Flows of gas through a protoplanetary gap

Nature 493, 191-194 DOI: 10.1038/nature11769

Citation Report

#	Article	IF	CITATIONS
1	A Major Asymmetric Dust Trap in a Transition Disk. Science, 2013, 340, 1199-1202.	6.0	492
2	Local Enhancement of the Surface Density in the Protoplanetary Ring Surrounding HD 142527. Publication of the Astronomical Society of Japan, 2013, 65, .	1.0	129
3	STEADY STATE DUST DISTRIBUTIONS IN DISK VORTICES: OBSERVATIONAL PREDICTIONS AND APPLICATIONS TO TRANSITIONAL DISKS. Astrophysical Journal, 2013, 775, 17.	1.6	137
4	THE STRUCTURE OF THE EVOLVED CIRCUMBINARY DISK AROUND V4046 Sgr. Astrophysical Journal, 2013, 775, 136.	1.6	83
5	ALMA OBSERVATIONS OF THE MOLECULAR GAS IN THE DEBRIS DISK OF THE 30 Myr OLD STAR HD 21997. Astrophysical Journal, 2013, 776, 77.	1.6	107
6	AN AZIMUTHAL ASYMMETRY IN THE LkHα 330 DISK. Astrophysical Journal, 2013, 775, 30.	1.6	127
7	Formation of (exo–)planets. Astronomische Nachrichten, 2013, 334, 589-594.	0.6	3
8	The low-mass stellar population in the young cluster Tr 37. Astronomy and Astrophysics, 2013, 559, A3.	2.1	19
9	GRAPHIC: The Geneva Reduction and Analysis Pipeline for High-contrast Imaging of planetary Companions. Proceedings of the International Astronomical Union, 2013, 8, 38-39.	0.0	0
10	Planet formation in action: resolved gas and dust images of a transitional disk and its cavity. Proceedings of the International Astronomical Union, 2013, 8, 90-93.	0.0	0
11	Substructure and Signs of Planet Formation in the Disk of HD 169142. Proceedings of the International Astronomical Union, 2013, 8, 145-148.	0.0	0
12	Near-infrared imaging polarimetry of HD 142527. Astronomy and Astrophysics, 2013, 556, A123.	2.1	66
13	Asymmetric transition disks: Vorticity or eccentricity?. Astronomy and Astrophysics, 2013, 553, L3.	2.1	96
14	CO(6â^'5) and [C i](2â^'1) pointed observations of five protoplanetary disks: Warm gas in HD 142527. Astronomy and Astrophysics, 2013, 553, A64.	2.1	13
15	Survival of molecular gas in cavities of transition disks. Astronomy and Astrophysics, 2013, 559, A46.	2.1	146
16	Is the HD 15115 inner disk really asymmetrical?. Astronomy and Astrophysics, 2014, 569, A29.	2.1	31
17	Gas structure inside dust cavities of transition disks: Ophiuchus IRS 48 observed by ALMA. Astronomy and Astrophysics, 2014, 562, A26.	2.1	108
18	A CO SURVEY IN PLANET-FORMING DISKS: CHARACTERIZING THE GAS CONTENT IN THE EPOCH OF PLANET FORMATION. Astronomical Journal, 2014, 148, 47.	1.9	51

ATION REDO

#	Article	IF	CITATIONS
19	STELLAR PARAMETERS AND ACCRETION RATE OF THE TRANSITION DISK STAR HD 142527 FROM X-SHOOTER. Astrophysical Journal, 2014, 790, 21.	1.6	33
20	Astrobiology: An astronomer's perspective. , 2014, , .		2
21	How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1919-1929.	1.6	39
22	Hermite-Gaussian functions for image synthesis. , 2014, , .		1
23	TWO-COMPONENT SECULAR GRAVITATIONAL INSTABILITY IN A PROTOPLANETARY DISK: A POSSIBLE MECHANISM FOR CREATING RING-LIKE STRUCTURES. Astrophysical Journal, 2014, 794, 55.	1.6	151
24	EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2014, 795, L39.	3.0	93
25	RESOLVED MULTIFREQUENCY RADIO OBSERVATIONS OF GG Tau. Astrophysical Journal, 2014, 787, 148.	1.6	28
26	ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546. Astrophysical Journal Letters, 2014, 791, L6.	3.0	114
27	STRUCTURES IN THE PROTOPLANETARY DISK OF HD142527 SEEN IN POLARIZED SCATTERED LIGHT. Astrophysical Journal, 2014, 781, 87.	1.6	194
28	SEARCHING FOR CIRCUMPLANETARY DISKS AROUND LkCa 15. Astrophysical Journal, 2014, 788, 129.	1.6	78
29	The science case for the Planet Formation Imager (PFI). Proceedings of SPIE, 2014, , .	0.8	10
30	DISCOVERY OF HÎ \pm EMISSION FROM THE CLOSE COMPANION INSIDE THE GAP OF TRANSITIONAL DISK HD 142527. Astrophysical Journal Letters, 2014, 781, L30.	3.0	114
31	FAST RADIAL FLOWS IN TRANSITION DISK HOLES. Astrophysical Journal, 2014, 782, 62.	1.6	74
32	DIRECT MEASUREMENT OF INTERSTELLAR EXTINCTION TOWARD YOUNG STARS USING ATOMIC HYDROGEN Lyα ABSORPTION. Astrophysical Journal, 2014, 780, 150.	1.6	29
33	ALMA OBSERVATIONS OF THE T TAURI BINARY SYSTEM AS 205: EVIDENCE FOR MOLECULAR WINDS AND/OR BINARY INTERACTIONS. Astrophysical Journal, 2014, 792, 68.	1.6	41
34	RESOLVED IMAGES OF THE PROTOPLANETARY DISK AROUND HD 100546 WITH ALMA. Astrophysical Journal Letters, 2014, 788, L34.	3.0	71
35	SPATIALLY RESOLVED HCN <i>J</i> = 4-3 AND CS <i>J</i> = 7-6 EMISSION FROM THE DISK AROUND HD 142527. Astrophysical Journal Letters, 2014, 792, L25.	3.0	24
36	Possible planet formation in the young, low-mass, multiple stellar system GG Tau A. Nature, 2014, 514, 600-602.	13.7	54

#	Article	IF	CITATIONS
37	DUST TRAPPING BY VORTICES IN TRANSITIONAL DISKS: EVIDENCE FOR NON-IDEAL MAGNETOHYDRODYNAMIC EFFECTS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 795, 53.	1.6	126
38	LARGE-SCALE ASYMMETRIES IN THE TRANSITIONAL DISKS OF SAO 206462 AND SR 21. Astrophysical Journal Letters, 2014, 783, L13.	3.0	203
39	Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discussions, 2014, 168, 9-47.	1.6	120
40	SPIRAL ARMS IN THE DISK OF HD 142527 FROM CO EMISSION LINES WITH ALMA. Astrophysical Journal Letters, 2014, 785, L12.	3.0	86
41	LONG-TERM EVOLUTION OF PLANET-INDUCED VORTICES IN PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2014, 788, L41.	3.0	61
42	POLARIZED LIGHT IMAGING OF THE HD 142527 TRANSITION DISK WITH THE GEMINI PLANET IMAGER: DUST AROUND THE CLOSE-IN COMPANION. Astrophysical Journal Letters, 2014, 791, L37.	3.0	58
43	COMPARISON OF THE DUST AND GAS RADIAL STRUCTURE IN THE TRANSITION DISK [PZ99] J160421.7-213028. Astrophysical Journal, 2014, 791, 42.	1.6	74
44	IMAGING THE INNER AND OUTER GAPS OF THE PRE-TRANSITIONAL DISK OF HD 169142 AT 7 mm. Astrophysical Journal Letters, 2014, 791, L36.	3.0	83
45	Warm formaldehyde in the Ophiuchus IRS 48 transitional disk. Astronomy and Astrophysics, 2014, 563, A113.	2.1	31
46	Planet-vortex interaction: How a vortex can shepherd a planetary embryo. Astronomy and Astrophysics, 2014, 572, A61.	2.1	13
47	Characterization of the gaseous companion <i>κ</i> Andromedae b. Astronomy and Astrophysics, 2014, 562, A111.	2.1	44
48	Millimetre spectral indices of transition disks and their relation to the cavity radius. Astronomy and Astrophysics, 2014, 564, A51.	2.1	51
49	Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multiwavelength gas and dust observations. Astronomy and Astrophysics, 2014, 567, A51.	2.1	46
50	The Structure and Evolution of Protoplanetary Disks: an Infrared and Submillimeter View. Proceedings of the International Astronomical Union, 2015, 10, 128-134.	0.0	0
51	Spiral arms in scattered light images of protoplanetary discs: are they the signposts of planets?. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1147-1157.	1.6	84
52	Magnetic fields in gaps surrounding giant protoplanets. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1104-1116.	1.6	10
53	High performance GPU Bayesian image synthesis. , 2015, , .		1
54	MILLIMETER-WAVE POLARIZATION OF PROTOPLANETARY DISKS DUE TO DUST SCATTERING. Astrophysical Journal, 2015, 809, 78.	1.6	197

#	Article	IF	CITATIONS
55	A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP. Astrophysical Journal Letters, 2015, 810, L7.	3.0	65
56	OBSERVATIONAL SIGNATURES OF PLANETS IN PROTOPLANETARY DISKS. I. GAPS OPENED BY SINGLE AND MULTIPLE YOUNG PLANETS IN DISKS. Astrophysical Journal, 2015, 809, 93.	1.6	225
57	THE EFFECTS OF SELF-SHADOWING BY A PUFFED-UP INNER RIM IN SCATTERED LIGHT IMAGES OF PROTOPLANETARY DISKS. Astrophysical Journal, 2015, 810, 6.	1.6	19
58	ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS. Astrophysical Journal, 2015, 811, 92.	1.6	117
59	A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP. Astrophysical Journal, 2015, 812, 126.	1.6	114
60	SPIRAL ARMS IN GRAVITATIONALLY UNSTABLE PROTOPLANETARY DISKS AS IMAGED IN SCATTERED LIGHT. Astrophysical Journal Letters, 2015, 812, L32.	3.0	89
61	DETECTION OF WATER VAPOR IN THE TERRESTRIAL PLANET FORMING REGION OF A TRANSITION DISK. Astrophysical Journal Letters, 2015, 810, L24.	3.0	18
62	Resolving structure of the disc around HD100546 at 7Âmm with ATCA. Monthly Notices of the Royal Astronomical Society, 2015, 453, 414-438.	1.6	32
63	Gap formation and stability in non-isothermal protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1503-1513.	1.6	21
64	Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1768-1778.	1.6	76
65	Survival and structure of dusty vortices in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4285-4291.	1.6	34
66	YSOVAR: MID-INFRARED VARIABILITY OF YOUNG STELLAR OBJECTS AND THEIR DISKS IN THE CLUSTER IRAS 20050+2720. Astronomical Journal, 2015, 150, 118.	1.9	19
67	Dust in protoplanetary disks: observations. EPJ Web of Conferences, 2015, 102, 00003.	0.1	2
68	Very Large Telescope observations of Gomez's Hamburger: Insights into a young protoplanet candidate. Astronomy and Astrophysics, 2015, 578, L8.	2.1	3
69	COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK. Astrophysical Journal, 2015, 813, 76.	1.6	43
70	Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. Astronomy and Astrophysics, 2015, 579, A106.	2.1	139
71	Tracing planet-induced structures in circumstellar disks using molecular lines. Astronomy and Astrophysics, 2015, 579, A105.	2.1	29
72	Modeling and interpretation of images. EPJ Web of Conferences, 2015, 102, 00016.	0.1	5

#	Article	IF	CITATIONS
73	Chemical composition of the circumstellar disk around AB Aurigae. Astronomy and Astrophysics, 2015, 578, A81.	2.1	14
74	Gaps, rings, and non-axisymmetric structures in protoplanetary disks. Astronomy and Astrophysics, 2015, 574, A68.	2.1	303
75	Rossby wave instability does not require sharp resistivity gradients. Astronomy and Astrophysics, 2015, 574, A10.	2.1	51
76	One-armed spirals in locally isothermal, radially structured self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3806-3819.	1.6	18
77	Five steps in the evolution from protoplanetary to debris disk. Astrophysics and Space Science, 2015, 357, 1.	0.5	75
78	High-contrast imaging constraints on gas giant planet formation—The Herbig Ae/Be star opportunity. Astrophysics and Space Science, 2015, 357, 1.	0.5	9
79	MASS ESTIMATES OF A GIANT PLANET IN A PROTOPLANETARY DISK FROM THE GAP STRUCTURES. Astrophysical Journal Letters, 2015, 806, L15.	3.0	153
80	The outer disks of Herbig stars from the UV to NIR. Astrophysics and Space Science, 2015, 355, 253-266.	0.5	7
81	ALMA images of discs: are all gaps carved by planets?. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 454, L36-L40.	1.2	68
82	Significant gas-to-dust ratio asymmetry and variation in the disk of HDÂ142527 and the indication of gas depletion. Publication of the Astronomical Society of Japan, 2015, 67, .	1.0	35
83	Detailed structure of the outer disk around HD 169142 with polarized light in <i>H</i> -band. Publication of the Astronomical Society of Japan, 2015, 67, .	1.0	65
84	CO GAS INSIDE THE PROTOPLANETARY DISK CAVITY IN HD 142527: DISK STRUCTURE FROM ALMA. Astrophysical Journal, 2015, 798, 85.	1.6	75
85	SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT. Astrophysical Journal, 2015, 798, 132.	1.6	59
86	SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK. Astrophysical Journal Letters, 2015, 798, L44.	3.0	209
87	FAST MODES AND DUSTY HORSESHOES IN TRANSITIONAL DISKS. Astrophysical Journal Letters, 2015, 798, L25.	3.0	33
88	EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS. Astrophysical Journal, 2015, 798, 9.	1.6	42
89	THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 [,] . Astrophysical Journal, 2015, 799, 43.	1.6	65
90	The accumulation and trapping of grains at planet gaps: Effects of grain growth and fragmentation. Planetary and Space Science, 2015, 116, 48-56.	0.9	44

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
91	SHALLOW CAVITIES IN MULTIPLE-PLANET SYSTEMS. Astrophysical Journal, 2015, 802, 42.	1.6	55
92	ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. I. TWO-DIMENSIONAL GLOBAL DISK SIMULATIONS. Astrophysical Journal, 2015, 804, 95.	1.6	38
93	ARE PROTOPLANETARY DISKS BORN WITH VORTICES? ROSSBY WAVE INSTABILITY DRIVEN BY PROTOSTELLAR INFALL. Astrophysical Journal, 2015, 805, 15.	1.6	39
94	THE TRANSITIONAL DISK AROUND IRAS 04125+2902. Astrophysical Journal, 2015, 807, 156.	1.6	6
95	THREE-DIMENSIONAL MHD SIMULATION OF CIRCUMBINARY ACCRETION DISKS. II. NET ACCRETION RATE. Astrophysical Journal, 2015, 807, 131.	1.6	88
96	Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2589-2609.	1.6	91
97	The long-term evolution of photoevaporating transition discs with giant planets. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2173-2182.	1.6	20
98	High-resolution Br Î ³ spectro-interferometry of the transitional Herbig Ae/Be star HD 100546: a Keplerian gaseous disc inside the inner rim. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2126-2132.	1.6	31
99	PROTOPLANETARY DISKS INCLUDING RADIATIVE FEEDBACK FROM ACCRETING PLANETS. Astrophysical Journal, 2015, 806, 253.	1.6	22
100	GAS INSIDE THE 97 AU CAVITY AROUND THE TRANSITION DISK Sz 91. Astrophysical Journal, 2015, 805, 21.	1.6	55
101	Observations of Solids in Protoplanetary Disks. Publications of the Astronomical Society of the Pacific, 2015, 127, 961-993.	1.0	80
102	ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK. Astrophysical Journal, 2016, 831, 200.	1.6	42
103	STABILITY AND OCCURRENCE RATE CONSTRAINTS ON THE PLANETARY SCULPTING HYPOTHESIS FOR "TRANSITIONAL―DISKS. Astrophysical Journal, 2016, 825, 77.	1.6	59
104	Water and acetaldehyde in HH212: The first hot corino in Orion. Astronomy and Astrophysics, 2016, 586, L3.	2.1	43
105	Dust and gas density evolution at a radial pressure bump in protoplanetary disks. Astronomy and Astrophysics, 2016, 591, A86.	2.1	52
106	A proposed new diagnostic for Herbig disc geometry. Astronomy and Astrophysics, 2016, 590, A98.	2.1	14
107	The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT <i>Herschel</i> Key Program. Astronomy and Astrophysics, 2016, 593, A11.	2.1	33
108	Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains. Astronomy and Astrophysics, 2016, 590, A17.	2.1	77

#	Article	IF	CITATIONS
109	The (w)hole survey: An unbiased sample study of transition disk candidates based on <i>Spitzer</i> catalogs. Astronomy and Astrophysics, 2016, 592, A126.	2.1	60
110	Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. Astronomy and Astrophysics, 2016, 585, A58.	2.1	166
111	Determining protoplanetary disk gas masses from CO isotopologues line observations. Astronomy and Astrophysics, 2016, 594, A85.	2.1	100
112	An M-dwarf star in the transition disk of Herbig HD 142527. Astronomy and Astrophysics, 2016, 590, A90.	2.1	73
113	High spatial resolution imaging of SO and H ₂ CO in AB Auriga: The first SO image in a transitional disk. Astronomy and Astrophysics, 2016, 589, A60.	2.1	30
114	A â€~Rosetta Stone' for Protoplanetary Disks: The Synergy of Multi-Wavelength Observations. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	43
115	AN ORIGIN OF MULTIPLE RING STRUCTURE AND HIDDEN PLANETS IN HL TAU: A UNIFIED PICTURE BY SECULAR GRAVITATIONAL INSTABILITY. Astronomical Journal, 2016, 152, 184.	1.9	96
116	ALMA SURVEY OF LUPUS PROTOPLANETARY DISKS. I. DUST AND GAS MASSES. Astrophysical Journal, 2016, 828, 46.	1.6	478
117	Steepening of the 820 <i>μ</i> m continuum surface brightness profile signals dust evolution in TW Hydrae's disk. Astronomy and Astrophysics, 2016, 586, A99.	2.1	25
118	SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527. Astrophysical Journal Letters, 2016, 831, L12.	3.0	88
119	On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs. Geophysical and Astrophysical Fluid Dynamics, 2016, 110, 274-294.	0.4	8
120	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Science Reviews, 2016, 205, 213-230.	3.7	31
121	The Origin and Evolution of Transition Discs: Successes, Problems, and Open Questions. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	89
122	Resolved Observations of Transition Disks. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	46
123	Gas and dust hydrodynamical simulations of massive lopsided transition discs – II. Dust concentration. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3927-3941.	1.6	68
124	Dipper discs not inclined towards edge-on orbits. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L101-L105.	1.2	60
125	Dust Evolution and the Formation of Planetesimals. Space Science Reviews, 2016, 205, 41-75.	3.7	215
126	Imaging the water snow-line during a protostellar outburst. Nature, 2016, 535, 258-261.	13.7	154

c	TAT	ON	Report
L	TAL	UN	KEPUKI

#	Article	IF	CITATIONS
127	ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2016, 818, L16.	3.0	117
128	THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 226, 8.	3.0	17
129	The Geneva Reduction and Analysis Pipeline for High-contrast Imaging of planetary Companions. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2178-2186.	1.6	38
130	Exocometary gas in the HD 181327 debris ring. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2933-2944.	1.6	113
131	Gas and dust hydrodynamical simulations of massive lopsided transition discs – I. Gas distribution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3918-3926.	1.6	49
132	Constraining turbulence mixing strength in transitional discs with planets using SPHERE and ALMA. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L85-L89.	1.2	33
133	Mass constraint for a planet in a protoplanetary disk from the gap width. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	104
134	Extreme asymmetry in the polarized disk of V1247ÂOrionis. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	45
135	MULTIPLE CARBON MONOXIDE SNOWÂLINES IN DISKS SCULPTED BY RADIAL DRIFT. Astrophysical Journal Letters, 2016, 816, L21.	3.0	59
136	Rossby wave instability and long-term evolution of dead zones in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1944-1957.	1.6	16
137	A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK. Astrophysical Journal, 2016, 818, 150.	1.6	11
138	Directly observing continuum emission from self-gravitating spiral waves. Monthly Notices of the Royal Astronomical Society, 2016, 458, 306-318.	1.6	52
139	Cavity and other radial substructures in the disk around HD 97048. Astronomy and Astrophysics, 2017, 597, A32.	2.1	79
140	HOW BRIGHT ARE PLANET-INDUCED SPIRAL ARMS IN SCATTERED LIGHT?. Astrophysical Journal, 2017, 835, 38.	1.6	68
141	Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks around Herbig Ae/Be and T Tauri Stars. Astrophysical Journal, 2017, 835, 291.	1.6	52
142	A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau. Astrophysical Journal, 2017, 840, 23.	1.6	112
143	A Close-up View of the Young Circumbinary Disk HD 142527. Astrophysical Journal, 2017, 840, 60.	1.6	90
144	A gas density drop in the inner 6 AU of the transition disk around the Herbig Ae star HD 139614. Astronomy and Astrophysics, 2017, 598, A118.	2.1	22

#	Article	IF	CITATIONS
145	An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO. Astronomical Journal, 2017, 153, 244.	1.9	81
146	ALMA observations of the Î∙ Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30ÂM _{àŠ•} planets?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2595-2615.	1.6	96
147	Slowly-growing gap-opening planets trigger weaker vortices. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3533-3543.	1.6	45
148	Exploring Dust around HD 142527 down to 0.″025 (4 au) Using SPHERE/ZIMPOL. Astronomical Journal, 2017, 154, 33.	1.9	62
149	Rings and gaps produced by variable magnetic disc winds and avalanche accretion streams – I. Axisymmetric resistive MHD simulations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3850-3868.	1.6	40
150	An L-stable method for solving stiff hydrodynamics. AIP Conference Proceedings, 2017, , .	0.3	0
151	The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028. Astrophysical Journal, 2017, 836, 201.	1.6	50
152	Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud. Astrophysical Journal, 2017, 851, 45.	1.6	57
153	On the Origin of the Spiral Morphology in the Elias 2–27 Circumstellar Disk. Astrophysical Journal Letters, 2017, 839, L24.	3.0	60
154	Laboratory unraveling of matter accretion in young stars. Science Advances, 2017, 3, e1700982.	4.7	35
155	ALMA Observations of Asymmetric Molecular Gas Emission from a Protoplanetary Disk in the Orion Nebula. Astronomical Journal, 2017, 153, 233.	1.9	3
156	Multiple Disk Gaps and Rings Generated by a Single Super-Earth. Astrophysical Journal, 2017, 843, 127.	1.6	157
157	Dust traps as planetary birthsites: basics and vortex formation. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3379-3392.	1.6	33
158	Save the Planet, Feed the Star: How Super-Earths Survive Migration and Drive Disk Accretion. Astrophysical Journal, 2017, 839, 100.	1.6	57
159	ALMA Observations of Elias 2–24: A Protoplanetary Disk with Multiple Gaps in the Ophiuchus Molecular Cloud. Astrophysical Journal Letters, 2017, 851, L23.	3.0	37
160	A Face-on Accretion System in High-mass Star Formation: Possible Dusty Infall Streams within 100 AU. Astrophysical Journal, 2017, 849, 23.	1.6	9
161	Dust Concentration and Emission in Protoplanetary Disks Vortices. Astrophysical Journal, 2017, 850, 115.	1.6	38
162	Pulsed Accretion in the T Tauri Binary TWA 3A. Astrophysical Journal Letters, 2017, 842, L12.	3.0	26

#	Article	IF	CITATIONS
163	Vortex stretching in self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2204-2215.	1.6	19
164	Constraining the mass of the planet(s) sculpting a disk cavity. Astronomy and Astrophysics, 2017, 598, A43.	2.1	20
165	The protoplanetary system HD 100546 in H <i>α</i> polarized light from SPHERE/ZIMPOL. Astronomy and Astrophysics, 2017, 608, A104.	2.1	15
166	Giant planet formation at the pressure maxima of protoplanetary disks. Astronomy and Astrophysics, 2017, 604, A10.	2.1	20
167	Gaps and rings carved by vortices in protoplanetary dust. Astronomy and Astrophysics, 2017, 605, A122.	2.1	19
168	Interpreting Brightness Asymmetries in Transition Disks: Vortex at Dead Zone or Planet-carved Gap Edges?. Astrophysical Journal, 2017, 851, 89.	1.6	11
169	An 80 au cavity in the disk around HD 34282. Astronomy and Astrophysics, 2017, 607, A55.	2.1	37
170	Detailed modeling of dust distribution in the disk of HDÂ142527. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	32
171	Long-lived Dust Asymmetries at Dead Zone Edges in Protoplanetary Disks. Astrophysical Journal, 2017, 835, 118.	1.6	32
172	Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1270-1284.	1.6	122
173	Empirical Temperature Measurement in Protoplanetary Disks. Astrophysical Journal, 2018, 853, 113.	1.6	47
174	Dust Evolution in Protoplanetary Disks. , 2018, , 1-16.		0
175	New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region. Astrophysical Journal, 2018, 854, 177.	1.6	88
176	Variable Outer Disk Shadowing around the Dipper Star RXJ1604.3–2130*. Astrophysical Journal, 2018, 868, 85.	1.6	50
177	The Disk Substructures at High Angular Resolution Project (DSHARP). X. Multiple Rings, a Misaligned Inner Disk, and a Bright Arc in the Disk around the T Tauri star HD 143006. Astrophysical Journal Letters, 2018, 869, L50.	3.0	69
178	The Disk Substructures at High Angular Resolution Project (DSHARP). IX. A High-definition Study of the HD 163296 Planet-forming Disk. Astrophysical Journal Letters, 2018, 869, L49.	3.0	114
179	The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust Model. Astrophysical Journal Letters, 2018, 869, L45.	3.0	199
180	The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation. Astrophysical Journal Letters, 2018, 869, L47.	3.0	289

#	Article	IF	Citations
181	Pebble dynamics and accretion on to rocky planets – I. Adiabatic and convective models. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5136-5156.	1.6	33
182	Ionization-driven Depletion and Redistribution of CO in Protoplanetary Disks. Astrophysical Journal Letters, 2018, 868, L37.	3.0	13
183	Two Different Grain Size Distributions within the Protoplanetary Disk around HD 142527 Revealed by ALMA Polarization Observation. Astrophysical Journal, 2018, 864, 81.	1.6	56
184	ALMA Reveals a Misaligned Inner Gas Disk inside the Large Cavity of a Transitional Disk. Astrophysical Journal Letters, 2018, 868, L3.	3.0	25
185	Dust Evolution in Protoplanetary Disks. , 2018, , 2205-2220.		0
186	Evidence for a massive dust-trapping vortex connected to spirals. Astronomy and Astrophysics, 2018, 619, A161.	2.1	69
187	The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview. Astrophysical Journal Letters, 2018, 869, L41.	3.0	732
188	The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust Trapping in Thin-ringed Protoplanetary Disks. Astrophysical Journal Letters, 2018, 869, L46.	3.0	250
189	Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astronomy and Astrophysics, 2018, 617, A44.	2.1	436
190	On the evolution of vortices in massive protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	9
191	A likely planet-induced gap in the disc around T Cha. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L62-L66.	1.2	32
192	Characterization of low-mass companion HDÂ142527 B. Astronomy and Astrophysics, 2018, 617, A37.	2.1	23
193	Structure Formation in a Young Protoplanetary Disk by a Magnetic Disk Wind. Astrophysical Journal, 2018, 865, 102.	1.6	30
194	Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70. Astrophysical Journal, 2018, 858, 112.	1.6	42
195	Homogeneous Analysis of the Dust Morphology of Transition Disks Observed with ALMA: Investigating Dust Trapping and the Origin of the Cavities. Astrophysical Journal, 2018, 859, 32.	1.6	72
196	An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation. Astrophysical Journal, 2018, 859, 72.	1.6	66
197	Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	4
198	Probing midplane CO abundance and gas temperature with DCO ⁺ in the protoplanetary disk around HD 169142. Astronomy and Astrophysics, 2018, 614, A106.	2.1	31

#	Article	IF	CITATIONS
199	Optical Dimming of RW Aur Associated with an Iron-rich Corona and Exceptionally High Absorbing Column Density. Astronomical Journal, 2018, 156, 56.	1.9	13
200	Rossby vortices in thin magnetized accretion discs. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3671-3679.	1.6	2
201	Vortex survival in 3D self-gravitating accretion discs. Monthly Notices of the Royal Astronomical Society, 2018, 478, 575-591.	1.6	12
202	An inner warp in the DoAr 44 T Tauri transition disc. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5104-5114.	1.6	70
203	Extracting Filaments Based on Morphology Components Analysis from Radio Astronomical Images. Advances in Astronomy, 2019, 2019, 1-11.	0.5	0
204	Gas Accretion within the Dust Cavity in AB Aur*. Astrophysical Journal Letters, 2019, 879, L14.	3.0	7
205	Signatures of an eccentric disc cavity: Dust and gas in IRS 48. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2579-2587.	1.6	37
206	Investigating the gas-to-dust ratio in the protoplanetary disk of HD 142527. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	7
207	The Observability of Vortex-driven Spiral Arms in Protoplanetary Disks: Basic Spiral Properties. Astrophysical Journal Letters, 2019, 883, L39.	3.0	17
208	Properties of Density and Velocity Gaps Induced by a Planet in a Protoplanetary Disk. Astrophysical Journal, 2019, 884, 142.	1.6	14
209	Dusty clumps in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2204-2215.	1.6	20
210	First detections of H ¹³ CO ⁺ and HC ¹⁵ N in the disk around HD 97048. Astronomy and Astrophysics, 2019, 629, A75.	2.1	9
211	Cooling in the shade of warped transition discs. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L58-L62.	1.2	17
212	Separating extended disc features from the protoplanet in PDSÂ70 using VLT/SINFONI. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5819-5837.	1.6	35
213	Discovery of An au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya. Astrophysical Journal Letters, 2019, 878, L8.	3.0	37
214	Inclined massive planets in a protoplanetary disc: gap opening, disc breaking, and observational signatures. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4221-4241.	1.6	64
215	Cm-wavelength observations of MWC 758: resolved dust trapping in a vortex. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3278-3287.	1.6	20
216	Observational Signatures of Planets in Protoplanetary Disks: Planet-induced Line Broadening in Gaps. Astrophysical Journal, 2019, 870, 72.	1.6	22

#	Article	IF	CITATIONS
217	Observational diagnostics of elongated planet-induced vortices with realistic planet formation time-scales. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3609-3621.	1.6	18
218	A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.	6.0	131
219	The Flared Gas Structure of the Transitional Disk around Sz 91. Astrophysical Journal, 2019, 871, 5.	1.6	16
220	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	2.1	55
221	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
222	SPHERE dynamical and spectroscopic characterization of HD 142527B. Astronomy and Astrophysics, 2019, 622, A96.	2.1	35
223	ALMA study of the HD 100453 AB system and the tidal interaction of the companion with the disk. Astronomy and Astrophysics, 2019, 624, A33.	2.1	31
224	Spatial segregation of dust grains in transition disks. Astronomy and Astrophysics, 2019, 624, A7.	2.1	41
225	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – I: project description and continuum images at 28 au resolution. Monthly Notices of the Royal Astronomical Society, 2019, 482, 698-714.	1.6	138
226	Observations of Protoplanetary Disk Structures. Annual Review of Astronomy and Astrophysics, 2020, 58, 483-528.	8.1	220
227	On the cavity size in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2936-2947.	1.6	26
228	TW Hya: an old protoplanetary disc revived by its planet. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	11
229	Planet-induced Vortices with Dust Coagulation in Protoplanetary Disks. Astrophysical Journal Letters, 2020, 892, L19.	3.0	11
230	Super-resolution Imaging of the Protoplanetary Disk HD 142527 Using Sparse Modeling. Astrophysical Journal, 2020, 895, 84.	1.6	7
231	On the vortex evolution in non-isothermal protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3014-3025.	1.6	8
232	Disks Around T Tauri Stars with SPHERE (DARTTS-S). Astronomy and Astrophysics, 2020, 633, A82.	2.1	47
233	Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1335-1347.	1.6	60
234	Dust-depleted Inner Disks in a Large Sample of Transition Disks through Long-baseline ALMA Observations. Astrophysical Journal, 2020, 892, 111.	1.6	103

#	Article	IF	CITATIONS
235	Morphological signatures induced by dust back reaction in discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4702-4718.	1.6	8
236	Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ^{â^—} . Astronomical Journal, 2021, 161, 148.	1.9	59
237	Ring Formation by Coagulation of Dust Aggregates in the Early Phase of Disk Evolution around a Protostar. Astrophysical Journal, 2021, 907, 80.	1.6	19
238	New Growth Mechanism of Dust Grains in Protoplanetary Disks with Magnetically Driven Disk Winds. Astrophysical Journal, 2021, 909, 75.	1.6	14
239	Non-Keplerian spirals, a gas-pressure dust trap, and an eccentric gas cavity in the circumbinary disc around HD 142527. Monthly Notices of the Royal Astronomical Society, 2021, 504, 782-791.	1.6	15
240	Possible single-armed spiral in the protoplanetary disk around HD 34282. Astronomy and Astrophysics, 2021, 649, A25.	2.1	12
241	Vortex-like kinematic signal, spirals, and beam smearing effect in the HD 142527 disk. Astronomy and Astrophysics, 2021, 650, A59.	2.1	14
242	A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics. Astronomical Journal, 2021, 162, 28.	1.9	55
243	Chemical signatures of a warped protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4821-4837.	1.6	13
244	The Architecture of the V892 Tau System: The Binary and Its Circumbinary Disk. Astrophysical Journal, 2021, 915, 131.	1.6	14
245	What happened before?. Astronomy and Astrophysics, 2021, 652, A133.	2.1	14
246	A dusty filament and turbulent CO spirals in HD 135344B - SAO 206462. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3789-3809.	1.6	24
247	The GRAVITY young stellar object survey. Astronomy and Astrophysics, 2021, 655, A112.	2.1	6
248	Rossby Waves in Astrophysics. Space Science Reviews, 2021, 217, 1.	3.7	47
249	The Determination of Protoplanetary Disk Masses. Astrophysics and Space Science Library, 2017, , 1-37.	1.0	25
250	Particle Trapping in Protoplanetary Disks: Models vs. Observations. Astrophysics and Space Science Library, 2017, , 91-142.	1.0	11
251	Radio astronomy: The patchwork array. Nature, 2013, 495, 156-159.	13.7	4
252	On the structure of the transition disk around TW Hydrae. Astronomy and Astrophysics, 2014, 564, A93.	2.1	89

#	Article	IF	CITATIONS
253	Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps. Astronomy and Astrophysics, 2014, 563, A78.	2.1	52
254	Large dust gaps in the transitional disks of HD 100453 and HD 34282. Astronomy and Astrophysics, 201 587, A62.	¹⁶ .2.1	19
255	Gas and dust structures in protoplanetary disks hosting multiple planets. Astronomy and Astrophysics, 2015, 573, A9.	2.1	75
256	Sequential planet formation in the HD 100546 protoplanetary disk?. Astronomy and Astrophysics, 2015, 580, A105.	2.1	35
257	Can dead zones create structures like a transition disk?. Astronomy and Astrophysics, 2016, 596, A81.	2.1	95
258	Testing dust trapping in the circumbinary disk around GG Tauri A. Astronomy and Astrophysics, 2017, 599, A102.	2.1	21
259	CO emission tracing a warp or radial flow within ≲100 au in the HD 100546 protoplanetary disk. Astronomy and Astrophysics, 2017, 607, A114.	2.1	46
260	Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astronomy and Astrophysics, 2018, 619, A171.	2.1	71
261	High resolution observations of molecular emission lines toward the CI Tau proto-planetary disc: planet-carved gaps or shadowing?. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	10
262	Dust Evolution in Protoplanetary Disks. , 2014, , .		84
263	On the Diversity of Asymmetries in Gapped Protoplanetary Disks. Astronomical Journal, 2021, 161, 33.	1.9	69
264	Large-scale CO Spiral Arms and Complex Kinematics Associated with the T Tauri Star RU Lup. Astrophysical Journal, 2020, 898, 140.	1.6	23
265	Solving Grain Size Inconsistency between ALMA Polarization and VLA Continuum in the Ophiuchus IRS 48 Protoplanetary Disk. Astrophysical Journal, 2020, 900, 81.	1.6	23
266	Kinematical Signs of Dust Trapping and Feedback in a Local Pressure Bump in the Protoplanetary Disk around HD 142527 Revealed with ALMA. Astrophysical Journal, 2020, 905, 89.	1.6	10
267	A Dust Trap in the Young Multiple System HD 34700. Astrophysical Journal, 2020, 905, 120.	1.6	5
268	The Substructures in Disks Undergoing Vertical Shear Instability. II. Observational Predictions for the Dust Continuum. Astrophysical Journal, 2021, 920, 70.	1.6	8
270	The Sky Is Not the Limit. Advances in Intelligent Systems and Computing, 2014, , 181-186.	0.5	0
271	Dust Evolution and the Formation of Planetesimals. Space Sciences Series of ISSI, 2016, , 81-115.	0.0	0

#	Article	IF	CITATIONS
272	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Sciences Series of ISSI, 2016, , 255-272.	0.0	0
273	The ALMA Revolution: Gas and Dust in Transitional Disks. Astrophysics and Space Science Library, 2017, , 39-61.	1.0	3
274	Observational Signatures of Planet Formation in Recent Resolved Observations of Protoplanetary Disks. Astrophysics and Space Science Library, 2017, , 253-294.	1.0	0
275	Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission. Astrophysical Journal, Supplement Series, 2021, 257, 14.	3.0	56
276	A Tale of Two Transition Disks: ALMA Long-baseline Observations of ISO-Oph 2 Reveal Two Closely Packed Nonaxisymmetric Rings and a â^1⁄42 au Cavity. Astrophysical Journal Letters, 2020, 902, L33.	3.0	11
277	High-resolution ALMA observations of V4046 Sgr: a circumbinary disc with a thin ring. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1248-1257.	1.6	8
278	The Water-ice Feature in Near-infrared Disk-scattered Light around HD 142527: Micron-sized Icy Grains Lifted up to the Disk Surface?. Astrophysical Journal, 2021, 921, 173.	1.6	12
279	The formation of planetary systems with SPICA. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	3
280	Taxonomy of protoplanetary discs observed with ALMA. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2453-2490.	1.6	1
281	A large population study of protoplanetary disks. Astronomy and Astrophysics, 2022, 661, A66.	2.1	14
282	The Characterization of the Dust Content in the Ring Around Sz 91: Indications of Planetesimal Formation?. Astrophysical Journal, 2021, 923, 128.	1.6	6
283	The Appearance of Vortices in Protoplanetary Disks in Near-infrared Scattered Light. Astrophysical Journal, 2022, 930, 80.	1.6	8
284	Subaru/IRCS <i>L</i> -band spectro-polarimetry of the HD 142527 disk scattered light. Publication of the Astronomical Society of Japan, 2022, 74, 851-856.	1.0	4
285	Extreme pebble accretion in ringed protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1276-1295.	1.6	5
286	Improved Orbital Constraints and HÎ $_{\pm}$ Photometric Monitoring of the Directly Imaged Protoplanet Analog HD 142527 B. Astronomical Journal, 2022, 164, 29.	1.9	12
287	A VLA View of the Flared, Asymmetric Disk around the Class 0 Protostar L1527 IRS. Astrophysical Journal, 2022, 934, 95.	1.6	14
288	Distributions of gas and small and large grains in the LkH <i>α</i> 330 disk trace a young planetary system,. Astronomy and Astrophysics, 2022, 665, A128.	2.1	3
289	External or internal companion exciting the spiral arms in CQ Tau?. Monthly Notices of the Royal Astronomical Society, 2022, 515, 6109-6121.	1.6	4

CITATION REPORT IF ARTICLE CITATIONS The radial profile of dust grain size in the protoplanetary disc of DS Tau. Monthly Notices of the Royal 290 1.6 0 Astronomical Society, 2022, 518, 6092-6101. Observing circumplanetary disks with METIS. Astronomy and Astrophysics, 2023, 670, A74. 2.1 Herbig Stars. Space Science Reviews, 2023, 219, . 292 3.7 8 Precession and polar alignment of accretion discs in triple (or multiple) stellar systems. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5817-5827. Planetary nurseries: vortices formed at smooth viscosity transition. Monthly Notices of the Royal 294 1.6 1 Astronomical Society, 2023, 521, 396-410. Transition disks: the observational revolution from SEDs to imaging. European Physical Journal Plus, 1.2 2023, 138, . Three-dimensional Global Simulations of Type-II Planet–Disk Interaction with a Magnetized Disk Wind. 296 1.6 10 I. Magnetic Flux Concentration and Gap Properties. Astrophysical Journal, 2023, 946, 5. Gas distribution in ODISEA sources from ALMA long-baseline observations in 12CO(2-1). Monthly Notices of the Royal Astronomical Society, 2023, 522, 2611-2627. The Interplay of Gas, Dust and Ice in Protoplanetary Disks. Thirty Years of Astronomical Discovery With UKIRT, 2023, , 247-252. 303 0.3 0

#