7810.	1.7	17
196	Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Frontiers in Medicine, 2020, 7, 506.	1.2	13
197	G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Frontiers in Pharmacology, 2020, 11, 587664.	1.6	90
198	Cryo-EM structures of human calcium homeostasis modulator 5. Cell Discovery, 2020, 6, 81.	3.1	8
199	Therapeutic potential and challenges of bitter taste receptors on lung cells. Current Opinion in Pharmacology, 2020, 51, 43-49.	1.7	8
200	Salty Taste: From Transduction to Transmitter Release, Hold the Calcium. Neuron, 2020, 106, 709-711.	3.8	14
201	Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature, 2020, 584, 646-651.	13.7	121

#	Article	IF	Citations
202	Morphometric, Hemodynamic, and Multi-Omics Analyses in Heart Failure Rats with Preserved Ejection Fraction. International Journal of Molecular Sciences, 2020, 21, 3362.	1.8	18
203	Recent advances in development of biosensors for taste-related analyses. TrAC - Trends in Analytical Chemistry, 2020, 129, 115925.	5. 8	34
204	Cryoâ€electron microscopy structure of <scp>CLHM1</scp> ion channel from <scp><i>Caenorhabditis elegans</i></scp> . Protein Science, 2020, 29, 1803-1815.	3.1	11
205	Extraoral Taste Receptors., 2020,, 353-381.		1
206	Molecular and Pharmacological Modulation of CALHM1 Promote Neuroprotection against Oxygen and Glucose Deprivation in a Model of Hippocampal Slices. Cells, 2020, 9, 664.	1.8	11
207	Age-related taste cell generation in circumvallate papillae organoids via regulation of multiple signaling pathways. Experimental Cell Research, 2020, 394, 112150.	1.2	9
208	COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron, 2020, 107, 219-233.	3.8	256
209	Optogenetic Activation of Type III Taste Cells Modulates Taste Responses. Chemical Senses, 2020, 45, 533-539.	1.1	9
210	Salt Taste. , 2020, , 247-263.		5
211	Structures of CALHM channels revealed. Nature Structural and Molecular Biology, 2020, 27, 227-228.	3 . 6	8
212	New frontiers in probing the dynamics of purinergic transmitters in vivo. Neuroscience Research, 2020, 152, 35-43.	1.0	16
213	Analysis of calcium signaling in live human Tongue cell 3D-Cultures upon tastant perfusion. Cell Calcium, 2020, 87, 102164.	1.1	7
214	Structure and assembly of calcium homeostasis modulator proteins. Nature Structural and Molecular Biology, 2020, 27, 150-159.	3.6	55
215	Preference for dietary fat: From detection to disease. Progress in Lipid Research, 2020, 78, 101032.	5. 3	31
216	All-Electrical Ca2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds. Neuron, 2020, 106, 816-829.e6.	3.8	93
217	Sensing Senses: Optical Biosensors to Study Gustation. Sensors, 2020, 20, 1811.	2.1	8
218	Thermosensitivity of the voltage-dependent activation of calcium homeostasis modulator 1 (calhm1) ion channel. Biochemical and Biophysical Research Communications, 2021, 534, 590-596.	1.0	4
219	Ageâ€related electrophysiological changes in mouse taste receptor cells. Experimental Physiology, 2021, 106, 519-531.	0.9	4

#	Article	IF	CITATIONS
220	Thermosensation involving thermo-TRPs. Molecular and Cellular Endocrinology, 2021, 520, 111089.	1.6	18
221	Expression of Eya1 in mouse taste buds. Cell and Tissue Research, 2021, 383, 979-986.	1.5	8
222	Implication of TRPC3 channel in gustatory perception of dietary lipids. Acta Physiologica, 2021, 231, e13554.	1.8	12
223	Taste transduction and channel synapses in taste buds. Pflugers Archiv European Journal of Physiology, 2021, 473, 3-13.	1.3	70
224	Isolation and identification of umamiâ€flavored peptides from <i>Leccinum extremiorientale</i> and their taste characteristic. Journal of Food Processing and Preservation, 2021, 45, e15255.	0.9	14
225	Chemische Sinne. , 2021, , 815-839.		0
226	Cellular and Molecular Mechanisms of Fat Taste Perception. Handbook of Experimental Pharmacology, 2021, , 247-270.	0.9	11
227	Taste Receptor Signaling. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	5
228	ATP activation of peritubular cells drives testicular sperm transport. ELife, 2021, 10, .	2.8	24
229	GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types. Chemical Senses, 2021, 46, .	1.1	5
230	Bitter Taste Perception in Chickens. Journal of Poultry Science, 2022, 59, 8-15.	0.7	3
231	Immune Regulatory Roles of Cells Expressing Taste Signaling Elements in Nongustatory Tissues. Handbook of Experimental Pharmacology, 2021, , 271-293.	0.9	9
233	Receptors Taste Receptors., 2021,, 314-322.		0
234	Effective production of oligomeric membrane proteins by EarlyBac-insect cell system. Methods in Enzymology, 2021, 653, 3-19.	0.4	7
235	Ectonucleotidases in Acute and Chronic Inflammation. Frontiers in Pharmacology, 2020, 11, 619458.	1.6	32
236	Sweetness of Aspartame: Introducing Key Statistical Concepts in an Upper Division Bioanalytical Laboratory Project. Journal of Chemical Education, 2021, 98, 1233-1241.	1.1	3
237	A Mathematical Model of ATP Secretion by Type II Taste Cells. Neuroscience and Behavioral Physiology, 2021, 51, 238-244.	0.2	2
238	Olfactory and taste dysfunctions in COVID-19. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 229-244.	1.1	4

#	ARTICLE	IF	CITATIONS
239	Genetic deletion of the <i>Tas2r143Tas2r135Tas2r126Cluster reveals that TAS2Rs may not mediate bitter tastantâ€induced bronchodilation. Journal of Cellular Physiology, 2021, 236, 6407-6423.</i>	2.0	10
240	Whole-Mount Staining, Visualization, and Analysis of Fungiform, Circumvallate, and Palate Taste Buds. Journal of Visualized Experiments, 2021, , .	0.2	3
242	Posttranslational regulation of CALHM1/3 channel: <i>N</i> â€inked glycosylation and <i>S</i> â€palmitoylation. FASEB Journal, 2021, 35, e21527.	0.2	5
244	Odorant and Taste Receptors in Sperm Chemotaxis and Cryopreservation: Roles and Implications in Sperm Capacitation, Motility and Fertility. Genes, 2021, 12, 488.	1.0	16
245	The sweet taste receptor, glucose transporters, and the ATP-sensitive K+ (KATP) channel: sugar sensing for the regulation of energy homeostasis. Current Opinion in Physiology, 2021, 20, 57-63.	0.9	2
246	Immune gustatory processing: immune responses to drugs shape peripheral taste signals. Current Opinion in Physiology, 2021, 20, 112-117.	0.9	0
247	Is there a role for GABA in peripheral taste processing. Current Opinion in Physiology, 2021, 20, 105-111.	0.9	1
248	Bitter, sweet, and umami signaling in taste cells: it's not as simple as we thought. Current Opinion in Physiology, 2021, 20, 159-164.	0.9	7
250	Sour taste: receptors, cells and circuits. Current Opinion in Physiology, 2021, 20, 8-15.	0.9	29
251	Structure versus function: Are new conformations of pannexin 1 yet to be resolved?. Journal of General Physiology, 2021, 153, .	0.9	22
252	Type II/III cell composition and NCAM expression in taste buds. Cell and Tissue Research, 2021, 385, 557-570.	1.5	3
253	Biological insights from the direct measurement of purine release. Biochemical Pharmacology, 2021, 187, 114416.	2.0	9
254	Purinergic receptors in airway hydration. Biochemical Pharmacology, 2021, 187, 114387.	2.0	10
255	The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications. Life, 2021, 11, 509.	1.1	9
256	Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance. Life, 2021, 11, 430.	1.1	7
257	Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nature Structural and Molecular Biology, 2021, 28, 604-613.	3.6	27
258	Ionic Diode Based on an Asymmetricâ€6haped Carbon Black Nanoparticle Membrane. Advanced Functional Materials, 2021, 31, 2104341.	7.8	15
259	Human CALHM5: Insight in large pore lipid gating ATP channel and associated neurological pathologies. Molecular and Cellular Biochemistry, 2021, 476, 3711-3718.	1.4	2

#	Article	IF	CITATIONS
260	Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020. Endocrinology and Metabolism, 2021, 36, 469-477.	1.3	5
261	Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Frontiers in Human Neuroscience, 2021, 15, 667709.	1.0	22
262	Functional expression of TMEM16A in taste bud cells. Journal of Physiology, 2021, 599, 3697-3714.	1.3	8
263	Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sensors, 2021, 6, 2593-2604.	4.0	7
264	Lytic Release of Cellular ATP: Physiological Relevance and Therapeutic Applications. Life, 2021, 11, 700.	1.1	10
266	Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Science Advances, 2021, 7, .	4.7	49
267	On the molecular nature of large-pore channels. Journal of Molecular Biology, 2021, 433, 166994.	2.0	44
268	Overlapping distributions of mammalian types I, II, and III taste cell markers in chicken taste buds. Biochemical and Biophysical Research Communications, 2021, 570, 162-168.	1.0	4
270	Physiology of Taste Processing in the Tongue, Gut, and Brain., 2021, 11, 2489-2523.		9
271	Epigenetic regulation of ion channels in the sense of taste. Pharmacological Research, 2021, 172, 105760.	3.1	4
272	Purinergic neurotransmission in the gustatory system. Autonomic Neuroscience: Basic and Clinical, 2021, 236, 102874.	1.4	4
273	Human digital merkel cells display pannexin1 immunoreactivity. Annals of Anatomy, 2022, 239, 151813.	1.0	2
274	Pharmacology of the Umami Taste Receptor. Handbook of Experimental Pharmacology, 2021, , 109-136.	0.9	3
275	Pharmacology of TAS1R2/TAS1R3 Receptors and Sweet Taste. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	2
276	The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cellular and Molecular Life Sciences, 2020, 77, 3469-3502.	2.4	39
277	Formation of Flavor Aversions and Preferences. , 2020, , 333-352.		1
278	Anatomy and Development of the Human Gustatory and Olfactory Systems., 2020,, 85-118.		4
279	A novel voltage-clamp/dye uptake assay reveals saturable transport of molecules through CALHM1 and connexin channels. Journal of General Physiology, 2020, 152, .	0.9	8

#	Article	IF	Citations
285	TRP Channels at the Periphery of the Taste and Trigeminal Systems. Frontiers in Neuroscience, 2017, , $113-124$.	0.0	2
286	Recent advances in taste transduction and signaling. F1000Research, 2019, 8, 2117.	0.8	56
287	L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors. PLoS ONE, 2015, 10, e0130088.	1.1	27
288	Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes. PLoS ONE, 2016, 11, e0158305.	1.1	23
289	Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae. PLoS ONE, 2016, 11, e0158401.	1.1	1
290	Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds. ENeuro, 2015, 2, ENEURO.0097-15.2015.	0.9	29
291	Physiological and Behavioral Responses to Optogenetic Stimulation of PKD2L1 ⁺ Type III Taste Cells. ENeuro, 2019, 6, ENEURO.0107-19.2019.	0.9	15
292	Function, Innervation, and Neurotransmitter Signaling in Mice Lacking Type-II Taste Cells. ENeuro, 2020, 7, ENEURO.0339-19.2020.	0.9	16
293	Sodium–Taste Cells Require <i>>Skn-1a</i> for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste Cells. ENeuro, 2020, 7, ENEURO.0385-20.2020.	0.9	22
295	Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets?. Diabetes and Metabolism Journal, 2020, 44, 509.	1.8	36
296	Perspectives on the role of Pannexin 1 in neural precursor cell biology. Neural Regeneration Research, 2016, 11, 1540.	1.6	2
297	Electrophysiology of Sodium Receptors in Taste Cells. Journal of Biomedical Science and Engineering, 2016, 09, 367-383.	0.2	12
298	CO2 directly modulates connexin 26 by formation of carbamate bridges between subunits. ELife, 2013, 2, e01213.	2.8	103
299	Cryo-EM structures and functional properties of CALHM channels of the human placenta. ELife, 2020, 9, .	2.8	26
300	Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles. Peerl, 2017, 5, e3708.	0.9	10
301	The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2021, 46, .	1.1	2
302	"Tripartite Synapses―in Taste Buds: A Role for Type I Glial-like Taste Cells. Journal of Neuroscience, 2021, 41, 9860-9871.	1.7	13
303	Construction and application of bioinspired nanochannels based on two-dimensional materials. Chinese Chemical Letters, 2022, 33, 2291-2300.	4.8	28

#	Article	IF	Citations
304	An update on extra-oral bitter taste receptors. Journal of Translational Medicine, 2021, 19, 440.	1.8	38
305	Bitter taste receptors. Evolution, Medicine and Public Health, 2021, 9, 431-447.	1.1	29
306	Signal Processing Based on Cell-Type-Dependent Action Potentials in Mouse Taste Buds. The Brain & Neural Networks, 2013, 20, 159-165.	0.1	0
307	TRP Channels as Targets for Modulation of Taste Transduction. , 2015, , 127-140.		2
308	TRP Channels at the Periphery of the Taste and Trigeminal Systems. , 2017, , 113-124.		3
309	Bitter Taste, Rising New Functions and Significance of Extra-oral Expressions. International Journal of Oral Biology: Official Journal of the Korean Academy of Oral Biology and the UCLA Dental Research Institute, 2018, 43, 113-121.	0.1	0
310	Taste receptors are our mediators in shaping the taste preferences of a child. Meditsinskiy Sovet, 2018, , 50-55.	0.1	0
312	Sweet and Umami Taste. , 2020, , 211-230.		0
314	Intramolecular Disulfide Bonds for Biogenesis of CALHM1 Ion Channel Are Dispensable for Voltage-Dependent Activation. Molecules and Cells, 2021, 44, 758-769.	1.0	3
316	Taste Genetics. , 2020, , 264-279.		1
320	Flexible Tongue Electrode Array System for In Vivo Mapping of Electrical Signals of Taste Sensation. ACS Sensors, 2021, 6, 4108-4117.	4.0	1
321	Astrocytes in depression and Alzheimer's disease. Frontiers of Medicine, 2021, 15, 829-841.	1.5	16
322	Fat preference deficits and experience-induced recovery in global taste-deficient Trpm5 and Calhm1 knockout mice. Physiology and Behavior, 2022, 246, 113695.	1.0	2
323	The Role of ATP and Purinergic Receptors in Taste Signaling. Handbook of Experimental Pharmacology, 2021, , 91-107.	0.9	3
324	Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Molecular Neurobiology, 2022, 59, 1836-1849.	1.9	20
325	Kinesin-II Motors Differentially Impact Biogenesis of Distinct Extracellular Vesicle Subpopulations Shed From Sensory Cilia. SSRN Electronic Journal, 0, , .	0.4	O
326	Polymer-based membranes for promoting osmotic energy conversion. Giant, 2022, 10, 100094.	2.5	21
327	A sensitive GRAB sensor for detecting extracellular ATP inÂvitro and inÂvivo. Neuron, 2022, 110, 770-782.e5.	3.8	71

#	Article	IF	CITATIONS
328	Remodeling of the ryanodine receptor isoform 1 channel regulates the sweet and umami taste perception of Rattus norvegicus. Fundamental Research, 2022, , .	1.6	O
329	Cryo-EM structure of the heptameric calcium homeostasis modulator 1 channel. Journal of Biological Chemistry, 2022, 298, 101838.	1.6	6
330	Biomimetic ion nanochannels for sensing umami substances. Biomaterials, 2022, 282, 121418.	5.7	14
331	Taste Bud Connectome: Implications for Taste Information Processing. Journal of Neuroscience, 2022, 42, 804-816.	1.7	17
333	Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca2+ in the Extracellular Medium. Cells, 2022, 11, 1369.	1.8	2
334	Taste Cells and Calcium Signaling. Food and Nutritional Components in Focus, 2015, , 413-430.	0.1	0
346	METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis. International Journal of Oral Science, 2022, 14, 26.	3.6	6
347	Taste Receptor Cells Generate Oscillating Receptor Potentials by Activating G Protein-Coupled Taste Receptors. Frontiers in Physiology, 2022, 13, .	1.3	1
348	Homology Modelling, Molecular Docking and Molecular Dynamics Simulation Studies of CALMH1 against Secondary Metabolites of Bauhinia variegata to Treat Alzheimer's Disease. Brain Sciences, 2022, 12, 770.	1,1	15
349	Physiologic roles of P2 receptors in leukocytes. Journal of Leukocyte Biology, 2022, 112, 983-1012.	1.5	5
350	The neural basis of sugar preference. Nature Reviews Neuroscience, 2022, 23, 584-595.	4.9	16
351	Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. International Journal of Molecular Sciences, 2022, 23, 8225.	1.8	1
352	The circadian regulation of extracellular ATP. Purinergic Signalling, 2023, 19, 283-295.	1.1	4
353	Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677.	1.8	6
354	Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. IScience, 2022, 25, 105262.	1.9	3
355	Genetic variation in sweet taste receptors and a mechanistic perspective on sweet and fat taste sensation in the context of obesity. Obesity Reviews, 0, , .	3.1	2
356	Ocular P2 receptors and glaucoma. Neuropharmacology, 2023, 222, 109302.	2.0	8
357	Expression profile of the zinc transporter ZnT3 in taste cells of rat circumvallate papillae and its role in zinc release, a potential mechanism for taste stimulation. European Journal of Histochemistry, 2022, 66, .	0.6	1

#	Article	IF	Citations
358	Molecular and Cellular Mechanisms of Salt Taste. Annual Review of Physiology, 2023, 85, 25-45.	5.6	11
359	Bidirectional sensitivity of CALHM1 channel to protons from both sides of plasma membrane. American Journal of Physiology - Cell Physiology, 2023, 324, C98-C112.	2.1	1
360	Physiology of the tongue with emphasis on taste transduction. Physiological Reviews, 2023, 103, 1193-1246.	13.1	12
361	The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiological Reviews, 2023, 103, 1423-1485.	13.1	6
362	Neuromorphic Gustatory System with Salt-Taste Perception, Information Processing, and Excessive-Intake Warning Capabilities. Nano Letters, 2023, 23, 8-16.	4.5	10
363	E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chemical Research in Toxicology, 2022, 35, 2194-2209.	1.7	2
364	Contribution of large-pore channels to inflammation induced by microorganisms. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	0
365	Biomimetic asymmetric GO/polymer nanocomposite membrane for energy harvesting. Journal of Power Sources, 2023, 560, 232701.	4.0	8
366	Physiology and pharmacology of ATP-releasing pannex in $1\ \mbox{channels}.$ AIP Conference Proceedings, 2023, , .	0.3	0
367	A transcription factor Etv1/Er81 is involved in the differentiation of sweet, umami, and sodium taste cells. ENeuro, 0, , ENEURO.0236-22.2023.	0.9	2
368	Channel-mediated ATP release in the nervous system. Neuropharmacology, 2023, 227, 109435.	2.0	4
369	Taste arbor structural variability analyzed across taste regions. Journal of Comparative Neurology, 2023, 531, 743-758.	0.9	1
370	Effect of irinotecan administration on amilorideâ€sensitive sodium taste responses in mice. European Journal of Oral Sciences, 2023, 131, .	0.7	1
371	The ion channel <scp>CALHM6</scp> controls bacterial infectionâ€induced cellular crossâ€talk at the immunological synapse. EMBO Journal, 2023, 42, .	3.5	5
372	Nanofluidic membrane for confined ion transport: From uniform to composite strategy. Materials Today, 2023, 65, 189-206.	8.3	3
373	Defining the role of TRPM4 in broadly responsive taste receptor cells. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	3
374	Recent Advances in Bitterness-Sensing Systems. Biosensors, 2023, 13, 414.	2.3	0
375	Glia of special senses. , 2023, , 449-471.		0

Article IF Citations