Nanomaterials for energy conversion and storage

Chemical Society Reviews 42, 3127

DOI: 10.1039/c3cs00009e

Citation Report

#	Article	IF	Citations
3	Polyaniline/carbon nanotube multi-layered hollow microspheres with sandwich structure and their electrochemical performance. Synthetic Metals, 2013, 179, 34-41.	2.1	13
4	Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale, $2013, 5, 11087$.	2.8	28
5	Intrinsic Focusing of the Particle Size Distribution in Colloids Containing Nanocrystals of Two Different Crystal Phases. ACS Nano, 2013, 7, 11242-11254.	7.3	53
6	Curly Graphene with Specious Interlayers Displaying Superior Capacity for Hydrogen Storage. Journal of Physical Chemistry C, 2013, 117, 25845-25851.	1.5	55
7	Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14618.	5.2	45
8	Copper–indium–selenide quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 20517.	1.3	69
9	Yolk–shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Nanoscale, 2013, 5, 7867.	2.8	58
10	Surface modification of MoOxSy on porous TiO2 nanospheres as an anode material with highly reversible and ultra-fast lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 15128.	5.2	28
11	Highly efficient photoanodes for dye solar cells with a hierarchical meso-ordered structure. Physical Chemistry Chemical Physics, 2013, 15, 16949.	1.3	4
12	Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Advances, 2013, 3, 24567.	1.7	55
13	Stabilization of carbon nanotubes-based hollow cages for energy storage: From collapsed morphology to free-standing structure. Electrochimica Acta, 2013, 105, 53-61.	2.6	5
14	Enhanced Intercalation Dynamics and Stability of Engineered Micro/Nanoâ€Structured Electrode Materials: Vanadium Oxide Mesocrystals. Small, 2013, 9, 3880-3886.	5.2	50
15	Oriented mesoporous TiO2 film as photoanode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8023.	5.2	4
16	Exploring the origins of the apparent "electrocatalytic―oxidation of kojic acid at graphene modified electrodes. Analyst, The, 2013, 138, 4436-4442.	1.7	31
17	Hydrogenated TiO ₂ Nanocrystals: A Novel Microwave Absorbing Material. Advanced Materials, 2013, 25, 6905-6910.	11.1	507
18	Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2. Scientific Reports, 2013, 3, 3330.	1.6	39
20	Nanoparticles Engineering for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22
21	Semiconductor quantum dot-sensitized solar cells. Nano Reviews, 2013, 4, 22578.	3.7	109

#	ARTICLE	IF	CITATIONS
22	Guest effect on spin-crossover frameworks. Reviews in Inorganic Chemistry, 2014, 34, 199-216.	1.8	31
23	Polypyrrole: FeO _x ·ZnO nanoparticle solar cells with breakthrough open-circuit voltage prepared from relatively stable liquid dispersions. RSC Advances, 2014, 4, 58608-58614.	1.7	5
24	pHâ€Regulated Synthesis of Multiâ€Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates. Advanced Science, 2014, 1, 1400011.	5.6	154
25	Improved electrochemical property of copper nitrate hydrate by multi-wall carbon nanotube. Electrochimica Acta, 2014, 147, 765-772.	2.6	5
26	Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays. Electrochimica Acta, 2014, 149, 386-393.	2.6	31
27	Compositionâ€Tailored 2 D Mn _{1â^'<i>x</i>} Ru _{<i>x</i>} O ₂ Nanosheets and Their Reassembled Nanocomposites: Improvement of Electrode Performance upon Ru Substitution. Chemistry - A European Journal, 2014, 20, 5132-5140.	1.7	26
28	Polyaniline@MnO ₂ /Graphene Oxide Ternary Composites for Electrochemical Supercapacitors. Advanced Materials Research, 0, 1070-1072, 465-470.	0.3	0
29	Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes. Nanotechnology, 2014, 25, 455706.	1.3	7
30	The Fe-Core/Carbon-Shell Ultrafine Nanopowders as Platform for Biomolecules Grafting. Advanced Materials Research, 0, 1040, 194-198.	0.3	1
31	Lithium Insertion/Deinsertion Characteristics of Nanostructured Amorphous Tantalum Oxide Thin Films. ChemElectroChem, 2014, 1, 158-164.	1.7	27
32	Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048.	2.8	363
33	Sulfurized activated carbon for high energy density supercapacitors. Journal of Power Sources, 2014, 252, 90-97.	4.0	135
34	Fabrication and characterization of a new dye sensitized solar cell with a new Schiff base cobalt complex as a redox mediator. RSC Advances, 2014, 4, 15961.	1.7	16
35	Oxide Nanostructures Hyperbranched with Thin and Hollow Metal Shells for Highâ€Performance Nanostructured Battery Electrodes. Small, 2014, 10, 2419-2428.	5.2	37
36	Organic Nanoparticles: Mechanism of Electron Transfer to Indigo Nanoparticles. ChemElectroChem, 2014, 1, 714-717.	1.7	30
37	Facile synthesis of three dimensional hierarchical Co–Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. Journal of Colloid and Interface Science, 2014, 426, 131-136.	5.0	14
38	Methane and carbon dioxide adsorption and diffusion in amorphous, metal-decorated nanoporous silica. Molecular Simulation, 2014, 40, 618-633.	0.9	6
39	Facile synthesis of single-crystal mesoporous CoNiO2 nanosheets assembled flowers as anode materials for lithium-ion batteries. Electrochimica Acta, 2014, 132, 404-409.	2.6	48

#	ARTICLE	IF	CITATIONS
40	Self-Assembly of Co ₃ V ₂ O ₈ Multilayered Nanosheets: Controllable Synthesis, Excellent Li-Storage Properties, and Investigation of Electrochemical Mechanism. ACS Nano, 2014, 8, 4474-4487.	7.3	229
41	Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts. Applied Surface Science, 2014, 308, 139-147.	3.1	88
42	Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 2014 , 6 , 2009 .	2.8	987
43	Encapsulation Strategies in Energy Conversion Materials. Chemistry of Materials, 2014, 26, 423-434.	3.2	61
44	Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve Highâ€Rate and Longâ€Life Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2014, 53, 13488-13492.	7.2	172
45	Stable Cycling of Fe ₂ O ₃ Nanorice as an Anode through Electrochemical Porousness and the Solid–Electrolyte Interphase Thermolysis Approach. ChemPlusChem, 2014, 79, 143-150.	1.3	14
46	Green Facile Scalable Synthesis of Titania/Carbon Nanocomposites: New Use of Old Dental Resins. ACS Applied Materials & Dental Resins & Dental Resin	4.0	38
47	Bicontinuous hierarchical Na ₇ V ₄ (P ₂ O ₇) ₄ (PO ₄)/C nanorod–graphene composite with enhanced fast sodium and lithium ions intercalation chemistry. lournal of Materials Chemistry A. 2014. 2. 20538-20544.	5.2	73
48	CHAPTER 5. Nanotubes for Energy Storage. RSC Nanoscience and Nanotechnology, 2014, , 121-198.	0.2	0
49	Direct conversion of multilayer molybdenum trioxide to nanorods as multifunctional electrodes in lithium-ion batteries. Nanoscale, 2014, 6, 5484-5490.	2.8	55
50	Hierarchical mesoporous CoS2 microspheres: Morphology-controlled synthesis and their superior pseudocapacitive properties. Electrochimica Acta, 2014, 149, 285-292.	2.6	45
51	Kinetic reconstruction of TiO ₂ surfaces as visible-light-active crystalline phases with high photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 4907-4911.	5.2	9
52	Soft-templated LiFePO ₄ /mesoporous carbon nanosheets (LFP/meso-CNSs) nanocomposite as the cathode material of lithium ion batteries. RSC Advances, 2014, 4, 21325-21331.	1.7	16
53	Nanoalloying bulk-immiscible iridium and palladium inhibits hydride formation and promotes catalytic performances. Nanoscale, 2014, 6, 9955-9959.	2.8	40
54	Applying alloyed metal nanoparticles to enhance solar assisted water splitting. RSC Advances, 2014, 4, 46697-46703.	1.7	22
55	A case study on fibrous porous SnO 2 anode for robust, high-capacity lithium-ion batteries. Nano Energy, 2014, 10, 53-62.	8.2	179
56	Interface chemistry engineering in electrode systems for electrochemical energy storage. RSC Advances, 2014, 4, 37491-37502.	1.7	7
57	Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Physical Chemistry Chemical Physics, 2014, 16, 16629-16641.	1.3	53

#	Article	IF	CITATIONS
58	Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society Reviews, 2014, 43, 185-204.	18.7	899
59	Mesoporous carbon coated molybdenum oxide nanobelts for improved lithium ion storage. RSC Advances, 2014, 4, 29586-29590.	1.7	11
60	Construction of acylhydrazidate-extended metal–organic frameworks. Dalton Transactions, 2014, 43, 11646.	1.6	21
61	Stepwise assembled nickel–cobalt-hydroxide hetero-accumulated nanocrystalline walls on reduced graphene oxide/nickel foams: an adjustable interface design for capacitive charge storage. Journal of Materials Chemistry A, 2014, 2, 4894-4898.	5.2	5
62	The curious case of CdTe/CdS: photoabsorption versus photoemission. Journal of Materials Chemistry C, 2014, 2, 3868-3872.	2.7	8
63	High-capacity full lithium-ion cells based on nanoarchitectured ternary manganese–nickel–cobalt carbonate and its lithiated derivative. Journal of Materials Chemistry A, 2014, 2, 14947.	5.2	52
64	Photo-crosslinked nanofibers of poly(ether amine) (PEA) for the ultrafast separation of dyes through molecular filtration. Polymer Chemistry, 2014, 5, 2027-2034.	1.9	29
65	One-pot hydrothermal synthesis of ZnS–reduced graphene oxide composites with enhanced photocatalytic properties. CrystEngComm, 2014, 16, 214-222.	1.3	71
66	Hierarchical CoNiO ₂ structures assembled from mesoporous nanosheets with tunable porosity and their application as lithium-ion battery electrodes. New Journal of Chemistry, 2014, 38, 3084-3091.	1.4	29
67	A sandwich structure of mesoporous anatase TiO ₂ sheets and reduced graphene oxide and its application as lithium-ion battery electrodes. RSC Advances, 2014, 4, 43039-43046.	1.7	38
68	Nanostructured intercalation compounds as cathode materials for supercapacitors. Pure and Applied Chemistry, 2014, 86, 593-609.	0.9	17
69	Effect of microstructure and Sn/C ratio in SnO ₂ –graphene nanocomposites for lithium-ion battery performance. RSC Advances, 2014, 4, 20540-20547.	1.7	24
70	Enhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modification. International Journal of Hydrogen Energy, 2014, 39, 11258-11266.	3.8	35
71	Mesocrystals as electrode materials for lithium-ion batteries. Nano Today, 2014, 9, 499-524.	6.2	120
72	Synthesis and characterization of copper doped zinc oxide nanoparticles and its application in energy conversion. Current Applied Physics, 2014, 14, 1149-1155.	1.1	29
73	Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18208-18214.	5.2	260
74	Hierarchically porous anatase TiO ₂ microspheres composed of tiny octahedra with enhanced electrochemical properties in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20133-20138.	5.2	34
75	Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chemical Society Reviews, 2014, 43, 5372-5386.	18.7	82

#	Article	IF	CITATIONS
76	Surfactant free gram scale synthesis of mesoporous Ni(OH) ₂ –r-GO nanocomposite for high rate pseudocapacitor application. RSC Advances, 2014, 4, 39875.	1.7	30
77	Luminescence of triarylphosphines and their application to detection of elemental chlorine in aqueous solution. Analytical Methods, 2014, 6, 2432-2435.	1.3	7
78	Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydrate Polymers, 2014, 112, 532-538.	5.1	74
79	Three-dimensionally Hierarchical Porous Carbon Creating High-performance Electrochemical Capacitors. Electrochimica Acta, 2014, 138, 193-199.	2.6	21
80	Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 2014, 6, 8473-8488.	2.8	774
81	Prussian blue analogues: a new class of anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5852-5857.	5.2	241
82	NiO nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 20662-20670.	3.8	53
83	Novel one pot stoichiometric synthesis of nickel sulfide nanomaterials as counter electrodes for QDSSCs. Materials Chemistry and Physics, 2014, 148, 395-402.	2.0	10
84	Allâ€Solidâ€State Zâ€Scheme Photocatalytic Systems. Advanced Materials, 2014, 26, 4920-4935.	11.1	1,989
85	Branched CNT@SnO ₂ nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability. Journal of Materials Chemistry A, 2014, 2, 15582-15589.	5.2	83
86	Mesoscale Effects in Electrochemical Conversion: Coupling of Chemistry to Atomic- and Nanoscale Structure in Iron-Based Electrodes. Journal of the American Chemical Society, 2014, 136, 6211-6214.	6.6	32
88	Theoretical Modeling of Spin Crossover in Metal–Organic Frameworks: [Fe(pz) ₂ Pt(CN) ₄] as a Case Study. Inorganic Chemistry, 2014, 53, 11020-11028.	1.9	38
89	High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co ₃ O ₄ Core/Shell Heterostructures on Nickel Foam. ACS Applied Materials & Ditempted Mate	4.0	212
90	Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode. ACS Applied Materials & Discrete Processed Commercial Carbon Paste As Cathode. ACS Applied Materials & Discrete Processed Commercial Carbon Paste As Cathode.	4.0	245
91	Morphology controlled synthesis of NiCo 2 O 4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochimica Acta, 2014, 142, 118-124.	2.6	88
92	A Family of Mesocubes. Chemistry of Materials, 2014, 26, 4472-4485.	3.2	10
93	Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy and Environmental Science, 2014, 7, 3192-3222.	15.6	271
94	Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 2014, 14, 2522-2527.	4.5	688

#	Article	IF	CITATIONS
95	Self-assembly of nano/micro-structured Fe ₃ O ₄ microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances. Nanotechnology, 2014, 25, 225401.	1.3	27
96	Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6, 9889-9924.	2.8	888
97	Ordered Assembly of NiCo ₂ O ₄ Multiple Hierarchical Structures for High-Performance Pseudocapacitors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11394-11402.	4.0	131
98	Designed synthesis of TiO2-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material. Journal of Materials Chemistry A, 2014, 2, 11372.	5.2	58
99	Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries. Chemical Engineering Journal, 2014, 256, 247-254.	6.6	107
100	Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. Journal of Power Sources, 2014, 269, 250-259.	4.0	136
101	Electrochemical detection of nanoparticles by †nano-impact†methods. TrAC - Trends in Analytical Chemistry, 2014, 58, 79-89.	5.8	219
102	Electrocrystallization of palladium (Pd) nanoparticles on platinum (Pt) electrode and its application for electro-oxidation of formic acid and methanol. Electrochimica Acta, 2014, 116, 314-320.	2.6	21
103	Mechanical Forceâ€Driven Growth of Elongated Bending TiO ₂ â€based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. Advanced Materials, 2014, 26, 6111-6118.	11.1	386
104	Sodium-cutting: a new top-down approach to cut open nanostructures on nonplanar surfaces on a large scale. Chemical Communications, 2014, 50, 13327-13330.	2.2	9
105	Bottom-up preparation of MgH ₂ nanoparticles with enhanced cycle life stability during electrochemical conversion in Li-ion batteries. Nanoscale, 2014, 6, 14459-14466.	2.8	72
106	In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. International Journal of Hydrogen Energy, 2014, 39, 3371-3380.	3.8	151
107	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
108	Facile synthesis of Co3O4 mesoporous nanosheets and their lithium storage properties. Materials Letters, 2014, 125, 103-106.	1.3	18
109	The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges. Energy Policy, 2014, 73, 103-109.	4.2	112
111	Doping of Single Polymeric Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 12587-12589.	7.2	15
112	Graphene–Inorganic Hybrids with Cobalt Oxide Polymorphs for Electrochemical Energy Systems and Electrocatalysis: Synthesis, Processing and Properties. Journal of Electronic Materials, 2015, 44, 4492-4509.	1.0	18
114	Hydrolytic dehydrogenation of ammonia borane catalyzed by metal-organic framework supported bimetallic RhNi nanoparticles. International Journal of Hydrogen Energy, 2015, 40, 16391-16397.	3.8	48

#	Article	IF	CITATIONS
115	Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Scientific Reports, 2015, 5, 17553.	1.6	35
116	Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction. Scientific Reports, 2015, 5, 17385.	1.6	21
117	Morphologyâ€Dependent Electrochemical Properties of CuS Hierarchical Superstructures. ChemPhysChem, 2015, 16, 3418-3424.	1.0	25
118	Mesoporous Carbon Nanofibers Embedded with MoS ₂ Nanocrystals for Extraordinary Liâ€ion Storage. Chemistry - A European Journal, 2015, 21, 18248-18257.	1.7	25
119	Morphology and Phase Evolution of CoAl Layered Double Hydroxides in an Alkaline Environment with Enhanced Pseudocapacitive Performance. ChemElectroChem, 2015, 2, 679-683.	1.7	16
120	The Role of Intentionally Introduced Defects on Electrode Materials for Alkaliâ€lon Batteries. Chemistry - an Asian Journal, 2015, 10, 1608-1617.	1.7	69
121	Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors. Advanced Materials, 2015, 27, 6714-6721.	11.1	137
122	From Commercial Sponge Toward 3D Graphene–Silicon Networks for Superior Lithium Storage. Advanced Energy Materials, 2015, 5, 1500289.	10.2	114
123	Microwave-assisted synthesis of graphene nanocomposites: recent developments on lithium-ion batteries. Reports in Electrochemistry, 0 , 1 .	0.3	6
124	Facile Synthesis of ZnO@TiO2Core-Shell Nanorod Thin Films for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-5.	1.5	4
126	Anchoring nano-sulfur on flat graphene as cathode material for lithium–sulfur battery. RSC Advances, 2015, 5, 40310-40315.	1.7	19
127	Oxygen as the growth enhancer of carbon nanotubes in solid-state pyrolysis of organometallic precursors. Carbon, 2015, 87, 338-346.	5.4	11
128	Synergism in semiconducting nanocomposites: visible light photocatalysis towards the formation of C–S and C–N bonds. Green Chemistry, 2015, 17, 3879-3888.	4.6	47
129	Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation. Journal of Materials Chemistry A, 2015, 3, 9517-9527.	5.2	55
130	Tailored gold nanostructure arrays as catalysts for oxygen reduction in alkaline media and a single molecule SERS platform. Nanoscale, 2015, 7, 10767-10774.	2.8	15
131	Achievement of Diffusional Independence at Nanoscale Liquid–Liquid Interfaces within Arrays. Analytical Chemistry, 2015, 87, 5486-5490.	3.2	30
132	The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Advances, 2015, 5, 48506-48515.	1.7	51
133	Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Advances, 2015, 5, 44416-44422.	1.7	59

#	Article	IF	CITATIONS
134	A novel interfacial synthesis of MnO–NiO–reduced graphene oxide hybrid with enhanced pseudocapacitance performance. RSC Advances, 2015, 5, 54138-54147.	1.7	3
135	Advanced analysis of nanoparticle composites $\hat{a}\in$ a means toward increasing the efficiency of functional materials. RSC Advances, 2015, 5, 53789-53795.	1.7	16
136	Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors. Journal of Colloid and Interface Science, 2015, 455, 188-193.	5.0	25
137	X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 2015, 21, 229-303.	0.4	126
138	Nanosheets-based ZnO–NiO microspheres for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2015, 26, 5279-5286.	1.1	6
139	Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries. Ionics, 2015, 21, 2485-2493.	1.2	10
140	Construction of Co/Co3O4–C ternary core-branch arrays as enhanced anode materials for lithium ion batteries. Journal of Power Sources, 2015, 293, 585-591.	4.0	47
141	Novel route for the synthesis of surfactant-assisted MoBi ₂ (Se _{0.5} Te _{0.5}) ₅ thin films for solar cell applications. New Journal of Chemistry, 2015, 39, 3405-3416.	1.4	16
142	Interconnected mesoporous NiO sheets deposited onto TiO ₂ nanosheet arrays as binder-free anode materials with enhanced performance for lithium ion batteries. RSC Advances, 2015, 5, 101247-101256.	1.7	15
143	Colloidal synthesis of marcasite FeS ₂ nanoparticles with improved electrochemical performance. RSC Advances, 2015, 5, 98967-98970.	1.7	28
144	Nitrogen/manganese oxides co-doped nanoporous carbon materials: Structure characterization and electrochemical performances for supercapacitor applications. Electrochimica Acta, 2015, 161, 84-94.	2.6	13
145	Solid-state dye-sensitized solar cells from poly(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. Journal of Materials Chemistry A, 2015, 3, 5368-5374.	5.2	53
147	An Ionâ€Exchange Promoted Phase Transition in a Liâ€Excess Layered Cathode Material for Highâ€Performance Lithium Ion Batteries. Advanced Energy Materials, 2015, 5, 1401937.	10.2	82
148	Nanostructured Mo-based electrode materials for electrochemical energy storage. Chemical Society Reviews, 2015, 44, 2376-2404.	18.7	599
149	Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy, 2015, 13, 77-91.	8.2	164
150	Synthesis and characterization of urchin-like Mn 0.33 Co 0.67 C 2 O 4 for Li-ion batteries: Role of SEI layers for enhanced electrochemical properties. Electrochimica Acta, 2015, 163, 93-101.	2.6	58
151	Growth of Ultrathin ZnCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties. Advanced Science, 2015, 2, 1400014.	5.6	153
152	An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO ₂ Nanocrystals in the Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3754-3763.	4.0	165

#	Article	IF	CITATIONS
153	Can nanomaterials be a solution for application on alternative vehicles? – A review paper on life cycle assessment and risk analysis. International Journal of Hydrogen Energy, 2015, 40, 4969-4979.	3.8	9
154	Visible light switchable bR/TiO ₂ nanostructured photoanodes for bio-inspired solar energy conversion. RSC Advances, 2015, 5, 18642-18646.	1.7	20
155	Selfâ€Sustained Cycle of Hydrolysis and Etching at Solution/Solid Interfaces: A General Strategy To Prepare Metal Oxide Microâ€∤Nanostructured Arrays for Highâ€Performance Electrodes. Angewandte Chemie - International Edition, 2015, 54, 3932-3936.	7.2	34
156	Recent advances of Li $<$ sub $>4sub>5sub>0<sub>12sub> as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5750-5777.$	5.2	464
157	One-pot tertbutanol assisted solvothermal synthesis of CoNi2S4/reduced graphene oxide nanocomposite for high-performance supercapacitors. Ceramics International, 2015, 41, 6203-6211.	2.3	36
158	Nickel-mediated polyol synthesis of hierarchical V ₂ O ₅ hollow microspheres with enhanced lithium storage properties. Journal of Materials Chemistry A, 2015, 3, 1979-1985.	5.2	82
159	Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Advances, 2015, 5, 14441-14447.	1.7	32
160	Poly(4-styrenesulfonic acid-co-maleic acid) stabilized cobalt(0) nanoparticles: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of hydrazine borane. International Journal of Hydrogen Energy, 2015, 40, 2255-2265.	3.8	33
161	Use of modified anodization procedures to prepare advanced TiO2 nanostructured catalytic electrodes and thin film materials. Catalysis Today, 2015, 251, 121-131.	2.2	17
162	High yield fabrication of hollow vesica-like silicon based on the Kirkendall effect and its application to energy storage. Nanoscale, 2015, 7, 3440-3444.	2.8	51
163	Graphene-Based Hybrids with Manganese Oxide Polymorphs as Tailored Interfaces for Electrochemical Energy Storage: Synthesis, Processing, and Properties. Journal of Electronic Materials, 2015, 44, 62-78.	1.0	15
164	Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. Journal of Power Sources, 2015, 294, 31-50.	4.0	107
165	Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil. Journal of Materials Chemistry A, 2015, 3, 10069-10076.	5.2	46
166	A peanut-like hierarchical micro/nano-Li _{1.2} Mn _{0.54} Ni _{0.18} Co _{0.08} O ₂ cathoc material for lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 14291-14297.	de 5.2	76
167	A Structural Model for a Self-Assembled Nanotube Provides Insight into Its Exciton Dynamics. Journal of Physical Chemistry C, 2015, 119, 13948-13956.	1.5	21
168	Coatings for Energy Applications. , 2015, , 51-84.		1
169	Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. Journal of Materials Chemistry A, 2015, 3, 18154-18162.	5.2	424
170	Influence of sol–gel parameters in the fabrication of ferromagnetic La2/3Ca1/3MnO3 nanotube arrays. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 200, 117-123.	1.7	6

#	Article	IF	CITATIONS
171	Ultrasmall MgH ₂ Nanoparticles Embedded in an Ordered Microporous Carbon Exhibiting Rapid Hydrogen Sorption Kinetics. Journal of Physical Chemistry C, 2015, 119, 18091-18098.	1.5	70
172	Porous NaTi ₂ (PO ₄) ₃ nanocubes: a high-rate nonaqueous sodium anode material with more than 10 000 cycle life. Journal of Materials Chemistry A, 2015, 3, 18718-18726.	5.2	85
173	Coaxial CoMoO ₄ nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2015, 7, 15159-15167.	2.8	49
174	Porous Two-Dimensional Nanosheets Converted from Layered Double Hydroxides and Their Applications in Electrocatalytic Water Splitting. Chemistry of Materials, 2015, 27, 5702-5711.	3.2	291
175	Vanadium-based nanostructure materials for secondary lithium battery applications. Nanoscale, 2015, 7, 14595-14607.	2.8	93
176	Thermodynamic stability and transport properties of tavorite LiFeSO ₄ F as a cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19728-19737.	5.2	14
177	Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors. Science China Materials, 2015, 58, 521-533.	3.5	25
178	Enhanced thermopower wave via nanowire bonding and grain boundary fusion in combustion of fuel/CuO–Cu ₂ O–Cu hybrid composites. Journal of Materials Chemistry A, 2015, 3, 5457-5466.	5.2	33
179	Morphology controlled growth of ZnAl-layered double hydroxide and ZnO nanorod hybrid nanostructures by solution method. RSC Advances, 2015, 5, 59823-59829.	1.7	14
180	Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine, 2015, 10, 1973-1990.	1.7	70
181	Amorphous Ni–Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors. ACS Applied Materials & Diterfaces, 2015, 7, 24419-24429.	4.0	82
182	Peanut shaped ZnO microstructures: controlled synthesis and nucleation growth toward low-cost dye sensitized solar cells. Materials Research Express, 2015, 2, 066202.	0.8	23
183	Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method. Journal of Alloys and Compounds, 2015, 649, 82-88.	2.8	18
184	Microwave Hydrothermal Synthesis of Ni-based Metal–Organic Frameworks and Their Derived Yolk–Shell NiO for Li-Ion Storage and Supported Ammonia Borane for Hydrogen Desorption. ACS Sustainable Chemistry and Engineering, 2015, 3, 1830-1838.	3.2	91
185	Nickel Oxide/Nickel Foam Composite as Supercapacitor Electrode via Electrophoretic Deposition. Key Engineering Materials, 2015, 654, 58-64.	0.4	3
186	Relevance of the Semiconductor Microstructure in the Pseudocapacitance of the Electrodes Fabricated by EPD of Binder-Free \hat{l}^2 -Ni(OH) ₂ Nanoplatelets. Journal of the Electrochemical Society, 2015, 162, D3001-D3012.	1.3	21
187	Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system. Nanoscale, 2015, 7, 14254-14263.	2.8	65
188	Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19738-19746.	5.2	135

#	Article	IF	CITATIONS
189	Hierarchical TiO ₂ spheres decorated with Au nanoparticles for visible light hydrogen production. RSC Advances, 2015, 5, 21237-21241.	1.7	11
190	Molecular dynamics study of a CNT–buckyball-enabled energy absorption system. Physical Chemistry Chemical Physics, 2015, 17, 17311-17321.	1.3	13
191	Three-dimensional hyperbranched TiO ₂ /ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14826-14832.	5.2	48
192	Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773.	18.7	603
193	Alkylated graphene nanosheets for supercapacitor electrodes: High performance and chain length effect. Carbon, 2015, 94, 114-119.	5.4	19
194	Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44, 6684-6696.	18.7	719
195	CHAPTER 1. The Search for Functional Porous Carbons from Sustainable Precursors. RSC Green Chemistry, 2015, , 3-49.	0.0	5
196	Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochimica Acta, 2015, 169, 291-299.	2.6	32
197	Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Physical Chemistry Chemical Physics, 2015, 17, 9812-9827.	1.3	43
198	Facile large scale synthesis of Bi2S3 nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application. Applied Surface Science, 2015, 351, 635-645.	3.1	111
199	Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries. Materials Research Bulletin, 2015, 70, 200-203.	2.7	15
200	Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries. Solid State Ionics, 2015, 276, 84-89.	1.3	36
201	Semiconductor nanowire battery electrodes. , 2015, , 441-469.		1
202	Dye-sensitized solar cells based on hierarchically structured porous TiO ₂ filled with nanoparticles. Journal of Materials Chemistry A, 2015, 3, 11320-11329.	5.2	34
203	Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 2015, 44, 3474-3504.	18.7	397
204	Synthesis of layered xLi2MnO3·(1â^'x)LiMnO2 nanoplates and its electrochemical performance as Li-rich cathode materials for Li-ion battery. Electrochimica Acta, 2015, 165, 182-190.	2.6	26
205	Ammonium acetate and ethylenediamine-assisted synthesis of anatase nanocrystals with {010} facets and enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2015, 3, 961-968.	3.3	7
206	Hydrated vanadium pentoxide with superior sodium storage capacity. Journal of Materials Chemistry A, 2015, 3, 8070-8075.	5.2	190

#	Article	IF	CITATIONS
207	Structural evolution and phase transition of [NH ₄] ₆ Mo ₇ O ₂₄ .4H ₂ O to 2D layered MoO _{3â°'<i>x</i>xxx} . Materials Research Express, 2015, 2, 055004.	0.8	36
208	Robust α-Fe ₂ O ₃ nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13377-13383.	5.2	46
209	Hierarchical nanostructures of \hat{l}^3 -TaON flowers for enhanced visible light driven photocatalytic activities. Chemical Communications, 2015, 51, 2437-2439.	2.2	9
210	Synthesis and characterization of a charm-bracelet-type poly(N-vinylcarbazole)–C60 double-cable polymer. Journal of Materials Science, 2015, 50, 3740-3749.	1.7	12
211	Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film. Scientific Reports, 2015, 5, 9375.	1.6	57
212	Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy, 2015, 13, 58-66.	8.2	135
213	Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44, 5861-5896.	18.7	1,236
214	Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568.	15.6	210
215	Down-conversion photoluminescence sensitizing plasmonic silver nanoparticles on ZnO nanorods to generate hydrogen by water splitting photochemistry. Applied Physics Letters, 2015, 106, 023114.	1.5	16
216	Recent advances in hybrid Cu ₂ O-based heterogeneous nanostructures. Nanoscale, 2015, 7, 10850-10882.	2.8	157
217	An electrochemical investigation of rutile TiO ₂ microspheres anchored by nanoneedle clusters for sodium storage. Physical Chemistry Chemical Physics, 2015, 17, 15764-15770.	1.3	70
218	Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. Journal of Materials Chemistry A, 2015, 3, 13114-13188.	5.2	206
219	Fabrication of urchin-like NiCo ₂ (CO ₃ (sub>1.5(OH) ₃ @NiCo ₂ S ₄ on Ni foam by an ion-exchange route and application to asymmetrical supercapacitors. Journal of Materials Chemistry A, 2015, 3, 13308-13316.	5.2	101
220	Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1859-1869.	2.1	102
221	CO2 as an Oxidant for High-Temperature Reactions. Frontiers in Energy Research, 2015, 3, .	1.2	32
222	Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes. RSC Advances, 2015, 5, 27290-27294.	1.7	81
224	Vertically Aligned Sulfur–Graphene Nanowalls on Substrates for Ultrafast Lithium–Sulfur Batteries. Nano Letters, 2015, 15, 3073-3079.	4.5	183
225	Coaxial three-dimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode. Journal of Power Sources, 2015, 300, 132-138.	4.0	72

#	Article	IF	Citations
226	A three layer design with mesoporous silica encapsulated by a carbon core and shell for high energy lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22739-22749.	5.2	79
227	Binary metal organic framework derived CoxFe3â^'xO4/C for lithium ion batteries. Materials Letters, 2015, 161, 104-107.	1.3	6
228	Structural and Electrochemical Study of Hierarchical LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21939-21947.	4.0	95
229	Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb — A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catalysis Communications, 2015, 72, 73-80.	1.6	59
230	Synthesis of Ni(OH)2 Nanoflakes Through a Novel Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Supercapacitive Properties. Electrochimica Acta, 2015, 184, 47-57.	2.6	24
231	Chemical modification of graphene aerogels for electrochemical capacitor applications. Physical Chemistry Chemical Physics, 2015, 17, 30946-30962.	1.3	74
232	Constructing aligned \hat{I}^3 -Fe ₂ O ₃ nanorods with internal void space anchored on reduced graphene oxide nanosheets for excellent lithium storage. RSC Advances, 2015, 5, 91574-91580.	1.7	24
233	Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes. ACS Applied Materials & Diterfaces, 2015, 7, 25725-25732.	4.0	71
234	Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 2015, 115, 12251-12285.	23.0	1,149
235	Fabrication of coral like carbon black/MnO ₂ nano composites from commercial carbon black and their application in supercapacitors. RSC Advances, 2015, 5, 97080-97088.	1.7	8
236	The partially controllable growth trend of carbon nanoparticles in solid-state pyrolysis of organometallic precursor by introducing POSS units, and their magnetic properties. RSC Advances, 2015, 5, 63296-63303.	1.7	5
237	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. ACS Applied Materials & Diterfaces, 2015, 7, 18211-18217.	4.0	94
238	PPy wrapped MnO2@C/TiO2 nanowire arrays for electrochemical energy storage. Electrochimica Acta, 2015, 182, 1153-1158.	2.6	19
239	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	1.5	28
240	Increased working voltage of hexamine-coated porous carbon for supercapacitors. Science Bulletin, 2015, 60, 1587-1597.	4.3	26
241	Development of Dye-Sensitized Solar Cells Based on Gold/Gelatin Gel Electrolyte: Effect of Different Aspect Ratio of Gold Nanocrystals. IEEE Journal of Photovoltaics, 2015, 5, 1665-1673.	1.5	13
242	Oxide-based nanostructures for photocatalytic and electrocatalytic applications. CrystEngComm, 2015, 17, 8978-9001.	1.3	62
243	Facile Scalable Synthesis of TiO ₂ /Carbon Nanohybrids with Ultrasmall TiO ₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24247-24255.	4.0	36

#	Article	IF	CITATIONS
244	Adsorption studies of divalent, dinuclear coordination complexes as molecular spacers on SWCNTs. Physical Chemistry Chemical Physics, 2015, 17, 29566-29573.	1.3	6
245	Graphene-Based Bulk-Heterojunction Solar Cells: A Review. Journal of Nanoscience and Nanotechnology, 2015, 15, 6237-6278.	0.9	71
246	One-Dimensional Rod-Like Sb ₂ S ₃ -Based Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19362-19369.	4.0	218
247	Direct Transformation from Graphitic C ₃ N ₄ to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19626-19634.	4.0	182
248	Surface Decoration of Organic Ligands on Quantum Dots: Fine Tuning of Photophysical Properties. , 2015, , 1-20.		0
249	Functionalization of Defect Sites in Graphene with RuO ₂ for High Capacitive Performance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20513-20519.	4.0	36
250	Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance. Nano Research, 2015, 8, 3372-3383.	5.8	49
251	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
252	Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21735-21744.	4.0	208
253	LiFePO ₄ /NaFe ₃ V ₉ O ₁₉ /porous glass nanocomposite cathodes for Li ⁺ /Na ⁺ mixed-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22247-22257.	5.2	34
254	lon insertion into individual 7,7,8,8-tetracyanoquinodimethane nanoparticles. Nanoscale, 2015, 7, 15719-15726.	2.8	5
255	Efficient dye-sensitized solar cell with a pure thin film of a hybrid polyoxometalate covalently attached organic dye as a working electrode in a cobalt redox mediator system. RSC Advances, 2015, 5, 76875-76882.	1.7	14
256	A new approach to synthesize MoO ₂ @C for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21314-21320.	5.2	72
257	Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media. Mechanics of Materials, 2015, 91, 333-342.	1.7	26
258	Preparation of thickness-tunable BiOCl nanosheets with high photocatalytic activity for photoreduction of CO ₂ . RSC Advances, 2015, 5, 100244-100250.	1.7	62
259	Remarkable capacitive behavior of a Co ₃ O ₄ –polyindole composite as electrode material for supercapacitor applications. Journal of Materials Chemistry A, 2015, 3, 24338-24348.	5 . 2	102
260	Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Physical Chemistry Chemical Physics, 2015, 17, 30963-30977.	1.3	142
261	Growth of Polypyrrole Ultrathin Films on MoS ₂ Monolayers as Highâ€Performance Supercapacitor Electrodes. Advanced Materials, 2015, 27, 1117-1123.	11.1	691

#	Article	IF	CITATIONS
262	To What Extent Can Surface Morphology Influence the Photoelectrochemical Performance of Au:WO ₃ Electrodes?. Journal of Physical Chemistry C, 2015, 119, 1271-1279.	1.5	23
263	Functional Materials from Celluloseâ€Derived Liquidâ€Crystal Templates. Angewandte Chemie - International Edition, 2015, 54, 2888-2910.	7.2	324
264	Tungsten Oxide@Polypyrrole Core-Shell Nanowire Arrays as Novel Negative Electrodes for Asymmetric Supercapacitors. Small, 2015, 11, 749-755.	5.2	161
265	The effect of graphene on the performance of an electrochemical flow capacitor. Journal of Materials Chemistry A, 2015, 3, 2717-2725.	5.2	26
266	Rapid construction of TiO ₂ aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Advances, 2015, 5, 8622-8629.	1.7	49
267	Funktionsmaterialien mit Celluloseâ€basierten Flüssigkristallâ€Templaten. Angewandte Chemie, 2015, 127, 2930-2953.	1.6	12
268	Facile self-assembly and stabilization of metal oxide nanoparticles. Journal of Colloid and Interface Science, 2015, 442, 110-119.	5.0	9
269	Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. Environment Systems and Decisions, 2015, 35, 110-128.	1.9	5
270	Fabrication of free-standing NiCo2O4 nanoarrays via a facile modified hydrothermal synthesis method and their applications for lithium ion batteries and high-rate alkaline batteries. Materials Research Bulletin, 2015, 63, 211-215.	2.7	13
271	In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries. Electrochimica Acta, 2015, 153, 334-342.	2.6	26
272	Demonstrating the Many Possible Colors of Gold-Supported Solid Nanoparticles. Journal of Chemical Education, 2015, 92, 336-338.	1.1	6
273	Direct growth of NiCo2Sx nanostructures on stainless steel with enhanced electrocatalytic activity for methanol oxidation. RSC Advances, 2015, 5, 4092-4098.	1.7	29
274	CNTs in Situ Attached to \hat{l}_{\pm} -Fe ₂ O ₃ Submicron Spheres for Enhancing Lithium Storage Capacity. ACS Applied Materials & Storage Capacity. ACS Applied Materials & Storage Capacity.	4.0	30
275	Facile Synthesis of 3D Hierarchical Flower-like Co3-xFexO4 ferrite on Nickel Foam as High-Performance Electrodes for Supercapacitors. Electrochimica Acta, 2015, 152, 13-18.	2.6	28
276	Amorphous 3D nanoflake array-assembled porous 2D cobalt–oxalate coordination polymer thin sheets with excellent pseudocapacitive performance. Journal of Materials Chemistry A, 2015, 3, 1847-1852.	5.2	86
277	Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance. Electrochimica Acta, 2015, 151, 35-41.	2.6	206
278	Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 2015, 11, 377-399.	8.2	437
279	Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-290.	18.7	997

#	Article	IF	CITATIONS
280	Comparison of melamine resin and melamine network as precursors for carbon electrodes. Carbon, 2015, 81, 239-250.	5.4	29
281	Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy, 2015, 11, 419-427.	8.2	416
282	Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy and Environmental Science, 2015, 8, 456-477.	15.6	243
283	VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244.	6.4	152
284	Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination. Journal of Molecular Liquids, 2015, 201, 102-107.	2.3	99
285	Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy, 2015, 11, 64-70.	8.2	120
286	Regulating the Electrical Behaviors of 2D Inorganic Nanomaterials for Energy Applications. Small, 2015, 11, 654-666.	5.2	50
287	Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chemical Society Reviews, 2015, 44, 699-728.	18.7	740
288	Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43, 136-164.	11.8	251
289	Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating. Scientific Reports, 2014, 4, 6246.	1.6	66
290	Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 2015, 8, 31-54.	15.6	232
291	Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process. Inorganics, 2016, 4, 22.	1.2	4
292	Shape-controlled Nano-sized Metal Oxides for Catalytic Abatement of Diesel Soot Emissions. Current Nanomaterials, 2016, 1, 75-80.	0.2	0
293	Investigation of CA/G/MnO2 Electrode Composite for Supercapacitors. International Journal of Electrochemical Science, 2016, 11, 9687-9695.	0.5	2
294	Advanced Nanomatericals for Solar Photocatalysis., 0, , .		8
295	Nanostructured TiO ₂ -based gas sensors with enhanced sensitivity to reducing gases. Beilstein Journal of Nanotechnology, 2016, 7, 1718-1726.	1.5	88
296	One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation. Electrochimica Acta, 2016, 212, 864-875.	2.6	62
297	Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithiumâ€lon Storage. Advanced Materials, 2016, 28, 7580-7602.	11.1	224

#	Article	IF	CITATIONS
298	NiCo ₂ S ₄ Nanosheets Grown on 3D Networks of Nitrogenâ€Doped Graphene/Carbon Nanotubes: Advanced Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2016, 3, 1384-1391.	1.7	45
299	Restraining Capacity Increase To Achieve Ultrastable Lithium Storage: Case Study of a Manganese(II) Oxide/Grapheneâ€Based Nanohybrid and Its Fullâ€Cell Performance. ChemElectroChem, 2016, 3, 1354-1359.	1.7	22
300	Ionic liquid-assisted solvothermal synthesis of three-dimensional hierarchical copper sulfide microflowers at a low temperature with enhanced photocatalytic performance. CrystEngComm, 2016, 18, 6245-6253.	1.3	10
301	Effects of structural optimization on the performance of dye-sensitized solar cells: spirobifluorene as a promising building block to enhance V _{oc} . Journal of Materials Chemistry A, 2016, 4, 11782-11788.	5.2	35
302	Hollow Silica Spheres Embedded in a Porous Carbon Matrix and Its Superior Performance as the Anode for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2016, 33, 110-117.	1.2	57
303	Controlled Variable Oxidative Doping of Individual Organometallic Nanoparticles. Chemistry - A European Journal, 2016, 22, 6981-6986.	1.7	4
304	Mesoporous Tungsten Trioxide Polyaniline Nanocomposite as an Anode Material for Highâ€Performance Lithiumâ€Ion Batteries. ChemNanoMat, 2016, 2, 281-289.	1.5	32
305	Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable Highâ€Rate and Longâ€Cycle Sodiumâ€ion Storage. Small, 2016, 12, 3048-3058.	5.2	440
306	MOFâ€Derived Porous Ni _{<i>x</i>} Fe _{3â€<i>x</i>} O ₄ Nanotubes with Excellent Performance in Lithiumâ€ion Batteries. ChemElectroChem, 2016, 3, 299-308.	1.7	38
307	Nanostructured TiO ₂ â€Based Anode Materials for Highâ€Performance Rechargeable Lithiumâ€lon Batteries. ChemNanoMat, 2016, 2, 764-775.	1.5	111
308	Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. Journal of Applied Physics, 2016, 119, 084306.	1.1	33
309	Functional Nanostructuring for Efficient Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600461.	10.2	15
310	Quantifying the intrinsic surface charge density and charge-transfer resistance of the graphene-solution interface through bias-free low-level charge measurement. Applied Physics Letters, 2016, 109, .	1.5	14
311	Diffusion-induced 7Li NMR spin-lattice relaxation of fully lithiated, mixed-conducting Li7Ti5O12. Solid State Ionics, 2016, 287, 77-82.	1.3	18
312	Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. Journal of Alloys and Compounds, 2016, 685, 194-201.	2.8	128
313	Graphene grown in situ on TiO ₂ hollow nanocrystals for advanced photocatalysis and lithium-ion batteries. New Journal of Chemistry, 2016, 40, 6714-6719.	1.4	5
314	The effect of nanoparticle packing on capacitive electrode performance. Nanoscale, 2016, 8, 11940-11948.	2.8	16
315	Mesoporous flower-like Co 3 O 4 /C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochimica Acta, 2016, 207, 293-300.	2.6	41

#	ARTICLE	IF	Citations
316	Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices. Journal of Materials Science: Materials in Electronics, 2016, 27, 4996-5005.	1.1	14
317	One-pot hydrothermal synthesis of hollow Fe3O4 microspheres assembled with nanoparticles for lithium-ion battery anodes. Materials Letters, 2016, 172, 76-80.	1.3	9
318	Comparision between different metal oxide nanostructures and nanocomposites for sensing, energy generation, and energy harvesting., 2016,,.		0
319	Facile synthesis of well-dispersed Bi2S3 nanoparticles on reduced graphene oxide and enhanced photocatalytic activity. Applied Surface Science, 2016, 378, 231-238.	3.1	49
320	Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2016, 193, 1-8.	10.8	155
321	Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal, 2016, 298, 183-190.	6.6	194
322	2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors. Nanoscale, 2016, 8, 10166-10176.	2.8	34
323	FeOOH electrodeposited on Ag decorated ZnO nanorods for electrochemical energy storage. RSC Advances, 2016, 6, 39166-39171.	1.7	16
324	Effect of citric acid on formation of oxides of Cu and Zn in modified sol-gel process: A comparative study. Journal of Chemical Sciences, 2016, 128, 831-837.	0.7	10
325	Self-assembly of amphiphilic macrocycles containing polymeric liquid crystal grafts in solution. Polymer Chemistry, 2016, 7, 2785-2789.	1.9	13
326	Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chemical Communications, 2016, 52, 6673-6676.	2.2	106
327	Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Science China Materials, 2016, 59, 287-321.	3.5	124
328	Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials. Journal of Alloys and Compounds, 2016, 681, 342-349.	2.8	36
329	Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Materials Today, 2016, 19, 580-594.	8.3	79
330	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	8.2	103
331	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. Journal of Physical Chemistry C, 2016, 120, 9685-9691.	1.5	140
332	Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir. Journal of Materials Chemistry A, 2016, 4, 8421-8427.	5.2	61
333	Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon, 2016, 105, 628-637.	5.4	84

#	Article	IF	CITATIONS
334	Large scale and cost effective generation of 3D self-supporting oxide nanowire architectures by a top-down and bottom-up combined approach. RSC Advances, 2016, 6, 45923-45930.	1.7	15
335	Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Description (2016), 8, 25353-25360.	4.0	21
336	Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. Journal of Alloys and Compounds, 2016, 688, 790-797.	2.8	67
337	Distinctive Extrinsic Atom Effects on the Structural, Optical, and Electronic Properties of Bi ₂ S _{3-x} Se _{<i>x</i>28,6544-6552.}	3.2	36
338	Electrospun Li2MnO3-modified Li1.2NixCo0.1Mn0.9-xO2 nanofibers: Synthesis and enhanced electrochemical performance for lithium-ion batteries. Electronic Materials Letters, 2016, 12, 804-811.	1.0	10
339	Synthesis of metal shell on metal oxides nanowires forming composite core/branch arrays with enhanced electrochemical properties. Journal of Alloys and Compounds, 2016, 688, 475-480.	2.8	3
340	Soft Landing of Complex Ions for Studies in Catalysis and Energy Storage. Journal of Physical Chemistry C, 2016, 120, 23305-23322.	1.5	31
341	Nanostructured positive electrode materials for post-lithium ion batteries. Energy and Environmental Science, 2016, 9, 3570-3611.	15.6	241
342	Nanorod-Nanoflake Interconnected LiMnPO ₄ 6. LiMnPO ₄ 7. Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27632-27641.	4.0	44
343	High capacity supercapacitor material based on reduced graphene oxide loading mesoporpus murdochite-type Ni 6 MnO 8 nanospheres. Electrochimica Acta, 2016, 219, 284-294.	2.6	22
344	One-pot synthesis of visible-light-driven Ag/Ag3PO4 photocatalyst immobilized on exfoliated montmorillonite by clay-mediated in situ reduction. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	12
345	ZnO@MnO ₂ Coreâ€"Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors. ACS Applied Materials & Supercapacitors.	4.0	130
346	Nanoporous ionic organic networks: from synthesis to materials applications. Chemical Society Reviews, 2016, 45, 6627-6656.	18.7	152
347	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	1.7	17
348	Nanowire-Enabled Energy Storage. Nanoscience and Technology, 2016, , 203-225.	1.5	0
349	Mesoporous transition metal oxides quasi-nanospheres with enhanced electrochemical properties for supercapacitor applications. Journal of Colloid and Interface Science, 2016, 483, 73-83.	5.0	35
350	A flexible and high-performance all-solid-state supercapacitor device based on Ni3S2 nanosheets coated ITO nanowire arrays on carbon fabrics. RSC Advances, 2016, 6, 75186-75193.	1.7	29
351	Electrodeposited thin cobalt branch on cobalt oxides core exhibiting enhanced electrochemical properties. Materials Research Bulletin, 2016, 84, 139-144.	2.7	6

#	Article	IF	CITATIONS
352	Twoâ€Dimensional Metal Oxide and Metal Hydroxide Nanosheets: Synthesis, Controlled Assembly and Applications in Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600355.	10.2	189
353	Effect of Er3+ and Yb3+ co-doping on the performance of a ZnO-based DSSC. Journal of the Korean Physical Society, 2016, 68, 1381-1389.	0.3	3
354	Chromium-Modified Li ₄ Ti ₅ O ₁₂ with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Applied Materials & Surfaces, 2016, 8, 21407-21416.	4.0	65
355	Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 2016, 3, 517-535.	6.4	272
356	Synthesis of CuO and Cu ₂ O nano/microparticles from a single precursor: effect of temperature on CuO/Cu ₂ O formation and morphology dependent nitroarene reduction. RSC Advances, 2016, 6, 85083-85090.	1.7	33
357	Design and construction of the sandwich-like Z-scheme multicomponent CdS/Ag/Bi ₂ MoO ₆ heterostructure with enhanced photocatalytic performance in RhB photodegradation. New Journal of Chemistry, 2016, 40, 8614-8624.	1.4	100
358	Facile synthesis of three-dimensional porous carbon sheets from a water-soluble biomass source sodium alginate for lithium ion batteries. Materials Research Bulletin, 2016, 83, 590-596.	2.7	14
359	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45, 5925-5950.	18.7	2,969
360	Green Synthesis, Optical, Structural, Photocatalytic, Fluorescence Quenching and Degradation Studies of ZnS Nanoparticles. Journal of Fluorescence, 2016, 26, 2165-2175.	1.3	35
361	Three-Dimensional Hierarchical Reduced Graphene Oxide/Tellurium Nanowires: A High-Performance Freestanding Cathode for Li–Te Batteries. ACS Nano, 2016, 10, 8837-8842.	7.3	197
362	Selective molecular recognition on calixarene-functionalized 3D surfaces. Chemical Communications, 2016, 52, 12685-12693.	2.2	63
363	Effect of Chemical Charging/Discharging on Plasmonic Behavior of Silver Metal Nanoparticles Prepared using Citrateâ€ 5 tabilized Cadmium Selenide Quantum Dots. ChemPhysChem, 2016, 17, 3209-3216.	1.0	4
364	A direct phase separation approach synthesis of hierarchically porous functional carbon as an advanced electrocatalyst for oxygen reduction reaction. Carbon, 2016, 109, 306-313.	5.4	6
365	In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. Advanced Materials, 2016, 28, 9686-9712.	11.1	124
366	A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horizons, 2016, 1, 496-501.	4.1	51
367	Preparation and performance of 0.5Li 0.5 Li		

#	Article	lF	Citations
370	Sulfur Encapsulated in Graphitic Carbon Nanocages for Highâ€Rate and Long ycle Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9539-9544.	11.1	392
371	Microwave-assisted synthesis of functional electrode materials for energy applications. Journal of Solid State Electrochemistry, 2016, 20, 2915-2928.	1.2	32
372	Ni- and Mn-Promoted Mesoporous Co ₃ O ₄ : A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Applied Materials & Diterraces, 2016, 8, 20802-20813.	4.0	191
373	Direct planting of ultrafine MoO $<$ sub $>2+\hat{l}'sub> nanoparticles in carbon nanofibers by electrospinning: self-supported mats as binder-free and long-life anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 19832-19837.$	1.3	20
374	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	11.1	378
375	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34
376	Nanostructured Oxides as Cathode Materials for Supercapacitors. Nanostructure Science and Technology, 2016, , 205-269.	0.1	3
377	Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. Advanced Energy Materials, 2016, 6, 1600468.	10.2	63
378	Multifunctional Energy Storage and Conversion Devices. Advanced Materials, 2016, 28, 8344-8364.	11.1	420
379	Application of Chemical Doping and Architectural Design Principles To Fabricate Nanowire Co ₂ Ni ₃ ZnO ₈ Arrays for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Design Principles To Fabricate Nanowire	4.0	16
380	High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals. Scientific Reports, 2016, 6, 19390.	1.6	61
381	Superstructure ZrV ₂ O ₇ nanofibres: thermal expansion, electronic and lithium storage properties. Physical Chemistry Chemical Physics, 2016, 18, 32160-32168.	1.3	8
382	Effect of Lithium Ions on Rheology and Interfacial Forces in Ethylammonium Nitrate and Ethanolammonium Nitrate. Journal of Physical Chemistry C, 2016, 120, 26960-26967.	1.5	12
383	Facile synthesis of a nickel vanadate/Ni composite and its electrochemical performance as an anode for lithium ion batteries. RSC Advances, 2016, 6, 90197-90205.	1.7	23
384	Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today, 2016, 11, 738-762.	6.2	144
385	Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Scientific Reports, 2016, 5, 18002.	1.6	96
386	Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 503-508.	0.4	0
387	High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Advances, 2016, 6, 107355-107363.	1.7	10

#	Article	IF	CITATIONS
388	Engineering the surface of rutile TiO ₂ nanoparticles with quantum pits towards excellent lithium storage. RSC Advances, 2016, 6, 66197-66203.	1.7	10
389	Amorphous VPO4/C with the enhanced performances as an anode for lithium ion batteries. Journal of Materiomics, 2016, 2, 350-357.	2.8	16
390	ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. Journal of Materials Chemistry B, 2016, 4, 7936-7949.	2.9	44
391	Chemically Integrated Inorganicâ€Graphene Twoâ€Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 2016, 12, 6183-6199.	5.2	126
392	General access to metal oxide (Metal = Mn, Co, Ni) double-layer nanospheres for application in lithium ion batteries and supercapacitors. Electrochimica Acta, 2016, 220, 643-653.	2.6	22
393	Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. Journal of Visualized Experiments, 2016, , .	0.2	1
394	Oneâ€Dimensional Na ₃ V ₂ (PO ₄) ₃ /C Nanowires as Cathode Materials for Longâ€Life and High Rate Naâ€lon Batteries. ChemNanoMat, 2016, 2, 726-731.	1.5	38
395	Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels. ChemSusChem, 2016, 9, 345-357.	3.6	53
396	Twoâ€Dimensional Materials for Beyondâ€Lithiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600025.	10.2	533
397	Triethylenetetramine-assisted hydrothermal synthesis of sulfur-doped few-layer MoSe 2 /nitrogenated graphene hybrids and their catalytic activity for hydrogen evolution reaction. Advanced Powder Technology, 2016, 27, 1560-1567.	2.0	9
398	Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: pulse current synthesis and tailoring. Journal of Solid State Electrochemistry, 2016, 20, 1413-1420.	1.2	3
399	The effect of nitrogen annealing on lithium ion intercalation in nickel-doped lithium trivanadate. Science Bulletin, 2016, 61, 587-593.	4.3	10
400	A unique porous architecture built by ultrathin wrinkled NiCoO ₂ /rGO/NiCoO ₂ sandwich nanosheets for pseudocapacitance and Li ion storage. Journal of Materials Chemistry A, 2016, 4, 10304-10313.	5.2	72
401	Ni-based heterogeneous catalyst from a designed molecular precursor for the efficient electrochemical water oxidation. Chemical Communications, 2016, 52, 9255-9258.	2.2	21
402	Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries. Chemical Engineering Journal, 2016, 304, 156-164.	6.6	51
403	Size-Dependent Ultrafast Charge Carrier Dynamics of WO ₃ for Photoelectrochemical Cells. Journal of Physical Chemistry C, 2016, 120, 14926-14933.	1.5	35
404	Femtosecond insights into direct electron injection in dye anchored ZnO QDs following charge transfer excitation. Physical Chemistry Chemical Physics, 2016, 18, 20672-20681.	1.3	11
405	Protein-releasing conductive anodized alumina membranes for nerve-interface materials. Materials Science and Engineering C, 2016, 67, 590-598.	3.8	11

#	Article	IF	CITATIONS
406	Synthesis of hybrid Ni-Co oxide @ 3D carbon skeleton derived from pollen grains for advanced supercapacitors. Electrochimica Acta, 2016, 210, 695-703.	2.6	8
407	Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61, 379-415.	9.4	394
408	Novel Carbonâ€Encapsulated Porous SnO ₂ Anode for Lithiumâ€lon Batteries with Much Improved Cyclic Stability. Small, 2016, 12, 1945-1955.	5.2	247
409	The Synthesis of CuS Hexagonal Nanosheet-Graphene for Use as a High Performance Photocatalyst. Nano, 2016, 11, 1650054.	0.5	3
410	Solventâ€Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16%. Advanced Energy Materials, 2016, 6, 1502027.	10.2	52
411	Facile synthesis of metal-doped titania nanospheres with tunable size exhibiting highly efficient photoactivity for degradation. Materials Chemistry and Physics, 2016, 171, 162-170.	2.0	3
412	Facile synthesis of magnetic Fe3S4 nanosheets and their application in lithium-ion storage. Journal of Alloys and Compounds, 2016, 668, 27-32.	2.8	24
413	Biomimetic smart nanochannels for power harvesting. Nano Research, 2016, 9, 59-71.	5.8	46
414	MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochimica Acta, 2016, 191, 854-863.	2.6	141
415	Hierarchical TiO ₂ /C nanocomposite monoliths with a robust scaffolding architecture, mesopore–macropore network and TiO ₂ –C heterostructure for high-performance lithium ion batteries. Nanoscale, 2016, 8, 10928-10937.	2.8	38
416	Synthesis of Ag/PANI@MnO ₂ core–shell nanowires and their capacitance behavior. RSC Advances, 2016, 6, 17415-17422.	1.7	18
417	Formation of SiO ₂ @SnO ₂ coreâ€"shell nanofibers and their gas sensing properties. RSC Advances, 2016, 6, 13371-13376.	1.7	17
418	Aromatic ring hydrogenation catalysed by nanoporous montmorillonite supported Ir(0)-nanoparticle composites under solvent free conditions. New Journal of Chemistry, 2016, 40, 2850-2855.	1.4	21
419	In situ growth of graphitic carbon nitride films on transparent conducting substrates via a solvothermal route for photoelectrochemical performance. RSC Advances, 2016, 6, 9916-9922.	1.7	45
420	Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries. Applied Energy, 2016, 165, 318-328.	5.1	36
421	Superior sodium-ion storage performance of Co ₃ O ₄ @nitrogen-doped carbon: derived from a metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 5428-5435.	5.2	159
422	Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors. Materials Research Express, 2016, 3, 015502.	0.8	25
423	Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Research, 2016, 9, 165-173.	5.8	60

#	Article	IF	CITATIONS
424	Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors. Journal of Power Sources, 2016, 303, 175-181.	4.0	154
425	Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 2016, 19, 109-123.	8.3	811
426	Seeing is believing: atomic force microscopy imaging for nanomaterial research. RSC Advances, 2016, 6, 1103-1121.	1.7	40
427	Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS∢sub>2∢/sub> Nanosheet and Nanosheet–Carbon Nanotube Composite Catalytic Electrodes. ACS Nano, 2016, 10, 672-683.	7.3	116
428	Electrochemical energy storage in Mn ₂ O ₃ porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metalâ€"organic framework. CrystEngComm, 2016, 18, 450-461.	1.3	80
429	Integrating 3D Flower-Like Hierarchical Cu ₂ NiSnS ₄ with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 9178-9184.	4.0	64
430	Construction of cobalt sulfide/nickel core-branch arrays and their application as advanced electrodes for electrochemical energy storage. Electrochimica Acta, 2016, 195, 184-191.	2.6	10
431	The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 10438-10452.	1.3	27
432	Optimizing of porous silicon morphology for synthesis of silver nanoparticles. Microporous and Mesoporous Materials, 2016, 227, 152-160.	2.2	28
433	Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesis. Journal of the American Chemical Society, 2016, 138, 4079-4086.	6.6	11
434	Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 340-374.	4.1	92
435	Tuning ultrafine manganese oxide nanowire synthesis seeded by Si particles and its superior Li storage behaviors. NPG Asia Materials, 2016, 8, e255-e255.	3.8	9
436	Co ₉ S ₈ nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties. RSC Advances, 2016, 6, 31775-31781.	1.7	69
437	Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors. Journal of Colloid and Interface Science, 2016, 472, 210-219.	5.0	64
438	3D hierarchical porous ZnO/ZnCo ₂ O ₄ nanosheets as high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 6042-6047.	5.2	91
439	Morphological Evolution of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. ACS Applied Materials & Description of the Control of the	4.0	212
440	Uniform 8LiFePO 4 \hat{A} -Li 3 V 2 (PO 4) 3 /C nanoflakes for high-performance Li-ion batteries. Nano Energy, 2016, 22, 48-58.	8.2	80
441	Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy, 2016, 22, 361-395.	8.2	248

#	Article	IF	CITATIONS
442	Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy, 2016, 22, 232-240.	8.2	136
443	Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness. Chemistry of Materials, 2016, 28, 2641-2651.	3.2	95
444	Simple size control of TiO ₂ nanoparticles and their electrochemical performance: emphasizing the contribution of the surface area to lithium storage at high-rates. Nanoscale, 2016, 8, 5688-5695.	2.8	22
445	Rational design of hierarchical ZnO superstructures for efficient charge transfer: mechanistic and photovoltaic studies of hollow, mesoporous, cage-like nanostructures with compacted 1D building blocks. Physical Chemistry Chemical Physics, 2016, 18, 5344-5357.	1.3	22
446	Template-free synthesis of titania architectures with controlled morphology evolution. Journal of Materials Science, 2016, 51, 3941-3956.	1.7	8
447	Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm, 2016, 18, 4218-4235.	1.3	7 5
448	Fabrication of an olive-like BiVO ₄ hierarchical architecture with enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 30115-30124.	1.7	27
449	Composites of TiO ₂ Nanoparticles Deposited on Ti ₃ C ₂ MXene Nanosheets with Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 2016, 163, A785-A791.	1.3	280
450	Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy, 2016, 22, 290-300.	8.2	189
451	Controllable synthesis of LiMnPO4 nanocrystals: Morphology evolution and their size-dependent electrochemical properties. Ceramics International, 2016, 42, 8769-8778.	2.3	16
452	Activated nanostructured bimetallic catalysts for C–C coupling reactions: recent progress. Catalysis Science and Technology, 2016, 6, 3341-3361.	2.1	74
453	Comparison of amorphous, pseudohexagonal and orthorhombic Nb ₂ O ₅ for high-rate lithium ion insertion. CrystEngComm, 2016, 18, 2532-2540.	1.3	146
454	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
455	Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. Journal of Materials Chemistry A, 2016, 4, 5149-5158.	5.2	176
456	Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coordination Chemistry Reviews, 2016, 320-321, 193-215.	9.5	56
457	Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45, 1308-1330.	18.7	167
458	Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale, 2016, 8, 2293-2303.	2.8	123
459	Preparing micro/nano core–shell sphere CeO2 via a low temperature route for improved lithium storage performance. Materials Letters, 2016, 168, 80-82.	1.3	21

#	Article	IF	CITATIONS
460	Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 2016, 116, 561-718.	23.0	420
461	Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting. Renewable and Sustainable Energy Reviews, 2016, 57, 584-601.	8.2	192
462	A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosensors and Bioelectronics, 2016, 84, 53-63.	5.3	58
463	Photoluminescence of Cr ³⁺ in nanostructured Al ₂ O ₃ synthesized by evaporation using a continuous wave CO ₂ laser. RSC Advances, 2016, 6, 2072-2078.	1.7	23
464	Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. Journal of Materials Chemistry A, 2016, 4, 703-750.	5. 2	350
465	Construction of hierarchical ZnCo ₂ O ₄ @Ni _x Co _{2x} (OH) _{6x} core/shell nanowire arrays for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 173-182.	5.2	231
466	Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. Journal of Materials Chemistry A, 2016, 4, 362-367.	5.2	25
467	SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries. Materials Research Bulletin, 2016, 74, 291-298.	2.7	23
468	Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte. Journal of Colloid and Interface Science, 2016, 464, 73-82.	5.0	55
469	Truncated tetragonal bipyramidal anatase nanocrystals formed without use of capping agents from the supercritical drying of a TiO ₂ sol. CrystEngComm, 2016, 18, 164-176.	1.3	13
470	Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes. Catalysis Today, 2016, 259, 246-258.	2.2	70
471	Wet Chemistry Synthesis of Multidimensional Nanocarbon–Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	4.0	108
472	Carbon-encapsulated LiMn2O4 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries. Journal of Power Sources, 2016, 301, 376-385.	4.0	26
473	TiO ₂ as an active or supplemental material for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 14-31.	5.2	166
474	Controllable synthesis of mesostructures from TiO $<$ sub $>$ 2 $<$ /sub $>$ hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chemical Science, 2016, 7, 793-798.	3.7	147
475	Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horizons, 2016, 1, 96-108.	4.1	73
476	Fabrication of three-dimensional CulnS 2 solar-cell structure via supercritical fluid processing. Journal of Supercritical Fluids, 2017, 120, 448-452.	1.6	5
477	Phosphate Framework Electrode Materials for Sodium Ion Batteries. Advanced Science, 2017, 4, 1600392.	5.6	275

#	Article	IF	Citations
478	Siâ€; Geâ€; Snâ€Based Anode Materials for Lithiumâ€Ion Batteries: From Structure Design to Electrochemical Performance. Small Methods, 2017, 1, 1600037.	4.6	237
479	Recent progress of organic and hybrid thermoelectric materials. Synthetic Metals, 2017, 225, 3-21.	2.1	148
480	3D graphene network encapsulating SnO ₂ hollow spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4535-4542.	5.2	109
481	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
482	High Power Lithium-ion Battery based on Spinel Cathode and Hard Carbon Anode. Electrochimica Acta, 2017, 228, 251-258.	2.6	40
483	Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS 2 nanocomposite with high electrochemical performance for supercapacitors. Journal of Alloys and Compounds, 2017, 699, 176-182.	2.8	31
484	Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12, 14-30.	6.2	78
485	Enhanced Lithium Storage Capability in Li-Ion Batteries Using Porous 3D Co ₃ O ₄ Nanofiber Anodes. Industrial & Engineering Chemistry Research, 2017, 56, 2046-2053.	1.8	42
486	Complex Hollow Nanostructures: Synthesis and Energyâ€Related Applications. Advanced Materials, 2017, 29, 1604563.	11.1	627
487	Modification of glassy carbon electrode with iron-terpyridine complex and iron-terpyridine complex covalently bonded to ordered mesoporous carbon substrate: Preparation, electrochemistry and application to H 2 O 2 determination. Journal of Electroanalytical Chemistry, 2017, 789, 92-99.	1.9	12
488	Light trapping in a-Si:H thin film solar cells using silver nanostructures. AIP Advances, 2017, 7, .	0.6	14
489	A Strategy for Synthesis of Nanosheets Consisting of Alternating Spinel Li ₄ Ti ₅ O ₁₂ and Rutile TiO ₂ Lamellas for High-Rate Anodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4649-4657.	4.0	42
490	MWCNT/NiCo2S4 as core/shell hybrid nanostructure for high performance supercapacitor. Diamond and Related Materials, 2017, 73, 80-86.	1.8	20
491	Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance. Journal of Alloys and Compounds, 2017, 706, 126-132.	2.8	55
492	Review of Nanotechnology for Anode Materials in Batteries. , 2017, , 45-82.		10
493	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 2017, 4, 767-781.	2.2	202
494	Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 2017, 5, 3069-3083.	2.9	74
495	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369

#	Article	lF	CITATIONS
496	Enhanced Electrochemical Properties of Li ₃ VO ₄ with Controlled Oxygen Vacancies as Li″on Battery Anode. Chemistry - A European Journal, 2017, 23, 5368-5374.	1.7	44
497	Prolonged lifetime and enhanced separation of photogenerated charges of nanosized î±-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde. Nano Research, 2017, 10, 2321-2331.	5.8	44
498	Multi-layer ZnO assembled microspheres, microstars and microflowers with high photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2017, 28, 7778-7783.	1.1	1
499	Modeling the size distribution in a fluidized bed of nanopowder. Environmental Science: Nano, 2017, 4, 670-678.	2.2	4
500	Quantum-sized nanomaterials for solar cell applications. Renewable and Sustainable Energy Reviews, 2017, 73, 821-839.	8.2	78
501	Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.	8.2	79
502	Emerging tellurium nanostructures: controllable synthesis and their applications. Chemical Society Reviews, 2017, 46, 2732-2753.	18.7	186
503	Crystallization of Amphiphilic DNA C-Stars. Nano Letters, 2017, 17, 3276-3281.	4.5	45
504	Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. Journal of Materials Chemistry A, 2017, 5, 9604-9610.	5.2	95
505	Electrochemical behavior of interconnected Ti 2 Nb 10 O 29 nanoparticles for high-power Li-ion battery anodes. Electrochimica Acta, 2017, 236, 451-459.	2.6	42
506	Transitionâ€Metal (Fe, Co, Ni) Based Metalâ€Organic Frameworks for Electrochemical Energy Storage. Advanced Energy Materials, 2017, 7, 1602733.	10.2	711
507	High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochimica Acta, 2017, 241, 406-413.	2.6	44
508	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	8.3	339
509	Synergistic Effects of Polypyrrole Nanofibers and Pd Nanoparticles for Improved Electrocatalytic Performance of Pd/PPy Nanocomposites for Ethanol Oxidation. Electrocatalysis, 2017, 8, 329-339.	1.5	23
510	Synthesis, Characterization and Electrochemical Behavior of Al/Yb/Co/Mn-Doped \hat{l} ±-Ni(OH)2. Journal of Materials Engineering and Performance, 2017, 26, 2162-2169.	1.2	1
511	Development and perspective of the insertion anode Li 3 VO 4 for lithium-ion batteries. Energy Storage Materials, 2017, 7, 17-31.	9.5	61
512	The design and fabrication of Co 3 O 4 /Co 3 V 2 O 8 /Ni nanocomposites as high-performance anodes for Li-ion batteries. Journal of Energy Chemistry, 2017, 26, 494-500.	7.1	16
513	A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte. ACS Energy Letters, 2017, 2, 36-44.	8.8	28

#	Article	IF	CITATIONS
514	A new synthesis strategy towards enhancing the structure and cycle stabilities of the LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ cathode material. Journal of Materials Chemistry A, 2017, 5, 835-841.	5.2	63
515	Functionalization of Polypyrrole Nanopipes with Redoxâ€Active Polyoxometalates for High Energy Density Supercapacitors. ChemSusChem, 2017, 10, 731-737.	3.6	53
516	Indium-doped SnO2 nanobelts for high-performance transparent and flexible photosensors by a facile assembly. Nanotechnology, 2017, 28, 335705.	1.3	16
517	Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22652-22664.	4.0	69
518	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	5.2	50
519	Recent Progress on Integrated Energy Conversion and Storage Systems. Advanced Science, 2017, 4, 1700104.	5.6	162
520	Nickel Cobalt Sulfide core/shell structure on 3D Graphene for supercapacitor application. Scientific Reports, 2017, 7, 2105.	1.6	109
521	Aluminum doped Na3V2(PO4)2F3 via sol–gel Pechini method as a cathode material for lithium ion batteries. Journal of Sol-Gel Science and Technology, 2017, 83, 405-412.	1.1	20
522	Densification of Silica Spheres: A New Pathway to Nanoâ€Dimensioned Zeoliteâ€Based Catalysts. Chemistry - A European Journal, 2017, 23, 10983-10986.	1.7	6
523	Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles. Nano Letters, 2017, 17, 4137-4142.	4.5	128
524	Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13882-13906.	5.2	134
525	Y-doped V ₂ O ₅ with enhanced lithium storage performance. RSC Advances, 2017, 7, 32327-32335.	1.7	41
526	Band gap tuning in gold nanoparticle decorated TiO ₂ films: effect of Au nanoparticle concentration. Materials Research Express, 2017, 4, 065016.	0.8	14
527	Microporous Carbon Materials by Hydrogen Treatment: The Balance of Porosity and Graphitization upon the Capacitive Performance. Industrial & Engineering Chemistry Research, 2017, 56, 7253-7259.	1.8	13
528	Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. Journal of Alloys and Compounds, 2017, 721, 205-212.	2.8	20
529	Electrochemiluminescence behavior of AgNCs and its application in immunosensors based on PANI/PPy-Ag dendrite-modified electrode. Analyst, The, 2017, 142, 2587-2594.	1.7	23
530	In situ reduction of silver nanoparticles on hybrid polydopamine–copper phosphate nanoflowers with enhanced antimicrobial activity. Journal of Materials Chemistry B, 2017, 5, 5311-5317.	2.9	34
531	Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. Journal of Materials Chemistry A, 2017, 5, 12699-12717.	5.2	52

#	Article	IF	CITATIONS
532	Facile synthesis of MoO 2 @C nanoflowers as anode materials for sodium-ion batteries. Materials Research Bulletin, 2017, 94, 122-126.	2.7	19
533	Green ball dianthus-like Na2Ti6O13 as high-rate performance anode for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 721, 100-105.	2.8	20
534	Submicron silica as highâ^'capacity lithium storage material with superior cycling performance. Materials Research Bulletin, 2017, 96, 347-353.	2.7	19
535	Electrochemistry of TiO2/CdS composite electrodes for supercapacitor applications. Journal of Applied Electrochemistry, 2017, 47, 889-903.	1.5	12
536	Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. Chemistry - A European Journal, 2017, 23, 8542-8570.	1.7	90
537	Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Research, 2017, 10, 1767-1783.	5.8	103
538	High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder. Materials Technology, 2017, 32, 598-605.	1.5	26
539	Ni 3 (C 3 N 3 S 3) 2 coordination polymer as a novel broad spectrum-driven photocatalyst for water splitting into hydrogen. Applied Catalysis B: Environmental, 2017, 210, 205-211.	10.8	22
540	Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. Journal of Power Sources, 2017, 352, 34-41.	4.0	128
541	Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. Journal of Materials Chemistry A, 2017, 5, 8155-8186.	5.2	394
542	Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications. Nanotechnology, 2017, 28, 145402.	1.3	9
543	Preparation of Cu–Fe–Al–O nanosheets and their catalytic application in methanol steam reforming for hydrogen production. Materials Research Express, 2017, 4, 035005.	0.8	5
544	Interconnected LiCuVO ₄ networks with in situ Cu generation as high-performance lithium-ion battery anode. Physical Chemistry Chemical Physics, 2017, 19, 13341-13347.	1.3	15
545	Fast charging of thermal energy storage systems enabled by phase change materials mixed with expanded graphite. International Journal of Heat and Mass Transfer, 2017, 109, 1052-1058.	2.5	41
546	Natural biomass-derived carbons for electrochemical energy storage. Materials Research Bulletin, 2017, 88, 234-241.	2.7	146
547	In Situ Generation of Pd–Pt Core–Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins. ACS Applied Materials & Dehalogenation Reactions and Reduction of Olefins. ACS Applied Materials & Dehalogenation Reactions and Reduction of Olefins. ACS Applied Materials & Dehalogenation Reactions and Reduction of Olefins.	4.0	67
548	Magnetic nanoparticles towards efficient adsorption of gram positive and gram negative bacteria: An investigation of adsorption parameters and interaction mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 161-170.	2.3	30
549	Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochimica Acta, 2017, 225, 416-424.	2.6	120

#	Article	IF	Citations
550	Nanoparticle-Enhanced Hydraulic-Fracturing Fluids: A Review. SPE Production and Operations, 2017, 32, 186-195.	0.4	62
551	Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Materials Horizons, 2017, 4, 133-154.	6.4	141
552	Strategies for designing metal oxide nanostructures. Science China Materials, 2017, 60, 1-24.	3.5	148
553	Photosystem II Based Multilayers. , 2017, , 109-133.		O
554	Formation of Nâ€Doped Carbonâ€Coated ZnO/ZnCo ₂ O ₄ /CuCo ₂ O ₄ Derived from a Polymetallic Metal–Organic Framework: Toward Highâ€Rate and Longâ€Cycleâ€Life Lithium Storage. Small, 2017, 13, 1702150.	5.2	58
555	Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 38737-38744.	4.0	364
556	Efficient Solar Cells Based on Porphyrin Dyes with Flexible Chains Attached to the Auxiliary Benzothiadiazole Acceptor: Suppression of Dye Aggregation and the Effect of Distortion. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36875-36885.	4.0	84
557	Synthesis of hollow Pt–Ag nanoparticles by oxygen-assisted acid etching as electrocatalysts for the oxygen reduction reaction. RSC Advances, 2017, 7, 46916-46924.	1.7	13
558	Nanophase-segregation in the dielectric layer enhances the charge storage capacity of polymeric electrochemical supercapacitors. Organic Electronics, 2017, 51, 322-331.	1.4	7
559	Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 2017, 29, 1703614.	11.1	629
560	Immobilised Electrocatalysts: Nafion Particles Doped with Ruthenium(II) Tris(2,2′â€bipyridyl). Chemistry - A European Journal, 2017, 23, 17605-17611.	1.7	5
561	Self-Assembled LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Nanosheet Cathode with High Electrochemical Performance. ACS Applied Materials & Diterfaces, 2017, 9, 39560-39568.	4.0	55
562	Engineering 2D Nanofluidic Liâ€lon Transport Channels for Superior Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1703909.	11.1	97
563	Carboxymethylcellulose Mediates the Transport of Carbon Nanotube—Magnetite Nanohybrid Aggregates in Water-Saturated Porous Media. Environmental Science & Technology, 2017, 51, 12405-12415.	4.6	30
564	Recent Advances in Nanostructured Vanadium Oxides and Composites for Energy Conversion. Advanced Energy Materials, 2017, 7, 1700885.	10.2	196
565	Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance. ACS Applied Materials & Diterfaces, 2017, 9, 31181-31191.	4.0	7
566	Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments. Environmental Science: Nano, 2017, 4, 2055-2065.	2.2	12
567	Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. Journal of Materials Chemistry A, 2017, 5, 19997-20004.	5.2	49

#	Article	IF	CITATIONS
568	Tuning the Band Gap in Titanium Dioxide Thin Films by Surfactant-Mediated Confinement and Patterning of Gold Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 21311-21323.	1.5	8
569	Conductingâ€Polymerâ€Based Materials for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1703044.	11.1	88
570	Controllable synthesis of graphene/NiCo2O4 three-dimensional mesoporous electrocatalysts for efficient methanol oxidation reaction. Electrochimica Acta, 2017, 252, 180-191.	2.6	43
571	Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017, 5, 19521-19540.	5.2	323
572	Encapsulated Vanadiumâ€Based Hybrids in Amorphous Nâ€Doped Carbon Matrix as Anode Materials for Lithiumâ€Ion Batteries. Small, 2017, 13, 1702081.	5.2	70
573	Importance of microstructure and interface in designing metal oxide nanocomposites for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2017, 803, 30-39.	1.9	14
574	Sb ₂ O ₃ Nanoparticles Anchored on Graphene Sheets via Alcohol Dissolutionâ€"Reprecipitation Method for Excellent Lithium-Storage Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34927-34936.	4.0	68
575	Rodlike Sb ₂ Se ₃ Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34979-34989.	4.0	100
576	Synthesis of 2-D nanostructured BiVO4:Ag hybrid as an efficient electrode material for supercapacitors. Ceramics International, 2017, 43, 16217-16224.	2.3	39
577	Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe 3 O 4 nano-flower architecture with high lithium storage capacity and excellent rate capability. Journal of Power Sources, 2017, 365, 98-108.	4.0	61
578	Synthesis and electrochemical performance of ZnO@MnO2 core–shell column arrays on Ni Foam as electrode for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 18262-18268.	1.1	2
579	Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications. Scientific Reports, 2017, 7, 8903.	1.6	62
580	Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale, 2017, 9, 14722-14729.	2.8	38
581	Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New Journal of Chemistry, 2017, 41, 11456-11470.	1.4	132
582	Superior sodium storage performance of additive-free V ₂ O ₅ thin film electrodes. Journal of Materials Chemistry A, 2017, 5, 16590-16594.	5.2	56
583	Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS ₂ nano-scrolls. Physical Chemistry Chemical Physics, 2017, 19, 18356-18365.	1.3	48
584	Construction of p-n heterojunction \hat{l}^2 -Bi2O3/BiVO4 nanocomposite with improved photoinduced charge transfer property and enhanced activity in degradation of ortho-dichlorobenzene. Applied Catalysis B: Environmental, 2017, 219, 259-268.	10.8	97
585	Additive Manufacturing: Unlocking the Evolution of Energy Materials. Advanced Science, 2017, 4, 1700187.	5.6	173

#	Article	IF	CITATIONS
586	Recent Advances in Designing and Fabricating Selfâ€Supported Nanoelectrodes for Supercapacitors. Advanced Science, 2017, 4, 1700188.	5.6	168
587	Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation. Progress in Materials Science, 2017, 90, 224-275.	16.0	60
588	Flexible and Wearable Allâ€Solidâ€State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode. Advanced Energy Materials, 2017, 7, 1700409.	10.2	169
589	Excess Li-lon Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance. Nano Letters, 2017, 17, 6018-6026.	4.5	53
590	An excellent strategy for synthesis of coral-like ZnFe2O4 particles for capacitive pseudocapacitors. Journal of Alloys and Compounds, 2017, 726, 154-163.	2.8	18
591	Mechanically Activated Solvent-Free Assembly of Ultrasmall Bi ₂ S ₃ Nanoparticles: A Novel, Simple, and Sustainable Means To Access Chalcogenide Nanoparticles. Chemistry of Materials, 2017, 29, 7766-7773.	3.2	39
592	Potassium (Deâ€)insertion Processes in Prussian Blue Particles: Ensemble versus Single Nanoparticle Behaviour. Chemistry - A European Journal, 2017, 23, 14338-14344.	1.7	41
593	Large enhancement in cell performance of CdSe-sensitized ZnO solar cell via ZnSe overcoating. Journal of Alloys and Compounds, 2017, 727, 80-85.	2.8	12
594	Nanostructured nickel oxide and its electrochemical behaviourâ€"A brief review. Nano Structures Nano Objects, 2017, 11, 102-111.	1.9	66
595	P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ ·0.39H ₂ O: a novel bifunctional electrode for Na-ion batteries. Materials Horizons, 2017, 4, 1122-1127.	6.4	41
596	Facile Fabrication of Sulfur/Graphene Composite for Highâ€Rate Lithiumâ€Sulfur Batteries. ChemistrySelect, 2017, 2, 11035-11039.	0.7	9
597	rGO/SnS ₂ /TiO ₂ heterostructured composite with dual-confinement for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 25056-25063.	5.2	136
598	Evidence for Considerable Metal Cation Concentrations from Lithium Intercalation Compounds in the Nanoâ€"Bio Interface Gap. Journal of Physical Chemistry C, 2017, 121, 27473-27482.	1.5	13
599	Hierarchical Mesoporous NiO/MnO ₂ @PANI Coreâ€"Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Diterfaces, 2017, 9, 42676-42687.	4.0	100
600	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
601	Nanostructured materials: A progressive assessment and future direction for energy device applications. Coordination Chemistry Reviews, 2017, 353, 113-141.	9.5	37
602	Cesium-doped graphene grown in situ with ultra-small TiO ₂ nanoparticles for high-performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 7938-7946.	1.4	7
603	Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. Nanotechnology, 2017, 28, 375401.	1.3	33

#	Article	IF	CITATIONS
604	Nitrogen and Sulfur Co-Doped 2D Titanium Carbides for Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 2017, 164, A1939-A1945.	1.3	61
605	Facile synthesis of Co 3 V 2 O 8 nanoparticle arrays on Ni foam as binder-free electrode with improved lithium storage properties. Ceramics International, 2017, 43, 1166-1173.	2.3	18
606	Reconstruction of copper shell on metal oxides as enhanced nanoarrays electrodes for lithium ion batteries. Materials Research Bulletin, 2017, 86, 308-312.	2.7	7
607	Surfactantâ€Free Aqueous Synthesis of Pure Singleâ€Crystalline SnSe Nanosheet Clusters as Anode for High Energy†and Powerâ€Density Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1602469.	11.1	231
608	Evolution of Useless Iron Rust into Uniform α-Fe ₂ O ₃ Nanospheres: A Smart Way to Make Sustainable Anodes for Hybrid Ni–Fe Cell Devices. ACS Sustainable Chemistry and Engineering, 2017, 5, 269-276.	3.2	38
609	Fe 3 N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy, 2017, 31, 74-83.	8.2	167
610	Understanding the thermal stability and bonding characteristic of Li x Ni0.5Mn1.5O4 as cathode materials for lithium-ion battery from first principles. Ionics, 2017, 23, 559-565.	1.2	3
611	Mesoporous Î ³ -MnS nanospheres as anode materials for Li ion batteries. Materials Letters, 2017, 188, 13-16.	1.3	13
612	Highly dispersed ultrasmall Ni(OH)2 aggregated particles on a conductive support as a supercapacitor electrode with superior performance. Journal of Colloid and Interface Science, 2017, 490, 252-258.	5.0	28
613	Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal–organic frameworks for supercapacitor electrodes. Journal of Materials Science, 2017, 52, 446-457.	1.7	45
614	Reviewâ€"The Current and Emerging Applications of the III-Nitrides. ECS Journal of Solid State Science and Technology, 2017, 6, Q149-Q156.	0.9	72
615	Mesoporous spindle-like hollow CuO/C fabricated from a Cu-based metal-organic framework as anodes for high-performance lithium storage. Journal of Alloys and Compounds, 2017, 727, 1020-1026.	2.8	31
616	Energy Storage Devices Based on Polymers. , 2017, , 197-242.		11
617	Nanoscaled Fluorescent Films and Layers for Detection of Environmental Pollutants. , 2017, , .		2
618	Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery. Energy Storage Materials, 2018, 12, 23-29.	9.5	38
619	Electric Power Generation through the Direct Interaction of Pristine Grapheneâ€Oxide with Water Molecules. Small, 2018, 14, e1704473.	5.2	138
620	Effects of metal oxide nanoparticles on nitrification in wastewater treatment systems: A systematic review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 659-668.	0.9	16
621	Hollow NiCo ₂ S ₄ Nanospheres Hybridized with 3D Hierarchical Porous rGO/Fe ₂ O ₃ Composites toward Highâ€Performance Energy Storage Device. Advanced Energy Materials, 2018, 8, 1703453.	10.2	142

#	Article	IF	CITATIONS
622	Enhanced performance of dye-sensitized solar cells based on meso/macroporous phosphotungstic acid/TiO2 photoanodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 7718-7724.	1.1	2
623	Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction. Applied Catalysis B: Environmental, 2018, 234, 37-49.	10.8	263
624	Novel behaviors/properties of nanometals induced by surface effects. Materials Today Nano, 2018, 1, 8-21.	2.3	21
625	Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today, 2018, 20, 33-57.	6.2	68
626	Hydrothermally controlled synthesis of \hat{l} ±-MnO2, \hat{l} 3-MnOOH, and Mn3O4 nanomaterials with enhanced electrochemical properties. Journal of Alloys and Compounds, 2018, 752, 123-132.	2.8	39
627	Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy, 2018, 48, 430-440.	8.2	80
628	DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 47, 4017-4072.	18.7	156
629	Precursorâ€Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, 10280-10290.	1.7	9
630	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. CheM, 2018, 4, 1167-1180.	5.8	140
631	Facile Synthesis of Carbonâ€Coated Li ₃ VO ₄ Anode Material and its Application in Full Cells. Energy Technology, 2018, 6, 2074-2081.	1.8	29
632	One-pot synthesis of nickel-cobalt hydroxyfluorides nanowires with ultrahigh energy density for an asymmetric supercapacitor. Science Bulletin, 2018, 63, 322-330.	4.3	16
633	Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose. Applied Surface Science, 2018, 440, 873-879.	3.1	43
634	Rational Synthesis and Assembly of Ni ₃ S ₄ Nanorods for Enhanced Electrochemical Sodium-Ion Storage. ACS Nano, 2018, 12, 1829-1836.	7.3	104
635	Achieving of Flexible, Freeâ€Standing, Ultracompact Delaminated Titanium Carbide Films for High Volumetric Performance and Heatâ€Resistant Symmetric Supercapacitors. Advanced Functional Materials, 2018, 28, 1705487.	7.8	105
636	Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials. Superlattices and Microstructures, 2018, 115, 88-107.	1.4	14
637	Renewable juglone nanowires with size-dependent charge storage properties. RSC Advances, 2018, 8, 2077-2081.	1.7	12
638	Tunable 3D hierarchical Ni ₃ S ₂ superstructures as efficient and stable bifunctional electrocatalysts for both H ₂ and O ₂ generation. Journal of Materials Chemistry A, 2018, 6, 4485-4493.	5.2	88
639	Application of Carbon Paste Electrode Modified with Carbon Nanofibres/Polyaniline/Platinum Nanoparticles as an Electrochemical Sensor for the Determination of Bezafibrate. Electroanalysis, 2018, 30, 571-582.	1.5	12

#	Article	IF	CITATIONS
640	High energy density symmetric capacitor using zinc cobaltate flowers grown in situ on Ni foam. Electrochimica Acta, 2018, 261, 265-274.	2.6	33
641	An easy and scalable approach to synthesize three-dimensional sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries. Ceramics International, 2018, 44, 4282-4286.	2.3	22
642	Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2. Journal of Alloys and Compounds, 2018, 739, 961-971.	2.8	49
643	Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices. Journal of Materials Science: Materials in Electronics, 2018, 29, 4869-4880.	1.1	21
644	Design and Synthesis of Cobaltâ€Based Electrocatalysts for Oxygen Reduction Reaction. Chemical Record, 2018, 18, 840-848.	2.9	11
645	Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics, 2018, 103, 113-129.	5.3	650
646	High-Performance Flexible All-Solid-State Asymmetric Supercapacitors Based on Vertically Aligned CuSe@Co(OH) ₂ Nanosheet Arrays. Journal of Physical Chemistry C, 2018, 122, 2002-2011.	1.5	32
647	Carbon black dispersions in surfactant-based microemulsion. Journal of Materials Research, 2018, 33, 1301-1307.	1.2	4
648	Nanoparticles-constructed spinel ZnFe2O4 anode material with superior lithium storage performance boosted by pseudocapacitance. Materials Research Bulletin, 2018, 104, 188-193.	2.7	41
649	Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science, 2018, 360, 521-526.	6.0	224
650	A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. Frontiers of Chemical Science and Engineering, 2018, 12, 481-493.	2.3	39
651	Hydrogenâ€Bonded Liquid Crystals in Confined Spacesâ€"Toward Photonic Hybrid Materials. Advanced Functional Materials, 2018, 28, 1800207.	7.8	23
652	Synthesis of copper oxide nanowires and nanoporous copper <i>via</i> environmentally friendly transformation of bulk copperâ€"calcium alloys. Chemical Communications, 2018, 54, 5446-5449.	2.2	5
653	Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Science Bulletin, 2018, 63, 645-662.	4.3	35
654	Influence of spray time on the optical and electrical properties of CoNi ₂ S ₄ thin films. Materials Research Express, 2018, 5, 046406.	0.8	33
656	Enhanced photocatalytic activity and photoresponse of poly(3,4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light. Solar Energy, 2018, 159, 548-560.	2.9	50
657	Flexible Highly Sensitive Pressure Sensor Based on Ionic Liquid Gel Film. ACS Omega, 2018, 3, 3014-3021.	1.6	66
658	Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics, 2018, 24, 257-268.	1.2	38

#	Article	IF	Citations
659	Supercapacitors based on metal coordination materials. Coordination Chemistry Reviews, 2018, 373, 2-21.	9.5	231
660	Phase transitions and related electrochemical performances of Li-Rich layered cathode materials for high-energy lithium ion batteries. Journal of Alloys and Compounds, 2018, 732, 385-395.	2.8	21
661	Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: Excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochimica Acta, 2018, 259, 161-169.	2.6	53
662	Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials, 2018, 11, 205-259.	9.5	221
663	Recent progress on exploring exceptionally high and anisotropic H ⁺ /OH ^{â^'} ion conduction in two-dimensional materials. Chemical Science, 2018, 9, 33-43.	3.7	44
664	Carbon encapsulated Sn-Co alloy: A stabilized tin-based material for sodium storage. Materials Letters, 2018, 210, 321-324.	1.3	34
665	Graphene-based materials for flexible energy storage devices. Journal of Energy Chemistry, 2018, 27, 12-24.	7.1	129
666	Enhanced electrical properties of PEDOT:PSS via synergistic effect. Soft Materials, 2018, 16, 31-36.	0.8	7
667	Li ₄ Ti ₅ O ₁₂ Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices. Chemical Record, 2018, 18, 350-380.	2.9	31
668	Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnology Reviews, 2018, 7, 19-41.	2.6	230
669	Synthesis of graphene/α-Fe2O3 nanospindles by hydrothermal assembly and their lithium storage performance. Ceramics International, 2018, 44, 364-368.	2.3	17
670	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	1.6	37
671	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	7.2	398
672	Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications. Renewable and Sustainable Energy Reviews, 2018, 82, 2319-2331.	8.2	53
673	Porous NaTi2(PO4)3@C nanocubes as improved anode for sodium-ion batteries. Materials Research Bulletin, 2018, 99, 343-348.	2.7	31
674	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
675	Studies on spinel cobaltites, MCo2O4 (M = Mn, Zn, Fe, Ni and Co) and their functional properties. Ceramics International, 2018, 44, 4630-4639.	2.3	57
676	Well-Dispersed Vanadium Nitride on Porous Carbon Networks Derived from Block Copolymer of PAN- <i>b</i> -PDMC- <i>b</i> -PAN Absorbed with Ammonium Metavanadate for Energy Storage Application. Journal of Physical Chemistry C, 2018, 122, 143-149.	1.5	16

#	Article	lF	Citations
677	Phase controllable fabrication of zinc cobalt sulfide hollow polyhedra as high-performance electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2018, 10, 1774-1778.	2.8	36
678	Nafion particles doped with methyl viologen: electrochemistry. Physical Chemistry Chemical Physics, 2018, 20, 682-689.	1.3	10
679	An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes. Chemical Engineering Journal, 2018, 336, 510-517.	6.6	36
680	Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. Journal of Materials Chemistry A, 2018, 6, 1523-1530.	5.2	104
681	Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702179.	10.2	293
682	Oriented Multiwalled Organic–Co(OH) 2 Nanotubes for Energy Storage. Advanced Functional Materials, 2018, 28, 1702320.	7.8	26
683	Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit. Macromolecular Materials and Engineering, 2018, 303, 1700269.	1.7	43
684	Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environmental Chemistry Letters, 2018, 16, 11-34.	8.3	63
685	In2O3 nanocrystal–π conjugated molecule hybrid materials for high-capacity anode in lithium ion battery. Journal of Industrial and Engineering Chemistry, 2018, 57, 22-27.	2.9	8
686	Amorphous SiO ₂ /C composite as anode material for lithium-ion batteries. Journal of Materials Research, 2018, 33, 1219-1225.	1.2	24
687	Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Critical Reviews in Analytical Chemistry, 2018, 48, 15-32.	1.8	78
688	A Comparative Study of Dynamic Light and X-Ray Scatterings on Micelles of Topological Polymer Amphiphiles. Polymers, 2018, 10, 1347.	2.0	20
689	Transparent Ultraviolet Photodetectors Based on Ga ₂ O ₃ Electrospun Nanowires. Solid State Phenomena, 0, 281, 710-715.	0.3	2
690	Optical radiation stability of ZnO hollow particles. Nanoscale, 2018, 10, 22335-22347.	2.8	29
691	An excellent full sodium-ion capacitor derived from a single Ti-based metal–organic framework. Journal of Materials Chemistry A, 2018, 6, 24860-24868.	5.2	33
692	Preparation of Nanoparticles via Cellulose-Assisted Combustion Synthesis. International Journal of Self-Propagating High-Temperature Synthesis, 2018, 27, 141-153.	0.2	16
693	Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation. Beilstein Journal of Nanotechnology, 2018, 9, 2936-2946.	1.5	7
694	Enhanced electrochromic performances of Polythieno[3,2-b]thiophene with multicolor conversion via embedding EDOT segment. Polymer, 2018, 159, 150-156.	1.8	14

#	Article	IF	CITATIONS
695	Phytochemical Process for the Functionalization of Materials with Metal Nanoparticles: Current Trends and Future Perspectives. ChemistrySelect, 2018, 3, 13561-13585.	0.7	9
696	ZnO@Ni–Co–S Core–Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors. Nano, 2018, 13, 1850148.	0.5	6
697	Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications. Frontiers in Chemistry, 2018, 6, 601.	1.8	47
698	Aqueous dispersions of carbon black and its hybrid with carbon nanofibers. RSC Advances, 2018, 8, 32119-32131.	1.7	33
699	Direct Measurement of Electronic Band Structure in Single Quantum Dots of Metal Chalcogenide Composites. Small, 2018, 14, e1801668.	5.2	18
700	Exploring Local Disorder within CAU-1 Frameworks Using Hyperpolarized ¹²⁹ Xe NMR Spectroscopy. Langmuir, 2018, 34, 12538-12548.	1.6	17
701	Hierarchical Porous Engineering of Three-Dimensional Stacked Blocks like NiCo ₂ O ₄ Assembled from Vertically Aligned Nanoplates for Efficient Alcohols Electrooxidation. Journal of the Electrochemical Society, 2018, 165, F1067-F1074.	1.3	3
702	Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications. Advanced Energy Materials, 2018, 8, 1802369.	10.2	169
703	Preparation of ZnFe2O4/α-Fe2O3 Nanocomposites From Sulfuric Acid Leaching Liquor of Jarosite Residue and Their Application in Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 442.	1.8	38
704	One-pot synthesis of 2D Ti3C2/Ni2CO3(OH)2 composite as electrode material with superior capacity and high stability for hybrid supercapacitor. Electrochimica Acta, 2018, 292, 168-179.	2.6	35
705	Terephthalate-based cobalt hydroxide: a new electrode material for supercapacitors with ultrahigh capacitance. Dalton Transactions, 2018, 47, 14958-14967.	1.6	38
706	Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. Journal of the American Chemical Society, 2018, 140, 15384-15392.	6.6	39
707	Dualâ€Carbonâ€Confined Fe ₇ S ₈ Anodes with Enhanced Electrochemical Catalytic Conversion Process for Ultralong Lithium Storage. Chemistry - A European Journal, 2018, 24, 17339-17344.	1.7	39
708	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
709	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
710	Flexible all-solid-state ultrahigh-energy asymmetric supercapacitors based on tailored morphology of NiCoO ₂ /Ni(OH) ₂ /Co(OH) ₂ electrodes. CrystEngComm, 2018, 20, 6519-6528.	1.3	14
711	Selective Hydrogenations and Dechlorinations in Water Mediated by Anionic Surfactant-Stabilized Pd Nanoparticles. Journal of Organic Chemistry, 2018, 83, 7438-7446.	1.7	26
712	P3-type K $<$ sub $>$ 0.32 $<$ /sub $>$ Fe $<$ sub $>$ 0.35 $<$ /sub $>$ Mn $<$ sub $>$ 0.65 $<$ /sub $>$ O $<$ sub $>$ 2 $<$ /sub $>$ Â \cdot 0.39H $<$ sub $>$ 2 $<$ /sub $>$ O: a promising cathode for Na-ion full batteries. Journal of Materials Chemistry A, 2018, 6, 13075-13081.	5.2	22

#	Article	IF	CITATIONS
713	Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1307-1317.	1.4	8
714	Structural parameters, electronic properties, and band gaps of a single walled carbon nanotube: A pz orbital tight binding study. Superlattices and Microstructures, 2018, 120, 108-126.	1.4	8
715	Energetics of Nanoparticle Exsolution from Perovskite Oxides. Journal of Physical Chemistry Letters, 2018, 9, 3772-3778.	2.1	65
716	Sb Nanoparticles Embedded in a Nitrogenâ€Doped Carbon Matrix with Tuned Voids and Interfacial Bonds for Highâ€Rate Lithium Storage. ChemElectroChem, 2018, 5, 2653-2659.	1.7	15
717	Facile and scalable synthesis of nanostructured Fe2O3 using ionic liquid-assisted ball milling for high-performance pseudocapacitors. Solid State Sciences, 2018, 83, 201-206.	1.5	7
718	Nanoporous CoP ₃ Nanowire Array: Acid Etching Preparation and Application as a Highly Active Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11186-11189.	3.2	134
719	Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Research, 2018, 11, 6283-6293.	5.8	72
720	Molecular-Scale Functionality on Graphene To Unlock the Energy Capabilities of Metal Hydrides for High-Capacity Lithium-Ion Batteries. ACS Nano, 2018, 12, 8177-8186.	7.3	11
721	A Polyimide Nanolayer as a Metalâ€Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2018, 57, 12563-12566.	7.2	36
722	Engineered Nanomaterials for Energy Applications. , 2018, , 751-767.		13
723	Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28533-28540.	4.0	36
724	Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application. Journal of Carbon Research, 2018, 4, 20.	1.4	12
725	Facile synthesis of mesoporous NiCo2O4 nanoneedle arrays on three dimensional graphene thin film grown on Ni foam for a high-performance binder-free lithium-ion battery anode. Journal of Electroanalytical Chemistry, 2018, 823, 545-552.	1.9	8
726	Morphology-Controlled Synthesis of Hematite Nanocrystals and Their Optical, Magnetic and Electrochemical Performance. Nanomaterials, 2018, 8, 41.	1.9	13
727	Multifunctional hierarchical 3-D ZnO superstructures directly grown over FTO glass substrates: enhanced photovoltaic and selective sensing applications. Journal of Materials Chemistry A, 2018, 6, 15868-15887.	5.2	21
728	Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochimica Acta, 2018, 282, 973-980.	2.6	50
729	Natural attenuation of TiO2 nanoparticles in a fractured hard-rock. Journal of Hazardous Materials, 2018, 359, 47-55.	6.5	4
730	Electron-donor doping enhanced Li storage in electride Ca ₂ N monolayer: a first-principles study. Journal of Physics Condensed Matter, 2018, 30, 345501.	0.7	6

#	ARTICLE	IF	Citations
731	Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2283-2294.	2.5	24
732	Synthesis and spectroscopic properties of silver-fluorescein co-doped phosphotungstate hollow spheres. Dalton Transactions, 2018, 47, 7730-7738.	1.6	6
733	Porous core–shell CoMn2O4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS. Journal of Energy Chemistry, 2018, 27, 1637-1643.	7.1	25
734	3D nanoflower-like zinc hydroxyl carbonates for high performance asymmetric supercapacitors. Journal of Solid State Chemistry, 2018, 267, 76-84.	1.4	7
735	Structural effects on optoelectronic properties of halide perovskites. Chemical Society Reviews, 2018, 47, 7045-7077.	18.7	108
736	Cooperation of Amphiphilicity and Smectic Order in Regulating the Self-Assembly of Cholesterol-Functionalized Brush-Like Block Copolymers. Langmuir, 2018, 34, 11034-11041.	1.6	11
737	Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials, 2018, 8, 1801804.	10.2	77
738	A Polyimide Nanolayer as a Metalâ€Free and Durable Organic Electrode Toward Highly Efficient Oxygen Evolution. Angewandte Chemie, 2018, 130, 12743-12746.	1.6	9
739	Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Advanced Materials, 2018, 30, e1801796.	11.1	177
740	A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Research, 2018, 11, 5968-5977.	5.8	35
741	Nano Co ₃ O ₄ as Anode Material for Li–lon and Naâ€lon Batteries: An Insight into Surface Morphology. ChemistrySelect, 2018, 3, 5040-5049.	0.7	27
742	Fiberâ€Type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications. Advanced Science, 2018, 5, 1800340.	5.6	108
743	h-MoO3/Activated carbon nanocomposites for electrochemical applications. Ionics, 2019, 25, 607-616.	1.2	8
744	A DFT study of polyaniline/ZnO nanocomposite as a photocatalyst for the reduction of methylene blue dye. Journal of Molecular Liquids, 2019, 293, 111528.	2.3	31
745	Fabrication of Ni3S2@polypyrrole core-shell nanorod arrays on nickel foam as supercapacitor device. Journal of Polymer Research, 2019, 26, 1.	1.2	9
746	New generation graphene oxide for removal of polycyclic aromatic hydrocarbons. , 2019, , 241-266.		7
747	Formation of Nanodimensional NiCoO ₂ Encapsulated in Porous Nitrogen-Doped Carbon Submicrospheres from a Bimetallic (Ni, Co) Organic Framework toward Efficient Lithium Storage. ACS Applied Materials & Diterfaces, 2019, 11, 32052-32061.	4.0	38
748	Highâ€Capacity Spherical LiNi _{0.82} Co _{0.15} Al _{0.03} O ₂ Cathode for Lithiumâ€lon Batteries. ChemistrySelect, 2019, 4, 9050-9054.	0.7	8

#	ARTICLE	IF	Citations
749	Mixed molybdenum and vanadium oxide nanoparticles with excellent high-power performance as Li-ion battery negative electrodes. Electrochimica Acta, 2019, 322, 134695.	2.6	9
750	Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response. Journal of Physical Chemistry C, 2019, 123, 22556-22563.	1.5	26
751	One-Pot Synthesis of Nanoporous Nickel Hydroxide Film as High-Performance Electrode for Asymmetric Supercapacitor. Journal of the Electrochemical Society, 2019, 166, D595-D602.	1.3	6
752	Dendrimers and hyper-branched polymers interacting with clays: fruitful associations for functional materials. Journal of Materials Chemistry A, 2019, 7, 19634-19650.	5.2	25
753	Bifunctional Hydrogen Production and Storage on OD–1D Heterojunction of Cd _{0.5} Zn _{0.5} S@Halloysites. Advanced Functional Materials, 2019, 29, 1903825.	7.8	50
754	Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019, 16, 388-424.	2.3	58
755	Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coordination Chemistry Reviews, 2019, 398, 213016.	9.5	414
756	CoO/CoFe2O4 core/shell nanoparticles assembled in carbon sheets as anode materials for lithium ion battery. Journal of Alloys and Compounds, 2019, 808, 151691.	2.8	27
757	Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 2019, 75, 100786.	15.8	379
758	Microwave synthesis of MoS ₂ /MoO ₂ @CNT nanocomposites with excellent cycling stability for supercapacitor electrodes. Journal of Materials Chemistry C, 2019, 7, 9545-9555.	2.7	77
759	TiO2-C nanowire arrays@polyaniline core-shell nanostructures on carbon cloth for high performance supercapacitors. Applied Surface Science, 2019, 493, 1125-1133.	3.1	22
760	Novel mesoporous Al-doped TiO2 with improved lithium storage performance. Materials Chemistry and Physics, 2019, 237, 121822.	2.0	6
761	Perovskite nanocrystals for energy conversion and storage. Nanophotonics, 2019, 8, 1607-1640.	2.9	78
762	Green mediated fabrication and characterization of ZnO/Ag nanocomposite for energy storage applications. Materials Research Express, 2019, 6, 095524.	0.8	12
763	Microscopic Dynamics in an Ionic Liquid Augmented with Organic Solvents. Journal of Physical Chemistry C, 2019, 123, 19354-19361.	1.5	8
764	Electrostatic Screening Length in "Soft―Electrolyte Solutions. ACS Macro Letters, 2019, 8, 1017-1021.	2.3	7
765	Formation of One-Dimensional Coordination Chains for High-Performance Anode Materials of Lithium-Ion Batteries via a Bottom-Up Approach. ACS Applied Materials & Lithium-Ion Batteries, 2019, 11, 25863-25869.	4.0	19
766	Disordered CoFePi nanosheets with rich vacancies as oxygen evolving electrocatalysts: Insight into the local atomic environment. Journal of Power Sources, 2019, 427, 215-222.	4.0	29

#	Article	IF	CITATIONS
767	Destabilizing the Dehydrogenation Thermodynamics of Magnesium Hydride by Utilizing the Immiscibility of Mn with Mg. Inorganic Chemistry, 2019, 58, 14600-14607.	1.9	19
768	Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2019, 29, 1905095.	7.8	94
769	Chiral Zinc Complexes Used as Fluorescent Sensor for Natural Amino Acids. ChemistrySelect, 2019, 4, 9317-9321.	0.7	5
770	Separated Tellurium Nanoparticles Confined in Hollow Polypyrrole for High Performance Li‶e Cathode. ChemistrySelect, 2019, 4, 9737-9742.	0.7	11
771	Controlling the thickness of amorphous layer on Cu3(PO4)2 particle for promoted sodium storage reversibility as a conversion-reaction-based cathode. Journal of Electroanalytical Chemistry, 2019, 852, 113406.	1.9	4
772	Facile synthesis of MnO porous sphere with N-doped carbon coated layer for high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2019, 852, 113515.	1.9	19
773	High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. ACS Omega, 2019, 4, 17257-17268.	1.6	13
774	(001) Facet-Dominated Hierarchically Hollow Na ₂ Ti ₃ O ₇ as a High-Rate Anode Material for Sodium-Ion Capacitors. ACS Applied Materials & Diterfaces, 2019, 11, 42197-42205.	4.0	31
776	Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39503-39512.	4.0	93
777	Measuring garment pressure at any point using a wearable sensor. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501987929.	0.5	5
778	First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries. Nanoscale Research Letters, 2019, 14, 260.	3.1	25
779	Excitation-independent carbon dot probes for exogenous and endogenous Fe3+ sensing in living cells: Fluorescence lifetime and sensing mechanism. Sensors and Actuators B: Chemical, 2019, 285, 145-155.	4.0	62
780	Kinetically controlled low-temperature solution-processed mesoporous rutile TiO2 for high performance lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 80, 667-676.	2.9	15
781	Phosphorene: A promising candidate for H2 storage at room temperature. International Journal of Hydrogen Energy, 2019, 44, 24829-24838.	3.8	23
782	1D Hematite-[\hat{l} ±-Fe2O3]-nanorods prepared by green fabrication for supercapacitor electrodes. Electrochemical Energy Technology, 2019, 5, 1-6.	1.2	12
783	pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide. Langmuir, 2019, 35, 12460-12468.	1.6	17
784	Characterization and electrochemical studies on poly(1-naphthylamine)-graphene oxide nanocomposites prepared by in situ chemical oxidative polymerization. Journal of Solid State Electrochemistry, 2019, 23, 2897-2906.	1.2	6
785	Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 2019, 155, 706-726.	5.4	273

#	Article	IF	CITATIONS
786	Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019, 119, 11042-11109.	23.0	309
787	A versatile nitrogen-doped carbon coating strategy to improve the electrochemical performance of LiFePO4 cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 810, 151889.	2.8	20
788	Reversible dual-ion battery via mesoporous Cu2O cathode in SO2-in-salt non-flammable electrolyte. Nano Energy, 2019, 66, 104138.	8.2	14
789	Cellulose nanocrystals in nanoarchitectonics – towards photonic functional materials. Molecular Systems Design and Engineering, 2019, 4, 29-48.	1.7	59
790	Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Materials Horizons, 2019, 6, 684-702.	6.4	149
791	Bio-inspired nano-engineering of an ultrahigh loading 3D hierarchical Ni@NiCo ₂ S ₄ /Ni ₃ S ₂ electrode for high energy density supercapacitors. Nanoscale, 2019, 11, 1728-1736.	2.8	7 2
792	Study of optical and electrical property of Nal-doped PPy thin film with excellent photocatalytic property at visible light. Polymer Bulletin, 2019, 76, 5213-5231.	1.7	9
793	Tube-in-tube tin dioxide superstructures with enhanced lithium storage performance. Chemical Communications, 2019, 55, 2222-2225.	2.2	9
794	High-performance lithiumâ^'sulfur batteries fabricated from a three-dimensional porous reduced graphene oxide/La2O3 microboards/sulfur aerogel. Ceramics International, 2019, 45, 9017-9024.	2.3	24
795	Flexibility defines structure in crystals of amphiphilic DNA nanostars. Journal of Physics Condensed Matter, 2019, 31, 074003.	0.7	24
796	Electrochemically Induced Amorphization and Unique Lithium and Sodium Storage Pathways in FeSbO4 Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 20082-20090.	4.0	14
797	Playing with covalent triazine framework tiles for improved CO ₂ adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology, 2019, 10, 1217-1227.	1.5	12
798	Carbon-based hydrogels: synthesis and their recent energy applications. Journal of Materials Chemistry A, 2019, 7, 15491-15518.	5.2	124
799	Nanostructured Pd/Sb2O3: A new and promising fuel cell electrocatalyst and non-enzymatic amperometric sensor for ethanol. Applied Surface Science, 2019, 491, 9-15.	3.1	20
800	A Definition and Categorization System for Advanced Materials: The Foundation for Riskâ€Informed Environmental Health and Safety Testing. Risk Analysis, 2019, 39, 1783-1795.	1.5	28
801	Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage. Industrial & Engineering Chemistry Research, 2019, 58, 10652-10677.	1.8	65
802	Solvothermal sulfurization in a deep eutectic solvent: a novel route to synthesize Co-doped Ni ₃ S ₂ nanosheets supported on Ni foam as active materials for ultrahigh-performance pseudocapacitors. Sustainable Energy and Fuels, 2019, 3, 1957-1965.	2.5	20
803	Branched titania nanostructures for efficient energy conversion and storage: A review on design strategies, structural merits and multifunctionalities. Nano Energy, 2019, 62, 791-809.	8.2	41

#	Article	IF	CITATIONS
804	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.	16.0	184
805	Self-Assembled Magnetic Pt Nanocomposites for the Catalytic Reduction of Nitrophenol. ACS Applied Nano Materials, 2019, 2, 4377-4385.	2.4	15
806	Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon, 2019, 151, 28-35.	5.4	74
807	Carbon-Dots-Derived 3D Highly Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 9848-9856.	3.2	42
808	Recent Advances in Applications of Sorted Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902273.	7.8	67
809	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
810	High Lithiumâ€lon Storage Performance of Ti ₃ SiC ₂ MAX by Oxygen Doping. ChemistrySelect, 2019, 4, 5319-5321.	0.7	12
811	A fascinating multifunctional bis(2-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)nickel complex: An excellent electrode material for supercapacitor and uric acid sensor. Materials Research Bulletin, 2019, 118, 110482.	2.7	12
812	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
813	Scalable Synthesis of Switchable Assemblies of Gold Nanorod Lyotropic Liquid Crystal Nanocomposites. Small, 2019, 15, 1901666.	5.2	12
814	Recent progress in controlled carbonization of (waste) polymers. Progress in Polymer Science, 2019, 94, 1-32.	11.8	217
815	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	15.6	481
816	Hierarchical zinc oxide/reduced graphene oxide composite: Preparation route, mechanism study and lithium ion storage. Journal of Colloid and Interface Science, 2019, 548, 233-243.	5.0	42
817	Full Gamut Wall Tunability from Persistent Micelle Templates via Ex Situ Hydrolysis. Small, 2019, 15, e1900393.	5.2	15
818	Reviewâ€"On Atomic Layer Deposition: Current Progress and Future Challenges. ECS Journal of Solid State Science and Technology, 2019, 8, N55-N78.	0.9	58
819	Doping amino-functionalized ionic liquid in perovskite crystal for enhancing performances of hole-conductor free solar cells with carbon electrode. Chemical Engineering Journal, 2019, 372, 46-52.	6.6	41
820	Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors. Scientific Reports, 2019, 9, 5974.	1.6	84
821	Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries. Applied Surface Science, 2019, 485, 314-322.	3.1	68

#	Article	IF	Citations
822	High capacity conversion anodes in Li-ion batteries: A review. International Journal of Hydrogen Energy, 2019, 44, 10852-10905.	3.8	88
823	High-Performance Energy Storage Device Based on Triple-Shelled Cobalt Gallium Oxide Hollow Spheres and Graphene Wrapped Copper Iron Disulfide Porous Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 7908-7917.	3.2	88
824	Designing an asymmetric device based on graphene wrapped yolk–double shell NiGa _{2< sub>S_{4< sub> hollow microspheres and graphene wrapped FeS_{2< sub>–FeSe_{2< sub> core–shell cratered spheres with outstanding energy density. Journal of Materials Chemistry A, 2019, 7, 10282-10292.}}}}	5.2	141
825	The development of 2D materials for electrochemical energy applications: A mechanistic approach. APL Materials, 2019, 7, .	2.2	28
826	Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance. Carbon, 2019, 147, 146-153.	5.4	75
828	Pseudocapacitance phenomena and applications in biosensing devices. Electrochimica Acta, 2019, 306, 175-184.	2.6	21
829	(Co/Fe) ₄ O ₄ Cubane-Containing Nanorings Fabricated by Phosphorylating Cobalt Ferrite for Highly Efficient Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 3878-3887.	5 . 5	38
830	Metal Organic Frameworks Derived Nano Materials for Energy Storage Application. International Journal of Electrochemical Science, 2019, 14, 2345-2362.	0.5	17
831	Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy, 2019, 60, 600-619.	8.2	190
832	Novelty in Designing of Photocatalysts for Water Splitting and CO2 Reduction. Environmental Chemistry for A Sustainable World, 2019, , 41-65.	0.3	1
833	Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis. International Journal of Hydrogen Energy, 2019, 44, 11695-11704.	3.8	34
834	<i>In situ</i> formation of Ni ₃ S ₂ â€"Cu _{1.8} S nanosheets to promote hybrid supercapacitor performance. Journal of Materials Chemistry A, 2019, 7, 11044-11052.	5.2	71
835	Graphene–quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications. Russian Chemical Reviews, 2019, 88, 370-386.	2.5	12
836	Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. Nanomaterials, 2019, 9, 517.	1.9	13
837	Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC - Trends in Analytical Chemistry, 2019, 115, 187-202.	5.8	189
838	Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. Ecotoxicology and Environmental Safety, 2019, 172, 388-395.	2.9	28
839	Nitrogen-doped graphene/multiphase nickel sulfides obtained by Ni-C3N3S3 (metallopolymer) assisted synthesis for high-performance hybrid supercapacitors. Electrochimica Acta, 2019, 301, 332-341.	2.6	22
840	Hierarchically nanostructured ZnCo2O4 particles in 3D graphene networks for high-rate and long-life lithium ion batteries. Materials Today Energy, 2019, 12, 46-52.	2.5	18

#	Article	IF	CITATIONS
841	Constructing High Performance Hybrid Battery and Electrocatalyst by Heterostructured NiCo ₂ O ₄ @NiWS Nanosheets. Crystal Growth and Design, 2019, 19, 1921-1929.	1.4	105
842	Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochimica Acta, 2019, 302, 78-91.	2.6	33
843	Two-dimensional Culn1â°'xGaxSe2 nano-flakes by pulse electrodeposition for photovoltaic applications. Solar Energy, 2019, 181, 396-404.	2.9	18
844	Nanostructured Materials for Li-Ion Battery Applications. Environmental Chemistry for A Sustainable World, 2019, , 105-172.	0.3	1
845	Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Research, 2019, 12, 1267-1278.	5.8	30
846	The NiO electrode materials in electrochemical capacitor: A review. Materials Science in Semiconductor Processing, 2019, 96, 78-90.	1.9	97
847	Artificial Z-scheme photocatalytic system: What have been done and where to go?. Coordination Chemistry Reviews, 2019, 385, 44-80.	9.5	265
848	Ammonia Borane Nanospheres for Hydrogen Storage. ACS Applied Nano Materials, 2019, 2, 1129-1138.	2.4	35
849	UV-light-activated H2S gas sensing by a TiO2 nanoparticulate thin film at room temperature. Journal of Alloys and Compounds, 2019, 778, 247-255.	2.8	57
850	Hierarchical porous carbons derived from ionically-crosslinked alginates for lithium-ion batteries with superior electrochemical performance. Journal of Porous Materials, 2019, 26, 987-993.	1.3	4
851	Green synthesis of pH-responsive Al2O3 nanoparticles: Application to rapid removal of nitrate ions with enhanced antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 205-215.	2.0	54
852	The application of different typological and structural MOFs-based materials for the dyes adsorption. Coordination Chemistry Reviews, 2019, 380, 471-483.	9.5	302
853	Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability, 2019, 11, 414.	1.6	163
854	Cu 0.33 Co 0.67 S 2 Hexagonal Sheets with 2D Hierarchical Structures for Highâ€Rate and Long‶erm Lithium Storage. ChemNanoMat, 2019, 5, 531-538.	1.5	3
855	Synthesis of 1D to 3D nanostructured NiCo2S4 on nickel foam and their application in oxygen evolution reaction. Applied Surface Science, 2019, 476, 600-607.	3.1	33
856	Carbon coated porous Co3O4 nanosheets derived from cotton fibers as anodes for superior lithium ion batteries. Applied Surface Science, 2019, 475, 446-452.	3.1	36
857	Effect of precursors on the morphology and surface area of LaFeO3. Ceramics International, 2019, 45, 7217-7225.	2.3	18
858	Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. Journal of Molecular Structure, 2019, 1181, 131-141.	1.8	36

#	Article	IF	CITATIONS
860	Microwave-power-enabled tuning of NiCo double hydroxide nanostructures. Journal of Materials Science, 2019, 54, 6088-6097.	1.7	0
861	Mechanistic Studies of Plasmon Chemistry on Metal Catalysts. Angewandte Chemie, 2019, 131, 4850-4858.	1.6	12
862	Antioxidant as Structure Directing Agent in Nanocatalyst Preparation. Case Study: Catalytic Activity of Supported Pt Nanocatalyst in Levulinic Acid Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 2460-2470.	1.8	19
863	Mechanistic Studies of Plasmon Chemistry on Metal Catalysts. Angewandte Chemie - International Edition, 2019, 58, 4800-4808.	7.2	146
864	Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Storage Materials, 2019, 20, 343-372.	9.5	43
865	Nâ€Doped C@Zn ₃ B ₂ O ₆ as a Low Cost and Environmentally Friendly Anode Material for Naâ€lon Batteries: High Performance and New Reaction Mechanism. Advanced Materials, 2019, 31, e1805432.	11.1	72
866	Polymer Composites Containing Functionalized Nanoparticles and the Environment., 2019,, 437-466.		2
867	Multi-functionalized ionic liquid with in situ-generated palladium nanoparticles for Suzuki, Heck coupling reaction: a comparison with deep eutectic solvents. Journal of the Iranian Chemical Society, 2019, 16, 253-261.	1.2	18
868	Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Advanced Materials, 2019, 31, e1801993.	11.1	313
869	Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. Journal of King Saud University - Science, 2019, 31, 398-411.	1.6	85
870	COMPARISON OF METAL OXIDE-CARBON COMPOSITES DERIVED FROM NATURAL ALGINATE GELS. Surface Review and Letters, 2019, 26, 1850161.	0.5	0
871	Effect of ethylenediamine on morphology of 2D Co-Mo-S@NG hybrids and their enhanced electrocatalytic activity for DSSCs application. Materials Science in Semiconductor Processing, 2020, 105, 104725.	1.9	7
872	Preparation and lithium storage properties of C@TiO2/3D carbon hollow sphere skeleton composites. Journal of Alloys and Compounds, 2020, 815, 152511.	2.8	8
873	One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Materials, 2020, 25, 443-476.	9.5	89
874	Hollow Micro- and Nanomaterials: Synthesis and Applications. , 2020, , 1-38.		14
875	Structural Reorganization–Based Nanomaterials as Anodes for Lithiumâ€lon Batteries: Design, Preparation, and Performance. Small, 2020, 16, e1902841.	5.2	32
876	Heteroatoms in situ-doped hierarchical porous hollow-activated carbons for high-performance supercapacitor. Carbon Letters, 2020, 30, 331-344.	3.3	15
877	Small-angle X-ray scattering of nanoporous materials. Nanoscale Horizons, 2020, 5, 12-24.	4.1	34

#	Article	IF	CITATIONS
878	A comprehensive review on the sacrificial template-accelerated hydrolysis synthesis method for the fabrication of supported nanomaterials. Journal of the Iranian Chemical Society, 2020, 17, 229-245.	1.2	2
879	Green Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	5
880	Role of Conducting Polymer Nanostructures in Advanced Photocatalytic Applications. Environmental Chemistry for A Sustainable World, 2020, , 189-208.	0.3	2
881	Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications., 2020,, 297-327.		10
882	Effect of addition of rice husk on the fate and speciation of heavy metals in the bottom ash during dyeing sludge incineration. Journal of Cleaner Production, 2020, 244, 118851.	4.6	30
883	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	1.3	41
884	In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light. Journal of Catalysis, 2020, 382, 212-227.	3.1	32
885	Graphene aerogel-based phase changing composites for thermal energy storage systems. Journal of Materials Science, 2020, 55, 4127-4156.	1.7	62
886	Controllable Assembly of Hybrid Electrodes by Electrophoretic Deposition for High-Performance Battery–Supercapacitor Hybrid Devices. ACS Applied Energy Materials, 2020, 3, 1784-1793.	2.5	18
887	The synthesis and performance analysis of various biomassâ€based carbon materials for electric doubleâ€kayer capacitors: A review. International Journal of Energy Research, 2020, 44, 2426-2454.	2.2	58
888	Advanced asymmetric supercapacitor with NiCo2O4 nanoparticles and nanowires electrodes: A comparative morphological hierarchy. Journal of Alloys and Compounds, 2020, 821, 153503.	2.8	28
889	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion., 2020,, 393-423.		8
890	One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 252, 114481.	1.7	50
891	Facile Synthesis of LaCoO ₃ with a High Oxygen Vacancy Concentration by the Plasma Etching Technique for High-Performance Oxygen Ion Intercalation Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 300-308.	2.5	54
892	MnO ₂ encapsulated electrospun TiO ₂ nanofibers as electrodes for asymmetric supercapacitors. Nanotechnology, 2020, 31, 125401.	1.3	31
893	Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. Journal of Colloid and Interface Science, 2020, 562, 400-408.	5.0	29
894	Solid-Liquid Phase Diagram of the Binary System Octadecanoic Acid and Octadecanol and the Thermal Chemical Property of the Composition at Eutectic Point. Journal of Chemistry, 2020, 2020, 1-6.	0.9	3
895	Porous Carbon-Based Supercapacitors Directly Derived from Metal–Organic Frameworks. Materials, 2020, 13, 4215.	1.3	13

#	Article	IF	Citations
896	Advances in nanomaterials for electrochromic devices. Chemical Society Reviews, 2020, 49, 8687-8720.	18.7	198
897	Size-Tunable Continuous-Seed-Mediated Growth of Silver Nanoparticles in Alkylamine Mixture via the Stepwise Thermal Decomposition of Silver Oxalate. Chemistry of Materials, 2020, 32, 9363-9370.	3.2	10
898	In Situ Growth of 2D Ultrathin NiCo ₂ O ₄ Nanosheet Arrays on Ni Foam for High Performance and Flexible Solidâ€5tate Supercapacitors. Small, 2020, 16, e2004188.	5.2	72
899	Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials, 2020, 10, 2019.	1.9	34
900	Microelectromechanical Systems for Nanomechanical Testing: Displacement- and Force-Controlled Tensile Testing with Feedback Control. Experimental Mechanics, 2020, 60, 1005-1015.	1.1	11
901	Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications. Crystals, 2020, 10, 566.	1.0	33
902	Nanofluid: New Fluids by Nanotechnology. , 0, , .		2
903	Preparation and properties of SnO2/nitrogen-doped foamed carbon as anode materials for lithium ion batteries. Ionics, 2020, 26, 5333-5341.	1.2	6
904	Graphene-supported organic-inorganic layered double hydroxides and their environmental applications: A review. Journal of Cleaner Production, 2020, 273, 122980.	4.6	47
905	Simple and Low-Cost Rotating Analyzer Ellipsometer (RAE) for Wavelength Dependent Optical Constant Characterization of Novel Materials. Key Engineering Materials, 0, 840, 392-398.	0.4	4
906	A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics (Switzerland), 2020, 9, 1161.	1.8	111
907	Carbon nanomaterials: synthesis, functionalization, and properties., 2020,, 137-179.		4
908	Electrochemical Performance of Carbon derived from Bamboo Shoot as Anode Materials for Lithium-ion Battery. International Journal of Electrochemical Science, 2020, 15, 3846-3855.	0.5	5
909	Tailoring power conversion efficiency of dye sensitized solar cell based on ZnO/g-C3N4 hybrid photoelectrodes via microwave irradiation route. Inorganic Chemistry Communication, 2020, 120, 108119.	1.8	20
910	Facile and <scp>lowâ€cost</scp> production of <scp> <i>Lantana camara</i> stalkâ€derived </scp> porous carbon nanostructures with excellent supercapacitance and adsorption performance. International Journal of Energy Research, 2021, 45, 17440-17449.	2.2	9
911	Porous Materials Applied in Nonaqueous Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2020, 32, e2002559.	11.1	115
912	Conjugated molecule functionalized graphene films for energy storage devices with high energy density. Electrochimica Acta, 2020, 340, 135804.	2.6	15
913	Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review. Sustainability, 2020, 12, 5968.	1.6	79

#	Article	IF	CITATIONS
914	Microwave-Based Synthesis of Functional Morphological Variants and Carbon Nanotube-Based Composites of VS ₄ for Electrochemical Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 16397-16412.	3.2	9
915	Exploring The Effect of Precursors of Polymeric Carbon Nitride Nanosheets on their Photo and Electrocatalytic Applications. ChemistrySelect, 2020, 5, 12679-12689.	0.7	2
916	Nanostructured materials for energy conversion and storage. , 2020, , 351-386.		0
917	Facile Route to Constructing Ternary Nanoalloy Bifunctional Oxygen Cathode for Metal-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 1153-1160.	1.3	5
918	Efficient reduction of dyes to leuco form over silver nanoparticles on functionalised SBA-15 and aminoclay. International Journal of Environmental Analytical Chemistry, 2020, , 1-14.	1.8	3
919	Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2020, 32, e2004654.	11.1	109
920	Fabrication of Fe ₇ S ₈ /C flexible nanofibers with nano-buffered spaces and their application in Li-ion batteries. New Journal of Chemistry, 2020, 44, 17053-17061.	1.4	11
921	Progressive lithiation of FeP2 nanoparticles constrained inside the carbon shell. Materials Today Energy, 2020, 18, 100545.	2.5	7
922	Polyoxometalateâ€Derived Ir/WO _x /rGO Nanocomposites for Enhanced Electrocatalytic Water Splitting. Energy and Environmental Materials, 2021, 4, 681-686.	7. 3	17
923	Assessment of activated carbon fibers from commercial Kevlar \hat{A}^{\otimes} as nanostructured material for gas storage: Effect of activation procedure and adsorption of CO2 and CH4. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104974.	2.6	29
924	High stable with efficient dye-sensitized solar cell-based Al2O3/graphene hybrid photoanode fabricated by simple household microwave irradiation technique. Journal of Materials Science: Materials in Electronics, 2020, 31, 9742-9752.	1.1	5
925	CoO·5NiO·5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification. Chemosphere, 2020, 255, 126966.	4.2	27
926	Nanofabrication within unimolecular nanoreactors. Nanoscale, 2020, 12, 12698-12711.	2.8	10
927	Transparent Flexible Heteroepitaxy of NiO Coated AZO Nanorods Arrays on Muscovites for Enhanced Energy Storage Application. Small, 2020, 16, 2000020.	5.2	10
928	Nanogranular Cadmium Sulfoselenide Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method for Optoelectronic Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000002.	0.8	4
929	Wet chemical synthesis of lead sulfide nanoparticles and its application as light harvester in photovoltaic cell. Materials Today: Proceedings, 2020, 33, 2125-2129.	0.9	2
930	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	5 . 2	16
931	Protein-mediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage. Journal of Power Sources, 2020, 464, 228246.	4.0	32

#	Article	IF	Citations
932	Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites. Ionics, 2020, 26, 4723-4735.	1.2	18
933	A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3837-3861.	1.9	56
934	CulBiOI is an efficient novel catalyst in Ullmann-type CN couplings with wide scopeâ€"A rare non-photocatalyic application. Molecular Catalysis, 2020, 493, 111072.	1.0	3
935	Denaturant-Mediated Modulation of the Formation and Drug Encapsulation Responses of Gold Nanoparticles. Langmuir, 2020, 36, 7634-7647.	1.6	5
936	Flexible Type Symmetric Supercapacitor Electrode Fabrication Using Phosphoric Acid-Activated Carbon Nanomaterials Derived from Cow Dung for Renewable Energy Applications. ACS Omega, 2020, 5, 15028-15038.	1.6	28
937	A MoS ₂ @SnS heterostructure for sodium-ion storage with enhanced kinetics. Nanoscale, 2020, 12, 14689-14698.	2.8	53
938	Atomically dispersed materials for rechargeable batteries. Nano Energy, 2020, 76, 105085.	8.2	18
939	An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles. Optical Materials, 2020, 101, 109760.	1.7	20
940	Supercapacitors: prospects and future direction. , 2020, , 373-380.		2
941	Designing of ultra-long-life hybrid supercapacitor based on advanced battery-type electrochemical performance from porous nanostructured nickel-doped bimetallic spinel electrodes. Electrochimica Acta, 2020, 341, 136016.	2.6	12
942	New metamaterial as a broadband absorber of sunlight with extremely high absorption efficiency. AlP Advances, 2020, 10 , .	0.6	7
943	Highly porous Li ₄ Ti ₅ O ₁₂ films as high-rate electrodes for fast lithium ion storage. Materials Technology, 2020, 35, 635-641.	1.5	2
944	Controlled engineering of nano-sized FeOOH@ZnO hetero-structures on reduced graphene oxide for lithium-ion storage and photo-Fenton reaction. CrystEngComm, 2020, 22, 2827-2836.	1.3	12
945	An Electrochemically Stable 2D Covalent Organic Framework for High-performance Organic Supercapacitors. Chinese Journal of Polymer Science (English Edition), 2020, 38, 558-564.	2.0	21
946	Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nature Communications, 2020, 11, 1374.	5.8	127
947	Layerâ€byâ€Layer Motif Heteroarchitecturing of N,Sâ€Codoped Reduced Graphene Oxideâ€Wrapped Ni/NiS Nanoparticles for the Electrochemical Oxidation of Water. ChemSusChem, 2020, 13, 3269-3276.	3.6	19
948	Review on nanomaterials for nextâ€generation batteries with lithium metal anodes. Nano Select, 2020, 1, 94-110.	1.9	14
949	Nanomaterials in wastewater treatments. , 2020, , 185-206.		3

#	Article	IF	CITATIONS
950	Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 845, 155701.	2.8	47
951	Ferrites for Electrochemical Supercapacitors. , 2020, , 83-122.		7
952	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
953	Predicting Crystal Morphology Using a Geometric Descriptor: A Comparative Study of Elemental Crystals with High-Throughput DFT Calculations. Journal of Physical Chemistry C, 2020, 124, 15920-15927.	1.5	6
954	Synthesis and characterization of NiO colloidal ink solution for printing components of solid oxide fuel cells anodes. Ceramics International, 2020, 46, 25260-25265.	2.3	16
955	Incorporation of Carbon Dots on the ZnO Nanosheets as Metal–Organic Framework Photoanodes for High Efficient Dye Sensitized Solar Cell Applications. Journal of Cluster Science, 2020, 32, 795.	1.7	5
956	Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Progress in Materials Science, 2020, 111, 100655.	16.0	115
957	Self-assembled 3D Fe2(MoO4)3 microspheres with amorphous shell as anode of lithium-ion batteries with superior electrochemical performance. Chemical Engineering Science, 2020, 217, 115517.	1.9	18
958	Facile Synthesis of Hollow Carbon Nanospheres and Their Potential as Stable Anode Materials in Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13182-13188.	4.0	46
959	Quantitative Structural Analysis of Polystyrene Nanoparticles Using Synchrotron X-ray Scattering and Dynamic Light Scattering. Polymers, 2020, 12, 477.	2.0	6
960	Nanostructured photocatalysts for nitrogen fixation. Nano Energy, 2020, 71, 104645.	8.2	120
961	Dualâ€Scale Nanostructures via Evaporative Assembly. Advanced Materials Interfaces, 2020, 7, 1901954.	1.9	14
962	Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures. Journal of Electronic Materials, 2020, 49, 3290-3300.	1.0	7
963	Biomassâ€Derived Carbons for Sodiumâ€Ion Batteries and Sodiumâ€Ion Capacitors. ChemSusChem, 2020, 13, 1275-1295.	3.6	96
964	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
965	Cauliflowerâ€like poly(3,4â€ethylenedioxythipohene)/nanocrystalline cellulose/manganese oxide ternary nanocomposite for supercapacitor. Journal of Applied Polymer Science, 2020, 137, 49162.	1.3	12
966	Preparation and Li/Na ion storage performance of raspberry-like hierarchical FeF3·0.33H2O micro-sized spheres with controllable morphology. Journal of Alloys and Compounds, 2020, 829, 154215.	2.8	13
967	SnS2 nanosheets anchored on porous carbon fibers for high performance of sodium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 862, 114021.	1.9	14

#	Article	IF	CITATIONS
968	One-Pot-Synthesized CoFe-Glycerate Hollow Spheres with Rich Oxyhydroxides for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 5464-5477.	3.2	31
969	Approaching Highâ€Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxideâ€Based Materials. Advanced Sustainable Systems, 2020, 4, 1900137.	2.7	49
970	Hierarchical MnCo2S4 nanowires/NiFeLDH nanosheets/graphene: A promising binder-free positive electrode for high-performance supercapacitors. Electrochimica Acta, 2020, 338, 135891.	2.6	34
971	Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO ₂ Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Diterfaces, 2020, 12, 10341-10349.	4.0	77
972	Visible light photo-treatment of simulated wastewater activated by high-efficient photocatalyst: A novel heterojunction of Bi2MoO6 balls and Pd nanoskeletons. Applied Surface Science, 2020, 510, 145468.	3.1	19
973	Design and fabrication of hybrid carbon dots/titanium dioxide (CDs/TiO2) photoelectrodes for highly efficient dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 3492-3499.	1.1	8
974	Polyanion-type electrode materials for advanced sodium-ion batteries. Materials Today Nano, 2020, 10, 100072.	2.3	57
975	Application of polyoxometalate derivatives in rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 4593-4628.	5.2	94
976	Mechanism of Electrocatalytically Active Precious Metal (Ni, Pd, Pt, and Ru) Complexes in the Graphene Basal Plane for ORR Applications in Novel Fuel Cells. Energy & Energy & 2020, 34, 2425-2434.	2.5	72
977	PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 4836-4843.	5.2	21
978	Facile Synthesis of Metal–Organic Framework-Derived CoSe ₂ Nanoparticles Embedded in the N-Doped Carbon Nanosheet Array and Application for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 9365-9375.	4.0	122
979	Freestanding SnS Carbon Composite Nanofiber Material with Excellent Electrochemical Performance as Binderâ€Free Negative Electrode for Lithiumâ€ion Batteries. ChemistrySelect, 2020, 5, 1792-1796.	0.7	7
980	Carbon Dots. , 2020, , .		20
981	In-situ grown Li-Ti-O layer derived by atomic layer deposition to improve the Li storage performance of Li2TiSiO5 anode materials. Electrochimica Acta, 2020, 344, 136149.	2.6	9
982	Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Science Bulletin, 2020, 65, 1154-1162.	4.3	64
983	In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. Journal of the American Chemical Society, 2020, 142, 7937-7946.	6.6	35
984	Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy, 2020, 201, 117718.	4.5	43
985	Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Advances, 2020, 10, 13532-13542.	1.7	89

#	Article	IF	CITATIONS
986	Hierarchically Porous Biomass Carbon Derived from Natural Withered Rose Flowers as Highâ€Performance Material for Advanced Supercapacitors. Batteries and Supercaps, 2020, 3, 731-737.	2.4	57
987	Aerogels: promising nanostructured materials for energy conversion and storage applications. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	82
988	Recent advances in electrospun electrode materials for sodium-ion batteries. Journal of Energy Chemistry, 2021, 54, 225-241.	7.1	91
989	Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage. Green Energy and Environment, 2021, 6, 528-537.	4.7	35
990	Wellâ€Defined Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2001537.	10.2	102
991	Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. Journal of Energy Chemistry, 2021, 52, 428-440.	7.1	57
992	Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110084.	8.2	30
993	BiVO4 nanocoral superstructures and their excellent electrical/optical dual-functions. Journal of Alloys and Compounds, 2021, 852, 157035.	2.8	19
994	Scalable fabrication and electrical contact formation process for vertically oriented silicon nanopillars in trenches. Materials Science in Semiconductor Processing, 2021, 122, 105470.	1.9	1
995	TEMPO oxidized cellulose nanofibers-based heterogenous membrane employed for concentration-gradient-driven energy harvesting. Nano Energy, 2021, 79, 105468.	8.2	64
996	Applications of carbon dots in environmental pollution control: A review. Chemical Engineering Journal, 2021, 406, 126848.	6.6	238
997	Graphene-based flexible all-solid-state supercapacitors. Materials Chemistry Frontiers, 2021, 5, 557-583.	3.2	33
998	Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells. Dyes and Pigments, 2021, 185, 108855.	2.0	27
999	Non-thermal radiation heating synthesis of nanomaterials. Science Bulletin, 2021, 66, 386-406.	4.3	29
1000	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 11148-11167.	1.6	12
1001	Metalâ€organic frameworksâ€derived novel nanostructured electrocatalysts for oxygen evolution reaction. , 2021, 3, 66-100.		93
1002	Synthesis of ternary SnO2–MoO3–C composite with nanosheet structure as high-capacity, high-rate and long-lifetime anode for lithium-ion batteries. Ceramics International, 2021, 47, 9303-9309.	2.3	12
1003	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	13.8	154

#	Article	IF	CITATIONS
1004	Porous and wrinkle treatment of commercial Ni foam and its application for high-efficiency oxygen evolution reaction electrode. International Journal of Hydrogen Energy, 2021, 46, 4890-4902.	3.8	3
1005	Investigation of template-assisted (MCM-41) mesoporous Co3O4 nanostructures and its superior supercapacitive retention. Vacuum, 2021, 185, 109998.	1.6	8
1006	Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM. Journal of Energy Chemistry, 2021, 59, 405-418.	7.1	12
1007	Preparation of fully flexible lithium metal batteries with free-standing \hat{l}^2 -Na0.33V2O5 cathodes and LAGP hybrid solid electrolytes. Journal of Industrial and Engineering Chemistry, 2021, 94, 368-375.	2.9	7
1008	Electronic and ionic transport in organic materials and devices. , 2021, , 71-105.		0
1009	A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. Journal of Hazardous Materials, 2021, 407, 124360.	6.5	163
1010	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 11048-11067.	7.2	179
1011	Electrophoretic deposition: An effective technique to obtain functionalized nanocoatings. , 2021, , 209-230.		3
1012	Nanomaterials for Energy Storage Applications. Clean Energy Production Technologies, 2021, , 135-156.	0.3	1
1013	Nanotools and devices in solar power energy. , 2021, , 429-446.		2
1014	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43
1015	MnO ₂ â€Based Materials for Environmental Applications. Advanced Materials, 2021, 33, e2004862.	11.1	252
1016	Low content Ru-incorporated Pd nanowires for bifunctional electrocatalysis. RSC Advances, 2021, 11, 28775-28784.	1.7	7
1017	Nanostructured anode materials in rechargeable batteries. , 2021, , 187-219.		5
1018	Route to Cost-Effective Fabrication of Wafer-Scale Nanostructure through Self-Priming Nanoimprint. Micromachines, 2021, 12, 121.	1.4	0
1019	Multifunctional materials for clean energy conversion., 2021, , 131-152.		0
1020	Probing nanostructure MoS2 as catalyst in light activated and electro activated hydrogen evolution reaction. Materials Today: Proceedings, 2021, 45, 4671-4676.	0.9	2
1021	A hollow Co ₉ S ₈ rodâ€"acidified CNTâ€"NiCoLDH composite providing excellent electrochemical performance in asymmetric supercapacitors. Dalton Transactions, 2021, 50, 9283-9292.	1.6	19

#	ARTICLE	IF	CITATIONS
1022	Nanomaterials Through Powder Metallurgy: Production, Processing, and Potential Applications Toward Energy and Environment., 2021,, 859-897.		1
1023	Nanoporous Metallic Foams for Energy Applications: Electrochemical Approaches for Synthesizing and Characterization., 2021,, 489-511.		2
1024	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	2.3	18
1025	Electrostatically Sprayed Nanostructured Electrodes for Energy Conversion and Storage Devices. Advanced Functional Materials, 2021, 31, 2008181.	7.8	39
1026	NH ₄ V ₄ O ₁₀ nanobelts vertically grown on 3D TiN nanotube arrays as high-performance electrode materials of supercapacitors. RSC Advances, 2021, 11, 8468-8474.	1.7	6
1027	Impact of Engineered Nanoparticles on Microbial Communities, Soil Health and Plants. Advances in Science, Technology and Innovation, 2021, , 201-215.	0.2	2
1028	Natural Cellulose Substance Based Energy Materials. Chemistry - an Asian Journal, 2021, 16, 378-396.	1.7	9
1029	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45
1030	One-pot synthesis of nanomaterials. , 2021, , 137-176.		3
1031	Lyotropic liquid crystals as templates for advanced materials. Journal of Materials Chemistry A, 2021, 9, 21607-21658.	5 . 2	19
1032	Smart fibers for energy conversion and storage. Chemical Society Reviews, 2021, 50, 7009-7061.	18.7	108
1033	2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. Small, 2021, 17, e2005073.	5.2	64
1034	Determinants of multidimensional energy poverty in Pakistan: a household level analysis. Environment, Development and Sustainability, 2021, 23, 12366-12410.	2.7	26
1035	Chemically Processed Metal Oxides for Sensing Application: Heterojunction Room Temperature LPG Sensor., 2021,, 765-805.		7
1036	Initiator-dependent kinetics of lyotropic liquid crystal-templated thermal polymerization. Polymer Chemistry, 2021, 12, 2236-2252.	1.9	5
1037	CHAPTER 4. 3D Graphene-based Materials for Enhancing the Energy Density of Sodium Ion Batteries. Chemistry in the Environment, 2021, , 86-114.	0.2	O
1038	High-performance polymer applications for renewable energy. , 2021, , 3-26.		1
1039	Metal chalcogenide/oxide-based quantum dots decorated functional materials for energy-related applications: Synthesis and preservation. Coordination Chemistry Reviews, 2021, 429, 213715.	9.5	7

#	Article	IF	CITATIONS
1040	Enhancing the long-term Na-storage cyclability of conversion-type iron selenide composite by construction of 3D inherited hyperbranched polymer buffering matrix. Nano Research, 2021, 14, 3952-3960.	5.8	7
1041	Development of polyaniline/ZnO-Ru nanocomposite as a potential LPG sensing material operable at room temperature. Journal of Materials Science: Materials in Electronics, 2021, 32, 6110-6122.	1.1	4
1042	Effect of Aminated Chitosan-Coated Fe3O4 Nanoparticles with Applicational Potential in Nanomedicine on DPPG, DSPC, and POPC Langmuir Monolayers as Cell Membrane Models. International Journal of Molecular Sciences, 2021, 22, 2467.	1.8	9
1043	Tuning MOF-Derived Co ₃ O ₄ /NiCo ₂ O ₄ Nanostructures for High-Performance Energy Storage. ACS Applied Energy Materials, 2021, 4, 1537-1547.	2.5	46
1044	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
1045	Nanoparticle-Dispersed Colloidal Electrolytes for Advanced Lithium Batteries. Ceramist, 2021, 24, 4-21.	0.0	0
1046	Preparation of Pt/CNT Thin-Film Electrodes by Electrochemical Potential Pulse Deposition for Methanol Oxidation. Journal of Carbon Research, 2021, 7, 32.	1.4	6
1047	A novel multi-dimension inorganic–organic hybrid aerogel and its electrochemical behavior. Journal of Materials Science, 2021, 56, 11044-11058.	1.7	0
1048	The role of ligands in pressure-induced phase transition of gold nanoribbons. Phase Transitions, 2021, 94, 123-133.	0.6	2
1049	Study on the photoelectrical performance of anodized titanium sheets. Royal Society Open Science, 2021, 8, 201778.	1.1	0
1050	Biomass derived hierarchically porous carbon inherent structure as an effective metal free cathode for Liâ€O ₂ /air battery. Electrochemical Science Advances, 2021, 1, e202000037.	1.2	4
1051	Review of NiCo2S4 nanostructures and their composites used in supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 12966-12990.	1.1	6
1052	A hierarchically ordered porous nitrogen-doped carbon catalyst with densely accessible Co-N active sites for efficient oxygen reduction reaction. Microporous and Mesoporous Materials, 2021, 317, 111002.	2.2	12
1053	Electrochemically Anodized V ₂ O ₅ as an Efficient Sodium Cathode. Energy & Sub; Fuels, 2021, 35, 8358-8364.	2.5	8
1054	Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochemistry Communications, 2021, 125, 107000.	2.3	3
1055	Atomic-Scale Engineered Fe Single-Atom Electrocatalyst Based on Waste Pig Blood for High-Performance AEMFCs. ACS Sustainable Chemistry and Engineering, 2021, 9, 7863-7872.	3.2	17
1056	Exploiting the Potential of Biosilica from Rice Husk as Porous Support for Catalytically Active Iron Oxide Nanoparticles. Nanomaterials, 2021, 11, 1259.	1.9	10
1057	Bioinorganic Platforms for Sensing, Biomimicry, and Energy Catalysis. Chemistry Letters, 2021, 50, 974-986.	0.7	2

#	Article	IF	CITATIONS
1058	Lithium-sodium ion capacitors: A new type of hybrid supercapacitors with high energy density. Journal of Electroanalytical Chemistry, 2021, 888, 115202.	1.9	7
1059	In Situ Growth of Transition Metal Nanoparticles on Aluminosilicate Minerals for Oxygen Evolution. Advanced Energy and Sustainability Research, 2021, 2, 2100057.	2.8	3
1060	Dynamics of Lithium Insertion in Electrochromic Titanium Dioxide Nanocrystal Ensembles. Journal of the American Chemical Society, 2021, 143, 8278-8294.	6.6	28
1061	Synthesis and Characterization of Size-Controlled Titania Nanorods through Double Surfactants. Inorganic Chemistry, 2021, 60, 7952-7960.	1.9	3
1062	Sonochemical synthesis of Ag2WO4/RGO-based nanocomposite as a potential material for supercapacitors electrodes. Ceramics International, 2021, 47, 14075-14086.	2.3	35
1063	Extraction and comparative study of green energy using different types of biowaste material. Materials Today: Proceedings, 2021, 49, 3474-3474.	0.9	1
1064	Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today, 2021, 38, 101201.	6.2	86
1065	Nickel-decorated single vacancy phosphorene – A favourable candidate for hydrogen storage. International Journal of Hydrogen Energy, 2021, , .	3.8	5
1066	A new 2D carbon allotrope C ₅₆₈ as a high-capacity electrode material for lithium-ion batteries. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 385-391.	1.0	4
1067	Boosting the capacitive property of cobalt sulfide through interface engineering for high-performance supercapacitors. Ceramics International, 2021, 47, 24973-24981.	2.3	14
1068	Tailoring Growth Kinetics toward a Size-Dependent Work Function of Ge Nanocrystals Synthesized by Inert Gas Condensation. Journal of Physical Chemistry C, 2021, 125, 12870-12879.	1.5	3
1069	Self-Assembled Nanomaterials Based on Complementary Sn(IV) and Zn(II)-Porphyrins, and Their Photocatalytic Degradation for Rhodamine B Dye. Molecules, 2021, 26, 3598.	1.7	20
1070	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	5.5	29
1071	Enhancing the performance of manganous oxide nanoparticles for lithium storage by in-situ construction of porous carbon embedment. Applied Surface Science, 2021, 552, 149531.	3.1	6
1072	Effect of cross-linking on electrochemical performances of polyaniline as the cathode material of lithium-ion batteries. Polymer Bulletin, 2022, 79, 5261-5278.	1.7	7
1073	Preparation of NiCo2O4@CoS heterojunction composite as electrodes for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 891, 115257.	1.9	32
1074	Rodlike SnO2/graphene nanocomposite and its application for lithium-ion batteries. Materials Letters, 2021, 294, 129765.	1.3	11
1075	Fabrication of Nonâ€Uniform Nanolattices with Spatially Varying Geometry and Material Composition. Advanced Materials Interfaces, 2021, 8, 2100690.	1.9	7

#	Article	IF	CITATIONS
1076	Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications. Journal of Molecular Liquids, 2021, 333, 115951.	2.3	38
1077	Nanostructured engineering of nickel cermet anode for solid oxide fuel cell using inkjet printing. Journal of the European Ceramic Society, 2021, 41, 4528-4536.	2.8	14
1078	Nanostructured MoS ₂ â€; SnS ₂ â€; and WS ₂ â€Based Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries via Chemical Methods: A Review Article. Energy Technology, 2021, 9, 2100179.	1.8	9
1079	Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries. Advanced Fiber Materials, 2022, 4, 43-65.	7.9	71
1080	Performance enhancement of tapered helical coil receiver using novel nanostructured carbon florets coating. Applied Thermal Engineering, 2021, 194, 117065.	3.0	12
1081	Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. JPhys Energy, 2021, 3, 032017.	2.3	18
1082	Co/N-doped carbon nanotubes-grafted porous carbon sheets architecture as efficient electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 871, 159566.	2.8	25
1083	Modification of the Cu current collector by magnetron sputtering to improve the cycle performance of MxOy (M:Ni,Mn,Co) anodes for lithium ion batteries. Journal of Alloys and Compounds, 2021, 872, 159594.	2.8	5
1084	3D holey-graphene frameworks cross-linked with encapsulated mesoporous amorphous FePO4 nanoparticles for high-power lithium-ion batteries. Chemical Engineering Journal, 2021, 417, 128475.	6.6	19
1085	Porous carbon prepared by zeolitic imidazolate framework (<scp>ZIFâ€₹â€III</scp>) as the precursor for supercapacitor applications in different electrolytes. International Journal of Energy Research, 2022, 46, 795-809.	2.2	15
1086	Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 2021, 1, 2100015.	5.8	94
1087	One-pot synthesis of electroconducting graphene coated silver nanoparticles from silver acetylide. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	4
1088	Recent progress of Ni3S2-based nanomaterials in different dimensions for pseudocapacitor application: synthesis, optimization, and challenge. Ionics, 2021, 27, 4573-4618.	1.2	6
1089	Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries. Journal of Energy Chemistry, 2021, 59, 343-363.	7.1	52
1090	Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: a review. Environmental Chemistry Letters, 2021, 19, 4327-4348.	8.3	14
1091	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
1092	The structure and luminescence properties of Pb1-xNbxSe QDs prepared via 4,4-bis(carbazole-9-yl)biphenyl assisted microwave approach for NIR-QLED applications. Superlattices and Microstructures, 2021, 157, 107000.	1.4	0
1093	A reliable electrochemical approach for detection of sulphite with Tl-doped in Mn ₃ O ₄ nanostructures and ionic liquid-modified carbon paste electrode. International Journal of Environmental Analytical Chemistry, 2023, 103, 6526-6538.	1.8	3

#	Article	IF	CITATIONS
1094	Facile route to biomass-derived 1D carbon fiber supported high-performance MnO-based nanocomposite anode material. Sustainable Materials and Technologies, 2021, 29, e00322.	1.7	4
1095	Review on recent progress in <scp>Manganeseâ€based</scp> anode materials for <scp>sodiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 667-683.	2.2	13
1096	Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustainable Materials and Technologies, 2021, 29, e00315.	1.7	5
1097	Temperature-dependent phase transition of CuZnS thin films and its effects on morphological, optical and electrical properties. Thin Solid Films, 2021, 733, 138810.	0.8	3
1098	Interface engineering on cobalt selenide composites enables superior Alkali-lon storage. Chemical Engineering Journal, 2021, 419, 129490.	6.6	26
1099	Chargeâ€Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2022, 32, 2106438.	7.8	9
1100	Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion. Nanotechnology, 2021, 32, 502006.	1.3	13
1101	Layered Tin Phosphide Composites as Promising Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11306-11313.	2.5	10
1102	Recent Advances in Preparation and Applications of 3D Transition Metal Oxides Semiconductor Photonic Crystal. Advanced Photonics Research, 2021, 2, 2000191.	1.7	2
1103	Simple Synthesis of Ru Decahedral Hollow Nanocages with Face-Centered Cubic Structure. Journal of Nanoscience and Nanotechnology, 2021, 21, 5302-5306.	0.9	0
1104	Insights into the transport of pristine and photoaged graphene oxide-hematite nanohybrids in saturated porous media: Impacts of XDLVO interactions and surface roughness. Journal of Hazardous Materials, 2021, 419, 126488.	6.5	15
1105	Waste pig blood-derived 2D Fe single-atom porous carbon as an efficient electrocatalyst for zinc–air batteries and AEMFCs. Applied Surface Science, 2021, 563, 150208.	3.1	25
1106	C3N4 interlayer formation while synthesizing black titania and their dye sensitized solar cell and conductivity performances. Solar Energy Materials and Solar Cells, 2021, 232, 111347.	3.0	8
1107	Direct evidence of Z-scheme effect and charge transfer mechanism in titanium oxide and cadmium sulfide heterostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127086.	2.3	3
1108	Microporous active carbon with ultrahigh surface area from Metaplexis japonica for high-performance supercapacitor. Diamond and Related Materials, 2021, 118, 108484.	1.8	7
1109	Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. Journal of Energy Chemistry, 2021, 61, 253-268.	7.1	52
1110	A comprehensive review of thermophysical properties and prospects of ionanocolloids in thermal energy applications. Renewable and Sustainable Energy Reviews, 2021, 151, 111593.	8.2	14
1111	Enhanced specific capacity and cycle stability of hybrid supercapacitors using carbonized polyphosphazene-based nanocomposites. Electrochimica Acta, 2021, 397, 139297.	2.6	5

#	Article	IF	CITATIONS
1112	Phase-controlled growth of nickel hydroxide nanostructures on nickel foam for enhanced supercapacitor performance. Journal of Energy Storage, 2021, 43, 103171.	3.9	22
1113	Theoretical insights on the exsolved behavior of ruthenium atom in titanate perovskite. Applied Surface Science, 2021, 566, 150641.	3.1	5
1114	Historical Background and Present Status of the Capacitors and Supercapacitor for High Bioenergy Storage Applications., 2022,, 692-702.		0
1115	Twoâ€step solvothermal synthesis of high capacity LiNi 0 . 8 Co 0 . 15 Al 0 . 05 O 2 cathode for Liâ€ion batteries. Journal of the Chinese Chemical Society, 2021, 68, 849-857.	0.8	2
1116	Controllable preparation of magnetic carbon nanocomposites by pyrolysis of organometallic precursors, similar molecular structure but very different morphology, composition and properties. New Journal of Chemistry, 2021, 45, 2044-2052.	1.4	5
1117	Supercapacitors. , 2021, , 143-164.		O
1118	Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters. Nanoscale, 2021, 13, 6162-6173.	2.8	3
1119	Challenges, novel applications, and future prospects of chalcogenides and chalcogenide-based nanomaterials for photocatalysis. , 2021, , 307-337.		8
1120	Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3221-3239.	1.9	32
1121	Nanomaterials for the conversion of carbon dioxide into renewable fuels. , 2021, , 1-20.		0
1122	Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor. Rare Metals, 2021, 40, 2424-2431.	3.6	41
1123	Periodic nanostructures: preparation, properties and applications. Chemical Society Reviews, 2021, 50, 6423-6482.	18.7	34
1124	Performance investigation of ZnO/PVA nanocomposite film for organic solar cell. Materials Today: Proceedings, 2021, 47, 2615-2621.	0.9	11
1125	Nanoporous Metallic Foams for Energy Applications: Electrochemical Approaches for Synthesizing and Characterization., 2020,, 1-24.		1
1126	Tellurium, the Forgotten Element: A Review of the Properties, Processes, and Biomedical Applications of the Bulk and Nanoscale Metalloid., 2020,, 723-783.		6
1127	Perspective of Nanomaterials in the Performance of Solar Cells. , 2020, , 25-54.		4
1128	Applications of Electrospinning in Design and Fabrication of Electrodes for Lithium-Ion Batteries. Nanostructure Science and Technology, 2014, , 69-89.	0.1	1
1129	Functionalized halloysite nanotubes: an "ecofriendly―nanomaterial in environmental industry. , 2020, , 417-433.		6

#	Article	IF	CITATIONS
1130	Ultra-fast diffusion of hydrogen in a novel mesoporous N-doped carbon. Carbon, 2020, 166, 307-315.	5.4	7
1131	Boosting fast lithium ion storage of Li4Ti5O12 by synergistic effect of vertical graphene and nitrogen doping. Journal of Energy Chemistry, 2020, 51, 372-377.	7.1	19
1132	Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications. Sustainable Energy and Fuels, 2020, 4, 1554-1576.	2.5	21
1133	Controlled synthesis of three dimensional hierarchical graphene nanostructures from metal complexes as an anode material for lithium-ion batteries. CrystEngComm, 2020, 22, 3608-3617.	1.3	7
1134	Interface engineering of Co ₃ O ₄ nanowire arrays with ultrafine NiO nanowires for high-performance rechargeable alkaline batteries. Dalton Transactions, 2020, 49, 8582-8590.	1.6	55
1135	Fabrication of nanomaterial-based biosensor for measurement of a microRNA involved in cancer. , 2020, , .		5
1136	High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries. Applied Chemistry for Engineering, 2014, 25, 1-13.	0.2	14
1137	Inkjet Printing of Sc-Doped TiO2 with Enhanced Photoactivity. Coatings, 2019, 9, 78.	1.2	5
1138	Graphene/Multi-Walled Carbon Nanotubes Hybrid Materials for Supercapacitors. Clean Technology, 2015, 21, 62-67.	0.1	1
1139	Graphene oxide-mediated scalable preparation of heterostructured MoS ₂ â€"MoO ₂ /graphene nanohybrids for efficient energy storage and hydrogen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 6124-6134.	2.5	1
1140	Controlled engineering of tunable 3D-BiOX (XÂ=ÂCl, Br) hierarchical nanostructures via dopamine-mediated synergetic interactions for efficient visible-light absorption photocatalysis. Applied Surface Science, 2022, 574, 151683.	3.1	14
1141	Sodium carboxymethylcellulose induced engineering a porous carbon and graphene immobilized magnetite composite for lithium-ion storage. Journal of Colloid and Interface Science, 2022, 608, 1707-1717.	5.0	6
1142	Functionalization of 0-D and 2-D carbon nitride nanostructures on bio-derived carbon spheres for sustainable electrochemical supercapacitors. Journal of Electroanalytical Chemistry, 2021, 902, 115808.	1.9	2
1143	Spray drying Induced Engineering a Hierarchical Reduced Graphene Oxide Supported Heterogeneous Tin Dioxide and Zinc Oxide for Lithium-ion Storage. Journal of Colloid and Interface Science, 2021, 608, 1758-1768.	5.0	4
1144	Titanium-Based Nanorods and Nanosheets as Efficient Electrode Materials., 2015,, 587-608.		0
1145	Surface Decoration of Organic Ligands on Quantum Dots: Fine Tuning of Photophysical Properties. , 2016, , 1127-1150.		0
1146	Chapter 7. Controlling the Photoanode Mesostructure for Dye-sensitized and Perovskite-sensitized Solar Cells., 2016,, 292-323.		0
1147	Design and Control of Nanostructures and Interfaces for Excitonic Solar Cells. Engineering Materials and Processes, 2017, , 635-679.	0.2	O

#	Article	IF	CITATIONS
1148	Investigation of Semiconductor Quantum Dots for Quantum Sensitized Solar Cells (QDSSCs). Cumhuriyet Science Journal, 0, , 121-129.	0.1	0
1149	Introduction to Fundamental Concepts. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-26.	0.2	0
1150	Nanomaterials through Powder Metallurgy: Production, Processing, and Potential Applications toward Energy and Environment., 2020,, 1-40.		2
1151	Fabrication of flexible, foldable Ag/Bi 2 S 3 nanoflowersâ€based asymmetric microâ€capacitor. Micro and Nano Letters, 2020, 15, 614-617.	0.6	3
1153	High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach. Frontiers of Chemical Science and Engineering, 2021, 15, 1021-1032.	2.3	18
1154	Template-Assisted Growth of Open-Ended TiO ₂ Nanotubes with Hexagonal Shape Using Atomic Layer Deposition. Crystal Growth and Design, 2021, 21, 125-132.	1.4	1
1155	Rearrangement of protein structures on a gold nanoparticle surface is regulated by ligand adsorption modes. Nanoscale, 2021, 13, 20425-20436.	2.8	7
1156	Functional nanomaterial in energy and environmental science. , 2020, , 1-23.		2
1157	Recent advances in flexible fiber-shaped supercapacitors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178201.	0.2	4
1158	Principles and applications of photothermal catalysis. Chem Catalysis, 2022, 2, 52-83.	2.9	157
1159	Stable Ti ³⁺ Sites Derived from the Ti _{<i>x</i>} O _{<i>y</i>} -P _{<i>z</i>} Layer Boost Cubic Fe ₂ O ₃ for Enhanced Photocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 15331-15343.	3.2	9
1160	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	4.6	12
1161	Nanoparticle enhanced salinity-gradient osmotic energy conversion under photothermal effect. Energy Conversion and Management, 2022, 251, 115032.	4.4	15
1162	An overview on the use of metal vanadium oxides and vanadates in supercapacitors and rechargeable batteries. International Journal of Energy Research, 2022, 46, 3983-4000.	2.2	12
1163	Tailored TiO ₂ nanorod arrays for dye sensitized solar cell applications. EPJ Applied Physics, 2021, 96, 30104.	0.3	0
1164	Biofunctional hollow Î ³ -MnO ₂ microspheres by a one-pot collagen-templated biomineralization route and their applications in lithium batteries. RSC Advances, 2021, 11, 37040-37048.	1.7	2
1165	Advances in and prospects of nanomaterials' morphological control for lithium rechargeable batteries. Nano Energy, 2022, 93, 106860.	8.2	40
1166	Benign by design: porous spherical ZnO-alginate family via a dual-template synthesis. Applied Surface Science, 2022, 580, 152231.	3.1	2

#	Article	IF	CITATIONS
1167	Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. Journal of Energy Chemistry, 2022, 68, 439-453.	7.1	18
1168	Electrochemical charge storage performance of mesoporous MoO ₃ @Co ₃ O ₄ nanocomposites as electrode materials. Nanotechnology, 2022, 33, 155709.	1.3	3
1170	Catalytic SrMoO ₄ nanoparticles and conducting polymer composite sensor for monitoring of K ⁺ -induced dopamine release from neuronal cells. Journal of Materials Chemistry B, 2022, 10, 728-736.	2.9	5
1173	Novel nanostructured electrocatalysts for fuel cell technology: Design, solution chemistry-based preparation approaches and application. Nano Structures Nano Objects, 2022, 29, 100831.	1.9	2
1174	Towards Environment-friendly and versatile energy storage Devices: Design and preparation of mesoporous Li4Ti5O12-TiO2 nano-hybrid electrode materials. Applied Surface Science, 2022, 583, 152490.	3.1	7
1175	Fe-Based metal–organic frameworks as functional materials for battery applications. Inorganic Chemistry Frontiers, 2022, 9, 827-844.	3.0	24
1176	Realizing shape and size control for the synthesis of coordination polymer nanoparticles templated by diblock copolymer micelles. Nanoscale, 2022, 14, 3131-3147.	2.8	4
1177	Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. Small, 2022, 18, e2106017.	5.2	18
1178	A New Era of Integrative Ice Frozen Assembly into Multiscale Architecturing of Energy Materials. Advanced Functional Materials, 2022, 32, .	7.8	21
1180	Local Structure Analysis and Modelling of Ligninâ∈Based Carbon Composites through the Hierarchical Decomposition of the Radial Distribution Function. ChemistryOpen, 2022, 11, e202100220.	0.9	0
1181	Applications of Nonâ€precious Transition Metal Oxide Nanoparticles in Electrochemistry. Electroanalysis, 2022, 34, 1065-1091.	1.5	17
1182	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
1183	Three Isomeric Zn(II)–Sn(IV)–Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS Omega, 2022, 7, 9775-9784.	1.6	16
1184	Synthesis and characterization of chiral nano-poly $[(\hat{A}\pm)-2-\sec-buty]$ and its application in the first chiral polymer solar cell. Optical Materials, 2022, 125, 112098.	1.7	1
1185	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	7
1186	Facile deposition of palladium oxide (PdO) nanoparticles on CoNi ₂ S ₄ microstructures towards enhanced oxygen evolution reaction. Nanotechnology, 2022, 33, 275402.	1.3	8
1187	First principle calculations on pristine and Mn-doped iron fluorophosphates as sodium-ion battery cathode materials. Computational Materials Science, 2022, 206, 111292.	1.4	7
1189	A low cost yet highly sensitive silver nanoprobe for naked eye detection and determination of bisulphate (HSO4-) in a few real samples. Inorganic Chemistry Communication, 2022, 139, 109366.	1.8	3

#	Article	IF	Citations
1190	Hierarchically porous membranes for lithium rechargeable batteries: Recent progress and opportunities. EcoMat, 2022, 4 , .	6.8	24
1191	Investigating the energy storage performance of the <scp> ZnMn ₂ O ₄ </scp> anode for its potential application in lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 6444-6456.	2.2	5
1193	Electrochemical performance of transition metal based CoB $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ (B = Co and) Tj ETQqQ 10671-10681.	0 0 0 rgBT 1.4	/Overlock 10 3
1194	Evolution of surface and sub-surface morphology and chemical state of exsolved Ni nanoparticles. Faraday Discussions, 2022, 236, 141-156.	1.6	6
1195	Comparative Study of Aluminum-Doped Zinc Oxide, Gallium-Doped Zinc Oxide and Indium-Doped Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering. Nanomaterials, 2022, 12, 1539.	1.9	6
1196	Copper-doped activated carbon from amorphous cellulose for hydrogen, methane and carbon dioxide storage. International Journal of Hydrogen Energy, 2022, 47, 18384-18395.	3.8	8
1197	In situ self-boosting catalytic synthesizing free-standing N, S rich transition metal sulfide/hierarchical CNF-CNT architectures enable high-performance lithium-sulfur batteries. Electrochimica Acta, 2022, 422, 140549.	2.6	13
1198	Fabrication of Au/Fe ₃ O ₄ /RGO based aptasensor for measurement of miRNAâ€128, a biomarker for acute lymphoblastic leukemia (ALL). Engineering in Life Sciences, 2022, 22, 519-534.	2.0	19
1199	Metallic nanosponges for energy storage and conversion applications. Journal of Materials Chemistry A, 2022, 10, 14221-14246.	5.2	8
1200	Plasmonic Engineering of TiO2 Photoanodes for Dye-Sensitized Solar Cells: A Review. Journal of Electronic Materials, 2022, 51, 4188-4206.	1.0	12
1201	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	8.3	26
1202	Non-isothermal solid-state synthesis kinetics of the tetragonal barium titanate. Journal of Solid State Chemistry, 2022, 312, 123275.	1.4	5
1203	Quantitative Modeling of Electron Dynamics and the Effect of Diffusion in Photosensitized Semiconductor Nanocomposites. Accounts of Chemical Research, 0, , .	7.6	1
1204	CZTS absorber thin films by spray pyrolysis process. Emergent Materials, 2022, 5, 1699-1704.	3.2	1
1205	A bright future of hydrogels in flexible batteries and Supercapacitors storage systems: A review. International Journal of Energy Research, 2022, 46, 13276-13307.	2.2	5
1206	NiO-GDC nanowire anodes for SOFCs: novel growth, characterization and cell performance. Materials Advances, 2022, 3, 5922-5929.	2.6	2
1207	Spray-drying construction of nickel/cobalt/molybdenum based nano carbides embedded in porous carbon microspheres for lithium-ion batteries as anodes. Electrochimica Acta, 2022, 424, 140678.	2.6	2
1209	Porous CeNiO ₃ with an enhanced electrochemical performance and prolonged cycle life (>50 000 cycles) <i>via</i> a lemon-assisted sol–gel autocombustion method. New Journal of Chemistry, 2022, 46, 15118-15129.	1.4	6

#	ARTICLE	IF	CITATIONS
1210	Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and challenges. International Journal of Energy Research, 2022, 46, 16241-16263.	2.2	14
1211	Composition, Morphology, and Interface Engineering of 3D Cauliflowerâ€Like Porous Carbonâ€Wrapped Metal Chalcogenides as Advanced Electrocatalysts for Quantum Dotâ€Sensitized Solar Cells. Small, 2022, 18, .	5.2	4
1212	Rationally engineering a hierarchical porous carbon and reduced graphene oxide supported magnetite composite with boosted lithium-ion storage performances. Journal of Colloid and Interface Science, 2022, 628, 154-165.	5.0	8
1213	Pyridineâ€functionalized Nâ€heterocyclic carbene gold(I) binuclear complexes as molecular electrocatalysts for oxygen evolution reactions. Applied Organometallic Chemistry, 2022, 36, .	1.7	3
1214			

#	Article	IF	CITATIONS
1230	New Hybrid Nanocomposites with Catalytic Properties Obtained by In Situ Preparation of Gold Nanoparticles on Poly (Ionic Liquid)/Poly (4-Vinylpyridine) Nanofibers. Polymers, 2022, 14, 3782.	2.0	1
1231	Binderâ€free synthesis of cerium nickel oxide for supercapattery devices. International Journal of Energy Research, 2022, 46, 21826-21840.	2.2	2
1232	Mechanically Induced Nanoscale Architecture Endows a Titanium Carbide MXene Electrode with Integrated High Areal and Volumetric Capacitance. Advanced Materials, 2022, 34, .	11.1	15
1233	Phosphorene nanoribbons for next-generation energy devices. Joule, 2022, 6, 2441-2446.	11.7	4
1234	Aquilaria malaccensis and Pandanus amaryllifolius mediated synthesis of tin oxide nanoparticles: The effect of the thermal calcination temperature. Materials Today: Proceedings, 2023, 75, 23-30.	0.9	2
1235	Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 2022, 12, 892.	2.3	22
1236	Self-templating synthesis of Pd4S hollow nanospheres as electrocatalysts for oxygen reduction reaction. Nano Research, $0, \dots$	5.8	2
1237	Formation of Sn/Zn alloy or core-shell nanoparticles via pulsed nanosecond discharges in liquid toluene. Materials Chemistry and Physics, 2022, 292, 126858.	2.0	1
1238	Sulfur nano-confinement in hierarchically porous jute derived activated carbon towards high-performance supercapacitor: Experimental and theoretical insights. Journal of Energy Storage, 2022, 56, 105944.	3.9	44
1239	Insights into the origin of the enhanced electrical conductivity of Pd-Sb2O3 nanoparticles: A combined experimental and theoretical study. Journal of Alloys and Compounds, 2023, 933, 167667.	2.8	1
1240	Hybrid nanocomposite membranes containing cellulose acetate @ CuO/ZnO for biological interest. Journal of Materials Research and Technology, 2022, 21, 4409-4418.	2.6	1
1241	Recent progress of nanotechnology in the research framework of all-solid-state batteries. Nano Energy, 2023, 105, 107994.	8.2	8
1242	Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye. International Journal of Molecular Sciences, 2022, 23, 13702.	1.8	11
1243	Interlayer engineering in V ₆ O ₁₃ nanobelts toward superior Mg-ion storage. Inorganic Chemistry Frontiers, 2023, 10, 544-551.	3.0	2
1244	CoSe-catalyzed growth of graphene sheath to construct CNF@graphene-CoSe cable/sheath heterostructure for high-performance Lithiumâ€"Sulfur batteries. Carbon, 2023, 204, 102-111.	5.4	12
1245	Fabrication of g-C3N4-reinforced CdS nanosphere-decorated TiO2 nanotablet composite material for photocatalytic hydrogen production and dye-sensitized solar cell application. Journal of Alloys and Compounds, 2023, 936, 168209.	2.8	19
1246	Nanomaterials for supercapacitors as energy storage application: Focus on its characteristics and limitations. Materials Today: Proceedings, 2022, , .	0.9	1
1247	Recent developments and future perspectives on energy storage and conversion applications of nickel molybdates. Energy Storage, 2023, 5, .	2.3	1

#	Article	IF	CITATIONS
1249	Strategic Design of Lithium-Rich Hierarchical Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Microcubes as High-Capacity Cathodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 622-635.	2.5	2
1250	A Computational Study of the Adsorptive Separation of Methane and Hydrogen in Zeolite Templated Carbons. Gazi University Journal of Science Part A:engineering and Innovation, 2022, 9, 545-553.	0.2	0
1251	Appraisal of conducting polymers for potential bioelectronics. , 2023, , 265-298.		0
1252	Fundamentals and functionalization of CNTs and other carbon nanomaterials., 2023,, 77-90.		O
1253	Sensing of amino acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchemical Journal, 2023, 188, 108452.	2.3	4
1254	Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies, 2023, 16, 1876.	1.6	18
1255	Investigation of structural, morphological and photoluminescence properties in ZnO: Co2+ nanostructures prepared by solution combustion technique using Mimosa pudica leaf extract as a fuel. Applied Surface Science Advances, 2023, 14, 100383.	2.9	0
1256	Design strategies for coordination polymers as electrodes and electrolytes in rechargeable lithium batteries. Coordination Chemistry Reviews, 2023, 483, 215084.	9.5	8
1257	Microstructure and defect engineering of graphite anodes by pulsed laser annealing for enhanced performance of lithium-ion batteries. Carbon, 2023, 205, 214-225.	5.4	10
1258	Renewable Resource-Based Green Nanomaterials for Supercapacitor Applications. , 2022, , 1-31.		O
1259	Biomassâ€Derived Materials for Interface Engineering in Organic/Perovskite Photovoltaic and Lightâ€Emitting Devices. Advanced Materials Technologies, 2023, 8, .	3.0	6
1260	Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites—A Review. Materials, 2023, 16, 1430.	1.3	2
1261	Surplus charge injection enables high-cell-potential stable 2D polyaniline supercapacitors. Electrochimica Acta, 2023, 445, 142052.	2.6	5
1262	Hybrid polymer gels for energy applications. Journal of Materials Chemistry A, 2023, 11, 12593-12642.	5.2	10
1263	Flame-Retardant 3D Covalent Organic Framework for High-Performance Symmetric Supercapacitors. Energy & Samp; Fuels, 2023, 37, 4671-4681.	2.5	3
1264	Localization of nuclear wave functions of lithium in [Li ⁺ @C ₆₀]PF ₆ ^{â^²} : molecular insights into two-site disorder–order transition. Physical Chemistry Chemical Physics, 2023, 25, 8446-8462.	1.3	O
1265	Role of Nanosystems for Electrochemical Mapping Using Diverse Carbon-Based Nanomaterials. Materials Horizons, 2023, , 1035-1065.	0.3	0
1266	TiO2/C aerogel composites as high-performance electrode materials for supercapacitors. Functional Materials Letters, 2023, 16, .	0.7	2

#	Article	IF	CITATIONS
1267	Recent progress in advanced organosulfur cathode materials for rechargeable lithium batteries. Materials Today, 2023, 65, 100-121.	8.3	7
1268	Boronation of Biomass-Derived Materials for Hydrogen Storage. Compounds, 2023, 3, 244-279.	1.0	4
1269	Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 2023, 15, 1450.	2.0	12
1270	Boosting the crystallinity of novel two-dimensional hexamine dipyrazino quinoxaline-based covalent organic frameworks for electrical double-layer supercapacitors. Materials Chemistry Frontiers, 2023, 7, 2464-2474.	3.2	9
1271	Progress of electrochemical synthesis of nitric acid: catalyst design, mechanistic insights, protocol and challenges. Journal of Materials Chemistry A, 2023, 11, 10125-10148.	5.2	12
1272	Design and development of multi-functional graphitic carbon nitride heterostructures embedded with copper and iron oxide nanoparticles as versatile sensing platforms for environmental and agricultural applications. Ceramics International, 2023, 49, 20688-20698.	2.3	4
1273	Carbon-based nanomaterials for battery applications. , 2023, , 497-514.		0
1274	Experimental Study of Microalgae Cultivation Based on Ag/CoSO4 Selective Light Permeability. Journal of Renewable Materials, 2023, 11, 2849-2859.	1.1	0
1275	Nanomaterials in photocatalysed organic transformations: development, prospects and challenges. Chemical Communications, 2023, 59, 5987-6003.	2.2	5
1276	Anisotropic Nanocluster Arrays to Diminished Zone: Different regimes of surface deposition in gold nanocolloids. Soft Matter, 0, , .	1.2	2
1277	Progress in photocapacitors: A review. Functional Materials Letters, 2023, 16, .	0.7	1
1278	Intrinsic carbon structural imperfections for enhancing energy conversion electrocatalysts. Chemical Engineering Journal, 2023, 466, 143060.	6.6	7
1279	Eco-friendly PVA-LYS fibers for gold nanoparticle recovery from water and their catalytic performance. Environmental Science and Pollution Research, 2023, 30, 65659-65674.	2.7	1
1282	Renewable Resource-Based Green Nanomaterials for Supercapacitor Applications., 2023,, 2277-2307.		0
1283	1D, 2D, and 3D Structured Metal Chalcogenides for Supercapacitor Application., 2023, , 53-82.		0
1285	Essential Oils from Plants and Their Role in Nanomaterial Synthesis Characterization and Applications., 2023,, 191-207.		1
1301	Silicon Nanowires/Graphene Oxide Heterojunction for Photovoltaics Application. Materials Horizons, 2023, , 185-206.	0.3	0
1305	Aligned carbon nanotubes for lithium-ion batteries: A review. Nano Research, 2023, 16, 12384-12410.	5.8	1

#	Article	IF	CITATIONS
1306	Organic-Inorganic Hybrid Nanomaterials in Biosensing Applications. , 2023, , 363-382.		0
1314	A Comprehensive Review of Aerogels for Oil Spill Cleanup and Heat Storage Applications. Springer Proceedings in Materials, 2023, , 145-156.	0.1	0
1347	Materials development for electrochemical devices. , 2024, , 1-14.		0
1353	Waste Plastic Generated High-Performance Nanocomposites for Modern EDLC and LIB: A Two-Way Sustainable Approach. Advances in Sustainability Science and Technology, 2024, , 217-249.	0.4	0
1354	Physicochemical attributes, structural characterization, and catalytic properties of nanomaterials., 2024, , 143-167.		0