Novel solar cells in a wire format

Chemical Society Reviews 42, 5031 DOI: 10.1039/c3cs35465b

Citation Report

#	Article	IF	CITATIONS
1	Photovoltaic Wire with High Efficiency Attached onto and Detached from a Substrate Using a Magnetic Field. Angewandte Chemie - International Edition, 2013, 52, 8276-8280.	7.2	49
2	Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte. Journal of the American Chemical Society, 2013, 135, 10622-10625.	6.6	129
3	Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects. Scientific Reports, 2013, 3, 2109.	1.6	133
4	Novel Electric Double‣ayer Capacitor with a Coaxial Fiber Structure. Advanced Materials, 2013, 25, 6436-6441.	11.1	346
5	Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 12422.	5.2	32
6	Oriented PEDOT:PSS on aligned carbon nanotubes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13268.	5.2	61
7	Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route. Journal of Materials Chemistry A, 2013, 1, 11790.	5.2	38
8	Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells. Scientific Reports, 2013, 3, 2058.	1.6	80
9	Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Advanced Materials, 2013, 25, 5965-5970.	11.1	441
10	Tailoring the efficiency of 3D wire-shaped photovoltaic cells (WPVCs) by functionalization of solid-liquid interfacial properties. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2535-2541.	0.8	4
14	Chlorins: Natural Sources, Synthetic Developments and Main Applications. Current Organic Synthesis, 2014, 11, 42-58.	0.7	50
15	Selfâ€Powered Energy Fiber: Energy Conversion in the Sheath and Storage in the Core. Advanced Materials, 2014, 26, 7038-7042.	11.1	104
18	Strong visibleâ€light photovoltaic effect in multiferroic Pb(Fe _{1/2} V _{1/2})O ₃ bulk ceramics. Physica Status Solidi - Rapid Research Letters, 2014, 8, 36-39.	1.2	27
19	Metal-nanowire coated threads for conductive textiles. , 2014, , .		2
21	Weaving Efficient Polymer Solar Cell Wires into Flexible Power Textiles. Advanced Energy Materials, 2014, 4, 1301750.	10.2	100
22	Wet-process preparation of nickel-based photoanode for TCO-less fiber-shaped dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2014, 18, 763-769.	1.2	5
24	Wearable Solar Cells by Stacking Textile Electrodes. Angewandte Chemie - International Edition, 2014, 53, 6110-6114.	7.2	126
25	A Twisted Wireâ€Shaped Dualâ€Function Energy Device for Photoelectric Conversion and Electrochemical Storage. Angewandte Chemie - International Edition, 2014, 53, 666 <u>4-6668.</u>	7.2	82

#	Article	IF	CITATIONS
26	Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers. European Journal of Inorganic Chemistry, 2014, 2014, 2720-2734.	1.0	24
27	Integration of fiber dye-sensitized solar cells with luminescent solar concentrators for high power output. Journal of Materials Chemistry A, 2014, 2, 926-932.	5.2	27
28	Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. Polymer Chemistry, 2014, 5, 2076.	1.9	39
29	3D Wireâ€6haped Dyeâ€6ensitized Solar Cells in Solid State Using Carbon Nanotube Yarns with Hybrid Photovoltaic Structure. Advanced Materials Interfaces, 2014, 1, 1400075.	1.9	41
30	Synthesis of TiO ₂ hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO ₂ sub-layers. RSC Advances, 2014, 4, 58064-58076.	1.7	21
31	A novel "energy fiber―by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. Journal of Materials Chemistry A, 2014, 2, 1897-1902.	5.2	130
32	Stable wire-shaped dye-sensitized solar cells based on eutectic melts. Journal of Materials Chemistry A, 2014, 2, 3841.	5.2	23
33	Unconventional Electrode Material Prepared from Coir Fiber through Sputter Coating of Gold: A Study toward Value Addition of Natural Biopolymer. ACS Sustainable Chemistry and Engineering, 2014, 2, 348-352.	3.2	9
34	Waveguide fiber dye-sensitized solar cells. Nano Energy, 2014, 10, 117-124.	8.2	32
35	Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells. Chemical Communications, 2014, 50, 14321-14324.	2.2	45
36	Integrating Perovskite Solar Cells into a Flexible Fiber. Angewandte Chemie - International Edition, 2014, 53, 10425-10428.	7.2	268
37	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transitionâ€Metal Dichalcogenides and their Application as Supercapacitors. Angewandte Chemie - International Edition, 2014, 53, 12576-12580.	7.2	119
38	Singleâ€Crystalline Tungsten Oxide Quantum Dots for Fast Pseudocapacitor and Electrochromic Applications. Advanced Materials, 2014, 26, 4260-4267.	11.1	350
39	Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 345-349.	5.2	73
40	Miniature wire-shaped solar cells, electrochemical capacitors and lithium-ion batteries. Materials Today, 2014, 17, 276-284.	8.3	53
41	Novel Graphene/Carbon Nanotube Composite Fibers for Efficient Wireâ€Shaped Miniature Energy Devices. Advanced Materials, 2014, 26, 2868-2873.	11.1	305
42	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
43	Hierarchical rhombus-shaped ZnO array: Synthesis, formation mechanism and solar cell application. Journal of Alloys and Compounds, 2014, 607, 132-138.	2.8	6

#	Article	IF	CITATIONS
44	Carbon Nanostructured Fibers As Counter Electrodes in Wire-Shaped Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16419-16425.	1.5	45
45	Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A, 2014, 2, 10756.	5.2	402
46	Coupling Solar Energy into Reactions: Materials Design for Surface Plasmonâ€Mediated Catalysis. Small, 2015, 11, 3873-3889.	5.2	137
47	Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process. Advanced Materials, 2015, 27, 7854-7860.	11.1	176
50	Macroscopic Graphene Fibers Directly Assembled from CVDâ€Grown Fiberâ€Shaped Hollow Graphene Tubes. Angewandte Chemie - International Edition, 2015, 54, 14947-14950.	7.2	48
51	A Shapeâ€Memory Supercapacitor Fiber. Angewandte Chemie - International Edition, 2015, 54, 15419-15423.	7.2	141
52	Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 2015, 44, 6230-6257.	18.7	389
53	CulnS2/Mn-CdS quantum dot co-sensitized flexible solar cells based on single fibrous TiO2 nanowire arrays. Journal of Materials Science: Materials in Electronics, 2015, 26, 2016-2024.	1.1	6
54	Wearable Doubleâ€Twisted Fibrous Perovskite Solar Cell. Advanced Materials, 2015, 27, 3831-3835.	11.1	184
55	Microfiber devices based on carbon materials. Materials Today, 2015, 18, 215-226.	8.3	57
56	Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. Journal of Materials Chemistry C, 2015, 3, 2157-2165.	2.7	58
57	Flexible fiber energy storage and integrated devices: recent progress and perspectives. Materials Today, 2015, 18, 265-272.	8.3	146
58	Recent progress in solar cells based on one-dimensional nanomaterials. Energy and Environmental Science, 2015, 8, 1139-1159.	15.6	164
60	Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. Chemical Reviews, 2015, 115, 7046-7117.	23.0	448
61	Silver nanowire coated threads for electrically conductive textiles. Journal of Materials Chemistry C, 2015, 3, 3908-3912.	2.7	135
62	Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.	5.2	122
64	Highly Stretchable and Conductive Core–Sheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors. Chemistry of Materials, 2015, 27, 6969-6975.	3.2	111
65	Flexible fiber/wire-shaped solar cells in progress: properties, materials, and designs. Journal of Materials Chemistry A, 2015, 3, 20435-20458.	5.2	81

	CITATION	n Report	
#	Article	IF	Citations
66	Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076.	5.2	74
67	Controllable electrophoresis deposition of TiO ₂ mesoporous spheres onto Ti threads as photoanodes for fiber-shaped dye-sensitized solar cells. RSC Advances, 2015, 5, 65005-65009.	1.7	8
68	One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: Polymorph-dependent conversion efficiency. Nano Energy, 2015, 11, 697-703.	8.2	108
69	Superelastic Supercapacitors with High Performances during Stretching. Advanced Materials, 2015, 27, 356-362.	11.1	230
70	Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192.	18.7	429
71	Novel Wearable Energy Devices Based on Aligned Carbon Nanotube Fiber Textiles. Advanced Energy Materials, 2015, 5, 1401438.	10.2	134
72	Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency. Small, 2016, 12, 2419-2424.	5.2	111
73	Flexible Wire-Shaped Supercapacitors in Parallel Double Helix Configuration with Stable Electrochemical Properties under Static/Dynamic Bending. Small, 2016, 12, 1024-1033.	5.2	81
74	Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density. Journal of Materials Chemistry A, 2016, 4, 7406-7415.	5.2	81
75	Electrophoretic deposition of graphene-TiO2 hierarchical spheres onto Ti thread for flexible fiber-shaped dye-sensitized solar cells. Materials and Design, 2016, 105, 352-358.	3.3	27
76	Architecture engineering of supercapacitor electrode materials. Functional Materials Letters, 2016, 09, 1640001.	0.7	21
77	Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 25353-25360.	4.0	21
78	Metal-free polymer/MWCNT composite fiber as an efficient counter electrode in fiber shape dye-sensitized solar cells. Nanotechnology, 2016, 27, 384003.	1.3	18
79	Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today, 2016, 11, 644-660.	6.2	113
80	Electrodeposition of Al, Zn, and Pt on silver-coated textile fibres from ionic liquids. Journal of Solid State Electrochemistry, 2016, 20, 2781-2790.	1.2	4
81	Carbonâ€Nanotube Fibers for Wearable Devices and Smart Textiles. Advanced Materials, 2016, 28, 10529-10538.	11.1	310
82	Electrochromic/supercapacitive dual functional fibres. RSC Advances, 2016, 6, 110164-110170.	1.7	32
83	An all-solid-state fiber-type solar cell achieving 9.49% efficiency. Journal of Materials Chemistry A, 2016. 4. 10105-10109.	5.2	77

#	Article	IF	CITATIONS
84	Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition. Nano Energy, 2016, 19, 1-7.	8.2	61
85	High performance fiber-shaped solar cells. Pure and Applied Chemistry, 2016, 88, 113-117.	0.9	7
86	Achieving a high fill factor for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 5784-5801.	5.2	204
87	In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells. Nanoscale, 2016, 8, 2304-2308.	2.8	28
88	Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes. Energy Storage Materials, 2016, 2, 21-26.	9.5	59
89	Energy-Harvesting Applications and Efficient Power Processing. The Frontiers Collection, 2016, , 275-300.	0.1	2
90	Allâ€Weather Solar Cells: A Rising Photovoltaic Revolution. Chemistry - A European Journal, 2017, 23, 8118-8127.	1.7	16
91	Organic dye-sensitized photovoltaic fibers. Solar Energy, 2017, 150, 161-165.	2.9	15
92	The advance of fiber-shaped lithium ion batteries. Materials Today Chemistry, 2017, 5, 24-33.	1.7	26
93	Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chemical Communications, 2017, 53, 7182-7193.	2.2	118
94	Fabrication of Supercapacitors from NiCo ₂ O ₄ Nanowire/Carbonâ€Nanotube Yarn for Ultraviolet Photodetectors and Portable Electronics. Energy Technology, 2017, 5, 1449-1456.	1.8	28
95	Synthesis of randomly directed inclined TiO 2 nanorods on the nanocrystalline TiO 2 layers and their optimized application in dye sensitized solar cells. Journal of Alloys and Compounds, 2017, 711, 603-610.	2.8	17
96	Low-cost nanocarbon electrodes on arbitrary fibrous substrates as efficient bifacial photovoltaic wires. RSC Advances, 2017, 7, 9653-9661.	1.7	4
97	NiCo2S4 nanosheets in situ grown on carbon fibers as an efficient counter electrode for fiber-shaped dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 10640-10644.	1.1	8
98	Oneâ€Dimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials, 2017, 3, 1600314.	2.6	271
99	A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 2017, 702, 266-273.	2.8	54
100	Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale, 2017, 9, 18474-18481.	2.8	79
101	Use of Carbon Nanotubes in Third-Generation Solar Cells. , 2017, , 201-249.		4

#	Article	IF	CITATIONS
102	Carbon Nanotube Fibers for Wearable Devices. , 2017, , 347-379.		1
103	Challenge and Opportunities of Carbon Nanotubes. , 2017, , 433-476.		9
104	Light Emitting Based on Polymer. , 2017, , 243-285.		1
106	Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber-shaped dye-sensitized solar cells. Nano Energy, 2018, 49, 95-102.	8.2	40
107	Study on a stretchable, fiber-shaped, and TiO2 nanowire array-based dye-sensitized solar cell with electrochemical impedance spectroscopy method. Electrochimica Acta, 2018, 267, 34-40.	2.6	32
108	Three dimensional photovoltaic fibers for wearable energy harvesting and conversion. Journal of Energy Chemistry, 2018, 27, 611-621.	7.1	31
109	In situ growth of zinc oxide nanoribbons within the interstices of a zinc stannate nanoplates network on compacted woven metal wires and their enhanced solar energy application. Electrochimica Acta, 2018, 262, 124-134.	2.6	5
110	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
111	Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics. APL Materials, 2018, 6, 046105.	2.2	11
112	Flexible woven metal wires supported nanosheets and nanoparticles double-layered nitrogen-doped zinc stannate toward enhanced solar energy utilization. Ceramics International, 2018, 44, 905-914.	2.3	5
114	Improvement in the photoelectric conversion efficiency for the flexible fibrous dye-sensitized solar cells. Nanoscale Research Letters, 2018, 13, 188.	3.1	8
116	All-in-one photosynthetic assemblies for solar fuels. Materials Today Energy, 2018, 10, 368-379.	2.5	2
118	Polymer solar cell textiles with interlaced cathode and anode fibers. Journal of Materials Chemistry A, 2018, 6, 19947-19953.	5.2	62
119	Yarn-form electrodes with high capacitance and cycling stability based on hierarchical nanostructured nickel-cobalt mixed oxides for weavable fiber-shaped supercapacitors. Journal of Power Sources, 2018, 400, 157-166.	4.0	33
120	Facile Metallization Technique of Textiles for Electronic Textile Applications. , 2019, , 91-99.		3
121	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	7.9	42
122	Regulation of dithiafulvene-based molecular shape and aggregation on TiO ₂ for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 1974-1981.	2.7	15
123	Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics. Nanoscale, 2019, 11, 3046-3101.	2.8	57

#	Article	IF	CITATIONS
124	Recent Advances in Electrode Fabrication for Flexible Energy‧torage Devices. Advanced Materials Technologies, 2019, 4, 1900083.	3.0	54
125	Vacuum Filtrationâ€andâ€Transfer Technique Helps Electrochemical Quartz Crystal Microbalance to Reveal Accurate Charge Storage in Supercapacitors. Small Methods, 2019, 3, 1900246.	4.6	21
126	Hybrid solar energy harvesting and storage devices: The promises and challenges. Materials Today Energy, 2019, 13, 22-44.	2.5	71
127	Carbon Nanotube and Graphene Fibers for Wearable Fiber-Shaped Energy Conversion. , 2019, , 359-381.		1
128	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24
129	Fiberâ€Based Energy Conversion Devices for Humanâ€Body Energy Harvesting. Advanced Materials, 2020, 32, e1902034.	11.1	204
130	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1903826.	11.1	329
131	Application Challenges in Fiber and Textile Electronics. Advanced Materials, 2020, 32, e1901971.	11.1	273
132	A review on spectral converting nanomaterials as a photoanode layer in dyeâ€sensitized solar cells with implementation in energy storage devices. Energy Storage, 2020, 2, e120.	2.3	14
133	Carbon Counter Electrodes in Dye‣ensitized and Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1906451.	7.8	74
134	Effect of yarn interlacement pattern on the surface electrical conductivity of intrinsically conductive fabrics. Synthetic Metals, 2020, 268, 116512.	2.1	6
135	Scalable Process to Develop Durable Conductive Cotton Fabric. Advanced Fiber Materials, 2020, 2, 291-301.	7.9	19
136	Fiber Electronics. , 2020, , .		4
137	Cotton Science and Processing Technology. Textile Science and Clothing Technology, 2020, , .	0.4	14
138	Continuous dry–wet spinning of white, stretchable, and conductive fibers of poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate) and ATO@TiO ₂ nanoparticles for wearable e-textiles. Journal of Materials Chemistry C, 2020, 8, 8362-8367.	2.7	14
139	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
141	Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy, 2020, 71, 104609.	8.2	73
142	Application of carbon nanomaterials in the electronic industry. , 2020, , 421-450.		5

#	Article	IF	Citations
143	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	7.9	36
144	Design of highly ordered hierarchical catalytic nanostructures as high-flexibility counter electrodes for fiber-shaped dye-sensitized solar cells. Applied Physics Letters, 2021, 118, .	1.5	7
145	Facile fabrication of Ag-doped graphene fiber with improved strength and conductivity for wearable sensor via the ion diffusion during fiber coagulation. Synthetic Metals, 2021, 275, 116741.	2.1	3
146	Fiber‧haped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	10.2	74
147	Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Materials Science, 2021, 3, 276-290.	3.9	35
148	Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. Frontiers in Chemistry, 2021, 9, 727574.	1.8	3
150	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
151	Energy Textiles. Nanostructure Science and Technology, 2015, , 199-211.	0.1	0
152	Fiber-Shaped Dye-Sensitized Solar Cell. Nanostructure Science and Technology, 2015, , 39-76.	0.1	2
153	Wearable Fiber-Shaped Energy Devices. , 2015, , .		0
154	Advanced Chemical Applications of Modified Cotton. Textile Science and Clothing Technology, 2020, , 501-527.	0.4	1
155	Fiber Electrodes. , 2020, , 15-52.		0
156	Smart Textiles. , 2020, , 427-457.		1
157	Fiber Dye-Sensitized Solar Cells. , 2020, , 71-111.		0
158	Tunable Hierarchical Hexagonal Nickel Telluride (Ni3te2) Laminated Microsheets as Flexible Counter Electrodes for High-Performance Fibrous Dye-Sensitized Solar Cells: Accelerated Electrocatalysis Reduction of 13- Ions. SSRN Electronic Journal, 0, , .	0.4	0
159	Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. Nanoscale Advances, 2022, 4, 1718-1726.	2.2	5
160	Tunable hierarchical hexagonal nickel telluride (Ni3Te2) laminated microsheets as flexible counter electrodes for high-performance fibrous dye-sensitized solar cells: Accelerated electrocatalysis reduction of I3â" ions. Chemical Engineering Journal, 2022, 442, 136286.	6.6	5
162	Carbon Nanocomposite-Based SCs as Wearable Energy Storage. Advances in Material Research and Technology, 2022, , 451-483.	0.3	2

#	Article	IF	CITATIONS
163	Surface tailored graphite–polymer composite electrodes through cold plasma for electrochemical applications. Plasma Processes and Polymers, 2022, 19, .	1.6	3
164	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
165	Recent progress in flexible electrodes and textile shaped devices for organic solar cells. Journal of Materials Chemistry A, 2023, 11, 1039-1060.	5.2	7