The Genetic Basis for Bacterial Mercury Methylation

Science 339, 1332-1335 DOI: 10.1126/science.1230667

Citation Report

#	Article	IF	CITATIONS
2	Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geoscience, 2013, 6, 751-754.	5.4	155
3	Why Mercury Prefers Soft Ligands. Journal of Physical Chemistry Letters, 2013, 4, 2317-2322.	2.1	54
4	Methylmercury manufacture. Nature Geoscience, 2013, 6, 810-811.	5.4	20
5	Mercury exposed: Advances in environmental analysis and ecotoxicology of a highly toxic metal. Environmental Toxicology and Chemistry, 2013, 32, 2175-2178.	2.2	37
6	Mechanistic Insights for Formation of an Organometallic Co–C Bond in the Methyl Transfer Reaction Catalyzed by Methionine Synthase. Journal of Physical Chemistry B, 2013, 117, 16044-16057.	1.2	22
7	Mesmerized by mercury. Nature Chemistry, 2013, 5, 1066-1066.	6.6	19
8	Global Change and Mercury. Science, 2013, 341, 1457-1458.	6.0	289
9	Influence of a wastewater treatment plant on mercury contamination and sediment characteristics in Vidy Bay (Lake Geneva, Switzerland). Aquatic Sciences, 2014, 76, 21.	0.6	7
10	Mercury Methylation by Novel Microorganisms from New Environments. Environmental Science & Technology, 2013, 47, 11810-11820.	4.6	575
11	Mercury Methylation by the Methanogen Methanospirillum hungatei. Applied and Environmental Microbiology, 2013, 79, 6325-6330.	1.4	119
12	Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. Comptes Rendus - Geoscience, 2013, 345, 213-224.	0.4	41
13	Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiology and Biochemistry, 2013, 73, 168-175.	2.8	35
14	Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environmental Science & Technology, 2013, 47, 2441-2456.	4.6	539
15	The Structure of the Mercury Transporter MerF in Phospholipid Bilayers: A Large Conformational Rearrangement Results from N-Terminal Truncation. Journal of the American Chemical Society, 2013, 135, 9299-9302.	6.6	27
16	Investigation of Mercury Methylation Pathways in Biofilm versus Planktonic Cultures of <i>Desulfovibrio desulfuricans</i> . Environmental Science & Technology, 2013, 47, 5695-5702.	4.6	22
17	Mercury Reduction and Cell-Surface Adsorption by <i>Geobacter sulfurreducens</i> PCA. Environmental Science & Technology, 2013, 47, 10922-10930.	4.6	78
18	Draft Genome Sequence for Desulfovibrio africanus Strain PCS. Genome Announcements, 2013, 1, e0014413.	0.8	5
19	Draft Genome Sequences for Three Mercury-Methylating, Sulfate-Reducing Bacteria. Genome Announcements, 2013, 1, .	0.8	7

# 21	ARTICLE Magma for 50,000 years. Nature Geoscience, 2013, 6, 811-812.	IF 5.4	Citations 5
22	Cracking the Mercury Methylation Code. Science, 2013, 339, 1280-1281.	6.0	57
23	The Global Cycles of Sulfur and Mercury. , 2013, , 469-486.		3
24	Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics. PLoS ONE, 2014, 9, e89531.	1.1	42
25	Mercury and Selenium in Stranded Indo-Pacific Humpback Dolphins and Implications for Their Trophic Transfer in Food Chains. PLoS ONE, 2014, 9, e110336.	1.1	20
26	Acerca de la biotecnologÃa ambiental. Arbor, 2014, 190, a157.	0.1	2
27	X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system. Biogeosciences, 2014, 11, 5259-5267.	1.3	26
28	Mercury in the Anthropocene Ocean. Oceanography, 2014, 27, 76-87.	0.5	60
29	USE OF CELLULOSE FILTER PAPER TO QUANTIFY WHOLE-BLOOD MERCURY IN TWO MARINE MAMMALS: VALIDATION STUDY. Journal of Wildlife Diseases, 2014, 50, 271-278.	0.3	7
30	Rice methylmercury exposure and mitigation: A comprehensive review. Environmental Research, 2014, 133, 407-423.	3.7	158
31	The Role of Earthworms in Mercury Pollution Soil Assessment. Handbook of Environmental Chemistry, 2014, , 159-174.	0.2	0
32	Potential drivers of microbial community structure and function in Arctic spring snow. Frontiers in Microbiology, 2014, 5, 413.	1.5	58
33	Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA. Applied Geochemistry, 2014, 50, 82-90.	1.4	12
34	Analysis of the Microbial Community Structure by Monitoring an Hg Methylation Gene (<i>hgcA</i>) in Paddy Soils along an Hg Gradient. Applied and Environmental Microbiology, 2014, 80, 2874-2879.	1.4	119
35	Hg(<scp>ii</scp>) bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics, 2014, 6, 2213-2222.	1.0	36
36	Detection of a key <scp>Hg</scp> methylation gene, <scp><i>hgcA</i></scp> , in wetland soils. Environmental Microbiology Reports, 2014, 6, 441-447.	1.0	89
37	Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by <i>Geobacter sulfurreducens</i> PCA. Environmental Science & Technology, 2014, 48, 11969-11976.	4.6	60
38	In vivo and in vitro changes in neurochemical parameters related to mercury concentrations from specific brain regions of polar bears (<i>Ursus maritimus</i>). Environmental Toxicology and Chemistry, 2014, 33, 2463-2471.	2.2	13

#	Article	IF	Citations
39	Monitoring Hg and Cd Contamination Using Red Swamp Crayfish (Procambarus clarkii): Implications for Wetland Food Chain Contamination. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	9
40	Randomized Open-Label Pilot Study of the Influence of Probiotics and the Gut Microbiome on Toxic Metal Levels in Tanzanian Pregnant Women and School Children. MBio, 2014, 5, e01580-14.	1.8	163
41	Mercury dynamics in a coastal aquifer: Maunalua Bay, Oʻahu, Hawaiʻi. Estuarine, Coastal and Shelf Science, 2014, 140, 52-65.	0.9	19
42	Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. Environmental Science and Pollution Research, 2014, 21, 1339-1348.	2.7	45
43	Linking Cellulose Fiber Sediment Methyl Mercury Levels to Organic Matter Decay and Major Element Composition. Ambio, 2014, 43, 878-890.	2.8	8
44	A Michaelis–Menten type equation for describing methylmercury dependence on inorganic mercury in aquatic sediments. Biogeochemistry, 2014, 119, 35-43.	1.7	34
45	A new guar gum-based adsorbent for the removal of Hg(II) from its aqueous solutions. Carbohydrate Polymers, 2014, 106, 276-282.	5.1	39
46	Exposure to mercury among Spanish preschool children: Trend from birth to age four. Environmental Research, 2014, 132, 83-92.	3.7	28
47	Green Synthesis of Low-Toxicity Graphene-Fulvic Acid with an Open Band Gap Enhances Demethylation of Methylmercury. ACS Applied Materials & amp; Interfaces, 2014, 6, 9220-9227.	4.0	12
48	Determination of thiol functional groups on bacteria and natural organic matter in environmental systems. Talanta, 2014, 119, 240-247.	2.9	45
49	Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research, 2014, 49, 391-405.	5.3	93
50	Sediment-Porewater Partitioning, Total Sulfur, and Methylmercury Production in Estuaries. Environmental Science & Technology, 2014, 48, 954-960.	4.6	63
51	Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality. Science of the Total Environment, 2014, 484, 276-287.	3.9	51
52	Mercury and methylmercury flux estimation and sediment distribution in an industrialized urban bay. Marine Chemistry, 2014, 158, 59-68.	0.9	19
53	Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-living Eisenia foetida. Soil Biology and Biochemistry, 2014, 69, 202-211.	4.2	33
54	A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics, 2014, 6, 396.	1.0	52
55	Dissolved Organic Matter Kinetically Controls Mercury Bioavailability to Bacteria. Environmental Science & Technology, 2014, 48, 3153-3161.	4.6	161
56	Growing Rice Aerobically Markedly Decreases Mercury Accumulation by Reducing Both Hg Bioavailability and the Production of MeHg. Environmental Science & Technology, 2014, 48, 1878-1885	4.6	95

ARTICLE

Mercury methylation, uptake and bioaccumulation by the earthworm Lumbricus terrestris () Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 T $\frac{27}{27}$

58	Mackinawite (FeS) Reduces Mercury(II) under Sulfidic Conditions. Environmental Science & Technology, 2014, 48, 10681-10689.	4.6	68
59	Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nature Communications, 2014, 5, 4624.	5.8	148
60	Temperature and the Sulfur Cycle Control Monomethylmercury Cycling in High Arctic Coastal Marine Sediments from Allen Bay, Nunavut, Canada. Environmental Science & Technology, 2014, 48, 2680-2687.	4.6	36
61	Unexpected Effects of Gene Deletion on Interactions of Mercury with the Methylation-Deficient Mutant Δ <i>hgcAB</i> . Environmental Science and Technology Letters, 2014, 1, 271-276.	3.9	22
62	Why Dissolved Organic Matter Enhances Photodegradation of Methylmercury. Environmental Science and Technology Letters, 2014, 1, 426-431.	3.9	82
63	Erosion of functional independence early in the evolution of a microbial mutualism. Proceedings of the United States of America, 2014, 111, 14822-14827.	3.3	63
64	Syntrophs Dominate Sequences Associated with the Mercury Methylation-Related Gene <i>hgcA</i> in the Water Conservation Areas of the Florida Everglades. Applied and Environmental Microbiology, 2014, 80, 6517-6526.	1.4	91
65	Geochemical factors influencing the production and transport of methylmercury in St. Louis River Estuary sediment. Applied Geochemistry, 2014, 51, 44-54.	1.4	10
66	Patterns of Bacterial Diversity Along a Long-Term Mercury-Contaminated Gradient in the Paddy Soils. Microbial Ecology, 2014, 68, 575-583.	1.4	72
67	Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environmental Reviews, 2014, 22, 229-243.	2.1	100
68	Effect of Divalent Metals on Hg(II) Uptake and Methylation by Bacteria. Environmental Science & Technology, 2014, 48, 3007-3013.	4.6	79
69	Geochemistry of Mercury in the Environment. , 2014, , 91-129.		66
70	Mercury Methylation by HgcA: Theory Supports Carbanion Transfer to Hg(II). Inorganic Chemistry, 2014, 53, 772-777.	1.9	34
71	Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. Environmental Pollution, 2014, 192, 212-215.	3.7	25
72	Genetic basis for nitrate resistance in Desulfovibrio strains. Frontiers in Microbiology, 2014, 5, 153.	1.5	202
73	Effect of Electron Donor to Sulfate Ratio on Mercury Methylation in Floodplain Sediments under Saturated Flow Conditions. Geomicrobiology Journal, 2015, 32, 924-933.	1.0	13
74	Geochemical influences and mercury methylation of a dental wastewater microbiome. Scientific Reports, 2015, 5, 12872.	1.6	22

#		IE	CITATIONS
#	ARTICLE The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental	IF	CITATIONS
75	peatland. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1697-1715.	1.3	55
76	Influence of a chlorâ€elkali superfund site on mercury bioaccumulation in periphyton and lowâ€trophic level fauna. Environmental Toxicology and Chemistry, 2015, 34, 1649-1658.	2.2	15
77	Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. Toxics, 2015, 3, 89-129.	1.6	65
78	The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3. Frontiers in Microbiology, 2015, 6, 1389.	1.5	42
79	Doubly Thiocyanato(S,N)-Bridged Dinuclear Complexes of Mercury(II) from the Use of 2-pyridyl Oximes as Capping Ligands. Current Inorganic Chemistry, 2015, 5, 26-37.	0.2	8
81	Relationship between Extracellular Low-Molecular-Weight Thiols and Mercury Species in Natural Lake Periphytic Biofilms. Environmental Science & Technology, 2015, 49, 7709-7716.	4.6	81
82	Metabolism of Metals and Metalloids by the Sulfate-Reducing Bacteria. , 2015, , 57-83.		13
83	Complete Genome of Geobacter pickeringii G13 ^T , a Metal-Reducing Isolate from Sedimentary Kaolin Deposits. Genome Announcements, 2015, 3, .	0.8	3
84	Genomes of Geoalkalibacter ferrihydriticus Z-0531 ^T and Geoalkalibacter subterraneus Red1 ^T , Two Haloalkaliphilic Metal-Reducing Deltaproteobacteria. Genome Announcements, 2015, 3, .	0.8	6
85	Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Science of the Total Environment, 2015, 512-513, 464-471.	3.9	47
86	Photocatalytic reduction of Hg using core–shell Fe/CeO2 hollow sphere nanocomposites. Ceramics International, 2015, 41, 5614-5620.	2.3	12
87	Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & Technology, 2015, 49, 1365-1373.	4.6	60
88	Independence of Nitrate and Nitrite Inhibition of <i>Desulfovibrio vulgaris</i> Hildenborough and Use of Nitrite as a Substrate for Growth. Environmental Science & Technology, 2015, 49, 924-931.	4.6	28
89	Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation. Applied and Environmental Microbiology, 2015, 81, 3205-3217.	1.4	73
90	Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands. Environmental Management, 2015, 55, 725-740.	1.2	7
91	Cross sensitivity effects of volatile organic compounds on a SAW-based elemental mercury vapor sensor. Sensors and Actuators B: Chemical, 2015, 212, 235-241.	4.0	12
92	The influence of obesity on blood mercury levels for U.S. non-pregnant adults and children: NHANES 2007–2010. Environmental Research, 2015, 138, 173-180.	3.7	45
93	Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Environmental Sciences: Processes and Impacts, 2015, 17, 1568-1577.	1.7	21

		CITATION REPORT	
# 94	ARTICLE A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Advances in Microbial Physiology, 2015, 66, 55-321.	IF 1.0	Citations 238
95	Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in <i>Shewanella oneidensis</i> . Environmental Science & Technology, 2015, 49, 7432-7438.	4.6	39
96	Cysteine Inhibits Mercury Methylation by <i>Geobacter sulfurreducens</i> PCA Mutant Δ <i>omcBESTZ</i> . Environmental Science and Technology Letters, 2015, 2, 144-148.	3.9	36
97	Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME Journal, 2015, 9, 2515-2526.	4.4	291
98	Controls on methylmercury accumulation in northern Gulf of Mexico sediments. Estuarine, Coastal and Shelf Science, 2015, 159, 50-59.	0.9	17
99	Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environmental Science and Pollution Research 2015, 22, 6144-6154.	, 2.7	45
100	Relationships between bacterial energetic metabolism, mercury methylation potential, and hgcA/hg gene expression in Desulfovibrio dechloroacetivorans BerOc1. Environmental Science and Pollution Research, 2015, 22, 13764-13771.		70
101	Effect of Gene-Mercury Interactions on Mercury Toxicokinetics and Neurotoxicity. Current Environmental Health Reports, 2015, 2, 179-194.	3.2	48
102	High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Research, 2015, 80, 245-255.	5.3	57
103	Biogeochemical Cycles. , 2015, , 511-617.		8
104	Chemical speciation of MeHg ⁺ and Hg ²⁺ in aqueous solution and HEK ce nuclei by means of DNA interacting fluorogenic probes. Chemical Science, 2015, 6, 3757-3764.	ells 3.7	31
105	In situ remediation technologies for mercury-contaminated soil. Environmental Science and Pollution Research, 2015, 22, 8124-8147.	2.7	102
106	Methyl mercury concentrations in edible fish and shellfish from Dunedin, and other regions around the South Island, New Zealand. Marine Pollution Bulletin, 2015, 101, 386-390.	2.3	19
107	Microbial DNA records historical delivery of anthropogenic mercury. ISME Journal, 2015, 9, 2541-25	50. 4.4	50
108	An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Marine Chemistry, 2015 177, 753-762.	5, 0.9	70
109	Identification of mercury methylation product by tert-butyl compounds in aqueous solution under light irradiation. Marine Pollution Bulletin, 2015, 98, 40-46.	2.3	8
110	Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science Advances, 2015, 1, e1500675.	4.7	355
111	Thiol-Facilitated Cell Export and Desorption of Methylmercury by Anaerobic Bacteria. Environmenta Science and Technology Letters, 2015, 2, 292-296.	3.9	31

#	Article	IF	CITATIONS
112	Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2015, 87, 11732-11738.	3.2	15
113	Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 2015, 122, 206-212.	4.2	60
114	Determination of methylmercury in marine sediment samples: Method validation and occurrence data. Analytica Chimica Acta, 2015, 853, 167-178.	2.6	28
115	Mercury in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 251-261.	0.6	115
116	Rex (Encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough Is a Repressor of Sulfate Adenylyl Transferase and Is Regulated by NADH. Journal of Bacteriology, 2015, 197, 29-39.	1.0	37
117	Iron and Sulfur Porewater and Surface Water Biogeochemical Interactions in Subtropical Peatlands. Soil Science Society of America Journal, 2016, 80, 794-802.	1.2	2
118	Metals and Neurodegeneration. F1000Research, 2016, 5, 366.	0.8	172
119	Isolation and Genomic Characterization of â€~Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine. Frontiers in Microbiology, 2016, 7, 913.	1.5	53
120	Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas. Frontiers in Microbiology, 2016, 7, 1111.	1.5	14
121	A silver electrode based surface acoustic wave (SAW) mercury vapor sensor: a physio-chemical and analytical investigation. RSC Advances, 2016, 6, 36362-36372.	1.7	14
122	Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Environmental Toxicology and Chemistry, 2016, 35, 1759-1765.	2.2	11
123	Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria. Environmental Science & Technology, 2016, 50, 8077-8083.	4.6	87
124	Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Science of the Total Environment, 2016, 568, 1213-1226.	3.9	116
125	Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism inGeobacter sulfurreducensPCA. Journal of Proteome Research, 2016, 15, 3540-3549.	1.8	28
126	Mercury and Methylmercury Dynamics in Sediments on a Protected Area of Tagus Estuary (Portugal). Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	25
127	Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Scientific Reports, 2016, 6, 27958.	1.6	61
128	A nanoengineered surface acoustic wave device for analysis of mercury in gas phase. Sensors and Actuators B: Chemical, 2016, 234, 562-572.	4.0	9
129	Anaerobic Mercury Methylation and Demethylation by <i>Geobacter bemidjiensis</i> Bem. Environmental Science & Technology, 2016, 50, 4366-4373.	4.6	121

#	Article	IF	CITATIONS
130	Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan. Chemosphere, 2016, 154, 375-384.	4.2	15
131	The effects of wildfire on mercury and stable isotopes (δ15N, δ13C) in water and biota of small boreal, acidic lakes in southern Norway. Environmental Monitoring and Assessment, 2016, 188, 178.	1.3	7
132	Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil. Environmental Pollution, 2016, 213, 232-239.	3.7	49
133	Impacts of forest harvesting on mobilization of Hg and MeHg in drained peatland forests on black schist or felsic bedrock. Environmental Monitoring and Assessment, 2016, 188, 228.	1.3	18
134	Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environmental Pollution, 2016, 215, 1-9.	3.7	111
135	Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochimica Et Cosmochimica Acta, 2016, 194, 153-162.	1.6	105
136	A smart material for the in situ detection of mercury in fish. Chemical Communications, 2016, 52, 11915-11918.	2.2	19
137	Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau. Environmental Pollution, 2016, 218, 1342-1349.	3.7	10
138	Periphyton Biofilms Influence Net Methylmercury Production in an Industrially Contaminated System. Environmental Science & Technology, 2016, 50, 10843-10850.	4.6	45
139	Role of Settling Particles on Mercury Methylation in the Oxic Water Column of Freshwater Systems. Environmental Science & Technology, 2016, 50, 11672-11679.	4.6	99
140	Impacts of coal ash on methylmercury production and the methylating microbial community in anaerobic sediment slurries. Environmental Sciences: Processes and Impacts, 2016, 18, 1427-1439.	1.7	12
141	Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments. Water Research, 2016, 103, 401-407.	5.3	13
142	Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea. Marine Chemistry, 2016, 186, 24-32.	0.9	27
143	Water management impacts rice methylmercury and the soil microbiome. Science of the Total Environment, 2016, 572, 608-617.	3.9	62
144	Methyl Mercury Formation in Hillslope Soils of Boreal Forests: The Role of Forest Harvest and Anaerobic Microbes. Environmental Science & Technology, 2016, 50, 9177-9186.	4.6	42
145	Modeling Mercury in Proteins. Methods in Enzymology, 2016, 578, 103-122.	0.4	9
146	Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin. Journal of Physical Chemistry B, 2016, 120, 7307-7318.	1.2	3
147	Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment. Applied and Environmental Microbiology, 2016, 82, 6068-6078.	1.4	73

		LITATION REPORT	
#	Article	IF	CITATIONS
148	Microbial mercury methylation in Antarctic sea ice. Nature Microbiology, 2016, 1, 16127.	5.9	158
149	Effects of Cellular Sorption on Mercury Bioavailability and Methylmercury Production by <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Technology, 2016, 50, 13335-13341.	4.6	78
150	Biogeochemistry: Mercury methylation on ice. Nature Microbiology, 2016, 1, 16165.	5.9	1
151	Effects of Nutrient Loading and Mercury Chemical Speciation on the Formation and Degradation of Methylmercury in Estuarine Sediment. Environmental Science & amp; Technology, 2016, 50, 6983-6	990. ^{4.6}	42
152	Biomagnification of mercury and selenium in two lakes in southern Norway. Science of the Total Environment, 2016, 566-567, 596-607.	3.9	31
153	Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay. Science of the Total Environment, 2016, 556, 319-329.	3.9	77
154	Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury. Ecotoxicology, 2016, 25, 1181-1193.	1.1	8
155	Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania). Environmental Science and Pollution Research, 2016, 2: 10529-10541.	3, 2.7	69
156	The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring <i>Dehalococcoides mccartyi</i> . ISME Journal, 2016, 10, 1092-1101.	4.4	59
157	The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicology Letters, 2016, 242, 60-67.	0.4	56
158	Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environmental Pollution, 2016, 209, 53-59.	3.7	56
159	Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochemical Research, 2016, 409-422.	, 41, 1.6	90
160	Suppression of hypolimnetic methylmercury accumulation by liquid calcium nitrate amendment: rec dynamics and fate of nitrate. Lake and Reservoir Management, 2016, 32, 61-73.	lox 0.4	17
161	Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications. Analyst, The, 2016, 141, 2463-2473.	1.7	18
162	A Nanoengineered Conductometric Device for Accurate Analysis of Elemental Mercury Vapor. Environmental Science & Technology, 2016, 50, 1384-1392.	4.6	20
163	Mercury species accumulation and trophic transfer in biological systems using the Almadén minir district (Ciudad Real, Spain) as a case of study. Environmental Science and Pollution Research, 2016 6074-6081.		14
164	Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicology and Environmental Safety, 2016, 124, 60-67.	2.9	31
165	Is gastrointestinal microbiota relevant for endogenous mercury methylation in terrestrial animals?. Environmental Research, 2017, 152, 454-461.	3.7	20

ARTICLE IF CITATIONS Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, 3.9 40 166 Utah. Science of the Total Énvironment, 2017, 581-582, 495-506. Nano-engineered surfaces for mercury vapor sensing: Current state and future possibilities. TrAC -Trends in Analytical Chemistry, 2017, 88, 77-99. 5.8 29 Studying the effect of dealloying Cu-Au nanostructures on their mercury sensing performance. 168 4.0 12 Sensors and Actuators B: Chemical, 2017, 245, 273-281. Vitamin B 12 in the spotlight again. Current Opinion in Chemical Biology, 2017, 37, 63-70. 169 98 Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine 170 4.7 88 biota. Science Advances, 2017, 3, e1601239. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nature Communications, 2017, 8, 14255. 171 5.8 221 Thermodynamic Modeling of the Solubility and Chemical Speciation of Mercury and Methylmercury Driven by Organic Thiols and Micromolar Sulfide Concentrations in Boreal Wetland Soils. 172 4.6 72 Environmental Science & amp; Technology, 2017, 51, 3678-3686. Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries. Environmental Pollution, 2017, 3.7 226, 297-307. Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)–S Coordination in Actively 174 30 4.6 Metabolizing <i>Escherichia coli</i>. Environmental Science & amp; Technology, 2017, 51, 4642-4651. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. Lab on A Chip, 2017, 17, 3.1 2032-2045. CYP3A genes and the association between prenatal methylmercury exposure and neurodevelopment. 176 4.8 24 Environment International, 2017, 105, 34-42. Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. 26 Environmental Pollution, 2017, 227, 243-251. Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory. 178 0.7 46 Environmental Chemistry, 2017, 14, 243. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. 179 6.6 Critical Reviews in Environmental Science and Technology, 2017, 47, 693-794. Methylmercury uptake and degradation by methanotrophs. Science Advances, 2017, 3, e1700041. 180 78 4.7 Iron and Pyritization in Wetland Soils of the Florida Coastal Everglades. Estuaries and Coasts, 2017, 40, 822-831. Draft Genome Sequence of Desulfovibrio BerOc1, a Mercury-Methylating Strain. Genome 182 0.8 1 Announcements, 2017, 5, . The open sea as the main source of methylmercury in the water column of the Gulf of Lions 1.6 (Northwestern Mediterranean margin). Geochimica Et Cosmochimica Acta, 2017, 199, 222-237.

#	Article	IF	Citations
184	Mercury-methylating genes dsrB and hgcA in soils/sediments of the Three Gorges Reservoir. Environmental Science and Pollution Research, 2017, 24, 5001-5011.	2.7	47
185	Mercury levels in largemouth bass (Micropterus salmoides) from regulated and unregulated rivers. Chemosphere, 2017, 170, 134-140.	4.2	18
186	Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Science of the Total Environment, 2017, 580, 1197-1204.	3.9	37
187	Mercury toxicity to terrestrial biota. Ecological Indicators, 2017, 74, 451-462.	2.6	88
188	Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by <i>Desulfovibrio vulgaris</i> Hildenborough. MBio, 2017, 8, .	1.8	18
189	Impacts of Nutrient Loading on Mercury Fractionation and Mobility in an Estuarine Wetland in Nansi Lake, China. Soil and Sediment Contamination, 2017, 26, 526-537.	1.1	2
190	The fate of mercury and its relationship with carbon, nitrogen and bacterial communities during litter decomposing in two subtropical forests. Applied Geochemistry, 2017, 86, 26-35.	1.4	15
191	Arsenic Methylation Dynamics in a Rice Paddy Soil Anaerobic Enrichment Culture. Environmental Science & Technology, 2017, 51, 10546-10554.	4.6	61
192	Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury. Heliyon, 2017, 3, e00400.	1.4	16
193	Highâ€Energy Resolution Fluorescence Detected Xâ€Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences. Journal of Environmental Quality, 2017, 46, 1146-1157.	1.0	72
194	The Impact of the Major Baltic Inflow of December 2014 on the Mercury Species Distribution in the Baltic Sea. Environmental Science & amp; Technology, 2017, 51, 11692-11700.	4.6	13
195	Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Regional Environmental Change, 2017, 17, 2061-2077.	1.4	26
196	Selenocystine against methyl mercury cytotoxicity in HepG2 cells. Scientific Reports, 2017, 7, 147.	1.6	20
197	Impact of macrozoobenthic bioturbation and wind fluctuation interactions on net methylmercury in freshwater lakes. Water Research, 2017, 124, 320-330.	5.3	23
198	Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by <i>Geobacter sulfurreducens</i> PCA and <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Technology, 2017, 51, 10468-10475.	4.6	74
199	Mercury bioavailability, transformations, and effects on freshwater biofilms. Environmental Toxicology and Chemistry, 2017, 36, 3194-3205.	2.2	28
200	Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends. Environmental Pollution, 2017, 231, 262-270.	3.7	41
201	Organic matter drives high interannual variability in methylmercury concentrations in a subarctic coastal sea. Environmental Pollution, 2017, 229, 531-538.	3.7	29

#	Article	IF	CITATIONS
202	Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environmental Science and Pollution Research, 2017, 24, 19223-19233.	2.7	15
203	Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environmental Pollution, 2017, 220, 1359-1365.	3.7	53
204	Critical role of natural organic matter in photodegradation of methylmercury in water: Molecular weight and interactive effects with other environmental factors. Science of the Total Environment, 2017, 578, 535-541.	3.9	35
205	Investigating the cross-interference effects of alumina refinery process gas species on a SAW based mercury vapor sensor. Hydrometallurgy, 2017, 170, 51-57.	1.8	13
206	Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integrated Environmental Assessment and Management, 2017, 13, 249-263.	1.6	52
207	Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values. Applied Microbiology and Biotechnology, 2017, 101, 2163-2175.	1.7	38
208	Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Critical Reviews in Environmental Science and Technology, 2017, 47, 2415-2447.	6.6	30
209	Cloning, Expression, Isotope Labeling, and Purification of Transmembrane Protein MerF from Mercury Resistant Enterobacter sp. AZ-15 for NMR Studies. Frontiers in Microbiology, 2017, 8, 1250.	1.5	7
210	Toxicology of E-Waste Chemicals—Mechanisms of Action. , 2017, , 33-54.		1
211	Kinetics of mercury accumulation by freshwater biofilms. Environmental Chemistry, 2017, 14, 458.	0.7	7
212	Metals and Autophagy inÂNeurotoxicity. , 2017, , 377-398.		3
213	Role of autophagy in environmental neurotoxicity. Environmental Pollution, 2018, 235, 791-805.	3.7	41
214	Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments. Environmental Science & Technology, 2018, 52, 4145-4153.	4.6	20
215	The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter. Environmental Sciences: Processes and Impacts, 2018, 20, 642-656.	1.7	14
216	Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China. Environmental Sciences: Processes and Impacts, 2018, 20, 673-685.	1.7	36
217	A reaction-based ratiometric fluorescent sensor for the detection of Hg(<scp>ii</scp>) ions in both cells and bacteria. Chemical Communications, 2018, 54, 4955-4958.	2.2	105
218	Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption. Environmental Science & amp; Technology, 2018, 52, 5125-5134.	4.6	19
219	Robust Mercury Methylation across Diverse Methanogenic Archaea. MBio, 2018, 9, .	1.8	112

#	Article	IF	CITATIONS
220	Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris. Applied Microbiology and Biotechnology, 2018, 102, 2839-2850.	1.7	18
221	Aircraft Measurements of Total Mercury and Monomethyl Mercury in Summertime Marine Stratus Cloudwater from Coastal California, USA. Environmental Science & Technology, 2018, 52, 2527-2537.	4.6	11
222	Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes. Environmental Science & Technology, 2018, 52, 2768-2776.	4.6	49
223	Methylmercury and methane production potentials in North Carolina Piedmont stream sediments. Biogeochemistry, 2018, 137, 181-195.	1.7	18
224	A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 2018, 47, 116-140.	2.8	500
225	Emerging investigator series: methylmercury speciation and dimethylmercury production in sulfidic solutions. Environmental Sciences: Processes and Impacts, 2018, 20, 584-594.	1.7	17
226	Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 2018, 47, 141-169.	2.8	183
227	Development of CHARMM-Compatible Force-Field Parameters for Cobalamin and Related Cofactors from Quantum Mechanical Calculations. Journal of Chemical Theory and Computation, 2018, 14, 784-798.	2.3	20
228	Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment. Ecotoxicology and Environmental Safety, 2018, 150, 116-122.	2.9	51
229	Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coordination Chemistry Reviews, 2018, 358, 13-69.	9.5	385
230	Mercury-free nitrogen-doped activated carbon catalyst: an efficient catalyst for the catalytic coupling reaction of acetylene and ethylene dichloride to synthesize the vinyl chloride monomer. Reaction Chemistry and Engineering, 2018, 3, 34-40.	1.9	12
231	<i>Geobacteraceae</i> are important members of mercury-methylating microbial communities of sediments impacted by waste water releases. ISME Journal, 2018, 12, 802-812.	4.4	96
232	Potential contributions of dissolved organic matter to monomethylmercury distributions in temperate reservoirs as revealed by fluorescence spectroscopy. Environmental Science and Pollution Research, 2018, 25, 6474-6486.	2.7	13
233	Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China. MicrobiologyOpen, 2018, 7, e00577.	1.2	20
234	Syntrophic pathways for microbial mercury methylation. ISME Journal, 2018, 12, 1826-1835.	4.4	71
235	Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén) Tj ETQq1 1 ().784314 4.2	rgǥŢ /Overloo
236	Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. Journal of Environmental Sciences, 2018, 68, 206-217.	3.2	41
237	Mechanisms of Methyl Mercury Net Degradation in Alder Swamps: The Role of Methanogens and Abiotic Processes. Environmental Science and Technology Letters, 2018, 5, 220-225.	3.9	34

#	Article	IF	CITATIONS
238	Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, <i>Desulfobulbus oralis</i> . MBio, 2018, 9, .	1.8	32
239	Role of Organic Carbon Sources and Sulfate in Controlling Net Methylmercury Production in Riverbank Sediments of the South River, VA (USA). Geomicrobiology Journal, 2018, 35, 1-14.	1.0	18
240	Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure. Journal of Environmental Sciences, 2018, 68, 73-82.	3.2	36
241	Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography. Physics and Chemistry of the Earth, 2018, 103, 45-50.	1.2	6
242	Formation of mercury methylation hotspots as a consequence of forestry operations. Science of the Total Environment, 2018, 613-614, 1069-1078.	3.9	45
243	Biosensor for screening bacterial mercury methylation: example within the Desulfobulbaceae. Research in Microbiology, 2018, 169, 44-51.	1.0	20
244	Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter. Geochimica Et Cosmochimica Acta, 2018, 220, 158-179.	1.6	74
245	The influence of permanently submerged macrophytes on sediment mercury distribution, mobility and methylation potential in a brackish Norwegian fjord. Science of the Total Environment, 2018, 610-611, 1364-1374.	3.9	8
246	Mercury methylation in the soils and sediments of Three Gorges Reservoir Region. Journal of Soils and Sediments, 2018, 18, 1100-1109.	1.5	15
247	Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems. Ecotoxicology and Environmental Safety, 2018, 147, 192-199.	2.9	11
248	Purinyl-cobamide is a native prosthetic group of reductive dehalogenases. Nature Chemical Biology, 2018, 14, 8-14.	3.9	58
249	Methylmercury Biogeochemistry in Freshwater Ecosystems: A Review Focusing on DOM and Photodemethylation. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 14-25.	1.3	53
250	Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation. Environmental Pollution, 2018, 237, 1112-1123.	3.7	31
251	Methylmercury in Managed Wetlands. Environmental Contamination Remediation and Management, 2018, , 207-240.	0.5	2
252	Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments. Applied and Environmental Microbiology, 2018, 84, .	1.4	38
253	Dynamic mercury methylation and demethylation in oligotrophic marine water. Biogeosciences, 2018, 15, 6451-6460.	1.3	49
254	Characterization of manganese oxide amendments for <i>in situ</i> remediation of mercury-contaminated sediments. Environmental Sciences: Processes and Impacts, 2018, 20, 1761-1773.	1.7	9
255	Unprecedented Increases in Total and Methyl Mercury Concentrations Downstream of Retrogressive Thaw Slumps in the Western Canadian Arctic. Environmental Science & Technology, 2018, 52, 14099-14109.	4.6	58

#	Article	IF	CITATIONS
256	Algal Bloom Exacerbates Hydrogen Sulfide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca. Geosciences (Switzerland), 2018, 8, 438.	1.0	27
257	Evidence of Mercury Methylation and Demethylation by the Estuarine Microbial Communities Obtained in Stable Hg Isotope Studies. International Journal of Environmental Research and Public Health, 2018, 15, 2141.	1.2	23
258	What Is Your Gut Telling You? Exploring the Role of the Microbiome in Gut–Brain Signaling. Environmental Health Perspectives, 2018, 126, 062001.	2.8	1
259	Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Applied and Environmental Microbiology, 2018, 84, .	1.4	46
260	Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. Environmental Science & Technology, 2018, 52, 13110-13118.	4.6	106
261	Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome, 2018, 6, 183.	4.9	109
262	Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes. ACS Earth and Space Chemistry, 2018, 2, 1168-1178.	1.2	14
263	The effect of metal loading on bacterial Hg adsorption. Chemical Geology, 2018, 498, 106-114.	1.4	2
264	Methylmercury Dynamics in Upper Sacramento Valley Rice Fields with Low Background Soil Mercury Levels. Journal of Environmental Quality, 2018, 47, 830-838.	1.0	5
265	Total Mercury and Methylmercury in Lake Water of Canada's Oil Sands Region. Environmental Science & Technology, 2018, 52, 10946-10955.	4.6	17
266	Adsorption of Methylmercury onto <i>Geobacter bemidijensis</i> Bem. Environmental Science & Technology, 2018, 52, 11564-11572.	4.6	4
267	Noninvasive Analysis of the Soil Microbiome: Biomonitoring Strategies Using the Volatilome, Community Analysis, and Environmental Data. Advances in Ecological Research, 2018, 59, 93-132.	1.4	17
268	Genome Editing Method for the Anaerobic Magnetotactic Bacterium Desulfovibrio magneticus RS-1. Applied and Environmental Microbiology, 2018, 84, .	1.4	8
269	Vertical Distribution of Total Mercury and Mercury Methylation in a Landfill Site in Japan. International Journal of Environmental Research and Public Health, 2018, 15, 1252.	1.2	11
270	Neurotoxins and Autism. , 0, , .		1
271	Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Research, 2018, 146, 146-158.	5.3	113
272	Dissolved oxygen and nitrate effects on the reduction and removal of divalent mercury by pumice supported nanoscale zero-valent iron. Environmental Science: Water Research and Technology, 2018, 4, 1651-1661.	1.2	13
273	Removal of inorganic mercury by selective extraction and coprecipitation for determination of methylmercury in mercury-contaminated soils by chemical vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Analytica Chimica Acta, 2018, 1041, 68-77.	2.6	35

		CITATION REPOR	т	
#	Article	IF	(Citations
274	Marine Sediment. Encyclopedia of Earth Sciences Series, 2018, , 878-892.	0.1	-	L
275	The distribution and speciation of mercury in the California current: Implications for mercury transport via fog to land. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 1	51, 77-88. 0.6	. :	16
276	Nanomolar Copper Enhances Mercury Methylation by <i>Desulfovibrio desulfuricans</i> ND1 Environmental Science and Technology Letters, 2018, 5, 372-376.	32. 3.9	2	24
277	Total and methyl-mercury seasonal particulate fluxes in the water column of a large lake (Lake) Tj ETQq1 1 0.784314 r 2.7	gBT /O	verlock 10
278	Determination of mercury in hair of children. Toxicology Letters, 2018, 298, 25-32.	0.4	. 9	9
279	Spectroscopic and Microscopic Evidence of Biomediated HgS Species Formation from Hg(II)ât Complexes: Implications for Hg(II) Bioavailability. Environmental Science & Technology, 2 10030-10039.	€"Cysteine 2018, 52, 4.6		14
280	Linking Microbial Activities and Low-Molecular-Weight Thiols to Hg Methylation in Biofilms an Periphyton from High-Altitude Tropical Lakes in the Bolivian Altiplano. Environmental Science a Technology, 2018, 52, 9758-9767.	d & 4.6	7	70
281	Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. Jourr Geochemical Exploration, 2018, 194, 81-87.	nal of 1.5	:	33
282	Alternate Wetting and Drying Decreases Methylmercury in Flooded Rice (<i>Oryza sativa</i>) Soil Science Society of America Journal, 2018, 82, 115-125.	Systems. 1.2		33
283	Quantitative Proteomic Analysis of Biological Processes and Responses of the Bacterium <i>Desulfovibrio desulfuricans</i> ND132 upon Deletion of Its Mercury Methylation Genes. Proteomics, 2018, 18, e1700479.	1.3	:	22
284	Magmatic Process Modeling. Encyclopedia of Earth Sciences Series, 2018, , 841-853.	0.1	(0
285	Nitrogen and sulfur isotopes predict variation in mercury levels in Arctic seabird prey. Marine Pollution Bulletin, 2018, 135, 907-914.	2.3		15
286	Deposition and Fate of Mercury in Litterfall, Litter, and Soil in Coniferous and Broad‣eaved I Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2590-2603.	Forests. 1.3	;	33
287	Methylation and dealkykation of tin compounds by sulfate- and nitrate-reducing bacteria. Chemosphere, 2018, 208, 871-879.	4.2		16
288	Distribution and biogeochemical controls on net methylmercury production in Penobscot Rive marshes and sediment. Science of the Total Environment, 2018, 640-641, 555-569.	er 3.9		35
289	Characteristics of archaea and bacteria in rice rhizosphere along a mercury gradient. Science o Total Environment, 2019, 650, 1640-1651.	of the 3.9	2	42
290	Dimethylmercury in Floodwaters of Mercury Contaminated Rice Paddies. Environmental Scien Technology, 2019, 53, 9453-9461.	ce & 4.6	:	18
291	Evaluation of Mercury Transformation and Benthic Organisms Uptake in a Creek Sediment of River Estuary, China. Water (Switzerland), 2019, 11, 1308.	Pearl 1.2		4

4.6

52

#	Article	IF	CITATIONS
292	Highly sensitive near infrared light derived sensor for methyl mercury based on Förster resonance energy transfer from In ₂ 0 ₃ : Yb ³⁺ , Er ³⁺ to CdTe. Journal Physics D: Applied Physics, 2019, 52, 375107.	1.3	2
293	No detectable changes in crayfish behavior due to sublethal dietary mercury exposure. Ecotoxicology and Environmental Safety, 2019, 182, 109440.	2.9	0
294	The Ecology of Methanogenic Archaea in a Nutrient-Impacted Wetland. Advances in Environmental Microbiology, 2019, , 157-172.	0.1	0
295	Kinetic characteristics and predictive models of methylmercury production in paddy soils. Environmental Pollution, 2019, 253, 424-428.	3.7	8
296	Dissolved organic matter reduces the effectiveness of sorbents for mercury removal. Science of the Total Environment, 2019, 690, 410-416.	3.9	42
297	Determining the Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury Concentrations. Environmental Science & Technology, 2019, 53, 8649-8663.	4.6	99
298	Chemical Degradation of Mercury Alkyls Mediated by Copper Selenide Nanosheets. Chemistry - an Asian Journal, 2019, 14, 4582-4587.	1.7	5
299	Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea. Ecotoxicology and Environmental Safety, 2019, 185, 109722.	2.9	14
300	Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils. Environmental Science & Technology, 2019, 53, 12330-12338.	4.6	48
301	Uptake Kinetics of Methylmercury in a Freshwater Alga Exposed to Methylmercury Complexes with Environmentally Relevant Thiols. Environmental Science & Technology, 2019, 53, 13757-13766.	4.6	23
302	Mercury species in the nests and bodies of soil-feeding termites, Silvestritermes spp. (Termitidae,) Tj ETQq0 0 0 r	gBŢ_/Overl	ock 10 Tf 50
303	Commune Propriety between Reducing Agents Implicated in Synthesis of Metallic Nanoparticles. Review Journal of Chemistry, 2019, 9, 153-160.	1.0	0
304	Elucidating Microbial Pathways of Mercury Methylation During Litter Decomposition. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 617-622.	1.3	8
305	A probabilistic perspective on thermodynamic parameter uncertainties: Understanding aqueous speciation of mercury. Geochimica Et Cosmochimica Acta, 2019, 263, 108-121.	1.6	4
306	Microbial mercury methylation in the cryosphere: Progress and prospects. Science of the Total Environment, 2019, 697, 134150.	3.9	7
307	Environmental Mercury Chemistry – In Silico. Accounts of Chemical Research, 2019, 52, 379-388.	7.6	40

309	A Model of Mercury Distribution in Tuna from the Western and Central Pacific Ocean: Influence of Physiology, Ecology and Environmental Factors. Environmental Science & (2019, 53, 1422-1431.)	4.6	37	
-----	--	-----	----	--

#	Article	IF	CITATIONS
310	Mechanistic Effect of Heavy Metals in Neurological Disorder and Brain Cancer. Environmental Science and Engineering, 2019, , 25-47.	0.1	14
311	A novel biological sulfur reduction process for mercury-contaminated wastewater treatment. Water Research, 2019, 160, 288-295.	5.3	48
312	Mercury Adsorption on Minerals and Its Effect on Microbial Methylation. ACS Earth and Space Chemistry, 2019, 3, 1338-1345.	1.2	18
313	Microbial Biosynthesis of Thiol Compounds: Implications for Speciation, Cellular Uptake, and Methylation of Hg(II). Environmental Science & Technology, 2019, 53, 8187-8196.	4.6	41
314	Exposure to mercury among 9-year-old Spanish children: Associated factors and trend throughout childhood. Environment International, 2019, 130, 104835.	4.8	11
315	The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 2019, 38, 251-264.	0.6	34
316	HgS and Zuotai differ from HgCl2 and methyl mercury in intestinal Hg absorption, transporter expression and gut microbiome in mice. Toxicology and Applied Pharmacology, 2019, 379, 114615.	1.3	23
317	The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism. Metallomics, 2019, 11, 1219-1229.	1.0	17
318	A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production?. Science of the Total Environment, 2019, 680, 140-150.	3.9	48
319	The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, 2019, , .	0.1	2
320	Mercury Uptake by <i>Desulfovibrio desulfuricans</i> ND132: Passive or Active?. Environmental Science & Technology, 2019, 53, 6264-6272.	4.6	33
321	Do bacteria occupying important ecological niches contribute to the entrance of mercury into the food webs?. Science of the Total Environment, 2019, 671, 1094-1100.	3.9	0
322	Global Metaâ€Analysis on the Relationship Between Mercury and Dissolved Organic Carbon in Freshwater Environments. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1508-1523.	1.3	50
323	Sulfate-Reducing Bacteria That Produce Exopolymers Thrive in the Calcifying Zone of a Hypersaline Cyanobacterial Mat. Frontiers in Microbiology, 2019, 10, 862.	1.5	54
324	Kinetics of Enzymatic Mercury Methylation at Nanomolar Concentrations Catalyzed by HgcAB. Applied and Environmental Microbiology, 2019, 85, .	1.4	20
325	Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
326	Mercury methylation by anaerobic microorganisms: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1893-1936.	6.6	114
327	Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science & Technology, 2019, 53, 6144-6153.	4.6	45

ARTICLE IF CITATIONS Assessment of mercury mobilization potential in Upper St. Lawrence River riparian wetlands under 328 0.8 5 new water level regulation management. Journal of Great Lakes Research, 2019, 45, 735-741. Geochemical controls on the distribution of mercury and methylmercury in sediments of the coastal 28 East China Sea. Science of the Total Environment, 2019, 667, 133-141. Adaptation of <i>Desulfovibrio alaskensis</i> G20 to perchlorate, a specific inhibitor of sulfate 330 1.8 14 reduction. Environmental Microbiology, 2019, 21, 1395-1406. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments. Environment 4.8 49 International, 2019, 126, 279-288. Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2†years after the Deepwater Horizon oil spill: Insights from Hg, C, N and S stable isotopes. Science of the Total 332 3.9 18 Environment, 2019, 666, 828-838. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 2019, 126, 747-761. 4.8 278 Cold vapor integrated quartz crystal microbalance (CV-QCM) based detection of mercury ions with 334 4.0 13 gold nanostructures. Sensors and Actuators B: Chemical, 2019, 290, 453-458. Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. Science of the Total Environment, 3.9 38 2019, 672, 604-617. The three â€~B' of fish mercury in China: Bioaccumulation, biodynamics and biotransformation. 336 3.7 47 Environmental Pollution, 2019, 250, 216-232. Mercury and methylmercury concentrations, sources and distribution in submarine canyon sediments (Capbreton, SW France): Implications for the net methylmercury production. Science of the Total Ènvironment, 2019, 673, 511-521. Lake sediment mercury biogeochemistry controlled by sulphate input from drainage basin. Applied 338 7 1.4 Geochemistry, 2019, 104, 135-145. Mercury methylation by Geobacter metallireducens GS-15 in the presence of Skeletonema costatum. Science of the Total Environment, 2019, 671, 208-214. Methylmercury and selenium interactions: Mechanisms and implications for soil remediation. Critical 340 6.6 30 Reviews in Environmental Science and Technology, 2019, 49, 1737-1768. Investigation of legacy industrial mercury in floodplain soils: South River, Virginia, USA. 341 1.3 Environmental Earth Ściences, 2019, 78, 1. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox 342 92 4.8 conditions in a contaminated floodplain soil. Environment International, 2019, 127, 276-290. Using colloidal lithography to control the formation of gas sorption sites through galvanic 343 5.0 replacement reaction. Journal of Colloid and Interface Science, 2019, 547, 199-205. 344 Mercury methylating microbial communities of boreal forest soils. Scientific Reports, 2019, 9, 518. 1.6 53 Chemical Compositions of Metals in Bhasmas and Tibetan Zuotai Are a Major Determinant of Their 345 Therapeutic Effects and Toxicity. Evidence-based Complementary and Alternative Medicine, 2019, 2019,

CITATION REPORT

1-13.

346Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME4.464347Recent advances in somethe and rapid mercury determination with graphene-based sensors. Journal of5.273349Confactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. MBio.1.827350The Mercury-Tolerant Microbiots of the Zooplaniton (1) Daphnia (1) Alds in Hoot Survival and Memory Stress. Environmental Science & Amm, Technology, 2019, 5.34.612351Deforestation Due to Artianal and Small-Scale Cold Mining Exacerbates Sol and Mercury Mobilization in Madre do Dies, Peru. Environmental Science & Amm, Technology, 2020, 54, 286-296.4.636352Environment, 2019, 467, 16041-610.3.91.6353Environment, 2019, 467, 16041-610.3.91.6354Environmental Science administration of participation (1) Daphnia (1) Autors Science of the Total Perus Environmental Science & Amm, Technology, 2020, 54, 286-296.4.636354Environment, 2019, 467, 16041-610.3.91.633355Environment, 2019, 467, 16041-610.3.91.6356Cycling of blogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190.4.030357Urgenic of Mercury Cycling in the Repidly Changing Clacificate Watershed of the High ActiciaC ¹⁰⁶ S.33358Nitrification/dentitrification shaped the mercury oxidizing microbal community for simultaneous Hg04.836359Nitrification/dentitrification shaped the mercury oxidizing microbal community for sim	#	Article	IF	CITATIONS
Bark Materials Chemistry A. 2019, 7, 6616-6630. 002 70 Bark Cofactor Selectivity in Methylmalonyl Coenzyme A Matase, a Model Cobamide-Dependent Enzyme. MBio, 2019, 10, 1 1.8 27 Bark Cofactor Selectivity in Methylmalonyl Coenzyme A Matase, a Model Cobamide-Dependent Enzyme. MBio, Methalana Securatity under Mercury Stress. Environmental Science & Amp; Technology, 2019, 53, 14.0 12 Bark Deforestation Due to Artisanal and Small-Science Communital Science & Science of the Total Molitation in Madre & Diss, Peru. Environmental Science & Amp; Technology, 2020, 54, 286-296. 4.6 36 Bask Tailings ponds of the Athabasea Off Sands Region, Alberta, Canada, are likely not significant sources to total inscience and Pollution Research, 2019, 26, 4667-4679. 3.0 10 Bask Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 33, 1127-1185. 4.0 30 Bask Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science & Amp; Technology, 2019, 33, 1127-1185. 4.0 33 Bask Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science & Amp; Technology, 2019, 33, 1127-1185. 4.0 33 Bask Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 9, 13, 289-304. 4.8 52 Bask <td< td=""><td>346</td><td></td><td>4.4</td><td>64</td></td<>	346		4.4	64
349 2015, 10, . Las 27 350 Marcary Tolerant. Microbiota of the Zooplankton (1) Daphniac(1): Adds in Host Sunvkal and Marcary Tolerant. Microbiota of the Zooplankton (1) Daphniac(1): Adds in Host Sunvkal and Mobilization in Madre de Dios, Peru. Environmental Science & amp; Technology, 2019, 53, 4.6 12 360 Mobilization in Madre de Dios, Peru. Environmental Science & amp; Technology, 2000, 54, 286-296, 4.6 36 361 Tailings ponts of the Athabarca OI Sands Region, Aberta, Canada, are likely net significant sources of total mercary and nethylmercury to nearby ground and surface waters. Science of the Total Environment, 2019, 647, 1604-1610. 30 10 364 East China Sea. Environmental Science and Pollution Research, 2019, 26, 4667-4679. 2.7 12 365 Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 131-142. 4.0 30 366 Ingress of Mercury Cycling in the Rapidly Changing Clacterized Watershed of the High Arctick@ ^{WS} Signification/dentification shaped the mercury-oxidizing microbial community for simultaneous Hig0 and Noremoval. Bioresource Eachology, 2019, 274, 18-24. 30 367 Uneven distribution of Costamida the solutions in Solis and Seedments: Angel or Deviß. Bulletin of Environmental Contamination and Tookcology, 2019, 102, 621-627. 1.3 30 368 Introductor Characterization of Mercury Binding Ligands Released by Freshwater Algae	347	Recent advances in sensitive and rapid mercury determination with graphene-based sensors. Journal of Materials Chemistry A, 2019, 7, 6616-6630.	5.2	73
350 Maintains Facundity under Mercury Stress. Environmental Science & amp; Technology, 2019, 53, 4.6 12 352 Medolization In Madre de Dios, Peru. Environmental Science & amp; Technology, 2020, 54, 286-296. 4.6 36 353 Tallings ponds of the Athabasca Oil Sands Region, Alberta, Canada, are likely not significant sources of total mercury and methylmercury to nearby ground and surface waters. Science of the Total Environment, 2019, 647, 1604-1610. 3.9 16 354 The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea. Environmental Science and Pollution Research, 2019, 26, 4667-4679. 2.7 12 355 Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 131-147. 4.0 30 356 Largeet Lakee by Volume (Lake Hazen, Nunavut, Canada). Environmental Science & amp; Technology, 2019, 4.6 33 357 Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804. 4.4 162 358 Nitrification/dentrification shaped the mercury-oxidizing microbial community for simultaneous HgO and NO removal. Bioresource Technology, 2019, 724, 18-24. 1.3 50 360 Photoperiods. Frontiers in Environmental Science, 2019, 6, 6. 1.3 51 361 Bintecand Abortic Degradation of Mercury Bindin	349		1.8	27
303 Mobilization in Madre de Dios, Peru. Environmental Science & amp; Technology, 2020, 54, 286-296. 4:0 30 313 Tailings ponds of the Athabasea Oil Sands Region, Alberta, Canada, are likely not significant sources of total mercury and methylmercury to nearby ground and surface waters. Science of the Total Environment, 2019, 44, 1604-1610. 3:9 16 314 The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea. Environmental Science and Pollution Research, 2019, 26, 4667-4679. 2:7 12 315 Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 4.0 30 316 Drivers of Mercury Cycling in the Rapidly Changing Glacierized Watershed of the High Arcticae ^{TMS} significant sources of Mercury Cycling in the Rapidly Changing Glacierized Watershed of the High Arcticae ^{TMS} significant source Technology, 2019, 13, 789-804. 33 317 Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804. 4.4 162 317 Uneven distribution of cobamide biosynthesis and Sediments: Angel or Devil?. Bulletin of environmental Contamination and Toxicology, 2019, 102, 621-627. 1.3 50 318 MercuryAe ^C Organic Matter Interactions in Seils and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627. 1.3 50 316	350	Maintains Fecundity under Mercury Stress. Environmental Science & amp; Technology, 2019, 53,	4.6	12
353 of total mercury and methylmercury to nearby ground and surface waters. Science of the Total 3.9 16 354 East China Sea. Environmental Science and Pollution Research, 2019, 26, 4667-4679. 2.7 12 355 East China Sea. Environmental Science and Pollution Research, 2019, 26, 4667-4679. 4.0 30 356 Light 147. 4.0 30 357 Drivers of Mercury Cycling in the Rapidly Changing Clacierized Watershed of the High ArcticaE™s 4.6 33 358 Largest Lake by Volume (Lake Hazen, Nunavut, Canada). Environmental Science & amp; Technology, 2019, 4.6 33 357 Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804. 4.4 162 358 Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous HgO 4.8 52 360 MercuryAECOrganic Matter Interactions in Solis and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627. 1.3 50 361 Biotic and Ablotic Degradation of Mercury Binding Ligands Released by Freshwater Algae Grown at Three 1.5 18 362 Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and microbe-exposure correlations. Environmental Research,	352	Deforestation Due to Artisanal and Small-Scale Gold Mining Exacerbates Soil and Mercury Mobilization in Madre de Dios, Peru. Environmental Science & Technology, 2020, 54, 286-296.	4.6	36
384 East China Sea. Environmental Science and Pollution Research, 2019, 26, 4667-4679. 2.7 12 355 Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 1311-147. 4.0 30 356 Drivers of Mercury Cycling in the Rapidly Changing Clacierized Watershed of the High Arcticat ^{CMS} Largest Lake by Volume (Lake Hazen, Nunavut, Canada). Environmental Science & amp; Technology, 2019, 33, 1175-1185. 4.6 33 357 Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804. 4.4 162 358 Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal. Bioresource Technology, 2019, 274, 18-24. 4.8 52 369 Mercury&C*Organic Matter Interactions in Solls and Sediments: Angel or Devil?, Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627. 1.3 50 360 Molecular Characterization of Mercury Binding Ligands Released by Freshwater Algae Crown at Three Photoperiods. Frontiers in Environmental Science, 2019, 6, . 1.3 33 361 Elotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611. 1.3 33 362 Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal	353	of total mercury and methylmercury to nearby ground and surface waters. Science of the Total	3.9	16
335 131-147. 30 356 Drivers of Mercury Cycling in the Rapidly Changing Glacierized Watershed of the High Arctic䀙s Largest Lake by Volume (Lake Hazen, Nunavut, Canada). Environmental Science & amp; Technology, 2019, 33, 1175-1185. 4.6 33 357 Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804. 4.4 162 358 Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous HgO and NO removal. Bioresource Technology, 2019, 274, 18-24. 4.8 52 369 Mercuryä€"Organic Matter Interactions in Solls and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627. 1.3 50 360 Molecular Characterization of Mercury Binding Ligands Released by Freshwater Algae Grown at Three Photoperiods. Frontiers in Environmental Science, 2019, 6, . 1.3 33 361 Biotic and Abiotic Degradation of Methylimercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611. 1.3 33 362 Longitudinal changes during pregnancy in gut microbiota and methylimercury biomarkers, and reversal of microbe exposure correlations. Environmental Research, 2019, 172, 700-712. 3.7 20 363 Methylimercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019,	354		2.7	12
356Largest Lake by Volume (Lake Hazen, Nunavut, Canada). Environmental Science & amp; Technology, 2019, 53, 1175-1185.4.633367Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804.4.4162358Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous HgO and NO removal. Bioresource Technology, 2019, 274, 18-24.4.852359MercuryâC ⁴ Organic Matter Interactions in Solls and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627.1.350360Molecular Characterization of Mercury Binding Ligands Released by Freshwater Algae Grown at Three Photoperiods. Frontiers in Environmental Science, 2019, 6, .1.333361Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611.1.333362Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.3.720363Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment., 2019, , 301-308.6	355		4.0	30
337 genomics. ISME Journal, 2019, 13, 789-804. 4.4 162 358 Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous HgO and NO removal. Bioresource Technology, 2019, 274, 18-24. 4.8 52 359 Mercuryà€"Organic Matter Interactions in Soils and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627. 1.3 50 360 Molecular Characterization of Mercury Binding Ligands Released by Freshwater Algae Grown at Three Photoperiods. Frontiers in Environmental Science, 2019, 6, . 1.5 18 361 Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611. 1.3 33 362 Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712. 3.7 20 363 Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765. 4.2 19 364 Geochemistry of Mercury in the Marine Environment., 2019, 301-308. 6	356	Largest Lake by Volume (Lake Hazen, Nunavut, Canada). Environmental Science & amp; Technology, 2019,	4.6	33
358and NO removal. Bioresource Technology, 2019, 274, 18-24.4.852359Mercury〓Organic Matter Interactions in Soils and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627.1.350360Molecular Characterization of Mercury Binding Ligands Released by Freshwater Algae Grown at Three Photoperiods. Frontiers in Environmental Science, 2019, 6, .1.518361Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611.1.333362Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.3.720363Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.66	357	Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME Journal, 2019, 13, 789-804.	4.4	162
339Environmental Contamination and Toxicology, 2019, 102, 621-627.1.350360Molecular Characterization of Mercury Binding Ligands Released by Freshwater Algae Grown at Three Photoperiods. Frontiers in Environmental Science, 2019, 6, .1.518361Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611.1.333362Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.3.720363Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.6	358	Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous HgO and NO removal. Bioresource Technology, 2019, 274, 18-24.	4.8	52
360Photoperiods. Frontiers in Environmental Science, 2019, 6, .1.31.31.3361Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611.1.333362Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.3.720363Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.6	359	Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 621-627.	1.3	50
301Environmental Contamination and Toxicology, 2019, 102, 605-611.1.333362Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.3.720363Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.6	360		1.5	18
362reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.3.720363Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.6265The impact of hydroelectric dams on mercury dynamics in South America: A review. Chemosphere, 2019, (2019, 20	361	Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611.	1.3	33
303Brazil. Chemosphere, 2019, 215, 758-765.4.219364Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.6265The impact of hydroelectric dams on mercury dynamics in South America: A review. Chemosphere, 2019, 4.28	362		3.7	20
The impact of hydroelectric dams on mercury dynamics in South America: A review. Chemosphere, 2019,	363	Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil. Chemosphere, 2019, 215, 758-765.	4.2	19
	364	Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.		6
219, 546-556.	365	The impact of hydroelectric dams on mercury dynamics in South America: A review. Chemosphere, 2019, 219, 546-556.	4.2	38

#	Article	IF	CITATIONS
366	Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. Environmental Science & Technology, 2019, 53, 4-19.	4.6	145
367	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	1.3	42
368	Aerobic and Anaerobic Bacterial Mercury Uptake is Driven by Algal Organic Matter Composition and Molecular Weight. Environmental Science & Technology, 2019, 53, 157-165.	4.6	56
369	The Draft Genome Sequence of Pseudomonas putida Strain TGRB4, an Aerobic Bacterium Capable of Producing Methylmercury. Current Microbiology, 2020, 77, 522-527.	1.0	9
370	Intestinal microbiome and metal toxicity. Current Opinion in Toxicology, 2020, 19, 21-27.	2.6	33
371	Disentangling the effects of habitat biogeochemistry, food web structure, and diet composition on mercury bioaccumulation in a wetland bird. Environmental Pollution, 2020, 256, 113280.	3.7	11
372	Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters. Ecotoxicology and Environmental Safety, 2020, 188, 109888.	2.9	14
373	The AQUAâ€MER databases and aqueous speciation server: A web resource for multiscale modeling of mercury speciation. Journal of Computational Chemistry, 2020, 41, 147-155.	1.5	3
374	Distribution of mercury ycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation. Limnology and Oceanography, 2020, 65, S310.	1.6	43
375	Genome insights of mercury methylation among Desulfovibrio and Pseudodesulfovibrio strains. Research in Microbiology, 2020, 171, 3-12.	1.0	18
376	Reduced sulphur sources favour Hg ^{II} reduction during anoxygenic photosynthesis by Heliobacteria. Geobiology, 2020, 18, 70-79.	1.1	8
377	Sensitive determination of methylmercury δ13C compound specific stable isotopic analysis by purge and trap gas chromatography combustion isotope ratio mass spectrometry. Journal of Chromatography A, 2020, 1617, 460821.	1.8	5
378	Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring and Management, 2020, 13, 100283.	1.7	57
379	Detailed investigation of methylmercury accumulation in rice grain from Hg2+-spiked non-contaminated paddy field soils. Chemosphere, 2020, 247, 125827.	4.2	5
380	Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387, 121967.	6.5	38
381	A global perspective on mercury cycling in the ocean. Science of the Total Environment, 2020, 710, 136166.	3.9	60
382	Biotic formation of methylmercury: A bio–physico–chemical conundrum. Limnology and Oceanography, 2020, 65, 1010-1027.	1.6	98
383	Microbial mercury methylation profile in terminus of a high-elevation glacier on the northern boundary of the Tibetan Plateau. Science of the Total Environment, 2020, 708, 135226.	3.9	13

#	Article	IF	CITATIONS
384	Oceanic mercury concentrations on both sides of the Strait of Gibraltar decreased between 1989 and 2012. Anthropocene, 2020, 29, 100230.	1.6	8
385	Effect of Intense Weathering and Postdepositional Degradation of Organic Matter on Hg/TOC Proxy in Organicâ€rich Sediments and its Implicationsfor Deepâ€Time Investigations. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008707.	1.0	43
386	Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in Oxygen-Deficient Water and Marine Particles in the Baltic Sea. Frontiers in Microbiology, 2020, 11, 574080.	1.5	33
387	An Improved hgcAB Primer Set and Direct High-Throughput Sequencing Expand Hg-Methylator Diversity in Nature. Frontiers in Microbiology, 2020, 11, 541554.	1.5	33
388	Presence of mercury and methylmercury in Baltic Sea sediments, collected in ammunition dumpsites. Marine Environmental Research, 2020, 162, 105158.	1.1	12
389	Mercury cycling in freshwater systems - An updated conceptual model. Science of the Total Environment, 2020, 745, 140906.	3.9	58
390	Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. Ecotoxicology and Environmental Safety, 2020, 202, 110950.	2.9	53
391	Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. Water Research, 2020, 173, 115563.	5.3	17
392	Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water (Switzerland), 2020, 12, 1886.	1.2	9
393	Rates and Dynamics of Mercury Isotope Exchange between Dissolved Elemental Hg(0) and Hg(II) Bound to Organic and Inorganic Ligands. Environmental Science & Technology, 2020, 54, 15534-15545.	4.6	17
394	Mercury Methylation Genes Identified across Diverse Anaerobic Microbial Guilds in a Eutrophic Sulfate-Enriched Lake. Environmental Science & Technology, 2020, 54, 15840-15851.	4.6	50
395	Expanded Phylogenetic Diversity and Metabolic Flexibility of Mercury-Methylating Microorganisms. MSystems, 2020, 5, .	1.7	56
396	The Global Cycles of Sulfur and Mercury. , 2020, , 509-526.		1
397	Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. Arabian Journal of Chemistry, 2020, 13, 6949-6965.	2.3	22
398	Study on Mercury Methylation in Phragmites australis Soil and Its Influencing Factors. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
399	An Interprotein Co–S Coordination Complex in the B ₁₂ -Trafficking Pathway. Journal of the American Chemical Society, 2020, 142, 16334-16345.	6.6	20
400	Relationship Between Hg Speciation and Hg Methylation/Demethylation Processes in the Sulfate-Reducing Bacterium Pseudodesulfovibrio hydrargyri: Evidences From HERFD-XANES and Nano-XRF. Frontiers in Microbiology, 2020, 11, 584715.	1.5	14
401	Methylmercury Interactions With Gut Microbiota and Potential Modulation of Neurogenic Niches in the Brain. Frontiers in Neuroscience, 2020, 14, 576543.	1.4	8

#	Article	IF	CITATIONS
402	Diverse Communities of <i>hgcAB</i> ⁺ Microorganisms Methylate Mercury in Freshwater Sediments Subjected to Experimental Sulfate Loading. Environmental Science & Technology, 2020, 54, 14265-14274.	4.6	21
403	Genome-Resolved Metagenomics and Detailed Geochemical Speciation Analyses Yield New Insights into Microbial Mercury Cycling in Geothermal Springs. Applied and Environmental Microbiology, 2020, 86, .	1.4	19
404	Toward an Internally Consistent Model for Hg(II) Chemical Speciation Calculations in Bacterium–Natural Organic Matter–Low Molecular Mass Thiol Systems. Environmental Science & Technology, 2020, 54, 8094-8103.	4.6	11
405	Microbial Communities Associated with Methylmercury Degradation in Paddy Soils. Environmental Science & Technology, 2020, 54, 7952-7960.	4.6	40
406	Mercury methylation from mercury selenide particles in soils. Journal of Hazardous Materials, 2020, 400, 123248.	6.5	9
407	Mercury methylation potential in a sand dune on Lake Michigan's eastern shoreline. Science of the Total Environment, 2020, 729, 138879.	3.9	3
408	Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea. PLoS ONE, 2020, 15, e0230310.	1.1	17
410	Microbiome in toxicity and its modulation. , 2020, , 127-138.		1
411	Environmetallomics: Systematically investigating metals in environmentally relevant media. TrAC - Trends in Analytical Chemistry, 2020, 126, 115875.	5.8	17
412	Mercury methylation in rice paddy and accumulation in rice plant: A review. Ecotoxicology and Environmental Safety, 2020, 195, 110462.	2.9	66
413	Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor. Science of the Total Environment, 2020, 720, 137540.	3.9	50
414	Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 2020, 11, 68.	1.5	79
416	Anaerobic guilds responsible for mercury methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink. Environmental Microbiology, 2020, 22, 3685-3699.	1.8	23
417	Sharing vitamins: Cobamides unveil microbial interactions. Science, 2020, 369, .	6.0	112
418	Nitrospina-Like Bacteria Are Potential Mercury Methylators in the Mesopelagic Zone in the East China Sea. Frontiers in Microbiology, 2020, 11, 1369.	1.5	33
419	Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nature Communications, 2020, 11, 3389.	5.8	46
420	Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Communications Biology, 2020, 3, 320.	2.0	30
421	Tracing the Uptake of Hg(II) in an Iron-Reducing Bacterium Using Mercury Stable Isotopes. Environmental Science and Technology Letters, 2020, 7, 573-578.	3.9	15

#	Article	IF	CITATIONS
422	Century-old mercury pollution: Evaluating the impacts on local fish from the eastern United States. Chemosphere, 2020, 259, 127484.	4.2	9
423	Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Science of the Total Environment, 2020, 742, 140429.	3.9	112
424	A Global Model for Methylmercury Formation and Uptake at the Base of Marine Food Webs. Global Biogeochemical Cycles, 2020, 34, e2019GB006348.	1.9	65
425	Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Science of the Total Environment, 2020, 714, 136827.	3.9	69
426	Cellular Mercury Coordination Environment, and Not Cell Surface Ligands, Influence Bacterial Methylmercury Production. Environmental Science & Technology, 2020, 54, 3960-3968.	4.6	31
427	Influence of Macrophyte and Gut Microbiota on Mercury Contamination in Fish: A Microcosms Study. Applied Sciences (Switzerland), 2020, 10, 1500.	1.3	13
428	Determination of picomolar levels of methylmercury complexes with low molecular mass thiols by liquid chromatography tandem mass spectrometry and online preconcentration. Analytical and Bioanalytical Chemistry, 2020, 412, 1619-1628.	1.9	4
429	Widespread microbial mercury methylation genes in the global ocean. Environmental Microbiology Reports, 2020, 12, 277-287.	1.0	96
430	Methyl mercury concentrations in seafood collected from Zhoushan Islands, Zhejiang, China, and their potential health risk for the fishing community. Environment International, 2020, 137, 105420.	4.8	22
431	Mercury geochemistry and microbial diversity in meromictic Glacier Lake, Jamesville, NY. Environmental Microbiology Reports, 2020, 12, 195-202.	1.0	1
432	Mercury transport and fate in municipal solid waste landfills and its implications. Biogeochemistry, 2020, 148, 19-29.	1.7	6
433	Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome. Metallomics, 2020, 12, 387-395.	1.0	14
434	Bacterial and archaeal compositions and influencing factors in soils under different submergence time in a mercury-sensitive reservoir. Ecotoxicology and Environmental Safety, 2020, 191, 110155.	2.9	3
435	Evaluation of Hg methylation in the water-level-fluctuation zone of the Three Gorges Reservoir region by using the MeHg/HgT ratio. Ecotoxicology and Environmental Safety, 2020, 195, 110468.	2.9	8
436	Synergistic Effects of a Chalkophore, Methanobactin, on Microbial Methylation of Mercury. Applied and Environmental Microbiology, 2020, 86, .	1.4	12
437	Soil Hg Contamination Impact on Earthworms' Gut Microbiome. Applied Sciences (Switzerland), 2020, 10, 2565.	1.3	3
438	Mercury, cadmium, copper, arsenic, and selenium measurements in the feathers of adult eastern brown pelicans (Pelecanus occidentalis carolinensis) and chicks in multiple breeding grounds in the northern Gulf of Mexico. Environmental Monitoring and Assessment, 2020, 192, 286.	1.3	3
439	Nitrogen-doped porous carbon from biomass with superior catalytic performance for acetylene hydrochlorination. RSC Advances, 2020, 10, 14556-14569.	1.7	15

#	Article	IF	Citations
440	Impact of Methylmercury and Other Heavy Metals Exposure on Neurocognitive Function in Children Aged 7 Years: Study Protocol of the Follow-up. Journal of Epidemiology, 2021, 31, 157-163.	1.1	9
441	Migration characteristics and potential determinants of mercury in long-term decomposing litterfall of two subtropical forests. Ecotoxicology and Environmental Safety, 2021, 208, 111402.	2.9	3
442	Methylmercury formation in boreal wetlands in relation to chemical speciation of mercury(II) and concentration of low molecular mass thiols. Science of the Total Environment, 2021, 755, 142666.	3.9	20
443	Gut microbiota as a target to limit toxic effects of traditional Chinese medicine: Implications for therapy. Biomedicine and Pharmacotherapy, 2021, 133, 111047.	2.5	16
444	Global distribution and environmental drivers of methylmercury production in sediments. Journal of Hazardous Materials, 2021, 407, 124700.	6.5	18
445	Assessing the spatial distribution and ecologic and human health risks in mangrove soils polluted by Hg in northeastern Brazil. Chemosphere, 2021, 266, 129019.	4.2	15
446	Exposure to mercury among 9-year-old children and neurobehavioural function. Environment International, 2021, 146, 106173.	4.8	25
447	Isotope exchange between mercuric [Hg(II)] chloride and Hg(II) bound to minerals and thiolate ligands: Implications for enriched isotope tracer studies. Geochimica Et Cosmochimica Acta, 2021, 292, 468-481.	1.6	17
448	Recent advances in exploring the heavy metal(loid) resistant microbiome. Computational and Structural Biotechnology Journal, 2021, 19, 94-109.	1.9	69
449	The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. Ecotoxicology and Environmental Safety, 2021, 207, 111538.	2.9	15
450	Monthly variations in mercury exposure of school children and adults in an industrial area of southwestern China. Environmental Research, 2021, 196, 110362.	3.7	4
451	Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions. Environmental Pollution, 2021, 269, 116141.	3.7	15
452	Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME Journal, 2021, 15, 1810-1825.	4.4	74
453	The effect of legacy gold mining on methylmercury cycling and microbial community structure in northern freshwater lakes. Environmental Sciences: Processes and Impacts, 2021, 23, 1220-1230.	1.7	4
454	Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(<scp>ii</scp>). New Journal of Chemistry, 2021, 45, 4617-4625.	1.4	29
455	Evaluation of engineered sorbents for the sorption of mercury from contaminated bank soils: a column study. Environmental Science and Pollution Research, 2021, 28, 22651-22663.	2.7	3
456	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. Environmental Science: Nano, 2021, 8, 1437-1445.	2.2	2
457	Assessing Microbial Communities Related to Mercury Transformations in Contaminated Streambank Soils. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2

#	Article	IF	CITATIONS
458	Complete Genome Sequence of Desulfobulbus oligotrophicus Prop6, an Anaerobic Deltabacterota Strain That Lacks Mercury Methylation Capability. Microbiology Resource Announcements, 2021, 10, .	0.3	0
459	Mercury Methylating Microbial Community Structure in Boreal Wetlands Explained by Local Physicochemical Conditions. Frontiers in Environmental Science, 2021, 8, .	1.5	11
460	Deletion Mutants, Archived Transposon Library, and Tagged Protein Constructs of the Model Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. Microbiology Resource Announcements, 2021, 10, .	0.3	6
461	Mercury methylation in oxic aquatic macro-environments: a review. Journal of Limnology, 0, , .	0.3	9
462	Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils. Soil Biology and Biochemistry, 2021, 154, 108129.	4.2	38
463	Soil mercury pollution caused by typical anthropogenic sources in China: Evidence from stable mercury isotope measurement and receptor model analysis. Journal of Cleaner Production, 2021, 288, 125687.	4.6	29
464	Nutrient Exposure Alters Microbial Composition, Structure, and Mercury Methylating Activity in Periphyton in a Contaminated Watershed. Frontiers in Microbiology, 2021, 12, 647861.	1.5	8
465	Microbial Diversity and Mercury Methylation Activity in Periphytic Biofilms at a Run-of-River Hydroelectric Dam and Constructed Wetlands. MSphere, 2021, 6, .	1.3	7
466	The potential use of straw-derived biochar as the adsorbent for La(III) and Nd(III) removal in aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 47024-47034.	2.7	9
467	Microbial methylation potential of mercury sulfide particles dictated by surface structure. Nature Geoscience, 2021, 14, 409-416.	5.4	36
468	Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor. Frontiers of Environmental Science and Engineering, 2021, 16, 1.	3.3	4
469	Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia. Environmental Science & Technology, 2021, 55, 6710-6717.	4.6	10
470	Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nature Geoscience, 2021, 14, 496-502.	5.4	32
471	The role of intestinal microbiota of the marine fish (Acanthopagrus latus) in mercury biotransformation. Environmental Pollution, 2021, 277, 116768.	3.7	22
472	Analytical Methodologies for Agrometallomics: A Critical Review. Journal of Agricultural and Food Chemistry, 2021, 69, 6100-6118.	2.4	17
473	Metabolic potentials of members of the class <i>Acidobacteriia</i> in metal ontaminated soils revealed by metagenomic analysis. Environmental Microbiology, 2022, 24, 803-818.	1.8	29
474	Abiotic Reduction of Mercury(II) in the Presence of Sulfidic Mineral Suspensions. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	3
475	Expanded Diversity and Phylogeny of mer Genes Broadens Mercury Resistance Paradigms and Reveals an Origin for MerA Among Thermophilic Archaea. Frontiers in Microbiology, 2021, 12, 682605.	1.5	37

#	Article	IF	CITATIONS
476	Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams. Science of the Total Environment, 2021, 774, 145686.	3.9	17
477	Fecal Methylmercury Correlates With Gut Microbiota Taxa in Pacific Walruses (Odobenus rosmarus) Tj ETQq1 1	0.784314 1.5	rgBT /Overio
478	Mechanistic Investigation of Dimethylmercury Formation Mediated by a Sulfide Mineral Surface. Journal of Physical Chemistry A, 2021, 125, 5397-5405.	1.1	3
479	Understanding the effects of long-term different fertilizer applications on methylmercury accumulation in rice (Oryza sativa L.) plants. Science of the Total Environment, 2021, 777, 146125.	3.9	5
480	Algal Organic Matter Drives Methanogen-Mediated Methylmercury Production in Water from Eutrophic Shallow Lakes. Environmental Science & Technology, 2021, 55, 10811-10820.	4.6	40
481	Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME Journal, 2022, 16, 307-320.	4.4	71
482	Mobilization, Methylation, and Demethylation of Mercury in a Paddy Soil Under Systematic Redox Changes. Environmental Science & Technology, 2021, 55, 10133-10141.	4.6	44
483	Bacteria and archaea involved in anaerobic mercury methylation and methane oxidation in anaerobic sulfate–rich reactors. Chemosphere, 2021, 274, 129773.	4.2	8
484	Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environment International, 2021, 153, 106527.	4.8	61
485	Methylmercury in lake bed soils during re-flooding of an Appalachian reservoir in the northeastern USA. Environmental Research Communications, 2021, 3, 085004.	0.9	1
486	Recent advances in fieldâ€effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. Electrochemical Science Advances, 2022, 2, e2100137.	1.2	10
487	The exacerbation of mercury methylation by Geobacter sulfurreducens PCA in a freshwater algae-bacteria symbiotic system throughout the lifetime of algae. Journal of Hazardous Materials, 2021, 415, 125691.	6.5	11
488	Strategies of Detecting Bacteria Using Fluorescence-Based Dyes. Frontiers in Chemistry, 2021, 9, 743923.	1.8	26
489	Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways. Applied and Environmental Microbiology, 2021, 87, e0067821.	1.4	3
490	Bioinformatics Investigations of Universal Stress Proteins from Mercury-Methylating Desulfovibrionaceae. Microorganisms, 2021, 9, 1780.	1.6	1
491	Multidecadal biological monitoring and abatement program assessing human impacts on aquatic ecosystems within the Oak Ridge Reservation in eastern Tennessee, USA. Hydrological Processes, 2021, 35, e14340.	1.1	4
492	Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. Environmental Science & Technology, 2021, 55, 12393-12402.	4.6	27
493	Decreased bioavailability of both inorganic mercury and methylmercury in anaerobic sediments by sorption on iron sulfide nanoparticles. Journal of Hazardous Materials, 2022, 424, 127399.	6.5	14

#	Article	IF	CITATIONS
494	<i>Nitrospina</i> -like Bacteria Are Dominant Potential Mercury Methylators in Both the Oyashio and Kuroshio Regions of the Western North Pacific. Microbiology Spectrum, 2021, 9, e0083321.	1.2	8
495	Methylmercury bioaccumulation in rice and health effects: AÂsystematic review. Current Opinion in Environmental Science and Health, 2021, 23, 100285.	2.1	7
496	Probiotics and gut microbiome â^' Prospects and challenges in remediating heavy metal toxicity. Journal of Hazardous Materials, 2021, 420, 126676.	6.5	56
497	The role of plastic debris in the biogeochemical cycle of mercury in Lake Erie and San Francisco Bay. Marine Pollution Bulletin, 2021, 171, 112768.	2.3	9
498	Redox potential and C/N ratio predict the structural shift of mercury methylating microbe communities in a subalpine Sphagnum peatland. Geoderma, 2021, 403, 115375.	2.3	7
499	Trends in mercury concentrations and methylation in Minamata Bay, Japan, between 2014 and 2018. Marine Pollution Bulletin, 2021, 173, 112886.	2.3	5
500	Use smaller size of straw to alleviate mercury methylation and accumulation induced by straw incorporation in paddy field. Journal of Hazardous Materials, 2022, 423, 127002.	6.5	8
501	Role of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: A review. Journal of Hazardous Materials, 2022, 423, 126964.	6.5	8
502	Gold nanorod self-assembly on a quartz crystal microbalance: an enhanced mercury vapor sensor. Environmental Science: Nano, 0, , .	2.2	1
503	Mercury Bioaccumulation in Freshwater Snails as Influenced by Soil Composition. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 153-159.	1.3	3
505	Dissolved Organic Matter Interactions with Mercury in the Florida Everglades. , 2019, , 87-108.		1
506	Mercury in Fish, Crustaceans and Mollusks from Estuarine Areas in the Pacific Ocean and Gulf of Mexico Under Varying Human Impact. Estuaries of the World, 2014, , 39-49.	0.1	3
507	Mercury in Fish: History, Sources, Pathways, Effects, and Indicator Usage. , 2015, , 743-766.		16
508	Marine mercury-methylating microbial communities from coastal to Capbreton Canyon sediments (North Atlantic Ocean). Environmental Pollution, 2020, 262, 114333.	3.7	23
509	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	3.9	48
510	Quantification of Mercury Bioavailability for Methylation Using Diffusive Gradient in Thin-Film Samplers. Environmental Science & Technology, 2018, 52, 8521-8529.	4.6	49
511	Pseudodesulfovibrio mercurii sp. nov., a mercury-methylating bacterium isolated from sediment. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	0.8	13
520	Recent advances in the study of mercury methylation in aquatic systems. Facets, 2017, 2, 85-119.	1.1	111

ARTICLE

IF CITATIONS

Survey of mercury in boreal chorus frog (<i>Pseudacris maculata</i>) and wood frog (<i>Rana) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 74 1.1 7 315-329.

522	Shining light on recent advances in microbial mercury cycling. Facets, 2018, 3, 858-879.	1.1	42
523	Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns – Evidence from Two Mediterranean Birth Cohorts. PLoS ONE, 2014, 9, e97172.	1.1	39
524	Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance. Open Biotechnology Journal, 2018, 12, 56-77.	0.6	38
525	Isolation and Characterization of Mercury Resistant <i>Trichoderma</i> Strains from Soil with High Levels of Mercury and Its Effects on <i>Arabidopsis thaliana</i> Mercury Uptake. Advances in Microbiology, 2018, 08, 600-613.	0.3	7
526	Uranium Bio-Transformations: Chemical or Biological Processes?. Open Journal of Inorganic Chemistry, 2017, 07, 28-60.	0.7	28
528	Mercury reallocation in thawing subarctic peatlands. Geochemical Perspectives Letters, 2019, , 33-38.	1.0	16
529	Mechanistic pathways of mercury removal from the organomercurial lyase active site. PeerJ, 2015, 3, e1127.	0.9	4
530	Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition. PeerJ, 2018, 6, e4575.	0.9	10
531	A new class of fluorogenic thiazolo[2,3-b]quinazolinone receptor: selective detection towards mercury and hydrogen bisulfate ions in aqueous medium. RSC Advances, 2021, 11, 33288-33293.	1.7	1
532	Evaluation of Manganese Oxide Amendments for Mercury Remediation in Contaminated Aquatic Sediments. ACS ES&T Engineering, 2021, 1, 1688-1697.	3.7	2
533	Reduction in mercury bioavailability to Asian clams (Corbicula fluminea) and changes in bacterial communities in sediments with activated carbon amendment. Chemosphere, 2022, 291, 132700.	4.2	3
534	Nutrient Inputs Stimulate Mercury Methylation by Syntrophs in a Subarctic Peatland. Frontiers in Microbiology, 2021, 12, 741523.	1.5	14
542	Consistent controls on trace metal micronutrient speciation in wetland soils and stream sediments. Geochimica Et Cosmochimica Acta, 2022, 317, 234-254.	1.6	8
543	New Insights into the Ecology and Physiology of Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms, 2021, 9, 30.	1.6	23
544	The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient. Environmental Pollution, 2022, 292, 118321.	3.7	21
545	Incorporating concentration-dependent sediment microbial activity into methylmercury production kinetics modeling. Environmental Sciences: Processes and Impacts, 2022, 24, 1392-1405.	1.7	1
548	Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS Environmental Au, 2022, 2, 77-97.	3.3	57

#	Article	IF	CITATIONS
550	Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats. Npj Biofilms and Microbiomes, 2021, 7, 83.	2.9	25
551	Oxygenâ€deficient water zones in the Baltic Sea promote uncharacterized Hg methylating microorganisms in underlying sediments. Limnology and Oceanography, 2022, 67, 135-146.	1.6	15
552	Extraction and Quantification of Nanoparticulate Mercury in Natural Soils. Environmental Science & Technology, 2022, 56, 1763-1770.	4.6	15
553	Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology, 2022, 56, 1433-1444.	4.6	15
554	Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
555	Unexpected pathways of mercury in an alkaline, biologically productive, saline lake: A mesocosm approach. Journal of Hazardous Materials, 2022, 427, 128163.	6.5	5
556	Microbial Mercury Methylation Potential in a Large-Sclae Municipal Solid Waste (Msw) Landfill, China. SSRN Electronic Journal, 0, , .	0.4	0
557	Mercury concentrations and stable isotope ratios (δ13C and δ15N) in pelagic nekton assemblages of the south-western Indian Ocean. Marine Pollution Bulletin, 2022, 174, 113151.	2.3	2
558	Stannous chloride as a tool for mercury stripping in contaminated streams: Experimental assessment of toxicity in an invertebrate model species. Chemosphere, 2022, 296, 133762.	4.2	0
559	Impact of Zn substitution on Fe(II)-induced ferrihydrite transformation pathways. Geochimica Et Cosmochimica Acta, 2022, 320, 143-160.	1.6	15
560	Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. Environmental Pollution, 2022, 299, 118878.	3.7	8
561	Dam cascade unveils sediment methylmercury dynamics in reservoirs. Water Research, 2022, 212, 118059.	5.3	7
562	Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. Chemosphere, 2022, 294, 133713.	4.2	9
563	Antibiotic application may raise the potential of methylmercury accumulation in fish. Science of the Total Environment, 2022, 819, 152946.	3.9	9
564	In Situ Photochemical Transformation of Hg Species and Associated Isotopic Fractionation in the Water Column of High-Altitude Lakes from the Bolivian Altiplano. Environmental Science & Technology, 2022, 56, 2258-2268.	4.6	9
566	Climate change and mercury in the Arctic: Abiotic interactions. Science of the Total Environment, 2022, 824, 153715.	3.9	42
567	Possible pathways for mercury methylation in oxic marine waters. Critical Reviews in Environmental Science and Technology, 2022, 52, 3997-4015.	6.6	21
568	Effects and Mechanisms of Organic Matter Regulating the Methylmercury Dynamics in Mangrove Sediments. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
569	Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 1992.	1.8	11
571	Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. Journal of Environmental Sciences, 2022, 119, 78-92.	3.2	9
572	Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2023, 22, 84-97.	0.8	8
573	Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environmental Science & Technology, 2022, 56, 3840-3862.	4.6	31
575	Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Applied Microbiology and Biotechnology, 2022, 106, 2775-2793.	1.7	16
576	From legacy contamination to watershed systems science: a review of scientific insights and technologies developed through DOE-supported research in water and energy security. Environmental Research Letters, 2022, 17, 043004.	2.2	12
577	Insights into Bacterial Community Structure and Metabolic Diversity of Mercury-Contaminated Sediments from Hyeongsan River, Pohang, South Korea. Current Microbiology, 2022, 79, 156.	1.0	2
578	Distribution of total mercury and methylated mercury species in Central Arctic Ocean water and ice. Marine Chemistry, 2022, 242, 104105.	0.9	10
579	The potential of mercury methylation and demethylation by 15 species of marine microalgae. Water Research, 2022, 215, 118266.	5.3	17
580	Transport of mercury in a regulated high-sediment river and its input to marginal seas. Water Research, 2022, 214, 118211.	5.3	18
581	Effects and mechanisms of organic matter regulating the methylmercury dynamics in mangrove sediments. Journal of Hazardous Materials, 2022, 432, 128690.	6.5	10
582	High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. Journal of Hazardous Materials, 2022, 431, 128542.	6.5	9
583	Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. Journal of Hazardous Materials, 2022, 433, 128835.	6.5	11
584	Lake snow as a mercury methylation micro-environment in the oxic water column of a deep peri-alpine lake. Chemosphere, 2022, 299, 134306.	4.2	9
585	The Transformation of Inorganic and Methylmercury in the Presence of I-Cysteine Capped CdSe Nanoparticles. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	2
586	Greenhouse Characterization of Inorganic Mercury, Methyl Mercury and Ethyl Mercury Migration and Transformation in Indian Mustard and Chinese Pakchoi. Analytical Letters, 2022, 55, 1425-1439.	1.0	2
587	Critical review of mercury methylation and methylmercury demethylation rate constants in aquatic sediments for biogeochemical modeling. Critical Reviews in Environmental Science and Technology, 2022, 52, 4353-4378.	6.6	16
588	Microbial mercury transformations: Molecules, functions and organisms. Advances in Applied Microbiology, 2022, 118, 31-90.	1.3	11

#	Article		CITATIONS
589	Detoxification of organomercurials by thiones and selones: A short review. Inorganica Chimica Acta, 2022, 538, 120980.		3
590	Experiments revealing the formation of refractory methylmercury pools in natural sediments and soils. Geochimica Et Cosmochimica Acta, 2022, 328, 76-84.	1.6	4
591	A Simplified Approach to Modeling the Dispersion of Mercury from Precipitation to Surface Waters—The Bay of Kaštela Case Study. Journal of Marine Science and Engineering, 2022, 10, 539.	1.2	0
592	Indigenous microbial populations of abandoned mining sites and their role in natural attenuation. Archives of Microbiology, 2022, 204, 251.	1.0	1
611	Cinnabar-Containing Chinese Medicine Hua-Feng-Dan Differs from Mercury Sulfide and Mercury Chloride in Affecting Gut Microbiota in Mice. SSRN Electronic Journal, 0, , .	0.4	0
612	Mercury methylation and methylmercury demethylation in boreal lake sediment with legacy sulphate pollution. Environmental Sciences: Processes and Impacts, 2022, 24, 932-944.	1.7	5
614	Microbial mercury methylation potential in a large-scale municipal solid waste landfill, China. Waste Management, 2022, 145, 102-111.	3.7	3
615	Particle-Bound Hg(II) is Available for Microbial Uptake as Revealed by a Whole-Cell Biosensor. Environmental Science & Technology, 2022, 56, 6754-6764.	4.6	8
616	Seasonal trends of mercury bioaccumulation and assessment of toxic effects in Asian clams and microbial community from field study of estuarine sediment. Environmental Research, 2022, 212, 113439.	3.7	14
617	Arsenate decreases production of methylmercury across increasing sulfate concentration amendments in freshwater lake sediments. Environmental Sciences: Processes and Impacts, 2022, 24, 1508-1516.	1.7	2
619	Grass Shrimp (<i>Palaemonetes pugio</i>) as a Trophic Link for Methylmercury Accumulation in Urban Salt Marshes. Environmental Science & Technology, 2022, , .	4.6	1
620	Role of the rhizosphere of a flooding-tolerant herb in promoting mercury methylation in water-level fluctuation zones. Journal of Environmental Sciences, 2022, 119, 139-151.	3.2	8
621	Water Pollution and Environmental Policy in Artisanal Gold Mining Frontiers: The Case of La Toma, Colombia. SSRN Electronic Journal, 0, , .	0.4	0
622	Microbial trait-based approaches for agroecosystems. Advances in Agronomy, 2022, , 259-299.	2.4	1
623	Pre and postnatal exposure to mercury and sexual development in 9-year-old children in Spain: The role of brain-derived neurotrophic factor. Environmental Research, 2022, 213, 113620.	3.7	4
624	Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. Environmental Research, 2022, 214, 113749.	3.7	16
625	Mercury Accumulation in a Stream Ecosystem: Linking Labile Mercury in Sediment Porewaters to Bioaccumulative Mercury in Trophic Webs. Water (Switzerland), 2022, 14, 2003.	1.2	1
626	Remediation of Mercury-Polluted Farmland Soils: A Review. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 661-670.	1.3	9

#	Article	IF	CITATIONS
627	Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. Science of the Total Environment, 2022, 841, 156558.	3.9	6
628	Diel mercury concentration variations in a mercury-impacted stream. Environmental Sciences: Processes and Impacts, 2022, 24, 1195-1211.	1.7	2
629	A consensus protocol for the recovery of mercury methylation genes from metagenomes. Molecular Ecology Resources, 2023, 23, 190-204.	2.2	10
631	Impact of sulfur-impregnated biochar amendment on microbial communities and mercury methylation in contaminated sediment. Journal of Hazardous Materials, 2022, 438, 129464.	6.5	9
632	Increased water inputs fuel microbial mercury methylation in upland soils. Journal of Hazardous Materials, 2022, 439, 129578.	6.5	8
633	Mercury transformation processes in nature: Critical knowledge gaps and perspectives for moving forward. Journal of Environmental Sciences, 2022, 119, 152-165.	3.2	3
634	Arctic methylmercury cycling. Science of the Total Environment, 2022, 850, 157445.	3.9	11
635	Inputs of Terrestrial Dissolved Organic Matter Enhance Bacterial Production and Methylmercury Formation in Oxic Coastal Water. Frontiers in Microbiology, 0, 13, .	1.5	6
636	Effect of exogenous and endogenous sulfide on the production and the export of methylmercury by sulfate-reducing bacteria. Environmental Science and Pollution Research, 2023, 30, 3835-3846.	2.7	6
637	Risk assessment of mercury through dietary exposure in China. Environmental Pollution, 2022, 312, 120026.	3.7	16
638	Organo-mercury species in a polluted agricultural flood plain: Combining speciation methods and polymerase chain reaction to investigate pathways of contamination. Environmental Pollution, 2022, 311, 119854.	3.7	3
639	Mercury, organic matter, iron, and sulfur co-cycling in a ferruginous meromictic lake. Applied Geochemistry, 2022, 146, 105463.	1.4	8
640	Water pollution and environmental policy in artisanal gold mining frontiers: The case of La Toma, Colombia. Science of the Total Environment, 2022, 852, 158417.	3.9	7
641	Role of Rhizobacteria in Phytoremediation of Metal-ImpactedÂSites. , 2022, , 297-336.		1
642	Seasonal changes in total mercury and methylmercury in subtropical decomposing litter correspond to the abundances of nitrogen-fixing and methylmercury-degrading bacteria. Journal of Hazardous Materials, 2023, 442, 130064.	6.5	0
643	Expression Levels of <i>hgcAB</i> Genes and Mercury Availability Jointly Explain Methylmercury Formation in Stratified Brackish Waters. Environmental Science & Technology, 2022, 56, 13119-13130.	4.6	15
644	The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments. Phycology, 2022, 2, 344-362.	1.7	5
645	Long-term mercury contamination does not affect the microbial gene potential for C and N cycling in soils but enhances detoxification gene abundance. Frontiers in Microbiology, 0, 13, .	1.5	6

#	Article	IF	CITATIONS
646	Understanding of mercury and methylmercury transformation in sludge composting by metagenomic analysis. Water Research, 2022, 226, 119204.	5.3	7
647	Inorganic versus organic fertilizers: How do they lead to methylmercury accumulation in rice grains. Environmental Pollution, 2022, 314, 120341.	3.7	8
648	Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. MBio, 2022, 13, .	1.8	8
650	The Influence of the Degree of Forest Management on Methylmercury and the Composition of Microbial Communities in the Sediments of Boreal Drainage Ditches. Microorganisms, 2022, 10, 1981.	1.6	1
651	A review of the potential risks associated with mercury in subsea oil and gas pipelines in Australia. Environmental Chemistry, 2022, 19, 210-227.	0.7	8
652	Mercury methylation linked to nitrification in the tropical North Atlantic Ocean. Marine Chemistry, 2022, 247, 104174.	0.9	4
653	Exposure to mercury and thyroid function: Is there a connection?. Arhiv Za Farmaciju, 2022, 72, 468-485.	0.2	3
654	Different pathways of accumulation and elimination of neurotoxicant Hg and its forms in the clam Atlantic rangia (Rangia cuneata). Science of the Total Environment, 2023, 858, 160018.	3.9	2
655	Wheat bran fermented by Lactobacillus regulated the bacteria–fungi composition and reduced fecal heavy metals concentrations in growing pigs. Science of the Total Environment, 2023, 858, 159828.	3.9	2
656	Anaerobic mercury methylators inhabit sinking particles of oxic water columns. Water Research, 2023, 229, 119368.	5.3	5
657	Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus <i>Metarhizium robertsii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
658	Mercury and other trace elements distribution and profiling of microbial community in the surface sediments of East Siberian Sea. Marine Pollution Bulletin, 2022, 185, 114319.	2.3	5
659	Gut as the target tissue of mercury and the extraintestinal effects. Toxicology, 2023, 484, 153396.	2.0	8
660	Distribution and phylogeny of mercury methylation, demethylation, and reduction genes in the Seto Inland Sea of Japan. Marine Pollution Bulletin, 2023, 186, 114381.	2.3	2
661	High methylation potential of mercury complexed with mixed thiolate ligands by Geobacter sulfurreducens PCA. Geochimica Et Cosmochimica Acta, 2023, 342, 74-83.	1.6	1
662	Recent advances in microbial mercury methylation: A review on methylation habitat, methylator, mechanism, and influencing factor. Chemical Engineering Research and Design, 2023, 170, 286-296.	2.7	11
663	Sonochemical oxidation and stabilization of liquid elemental mercury in water and soil. Journal of Hazardous Materials, 2023, 445, 130589.	6.5	1
664	Monitoring Hg2+ and MeHg+ poisoning in living body with an activatable near-infrared II fluorescence probe. Journal of Hazardous Materials, 2023, 445, 130612.	6.5	7

#	Article	IF	Citations
666	Ferrous sulfide nanoparticles control mercury speciation and bioavailability to methylating bacteria in contaminated groundwater: Impacts of mercury species. Chemical Engineering Journal, 2023, 455, 140612.	6.6	4
667	Plasmid Genomes Reveal the Distribution, Abundance, and Organization of Mercury-Related Genes and Their Co-Distribution with Antibiotic Resistant Genes in Gammaproteobacteria. Genes, 2022, 13, 2149.	1.0	4
668	The Complex Interactions Between Sediment Geochemistry, Methylmercury Production, and Bioaccumulation in Intertidal Estuarine Ecosystems: A Focused Review. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	3
669	Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation. MSystems, 2023, 8, .	1.7	1
670	Bioderived and Bioconjugated Materials for Remediation of Heavy Metals and Dyes from Wastewater. , 2022, , 114-139.		0
671	Methylmercury formation in biofilms of Geobacter sulfurreducens. Frontiers in Microbiology, 0, 14, .	1.5	2
672	Potential for mercury methylation by Asgard archaea in mangrove sediments. ISME Journal, 2023, 17, 478-485.	4.4	6
673	Eight Unexpected Selenoprotein Families in Organometallic Biochemistry in Clostridium difficile, in ABC Transport, and in Methylmercury Biosynthesis. Journal of Bacteriology, 2023, 205, .	1.0	1
674	Mechanisms and biological effects of organic amendments on mercury speciation in soil–rice systems: A review. Ecotoxicology and Environmental Safety, 2023, 251, 114516.	2.9	8
675	Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea. Marine Pollution Bulletin, 2023, 187, 114498.	2.3	1
676	The Transformation of Hg2+ during Anaerobic S0 Reduction by an AMD Environmental Enrichment Culture. Microorganisms, 2023, 11, 72.	1.6	2
677	Controls on methylmercury concentrations in lakes and streams of peatlandâ€rich catchments along a 1700 km permafrost gradient. Limnology and Oceanography, 2023, 68, 583-597.	1.6	4
678	Mercury Contamination in Sediments and Fish from an Urban Tropical Estuary: Ecological and Human Health Risks. Water, Air, and Soil Pollution, 2023, 234, .	1.1	5
679	"Trojan Horse―Type Internalization Increases the Bioavailability of Mercury Sulfide Nanoparticles and Methylation after Intracellular Dissolution. ACS Nano, 2023, 17, 1925-1934.	7.3	4
680	Capacity, stability and energy requirement of divalent mercury uptake by non-methylating/non-demethylating bacteria. Journal of Hazardous Materials, 2023, 450, 131074.	6.5	0
681	Environmental formation of methylmercury is controlled by synergy of inorganic mercury bioavailability and microbial mercuryâ€methylation capacity. Environmental Microbiology, 2023, 25, 1409-1423.	1.8	7
682	Structural incorporation of iron influences biomethylation potential of mercury sulfide. Geochimica Et Cosmochimica Acta, 2023, 349, 115-125.	1.6	1
683	Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. Science of the Total Environment, 2023, 868, 161709.	3.9	10

#	Article	IF	CITATIONS
684	Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere, 2023, 319, 137917.	4.2	22
685	Mercury in wetlands over 60 years: Research progress and emerging trends. Science of the Total Environment, 2023, 869, 161862.	3.9	4
687	Amendments of nitrogen and sulfur mitigate carbon-promoting effect on microbial mercury methylation in paddy soils. Journal of Hazardous Materials, 2023, 448, 130983.	6.5	8
688	Phytoremediation of mercury from water by monocultures and mixed cultures pleustophytes. Journal of Water Process Engineering, 2023, 52, 103529.	2.6	6
689	Properly interpret metabolic inhibition results to identify primary mercury methylating microbes. Critical Reviews in Environmental Science and Technology, 2023, 53, 1757-1773.	6.6	3
690	Microbial diversity and processes in groundwater. , 2023, , 211-240.		0
691	On the Origin and Evolution of Microbial Mercury Methylation. Genome Biology and Evolution, 2023, 15, .	1.1	3
692	Transcriptional Control of <i>hgcAB</i> by an ArsR-Like Regulator in <i>Pseudodesulfovibrio mercurii</i> ND132. Applied and Environmental Microbiology, 2023, 89, .	1.4	3
693	Inhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil Microcosms. Environmental Science & Technology, 2023, 57, 5655-5665.	4.6	5
694	Global change effects on biogeochemical mercury cycling. Ambio, 2023, 52, 853-876.	2.8	20
695	Methylmercury Degradation by Trivalent Manganese. Environmental Science & Technology, 2023, 57, 5988-5998.	4.6	9
696	Distribution of Microorganisms in the Reservoir. , 2023, , 75-84.		0
697	Elevated methylmercury in Antarctic surface seawater: The role of phytoplankton mass and sea ice. Science of the Total Environment, 2023, 882, 163646.	3.9	4
720	Chemical pollution and the ocean. , 2023, , 351-426.		0
731	Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review. Journal of Antibiotics, 2023, 76, 629-641.	1.0	3
745	Intestinal microbiota protects against methylmercury-induced neurotoxicity. BioMetals, 0, , .	1.8	2
752	Bacterial and Archaeal DNA from Lake Sediments. Developments in Paleoenvironmental Research, 2023, , 85-151.	7.5	0
772	Using DNA archived in lake sediments to reconstruct past ecosystems. , 2024, , .		Ο

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
775	Environmental chemical-induced adverse effects on gut microbiota and their implications for etiopathogenesis of chronic neurological diseases. Advances in Neurotoxicology, 2024, , .	or the	0.7	0