Triplet photosensitizers: from molecular design to appl

Chemical Society Reviews 42, 5323 DOI: 10.1039/c3cs35531d

Citation Report

#	Article	IF	CITATIONS
2	Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 8689.	4.1	102
3	A Family of Ru ^{II} Photosensitizers with High Singlet Oxygen Quantum Yield: Synthesis, Characterization, and Evaluation. European Journal of Inorganic Chemistry, 2013, 2013, 4628-4635.	2.0	13
4	Phenylacetylide ligand mediated tuning of visible-light absorption, room temperature phosphorescence lifetime and triplet–triplet annihilation based up-conversion of a diimine Pt(II) bisacetylide complex. Dyes and Pigments, 2013, 99, 908-915.	3.7	7
5	Red-Light-Controllable Liquid-Crystal Soft Actuators via Low-Power Excited Upconversion Based on Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2013, 135, 16446-16453.	13.7	200
6	Iodo-Bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of C–C bonds via reductive and oxidative quenching catalytic mechanisms. RSC Advances, 2013, 3, 23377.	3.6	102
7	Energyâ€Funnelingâ€Based Broadband Visibleâ€Lightâ€Absorbing Bodipy–C ₆₀ Triads and Tetrads Dual Functional Heavyâ€Atomâ€Free Organic Triplet Photosensitizers for Photocatalytic Organic Reactions. Chemistry - A European Journal, 2013, 19, 17472-17482.	as 3.3	129
8	A bioprobe based on aggregation induced emission (AIE) for cell membrane tracking. Chemical Communications, 2013, 49, 11335.	4.1	122
9	Red-light-absorbing diimine Pt(ii) bisacetylide complexes showing near-IR phosphorescence and long-lived 3IL excited state of Bodipy for application in triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 14374.	3.3	44
10	[C70] Fullerene-sensitized triplet–triplet annihilation upconversion. Chemical Communications, 2013, 49, 10829.	4.1	30
11	Highly efficient NIR to NIR and VIS upconversion in Er3+ and Yb3+ doped in M2O2S (M = Gd, La, Y). Journal of Materials Chemistry A, 2013, 1, 11595.	10.3	92
12	Upconversion luminescence imaging of cells and small animals. Nature Protocols, 2013, 8, 2033-2044.	12.0	253
13	C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation/[3+2] cycloaddition reactions to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 3751.	4.1	97
14	Bodipy Derivatives as Organic Triplet Photosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines and Photooxidation of Dihydroxylnaphthalenes. Journal of Organic Chemistry, 2013, 78, 5627-5637.	3.2	175
15	Organocatalytic visible light mediated synthesis of aryl sulfides. Chemical Communications, 2013, 49, 5507.	4.1	130
16	Observation of the long-lived triplet excited state of perylenebisimide (PBI) in C^N cyclometalated Ir(iii) complexes and application in photocatalytic oxidation. Dalton Transactions, 2013, 42, 9595.	3.3	44
17	meso-Pyridyl BODIPYs with tunable chemical, optical and electrochemical properties. New Journal of Chemistry, 2013, 37, 2663.	2.8	38
18	Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2013, 135, 10566-10578.	13.7	211
19	Visible light-harvesting trans bis(alkylphosphine) platinum(ii)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Transactions, 2013, 42, 10694.	3.3	40

#	Article	IF	CITATIONS
20	Photon Upconversion by Triplet–Triplet Annihilation in Ru(bpy) ₃ - and DPA-Functionalized Polymers. Journal of Physical Chemistry Letters, 2013, 4, 4113-4118.	4.6	79
21	Luminescent Gold Nanodots for Detection of Heavy Metal Ions, Proteins and Bacteria. ACS Symposium Series, 2013, , 23-38.	0.5	4
23	Multifunctional material based on ionic transition metal complexes and gold–silica nanoparticles: Synthesis and photophysical characterization for application in imaging and therapy. Journal of Photochemistry and Photobiology B: Biology, 2014, 140, 396-404.	3.8	21
24	Intensive up-conversion photoluminescence of Er ³⁺ -doped Bi ₇ Ti ₄ NbO ₂₁ ferroelectric ceramics and its temperature sensing. Journal of Advanced Dielectrics, 2014, 04, 1450028.	2.4	14
25	Enhanced Singlet Oxygen Production by Photodynamic Therapy and a Novel Method for Its Intracellular Measurement. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29, 435-443.	1.0	19
26	Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy. Advanced Functional Materials, 2014, 24, 4823-4830.	14.9	197
27	Metalâ€Freeâ€Mediated Oxidation Aromatization of 1,4â€Dihydropyridines to Pyridines Using Visible Light and Air. Chinese Journal of Chemistry, 2014, 32, 1245-1250.	4.9	26
28	Efficient synthesis of pyrene-1-carbothioamides and carboxamides. Tunable solid-state fluorescence of pyrene-1-carboxamides. RSC Advances, 2014, 4, 56003-56012.	3.6	21
29	Pyrene-Fullerene C60 Dyads as Light-Harvesting Antennas. Molecules, 2014, 19, 352-366.	3.8	17
30	Immobilized Organic Photosensitizers with Versatile Reactivity for Various Visibleâ€Light Applications. Photochemistry and Photobiology, 2014, 90, 358-368.	2.5	13
31	Resonance energy transfer-enhanced rhodamine–styryl Bodipy dyad triplet photosensitizers. Journal of Materials Chemistry C, 2014, 2, 3900-3913.	5.5	50
32	Light-Driven Hydrogen Evolution by BODIPY-Sensitized Cobaloxime Catalysts. Inorganic Chemistry, 2014, 53, 4527-4534.	4.0	72
33	New 2,6â€Distyrylâ€Substituted BODIPY Isomers: Synthesis, Photophysical Properties, and Theoretical Calculations. Chemistry - A European Journal, 2014, 20, 1091-1102.	3.3	64
34	Triplet–triplet annihilation photon-upconversion: towards solar energy applications. Physical Chemistry Chemical Physics, 2014, 16, 10345-10352.	2.8	290
35	Synthesis and photophysical properties of platinum(II) arylacetylides with donor–acceptor structures. Journal of Organometallic Chemistry, 2014, 752, 6-11.	1.8	5
36	Singlet Oxygen Generation by Cyclometalated Complexes and Applications. Photochemistry and Photobiology, 2014, 90, 257-274.	2.5	87
37	Synthetic applications of eosin Y in photoredox catalysis. Chemical Communications, 2014, 50, 6688-6699.	4.1	868
38	Boron-pyridyl-imino-isoindoline dyes: facile synthesis and photophysical properties. Chemical Communications, 2014, 50, 1074-1076.	4.1	72

#	Article	IF	CITATIONS
39	Modulation of Reactive Oxygen Species Photogeneration of Bacteriopheophorbide <i>a</i> Derivatives by Exocyclic E-Ring Opening and Charge Modifications. Journal of Medicinal Chemistry, 2014, 57, 223-237.	6.4	13
40	BODIPY triads triplet photosensitizers enhanced with intramolecular resonance energy transfer (RET): broadband visible light absorption and application in photooxidation. Chemical Science, 2014, 5, 489-500.	7.4	116
41	Strongly emissive long-lived ³ IL excited state of coumarins in cyclometalated Ir(<scp>iii</scp>) complexes used as triplet photosensitizers and application in triplet–triplet annihilation upconversion. Dalton Transactions, 2014, 43, 1672-1683.	3.3	37
42	Switching of the Triplet Excited State of Styryl 2,6-Diiodo-Bodipy and Its Application in Acid-Activatable Singlet Oxygen Photosensitizing. Journal of Organic Chemistry, 2014, 79, 10240-10255.	3.2	38
43	Photoswitching of the Triplet Excited State of DiiodoBodipy-Dithienylethene Triads and Application in Photo-Controllable Triplet–Triplet Annihilation Upconversion. Journal of Organic Chemistry, 2014, 79, 10855-10866.	3.2	39
44	Broadband Visibleâ€Lightâ€Harvesting <i>trans</i> â€Bis(alkylphosphine) Platinum(II)â€Alkynyl Complexes with Singlet Energy Transfer between BODIPY and Naphthalene Diimide Ligands. Chemistry - A European Journal, 2014, 20, 14282-14295.	3.3	27
45	A study of acridine and acridinium-substituted bis(terpyridine)zinc(ii) and ruthenium(ii) complexes as photosensitizers for O2 (1Δg) generation. Photochemical and Photobiological Sciences, 2014, 13, 380-396.	2.9	13
46	Switching of the triplet excited state of rhodamine-C60 dyads. Chemical Communications, 2014, 50, 15627-15630.	4.1	19
47	In-depth exploration of the photophysics of a trinuclear palladium complex. Physical Chemistry Chemical Physics, 2014, 16, 8332-8338.	2.8	10
48	trans-Bis(alkylphosphine) platinum(<scp>ii</scp>)-alkynyl complexes showing broadband visible light absorption and long-lived triplet excited states. Journal of Materials Chemistry C, 2014, 2, 9720-9736.	5.5	33
49	Hyperbranched Unsaturated Polyphosphates as a Protective Matrix for Long-Term Photon Upconversion in Air. Journal of the American Chemical Society, 2014, 136, 11057-11064.	13.7	109
50	Tuning the Spectroscopic, Electrochemical, and Single-Crystal Conductance Properties of a Series of Rhenium-Containing Bithiazoles with Different Donor/Acceptor Hybrids. Organometallics, 2014, 33, 5120-5128.	2.3	8
51	Structural modification strategies for the rational design of red/NIR region BODIPYs. Chemical Society Reviews, 2014, 43, 4778-4823.	38.1	1,076
52	Regioselective Decarboxylative Direct C–H Arylation of Boron Dipyrromethenes (BODIPYs) at 2,6-Positions: A Facile Access to a Diversity-Oriented BODIPY Library. Organic Letters, 2014, 16, 6080-6083.	4.6	80
53	From Molecular Design and Materials Construction to Organic Nanophotonic Devices. Accounts of Chemical Research, 2014, 47, 3448-3458.	15.6	131
54	Cyclometalated Ir(<scp>iii</scp>) complexes with styryl-BODIPY ligands showing near IR absorption/emission: preparation, study of photophysical properties and application as photodynamic/luminescence imaging materials. Journal of Materials Chemistry B, 2014, 2, 2838-2854.	5.8	111
55	Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. Journal of Materials Chemistry C, 2014, 2, 5982-5997.	5.5	155
56	Dicyanopyrazine-derived push–pull chromophores for highly efficient photoredox catalysis. RSC Advances, 2014, 4, 30062-30067.	3.6	89

#	Article	IF	CITATIONS
57	Photoredox catalytic organic reactions promoted with broadband visible light-absorbing Bodipy-iodo-aza-Bodipy triad photocatalyst. RSC Advances, 2014, 4, 36131-36139.	3.6	47
58	Facile synthesis of highly fluorescent BF ₂ complexes bearing isoindolin-1-one ligand. Dalton Transactions, 2014, 43, 7121-7127.	3.3	35
59	The effect of the regioisomeric naphthalimide acetylide ligands on the photophysical properties of N^N Pt(ii) bisacetylide complexes. Dalton Transactions, 2014, 43, 13434.	3.3	20
60	Plasmon-Enhanced Triplet–Triplet Annihilation Using Silver Nanoplates. Journal of Physical Chemistry C, 2014, 118, 6398-6404.	3.1	40
61	Triarylborane-Appended New Triad and Tetrad: Chromogenic and Fluorogenic Anion Recognition. Inorganic Chemistry, 2014, 53, 2776-2786.	4.0	31
62	Unichromophoric Platinum-Acetylides That Contain Pentiptycene Scaffolds: Torsion-Induced Dual Emission and Steric Shielding of Dynamic Quenching. Inorganic Chemistry, 2014, 53, 737-745.	4.0	32
63	Photon Energy Upconverting Nanopaper: A Bioinspired Oxygen Protection Strategy. ACS Nano, 2014, 8, 8198-8207.	14.6	116
64	Targeted Bioimaging and Photodynamic Therapy of Cancer Cells with an Activatable Red Fluorescent Bioprobe. Analytical Chemistry, 2014, 86, 7987-7995.	6.5	262
65	Nonlinear Optical Properties of Conjugated Platinum(II) Acetylides with Multibranched Donor–Acceptor Structures. European Journal of Inorganic Chemistry, 2014, 2014, 2544-2551.	2.0	12
66	Syntheses and photophysical properties of BF ₂ complexes of curcumin analogues. Organic and Biomolecular Chemistry, 2014, 12, 1618-1626.	2.8	65
67	Hexamolybdenum Cluster Complexes with Pyrene and Anthracene Carboxylates: Ultrabright Red Emitters with the Antenna Effect. European Journal of Inorganic Chemistry, 2014, 2014, 2331-2336.	2.0	59
68	Reversible Photoswitching of Triplet–Triplet Annihilation Upconversion Using Dithienylethene Photochromic Switches. Journal of the American Chemical Society, 2014, 136, 9256-9259.	13.7	111
69	BODIPY-based photosensitizers with intense visible light harvesting ability and high ¹ O ₂ quantum yield in aqueous solution. RSC Advances, 2014, 4, 51349-51352.	3.6	24
70	Robust optical oxygen sensors based on polymer-bound NIR-emitting platinum(<scp>ii</scp>)–benzoporphyrins. Journal of Materials Chemistry C, 2014, 2, 7589-7598.	5.5	42
71	Synthesis and spectroscopic properties of novel meso-cyano boron-pyridyl-isoindoline dyes. Organic and Biomolecular Chemistry, 2014, 12, 8223-8229.	2.8	20
72	Bio-inspired enol-degradation for multipurpose oxygen sensing. Chemical Communications, 2014, 50, 13477-13480.	4.1	13
73	Near-infrared emitting lanthanide complexes of porphyrin and BODIPY dyes. Coordination Chemistry Reviews, 2014, 273-274, 87-99.	18.8	70
74	Cell Membrane Tracker Based on Restriction of Intramolecular Rotation. ACS Applied Materials & Interfaces, 2014, 6, 8971-8975.	8.0	100

#	Article	IF	CITATIONS
75	Asymmetrical aza-boron-dipyridomethene derivatives with large Stokes shifts: synthesis and spectroscopic properties. Tetrahedron Letters, 2014, 55, 3792-3796.	1.4	14
76	Perylene-Derived Triplet Acceptors with Optimized Excited State Energy Levels for Triplet–Triplet Annihilation Assisted Upconversion. Journal of Organic Chemistry, 2014, 79, 2038-2048.	3.2	48
77	Triplet–Triplet Annihilation-Induced Up-Converted Delayed Luminescence in Solid-State Organic Composites: Monitoring Low-Energy Photon Up-Conversion at Low Temperatures. Journal of Physical Chemistry C, 2014, 118, 14256-14265.	3.1	42
78	First Sino-German Symposium on "Singlet molecular oxygen and photodynamic effects― Photonics & Lasers in Medicine, 2015, 4, .	0.2	2
79	Pdâ€Catalyzed Functionalization of the Thenoyltrifluoroacetone Coligands by Aromatic Dyes in Bis(cyclometallated) Ir ^{III} Complexes: From Phosphorescence to Fluorescence?Â. European Journal of Inorganic Chemistry, 2015, 2015, 2956-2964.	2.0	11
81	Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission. Angewandte Chemie - International Edition, 2015, 54, 9591-9595.	13.8	85
82	Tandem Regioselective Substitution and Palladiumâ€Catalyzed Ring Fusion Reaction for Coreâ€Expanded Boron Dipyrromethenes with Redâ€Shifted Absorption and Intense Fluorescence. Chemistry - an Asian Journal, 2015, 10, 1979-1986.	3.3	30
84	Design of BODIPY Dyes as Photosensitisers in Multicomponent Catalyst Systems for Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2015, 21, 13549-13552.	3.3	21
85	Measuring Cumulative Exposure to Oxygen with a Diphenylphosphine–Alkyl Naphthaleneimide Luminescence Turnâ€On Dyad. Chemistry - A European Journal, 2015, 21, 11531-11537.	3.3	3
86	Synthesis and Characterization of Farâ€Red/NIRâ€Fluorescent BODIPY Dyes, Solidâ€State Fluorescence, and Application as Fluorescent Tags Attached to Carbon Nanoâ€onions. Chemistry - A European Journal, 2015, 21, 9727-9732.	3.3	49
87	Controllable Chemoselectivity in Visibleâ€Light Photoredox Catalysis: Four Diverse Aerobic Radical Cascade Reactions. Angewandte Chemie - International Edition, 2015, 54, 11443-11447.	13.8	107
88	An Autocatalytic System of Photooxidationâ€Driven Substitution Reactions on a Fe ^{II} ₄ L _{Cage Framework. Angewandte Chemie - International Edition, 2015, 54, 14378-14382.}	13.8	37
90	Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. Materials, 2015, 8, 4421-4456.	2.9	142
91	Synthesis of 3-aminoBODIPY dyes via copper-catalyzed vicarious nucleophilic substitution of 2-halogeno derivatives. Organic and Biomolecular Chemistry, 2015, 13, 3819-3829.	2.8	12
92	Conjugated copolymer–photosensitizer molecular hybrids with broadband visible light absorption for efficient light-harvesting and enhanced singlet oxygen generation. Journal of Materials Chemistry C, 2015, 3, 973-976.	5.5	12
93	The relationship between the boron dipyrromethene (BODIPY) structure and the effectiveness of homogeneous and heterogeneous solar hydrogen-generating systems as well as DSSCs. Physical Chemistry Chemical Physics, 2015, 17, 9716-9729.	2.8	54
94	Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer. Journal of Physical Chemistry A, 2015, 119, 6791-6806.	2.5	46
95	The singlet excited state of BODIPY promoted aerobic cross-dehydrogenative-coupling reactions under visible light. Chemical Communications, 2015, 51, 11256-11259.	4.1	91

#	Article	IF	CITATIONS
96	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.7	4
97	Visible Light-Harvesting Transition Metal Complexes for Triplet–Triplet Annihilation Upconversion. Green Chemistry and Sustainable Technology, 2015, , 171-206.	0.7	0
98	The effects of extended conjugation length of purely organic phosphors on their phosphorescence emission properties. Physical Chemistry Chemical Physics, 2015, 17, 19096-19103.	2.8	17
99	Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems. Journal of the American Chemical Society, 2015, 137, 15299-15307.	13.7	64
100	Triplet–Triplet Excitation Transfer in Palladium Porphyrin–Fullerene and Platinum Porphyrin–Fullerene Dyads. Journal of Physical Chemistry C, 2015, 119, 176-185.	3.1	27
101	Switching of the photophysical properties of Bodipy-derived trans bis(tributylphosphine) Pt(<scp>ii</scp>) bisacetylide complexes with rhodamine as the acid-activatable unit. Dalton Transactions, 2015, 44, 4032-4045.	3.3	11
102	Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. Journal of Physical Chemistry Letters, 2015, 6, 576-580.	4.6	48
103	Photophysics of Acetophenone Interacting with <scp>DNA</scp> : Why the Road to Photosensitization is Open. Photochemistry and Photobiology, 2015, 91, 323-330.	2.5	15
104	HYSCORE on Photoexcited Triplet States. Applied Magnetic Resonance, 2015, 46, 389-409.	1.2	8
105	Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	22
106	Near-infrared-induced electron transfer of an uranyl macrocyclic complex without energy transfer to dioxygen. Chemical Communications, 2015, 51, 6757-6760.	4.1	16
107	DiiodoBodipy-Perylenebisimide Dyad/Triad: Preparation and Study of the Intramolecular and Intermolecular Electron/Energy Transfer. Journal of Organic Chemistry, 2015, 80, 3036-3049.	3.2	49
108	Metal-Free Thiocyanation of Imidazoheterocycles through Visible Light Photoredox Catalysis. Journal of Organic Chemistry, 2015, 80, 8275-8281.	3.2	188
109	Broad-Band N ^{â^§} N Pt(II) Bisacetylide Visible Light Harvesting Complex with Heteroleptic Bodipy Acetylide Ligands. Inorganic Chemistry, 2015, 54, 7803-7817.	4.0	37
110	Application of singlet energy transfer in triplet state formation: broadband visible light-absorbing triplet photosensitizers, molecular structure design, related photophysics and applications. Journal of Materials Chemistry C, 2015, 3, 8735-8759.	5.5	42
111	The effect of heavy atom to two photon absorption properties and intersystem crossing mechanism in aza-boron-dipyrromethene compounds. Dyes and Pigments, 2015, 122, 286-294.	3.7	32
112	Efficient Triplet–Triplet Annihilation-Based Upconversion for Nanoparticle Phototargeting. Nano Letters, 2015, 15, 6332-6338.	9.1	101
113	Near - IR Broadband-Absorbing <i>trans</i> Bisphosphine Pt(II) Bisacetylide Complexes: Preparation and Study of the Photophysics. Inorganic Chemistry, 2015, 54, 7492-7505.	4.0	41

#	Article	IF	CITATIONS
114	Atmospheric oxygen mediated synthesis of pyrazole under visible irradiation. Tetrahedron Letters, 2015, 56, 5831-5835.	1.4	17
115	Synthesis and Photophysics of BF ₂ â€Rigidified Partially Closed Chain Bromotetrapyrroles: Near Infrared Emitters and Photosensitizers. Chemistry - an Asian Journal, 2015, 10, 1327-1334.	3.3	25
116	Broadband Visible Light-Harvesting Naphthalenediimide (NDI) Triad: Study of the Intra-/Intermolecular Energy/Electron Transfer and the Triplet Excited State. Journal of Physical Chemistry A, 2015, 119, 4787-4799.	2.5	24
117	AlE luminogens: emission brightened by aggregation. Materials Today, 2015, 18, 365-377.	14.2	378
118	3,5-Disubstituted-2-(2′-pyridylpyrroles) Ir(III) complexes: Structural and photophysical characterization. Journal of Organometallic Chemistry, 2015, 786, 55-62.	1.8	12
119	DiiodoBodipy-Rhodamine Dyads: Preparation and Study of the Acid-Activatable Competing Intersystem Crossing and Energy Transfer Processes. Journal of Physical Chemistry B, 2015, 119, 4175-4187.	2.6	16
120	Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials, 2015, 56, 140-153.	11.4	227
121	Synergetic effect of C*N^N/C^N^N coordination and the arylacetylide ligands on the photophysical properties of cyclometalated platinum complexes. Journal of Materials Chemistry C, 2015, 3, 2291-2301.	5.5	37
122	The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry, 2015, 116, 193-363.	1.7	12
123	Recent advance of photochromic diarylethenes-containing supramolecular systems. Chinese Chemical Letters, 2015, 26, 817-824.	9.0	34
124	Visible light sensitized isomerization of rhodopsin-based molecular switches. Tetrahedron Letters, 2015, 56, 1991-1993.	1.4	4
125	Using photochemistry to understand and control the production of reactive oxygen species in biological environments. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 306, 1-12.	3.9	17
126	Bodipy–C ₆₀ triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer. Chemical Science, 2015, 6, 3724-3737.	7.4	41
127	Molecular Structure–Intersystem Crossing Relationship of Heavy-Atom-Free BODIPY Triplet Photosensitizers. Journal of Organic Chemistry, 2015, 80, 5958-5963.	3.2	109
128	Thiol-Activated Triplet–Triplet Annihilation Upconversion: Study of the Different Quenching Effect of Electron Acceptor on the Singlet and Triplet Excited States of Bodipy. Journal of Organic Chemistry, 2015, 80, 5674-5686.	3.2	31
130	Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Materials, 2015, 14, 685-690.	27.5	1,404
131	Intracellular Modulation of Excitedâ€State Dynamics in a Chromophore Dyad: Differential Enhancement of Photocytotoxicity Targeting Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 5340-5344.	13.8	140
132	Dimeric and monomeric fac-rhenium(I)tricarbonyl complexes containing 2-(imidazo[1,2-a]pyridin-2-yl)phenolate. Journal of Organometallic Chemistry, 2015, 799-800, 82-89.	1.8	6

#	Article	IF	CITATIONS
133	MLCT sensitizers in photochemical upconversion: past, present, and potential future directions. Dalton Transactions, 2015, 44, 17906-17910.	3.3	32
134	Functionalized Salen ligands linking with non-conjugated bridges: unique and colorful aggregation-induced emission, mechanism, and applications. Journal of Materials Chemistry C, 2015, 3, 11099-11110.	5.5	55
135	Asymmetric boron-complexes containing keto-isoindolinyl and pyridyl groups: solvatochromic fluorescence, efficient solid-state emission and DFT calculations. Journal of Materials Chemistry C, 2015, 3, 12281-12289.	5.5	47
136	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	47.7	6,279
137	Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modularization of Bodipy-based dyad triplet photosensitizers. Journal of Materials Chemistry B, 2015, 3, 9194-9211.	5.8	32
138	Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad. Dalton Transactions, 2015, 44, 19207-19217.	3.3	9
139	Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Physical Chemistry Chemical Physics, 2015, 17, 29090-29096.	2.8	36
140	The triplet excited state of Bodipy: formation, modulation and application. Chemical Society Reviews, 2015, 44, 8904-8939.	38.1	665
141	Conformation-Restricted Partially and Fully Fused BODIPY Dimers as Highly Stable Near-Infrared Fluorescent Dyes. Organic Letters, 2015, 17, 5360-5363.	4.6	61
142	Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chemical Science, 2015, 6, 5824-5830.	7.4	406
143	Intramolecular triplet–triplet energy transfer enhanced triplet–triplet annihilation upconversion with a short-lived triplet state platinum(<scp>ii</scp>) terpyridyl acetylide photosensitizer. RSC Advances, 2015, 5, 70640-70648.	3.6	22
144	Highly Regioselective α-Chlorination of the BODIPY Chromophore with Copper(II) Chloride. Organic Letters, 2015, 17, 4632-4635.	4.6	86
145	Inter-Excited-State Phosphorescence in the Four-Component Relativistic Kohn–Sham Approximation: A Case Study on Lumiflavin. Journal of Physical Chemistry A, 2015, 119, 11911-11921.	2.5	7
146	Switching of the Triplet Excited State of Rhodamine/Naphthaleneimide Dyads: An Experimental and Theoretical Study. Journal of Organic Chemistry, 2015, 80, 568-581.	3.2	24
147	Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 2015, 115, 395-465.	47.7	1,815
148	Photoswitching of triplet–triplet annihilation upconversion showing large emission shifts using a photochromic fluorescent dithienylethene-Bodipy triad as a triplet acceptor/emitter. Chemical Communications, 2015, 51, 1803-1806.	4.1	35
149	Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chemical Society Reviews, 2015, 44, 1680-1713.	38.1	483
150	Switching of the triplet excited state of the C ₆₀ -dimethylaminostyryl BODIPY dyads/triads. Journal of Materials Chemistry C, 2015, 3, 538-550.	5.5	17

#	Article	IF	Citations
151	Shifting the Light Activation of Metallodrugs to the Red and Near-Infrared Region in Anticancer Phototherapy. Comments on Inorganic Chemistry, 2015, 35, 179-213.	5.2	56
152	A Photostable Far-Red/Near-Infrared Conjugated Polymer Photosensitizer with Aggregation-Induced Emission for Image-Guided Cancer Cell Ablation. Macromolecules, 2016, 49, 5017-5025.	4.8	100
153	Rational Design of Push–Pull Fluorene Dyes: Synthesis and Structure–Photophysics Relationship. Chemistry - A European Journal, 2016, 22, 10627-10637.	3.3	53
154	Acidic Condensation of BODIPYs with Aldehydes: A Quick and Versatile Route to Alkenylâ€BODIPYs and C(sp ³) onnected DYEmers. Chemistry - A European Journal, 2016, 22, 10320-10325.	3.3	33
155	Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. Journal of Biophotonics, 2016, 9, 1314-1325.	2.3	148
156	Strongly Enhanced Longâ€Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal–Organic Hybrids. Advanced Optical Materials, 2016, 4, 897-905.	7.3	241
157	Excitonic Coupling in Acyclic and Cyclic Dithioaryl‣inked BODIPY DYEmers. European Journal of Organic Chemistry, 2016, 2016, 2864-2870.	2.4	21
158	Nearâ€Infrared Upconversion Chemodosimeter for In Vivo Detection of Cu ²⁺ in Wilson Disease. Advanced Materials, 2016, 28, 6625-6630.	21.0	115
159	The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chemical Reviews, 2016, 116, 15284-15398.	47.7	170
160	Red to Near-Infrared Isoindole BODIPY Fluorophores: Synthesis, Crystal Structures, and Spectroscopic and Electrochemical Properties. Journal of Organic Chemistry, 2016, 81, 3761-3770.	3.2	46
161	Block Copolymer-Encapsulated CaWO ₄ Nanoparticles: Synthesis, Formulation, and Characterization. ACS Applied Materials & Interfaces, 2016, 8, 8608-8619.	8.0	20
162	Osmium-nitrido corroles as NIR indicators for oxygen sensors and triplet sensitizers for organic upconversion and singlet oxygen generation. Journal of Materials Chemistry C, 2016, 4, 5822-5828.	5.5	52
163	Near-infrared in vivo bioimaging using a molecular upconversion probe. Chemical Communications, 2016, 52, 7466-7469.	4.1	61
164	Bromo-Substituted Diketopyrrolopyrrole Derivative with Specific Targeting and High Efficiency for Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2016, 8, 10737-10742.	8.0	67
165	Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature. Journal of Organic Chemistry, 2016, 81, 4789-4796.	3.2	43
166	Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: towards a solvent-independent standard in the vis region. RSC Advances, 2016, 6, 41991-41998.	3.6	80
167	Enhancement of two photon absorption properties and intersystem crossing by charge transfer in pentaaryl boron-dipyrromethene (BODIPY) derivatives. Physical Chemistry Chemical Physics, 2016, 18, 13546-13553.	2.8	35
168	Enantioselective Aerobic Oxidative C(sp ³)–H Olefination of Amines via Cooperative Photoredox and Asymmetric Catalysis. ACS Catalysis, 2016, 6, 3708-3712.	11.2	127

#	Article	IF	CITATIONS
169	Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods. Physical Chemistry Chemical Physics, 2016, 18, 13332-13345.	2.8	41
170	Visible light triggered, catalyst free approach for the synthesis of thiazoles and imidazo[2,1-b]thiazoles in EtOH : H ₂ O green medium. RSC Advances, 2016, 6, 49164-4917	72 ^{3.6}	49
171	BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers: synthesis and efficient singlet oxygen generators. RSC Advances, 2016, 6, 47600-47606.	3.6	28
172	Green to Blue Annihilated Upconversion from a Simple Iridium(III) Sensitizer with Carboxylic Group. ChemistrySelect, 2016, 1, 2630-2634.	1.5	1
173	g-C ₃ N ₄ Coated Upconversion Nanoparticles for 808 nm Near-Infrared Light Triggered Phototherapy and Multiple Imaging. Chemistry of Materials, 2016, 28, 7935-7946.	6.7	163
174	A Porphyrinâ€Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy. Small, 2016, 12, 6243-6254.	10.0	137
175	Overcoming the Achilles' heel of photodynamic therapy. Chemical Society Reviews, 2016, 45, 6488-6519.	38.1	1,251
176	A new family of thermoplastic photoluminescence polymers. Polymer Chemistry, 2016, 7, 6250-6256.	3.9	36
177	Time–oxygen & light indicating via photooxidation mediated up-conversion. Journal of Materials Chemistry C, 2016, 4, 9986-9992.	5.5	10
178	The enhancement of electron transportation and photo-catalytic activity for hydrogen generation by introducing spin-polarized current into dye-sensitized photo-catalyst. Catalysis Science and Technology, 2016, 6, 7693-7697.	4.1	20
179	A Ru(bipyridine) ₃ [PF ₆] ₂ Complex with a Rhodamine Unit – Synthesis, Photophysical Properties, and Application in Acidâ€Controllable Triplet–Triplet Annihilation Upconversion. European Journal of Inorganic Chemistry, 2016, 2016, 5079-5088.	2.0	8
180	Rhenium(<scp>i</scp>) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO ₂ reduction. Chemical Science, 2016, 7, 6728-6739.	7.4	65
181	Computational Study of the Radical Mediated Mechanism of the Formation of C8, C5, and C4 Guanine:Lysine Adducts in the Presence of the Benzophenone Photosensitizer. Chemical Research in Toxicology, 2016, 29, 1396-1409.	3.3	16
182	Application of BODIPY Dyes in Triplet Photosensitizers. , 2016, , 259-301.		2
183	Phosphorescent Molecular Butterflies with Controlled Potential-Energy Surfaces and Their Application as Luminescent Viscosity Sensor. Inorganic Chemistry, 2016, 55, 8564-8569.	4.0	38
184	Rational Design of Emissive NIRâ€Absorbing Chromophores: Rh ^{III} Porphyrinâ€Azaâ€BODIPY Conjugates with Orthogonal Metal–Carbon Bonds. Chemistry - A European Journal, 2016, 22, 13201-13209.	3.3	17
185	BODIPYâ€Appended 2â€{2â€Pyridyl)benzimidazole Platinum(II) Catecholates for Mitochondriaâ€Targeted Photocytotoxicity. ChemMedChem, 2016, 11, 1956-1967.	3.2	31
186	Deepâ€Red Phosphorescent Iridium(III) Complexes with Chromophoric Nâ€Heterocyclic Carbene Ligands: Design, Photophysical Properties, and DFT Calculations. European Journal of Inorganic Chemistry, 2016, 2016, 1631-1634.	2.0	29

#	Article	IF	CITATIONS
187	Synthesis of <i>N</i> -Containing Heterocyclic Compounds Using Visible-light Photoredox Catalysis. Chemical Record, 2016, 16, 319-334.	5.8	68
188	Accessing the Long-Lived Triplet Excited States in Transition-Metal Complexes: Molecular Design Rationales and Applications. Chemical Record, 2016, 16, 173-188.	5.8	36
189	Photoluminescent nanoplatforms in biomedical applications. Advances in Physics: X, 2016, 1, 194-225.	4.1	18
190	Synthesis of Diphenylchalcogenophene Diboronic Acid Bis(pinacol) Esters and Halogen Photoelimination from Tellurium by Triplet–Triplet Annihilation. ChemPlusChem, 2016, 81, 917-921.	2.8	6
191	Highly Efficient Triplet Photosensitizers: A Systematic Approach to the Application of Ir ^{III} Complexes containing Extended Phenanthrolines. Chemistry - A European Journal, 2016, 22, 11349-11356.	3.3	23
192	A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus. Journal of Materials Chemistry B, 2016, 4, 5975-5979.	5.8	85
193	Visible Light Photocatalytic Aerobic Oxygenation of Indoles and pH as a Chemoselective Switch. ACS Catalysis, 2016, 6, 6853-6860.	11.2	143
194	Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.	4.1	68
195	Synthesis and photophysical properties of orthogonal rhodium(<scp>iii</scp>)–carbon bonded porphyrin–aza-BODIPY conjugates. Journal of Materials Chemistry C, 2016, 4, 8422-8428.	5.5	13
196	Singlet Oxygen Generation and Photoinduced Charge Separation of Tetra Polyethyleneglycol Functionalized Zinc Phthalocyanineâ€Fullerene Dyad. Chinese Journal of Chemistry, 2016, 34, 969-974.	4.9	2
197	Synthesis and physicochemical properties of polyacrylamide nanoparticles as photosensitizer carriers. International Journal of Pharmaceutics, 2016, 512, 213-218.	5.2	17
198	Photocatalytic Water Splitting. Green Energy and Technology, 2016, , 159-174.	0.6	2
199	Photo-powered stretchable nano-containers based on well-defined vesicles formed by an overcrowded alkene switch. Chemical Communications, 2016, 52, 12056-12059.	4.1	30
200	Highly efficient near IR photosensitizers based-on Ir–C bonded porphyrin-aza-BODIPY conjugates. RSC Advances, 2016, 6, 72115-72120.	3.6	13
201	Syntheses and Photophysical Properties of <i>meso</i> â€Phenylene ridged Boron Dipyrromethene Monomers, Dimers and Trimer. Chinese Journal of Chemistry, 2016, 34, 989-996.	4.9	14
202	Photophysical Properties of Visibleâ€Lightâ€Harvesting Pt ^{II} Bis(acetylide) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 5283-5299.	2.0	27
203	A macromolecular cyclometalated gold(<scp>iii</scp>) amphiphile displays long-lived emissive excited state in water: self-assembly and in vitro photo-toxicity. Chemical Communications, 2016, 52, 13273-13276.	4.1	22
204	Thio-bisnaphthalimides as Heavy-Atom-Free Photosensitizers with Efficient Singlet Oxygen Generation and Large Stokes Shifts: Synthesis and Properties. Organic Letters, 2016, 18, 5664-5667.	4.6	24

#	Article	IF	CITATIONS
205	Iridium(III) Complexes Bearing Pyreneâ€Functionalized 1,10â€Phenanthroline Ligands as Highly Efficient Sensitizers for Triplet–Triplet Annihilation Upconversion. Angewandte Chemie - International Edition, 2016, 55, 14688-14692.	13.8	61
206	Iridium(III) Complexes Bearing Pyreneâ€Functionalized 1,10â€Phenanthroline Ligands as Highly Efficient Sensitizers for Triplet–Triplet Annihilation Upconversion. Angewandte Chemie, 2016, 128, 14908-14912.	2.0	15
207	Pd–Porphyrin Oligomers Sensitized for Greenâ€ŧoâ€Blue Photon Upconversion: The More the Better?. Chemistry - A European Journal, 2016, 22, 8654-8662.	3.3	26
208	Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chemical Society Reviews, 2016, 45, 4668-4689.	38.1	105
209	Organic Photoredox Catalysis. Chemical Reviews, 2016, 116, 10075-10166.	47.7	4,263
210	Aqueous-Medium Carbon–Carbon Bond-Forming Radical Reactions Catalyzed by Excited Rhodamine B as a Metal-Free Organic Dye under Visible Light Irradiation. Journal of Organic Chemistry, 2016, 81, 7217-7229.	3.2	41
211	Enhanced room-temperature phosphorescence of triphenylphosphine derivatives without metal and heavy atoms in their crystal phase. RSC Advances, 2016, 6, 51683-51686.	3.6	22
212	A gadolinium(iii) complex that shows room-temperature phosphorescence in the crystalline state. Dalton Transactions, 2016, 45, 11620-11623.	3.3	8
213	Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands. Inorganic Chemistry, 2016, 55, 6223-6230.	4.0	23
214	Synthesis, structure and properties of thiophene-fused BODIPYs and azaBODIPYs as near-infrared agents. New Journal of Chemistry, 2016, 40, 5966-5975.	2.8	31
215	Synthesis, structure and photophysical properties of near-infrared 3,5-diarylbenzoBODIPY fluorophores. RSC Advances, 2016, 6, 52180-52188.	3.6	15
216	Recent progress in the mechanochromism of phosphorescent organic molecules and metal complexes. Journal of Materials Chemistry C, 2016, 4, 6688-6706.	5.5	359
217	Dual phosphorescent dinuclear transition metal complexes, and their application as triplet photosensitizers for TTA upconversion and photodynamic therapy. Journal of Materials Chemistry C, 2016, 4, 6131-6139.	5.5	65
218	Near Infrared Phosphorescent, Nonâ€oxidizable Palladium and Platinum Perfluoroâ€phthalocyanines. ChemPhysChem, 2016, 17, 1123-1135.	2.1	12
219	Functionalized Paddle Wheel Complexes from BODIPY Carboxylic Acids. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 107-117.	1.2	6
220	Photo-induced electron transfer in a diamino-substituted Ru(bpy)3[PF6]2 complex and its application as a triplet photosensitizer for nitric oxide (NO)-activated triplet–triplet annihilation upconversion. Photochemical and Photobiological Sciences, 2016, 15, 995-1005.	2.9	18
221	Regioselective and Stepwise Syntheses of Functionalized BODIPY Dyes through Palladium-Catalyzed Cross-Coupling Reactions and Direct C–H Arylations. Journal of Organic Chemistry, 2016, 81, 6281-6291.	3.2	49
222	Photocatalytic Reaction of Diazo Compounds with Aldehydes. Advanced Synthesis and Catalysis, 2016, 358, 1671-1678.	4.3	26

#	Article	IF	CITATIONS
223	The internal heavy-atom effect on 3-phenylselanyl and 3-phenyltellanyl BODIPY derivatives studied by transient absorption spectroscopy. Photochemical and Photobiological Sciences, 2016, 15, 250-259.	2.9	29
224	Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS Applied Materials & Interfaces, 2016, 8, 3591-3600.	8.0	63
225	New cyclometalated transition-metal based photosensitizers for singlet oxygen generation and photodynamic therapy. Science China Chemistry, 2016, 59, 40-52.	8.2	46
226	Triplet excited state of diiodoBOPHY derivatives: preparation, study of photophysical properties and application in triplet–triplet annihilation upconversion. Journal of Materials Chemistry C, 2016, 4, 1623-1632.	5.5	41
227	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	3.0	122
228	Bactericidal effect through non-uptake pathway with photofunctional silicon polymer that generates reactive oxygen species. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315, 52-58.	3.9	10
229	Long-afterglow metal–organic frameworks: reversible guest-induced phosphorescence tunability. Chemical Science, 2016, 7, 4519-4526.	7.4	376
230	Synthesis and properties of azulene-functionalized BODIPYs. RSC Advances, 2016, 6, 32124-32129.	3.6	18
231	Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins. Journal of Chemical Theory and Computation, 2016, 12, 2324-2334.	5.3	9
232	Synthesis and spectroscopic properties of novel N–N linked bis-(diphenylboron) complexes. New Journal of Chemistry, 2016, 40, 5752-5757.	2.8	10
233	Bodipy-based photosensitizers with long alkyl tails at the meso position: efficient singlet oxygen generation in Cremophor-EL micelles. Tetrahedron Letters, 2016, 57, 1317-1320.	1.4	13
234	Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow. Catalysis Science and Technology, 2016, 6, 4695-4699.	4.1	28
235	An experimental and theoretical study of dimethylaminostyryl BODIPY-perylenetetracarboxylic derivative dyads: synthesis, properties and DFT calculation. RSC Advances, 2016, 6, 23094-23101.	3.6	10
236	Synthesis of covalently bonded boron-dipyrromethene–diarylethene for building a stable photosensitizer with photo-controlled reversibility. Chemical Communications, 2016, 52, 5470-5473.	4.1	21
237	Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films. Chemical Science, 2016, 7, 1233-1237.	7.4	106
238	A reduction-responsive polypeptide nanogel encapsulating NIR photosensitizer for imaging guided photodynamic therapy. Polymer Chemistry, 2016, 7, 951-957.	3.9	57
239	Amplified Singlet Oxygen Generation in Semiconductor Polymer Dots for Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2016, 8, 3624-3634.	8.0	124
240	Pluronic® mixed micelles as efficient nanocarriers for benzoporphyrin derivatives applied to photodynamic therapy in cancer cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 143-154.	3.9	59

#	ARTICLE	IF	CITATIONS
241	Preparation of Bodipy–ferrocene dyads and modulation of the singlet/triplet excited state of bodipy via electron transfer and triplet energy transfer. Journal of Materials Chemistry C, 2016, 4, 2843-2853.	5.5	34
242	Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chemical Science, 2017, 8, 6060-6065.	7.4	135
243	A GSH-activatable ruthenium(<scp>ii</scp>)-azo photosensitizer for two-photon photodynamic therapy. Chemical Communications, 2017, 53, 1977-1980.	4.1	94
244	Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Letters, 2017, 2, 445-453.	17.4	214
245	Molecular–Supramolecular Light Harvesting for Photochemical Energy Conversion: Making Every Photon Count. ACS Energy Letters, 2017, 2, 357-363.	17.4	47
246	The Strong Lightâ€Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Advanced Science, 2017, 4, 1600484.	11.2	472
247	Remote Terpyridine Integrated NHC–Ir ^{III} Luminophores as Potential Dualâ€Emissive Ratiometric O ₂ Probes. Chemistry - A European Journal, 2017, 23, 4770-4773.	3.3	17
248	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	3.3	87
249	Photophysics of chlorin e6: from one- and two-photon absorption to fluorescence and phosphorescence. RSC Advances, 2017, 7, 10992-10999.	3.6	36
250	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	14.9	483
251	A highly sensitive and selective visible-light excitable luminescent probe for singlet oxygen based on a dinuclear ruthenium complex. Dalton Transactions, 2017, 46, 3325-3331.	3.3	23
252	Tuning the Ground State and Excited State Properties of Monocationic Iridium(III) Complexes by Varying the Site of Benzannulation on Diimine Ligand. Inorganic Chemistry, 2017, 56, 5361-5370.	4.0	33
253	Binuclear Ru–Ru and Ir–Ru complexes for deep red emission and photocatalytic water reduction. Journal of Materials Chemistry A, 2017, 5, 9807-9814.	10.3	22
254	Novel Bodipy- triazine conjugates: Synthesis and the generation of singlet oxygen. Dyes and Pigments, 2017, 143, 455-462.	3.7	20
255	Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 13746-13755.	2.8	13
256	Azonia aromatic heterocycles as a new acceptor unit in D-Ï€-A + vs D-A + nonlinear optical chromophores. Dyes and Pigments, 2017, 144, 17-31.	3.7	11
257	Broadband Visible Light Harvesting N^N Pt(II) Bisacetylide Complex with Bodipy and Naphthalene Diimide Ligands: Förster Resonance Energy Transfer and Intersystem Crossing. Journal of Physical Chemistry C, 2017, 121, 11117-11128.	3.1	26
258	Radical-Enhanced Intersystem Crossing in New Bodipy Derivatives and Application for Efficient Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2017, 139, 7831-7842.	13.7	152

#	Article	IF	CITATIONS
259	Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents. Dalton Transactions, 2017, 46, 8091-8103.	3.3	56
260	AcetylacetonateBODIPYâ€Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents. Chemistry - A European Journal, 2017, 23, 10139-10147.	3.3	38
262	CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion. Chemical Science, 2017, 8, 5488-5496.	7.4	98
263	Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation. Chemical Science, 2017, 8, 5889-5901.	7.4	16
264	A quantitative analysis of lightâ€driven charge transfer processes using voronoi partitioning of time dependent DFTâ€derived electron densities. Journal of Computational Chemistry, 2017, 38, 1811-1818.	3.3	9
265	Ultrafast Carrier Dynamics and Efficient Triplet Generation in Black Phosphorus Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 12972-12978.	3.1	26
266	Aza boron-pyridyl-isoindoline analogues: synthesis and photophysical properties. New Journal of Chemistry, 2017, 41, 5802-5807.	2.8	4
267	Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catalysis, 2017, 7, 4602-4612.	11.2	70
268	Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2]. Structural Dynamics, 2017, 4, 044030.	2.3	41
269	Versatile Polymer Nanoparticles as Twoâ€Photonâ€Triggered Photosensitizers for Simultaneous Cellular, Deepâ€Tissue Imaging, and Photodynamic Therapy. Advanced Healthcare Materials, 2017, 6, 1601431.	7.6	35
270	Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 26-31.	3.9	13
271	Preparation of BODIPY- fullerene and monostyryl BODIPY-fullerene dyads as heavy atom free singlet oxygen generators. Dyes and Pigments, 2017, 142, 340-349.	3.7	29
272	A versatile fluorescent molecular probe endowed with singlet oxygen generation under white-light photosensitization. Dyes and Pigments, 2017, 142, 77-87.	3.7	14
273	Phosphorescent platinum(<scp>ii</scp>) alkynyls end-capped with benzothiazole units. Dalton Transactions, 2017, 46, 4628-4641.	3.3	14
274	Activating efficient room temperature phosphorescence of carbon dots by synergism of orderly non-noble metals and dual structural confinements. Nanoscale, 2017, 9, 6658-6664.	5.6	106
275	Defective Metal–Organic Frameworks Incorporating Iridiumâ€Based Metalloligands: Sorption and Dye Degradation Properties. Chemistry - A European Journal, 2017, 23, 6615-6624.	3.3	44
276	Photofunctional multinuclear rhenium(<scp>i</scp>) diimine carbonyl complexes. Dalton Transactions, 2017, 46, 8899-8919.	3.3	32
277	Long Persistent Phosphorescence of Crystalline Phenylboronic Acid Derivatives: Photophysics and a Mechanistic Study. ChemPhotoChem, 2017, 1, 102-106.	3.0	62

#	Article	IF	CITATIONS
278	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	13.8	250
279	Solvent effects on the triplet–triplet annihilation upconversion of diiodo-Bodipy and perylene. Physical Chemistry Chemical Physics, 2017, 19, 1516-1525.	2.8	52
280	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie, 2017, 129, 898-902.	2.0	90
281	A Tris(diisocyanide)chromium(0) Complex Is a Luminescent Analog of Fe(2,2′-Bipyridine) ₃ ²⁺ . Journal of the American Chemical Society, 2017, 139, 985-992.	13.7	141
282	Sunlightâ€Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems. ChemSusChem, 2017, 10, 894-902.	6.8	44
283	Oneâ€Pot Preparation of Nonâ€Symmetric <i>meso</i> â€Arylâ€BODIPYs: Functional Derivatives with Unusual Reactivity. European Journal of Organic Chemistry, 2017, 2017, 77-86.	2.4	8
284	Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem, 2017, 12, 1908-1916.	3.2	13
285	Singly and Doubly N-Confused Calix[4]phyrin Organoplatinum(II) Complexes as Near-IR Triplet Sensitizers. Inorganic Chemistry, 2017, 56, 12572-12580.	4.0	32
286	Synthesis, photophysics of a novel green light emitting 1,3,4-oxadiazole and its application in FRET with ZnSe/ZnS QDs donor. Journal of Molecular Liquids, 2017, 248, 350-359.	4.9	16
287	Molecular Road Map to Tuning Ground State Absorption and Excited State Dynamics of Long-Wavelength Absorbers. Journal of the American Chemical Society, 2017, 139, 16946-16958.	13.7	30
288	Photosensitization of Fluorofuroxans and Its Application to the Development of Visible Light-Triggered Nitric Oxide Donor. Journal of Organic Chemistry, 2017, 82, 9647-9654.	3.2	20
289	Ammonium Arylspiroborate Compounds: Synthesis, Crystal Structure, Fluorescence Properties, and Antibacterial Activity. Organometallics, 2017, 36, 3293-3303.	2.3	8
290	Diketopyrrolopyrrole-Based Photosensitizers Conjugated with Chemotherapeutic Agents for Multimodal Tumor Therapy. ACS Applied Materials & Interfaces, 2017, 9, 30398-30405.	8.0	39
291	High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. Materials Horizons, 2017, 4, 1110-1114.	12.2	122
292	Bodipy-squaraine triads: Preparation and study of the intramolecular energy transfer, charge separation and intersystem crossing. Dyes and Pigments, 2017, 147, 560-572.	3.7	12
293	PET-based bisBODIPY photosensitizers for highly efficient excited triplet state and singlet oxygen generation: tuning photosensitizing ability by dihedral angles. Physical Chemistry Chemical Physics, 2017, 19, 24792-24804.	2.8	55
294	A green and clean pathway: one pot, multicomponent, and visible light assisted synthesis of pyrano[2,3-c]pyrazoles under catalyst-free and solvent-free conditions. New Journal of Chemistry, 2017, 41, 11148-11154.	2.8	44
295	Expanding Anti‣tokes Shifting in Triplet–Triplet Annihilation Upconversion for Inâ€Vivo Anticancer Prodrug Activation. Angewandte Chemie, 2017, 129, 14592-14596.	2.0	30

#	Article	IF	CITATIONS
296	Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano, 2017, 11, 10124-10134.	14.6	182
297	Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 2017, 7, 8885.	3.3	19
298	Development of Visible-Light Induced Photoelectrochemical Platform Based on Cyclometalated Iridium(III) Complex for Bioanalysis. Analytical Chemistry, 2017, 89, 11098-11106.	6.5	40
299	Expanding Antiâ€&tokes Shifting in Triplet–Triplet Annihilation Upconversion for Inâ€Vivo Anticancer Prodrug Activation. Angewandte Chemie - International Edition, 2017, 56, 14400-14404.	13.8	119
300	Photoinduced Electron Transferâ€based Halogenâ€free Photosensitizers: Covalent <i>meso</i> â€Aryl (Phenyl, Naphthyl, Anthryl, and Pyrenyl) as Electron Donors to Effectively Induce the Formation of the Excited Triplet State and Singlet Oxygen for BODIPY Compounds. Chemistry - an Asian Journal, 2017, 12, 2447-2456.	3.3	68
301	Spectroscopic signatures of triplet states in acenes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 154007.	1.5	4
302	An N^N Platinum(II) Bis(acetylide) Complex with Naphthalimide and Pyrene Ligands: Synthesis, Photophysical Properties, and Application in Triplet–Triplet Annihilation Upconversion. European Journal of Inorganic Chemistry, 2017, 2017, 5196-5204.	2.0	22
303	Improving photocatalytic oxygenation mediated by polymer supported photosensitizers using semiconductor quantum dots as â€ĩlight antennas'. RSC Advances, 2017, 7, 35154-35158.	3.6	9
304	Targeted Delivery of a Mannose onjugated BODIPY Photosensitizer by Nanomicelles for Photodynamic Breast Cancer Therapy. Chemistry - A European Journal, 2017, 23, 14307-14315.	3.3	67
305	Cyclopropyl Group: An Excitedâ€5tate Aromaticity Indicator?. Chemistry - A European Journal, 2017, 23, 13684-13695.	3.3	10
306	Bodipy–Anthracene Dyads as Triplet Photosensitizers: Effect of Chromophore Orientation on Triplet-State Formation Efficiency and Application in Triplet–Triplet Annihilation Upconversion. Organic Letters, 2017, 19, 4492-4495.	4.6	155
307	Novel distyryl BODIPY–fullerene dyads: preparation, characterization and photosensitized singlet oxygen generation efficiency. New Journal of Chemistry, 2017, 41, 10424-10431.	2.8	13
308	Highly effective thieno[2,3-b]indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy. Dyes and Pigments, 2017, 147, 270-282.	3.7	30
309	Ketones as directing groups in photocatalytic sp ³ C–H fluorination. Chemical Science, 2017, 8, 6918-6923.	7.4	75
310	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	47.7	266
311	Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic processes. Nanoscale, 2017, 9, 19279-19289.	5.6	33
312	Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Advanced Science, 2017, 4, 1700113.	11.2	122
313	A highly selective visible light excitable boron dipyrromethene probe for cysteine over homocysteine and glutathione based on a Michael addition reaction. Sensors and Actuators B: Chemical, 2017, 253, 1079-1086.	7.8	25

#	Article	IF	Citations
314	Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chemical Communications, 2017, 53, 8727-8730.	4.1	94
315	PyrrolylBODIPYs: Syntheses, Properties, and Application as Environment-Sensitive Fluorescence Probes. ACS Omega, 2017, 2, 3551-3561.	3.5	17
316	Long-lasting phosphorescence with a tunable color in a Mn ²⁺ -doped anionic metal–organic framework. Journal of Materials Chemistry C, 2017, 5, 7898-7903.	5.5	56
317	Homo- or Hetero-Triplet–Triplet Annihilation? A Case Study with Perylene-BODIPY Dyads/Triads. Journal of Physical Chemistry C, 2017, 121, 16182-16192.	3.1	26
318	Intersystem crossing and triplet excited state properties of thionated naphthalenediimide derivatives. Journal of Luminescence, 2017, 192, 211-217.	3.1	36
319	Aggregation-induced emission nanoparticles as photosensitizer for two-photon photodynamic therapy. Materials Chemistry Frontiers, 2017, 1, 1746-1753.	5.9	82
320	Structure-Photoproperties Relationship Investigation of the Singlet Oxygen Formation in Porphyrin-Fullerene Dyads. Journal of Fluorescence, 2017, 27, 1855-1869.	2.5	6
321	Tuning the nonlinear optical properties of BODIPYs by functionalization with dimethylaminostyryl substituents. Dyes and Pigments, 2017, 137, 507-511.	3.7	40
322	Metal-complex chromophores for solar hydrogen generation. Chemical Society Reviews, 2017, 46, 603-631.	38.1	342
323	Study on the Synthesis, Photophysical Properties and Singlet Oxygen Generation Behavior of Bodipy-Functionalized Cyclotriphosphazenes. Journal of Fluorescence, 2017, 27, 595-601.	2.5	10
324	Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials, 2017, 112, 324-335.	11.4	226
325	Photoexcited Triplet State Kinetics Studied by Electron Paramagnetic Resonance Spectroscopy. ChemPhysChem, 2017, 18, 6-16.	2.1	34
326	Synthesis, spectroscopic properties and photodynamic activity of two cationic BODIPY derivatives with application in the photoinactivation of microorganisms. European Journal of Medicinal Chemistry, 2017, 126, 110-121.	5.5	50
327	Phenyleneanthracene derivatives as triplet energy acceptor/emitter in red light excitable triplet-triplet-annihilation upconversion. Dyes and Pigments, 2017, 136, 909-918.	3.7	40
328	Layered host–guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science, 2017, 8, 590-599.	7.4	188
329	Eco-Friendly Solid-State Upconversion Hydrogel with Thermoresponsive Feature as the Temperature Indicator. Journal of Physical Chemistry C, 2017, 121, 20158-20164.	3.1	40
331	β-Formyl- and β-Vinylporphyrins: Magic Building Blocks for Novel Porphyrin Derivatives. Molecules, 2017, 22, 1269.	3.8	25
332	Heavy-atom effect on optically excited triplet state kinetics. PLoS ONE, 2017, 12, e0184239.	2.5	3

#	Article	IF	CITATIONS
333	Synthesis, spectroscopic studies and biological evaluation of acridine derivatives: The role of aggregation on the photodynamic efficiency. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 869-874.	2.2	12
334	Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coordination Chemistry Reviews, 2018, 362, 54-71.	18.8	201
335	Elucidating the Solution-Phase Structure and Behavior of 8-Hydroxyquinoline Zinc in DMSO. Journal of Physical Chemistry A, 2018, 122, 2906-2914.	2.5	4
336	Exploiting the benefit of S ₀ → T ₁ excitation in triplet–triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2′-bipyridine) osmium(<scp>ii</scp>) complex. Dalton Transactions, 2018, 47, 8619-8628.	3.3	36
338	Theoretical insight into the excitedâ€state proton transfer process: Role of the substituent â€CN on HBT system. Journal of Physical Organic Chemistry, 2018, 31, e3832.	1.9	5
339	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	12.8	764
340	Mitochondria-localizing BODIPY–copper(<scp>ii</scp>) conjugates for cellular imaging and photo-activated cytotoxicity forming singlet oxygen. Dalton Transactions, 2018, 47, 5019-5030.	3.3	28
341	Ping-Pong Energy Transfer in a Boron Dipyrromethane Containing Pt(II)–Schiff Base Complex: Synthesis, Photophysical Studies, and Anti-Stokes Shift Increase in Triplet–Triplet Annihilation Upconversion. Inorganic Chemistry, 2018, 57, 4877-4890.	4.0	39
342	Significant Enhancement of Photothermal and Photoacoustic Efficiencies for Semiconducting Polymer Nanoparticles through Simply Molecular Engineering. Advanced Functional Materials, 2018, 28, 1800135.	14.9	68
343	Ligandâ€Tuneable, Redâ€Emitting Iridium(III) Complexes for Efficient Triplet–Triplet Annihilation Upconversion Performance. Chemistry - A European Journal, 2018, 24, 8577-8588.	3.3	27
344	A fullerene-rhodamine B photosensitizer with pH-activated visible-light absorbance/fluorescence/photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 2778-2784.	5.8	48
345	Benchmarking triplet–triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 2018, 20, 12182-12192.	2.8	19
346	Metal free room temperature phosphorescence from molecular self-interactions in the solid state. Journal of Materials Chemistry C, 2018, 6, 4603-4626.	5.5	239
347	3D Long-Range Triplet Migration in a Water-Stable Metal–Organic Framework for Upconversion-Based Ultralow-Power <i>in Vivo</i> Imaging. Journal of the American Chemical Society, 2018, 140, 5493-5499.	13.7	144
348	Facile, Quick, and Gramâ€Scale Synthesis of Ultralongâ€Lifetime Roomâ€Temperatureâ€Phosphorescent Carbon Dots by Microwave Irradiation. Angewandte Chemie - International Edition, 2018, 57, 6216-6220.	13.8	474
349	Translating MOF chemistry into supramolecular chemistry: soluble coordination nanofibers showing efficient photon upconversion. Chemical Communications, 2018, 54, 6828-6831.	4.1	15
350	Recent progress in heavy atom-free organic compounds showing unexpected intersystem crossing (ISC) ability. Organic and Biomolecular Chemistry, 2018, 16, 3692-3701.	2.8	105
351	Facile, Quick, and Gramâ€Scale Synthesis of Ultralongâ€Lifetime Roomâ€Temperatureâ€Phosphorescent Carbon Dots by Microwave Irradiation. Angewandte Chemie, 2018, 130, 6324-6328.	2.0	35

#	Article	IF	CITATIONS
352	Novel BODIPY-Cyclotriphosphazene- Fullerene triads: Synthesis, characterization and singlet oxygen generation efficiency. Dyes and Pigments, 2018, 153, 26-34.	3.7	16
353	Light-induced oxidant production by fluorescent proteins. Free Radical Biology and Medicine, 2018, 128, 157-164.	2.9	51
354	Cyclometalated N-heterocyclic carbene iridium(<scp>iii</scp>) complexes with naphthalimide chromophores: a novel class of phosphorescent heteroleptic compounds. Dalton Transactions, 2018, 47, 3440-3451.	3.3	23
355	Efficient Red/Nearâ€Infrared Fluorophores Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> â€2]dithiophene 1,1,5,5â€Tetraoxide for Targeted Photodynamic Therapy and In Vivo Twoâ€Photon Fluorescence Bioimaging. Advanced Functional Materials, 2018, 28, 1706945.	14.9	96
356	Diarylethenes with a Narrow Singlet–Triplet Energy Gap Sensitizer: a Simple Strategy for Efficient Visible‣ight Photochromism. Advanced Optical Materials, 2018, 6, 1700847.	7.3	37
357	A combined experimental and computational investigation on pyrene based D–π–A dyes. Physical Chemistry Chemical Physics, 2018, 20, 6264-6273.	2.8	11
358	Recent progress in upconversion luminescence nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 192-209.	5.8	192
359	Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding. Advanced Functional Materials, 2018, 28, 1705045.	14.9	244
360	New Bichromophoric Triplet Photosensitizer Designs and Their Application in Triplet–Triplet Annihilation Upconversion. Advanced Optical Materials, 2018, 6, 1700981.	7.3	46
361	Copper Inhibition of Triplet-Induced Reactions Involving Natural Organic Matter. Environmental Science & Technology, 2018, 52, 2742-2750.	10.0	36
362	Highly Photostable Near-IR-Excitation Upconversion Nanocapsules Based on Triplet–Triplet Annihilation for in Vivo Bioimaging Application. ACS Applied Materials & Interfaces, 2018, 10, 9883-9888.	8.0	78
363	Nanocrystals for Triplet Sensitization: Molecular Behavior from Quantum-Confined Materials. Inorganic Chemistry, 2018, 57, 2351-2359.	4.0	43
364	Control of triplet state generation in heavy atom-free BODIPY–anthracene dyads by media polarity and structural factors. Physical Chemistry Chemical Physics, 2018, 20, 8016-8031.	2.8	96
365	A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores. Physical Chemistry Chemical Physics, 2018, 20, 3768-3783.	2.8	17
366	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie, 2018, 130, 2417-2422.	2.0	55
367	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie - International Edition, 2018, 57, 2393-2398.	13.8	429
368	Use of nanostructured materials in drug delivery. , 2018, , 503-549.		3
369	Zinc(II) Metalated Porphyrins as Photothermogenic Photosensitizers for Cancer Photodynamic/Photothermal Synergistic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 238-247.	8.0	60

#	Article	IF	CITATIONS
370	Understanding light-driven H ₂ evolution through the electronic tuning of aminopyridine cobalt complexes. Chemical Science, 2018, 9, 2609-2619.	7.4	31
371	Excitation energies, singlet–triplet energy gaps, spin–orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: a computational investigation. Physical Chemistry Chemical Physics, 2018, 20, 2656-2661.	2.8	26
372	Novel ruthenium and iridium complexes of <i>N</i> -substituted carbazole as triplet photosensitisers. Chemical Communications, 2018, 54, 1073-1076.	4.1	18
374	Recent Progress on the Exploration of the Biological Utility of Cyclometalated Iridium(III) Complexes. Journal of the Chinese Chemical Society, 2018, 65, 352-367.	1.4	10
375	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie, 2018, 130, 11020-11024.	2.0	94
376	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie - International Edition, 2018, 57, 10854-10858.	13.8	373
377	Supramolecular Confinement within Chitosan Nanocomposites Enhances Singlet Oxygen Generation. ChemPlusChem, 2018, 83, 418-422.	2.8	16
378	The luminescence properties of multinuclear platinum complexes. Coordination Chemistry Reviews, 2018, 367, 127-162.	18.8	111
379	BODIPYâ€Pyrene and Perylene Dyads as Heavyâ€Atomâ€Free Singlet Oxygen Sensitizers. ChemPhotoChem, 201 2, 606-615.	8, _{3.0}	66
380	Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1O2 generation. Journal of Catalysis, 2018, 361, 222-229.	6.2	26
381	Photochemically deoxygenating solvents for triplet–triplet annihilation photon upconversion operating in air. Chemical Communications, 2018, 54, 3907-3910.	4.1	31
382	Harnessing ruthenium(II) as photodynamic agents: Encouraging advances in cancer therapy. Coordination Chemistry Reviews, 2018, 363, 17-28.	18.8	158
383	Photophysical and electrochemical properties of organic molecules: Solvatochromic effect and DFT studies. Optical Materials, 2018, 77, 211-220.	3.6	15
384	Photocatalytic Hydrogen Production with Conjugated Polymers as Photosensitizers. ACS Applied Materials & Interfaces, 2018, 10, 10828-10834.	8.0	39
385	Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chemical Science, 2018, 9, 3685-3693.	7.4	343
386	Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future. Applied Surface Science, 2018, 434, 643-668.	6.1	42
387	A selenophene substituted diketopyrrolopyrrole nanotheranostic agent for highly efficient photoacoustic/infrared-thermal imaging-guided phototherapy. Organic Chemistry Frontiers, 2018, 5, 98-105.	4.5	40
388	Regulation of metal–metal interactions and chromic phenomena of multi-decker platinum complexes having π-systems. Coordination Chemistry Reviews, 2018, 355, 101-115.	18.8	132

#	Article	IF	CITATIONS
389	Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chemical Society Reviews, 2018, 47, 104-148.	38.1	78
390	Recent Advances in C–B Bond Formation through a Free Radical Pathway. Advanced Synthesis and Catalysis, 2018, 360, 1040-1053.	4.3	74
391	Photophysical dynamics of the efficient emission and photosensitization of [Ir(<i>pqi</i>) ₂ (<i>NN</i>)] ⁺ complexes. Dalton Transactions, 2018, 47, 1179-1188.	3.3	14
392	Different Quenching Effect of Intramolecular Rotation on the Singlet and Triplet Excited States of Bodipy. Journal of Physical Chemistry C, 2018, 122, 185-193.	3.1	71
393	Visibleâ€Light Photoactive, Highly Efficient Triplet Sensitizers Based on Iodinated Azaâ€BODIPYs: Synthesis, Photophysics and Redox Properties. Chemistry - an Asian Journal, 2018, 13, 55-65.	3.3	16
394	BODIPY photosensitizers based on PET and heavy atom effect: A comparative study on the efficient formation of excited triplet state and singlet oxygen in BODIPY dimers and monomers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 431-443.	3.9	37
395	Pyrazole appended quinoline-BODIPY based arene ruthenium complexes: their anticancer activity and potential applications in cellular imaging. Dalton Transactions, 2018, 47, 17500-17514.	3.3	32
396	Spin–orbit charge transfer intersystem crossing in perylenemonoimide–phenothiazine compact electron donor–acceptor dyads. Chemical Communications, 2018, 54, 12329-12332.	4.1	69
397	Photoexcited state chemistry of metal–oxygen complexes. Dalton Transactions, 2018, 47, 16019-16026.	3.3	8
399	Defectâ€Stabilized Triplet State Excitons: Toward Ultralong Organic Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2018, 28, 1804961.	14.9	70
400	Visible-Light Driven Photoelectrochemical Platform Based on the Cyclometalated Iridium(III) Complex with Coumarin 6 for Detection of MicroRNA. Analytical Chemistry, 2018, 90, 14239-14246.	6.5	25
401	Visible-light initiated aerobic oxidations: a critical review. Green Chemistry, 2018, 20, 4790-4833.	9.0	189
402	Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting. MRS Energy & Sustainability, 2018, 5, 1.	3.0	16
403	Tailoring the Photophysical Signatures of BODIPY Dyes: Toward Fluorescence Standards across the Visible Spectral Region. , 0, , .		5
404	A novel photosensitizer based on a ruthenium(<scp>ii</scp>) phenanthroline bis(perylenediimide) dyad: synthesis, generation of singlet oxygen and <i>in vitro</i> photodynamic therapy. New Journal of Chemistry, 2018, 42, 17538-17545.	2.8	28
405	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie, 2018, 130, 15409-15413.	2.0	35
407	Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis. Journal of the American Chemical Society, 2018, 140, 13719-13725.	13.7	174
408	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.	13.8	198

#	Article	IF	CITATIONS
409	Pure Organic Hexagonal–Channels Constructed by C–l··· [–] O–N ⁺ Halogen and π–Hole···π Bond under Mediation of Guest. Crystal Growth and Design, 2018, 18, 6742-6747.	Bond 3.0	24
411	Design and validation of an open-source modular Microplate Photoirradiation System for high-throughput photobiology experiments. PLoS ONE, 2018, 13, e0203597.	2.5	5
412	Conjugated Oligomers with Stable Radical Substituents: Synthesis, Single Crystal Structures, Electronic Structure, and Excited State Dynamics. Chemistry of Materials, 2018, 30, 7840-7851.	6.7	16
413	<i>sp</i> ³ C–H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. Journal of the American Chemical Society, 2018, 140, 12200-12209.	13.7	271
414	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	5.9	138
415	Exploring organic photosensitizers based on hemicyanine derivatives: a sustainable approach for preparation of amide linkages. RSC Advances, 2018, 8, 31237-31245.	3.6	12
416	Facile Synthesis, Tripletâ€State Properties, and Electrochemistry of Hexaiodoâ€Subphthalocyanine. Chemistry - A European Journal, 2018, 24, 17080-17090.	3.3	16
417	Phenanthroline—A Versatile Ligand for Advanced Functional Polymeric Materials. Chemistry - A European Journal, 2018, 24, 17475-17486.	3.3	16
418	A Cyclometalated Ir ^{III} Complex as a Lysosomeâ€Targeted Photodynamic Therapeutic Agent for Integrated Imaging and Therapy in Cancer Cells. Chemistry - A European Journal, 2018, 24, 10999-11007.	3.3	49
419	Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced <i>in vitro</i> photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2018, 22, 807-813.	0.8	5
420	Synthesis, structure and photophysical properties of dibenzofuran-fused boron dipyrromethenes. Journal of Porphyrins and Phthalocyanines, 2018, 22, 837-846.	0.8	5
421	No aggregation-induced-emission but quenching of phosphorescence for an iridium complex with a 2,2-diphenylvinyl motif: a joint experimental and theoretical study. Dalton Transactions, 2018, 47, 8023-8031.	3.3	7
422	Aggregation/Self-Assembly-Induced Approach for Efficient AuAg Bimetallic Nanocluster-Based Photosensitizers. Journal of Physical Chemistry C, 2018, 122, 12494-12501.	3.1	41
423	Enhanced DNA Binding and Photocleavage Abilities of β-Cyclodextrin Appended Ru(II) Complex through Supramolecular Strategy. Bioconjugate Chemistry, 2018, 29, 1829-1833.	3.6	21
424	Highly efficient organic photosensitizer with aggregation-induced emission for imaging-guided photodynamic ablation of cancer cells. Tetrahedron Letters, 2018, 59, 2704-2707.	1.4	12
425	Tin(IV) Porphyrins Containing β-Substituted Bromines: Synthesis, Conformations, Electrochemistry and Photophysical Evaluation. European Journal of Inorganic Chemistry, 2018, 2018, 3868-3877.	2.0	8
426	Intramolecular Energy and Electron Transfers in Bodipy Naphthalenediimide Triads. Journal of Physical Chemistry A, 2018, 122, 6081-6088.	2.5	21
427	Polymerization-Enhanced Photosensitization. CheM, 2018, 4, 1937-1951.	11.7	227

	CITATION	CITATION REPORT	
# 428	ARTICLE Efficient photocatalytic oxidation sensitized by conjugated polymers in a batch reaction and microreactors under visible light. Journal of Materials Chemistry A, 2018, 6, 15927-15932.	IF 10.3	Citations
429	Metal and acid-free visible light-mediated Friedel-Crafts alkylation reactions of indole with anilines. Tetrahedron Letters, 2018, 59, 2945-2949.	1.4	11
430	The first solid state porphyrin-weak acid molecular complex: A novel metal free, nanosized and porous photocatalyst for large scale aerobic oxidations in water. Journal of Catalysis, 2018, 364, 394-405.	6.2	27
431	Mononuclear and dinuclear heteroleptic Cu(I) complexes based on pyridyl-triazole and DPEPhos with long-lived excited-state lifetimes. Journal of Organometallic Chemistry, 2018, 871, 140-149.	1.8	13
432	Photosensitizers with Aggregationâ€Induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	21.0	611
433	The energy-transfer-enabled biocompatible disulfide–ene reaction. Nature Chemistry, 2018, 10, 981-988.	13.6	143
434	Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer. Journal of Physical Chemistry A, 2018, 122, 6673-6682.	2.5	40
435	Metal-free visible-light-mediated aerobic oxidation of silanes to silanols. Science China Chemistry, 2018, 61, 1594-1599.	8.2	18
436	Lutetium(<scp>iii</scp>) porphyrinoids as effective triplet photosensitizers for photon upconversion based on triplet–triplet annihilation (TTA). Inorganic Chemistry Frontiers, 2018, 5, 2291-2299.	6.0	24
437	Carbazole–triazine based donor–acceptor porous organic frameworks for efficient visible-light photocatalytic aerobic oxidation reactions. Journal of Materials Chemistry A, 2018, 6, 15154-15161.	10.3	59
438	Ratiometric nanothermometer in vivo based on tripletÂsensitized upconversion. Nature Communications, 2018, 9, 2698.	12.8	194
439	Chromophore-Functionalized Phenanthro-diimine Ligands and Their Re(I) Complexes. Inorganic Chemistry, 2018, 57, 6349-6361.	4.0	39
440	Conversion of Carbon Dots from Fluorescence to Ultralong Roomâ€Temperature Phosphorescence by Heating for Security Applications. Advanced Materials, 2018, 30, e1800783.	21.0	435
441	Selenium-containing BODIPY dyes as photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry C, 2018, 6, 6208-6215.	5.5	29
442	Enhanced Triplet Sensitizing Ability of an Iridium Complex by Intramolecular Energy-Transfer Mechanism. Journal of Physical Chemistry A, 2018, 122, 6963-6969.	2.5	9
443	Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin–orbit coupling enhancement. Materials Chemistry Frontiers, 2018, 2, 1853-1858.	5.9	63
444	Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic Luminogens: The Intrinsic Principle and Recent Progress. Small, 2018, 14, e1801560.	10.0	204
445	Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catalysis, 2018, 8, 8659-8670.	11.2	69

#	Article	IF	CITATIONS
446	Supramolecular Assemblyâ€Improved Triplet–Triplet Annihilation Upconversion in Aqueous Solution. Chemistry - A European Journal, 2018, 24, 16677-16685.	3.3	29
447	Heteroatom-Containing Organic Molecule for Two-Photon Fluorescence Lifetime Imaging and Photodynamic Therapy. Journal of Physical Chemistry C, 2018, 122, 20945-20951.	3.1	13
448	Synthesis and photophysical properties of ruthenium(<scp>ii</scp>) polyimine complexes decorated with flavin. Physical Chemistry Chemical Physics, 2018, 20, 17504-17516.	2.8	16
449	Sensitized photon upconversion in anthracene-based zirconium metal–organic frameworks. Chemical Communications, 2018, 54, 7798-7801.	4.1	40
450	Novel β-functionalized mono-charged porphyrinic derivatives: Synthesis and photoinactivation of Escherichia coli. Dyes and Pigments, 2019, 160, 361-371.	3.7	23
451	Functionalized phosphorescent nanoparticles in (bio)chemical sensing and imaging – A review. Analytica Chimica Acta, 2019, 1046, 16-31.	5.4	49
452	The design of room-temperature-phosphorescent carbon dots and their application as a security ink. Journal of Materials Chemistry C, 2019, 7, 10605-10612.	5.5	88
453	A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative. Journal of Controlled Release, 2019, 310, 1-10.	9.9	29
454	Perylenebisimide-fullerene dyads as heavy atom free triplet photosensitizers with unique singlet oxygen generation efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 385, 112022.	3.9	12
455	An AIE molecule featuring changeable triplet emission between phosphorescence and delayed fluorescence by an external force. Materials Chemistry Frontiers, 2019, 3, 2151-2156.	5.9	35
456	Hydrogels: soft matters in photomedicine. Photochemical and Photobiological Sciences, 2019, 18, 2613-2656.	2.9	42
457	Hetero-bichromophore Dyad as a Highly Efficient Triplet Acceptor for Polarity Tuned Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry Letters, 2019, 10, 4368-4373.	4.6	11
458	A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution. Nature Communications, 2019, 10, 3155.	12.8	103
459	Study of the Spin–Orbit Charge Transfer Intersystem Crossing of Perylenemonoimide–Phenothiazine Compact Electron Donor/Acceptor Dyads with Steady-State and Time-Resolved Optical and Magnetic Spectroscopies. Journal of Physical Chemistry C, 2019, 123, 18270-18282.	3.1	28
460	Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental, 2019, 258, 117762.	20.2	50
461	Near-infrared to violet triplet–triplet annihilation fluorescence upconversion of Os(<scp>ii</scp>) complexes by strong spin-forbidden transition. Dalton Transactions, 2019, 48, 11763-11771.	3.3	52
462	Balance between Triplet States in Photoexcited Orthogonal BODIPY Dimers. Journal of Physical Chemistry Letters, 2019, 10, 4157-4163.	4.6	45
463	Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. Chinese Chemical Letters, 2019, 30, 1809-1814.	9.0	105

#	Article	IF	CITATIONS
464	Photophysical Exploration of Dual-Approach PtII–BODIPY Conjugates: Theoretical Insights. Inorganic Chemistry, 2019, 58, 9882-9889.	4.0	19
465	Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chemical Science, 2019, 10, 8455-8460.	7.4	55
466	Halogenated phenotiazine as photoantimicrobial agent against Staphylococcus aureus. Evaluation of the vehiculization in polymeric nanoparticles. Dyes and Pigments, 2019, 170, 107625.	3.7	4
467	Novel ruthenium(II) and iridium(III) BODIPY dyes: insights into their application in photodynamic therapy in vitro. Photochemical and Photobiological Sciences, 2019, 18, 2012-2022.	2.9	26
468	Self-destructive PEG–BODIPY nanomaterials for photodynamic and photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 4655-4660.	5.8	35
469	Intersystem Crossing in Naphthalenediimide–Oxoverdazyl Dyads: Synthesis and Study of the Photophysical Properties. Chemistry - A European Journal, 2019, 25, 15615-15627.	3.3	13
470	Synthesis and Intramolecular Energy- and Electron-Transfer of 3D-Conformeric Tris(fluorenyl-[60]fullerenylfluorene) Derivatives. Molecules, 2019, 24, 3337.	3.8	4
471	Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 41051-41061.	8.0	73
472	P107 USING BIOINFORMATICS TO PRIORITIZE FOR BIOCHEMICAL AND BIOPHYSICAL ANALYSIS SNPS AND PROTEINS ASSOCIATED WITH INFLAMMATORY BOWEL DISEASE. Inflammatory Bowel Diseases, 2019, 25, S53-S53.	1.9	0
473	Excited state dynamics for visible-light sensitization of a photochromic benzil-subsituted phenoxyl-imidazolyl radical complex. Beilstein Journal of Organic Chemistry, 2019, 15, 2369-2379.	2.2	1
474	Tuning the Photonic Behavior of Symmetrical bis-BODIPY Architectures: The Key Role of the Spacer Moiety. Frontiers in Chemistry, 2019, 7, 801.	3.6	5
475	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials & Interfaces, 2019, 11, 45118-45125.	8.0	29
476	Application of photodynamic therapy drugs for management of glioma. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1216-1228.	0.8	16
477	Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing 2-(2'-pyridyl)benzimidazole Ligands. Pharmaceuticals, 2019, 12, 154.	3.8	21
478	Tenofovir disoproxil fumarate reduces hepatocellular carcinoma, decompensation and death in chronic hepatitis B patients with cirrhosis. Alimentary Pharmacology and Therapeutics, 2019, 50, 1037-1048.	3.7	54
479	A Latticeâ€Oxygenâ€Involved Reaction Pathway to Boost Urea Oxidation. Angewandte Chemie - International Edition, 2019, 58, 16820-16825.	13.8	201
480	Determining the Parameters of the Ã…ngströmâ€Prescott Model for Estimating Solar Radiation in Different Regions of China: Calibration and Modeling. Earth and Space Science, 2019, 6, 1976-1986.	2.6	15
481	Spin–Orbit Charge-Transfer Intersystem Crossing (SOCT-ISC) in Bodipy-Phenoxazine Dyads: Effect of Chromophore Orientation and Conformation Restriction on the Photophysical Properties. Journal of Physical Chemistry C, 2019, 123, 22793-22811.	3.1	95

#	Article	IF	CITATIONS
482	Photoresponsiveness of Anthracene-Based Supramolecular Polymers Regulated via a σ-Platinated 4,4-Difluoro-4-bora-3a,4a-diaza- <i>s</i> -indacene Photosensitizer. Inorganic Chemistry, 2019, 58, 12407-12414.	4.0	17
483	Thermally Activated Delayed Fluorescence via Triplet Fusion. Journal of Physical Chemistry Letters, 2019, 10, 6239-6245.	4.6	24
484	A family of readily synthesised phosphorescent platinum(<scp>ii</scp>) complexes based on tridentate <i>N^N^O</i> -coordinating Schiff-base ligands. Dalton Transactions, 2019, 48, 15012-15028.	3.3	10
485	Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coordination Chemistry Reviews, 2019, 399, 213024.	18.8	231
486	Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads. Journal of Materials Chemistry C, 2019, 7, 12048-12074.	5.5	137
487	Similarity and Specificity of Chlorophyll <i>b</i> Triplet State in Comparison to Chlorophyll <i>a</i> as Revealed by EPR/ENDOR and DFT Calculations. Journal of Physical Chemistry B, 2019, 123, 8232-8239.	2.6	8
488	Highly efficient room-temperature phosphorescence achieved by gadolinium complexes. Dalton Transactions, 2019, 48, 14958-14961.	3.3	11
489	A building-block design for enhanced visible-light switching of diarylethenes. Nature Communications, 2019, 10, 4232.	12.8	105
490	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	14.6	199
491	Spin-orbit coupling and vibronic transitions of two Ce(C4H6) isomers probed by mass-analyzed threshold ionization and relativistic quantum computation. Journal of Chemical Physics, 2019, 151, 124307.	3.0	6
492	Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100319.	11.6	32
493	Real time bioimaging for mitochondria by taking the aggregation process of aggregation-induced emission near-infrared dyes with wash-free staining. Materials Chemistry Frontiers, 2019, 3, 57-63.	5.9	33
494	Triplet excitons: improving exciton diffusion length for enhanced organic photovoltaics. Journal of Materials Chemistry A, 2019, 7, 2445-2463.	10.3	47
495	Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy. Chemical Science, 2019, 10, 3096-3102.	7.4	113
496	Color-tunable upconversion emission from a twisted intramolecular charge-transfer state of anthracene dimers <i>via</i> triplet–triplet annihilation. Materials Horizons, 2019, 6, 990-995.	12.2	37
497	Silverâ€Infused Porphyrinic Metal–Organic Framework: Surfaceâ€Adaptive, Onâ€Demand Nanoplatform for Synergistic Bacteria Killing and Wound Disinfection. Advanced Functional Materials, 2019, 29, 1808594.	14.9	181
498	Nearâ€infrared Upconversion Luminescence and Bioimaging In Vivo Based on Quantum Dots. Advanced Science, 2019, 6, 1801834.	11.2	42
499	Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources <i>via</i> a molten salt method. Nanoscale, 2019, 11, 11967-11974.	5.6	78

ARTICLE IF CITATIONS Rational Design of Efficient Organic Phototherapeutic Agents via Perturbation Theory for Enhancing 500 3.2 9 Anticancer Therapeutics. ChemMedChem, 2019, 14, 1378-1383. BOPHYs versus BODIPYs: A comparison of their performance as effective multi-function organic dyes. 501 Dyes and Pigments, 2019, 170, 107662. Independent Control of Singlet Oxygen and Radical Generation via Irradiation of a Two-Color 502 4.8 21 Photosensitive Molecule. Macromolecules, 2019, 52, 4968-4978. Synthesis, photophysical and electronic properties of tetra-donor- or acceptor-substituted<i>ortho</i>-perylenes displaying four reversible oxidations or reductions. Chemical Science, 2019, 10, 7516-7534. Stimuliâ€Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart 504 2.0 11 Photodynamic Therapy. Angewandte Chemie, 2019, 131, 11222-11228. Lighting the Flavin Decorated Ruthenium(II) Polyimine Complexes: A Theoretical Investigation. 4.0 Inorganic Chemistry, 2019, 58, 8486-8493. Efficient Generation of Singlet Oxygen and Photooxidation of Sulfide into Sulfoxide via Tuning the 506 4.0 26 Ancillary of Bicyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2019, 58, 7775-7784. Mitochondriaâ€Targeted Polydopamine Nanocomposite with AIE Photosensitizer for Imageâ€Guided 10.0 Photodynamic and Photothermal Tumor Ablation. Small, 2019, 15, e1902352. The dependence of oxygen sensitivity on the molecular structures of Ir(<scp>)iii</scp>) complexes and 508 their application for photostable and reversible luminescent oxygen sensing. RSC Advances, 2019, 9, 3.6 10 15370-15380. Multinuclear Ru(<scp>ii</scp>) and Ir(<scp>iii</scp>) decorated tetraphenylporphyrins as efficient 509 5.4 PDT agents. Biomaterials Science, 2019, 7, 3287-3296. Stimuliâ€Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart 510 72 13.8 Photodynamic Therapy. Angewandte Chemie - International Edition, 2019, 58, 11105-11111. A triarylboron-based binuclear Zn(II) complex as a two-photon fluorescent probe for simultaneous multicolor imaging of the cell membrane, endoplasmic reticulum, and nucleolus. Analytical and Bioanalytical Chemistry, 2019, 411, 5223-5231. Achieving high-efficiency purely organic room-temperature phosphorescence materials by boronic 512 4.1 35 ester substitution of phenoxathiine. Chemical Communications, 2019, 55, 7215-7218. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nature 12.8 Communications, 2019, 10, 2111. Impact of Benzannulation Site at the Diimine (N^N) Ligand on the Excited-State Properties and Reverse Saturable Absorption of Biscyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2019, 58, 514 4.0 27 5483-5493. Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules. ACS Nano, 2019, 13, 14.6 4928-4946. BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. Journal of 516 11.6 106 Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 21-48. BODIPY parent compound: Excited triplet state and singlet oxygen formation exhibit strong molecular 3.1 oxygen enhancing effect. Journal of Luminescence, 2019, 212, 286-292.

#	Article	IF	CITATIONS
518	Sensitizing Ru(II) polyimine redox center with strong light-harvesting coumarin antennas to mimic energy flow of biological model for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 105-110.	20.2	22
519	Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjugate Chemistry, 2019, 30, 1585-1603.	3.6	115
520	Formylation of Fluoroalkyl Imines through Visible-Light-Enabled H-Atom Transfer Catalysis: Access to Fluorinated α-Amino Aldehydes. Organic Letters, 2019, 21, 2019-2024.	4.6	34
521	Heavy atom-free Keto-di-coumarin as earth-abundant strong visible light-harvesting photosensitizer for efficient photocatalytic hydrogen evolution. Dyes and Pigments, 2019, 166, 84-91.	3.7	14
522	Alicyclic tertiary amine based hyperbranched polymers with excitation-independent emission: structure, fluorescence and applications. Polymer Chemistry, 2019, 10, 2170-2175.	3.9	16
523	Anthracene–Naphthalenediimide Compact Electron Donor/Acceptor Dyads: Electronic Coupling, Electron Transfer, and Intersystem Crossing. Journal of Physical Chemistry A, 2019, 123, 2503-2516.	2.5	31
524	Thieno[3,2- <i>b</i>]thiophene fused BODIPYs: synthesis, near-infrared luminescence and photosensitive properties. Organic and Biomolecular Chemistry, 2019, 17, 3617-3622.	2.8	37
525	Multiresponsive Tetradentate Phosphorescent Metal Complexes as Highly Sensitive and Robust Luminescent Oxygen Sensors: Pd(II) Versus Pt(II) and 1,2,3-Triazolyl Versus 1,2,4-Triazolyl. ACS Applied Materials & Interfaces, 2019, 11, 12666-12674.	8.0	26
526	Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications. Polymers, 2019, 11, 501.	4.5	19
527	Investigation of Different Prototropic Forms of Biologically Active Flavin Lumichrome in the Presence of Liposome. Photochemistry and Photobiology, 2019, 95, 1151-1159.	2.5	4
528	Spectroscopic and ¹ O ₂ Sensitization Characteristics of a Series of Isomeric Re(bpy)(CO) ₃ Cl Complexes Bearing Pendant BODIPY Chromophores. Inorganic Chemistry, 2019, 58, 5042-5050.	4.0	19
529	Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic <i>E</i> – <i>Z</i> Isomerization of Olefins. Journal of the American Chemical Society, 2019, 141, 6152-6156.	13.7	270
530	Breaking the Depth Dependence by Nanotechnologyâ€Enhanced Xâ€Rayâ€Excited Deep Cancer Theranostics. Advanced Materials, 2019, 31, e1806381.	21.0	125
531	Versatile Strategy To Generate a Rhodamine Triplet State as Mitochondria-Targeting Visible-Light Photosensitizers for Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 8797-8806.	8.0	60
532	The Dual Role of Benzophenone in Visibleâ€Light/Nickel Photoredox atalyzed Câ^'H Arylations: Hydrogenâ€Atom Transfer and Energy Transfer. Angewandte Chemie - International Edition, 2019, 58, 3566-3570.	13.8	130
533	Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials, 2019, 201, 77-86.	11.4	86
534	Ambient-temperature near-IR phosphorescence and potential applications of rhenium-oxo corroles. Photochemical and Photobiological Sciences, 2019, 18, 1166-1170.	2.9	26
535	Electronic Coupling and Spin–Orbit Charge-Transfer Intersystem Crossing in Phenothiazine–Perylene Compact Electron Donor/Acceptor Dyads. Journal of Physical Chemistry C, 2019, 123, 7010-7024.	3.1	47

#	Article	IF	CITATIONS
536	Thieno[3,2- <i>b</i>]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. Journal of Materials Chemistry B, 2019, 7, 2454-2462.	5.8	23
537	The Dual Role of Benzophenone in Visibleâ€Light/Nickel Photoredoxâ€Catalyzed Câ^'H Arylations: Hydrogenâ€Atom Transfer and Energy Transfer. Angewandte Chemie, 2019, 131, 3604-3608.	2.0	25
538	Photosensitization Ability of 1,7-Phenanthroline Based Bisâ^'BODIPYs: Perplexing Role of Intramolecular Rotation on Photophysical Properties. Journal of Physical Chemistry C, 2019, 123, 30623-30632.	3.1	11
539	Bodipy Derivatives as Triplet Photosensitizers and the Related Intersystem Crossing Mechanisms. Frontiers in Chemistry, 2019, 7, 821.	3.6	62
540	Enhanced triplet state generation through radical pair intermediates in BODIPY-quantum dot complexes. Journal of Chemical Physics, 2019, 151, 241101.	3.0	20
541	The heavy-atom effect on xanthene dyes for photopolymerization by visible light. Polymer Chemistry, 2019, 10, 5737-5742.	3.9	13
542	Non-symmetric thieno[3,2- <i>b</i>]thiophene-fused BODIPYs: synthesis, spectroscopic properties and providing a functional strategy for NIR probes. Organic Chemistry Frontiers, 2019, 6, 3961-3968.	4.5	29
543	One-dimensional ï€â€"ï€ stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. Journal of Materials Chemistry C, 2019, 7, 12502-12508.	5.5	81
544	Computational and experimental assessment on the nonlinear optical properties of platinum(II) arylacetylides with donor-acceptor structures. Journal of Organometallic Chemistry, 2019, 904, 121003.	1.8	3
545	P band intermediate state (PBIS) tailors photoluminescence emission at confined nanoscale interface. Communications Chemistry, 2019, 2, .	4.5	27
546	A novel empirical method for quickly estimating the charge-transfer state of fullerene-donor derivatives. Physical Chemistry Chemical Physics, 2019, 21, 24291-24295.	2.8	4
547	On the interaction between up-converting NaYF ₄ :Er ³⁺ ,Yb ³⁺ nanoparticles and Rose Bengal molecules constrained within the double core of multifunctional nanocarriers. Journal of Materials Chemistry C, 2019, 7, 15021-15034.	5.5	17
548	Theoretical insight into joint photodynamic action of a gold(<scp>i</scp>) complex and a BODIPY chromophore for singlet oxygen generation. Physical Chemistry Chemical Physics, 2019, 21, 3446-3452.	2.8	7
549	Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: Synthesis, characterization and photophysical properties. Dyes and Pigments, 2019, 160, 683-691.	3.7	15
550	Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy. Theranostics, 2019, 9, 20-33.	10.0	53
551	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	2.7	52
552	Metalâ€Free Photoinduced Transformation of Aryl Halides and Diketones into Aryl Ketones. European Journal of Organic Chemistry, 2019, 2019, 2721-2724.	2.4	13
553	Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coordination Chemistry Reviews, 2019, 381, 79-103.	18.8	111

#	Article	IF	CITATIONS
554	Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation. Inorganic Chemistry, 2019, 58, 8-17.	4.0	43
555	Synthesis, characterization and photophysical properties of meso-indole-boron-dipyrromethene derivatives and their cell imaging and viscosity sensing. Dyes and Pigments, 2019, 164, 156-164.	3.7	14
556	Heteroleptic Ir(III)N ₆ Complexes with Long-Lived Triplet Excited States and in Vitro Photobiological Activities. ACS Applied Materials & Interfaces, 2019, 11, 3629-3644.	8.0	45
557	Intersystem crossing in the exit channel. Nature Chemistry, 2019, 11, 123-128.	13.6	36
558	Synthesis, photodynamic activities, and cytotoxicity of new water-soluble cationic gallium(III) and zinc(II) phthalocyanines. Journal of Inorganic Biochemistry, 2019, 192, 7-16.	3.5	35
559	Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence. Journal of Physical Chemistry C, 2019, 123, 265-274.	3.1	79
560	Corroles as triplet photosensitizers. Coordination Chemistry Reviews, 2019, 379, 121-132.	18.8	81
561	Organelle-targeting metal complexes: From molecular design to bio-applications. Coordination Chemistry Reviews, 2019, 378, 66-86.	18.8	210
562	<i>meso</i> -(2-Benzimidazolyl)-substituted BODIPYs: Synthesis, structures and spectroscopic properties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 230-237.	0.8	1
563	Singlet oxygen generation of subphthalocyanine-fused dimer and trimer. Journal of Porphyrins and Phthalocyanines, 2020, 24, 211-219.	0.8	3
564	A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2020, 147, 111779.	10.1	19
565	Steric hindrance boosted upconversion for low-power imaging in vivo. Journal of Luminescence, 2020, 218, 116837.	3.1	5
566	Diketopyrrolopyrrole-Au(I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. Science China Chemistry, 2020, 63, 55-64.	8.2	26
567	Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 5286-5299.	8.0	75
568	The phosphorescence property of carbon dots presenting as powder, embedded in filter paper and dispersed in solid solution. Journal of Luminescence, 2020, 218, 116851.	3.1	20
569	Halogen bonding in room-temperature phosphorescent materials. Coordination Chemistry Reviews, 2020, 404, 213107.	18.8	106
570	Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering Reports, 2020, 139, 100519.	31.8	50
571	Efficient Intersystem Crossing in the Tröger's Base Derived From 4â€Aminoâ€1,8â€naphthalimide and Application as a Potent Photodynamic Therapy Reagent. Chemistry - A European Journal, 2020, 26, 3591-3599	3.3	32

#	Article	IF	CITATIONS
572	Colorâ€Tunable Polymeric Longâ€Persistent Luminescence Based on Polyphosphazenes. Advanced Materials, 2020, 32, e1907355.	21.0	176
573	Designing High-Triplet-Yield Phenothiazine Donor–Acceptor Complexes for Photoredox Catalysis. Journal of Physical Chemistry A, 2020, 124, 817-823.	2.5	29
574	Stimuliâ€Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 4786-4792.	2.0	37
575	An exceptionally long-lived triplet state of red light-absorbing compact phenothiazine-styrylBodipy electron donor/acceptor dyads: a better alternative to the heavy atom-effect?. Chemical Communications, 2020, 56, 1721-1724.	4.1	61
576	Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances, 2020, 2, 17-36.	4.6	79
577	Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics. Chemical Science, 2020, 11, 888-895.	7.4	54
578	Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Organic and Biomolecular Chemistry, 2020, 18, 10-27.	2.8	183
579	Afterglow of carbon dots: mechanism, strategy and applications. Materials Chemistry Frontiers, 2020, 4, 386-399.	5.9	137
580	Mitochondriaâ€Targeted Waterâ€Soluble Organic Nanoparticles of Chlorin Derivatives for Biocompatible Photodynamic Therapy. ChemNanoMat, 2020, 6, 610-617.	2.8	6
581	Manipulating Chargeâ€Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry - A European Journal, 2020, 26, 601-605.	3.3	20
582	Spin–Orbit Chargeâ€Transfer Intersystem Crossing (ISC) in Compact Electron Donor–Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents. Chemistry - A European Journal, 2020, 26, 1091-1102.	3.3	76
583	Cyclotriphosphazene-BODIPY Dyads: Synthesis, halogen atom effect on the photophysical and singlet oxygen generation properties. Inorganica Chimica Acta, 2020, 502, 119342.	2.4	17
584	Photosensitized long-lived room-temperature phosphorescence of naphthalene-d8 as a result of T–T energy transfer inside the 4â€2-tret-butylacetophonone- naphthalene-d8@2Î2-cyclodextrin inclusion complex. Journal of Luminescence, 2020, 219, 116909.	3.1	2
585	Stimuliâ€Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 4756-4762.	13.8	198
586	Non-covalent intramolecular interactions through ligand-design promoting efficient photoluminescence from transition metal complexes. Coordination Chemistry Reviews, 2020, 405, 213094.	18.8	53
587	Aggregation-induced photocatalytic activity and efficient photocatalytic hydrogen evolution of amphiphilic rhodamines in water. Chemical Science, 2020, 11, 11843-11848.	7.4	19
588	Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 18460-18470.	13.7	87
589	Cyclometalated Iridium(III) Complexes as High-Sensitivity Two-Photon Excited Mitochondria Dyes and Near-Infrared Photodynamic Therapy Agents. Inorganic Chemistry, 2020, 59, 14920-14931.	4.0	32

#	Article	IF	CITATIONS
590	A Red Lightâ€Triggered Drug Release System Based on Oneâ€Photon Upconversion‣ike Photolysis. Advanced Healthcare Materials, 2020, 9, e2001118.	7.6	20
591	Tunable Phosphorescence/Fluorescence Dual Emissions of Organic Isoquinolineâ€Benzophenone Doped Systems by Alkoxy Engineering. Chemistry - A European Journal, 2020, 26, 17376-17380.	3.3	44
592	Multi-responsive nanococktails with programmable targeting capacity for imaging-guided mitochondrial phototherapy combined with chemotherapy. Journal of Controlled Release, 2020, 327, 371-383.	9.9	36
593	Enhancing the ROS generation ability of a rhodamine-decorated iridium(<scp>iii</scp>) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chemical Science, 2020, 11, 12212-12220.	7.4	46
594	Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coordination Chemistry Reviews, 2020, 425, 213545.	18.8	68
595	Non-noble-metal-based organic emitters for OLED applications. Materials Science and Engineering Reports, 2020, 142, 100581.	31.8	55
596	The Hofmann reaction involving annulation of <i>o</i> -(pyridin-2-yl)aryl amides selectively and rapidly leads to potential photocatalytically active 6 <i>H</i> -pyrido[1,2- <i>c</i>]quinazolin-6-one derivatives. Green Chemistry, 2020, 22, 7955-7961.	9.0	11
597	Rational design of an "all-in-one―phototheranostic. Chemical Science, 2020, 11, 8204-8213.	7.4	41
598	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	12.8	122
599	Novel BODIPY-subphthalocyanine dyads with reasonable photodynamic therapy behaviours. New Journal of Chemistry, 2020, 44, 13738-13744.	2.8	5
600	Novel BODIPY-bridged cyclotriphosphazenes. Turkish Journal of Chemistry, 2020, 44, 74-86.	1.2	1
601	Rigid axially symmetrical C ₆₀ -BODIPY triplet photosensitizers: effect of bridge length on singlet oxygen generation. New Journal of Chemistry, 2020, 44, 20419-20427.	2.8	5
602	The effect of one-atom substitution on the photophysical properties and electron spin polarization: Intersystem crossing of compact orthogonal perylene/phenoxazine electron donor/acceptor dyad. Journal of Chemical Physics, 2020, 153, 184312.	3.0	13
603	Fluorescence in "Nonfluorescent―Polymers. ACS Omega, 2020, 5, 30747-30766.	3.5	43
605	Metal–organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Transactions, 2020, 49, 17520-17526.	3.3	13
606	Singlet oxygen generation by porphyrins and metalloporphyrins revisited: A quantitative structure-property relationship (QSPR) study. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112833.	3.9	26
607	Determination of Upconversion Quantum Yields Using Charge-Transfer State Fluorescence of Heavy-Atom-Free Sensitizer as a Self-Reference. Journal of Physical Chemistry Letters, 2020, 11, 6560-6566.	4.6	14
608	Photocatalytic Intramolecular C–H Amination Using <i>N</i> -Oxyureas as Nitrene Precursors. Organic Letters, 2020, 22, 6360-6364.	4.6	17

#	Article	IF	CITATIONS
609	Rational Design of Triplet Sensitizers for the Transfer of Excited State Photochemistry from UV to Visible. Journal of the American Chemical Society, 2020, 142, 14947-14956.	13.7	72
610	Driving high quantum yield NIR emission through proquinoidal linkage motifs in conjugated supermolecular arrays. Chemical Science, 2020, 11, 8095-8104.	7.4	11
611	Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes. Synlett, 2020, 31, 1663-1680.	1.8	2
612	Structure-lock induced phosphorescence lifetime enhancing of (9H-carbazol-9-yl)(phenyl)methanone: An organic phosphorescent materials. Journal of Luminescence, 2020, 227, 117587.	3.1	13
613	Enhanced intersystem crossing of boron dipyrromethene by TEMPO radical. Journal of Chemical Physics, 2020, 153, 154201.	3.0	6
614	Crystallization-induced room-temperature phosphorescence in fumaramides. CrystEngComm, 2020, 22, 7782-7785.	2.6	27
615	Sn(<scp>iv</scp>) <i>N</i> -confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region. Dalton Transactions, 2020, 49, 15180-15183.	3.3	26
616	Enhanced triplet–triplet annihilation upconversion by photonic crystals and Au plasma resonance for efficient photocatalysis. Catalysis Science and Technology, 2020, 10, 8325-8331.	4.1	9
617	Recent Advances in Self-Exciting Photodynamic Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594491.	4.1	36
618	Visible-Light-Mediated Aminoquinolate Diarylboron-Catalyzed Metal-Free Hydroxylation of Organoboronic Acids under Air and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 13894-13899.	6.7	21
619	Rotaxane-Branched Dendrimers with Enhanced Photosensitization. Journal of the American Chemical Society, 2020, 142, 16748-16756.	13.7	68
620	Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews, 2020, 49, 8179-8234.	38.1	397
621	Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis. Beilstein Journal of Organic Chemistry, 2020, 16, 2151-2192.	2.2	31
622	Truxene-bridged Bodipy fullerene tetrads without precious metals: study of the energy transfer and application in triplet–triplet annihilation upconversion. Journal of Materials Chemistry C, 2020, 8, 15839-15851.	5.5	15
623	Engineering the Chargeâ€Transfer State to Facilitate Spin–Orbit Charge Transfer Intersystem Crossing in Spirobis[anthracene]diones. Angewandte Chemie - International Edition, 2020, 59, 22179-22184.	13.8	44
624	Rational design of a "dual lock-and-key―supramolecular photosensitizer based on aromatic nucleophilic substitution for specific and enhanced photodynamic therapy. Chemical Science, 2020, 11, 9703-9711.	7.4	74
625	Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs from benzophenone–borate derivatives. Physical Chemistry Chemical Physics, 2020, 22, 21445-21452.	2.8	11
626	pH and thermo responsive aliphatic tertiary amine chromophore hyperbranched poly(amino ether) Tj ETQq1 1 0.	784314 rg	BT_/Overloc

#	Article	IF	CITATIONS
627	Engineering Sensitized Photon Upconversion Efficiency via Nanocrystal Wavefunction and Molecular Geometry. Angewandte Chemie, 2020, 132, 17879-17884.	2.0	0
628	Engineering the Chargeâ€Transfer State to Facilitate Spin–Orbit Charge Transfer Intersystem Crossing in Spirobis[anthracene]diones. Angewandte Chemie, 2020, 132, 22363-22368.	2.0	11
629	3,5-Anthryl–Bodipy dyad/triad: Preparation, effect of F–B–F induced conformation restriction on the photophysical properties, and application in triplet–triplet-annihilation upconversion. Journal of Chemical Physics, 2020, 153, 224304.	3.0	5
630	Long-Lived Local Triplet Excited State and Charge Transfer State of 4,4′-Dimethoxy Triphenylamine-BODIPY Compact Electron Donor/Acceptor Dyads. Journal of Physical Chemistry A, 2020, 124, 9360-9374.	2.5	26
631	Solvent effects on triplet–triplet annihilation upconversion kinetics of perylene with a Bodipy-phenyl-C60 photosensitizer. Physical Chemistry Chemical Physics, 2020, 22, 26372-26382.	2.8	10
632	Carbonâ€Based Quantum Dots with Solidâ€State Photoluminescent: Mechanism, Implementation, and Application. Small, 2020, 16, e2004621.	10.0	141
633	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2020, 132, 13051-13057.	2.0	8
634	Contra-thermodynamic E → Z isomerization of cinnamamides via selective energy transfer catalysis. Tetrahedron, 2020, 76, 131198.	1.9	10
635	Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy. ChemPlusChem, 2020, 85, 948-957.	2.8	53
636	Synthesis and photophysics of gold(<scp>i</scp>) alkynyls bearing a benzothiazole-2,7-fluorenyl moiety: a comparative study analyzing influence of ancillary ligand, bridging moiety, and number of metal centers on photophysical properties. Physical Chemistry Chemical Physics, 2020, 22, 11915-11927.	2.8	12
637	Poly(selenoviologen)-Assembled Upconversion Nanoparticles for Low-Power Single-NIR Light-Triggered Synergistic Photodynamic and Photothermal Antibacterial Therapy. ACS Applied Materials & Interfaces, 2020, 12, 26432-26443.	8.0	46
638	All-in-One Molecular Aggregation-Induced Emission Theranostics: Fluorescence Image Guided and Mitochondria Targeted Chemo- and Photodynamic Cancer Cell Ablation. Chemistry of Materials, 2020, 32, 4681-4691.	6.7	73
639	Intersystem crossing <i>via</i> charge recombination in a perylene–naphthalimide compact electron donor/acceptor dyad. Journal of Materials Chemistry C, 2020, 8, 8305-8319.	5.5	28
640	Longâ€Lived Triplet Excited State Accessed with Spin–Orbit Charge Transfer Intersystem Crossing in Red Lightâ€Absorbing Phenoxazineâ€Styryl BODIPY Electron Donor/Acceptor Dyads. ChemPhysChem, 2020, 21, 1388-1401.	2.1	33
641	Single-atom replacement as a general approach towards visible-light/near-infrared heavy-atom-free photosensitizers for photodynamic therapy. Chemical Science, 2020, 11, 6701-6708.	7.4	67
642	Near-Quantitative Triplet State Population via Ultrafast Intersystem Crossing in Perbromoperylenediimide. Journal of Physical Chemistry B, 2020, 124, 6867-6874.	2.6	28
643	Potassium Poly(Heptazine Imide): Transition Metalâ€Free Solidâ€State Triplet Sensitizer in Cascade Energy Transfer and [3+2]â€cycloadditions. Angewandte Chemie - International Edition, 2020, 59, 15061-15068.	13.8	91
644	Kaliumâ€Polyheptazinimid: Ein übergangsmetallfreier Festkörperâ€Triplettâ€Sensibilisator in Kaskadenenergietransfer und [3+2]â€Cycloadditionen. Angewandte Chemie, 2020, 132, 15172-15180.	2.0	11

#	Article	IF	CITATIONS
645	Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: From molecular structure design to photophysical properties and applications. Coordination Chemistry Reviews, 2020, 417, 213371.	18.8	79
646	Ultra-stable tellurium-doped carbon quantum dots for cell protection and near-infrared photodynamic application. Science Bulletin, 2020, 65, 1580-1586.	9.0	17
647	Improving photosensitization for photochemical CO2-to-CO conversion. National Science Review, 2020, 7, 1459-1467.	9.5	44
648	A comparative study of the photophysicochemical and photodynamic activity properties of <i>meso</i> -4-methylthiophenyl functionalized Sn(IV) tetraarylporphyrins and triarylcorroles. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1138-1145.	0.8	12
649	Visible-Light-Driven Triplet Sensitization of Polycyclic Aromatic Hydrocarbons Using Thionated Perinones. Journal of Physical Chemistry Letters, 2020, 11, 5092-5099.	4.6	23
650	Synthesis of azetidines by aza Paternò–Büchi reactions. Chemical Science, 2020, 11, 7553-7561.	7.4	73
651	Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF. Advanced Materials, 2020, 32, e2000936.	21.0	86
652	Singlet relaxation dynamics and long triplet lifetimes of thiophene-coupled perylene diimides dyads: New insights for high efficiency organic solar cells. Chinese Chemical Letters, 2020, 31, 2965-2969.	9.0	12
654	Synthesis, crystal structure and nonlinear optical properties of ferrocene-containing metalloporphyrins. Inorganica Chimica Acta, 2020, 511, 119816.	2.4	6
655	Visible Light-Induced and Singlet Oxygen-Mediated Photochemical Conversion of 4-Hydroxy-α-benzopyrones to 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamides/carboxylates Using Rose Bengal as a Photosensitizer. Journal of Organic Chemistry, 2020, 85, 8851-8864.	3.2	31
656	Tuning the Triplet Excited State of Bis(dipyrrin) Zinc(II) Complexes: Symmetry Breaking Charge Transfer Architecture with Exceptionally Long Lived Triplet State for Upconversion. Chemistry - A European Journal, 2020, 26, 14912-14918.	3.3	22
657	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	3.9	32
658	Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie, 2020, 132, 17285-17292.	2.0	22
659	Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie - International Edition, 2020, 59, 17137-17144.	13.8	82
660	Perylene-Monoimides: Singlet Fission Down-Conversion Competes with Up-Conversion by Geminate Triplet–Triplet Recombination. Journal of Physical Chemistry A, 2020, 124, 5727-5736.	2.5	17
661	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie - International Edition, 2020, 59, 16054-16060.	13.8	340
662	Discrete Tiâ^'Oâ^'Ti Complexes: Visibleâ€Lightâ€Activated, Homogeneous Alternative to TiO ₂ Photosensitisers. Chemistry - A European Journal, 2020, 26, 9486-9494.	3.3	6
663	Diketopyrrolopyrrole: An emerging phototherapy agent in fighting cancer. Dyes and Pigments, 2020, 181, 108599.	3.7	30

#	Article	IF	CITATIONS
664	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie, 2020, 132, 16188-16194.	2.0	40
665	Low-Dimensional Semiconductors in Artificial Photosynthesis: An Outlook for the Interactions between Particles/Quasiparticles. ACS Central Science, 2020, 6, 1058-1069.	11.3	16
666	Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis. Chemical Science, 2020, 11, 6256-6267.	7.4	20
667	Construction of an NIR and lysosome-targeted quinoline-BODIPY photosensitizer and its application in photodynamic therapy for human gastric carcinoma cells. Dyes and Pigments, 2020, 181, 108615.	3.7	18
668	Synthesis, Photophysics, and Reverse Saturable Absorption of <i>trans</i> -Bis-cyclometalated Iridium(III) Complexes (C^N^C)Ir(R-tpy) ⁺ (tpy = 2,2′:6′,2″-Terpyridine) with Broadband Excited-State Absorption. Inorganic Chemistry, 2020, 59, 8532-8542.	4.0	14
669	Competition of Dexter, Förster, and charge transfer pathways for quantum dot sensitized triplet generation. Journal of Chemical Physics, 2020, 152, 214702.	3.0	27
670	Electronic coupling and spin–orbit charge transfer intersystem crossing (SOCT-ISC) in compact BDP–carbazole dyads with different mutual orientations of the electron donor and acceptor. Journal of Chemical Physics, 2020, 152, 114701.	3.0	40
671	Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chemical Science, 2020, 11, 6479-6484.	7.4	99
672	<i>p</i> -Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies. Beilstein Journal of Organic Chemistry, 2020, 16, 337-350.	2.2	9
673	Seizing solar hydrogen from water promoted by magic spin transporting, chiral-induced spin state–selective filtering, and upconversion. , 2020, , 191-209.		0
674	Ultralong Organic Phosphorescent Nanocrystals with Long-Lived Triplet Excited States for Afterglow Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 18385-18394.	8.0	57
675	Photoluminescent and Photoresponsive Iptyceneâ€Incorporated Ï€â€Conjugated Systems: Fundamentals and Applications. ChemPhotoChem, 2020, 4, 538-563.	3.0	19
678	Photoâ€Stimulated Polychromatic Room Temperature Phosphorescence of Carbon Dots. Small, 2020, 16, e2001909.	10.0	125
679	Engineering Sensitized Photon Upconversion Efficiency via Nanocrystal Wavefunction and Molecular Geometry. Angewandte Chemie - International Edition, 2020, 59, 17726-17731.	13.8	20
680	Recent progress in all-visible-light-triggered diarylethenes. Dyes and Pigments, 2020, 182, 108623.	3.7	59
681	An Activatable Triplet Sensitizer Based on Triplet Electron Transfer and Its Application for Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry B, 2020, 124, 6389-6397.	2.6	3
682	Twisted Bodipy Derivative as a Heavy-Atom-Free Triplet Photosensitizer Showing Strong Absorption of Yellow Light, Intersystem Crossing, and a High-Energy Long-Lived Triplet State. Organic Letters, 2020, 22, 5535-5539.	4.6	68
683	Nearâ€Infrared BODIPYâ€Acridine Dyads Acting as Heavyâ€Atomâ€Free Dualâ€Functioning Photosensitizers. Chemistry - A European Journal, 2020, 26, 15212-15225.	3.3	14

#	Article	IF	CITATIONS
684	Coordination of NH ₂ - or COOH-Appended Pt-Porphyrins with CsPbBr ₃ Perovskite Quantum Dots to Improve a Cascade Process of Two-Photon Absorption and Triplet–Triplet Annihilation. Journal of Physical Chemistry C, 2020, 124, 14439-14445.	3.1	7
685	A dendritic DPA annihilator—syntheses, photophysical properties and application for co-assembling enhanced triplet-triplet annihilation upconversion. Dyes and Pigments, 2020, 182, 108643.	3.7	8
687	Intersystem crossing in tunneling regime: T ₁ → S ₀ relaxation in thiophosgene. Physical Chemistry Chemical Physics, 2020, 22, 5500-5508.	2.8	21
688	Color-Tunable Delayed Fluorescence and Efficient Spin–Orbit Charge Transfer Intersystem Crossing in Compact Carbazole-Anthracene-Bodipy Triads Employing the Sequential Electron Transfer Approach. Journal of Physical Chemistry C, 2020, 124, 5944-5957.	3.1	31
689	Room temperature phosphorescence from organic luminogens in"non-crystalline―state. Supramolecular Chemistry, 2020, 32, 287-311.	1.2	4
690	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	2.5	92
691	Bright Luminescent Platinum(II)â€Biaryl Emitters Synthesized Without Airâ€5ensitive Reagents. Chemistry - A European Journal, 2020, 26, 5449-5458.	3.3	8
692	Cyclometalated iridium(<scp>iii</scp>) complexes for mitochondria-targeted combined chemo-photodynamic therapy. Dalton Transactions, 2020, 49, 3562-3569.	3.3	40
693	Charge separation, recombination and intersystem crossing of directly connected perylenemonoimide–carbazole electron donor/acceptor dyads. Physical Chemistry Chemical Physics, 2020, 22, 6376-6390.	2.8	21
694	Nearâ€Infrared Photoactive Azaâ€BODIPY: Thermally Robust and Photostable Photosensitizer and Efficient Electron Donor. ChemPhysChem, 2020, 21, 725-740.	2.1	13
695	New route to strong, long-lived room-temperature phosphorescence using organic phosphor guest-friendly matrices [Al(DMSO)6]X3 (X=Clâ^', Brâ^'). Dyes and Pigments, 2020, 177, 108323.	3.7	5
696	Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. Journal of Medicinal Chemistry, 2020, 63, 1996-2012.	6.4	165
697	Synthesis of AIE-Active Materials with Their Applications for Antibacterial Activity, Specific Imaging of Mitochondrion and Image-Guided Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 1187-1196.	4.6	24
698	Carbazole-perylenebisimide electron donor/acceptor dyads showing efficient spin orbit charge transfer intersystem crossing (SOCT-ISC) and photo-driven intermolecular electron transfer. Journal of Materials Chemistry C, 2020, 8, 4701-4712.	5.5	51
699	pH-Responsive metal–organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer. Journal of Materials Chemistry B, 2020, 8, 1739-1747.	5.8	77
700	Smart use of "ping-pong―energy transfer to improve the two-photon photodynamic activity of an Ir(<scp>iii</scp>) complex. Chemical Communications, 2020, 56, 2845-2848.	4.1	16
701	Achieving Highly Efficient Pure Organic Singleâ€Molecule Whiteâ€Light Emitter: The Coenhanced Fluorescence and Phosphorescence Dual Emission by Tailoring Alkoxy Substituents. Advanced Optical Materials, 2020, 8, 1901995.	7.3	54
702	TREPR Study of the Anisotropic Spin–Lattice Relaxation Induced by Intramolecular Energy Transfer in Orthogonal BODIPY Dimers. Journal of Physical Chemistry C, 2020, 124, 3939-3951.	3.1	12

#	Article	IF	CITATIONS
 703	Sandwichâ€Type Porphyrin Complexes as Efficient Sensitizers for Tripletâ€Triplet Annihilation Upconversion. ChemistrySelect, 2020, 5, 1713-1717.	1.5	4
704	Aggregation-induced Emission-active Fluorescent Nanodot as a Potential Photosensitizer for Photodynamic Anticancer Therapy. Current Nanoscience, 2020, 16, 112-120.	1.2	4
705	Synthesis and Spectral Properties of <i>gem</i> â€Dimethyl Chlorin Photosensitizers. ChemPhotoChem, 2020, 4, 601-611.	3.0	12
706	Bodipy-Phenylethynyl Anthracene Dyad: Spin-Orbit Charge Transfer Intersystem Crossing and Triplet Excited-State Equilibrium. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112573.	3.9	11
707	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 12951-12957.	13.8	26
708	Spectral-Fluorescence Properties of Zn(II)-Octaphenyltetraazaporphyrins. Journal of Fluorescence, 2020, 30, 657-664.	2.5	3
709	Triplet Harvesting Using Two-Photon Absorption in Substituted Naphthalimides for Their Application as Heavy-Atom-Free Photosensitizers. Journal of Physical Chemistry C, 2020, 124, 8178-8185.	3.1	22
710	Degradation of environmental contaminants by topical heterogeneous photocatalysts. , 2020, , 151-182.		5
711	Spin–orbit coupling and vibronic transitions of Ce(C3H4) and Ce(C3H6) formed by the Ce reaction with propene: Mass-analyzed threshold ionization and relativistic quantum computation. Journal of Chemical Physics, 2020, 152, 144304.	3.0	7
712	Highly selective, colorimetric probes for cyanide ion based on β-formylBODIPY dyes by an unprecedented nucleophilic addition reaction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119102.	3.9	19
713	High contrast temperature-responsive luminescence materials from purely organic molecule with persistent room-temperature phosphorescence. Journal of Luminescence, 2021, 230, 117731.	3.1	5
714	Visible lightâ€induced photodeoxygenation of polycyclic selenophene Se â€oxides. Journal of Physical Organic Chemistry, 2021, 34, e4144.	1.9	4
715	Radicalâ€Enhanced Intersystem Crossing in a Bayâ€Substituted Perylene Bisimideâ^'TEMPO Dyad and the Electron Spin Polarization Dynamics upon Photoexcitation**. ChemPhysChem, 2021, 22, 55-68.	2.1	23
716	Photocytotoxicity of heavy-atom-free thiobarbituric acid functionalized pyrene derivatives against MCF-7 cancer cells. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102102.	2.6	2
717	An AIE singlet oxygen generation system based on supramolecular strategy. Chinese Chemical Letters, 2021, 32, 1381-1384.	9.0	29
718	Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTAâ€UC Performance. Chemistry - A European Journal, 2021, 27, 3427-3439.	3.3	20
719	Combining metalloporphyrins and cyclometalated complexes – A luminous pair?. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113046.	3.9	4
720	Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials, 2021, 269, 120532.	11.4	50

#	Article	IF	CITATIONS
721	Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer. Accounts of Chemical Research, 2021, 54, 207-220.	15.6	300
722	BODIPY-linked cis-dichlorido zinc(ii) conjugates: the strategic design of organelle-specific next-generation theranostic photosensitizers. Dalton Transactions, 2021, 50, 103-115.	3.3	9
723	Novel periodic mesoporous organosilicas containing pyromellitimides and their application for the photodegradation of asphaltenes. Microporous and Mesoporous Materials, 2021, 312, 110740.	4.4	4
724	Highly efficient BODIPY-doped upconversion nanoparticles for deep-red luminescence bioimaging <i>in vivo</i> . Chemical Communications, 2021, 57, 1518-1521.	4.1	23
725	Boron dipyrromethene (BODIPY) in polymer chemistry. Polymer Chemistry, 2021, 12, 327-348.	3.9	59
726	Platinum and palladium complexes of tridentate â^'C^N^N (phen-ide)-pyridine-thiazol ligands – A case study involving spectroelectrochemistry, photoluminescence spectroscopy and TD-DFT calculations. Inorganica Chimica Acta, 2021, 518, 120093.	2.4	18
727	Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion. Accounts of Chemical Research, 2021, 54, 70-80.	15.6	34
728	Nanoprobes with aggregation-induced emission for theranostics. Materials Chemistry Frontiers, 2021, 5, 603-626.	5.9	53
729	Synthesis and triplet sensitization of bis(arylselanyl)BOPHYs; potential application in triplet–triplet annihilation upconversion. New Journal of Chemistry, 2021, 45, 6091-6099.	2.8	4
730	Highly efficient room-temperature phosphorescent materials with a heavy-atom effect of bromine. New Journal of Chemistry, 2021, 45, 4930-4933.	2.8	3
731	Twisted BODIPY derivative: intersystem crossing, electron spin polarization and application as a novel photodynamic therapy reagent. Physical Chemistry Chemical Physics, 2021, 23, 8641-8652.	2.8	40
732	Insight into the drastically different triplet lifetimes of BODIPY obtained by optical/magnetic spectroscopy and theoretical computations. Chemical Science, 2021, 12, 2829-2840.	7.4	37
733	Recent development of heavy-atom-free triplet photosensitizers: molecular structure design, photophysics and application. Journal of Materials Chemistry C, 2021, 9, 11944-11973.	5.5	55
734	The switchable phosphorescence and delayed fluorescence of a new rhodamine-like dye through allenylidene formation in a cyclometallated platinum(<scp>ii</scp>) system. Chemical Science, 2021, 12, 11056-11064.	7.4	8
735	Photodynamic activity of Sn(<scp>iv</scp>) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Transactions, 2021, 50, 2177-2182.	3.3	8
736	A new near-infrared phosphorescent iridium(<scp>iii</scp>) complex conjugated to a xanthene dye for mitochondria-targeted photodynamic therapy. Biomaterials Science, 2021, 9, 4843-4853.	5.4	31
737	Modulating the optical properties and functions of organic molecules through polymerization. Materials Horizons, 2022, 9, 99-111.	12.2	31
738	New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chemical Science, 2021, 12, 13809-13816.	7.4	19

#	Article	IF	CITATIONS
739	Auto-tandem PET and EnT photocatalysis by crude chlorophyll under visible light towards the oxidative functionalization of indoles. Green Chemistry, 2021, 23, 3039-3047.	9.0	10
740	Controllable room temperature phosphorescence, mechanoluminescence and polymorphism of a carbazole derivative. Materials Horizons, 2021, 8, 2816-2822.	12.2	13
741	Geometrically isomeric Pt2Ag2 acetylide complexes of 2,6-bis(diphenylphosphino)pyridine: luminescent and vapochromic properties. Inorganic Chemistry Frontiers, 2021, 8, 2323-2332.	6.0	5
742	Electron spin dynamics in excited state photochemistry: recent development in the study of intersystem crossing and charge transfer in organic compounds. Physical Chemistry Chemical Physics, 2021, 23, 15835-15868.	2.8	13
743	BODIPY–vinyl dibromides as triplet sensitisers for photodynamic therapy and triplet–triplet annihilation upconversion. Chemical Communications, 2021, 57, 6039-6042.	4.1	13
744	Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chemical Science, 2021, 12, 10742-10754.	7.4	52
745	Exploring the dark: detecting long-lived Nile Red 3ILCT states in Ru(ii) polypyridyl photosensitisers. Journal of Materials Chemistry C, 0, , .	5.5	3
746	Porphyrinoids for Photodynamic Therapy. RSC Smart Materials, 2021, , 252-291.	0.1	4
747	Theoretical studies on triplet formations in nitrobenzoxadiazole (NBD) derivatives: The impact of donor group and heteroatom substitution. Results in Chemistry, 2021, 3, 100116.	2.0	0
748	Unravelling the role of charge transfer state during ultrafast intersystem crossing in compact organic chromophores. Physical Chemistry Chemical Physics, 2021, 23, 25455-25466.	2.8	9
749	Design of novel photosensitizers and controlled singlet oxygen generation for photodynamic therapy. New Journal of Chemistry, 2021, 45, 16298-16305.	2.8	6
750	Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials. Chemical Communications, 2021, 57, 4902-4905.	4.1	27
751	Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies. Molecules, 2021, 26, 556.	3.8	5
752	Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. Journal of the American Chemical Society, 2021, 143, 1590-1597.	13.7	33
753	Controlling the triplet states and their application in external stimuli-responsive triplet–triplet-annihilation photon upconversion: from the perspective of excited state photochemistry. Chemical Society Reviews, 2021, 50, 9686-9714.	38.1	57
754	Theoretical investigation on bisarylselanylbenzo-2,1,3-selenadiazoles as potential photosensitizers in photodynamic therapy. Journal of Chemical Physics, 2021, 154, 084113.	3.0	4
755	Steering Nanohelix and Upconverted Circularly Polarized Luminescence by Using Completely Achiral Components. ACS Nano, 2021, 15, 2753-2761.	14.6	44
756	Broadband Visible Light-Absorbing [70]Fullerene-BODIPY-Triphenylamine Triad: Synthesis and Application as Heavy Atom-Free Organic Triplet Photosensitizer for Photooxidation. Molecules, 2021, 26, 1243.	3.8	6

#	Article	IF	CITATIONS
757	Boosting Room Temperature Phosphorescence Performance by Alkyl Modification for Intravital Orthotopic Lung Tumor Imaging. Small, 2021, 17, e2005449.	10.0	41
758	Solution-Processed OLEDs Based on Thermally Activated Delayed Fluorescence Copper(I) Complexes with Intraligand Charge-Transfer Excited State. Molecules, 2021, 26, 1125.	3.8	11
759	New Approach in the Application of Conjugated Polymers: The Light-Activated Source of Versatile Singlet Oxygen Molecule. Materials, 2021, 14, 1098.	2.9	8
760	Melt and solution processable novel photoluminescent polymer blends for multifaceted advanced applications. Polymer, 2021, 215, 123378.	3.8	9
761	Spin–Orbit Chargeâ€Transfer Intersystem Crossing in Anthracene–Perylenebisimide Compact Electron Donor–Acceptor Dyads and Triads and Photochemical Dianion Formation. Chemistry - A European Journal, 2021, 27, 5521-5535.	3.3	18
762	Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nature Communications, 2021, 12, 1898.	12.8	48
763	Single molecular-based nanoparticles with aggregation-induced emission characteristics for fluorescence imaging and efficient cancer phototherapy. Dyes and Pigments, 2021, 187, 109130.	3.7	17
764	Metalâ€Free Organic Luminophores that Exhibit Dual Fluorescence and Phosphorescence Emission at Room Temperature. ChemPlusChem, 2021, 86, 446-459.	2.8	19
765	Thioetherification Inducing Efficient Excited Triplet State and Singlet Oxygen Generation: Heavy Atom-Free BODIPY Photosensitizer Based on the S ₁ (n,Ï€*) State. Journal of Physical Chemistry C, 2021, 125, 5233-5242.	3.1	14
766	Iridium(III) Complex-Loaded Perfluoropropane Nanobubbles for Enhanced Sonodynamic Therapy. Bioconjugate Chemistry, 2022, 33, 1057-1068.	3.6	7
767	Getting excited about cycloadditions. Science, 2021, 371, 1313-1313.	12.6	0
768	Effect of molecular conformation on the efficiency of the spin orbital charge recombination-induced intersystem crossing in bianthryls. Dyes and Pigments, 2021, 187, 109121.	3.7	7
769	Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Hostâ€Enhanced Charge Transfer. Angewandte Chemie, 2021, 133, 9470-9474.	2.0	3
770	Weakened Triplet–Triplet Annihilation of Diiodo-BODIPY Moieties without Influence on Their Intrinsic Triplet Lifetimes in Diiodo-BODIPY-Functionalized Pillar[5]arenes. Journal of Physical Chemistry A, 2021, 125, 2344-2355.	2.5	8
771	Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Hostâ€Enhanced Charge Transfer. Angewandte Chemie - International Edition, 2021, 60, 9384-9388.	13.8	26
772	An initiating system with high efficiency for PEGDA photopolymerization at 532 nm. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113216.	3.9	12
773	Intersystem Crossing and Electron Spin Selectivity in Anthraceneâ€Naphthalimide Compact Electron Donorâ€Acceptor Dyads Showing Different Geometry and Electronic Coupling Magnitudes. Chemistry - A European Journal, 2021, 27, 7572-7587.	3.3	21
774	Room-Temperature Stable Noncovalent Charge-Transfer Dianion Biradical to Produce Singlet Oxygen by Visible or Near-Infrared Light Photoexcitation. Journal of Physical Chemistry Letters, 2021, 12, 4306-4312.	4.6	5

#	Article	IF	CITATIONS
775	Torsion-Induced Nonradiative Relaxation of the Singlet Excited State of <i>meso</i> -Thienyl Bodipy and Charge Separation, Charge Recombination-Induced Intersystem Crossing in Its Compact Electron Donor/Acceptor Dyads. Journal of Physical Chemistry B, 2021, 125, 4779-4793.	2.6	19
776	Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications. Coordination Chemistry Reviews, 2021, 433, 213755.	18.8	64
777	One-for-All Phototheranostic Agent Based on Aggregation-Induced Emission Characteristics for Multimodal Imaging-Guided Synergistic Photodynamic/Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 19668-19678.	8.0	37
778	Spiro Rhodamine-Perylene Compact Electron Donor–Acceptor Dyads: Conformation Restriction, Charge Separation, and Spin–Orbit Charge Transfer Intersystem Crossing. Journal of Physical Chemistry B, 2021, 125, 4187-4203.	2.6	21
779	Photodynamic inheritance from methylene blue to carbon dots against reduction, aggregation, and DNA interference. Science China Materials, 2021, 64, 2325-2336.	6.3	12
780	Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal Imaging-Guided Synergistic Therapy. ACS Nano, 2021, 15, 7328-7339.	14.6	79
781	Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. Journal of Organic Chemistry, 2021, 86, 5908-5921.	3.2	5
782	Quantitative Structureâ€Property Relationship Modelling for the Prediction of Singlet Oxygen Generation by Heavyâ€Atomâ€Free BODIPY Photosensitizers**. Chemistry - A European Journal, 2021, 27, 9934-9947.	3.3	19
783	Spin-vibronic coupling induced intersystem crossing in tetraphenylporphyrin: Relevance in the photosensitization of prolycopene. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412, 113223.	3.9	2
784	Broad-Spectrum Photo-Antimicrobial Polymers Based on Cationic Polystyrene and Rose Bengal. Frontiers in Medicine, 2021, 8, 641646.	2.6	10
785	Controlled aggregation of methylene blue in silica–methylene blue nanocomposite for enhanced 1O2 generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126360.	4.7	8
786	Direct Observation of the Triplet Excited States and Dynamics of Platinum(II)-Tetraphenylethylene Complexes by Time-Resolved Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 11432-11439.	3.1	9
787	Singlet fission in nanoaggregate of bis(phenylethynyl) derivative of benzene (BPEB): High energy triplet exciton generation with >100 % yield. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412, 113251.	3.9	3
788	Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small, 2021, 17, e2006742.	10.0	171
789	Redâ€ŧoâ€NIR Iridium(III) Emitters: Synthesis, Photophysical and Computational Study, the Effects of Cyclometallating and βâ€Điketonate Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 2163-2170.	2.0	11
790	Heavyâ€Atomâ€Free Bayâ€5ubstituted Perylene Diimide Donorâ€Acceptor Photosensitizers. ChemPhysChem, 2021, 22, 1488-1496.	2.1	11
791	How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AIEgens with Isolated Phenyl Rings. Journal of the American Chemical Society, 2021, 143, 9565-9574.	13.7	97
792	Organic Polymer Hosts for Triplet–Triplet Annihilation Upconversion Systems. Macromolecules, 2021, 54, 5287-5303.	4.8	20

#	Article	IF	CITATIONS
794	Does Twisted π-Conjugation Framework Always Induce Efficient Intersystem Crossing? A Case Study with Benzo[<i>b</i>]- and [<i>a</i>]Phenanthrene-Fused BODIPY Derivatives and Identification of a Dark State. Journal of Physical Chemistry B, 2021, 125, 6280-6295.	2.6	21
795	Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy. Chemical Research in Chinese Universities, 2021, 37, 951-959.	2.6	26
796	Intersystem Crossing in Tetrapyrrolic Macrocycles. A First-Principles Analysis. Journal of Physical Chemistry C, 2021, 125, 13493-13500.	3.1	12
797	An Approach to Developing Cyanines with Simultaneous Intersystem Crossing Enhancement and Excited-State Lifetime Elongation for Photodynamic Antitumor Metastasis. Journal of the American Chemical Society, 2021, 143, 12345-12354.	13.7	80
798	Cyclometalated Iridium(III) Complex-Sensitized NiO-Based-Cathodic Photoelectrochemical Platform for DNA Methyltransferase Assay. ACS Applied Bio Materials, 2021, 4, 6103-6111.	4.6	6
799	A Green-Absorbing, Red-Fluorescent Phenalenone-Based Photosensitizer as a Theranostic Agent for Photodynamic Therapy. ACS Medicinal Chemistry Letters, 2021, 12, 1295-1301.	2.8	13
800	Lifetime-tunable green room temperature phosphorescence of carbon dots by the multi-step modification. Optics Express, 2021, 29, 41014.	3.4	5
801	Visible Light-Driven and Singlet Oxygen-Mediated Photochemical Cross-Dehydrogenative C ₃ –H Sulfenylation of 4-Hydroxycoumarins with Thiols Using Rose Bengal as a Photosensitizer. Journal of Organic Chemistry, 2021, 86, 9658-9669.	3.2	30
802	Persistent Roomâ€Temperature Phosphorescence from Purely Organic Molecules and Multiâ€Component Systems. Advanced Optical Materials, 2021, 9, 2100411.	7.3	81
803	Exploring the Concept of Dimerization-Induced Intersystem Crossing: At the Origins of Spin–Orbit Coupling Selection Rules. Journal of Physical Chemistry B, 2021, 125, 8572-8580.	2.6	8
804	BODIPYâ€Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angewandte Chemie, 2021, 133, 20065-20073.	2.0	14
805	Molecular Triplet Sensitization and Photon Upconversion Using Colloidal Semiconductor Nanocrystals. ACS Energy Letters, 2021, 6, 3151-3166.	17.4	41
806	Chromophore Orientation-Dependent Photophysical Properties of Pyrene–Naphthalimide Compact Electron Donor–Acceptor Dyads: Electron Transfer and Intersystem Crossing. Journal of Physical Chemistry B, 2021, 125, 9244-9259.	2.6	16
807	AlEgens for Bacterial Imaging and Ablation. Advanced Healthcare Materials, 2021, 10, e2100877.	7.6	19
808	Electron Spin Dynamics of the Intersystem Crossing of Triplet Photosensitizers That Show Strong Absorption of Visible Light and Long-Lived Triplet States. Journal of Physical Chemistry C, 2021, 125, 19097-19109.	3.1	9
809	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie, 2021, 133, 22233-22240.	2.0	24
810	BODIPYâ€Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angewandte Chemie - International Edition, 2021, 60, 19912-19920.	13.8	186
811	BODIPY-attached zinc(II) complexes of curcumin drug for visible light assisted photo-sensitization, cellular imaging and targeted PDT. European Journal of Medicinal Chemistry, 2021, 220, 113438.	5.5	24

#	Article	IF	CITATIONS
812	Photoredox catalysis in nickel-catalyzed C–H functionalization. Beilstein Journal of Organic Chemistry, 2021, 17, 2209-2259.	2.2	23
813	Bodipy-Containing Porous Microcapsules for Flow Heterogeneous Photocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 38722-38731.	8.0	15
814	Reliable TDDFT Protocol Based on a Local Hybrid Functional for the Prediction of Vibronic Phosphorescence Spectra Applied to Tris(2,2′-bipyridine)-Metal Complexes. Journal of Physical Chemistry A, 2021, 125, 7099-7110.	2.5	13
815	Ultralong Polymeric Room Temperature Phosphorescence Materials Fabricated by Multiple Hydrogen Bondings Resistant to Temperature and Humidity. Advanced Optical Materials, 2021, 9, 2100782.	7.3	34
816	Intersystem Crossing and Triplet-State Property of Anthryl- and Carbazole-[1,12]fused Perylenebisimide Derivatives with a Twisted π-Conjugation Framework. Journal of Physical Chemistry B, 2021, 125, 9317-9332.	2.6	11
817	Triplet Photosensitizers Showing Strong Absorption of Visible Light and Long-Lived Triplet Excited States and Application in Photocatalysis: A Mini Review. Energy & Fuels, 2021, 35, 18942-18956.	5.1	26
818	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie - International Edition, 2021, 60, 22062-22069.	13.8	37
819	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	11.2	24
820	The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for Câ^'H Functionalization of Alkanes and Cycloalkanes. European Journal of Organic Chemistry, 2021, 2021, 5545-5556.	2.4	25
821	Photothermal and Enhanced Photocatalytic Therapies Conduce to Synergistic Anticancer Phototherapy with Biodegradable Titanium Diselenide Nanosheets. Small, 2021, 17, e2103239.	10.0	13
822	Access to the Triplet Excited States of Heavy-Atom-Free Boron-Dipyrromethene Photosensitizers via Radical Pair Intersystem Crossing for Image-Guided Tumor-Targeted Photodynamic Therapy. Chemistry of Materials, 2021, 33, 7889-7896.	6.7	24
823	Mechanistic study on the photo carboxylation of benzylic C-H bonds by xanthone and Ni(0) catalysts. Molecular Catalysis, 2021, 514, 111785.	2.0	3
824	En route to the transformation of porphyrin molecules for PDT: Theoretical insights on the reactive oxygen generation of 1D nano-wires and 2D covalent organic frameworks. Chemical Physics, 2021, 549, 111278.	1.9	1
825	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	47.7	657
826	A tumor acidity-driven transformable polymeric nanoassembly with deep tumor penetration and membrane-anchoring capability for targeted photodynamic therapy. Biomaterials, 2021, 276, 121024.	11.4	10
827	Synthesis, Structure, Photophysics, and Singlet Oxygen Sensitization by a Platinum(II) Complex of <i>Meso</i> â€Tetraâ€Acenaphthyl Porphyrin. European Journal of Inorganic Chemistry, 2021, 2021, 4089-4095.	2.0	8
828	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Advanced Science, 2021, 8, e2102587.	11.2	66
829	Magnetic-field induced sustainable electrochemical energy harvesting and storage devices: Recent progress, opportunities, and future perspectives. Nano Energy, 2021, 87, 106119.	16.0	29

#	Article	IF	CITATIONS
830	Heavy-Atom Free <i>spiro</i> Organoboron Complexes As Triplet Excited States Photosensitizers for Singlet Oxygen Activation. Journal of Organic Chemistry, 2021, 86, 12714-12722.	3.2	7
831	Tripletâ€Forming Thionated Donorâ€Acceptor Chromophores for Electrochemically Amphoteric Photosensitization. European Journal of Organic Chemistry, 2021, 2021, 4647-4652.	2.4	5
832	Single-Atom Fe-N4 sites promote the triplet-energy transfer process of g-C3N4 for the photooxidation. Journal of Catalysis, 2021, 404, 89-95.	6.2	26
833	Spin–Orbit Charge-Transfer Intersystem Crossing of Compact Naphthalenediimide-Carbazole Electron-Donor–Acceptor Triads. Journal of Physical Chemistry B, 2021, 125, 10813-10831.	2.6	14
834	Conjugation-regulating synthesis of high photosensitizing activity porphyrin-based covalent organic frameworks for photodynamic inactivation of bacteria. Talanta, 2021, 233, 122536.	5.5	14
835	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 1790-1797.	14.0	20
836	Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. Advanced Materials, 2021, 33, e2100704.	21.0	72
837	Cucurbit[8]uril mediated ultralong purely organic phosphorescence and excellent mechanical strength performance in double-network supramolecular hydrogels. Dyes and Pigments, 2021, 195, 109725.	3.7	10
838	Advances in BODIPY photocleavable protecting groups. Coordination Chemistry Reviews, 2021, 449, 214193.	18.8	30
839	Synergistic effects of photoinduced electron transfer and heavy atom effect based on BODIPY for efficient triplet photosensitizers. Dyes and Pigments, 2021, 196, 109662.	3.7	6
840	A novel family of non-symmetric benzothieno[7,6-b]-fused BODIPYs: Synthesis, structures, photophysical properties and lipid droplet-specific imaging in vitro. Dyes and Pigments, 2021, 196, 109748.	3.7	8
841	A hybrid molecular sensitizer for triplet fusion upconversion. Chemical Engineering Journal, 2021, 426, 131282.	12.7	5
842	Bidirectional sensitization in Ruthenium(II)-antenna dyad beyond energy flow of biological model for efficient photosynthesis. Dyes and Pigments, 2021, 196, 109811.	3.7	2
843	Preparation and application of BODIPY-containing pillararenes based supramolecular systems. Dyes and Pigments, 2021, 196, 109828.	3.7	13
844	Charge separation, charge recombination and intersystem crossing in orthogonal naphthalimide–perylene electron donor/acceptor dyad. Photochemical and Photobiological Sciences, 2021, 20, 69-85.	2.9	4
845	Conjugated nitroxides. Russian Chemical Reviews, 2022, 91, RCR5025.	6.5	50
846	Nanoscale metal–organic frameworks for tumor phototherapy. Journal of Materials Chemistry B, 2021, 9, 3756-3777.	5.8	36
847	Recent advances of AIE light-up probes for photodynamic therapy. Chemical Science, 2021, 12, 6488-6506.	7.4	224

#	Article	IF	CITATIONS
848	Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chemical Society Reviews, 2021, 50, 4185-4219.	38.1	576
849	Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chemical Science, 2021, 12, 8199-8206.	7.4	37
850	Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime. Chemical Science, 2021, 12, 3580-3586.	7.4	30
851	Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters. Nanoscale, 2021, 13, 10462-10467.	5.6	6
852	Synthesis of novel π-extended D–A–D-type dipyrido[3,2- <i>a</i> :2′,3′- <i>c</i>]phenazine derivatives a their photosensitized singlet oxygen generation. New Journal of Chemistry, 2021, 45, 2264-2275.	and 2.8	7
853	Guest-boosted phosphorescence efficiency of a supramolecular cage. Inorganic Chemistry Frontiers, 2021, 8, 2299-2304.	6.0	12
854	Room-temperature phosphorescent organic materials for optical waveguides. Journal of Materials Chemistry C, 2021, 9, 14115-14132.	5.5	18
855	Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. Journal of Materials Chemistry C, 2021, 9, 3391-3395.	5.5	52
856	Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Nearâ€Infrared Photosensitized Nanoparticles. Advanced Materials, 2017, 29, 1604789.	21.0	154
857	Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Dose Photodynamic Therapy. Angewandte Chemie, 2020, 132, 16248-16255.	2.0	26
858	Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Đose Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 16114-16121.	13.8	126
859	Photoredox ketone catalysis for the direct C–H imidation and acyloxylation of arenes. Chemical Science, 2017, 8, 5622-5627.	7.4	58
860	Diketopyrrolopyrrole–fullerene C ₆₀ architectures as highly efficient heavy atom-free photosensitizers: synthesis, photophysical properties and photodynamic activity. Organic and Biomolecular Chemistry, 2020, 18, 1449-1461.	2.8	14
861	Fluorinated Photodynamic Therapy Device Tips and their Resistance to Fouling for In Vivo Sensitizer Release. Photochemistry and Photobiology, 2016, 92, 166-172.	2.5	8
862	Understanding the influence of geometric and electronic structure on the excited state dynamical and photoredox properties of perinone chromophores. Physical Chemistry Chemical Physics, 2021, 23, 24200-24210.	2.8	5
863	Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678.	38.1	221
864	Sensitizing phosphorescent and radical emitters <i>via</i> triplet energy translation from CsPbBr ₃ nanocrystals. Journal of Materials Chemistry C, 2022, 10, 4697-4704.	5.5	2
865	Harnessing selective PET and EnT catalysis by chlorophyll to synthesize <i>N</i> -alkylated quinoline-2(1 <i>H</i>)-ones, isoquinoline-1(2 <i>H</i>)-ones and 1,2,4-trioxanes. Organic and Biomolecular Chemistry, 2021, 19, 9433-9438.	2.8	7

#	Article	IF	CITATIONS
866	Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polymer Chemistry, 2021, 12, 5902-5930.	3.9	9
867	Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer. Molecules, 2021, 26, 5990.	3.8	4
868	a-PET and Weakened Triplet–Triplet Annihilation Self-Quenching Effects in Benzo-21-Crown-7-Functionalized Diiodo-BODIPY. ACS Omega, 2021, 6, 28356-28365.	3.5	3
869	Photodynamic therapy applications of Re(I)â€BODIPY functionalized nanoparticles. Applied Organometallic Chemistry, 2022, 36, e6494.	3.5	0
870	Trojan Horseâ€Like Nanoâ€AIE Aggregates Based on Homologous Targeting Strategy and Their Photodynamic Therapy in Anticancer Application. Advanced Science, 2021, 8, e2102561.	11.2	46
871	Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113619.	3.9	4
872	Organic Triplet Photosensitizers for Triplet-Triplet Annihilation Upconversion. , 2022, , 71-105.		2
873	Photoactivated Selfâ€Disassembly of Multifunctional DNA Nanoflower Enables Amplified Autophagy Suppression for Lowâ€Dose Photodynamic Therapy. Small, 2021, 17, e2104722.	10.0	29
874	Emerging strategies for enhanced photodynamic therapy. , 2016, , .		1
875	Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metalâ€Free Luminophores for Biomedical Applications. Advanced Science, 2021, 8, e2102970.	11.2	104
876	Luminescent Pd(II) Complexes with Tridentate ^{â^'} Arylâ€pyridineâ€(benzo)thiazole Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, e202100278.	1.2	5
877	Recent advances in photo-irradiated synthesis of bioactive heterocycles. , 2020, , 407-452.		3
878	Visible Light Assisted Synthesis of 5-Aryl-1,2,4-thiazolidine-3-thiones Under Catalyst-free Condition. Current Green Chemistry, 2020, 7, 326-333.	1.1	1
879	Phosphorogenic dipyrrinato-iridium(III) complexes as photosensitizers for photodynamic therapy. Dyes and Pigments, 2022, 197, 109886.	3.7	3
880	Dye-sensitized NiO photocathode based on cyclometalated iridium(III) complex with enhanced photocurrent for photoelectrochemical immunoassay. Sensors and Actuators B: Chemical, 2022, 352, 131022.	7.8	5
881	Chapter 6. Computational Spectroscopy and Photophysics in Complex Biological Systems: Towards an In Silico Photobiology. RSC Theoretical and Computational Chemistry Series, 2020, , 202-246.	0.7	1
882	Revealing the Photophysical Dynamics of Selected Rigid Donor–Acceptor Systems: From Ligands to Ruthenium(II) Complexes. Journal of Physical Chemistry Letters, 2021, 12, 10927-10935.	4.6	3
883	Accelerated optimization of pure metal and ligand compositions for light-driven hydrogen production. Reaction Chemistry and Engineering, 2022, 7, 599-608.	3.7	6

#	Article	IF	CITATIONS
884	Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative. Crystals, 2021, 11, 1370.	2.2	0
885	Nearâ€Unity Triplet Generation Promoted via Spiroâ€Conjugation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
886	Emergence of Aggregation Induced Emission (AIE), Room-Temperature Phosphorescence (RTP), and Multistimuli Response from a Single Organic Luminogen by Directed Structural Modification. Journal of Physical Chemistry B, 2021, 125, 12832-12846.	2.6	6
887	Excited-State Modulation of Aggregation-Induced Emission Molecules for High-Efficiency Triplet Exciton Generation. , 2021, 3, 1767-1777.		26
888	Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling. Journal of the American Chemical Society, 2021, 143, 20952-20961.	13.7	17
889	Self-Improving Photosensitizer Discovery System via Bayesian Search with First-Principle Simulations. Journal of the American Chemical Society, 2021, 143, 19769-19777.	13.7	17
890	Prolongation excitation wavelength of two-photon active photosensitizer for near-infrared light-induced in vitro photodynamic therapy. Journal of Molecular Structure, 2022, 1254, 132030.	3.6	2
891	(RuBpy3)2+-bisterpyridinyl Triangle Promoted Singlet Oxygen (1O2) Photosensitization for Fast Oxidation of Sulfur Mustard Simulant. Inorganic Chemistry Communication, 2021, 135, 109090.	3.9	0
892	Tailored Fabrication of Carbon Dot Composites with Fullâ€Color Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	11.2	100
893	In-Depth Studies of Ground- and Excited-State Properties of Re(I) Carbonyl Complexes Bearing 2,2′:6′,2″-Terpyridine and 2,6-Bis(pyrazin-2-yl)pyridine Coupled with π-Conjugated Aryl Chromophores. Inorganic Chemistry, 2021, 60, 18726-18738.	4.0	10
894	Charge Transfer, Intersystem Crossing, and Electron Spin Dynamics in a Compact Perylenemonoimide-Phenoxazine Electron Donor–Acceptor Dyad. Journal of Physical Chemistry B, 2021, 125, 12859-12875.	2.6	8
895	Direct Observation of Ultrafast Access to a Solvent-Independent Singlet–Triplet Equilibrium State in Acridone Solutions. Journal of Physical Chemistry B, 2021, 125, 13291-13297.	2.6	4
896	Thermally Activated Upconversion with Metal-Free Sensitizers Enabling Exceptional Anti-Stokes Shift and Anti-counterfeiting Application. ACS Applied Materials & amp; Interfaces, 2021, 13, 57481-57488.	8.0	22
897	Nearâ€Unity Triplet Generation Promoted via Spiro onjugation. Angewandte Chemie, 2022, 134, e202113190.	2.0	3
898	Ligand Enhanced Activity of In Situ Formed Nanoparticles for Photocatalytic Hydrogen Evolution. ChemCatChem, 2022, 14, .	3.7	6
899	A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Advanced Healthcare Materials, 2022, 11, e2102017.	7.6	27
900	An unexpected non-conjugated AlEgen with a discrete dimer for pure intermolecular through-space charge transfer emission. Chemical Science, 2021, 12, 15928-15934.	7.4	11
901	Syntheses of new chiral chimeric photo-organocatalysts. RSC Advances, 2021, 11, 36663-36669.	3.6	10

#	Article	IF	Citations
902	Recent progress on the design and development of diaminotriazine based molecular catalysts for light-driven hydrogen production. Coordination Chemistry Reviews, 2022, 456, 214375.	18.8	17
903	Deciphering the Ligand's geometric effect on the photophysical properties of osmium complex and its application in triplet-triplet annihilation upconversion. Dyes and Pigments, 2022, 199, 110049.	3.7	10
904	Matrix-free nitrogen-doped carbon dots with room temperature phosphorescence for information encryption and temperature detection. Microchemical Journal, 2022, 175, 107126.	4.5	14
905	An imidazoacridine-based TADF material as an effective organic photosensitizer for visible-light-promoted [2 + 2] cycloaddition. Chemical Science, 2022, 13, 2296-2302.	7.4	20
906	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	3.1	1
907	Energy Flow in Hybrid Organic/Inorganic Systems for Triplet–Triplet Annihilation Upconversion. ACS Energy Letters, 2022, 7, 847-861.	17.4	20
908	Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone. IScience, 2022, 25, 103600.	4.1	12
909	Photoâ€Controlled Reversible Multicolor Roomâ€Temperature Phosphorescent Solid Supramolecular Pseudopolyrotaxane. Advanced Optical Materials, 2022, 10, .	7.3	23
910	A catalyzed <i>E</i> / <i>Z</i> isomerization mechanism of stilbene using <i>para</i> -benzoquinone as a triplet sensitizer. Physical Chemistry Chemical Physics, 2022, 24, 1712-1721.	2.8	7
912	Spin Orbit Coupling in Orthogonal Charge Transfer States: (TD-)DFT of Pyrene—Dimethylaniline. Molecules, 2022, 27, 891.	3.8	5
913	BODIPY–pyrene donor–acceptor sensitizers for triplet–triplet annihilation upconversion: the impact of the BODIPY-core on upconversion efficiency. Physical Chemistry Chemical Physics, 2022, 24, 3568-3578.	2.8	14
914	Achieving Efficient NIRâ€II Typeâ€I Photosensitizers for Photodynamic/Photothermal Therapy upon Regulating Chalcogen Elements. Advanced Materials, 2022, 34, e2108146.	21.0	116
915	Unravelling the origin of dual photoluminescence in Au ₂ Cu ₆ clusters by triplet sensitization and photon upconversion. Journal of Materials Chemistry C, 2022, 10, 4597-4606.	5.5	8
916	Recent advances in materials for and applications of triplet–triplet annihilation-based upconversion. Journal of Materials Chemistry C, 2022, 10, 4483-4496.	5.5	44
917	Nearâ€Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metalâ€Free Photosensitizer for Twoâ€Photonâ€Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small, 2022, 18, e2106215.	10.0	61
918	Visibleâ€Lightâ€Driven and Singlet Oxygenâ€Mediated Synthesis of Biologically Relevant 2â€Hydroxyphenylatedâ€Î±â€Ketoamides Through Decarboxylative Amidation of 4â€Hydroxycoumarins. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	8
919	Tripletâ€Triplet Annihilation Upconversion from Ru(II) Phenanthroline Complexes and 2â€Substituted Anthracene Derivatives. ChemistrySelect, 2022, 7, .	1.5	0
920	Osmium Complex–Chromophore Conjugates with Both Singlet-to-Triplet Absorption and Long Triplet Lifetime through Tuning of the Heavy-Atom Effect. Inorganic Chemistry, 2022, 61, 5982-5990.	4.0	23

#	Article	IF	CITATIONS
921	Review on recent trends and prospects in π onjugated luminescent aggregates for biomedical applications. Aggregate, 2022, 3, .	9.9	42
922	Recent progress in the development of highly active dyeing photoinitiators based on 1,3-bis(<i>p</i> -substituted phenylamino)squaraines for radical polymerization of acrylates. Polymer Chemistry, 2022, 13, 1787-1812.	3.9	5
923	Visible lightâ€driven acridone catalysis for atom transfer radical polymerization. Journal of Polymer Science, 2022, 60, 1588-1594.	3.8	4
924	Organic photocatalysts: From molecular to aggregate level. Nano Research, 2022, 15, 3835-3858.	10.4	15
925	A cobalt mimochrome for photochemical hydrogen evolution from neutral water. Journal of Inorganic Biochemistry, 2022, 230, 111753.	3.5	11
926	Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5(4H)-oxazolones. Journal of Organic Chemistry, 2022, , .	3.2	6
927	Enhanced Performance of Metal- and Additive-Free Pyridinium-Based Photocatalysts for Selective Aerobic Oxidation: The Role of Anion Exchange in Boosting Reactive Oxygen Species Generation. ACS Sustainable Chemistry and Engineering, 2022, 10, 2148-2157.	6.7	10
928	Development and advancement of iridium(III)-based complexes for photocatalytic hydrogen evolution. Coordination Chemistry Reviews, 2022, 459, 214390.	18.8	38
929	Recent advances in the development and applications of conjugated polymer dots. Journal of Materials Chemistry B, 2022, 10, 2995-3015.	5.8	15
930	Generation of multiple triplet states in an orthogonal bodipy dimer: a breakthrough spectroscopic and theoretical approach. Physical Chemistry Chemical Physics, 2022, 24, 5929-5938.	2.8	10
931	Enhancive and Inhibitory Effects of Copper Complexation on Triplet Dissolved Black Carbon-Sensitized Photodegradation of Organic Micropollutants. SSRN Electronic Journal, 0, , .	0.4	0
932	The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chemical Society Reviews, 2022, 51, 1983-2030.	38.1	168
933	Triplet–Triplet Annihilation Upconversion by Polymeric Sensitizers. Journal of Physical Chemistry C, 2022, 126, 4057-4066.	3.1	8
934	Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Current Organic Synthesis, 2023, 20, 20-60.	1.3	4
935	Photo-activated thin films of porphyrins for reactive oxygen species generation. Journal of Porphyrins and Phthalocyanines, 2022, 26, 550-562.	0.8	1
936	NAST: Nonadiabatic Statistical Theory Package for Predicting Kinetics of Spin-Dependent Processes. Topics in Current Chemistry, 2022, 380, 15.	5.8	4
937	Selectively Lighting Up Singlet Oxygen via Aggregation-Induced Electrochemiluminescence Energy Transfer. Analytical Chemistry, 2022, 94, 3718-3726.	6.5	11
938	Improved Effect of Metal Coordination on Molecular Oxygen Activation for Selective Aerobic Photooxidation. ChemSusChem, 2022, 15, .	6.8	3

#	Article	IF	CITATIONS
939	Radicalâ€Enhanced Intersystem Crossing in Peryleneâ€Oxoverdazyl Radical Dyads. ChemPhysChem, 2022, 23,	2.1	3
940	Visible-Light-Promoted Intramolecular C–O Bond Formation via C _{sp³} <i>–</i> H Functionalization: A Straightforward Synthetic Route to Biorelevant Dihydrofuro[3,2- <i>c</i>]chromenone Derivatives. Journal of Organic Chemistry, 2022, 87, 4777-4787.	3.2	10
941	Intersystem Crossing and Electron Spin Dynamics of Photoexcited Bodipy Dimers. Journal of Physical Chemistry C, 2022, 126, 5473-5482.	3.1	3
942	Effective Therapy of Drugâ€Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. Small, 2022, 18, e2200743.	10.0	27
943	Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS Nano, 2022, 16, 5427-5438.	14.6	27
944	A Conceptual Study on Photodynamic Controlâ€Mediated Holographic Composites. Advanced Photonics Research, 2022, 3, .	3.6	1
945	Investigation of electronic excited states in single-molecule junctions. Nano Research, 2022, 15, 5726-5745.	10.4	7
946	Aggregationâ€Induced Dual Phosphorescence from (<i>o</i> â€Bromophenyl)â€Bis(2,6â€Dimethylphenyl)Borane at Room Temperature. Chemistry - A European Journal, 2022, 28, .	3.3	7
947	Synthesis and photophysical properties of heptamethine cyanine–fullerene C60 dyads with non-quenched fluorescence. Mendeleev Communications, 2021, 31, 807-809.	1.6	3
948	Photochromic Polyoxometalate/Perylenediimide Donor–Acceptor Hybrid Crystals with Interesting Luminescent Properties. Inorganic Chemistry, 2022, 61, 105-112.	4.0	11
949	Visibleâ€Lightâ€Promoted Synthesis of Fusesd Imidazoheterocycle by Eosin Y under Metalâ€Free and Solventâ€Free Conditions. ChemistrySelect, 2021, 6, 13982-13991.	1.5	7
950	Precise Molecular Engineering of Type I Photosensitizers with Nearâ€Infrared Aggregationâ€Induced Emission for Imageâ€Guided Photodynamic Killing of Multidrugâ€Resistant Bacteria. Advanced Science, 2022, 9, e2104079.	11.2	55
951	An energetics assessment of benzo[<i>a</i>]tetracene and benzo[<i>a</i>]pyrene as triplet–triplet annihilation emitters. Molecular Systems Design and Engineering, 2022, 7, 889-898.	3.4	2
953	Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100529.	11.6	38
954	Sulfoneâ€Đecorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion. Angewandte Chemie, 0, , .	2.0	1
955	Red Lightâ€Emitting Thermallyâ€Activated Delayed Fluorescence of Naphthalimideâ€Phenoxazine Electron Donorâ€Acceptor Dyad: Timeâ€Resolved Optical and Magnetic Spectroscopic Studies. Chemistry - A European Journal, 2022, 28, .	3.3	12
957	Sulfoneâ€Đecorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
960	Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nature Communications, 2022, 13, 2216.	12.8	49

#	Article	IF	CITATIONS
961	BINOL blocks as accessible triplet state modulators in BODIPY dyes. Chemical Communications, 2022, 58, 6385-6388.	4.1	4
962	Quantum effects in photosensitization: the case of singlet oxygen generation by thiothymines. Physical Chemistry Chemical Physics, 2022, 24, 13266-13274.	2.8	1
963	Materials and device design for advanced phototherapy systems. Advanced Drug Delivery Reviews, 2022, 186, 114339.	13.7	24
964	Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. Nano-Micro Letters, 2022, 14, 123.	27.0	59
965	Methyl Viologens of Bisâ€(4'â€Pyridylethynyl)Arenes – Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology. Chemistry - A European Journal, 2022, 28, .	3.3	7
966	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
967	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	5
968	Ultrafast study of substituted-position-dependent excited-state evolution in benzophenone-carbazole dyads. Physical Chemistry Chemical Physics, 2022, 24, 14623-14630.	2.8	6
969	Selective population of tripletÂexcited states in heavy-atom-free BODIPY-C60Âbased molecular assemblies. Photochemical and Photobiological Sciences, 2022, 21, 1573-1584.	2.9	4
970	Platinum-Based Two-Photon Photosensitizer Responsive to NIR Light in Tumor Hypoxia Microenvironment. Journal of Medicinal Chemistry, 2022, 65, 7786-7798.	6.4	14
971	Photoswitchable Aie Photosensitizer for Reversible Control of Singlet Oxygen Generation in Imaging-Guided Antimicrobial Photodynamic Therapy. SSRN Electronic Journal, 0, , .	0.4	0
972	Revisiting the Dynamics of Triplet Formation in Anthraquinones. Journal of Physical Chemistry A, 2022, 126, 3680-3687.	2.5	0
973	Naphthalimide–Carbazole Compact Electron Donor–Acceptor Dyads: Effect of Molecular Geometry and Electron-Donating Capacity on the Spin-Orbit Charge Transfer Intersystem Crossing. Journal of Physical Chemistry A, 2022, 126, 3653-3668.	2.5	6
974	Charge Separation and Intersystem Crossing in Homo- and Hetero-Compact Naphthalimide Dimers. Journal of Physical Chemistry B, 2022, 126, 4364-4378.	2.6	7
976	Triplet energy transfer between inorganic nanocrystals and organic molecules. Journal of Photochemistry and Photobiology, 2022, 11, 100128.	2.5	5
978	Red room temperature phosphorescence of lead halide based coordination polymer showing efficient angle-dependent polarized emission and photoelectric performance. Dalton Transactions, 2022, 51, 10055-10060.	3.3	2
979	Balancing fluorescence and singlet oxygen formation in push–pull type near-infrared BODIPY photosensitizers. Journal of Materials Chemistry C, 2022, 10, 9344-9355.	5.5	11
980	Redox-responsive nano-micelles containing trisulfide bonds to enhance photodynamic efficacy of zinc naphthalocyanine. Chemical Physics Letters, 2022, 803, 139785.	2.6	7

		CITATION REPORT		
# 981	ARTICLE Chemical Control Over Optical Trapping Force at an Interface. Advanced Optical Materials, 2022	10	IF 7.3	CITATIONS
981	Chemical Control Over Optical Trapping Force at an interface. Advanced Optical Materials, 2022	, 10, .	7.3	/
982	Selective on the outside deadly on the inside: Superior photodynamic therapy of EGFR1 positive cancer cells by selenopheneâ $\in\!\!BODIPY$ loaded SPIONs2. ChemPhotoChem, 0, , .	colon	3.0	2
983	Dye-Sensitized NiO photocathode based on rhodamine B-Appended Iridium(III) complex for Photoelectrochemical assay. Applied Surface Science, 2022, 599, 153913.		6.1	5
984	Heavy-atom free organic photosensitizers for efficient hydrogen evolution with λÂ>Â600Ânr visible-light excitation. Applied Catalysis B: Environmental, 2022, 316, 121655.		20.2	3
985	Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Biomaterials Science, 0, , .		5.4	7
986	Two-photon absorption of 28-hetero-2,7-naphthiporphyrins: expanded carbaporphyrinoid macro RSC Advances, 2022, 12, 19554-19560.	cycles.	3.6	3
987	Metal nanoclusters as photosensitizers. , 2022, , 569-587.			0
988	Near-infrared thermally activated delayed fluorescence of D–΀-A–΀-D difluoroboron comple efficient singlet oxygen generation in aqueous media. Inorganic Chemistry Frontiers, 2022, 9, 4281-4287.	x for	6.0	10
989	Charge transfer mediated triplet excited state formation in donor–acceptor–donor BODIPY: Application for recording of holographic structures in photopolymerizable glass. Journal of Materials Chemistry C, 2022, 10, 11588-11597.		5.5	7
990	Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. Nanomaterials, 2022, 12, 2210.		4.1	14
991	Potential Application of Photosensitizers With High-Z Elements for Synergic Cancer Therapy. Frontiers in Pharmacology, 0, 13, .		3.5	4
992	Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. Chinese Chemical Letters, 2023, 34, 107666.		9.0	3
993	Photothermal agents based on small organic fluorophores with intramolecular motion. Acta Biomaterialia, 2022, 149, 16-29.		8.3	17
994	Recent progress in upconversion nanomaterials for emerging optical biological applications. Advanced Drug Delivery Reviews, 2022, 188, 114414.		13.7	29
995	Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coordin Chemistry Reviews, 2022, 470, 214698.	ation	18.8	35
996	Ultrafast Intersystem Crossing in Selenium-Annulated Perylene Bisimide. Journal of Physical Cher C, 2022, 126, 13319-13326.	nistry	3.1	7
997	Synthesis and Photophysical Properties of Symmetrical Mononuclear Gold(I)- <i>N</i> -Heterocyc Carbene Complexes. Polycyclic Aromatic Compounds, 0, , 1-13.	lic	2.6	0
998	Photoswitchable AIE photosensitizer for reversible control of singlet oxygen generation in specif bacterial discrimination and photocontrolled photodynamic killing of bacteria. Chemical Enginee Journal, 2022, 450, 138087.	c ring	12.7	26

#	Article	IF	CITATIONS
999	Upconversion Nanostructures Applied in Theranostic Systems. International Journal of Molecular Sciences, 2022, 23, 9003.	4.1	5
1000	Spiro rhodamine-coumarin compact electron donor–acceptor dyads: synthesis and spin–orbit charge transfer intersystem crossing. Photochemical and Photobiological Sciences, 2022, 21, 2153-2168.	2.9	3
1001	Enhancive and inhibitory effects of copper complexation on triplet dissolved black carbon-sensitized photodegradation of organic micropollutants. Chemosphere, 2022, 307, 135968.	8.2	5
1002	Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews, 2022, 471, 214754.	18.8	18
1003	Promoting the transfer of phosphorescence from the solid state to aqueous phase and establishing the universal real-time detection based on the smartphone imaging. Sensors and Actuators B: Chemical, 2022, 371, 132529.	7.8	13
1004	Optical characterizations of synthetic nano PcGaCl thin film. In vitro, hemocompatibility, cytotoxicity, and PDT valuation. Digest Journal of Nanomaterials and Biostructures, 2022, 17, 861-869.	0.8	1
1005	Singlet oxygen mediated efficient photocatalytic degradation of rhodamine B and disinfection by ZnO@PDA/Ag-Ag2O nanocomposite under LED light. Journal of Alloys and Compounds, 2022, 928, 167138.	5.5	10
1006	Novel zinc(II)â^'curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. European Journal of Medicinal Chemistry, 2022, 243, 114736.	5.5	6
1007	Photodynamic Therapy in Cancer. , 2022, , 1285-1308.		0
1008	Phosphorescent metal complexes for biomedical applications. , 2022, , .		0
1009	Isoelectronic Pt(II) Complexes of Cyclometalating C^N^N Ligands with Phenyl/(Benzo)thiophenyl and Pyridyl/(Benzo)thiazolyl Moieties. Dalton Transactions, 0, , .	3.3	2
1010	Non-Sacrificial Photocatalysis. , 2022, , .		4
1011	Nano-assemblies from J-aggregated dyes to improve the selectivity of a H ₂ S-activatable photosensitizer. Chemical Communications, 2022, 58, 10060-10063.	4.1	8
1012	Microwave-assisted direct synthesis of BODIPY dyes and derivatives. Organic and Biomolecular Chemistry, 2022, 20, 9132-9137.	2.8	1
1013	Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). Russian Journal of General Chemistry, 2022, 92, 1546-1561.	0.8	1
1014	Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nature Communications, 2022, 13, .	12.8	53
1015	Improving Near-Infrared Emission of <i>meso</i> -Aryldipyrrin Indium(III) Complexes via Annulation Bridging: Excited-State Dynamics. Journal of Physical Chemistry Letters, 2022, 13, 9210-9220.	4.6	3
1016	Charge Separation/Recombination, Intersystem Crossing, and Unusually Slow Intramolecular Triplet–Triplet Energy Transfer in Naphthalenediimide–Anthracene Compact Energy Donor–Acceptor Dyads. Journal of Physical Chemistry Letters, 2022, 13, 8740-8748.	4.6	7

#	Article	IF	CITATIONS
1017	Origins of Molecular-Twist-Triggered Intersystem Crossing in Functional Perylenediimides: Singlet–Triplet Gap versus Spin–Orbit Coupling. Journal of Physical Chemistry A, 2022, 126, 6594-6603.	2.5	14
1018	Triarylboronâ€Doped Acenethiophenes as Organic Sonosensitizers for Highly Efficient Sonodynamic Therapy with Low Phototoxicity. Advanced Materials, 2022, 34, .	21.0	11
1020	Structural characterization of excited state transition metal complexes by x-ray transient absorption spectroscopies. , 2022, , .		0
1021	Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. Advances in Inorganic Chemistry, 2022, , .	1.0	0
1022	Fine-tuning emission properties of the 9 <i>H</i> -phenoselenazine core through substituents engineering for high efficiency purely organic room temperature phosphorescence. Journal of Materials Chemistry C, 0, , .	5.5	0
1023	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie, 2022, 134, .	2.0	0
1024	Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules, 2022, 27, 6967.	3.8	4
1025	BODIPY-Based Multichromophoric Tripodal System as a Multifunctional Material. Journal of Physical Chemistry B, 2022, 126, 8279-8289.	2.6	1
1026	A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International, 2022, 48, 35986-35999.	4.8	20
1027	Recent Development of Heavy Atom-Free Triplet Photosensitizers for Photodynamic Therapy. Applied Sciences (Switzerland), 2022, 12, 9933.	2.5	7
1028	Generation of color-controllable room-temperature phosphorescence via luminescent center engineering and in-situ immobilization. Chinese Chemical Letters, 2023, 34, 107950.	9.0	0
1029	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
1030	Confinement of the Triplet States in π onjugated BODIPY Dimers Linked with Ethynylene or Butadiynylene Bridges: A Different View on the Effect of Symmetry. Angewandte Chemie, 0, , .	2.0	0
1031	Confinement of the Triplet States in π onjugated BODIPY Dimers Linked with Ethynylene or Butadiynylene Bridges: A Different View on the Effect of Symmetry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
1032	Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation. Chinese Chemical Letters, 2023, 34, 107958.	9.0	3
1033	Truxene-linked coumarin-corrole triad: Synthesis, photophysical properties and application in Tripletâ ^{~,} Triplet annihilation upconversion. Dyes and Pigments, 2023, 208, 110865.	3.7	2
1034	Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. European Journal of Medicinal Chemistry, 2022, 244, 114843.	5.5	10
1035	Effects of regioisomeric BODIPY-C ₆₀ bis-cycloadducts on the generation of singlet oxygen. New Journal of Chemistry, 2022, 46, 23088-23095.	2.8	3

#	Article	IF	CITATIONS
1036	Self-assembled nano-photosensitizer for targeted, activatable, and biosafe cancer phototheranostics. Biomaterials, 2022, 291, 121916.	11.4	12
1037	Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with α,β-Unsaturated Carbonyl Compounds. Journal of Physical Chemistry A, 2022, 126, 8727-8740.	2.5	6
1038	Tailoring intersystem crossing of perylenediimide through chalcogen-substitution at bay-position: A theoretical perspective. Journal of Chemical Physics, 2022, 157, .	3.0	8
1039	Heterocyclic Phosphenium Cations and Their Divergent Coordination Chemistry. Inorganic Chemistry, 2022, 61, 18719-18728.	4.0	3
1040	External Heavy-Atom Activated Phosphorescence of Organic Luminophores in a Rigid Fluid Matrix. , 2022, 4, 2555-2561.		20
1041	Effects of Heavy Iodine Atoms and Ï€â€Expanded Conjugation on Charge Transfer Dynamics in Carboxylic Acid BODIPY Derivatives as Triplet Photosensitizers. ChemPhysChem, 2023, 24, .	2.1	3
1042	Photochemical Crossâ€Coupling Enables Csp ³ â^'C Bond Formation by Câ^'H Homolytic Cleavage: New Developments and Perspectives. European Journal of Organic Chemistry, 2022, 2022, .	2.4	12
1043	Recent Progress in Carrierâ€Free Nanomedicine for Tumor Phototherapy. Advanced Healthcare Materials, 2023, 12, .	7.6	17
1044	BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Selfâ€Assembly, Properties, and Applications. Advanced Materials, 2023, 35, .	21.0	50
1045	Tricyano-Methylene-Pyridine Based High-Performance Aggregation-Induced Emission Photosensitizer for Imaging and Photodynamic Therapy. Molecules, 2022, 27, 7981.	3.8	2
1046	Hydrazone-based boron difluoride complexes as triplet photosensitizers for singlet oxygen generation. Chemical Communications, 2023, 59, 884-887.	4.1	1
1047	Accessing unsymmetrical Ru(<scp>ii</scp>) bipyridine complexes: a versatile synthetic mechanism for fine tuning photophysical properties. Chemical Communications, 0, , .	4.1	0
1048	Rational design of bromine-modified Ir(III) photosensitizer for photocatalytic hydrogen generation. Journal of Catalysis, 2023, 417, 89-97.	6.2	1
1049	Truxene-linked di-coumarin-mono-corrole tetrad: Synthesis, photophysical properties and application in Tripletâ ^{-,} Triplet annihilation upconversion. Journal of Luminescence, 2023, 256, 119612.	3.1	1
1050	Polymorphism and Mechanochromism in 2-Phenylbenzothiazole Cyclometalated Pt ^{II} Complexes with Chelating N ^{â^\$} O Ligands. Inorganic Chemistry, 2022, 61, 20043-20056.	4.0	7
1051	Unambiguous spectral characterization on triplet energy transfer from quantum dots mediated by hole transfer competing with other carrier dynamics. Optics Express, 2022, 30, 47440.	3.4	1
1052	Broadband and strong visible-light-absorbing cuprous sensitizers for boosting photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
1053	Self-Assembly Regulated Singlet Oxygen Generation of Heavy-Atom-Free Organic Chromophores. , 2023, 5, 180-188.		13

#	Article	IF	CITATIONS
1054	Anthrazoline Photocatalyst for Promoting Esterification and Etherification Reactions via Photoredox/Nickel Dual Catalysis. Chinese Journal of Chemistry, 2023, 41, 411-416.	4.9	1
1055	Unraveling the Efficiency of Thioxanthone Based Triplet Sensitizers: A Detailed Theoretical Study. ChemPhysChem, 2023, 24, .	2.1	3
1056	Multicolor-Emissive Carbon Dots for White-Light-Emitting Diodes and Room-Temperature Phosphorescence. ACS Applied Nano Materials, 2023, 6, 918-929.	5.0	15
1057	Molecular Persistent Room-Temperature Phosphorescence from Tetraarylaminoboranes. Inorganic Chemistry, 2023, 62, 1122-1134.	4.0	4
1058	Fabrication of Carbonâ€Based Quantum Dots via a "Bottomâ€Up―Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks― Small, 2023, 19, .	10.0	13
1059	A tricarbonyl rhenium(I) complex decorated with boron dipyrromethene for endoplasmic reticulum-targeted photodynamic therapy. Dyes and Pigments, 2023, 211, 111077.	3.7	4
1060	Hybrid nanoparticles of tetraamino fullerene and benzothiadiazole fluorophore as efficient photosensitizers against multidrug-resistant bacteria. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114537.	3.9	2
1061	Exploring BINOL-O-BODIPY-Based Dimers as Advanced Chromophoric Platforms Enabling Triplet State Population. , 0, , .		0
1062	Photochemistry Driven by Excitedâ€state Aromaticity Gain or Antiaromaticity Relief. Chemistry - A European Journal, 2023, 29, .	3.3	10
1063	Soluble Diphenylhexatriene Dimers for Intramolecular Singlet Fission with High Triplet Energy. Journal of the American Chemical Society, 2023, 145, 2499-2510.	13.7	8
1064	Dual stimuli-responsive phosphorescence of a Pb(<scp>ii</scp>) coordination polymer to acidic vapors and thermal treatment. Dalton Transactions, 2023, 52, 2209-2213.	3.3	2
1065	Membrane-targeting amphiphilic AIE photosensitizer for broad-spectrum bacteria imaging and photodynamic killing of bacteria. Chinese Chemical Letters, 2023, 34, 108160.	9.0	7
1066	Highly Efficient Triplet–Triplet Annihilation Upconversion with a Thermally Activated Delayed Fluorescence Molecule as Triplet Photosensitizer. Journal of Physical Chemistry C, 2023, 127, 2846-2854.	3.1	2
1067	Modulating Narrow-Band Phosphorescence of Pt ₂ Au ₄ Cluster Complexes by Differently Positioned Bis(acetylide)-Naphthalene Linkers. ACS Applied Electronic Materials, 2023, 5, 994-1001.	4.3	3
1068	Longâ€lived Triplet Excited State of Perylenemonoimide (PMI) in a Diimine Pt(II) Bisâ€acetylide Complex: Preparation and Study of the Photophysical Property with Transient Spectra. European Journal of Inorganic Chemistry, 0, , .	2.0	0
1069	Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coordination Chemistry Reviews, 2023, 482, 215074.	18.8	27
1070	Covalent organic frameworks for photochemical organic synthesis. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100798.	5.9	0
1071	Quantum dots: Another choice to sensitize organic transformations. Chemical Physics Reviews, 2023, 4, 011304.	5.7	4

#	Article	IF	CITATIONS
1072	Stimuli-Responsive Boron-Based Materials in Drug Delivery. International Journal of Molecular Sciences, 2023, 24, 2757.	4.1	9
1073	Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby. Chemistry - A European Journal, 2023, 29, .	3.3	3
1074	Employing Long-Range Inductive Effects to Modulate Metal-to-Ligand Charge Transfer Photoluminescence in Homoleptic Cu(I) Complexes. Inorganic Chemistry, 2023, 62, 3248-3259.	4.0	12
1075	Theranostic Nanoprobes with Aggregationâ€Induced NIRâ€II Emission: from Molecular Design to Biomedical Application. ChemBioChem, 2023, 24, .	2.6	5
1076	Enhancing the photosensitizing activity of natural flavins: Tuning the heavy-atom effect in the isoalloxazine series. Bioorganic and Medicinal Chemistry, 2023, 81, 117210.	3.0	0
1077	Bright and Photostable TADFâ€Emitting Zirconium(IV) Pyridinedipyrrolide Complexes: Efficient Dyes for Decay Timeâ€Based Temperature Sensing and Imaging. Advanced Optical Materials, 2023, 11, .	7.3	9
1078	BODIPYâ€Perylene Charge Transfer Compounds; Sensitizers for Tripletâ€Triplet Annihilation Upâ€conversion. Chemistry - A European Journal, 2023, 29, .	3.3	5
1079	Structural optimization of BODIPY photosensitizers for enhanced photodynamic antibacterial activities. Biomaterials Science, 2023, 11, 2870-2876.	5.4	4
1080	Heavy Atom-Free Triplet Photosensitizers: Molecular Structure Design, Photophysical Properties and Application in Photodynamic Therapy. Molecules, 2023, 28, 2170.	3.8	3
1081	Interactions between fullerene derivatives and biological systems. Materials Chemistry Frontiers, 2023, 7, 2153-2174.	5.9	7
1082	Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy. Molecules, 2023, 28, 2303.	3.8	15
1083	Triplet generation at the CdTe quantum dot/anthracene interface mediated by hot and thermalized electron exchange for enhanced production of singlet oxygen. Physical Chemistry Chemical Physics, 2023, 25, 8913-8920.	2.8	1
1084	Development of Aldehyde Functionalized Iridium(III) Complexes Photosensitizers with Strong Visible-Light Absorption for Photocatalytic Hydrogen Generation from Water. Inorganics, 2023, 11, 110.	2.7	0
1085	Predicting Kinetics and Dynamics of Spin-Dependent Processes. Accounts of Chemical Research, 2023, 56, 856-866.	15.6	2
1086	Wavelength engineerable porous organic polymer photosensitizers with protonation triggered ROS generation. Nature Communications, 2023, 14, .	12.8	12
1087	Metalâ€Induced Planar Chirality of Softâ€Bridged Binuclear Platinum(II) Complexes: 100 % Phosphorescence Quantum Yields, Chiral Selfâ€Sorting, and Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1088	Ultrafast T <mml:math <br="" altimg="si73.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e980"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> generation in pyrene-4,5-dione and pyrene-4,5,9,10-tetrone. Journal of Photochemistry and Photobiology A: Chemistry,	3.9	1
1089	2023, 441, 114695. Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes. Molecules, 2023, 28, 2740.	3.8	2

#	Article	IF	CITATIONS
1090	Metalâ€Induced Planar Chirality of Softâ€Bridged Binuclear Platinum(II) Complexes: 100 % Phosphorescence Quantum Yields, Chiral Selfâ€Sorting, and Circularly Polarized Luminescence. Angewandte Chemie, 2023, 135, .	2.0	2
1091	Acceptor substitution engineering of BODIPY-based organic photosensitizers with aggregation-induced emission for organelle localization and photodynamic anticancer therapy. Materials and Design, 2023, 228, 111838.	7.0	8
1092	Synthesis and evaluation of four novel nitrogen-heterocyclic ruthenium polypyridyl complexes as photosensitizers for one and two-photon photodynamic therapy. Dalton Transactions, 0, , .	3.3	0
1093	Organic room-temperature phosphorescence materials for bioimaging. Chemical Communications, 2023, 59, 5329-5342.	4.1	17
1094	Assessing Intersystem Crossing Rates in Donor- and/Acceptor-Functionalized Corroles: A Computational Study. Journal of Physical Chemistry A, 2023, 127, 3347-3355.	2.5	4
1095	A new green-to-blue upconversion system with efficient photoredox catalytic properties. Physical Chemistry Chemical Physics, 2023, 25, 12041-12049.	2.8	3
1096	Deep Red Emitting Heteroleptic Ir(III) Complexes that Incorporate Unsymmetrical 4â€quinoline Carboxylic Acid Derived Ligands. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	4
1097	Activatable Photodynamic Photosensitizers for Cancer Treatment. , 2023, , 345-377.		0
1098	Panchromatic Light-Absorbing [70]Fullerene-Perylene-BODIPY Triad with Cascade of Energy Transfer as an Efficient Singlet Oxygen Sensitizer. Molecules, 2023, 28, 3534.	3.8	1
1099	Origin of intersystem crossing in highly distorted organic molecules: a case study with red light-absorbing <i>N</i> , <i>N</i> , <i>O</i> , <i>O</i> -boron-chelated Bodipys. Chemical Science, 2023, 14, 5014-5027.	7.4	5
1100	Triplet–Triplet Annihilation Upconversion in a Porphyrinic Molecular Container. Journal of the American Chemical Society, 2023, 145, 10061-10070.	13.7	6
1101	Synthesis of Heavy-Atom-Free Triplet Photosensitizers Based on Organoboron Complexes. Synlett, 2024, 35, 84-90.	1.8	2
1102	Does Twisted Molecular Structure Always Induce Intersystem Crossing? A Case Study with Near-IR Absorbing 1,8-Diazabicyclo[5.4.0]undec-7-ene-fused Naphthaldiimide. Journal of Physical Chemistry A, 2023, 127, 4856-4866.	2.5	1
1103	Highly efficient light harvesting of a Eu(<scp>iii</scp>) complex in a host–guest film by triplet sensitization. Chemical Science, 2023, 14, 6867-6875.	7.4	5
1104	Engineering earth-abundant copper(<scp>i</scp>) sensitizing centers in metal–organic frameworks for efficient photosynthesis. Journal of Materials Chemistry A, 0, , .	10.3	1
1105	Constructing efficient and photostable photosensitizer with aggregation-induced emission by introducing highly electronegative nitrogen atom for photodynamic therapy. Chemical Engineering Journal, 2023, 468, 143829.	12.7	2
1106	Understanding remarkably high triplet quantum yield in thione analogs of perylenediimide: A detailed theoretical study. Journal of Chemical Physics, 2023, 158, .	3.0	3
1107	Dual Photosensitizer Coupled Threeâ€Dimensional Metalâ€Covalent Organic Frameworks for Efficient Photocatalytic Reactions. Angewandte Chemie, 2023, 135, .	2.0	2

#	Article	IF	CITATIONS
1108	Synthesis and Properties of Thieno[2′,3′,4′:4,5]naphtho[1,8- <i>cd</i>]pyridines. Journal of Organic Chemistry, 2023, 88, 8802-8824.	3.2	3
1109	Dual Photosensitizer Coupled Threeâ€Dimensional Metal ovalent Organic Frameworks for Efficient Photocatalytic Reactions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
1110	Triplet Formation and Tripletâ€Triplet Annihilation Upconversion in Iodine Substituted Nonâ€Orthogonal BODIPYâ€Perylene Dyads. ChemPhotoChem, 2023, 7, .	3.0	0
1111	Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35, 108661.	9.0	2
1112	Design and Synthesis of BODIPYâ€Hetero[5]helicenes as Heavyâ€Atomâ€Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. Chemistry - A European Journal, 2023, 29, .	3.3	1
1113	Electron transfer and intersystem crossing in the coumarin-anthracene electron donor-acceptor dyads. Dyes and Pigments, 2023, 218, 111480.	3.7	3
1114	Photosensitizing Metasurface Empowered by Enhanced Magnetic Field of Toroidal Dipole Resonance. Small, 0, , .	10.0	0
1115	Modulating the Room Temperature Phosphorescence by Tweaking SOC and PÂ=ÂX Interactions (XÂ=ÂO, S,) Tj E Phosphoramides. Advanced Optical Materials, 2023, 11, .	TQq1 1 0.7 7.3	784314 rg <mark>8</mark> 1
1116	Recent Advances in Carbonylâ€Photoredox/Transition Metal Dual Catalysis. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
1117	Visible-light driven photocatalytic CO ₂ reduction promoted by organic photosensitizers and a Mn(<scp>i</scp>) catalyst. Sustainable Energy and Fuels, 2023, 7, 3454-3463.	4.9	4
1118	Developing single silane-derived delayed fluorescent carbon dots as donors for energy transfer-based aqueous-phase multicolor afterglow application. Journal of Materials Chemistry C, 0, , .	5.5	1
1119	Preparation of amino-substituted anthraquinone: study of the intersystem crossing and application as efficient photoinitiators for photopolymerization. New Journal of Chemistry, 2023, 47, 10415-10423.	2.8	0
1120	Synthesis and Characterization of Luminescent Binuclear μâ€HS Cu(I) Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2023, 649, .	1.2	0
1122	Ru(bpy) ₃ ²⁺ â€Enabled Cellâ€Surface Photocatalytic Proximity Labeling toward More Efficient Capture of Physically Interacting Cells. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
1123	Ru(bpy) ₃ ²⁺ â€Enabled Cellâ€Surface Photocatalytic Proximity Labeling toward More Efficient Capture of Physically Interacting Cells. Angewandte Chemie, 2023, 135, .	2.0	0
1124	Multifunctional broadband visible-light absorbing selenophene modified bodipy photosensitizers. Dyes and Pigments, 2023, 217, 111392.	3.7	1
1125	Spin–orbit charge-transfer intersystem crossing in heavy-atom-free orthogonal covalent boron-dipyrromethene heterodimers. Physical Chemistry Chemical Physics, 2023, 25, 24386-24394.	2.8	2
1126	Halogen functionalized D–A–D-type unsymmetrical squaraine dyes for dye-sensitized solar cells. Materials Advances, 0, , .	5.4	3

#	Article	IF	CITATIONS
1127	Bodipyâ^'corrole tetrads as heavyâ^'atomâ^'free triplet photosensitizers: Study of the energy transfer and application in tripletâ ''triplet annihilation upconversion. Dyes and Pigments, 2023, 218, 111501.	3.7	0
1128	lon Pairing of Cationic and Anionic Ir(III) Photosensitizers for Photocatalytic CO ₂ Reduction at Lipid–Membrane Surfaces. Journal of the American Chemical Society, 2023, 145, 15049-15053.	13.7	5
1129	Ligand-Directed Photodegradation of Interacting Proteins: Oxidative HER2/HER3 Heterodimer Degradation with a Lapatinib-Derived Photosensitizer. Journal of Medicinal Chemistry, 2023, 66, 10265-10272.	6.4	1
1130	Activatable nano-photosensitizers for precise photodynamic cancer therapy. Coordination Chemistry Reviews, 2023, 493, 215324.	18.8	12
1131	Preparation of Xanthene-TEMPO Dyads: Synthesis and Study of the Radical Enhanced Intersystem Crossing. International Journal of Molecular Sciences, 2023, 24, 11220.	4.1	0
1132	Pure Organic AIE Nanoscintillator for Xâ€ray Mediated Type I and Type IIÂPhotodynamic Therapy. Advanced Science, 2023, 10, .	11.2	7
1133	Highly Efficient Photosensitizers with Molecular Vibrational Torsion for Cancer Photodynamic Therapy. ACS Central Science, 2023, 9, 1679-1691.	11.3	2
1134	<i>cis</i> / <i>trans</i> -[Pt(C ^{â^§} N)(Câ‰;CR)(CNBu ^{<i>t</i>})] Isomers: Synthesis, Photophysical, DFT Studies, and Chemosensory Behavior. Inorganic Chemistry, 0, , .	4.0	0
1135	Timeâ€Dependent Colorful Circularly Polarized Organic Ultralong Room Temperature Phosphorescence from a Single omponent Chiral Molecule. Small, 2023, 19, .	10.0	2
1136	Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers. International Journal of Molecular Sciences, 2023, 24, 11837.	4.1	0
1137	Aggregation-Induced Emission (AIE), Life and Health. ACS Nano, 2023, 17, 14347-14405.	14.6	48
1138	Construction and Application of Large Stokes-Shift Organic Room Temperature Phosphorescence Materials by Intermolecular Charge Transfer. Journal of Physical Chemistry Letters, 2023, 14, 6927-6934.	4.6	2
1139	Multi-wavelength excited triplet–triplet upconversion microcrystals based on hot-band excitation for optical information encryption. Physical Chemistry Chemical Physics, 2023, 25, 22103-22110.	2.8	0
1140	Efficient Spin–Orbit Chargeâ€Transfer Intersystem Crossing and Slow Intramolecular Triplet–Triplet Energy Transfer in Bodipy–Perylenebisimide Compact Dyads and Triads. Chemistry - A European Journal, 2023, 29, .	3.3	2
1141	Research advances in BODIPY-assembled supramolecular photosensitizers for photodynamic therapy. Coordination Chemistry Reviews, 2023, 496, 215367.	18.8	14
1142	Making photocatalysts screenable – a milliscale multi-batch screening photoreactor as extension for the modular photoreactor. Reaction Chemistry and Engineering, 2023, 8, 2967-2983.	3.7	0
1143	Pictet–Spengler synthesis of twisted quinoline-fused BODIPYs as heavy-atom-free photosensitizers. Chemical Communications, 2023, 59, 12330-12333.	4.1	3
1144	Efficient Red-to-Blue Triplet–Triplet Annihilation Upconversion Using the C ₇₀ -Bodipy-Triphenylamine Triad as a Heavy-Atom-Free Triplet Photosensitizer. Journal of Physical Chemistry B, 2023, 127, 8476-8486.	2.6	1

#	Article	IF	CITATIONS
1145	Recent Advances in Triplet–Triplet Annihilation Upconversion for Bioimaging and Biosensing. Journal of Analysis and Testing, 2023, 7, 327-344.	5.1	2
1146	Platinum-Assisted Bimetallic Ru–Eu/Pr MOFs for Photocatalytic H ₂ Evolution from Water Splitting. ACS Applied Nano Materials, 2023, 6, 16826-16836.	5.0	0
1147	Goldâ \in "semiconductor nanohybrids as advanced phototherapeutics. Nanomedicine, 0, , .	3.3	0
1148	Regulating 1O2 generation from heavy-atom-free triplet photosensitizers based on thiophene-fused BODIPY. Dyes and Pigments, 2023, 219, 111617.	3.7	3
1149	Visible light-activated photosensitizer inhibits the plasmid-mediated horizontal gene transfer of antibiotic resistance genes. Journal of Hazardous Materials, 2024, 461, 132564.	12.4	1
1150	Visible light induced regioselective C-3 thiocyanation of imidazoheterocycles through naphthalimide dye based photoredox catalysis. Organic and Biomolecular Chemistry, 2023, 21, 8471-8476.	2.8	1
1151	Significance of Nonadiabatic Effects on Efficient Triplet Generation in Lumazines. Journal of Physical Chemistry A, 2023, 127, 7739-7746.	2.5	0
1152	有机èšå•̂物ç,¹åҌ҇生物å‰å-¦åº"用. Zhongguo Jiguang/Chinese Journal of Lasers, 2023, 50, 1	507401.2	0
1154	Diethoxycarbonyl-BODIPYs as heavy-atom-free photosensitizers for holographic recording in cellulose acetate photopolymer. Journal of Materials Chemistry C, 0, , .	5.5	0
1155	Chasing the rainbow: Exploiting photosensitizers to drive photoisomerization reactions. , 2023, 1, .		2
1156	From Pixels to Voxels: A Mechanistic Perspective on Volumetric 3D-Printing. Progress in Polymer Science, 2023, , 101755.	24.7	0
1157	Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry - A European Journal, 2024, 30, .	3.3	1
1158	Ultrafast Fabrication of Lignin Carbon Dots Hydrogels with Self-Mending Properties and Dehydration-Visualizable Phosphorescence for Chemical Sensing and Information Encryption. Journal of Materials Chemistry C, 0, , .	5.5	0
1159	pH-Responsive and Actively Targeted Metal–Organic Framework Structures for Multimodal Antitumor Therapy and Inhibition of Tumor Invasion and Metastasis. ACS Applied Materials & Interfaces, 2023, 15, 50069-50082.	8.0	1
1160	Metal-organic frameworks complex for enhancing tumor treatment effect through synergistic attack of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, O, , .	5.8	0
1161	Excited-State Charge Transfer in Push–Pull Platinum(II) π-Extended Porphyrins Fused with Pentacenequinone. Journal of Physical Chemistry A, 0, , .	2.5	1
1162	Enhancing Tripletâ€ŧriplet Annihilation Upconversion of Pyrene Derivatives for Photoredox Catalysis via Molecular Engineering. Chemistry - A European Journal, 0, , .	3.3	1
1163	Multicolor Afterglow from Carbon Dots: Preparation and Mechanism. Small Methods, 2024, 8, .	8.6	0

#	Article	IF	Citations
1164	Recent Advances in Organic Molecular-to-Supramolecular Self-Assembled Room-Temperature Phosphorescent Materials for Biomedical Applications. ACS Applied Bio Materials, 2023, 6, 4572-4585.	4.6	1
1165	DFT Computational Analysis of Photophysical (Linear and Non-linear) and Photochemical Parameters for the Design of New Coumarins as Photocatalyst. Topics in Catalysis, 0, , .	2.8	0
1166	Highâ€Brightness, Hundredâ€Second Level Ultralong Afterglow Polymers Built via Ultrasoundâ€Synchronized Bâ€Oâ€Click Strategy. Advanced Optical Materials, 0, , .	7.3	0
1167	Construction of supramolecular dimer photosensitizers based on triphenylamine derivatives and cucurbit[8]uril for photocatalysis. Journal of Materials Chemistry A, 2023, 11, 24911-24917.	10.3	4
1168	Construction of supramolecular dimer based on benzothiazole derivative through host–guest interaction for photocatalysis. , 2023, 2, 689-698.		0
1169	Computational study of the photophysical properties and electronic structure of iridium(<scp>iii</scp>) photosensitizer complexes with electron-withdrawing groups. Physical Chemistry Chemical Physics, 2023, 25, 32666-32674.	2.8	0
1170	Modulating Narrow Bandgap in a Diacetylene Functionalized Woven Covalent Organic Framework as a Visible Light Responsive Photocatalyst. Advanced Functional Materials, 0, , .	14.9	0
1171	Pyrenyl-Substituted Imidazo[4,5- <i>f</i>][1,10]phenanthroline Rhenium(I) Complexes with Record-High Triplet Excited-State Lifetimes at Room Temperature: Steric Control of Photoinduced Processes in Bichromophoric Systems. Inorganic Chemistry, 2023, 62, 19256-19269.	4.0	2
1172	An AIE-based monofunctional Pt(<scp>ii</scp>) complex for photodynamic therapy through synergism of necroptosis–ferroptosis. RSC Chemical Biology, 2024, 5, 141-147.	4.1	0
1173	Polycationic Ru(II) Luminophores: Syntheses, Photophysics, and Application in Electrostatically Driven Sensitization of Lanthanide Luminescence. Inorganic Chemistry, 2023, 62, 19446-19456.	4.0	1
1174	Naphthalimide-Modified Tridentate Platinum(II) Complexes: Synthesis, Characterization, and Application in Singlet Oxygen Generation. Inorganics, 2023, 11, 438.	2.7	0
1175	Does the Intersystem Crossing Rate of β-lodinated Phosphorus Corrole Depend on Iodine Numbers and/or Positions?. Journal of Physical Chemistry A, 2023, 127, 10118-10127.	2.5	0
1176	Theoretical explore of bridge and donor engineering for novel naphthalimide based photosensitizers for two-photo photodynamic therapy. Dyes and Pigments, 2024, 222, 111841.	3.7	0
1177	Host–Guest Photosensitizer of a Cationic BODIPY Derivative and Cucurbit[7]uril for High-Efficiency Visible Light-Induced Photooxidation Reactions. ACS Applied Materials & Interfaces, 2023, 15, 55803-55812.	8.0	2
1178	Ultrafast spectroscopy of size-dependent hole-transfer-mediated triplet energy transfer in a quantum dot-molecule complex. Results in Physics, 2023, 55, 107150.	4.1	1
1179	Photocatalytic Release of Bioactive Agents for Therapeutic Applications. ChemCatChem, 0, , .	3.7	0
1180	Fine-tuning of the charge-separated state energy in compact orthogonal naphthalene–phenoxazine dyads and its effect on the thermally-activated delayed fluorescence. New Journal of Chemistry, 2023, 47, 22418-22429.	2.8	0
1181	Tailoring flavin-based photosensitizers for efficient photooxidative coupling of benzylic amines. Physical Chemistry Chemical Physics, 2023, 26, 161-173.	2.8	0

#	Article	IF	CITATIONS
1182	Turning on Singlet Oxygen Generation by Outer‣phere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angewandte Chemie - International Edition, 2024, 63, .	13.8	3
1183	Turning on Singlet Oxygen Generation by Outerâ€Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angewandte Chemie, 2024, 136, .	2.0	0
1184	Ï€-extended porphyrin-based near-infrared photosensitizers for mitochondria-targeted photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 449, 115397.	3.9	0
1185	Phenanthrolines decorated with branched lipophilic chains and their yellow emitting heteroleptic iridium(III) complexes: Synthesis, photophysical and acidochromic behaviour, and computational analysis. Dyes and Pigments, 2024, 222, 111844.	3.7	0
1186	Molecular jackhammers eradicate cancer cells by vibronic-driven action. Nature Chemistry, 2024, 16, 456-465.	13.6	1
1187	A zinc porphyrin-based halogen-bonded organic framework with the heavy atom effect as a highly efficient photocatalyst for oxidative coupling of amines. Journal of Materials Chemistry A, O, , .	10.3	0
1188	Durability of Photosensitizers in a Photo-oxidation Reaction in a Novel Oscillatory Baffled Photo Reactor. Pharmaceutical Fronts, 0, , .	0.8	0
1190	Recent progress in multi-resonance thermally activated delayed fluorescence emitters with an efficient reverse intersystem crossing process. Chemical Communications, 2024, 60, 1089-1099.	4.1	1
1191	Application of photosensitive dental materials as a novel antimicrobial option in dentistry: A literature review. Journal of Dental Sciences, 2023, , .	2.5	0
1192	Effect of the Charge-Separated State on the 3MLCT State: Synthesis and Study of the Photophysics of Electron Donor-Acceptor Dyads Based on Pt(II)-Schiff Base Coordination Framework and Naphthalenediimide Chromophore. Journal of Organometallic Chemistry, 2023, , 123004.	1.8	0
1193	Small-Molecules-Induced Metal–Organic-Framework-based Photosensitizer for Greatly Enhancing H ₂ Production Efficiency. , 2024, 6, 375-383.		1
1194	Lysosome-targeted Aza-BODIPY photosensitizers for anti-cancer photodynamic therapy. Bioorganic and Medicinal Chemistry, 2024, 99, 117583.	3.0	0
1195	pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs. Journal of Fluorescence, 0, ,	2.5	0
1196	Singlet fission initiating organic photosensitizations. Scientific Reports, 2024, 14, .	3.3	0
1197	A Fluorinated BODIPY-Based Zirconium Metal–Organic Framework for <i>In Vivo</i> Enhanced Photodynamic Therapy. Journal of the American Chemical Society, 2024, 146, 1644-1656.	13.7	6
1198	Energy transfer photocatalysis: exciting modes of reactivity. Chemical Society Reviews, 2024, 53, 1068-1089.	38.1	7
1199	Recent advances in the metal/organic hybrid nanomaterials for cancer theranostics. Coordination Chemistry Reviews, 2024, 504, 215654.	18.8	0
1200	A Rational Way to Control the Triplet State Wave Function Confinement of Organic Chromophores: Effect of the Connection Sites and Spin Density Distribution-Guided Molecular Structure Design Principles in Bodipy Dimers. Journal of Physical Chemistry Letters, 2024, 15, 959-968.	4.6	0

#	Article	IF	Citations
1201	How the Length of Through‧pace Conjugation Influences the Clusteroluminescence of Oligo(Phenylene Methylene)s. Angewandte Chemie, 2024, 136, .	2.0	0
1202	How the Length of Throughâ€Space Conjugation Influences the Clusteroluminescence of Oligo(Phenylene Methylene)s. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1203	CsPbBr ₃ Quantum Dots Promoted Depolymerization of Oxidized Lignin via Photocatalytic Semiâ€Hydrogenation/Reduction Strategy. Angewandte Chemie, 2024, 136, .	2.0	0
1204	CsPbBr ₃ Quantum Dots Promoted Depolymerization of Oxidized Lignin via Photocatalytic Semiâ€Hydrogenation/Reduction Strategy. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1205	Rationalizing the carborane <i>versus</i> phenyl-driven luminescence in related dicarboxylic ligands and their antenna effect for their Eu ³⁺ and Tb ³⁺ metal–organic frameworks: a combined experimental and computational study. Journal of Materials Chemistry C, 2024, 12, 2101-2109.	5.5	0
1206	Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1207	Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angewandte Chemie, 2024, 136, .	2.0	0
1208	Bromine indirubin FLIM/PLIM sensors to measure oxygen in normoxic and hypoxic PDT conditions. Photodiagnosis and Photodynamic Therapy, 2024, 45, 103964.	2.6	0
1209	Cancer-cell-specific Self-Reporting Photosensitizer for Precise Identification and Ablation of Cancer Cells. Analytical Chemistry, 2024, 96, 1659-1667.	6.5	0
1211	Photocatalytic Porous Organic Polymers for the Degradation of Recalcitrant Organic Pollutants. , 2024, , .		0
1212	Spin-Vibronic Intersystem Crossing and Molecular Packing Effects in Heavy Atom Free Organic Phosphor. Journal of Chemical Theory and Computation, 2024, 20, 1337-1346.	5.3	0
1213	Red-light operable photosensitizer with symmetry-breaking charge transfer induced intersystem crossing for polymerization of methyl methacrylate. Chemical Communications, 2024, 60, 2385-2388.	4.1	0
1214	The Rhodamine–Perylene Compact Electron Donor–Acceptor Dyad: Spin-Orbit Charge-Transfer Intersystem Crossing and the Energy Balance of the Triplet Excited States. Photochem, 2024, 4, 40-56.	2.2	0
1215	Tuning the Absorption, Fluorescence, Intramolecular Charge Transfer, and Intersystem Crossing in Spiro[fluorene]acridinone. Angewandte Chemie, 2024, 136, .	2.0	0
1216	Multicolor Afterglow Carbon Dots: Luminescence Regulation, Preparation, and Application. Advanced Functional Materials, 0, , .	14.9	0
1217	Tuning the Absorption, Fluorescence, Intramolecular Charge Transfer, and Intersystem Crossing in Spiro[fluorene]acridinone. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1218	Singleâ€Component Photochemical Afterglow Nearâ€Infrared Luminescent Nanoâ€Photosensitizers: Bioimaging and Photodynamic Therapy. Advanced Healthcare Materials, 0, , .	7.6	0
1219	Achieving beyond 100% Triplet State Generation with Singlet Fission Strategy for High-Performance Photosensitizer Design. , 2024, 6, 896-907.		0

#	Article	IF	CITATIONS
1220	Non-adiabatic conformation distortion charge transfer enables dual emission of thermally activated delayed fluorescence and room temperature phosphorescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 311, 124032.	3.9	0
1221	Application of room-temperature phosphorescent carbon dots in information encryption and anti-counterfeiting. Nano Today, 2024, 55, 102200.	11.9	0
1222	Helical BODIPY Dyes as Heavyâ€Atomâ€Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. ChemMedChem, 0, , .	3.2	0
1223	Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction. Journal of the American Chemical Society, 2024, 146, 8043-8057.	13.7	0
1224	A Kinetic Study of a Photo-Oxidation Reaction between $\hat{I}\pm$ -Terpinene and Singlet Oxygen in a Novel Oscillatory Baffled Photo Reactor. Technologies, 2024, 12, 29.	5.1	0
1225	Ultralong sodium alginate-based room temperature phosphorescence materials with advantages of color tunability, flexibility and facile large-area fabrication. Chemical Engineering Journal, 2024, 485, 149751.	12.7	0
1226	Styryl-extended Azopyrroles and their boron difluoride complexes: Synthesises, structures, spectra, and DFT calculation. Journal of Molecular Structure, 2024, 1306, 137889.	3.6	0
1227	Double-Model Decay Strategy Integrating Persistent Photogenic Radicaloids with Dynamic Circularly Polarized Doublet Radiance and Triplet Afterglow. Journal of the American Chemical Society, 2024, 146, 7668-7678.	13.7	0
1228	Abnormal thermally-stimulated dynamic organic phosphorescence. Nature Communications, 2024, 15, .	12.8	0
1229	Thermally-activated upconversion based on triplet fusion for deep red photoactivation of Ru(<scp>ii</scp>) complexes. New Journal of Chemistry, 2024, 48, 6886-6892.	2.8	0
1230	Preparation and characterization of magnetic and magnetophotonic materials based on organic free radicals. , 2024, , 61-181.		0
1231	Triplet Photosensitizers and Their Applications in Triplet–Triplet Annihilation Upconversion. , 0, , .		0
1232	Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nature Communications, 2024, 15, .	12.8	0
1233	Nature and energetics of low-lying excited singlets/triplets and intersystem crossing rates in selone analogs of perylenediimide: A theoretical perspective. Journal of Chemical Physics, 2024, 160, .	3.0	0
1234	Triplet–triplet annihilation photon upconversion-mediated photochemical reactions. Nature Reviews Chemistry, 2024, 8, 238-255.	30.2	0