Porous materials with optimal adsorption thermodynamics separation

Nature 495, 80-84 DOI: 10.1038/nature11893

Citation Report

#	Article	IF	CITATIONS
30	A Robust Molecular Porous Material with High CO ₂ Uptake and Selectivity. Journal of the American Chemical Society, 2013, 135, 10950-10953.	6.6	236
31	New amine-functionalized cobalt cluster-based frameworks with open metal sites and suitable pore sizes: multipoint interactions enhanced CO2 sorption. Dalton Transactions, 2013, 42, 13990.	1.6	25
32	Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach. Journal of the American Chemical Society, 2013, 135, 10234-10237.	6.6	267
33	A Water and Thermally Stable Metal–Organic Framework Featuring Selective CO ₂ Adsorption. Crystal Growth and Design, 2013, 13, 4125-4130.	1.4	47
34	A calixarene based metal organic material, calixMOM, that binds potassium cations. Chemical Communications, 2013, 49, 8353.	2.2	33
35	Topology, chirality and interpenetration in coordination polymers. Chemical Communications, 2013, 49, 9700.	2.2	37
36	Adsorption of Benzene in the Cation-Containing MOFs MIL-141. Journal of Physical Chemistry C, 0, , 130913101409004.	1.5	2
37	Modular construction of 3D coordination frameworks incorporating SiF62â^' links: Accessing the significance of [M(pyrazole)4{SiF6}] synthon. CrystEngComm, 2013, 15, 8280.	1.3	26
38	Facile synthesis of a continuous thin Cu(bipy)2(SiF6) membrane with selectivity towards hydrogen. Journal of Materials Chemistry A, 2013, 1, 11438.	5.2	27
39	Using hinged ligands to target structurally flexible copper(ii) MOFs. CrystEngComm, 2013, 15, 9663.	1.3	27
40	A robust amino-functionalized titanium(iv) based MOF for improved separation of acid gases. Chemical Communications, 2013, 49, 10082.	2.2	135
41	Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification. Dalton Transactions, 2013, 42, 16029.	1.6	45
42	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	1.6	136
43	A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy and Environmental Science, 2013, 6, 3684.	15.6	429
44	Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide: Structure and EPR. Polyhedron, 2013, 61, 20-26.	1.0	9
45	High-rate synthesis of Cu–BTC metal–organic frameworks. Chemical Communications, 2013, 49, 11518.	2.2	127
46	Perfect Statistical Symmetrization of a Heterofunctional Ligand Induced by Pseudo-Copper Trimer in an Expanded Matrix of HKUST-1. Crystal Growth and Design, 2013, 13, 5175-5178.	1.4	5
47	A mesoporous lanthanide–organic framework constructed from a dendritic hexacarboxylate with cages of 2.4 nm. CrystEngComm, 2013, 15, 9328.	1.3	36

~	~
(ΊΤΔΤ	Report
CITAL	KLI OKI

#	Article	IF	CITATIONS
48	Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO ₂ Adsorption Studies. Journal of the American Chemical Society, 2013, 135, 16801-16804.	6.6	473
49	Postcombustion CO ₂ Capture in Functionalized Porous Coordination Networks. Journal of Physical Chemistry C, 2013, 117, 26976-26987.	1.5	21
50	Assembly of a unique octa-nuclear copper cluster-based metal–organic framework with highly selective CO2 adsorption over N2 and CH4. Chemical Communications, 2013, 49, 11433.	2.2	44
51	Metal–organic frameworks (MOFs) based on mixed linker systems: structural diversities towards functional materials. CrystEngComm, 2013, 15, 9276.	1.3	115
52	Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake. Journal of Materials Chemistry A, 2013, 1, 13926.	5.2	79
53	Design and Synthesis of Two Porous Metal–Organic Frameworks with <i>nbo</i> and <i>agw</i> Topologies Showing High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 10720-10722.	1.9	41
54	A Family of Porous Lonsdaleite-e Networks Obtained through Pillaring of Decorated Kagomé Lattice Sheets. Journal of the American Chemical Society, 2013, 135, 14016-14019.	6.6	93
55	Metastable Interwoven Mesoporous Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 11580-11584.	1.9	60
56	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	1.7	632
57	Low-energy regeneration and high productivity in a lanthanide–hexacarboxylate framework for high-pressure CO2–CH4–H2 separation. Chemical Communications, 2013, 49, 6773.	2.2	66
58	Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake. CrystEngComm, 2013, 15, 9320.	1.3	45
59	Highly selective sorption and unique packing geometries of unsaturated hydrocarbons and CO2 in a fluorine-substituted organic–inorganic ionic crystal. Dalton Transactions, 2013, 42, 16209.	1.6	17
60	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie, 2013, 125, 10506-10510.	1.6	66
61	A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. Chemical Communications, 2013, 49, 10269.	2.2	76
62	Pillar substitution modulates CO2 affinity in "mmo―topology networks. Chemical Communications, 2013, 49, 9809.	2.2	47
63	Quest for a highly connected robust porous metal–organic framework on the basis of a bifunctional linear linker and a rare heptanuclear zinc cluster. Chemical Communications, 2013, 49, 10516.	2.2	35
64	Understanding Hydrogen Sorption in a Metal–Organic Framework with Open-Metal Sites and Amide Functional Groups. Journal of Physical Chemistry C, 2013, 117, 9340-9354.	1.5	74
65	Tuning Structural Topologies of a Series of Metal–Organic Frameworks: Different Bent Dicarboxylates. Crystal Growth and Design, 2013, 13, 2111-2117.	1.4	28

#	Article	IF	CITATIONS
66	Stepwise Transformation of the Molecular Building Blocks in a Porphyrin-Encapsulating Metal–Organic Material. Journal of the American Chemical Society, 2013, 135, 5982-5985.	6.6	94
67	Tunable Rare-Earth fcu-MOFs: A Platform for Systematic Enhancement of CO ₂ Adsorption Energetics and Uptake. Journal of the American Chemical Society, 2013, 135, 7660-7667.	6.6	474
68	Metal–Organic Framework with Functional Amide Groups for Highly Selective Gas Separation. Crystal Growth and Design, 2013, 13, 2670-2674.	1.4	67
69	Theoretical Investigations of CO ₂ and H ₂ Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 9970-9982.	1.5	36
70	A microporous metal–organic framework with Lewis basic pyridyl sites for selective gas separation of C2H2/CH4 and CO2/CH4 at room temperature. CrystEngComm, 2013, 15, 5232.	1.3	24
71	Post-synthetic Structural Processing in a Metal–Organic Framework Material as a Mechanism for Exceptional CO ₂ /N ₂ Selectivity. Journal of the American Chemical Society, 2013, 135, 10441-10448.	6.6	190
72	Diffusion of Binary CO ₂ /CH ₄ Mixtures in the MIL-47(V) and MIL-53(Cr) Metal–Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2013, 117, 11275-11284.	1.5	51
73	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie - International Edition, 2013, 52, 10316-10320.	7.2	303
74	Rational Synthesis of a Porous Copper(II) Coordination Polymer Bridged by Weak Lewis-Base Inorganic Monoanions Using an Anion-Mixing Method. Inorganic Chemistry, 2013, 52, 5630-5632.	1.9	13
75	Selective CO2 Adsorption on Metal-Organic Frameworks Based on Trinuclear Cu3-Pyrazolato Complexes: An Experimental and Computational Study. Crystal Growth and Design, 2013, 13, 2628-2635.	1.4	18
76	Computational Studies of CO ₂ Sorption and Separation in an Ultramicroporous Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 17687-17698.	1.5	45
77	Three 2D/2D → 2D or 3D Coordination Polymers: Parallel Stacked, Interpenetration, and Polycatenated. Crystal Growth and Design, 2013, 13, 5045-5049.	1.4	30
78	Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO ₂ Sorption in [Cu(bpy) ₂ SiF ₆]. Crystal Growth and Design, 2013, 13, 4542-4548.	1.4	17
79	Tracing Water and Cation Diffusion in Hydrated Zeolites of Type Li-LSX by Pulsed Field Gradient NMR. Journal of Physical Chemistry C, 2013, 117, 24866-24872.	1.5	26
80	Screening and evaluating aminated cationic functional moieties for potential CO2 capture applications using an anionic MOF scaffold. Chemical Communications, 2013, 49, 11385.	2.2	46
81	A Polarizable and Transferable PHAST CO ₂ Potential for Materials Simulation. Journal of Chemical Theory and Computation, 2013, 9, 5421-5429.	2.3	39
82	Spatial Control of Zeolitic Imidazolate Framework Growth on Flexible Substrates. Crystal Growth and Design, 2013, 13, 4411-4417.	1.4	16
83	A Polarizable and Transferable PHAST N ₂ Potential for Use in Materials Simulation. Journal of Chemical Theory and Computation, 2013, 9, 5550-5557.	2.3	16

#	Article	IF	CITATIONS
84	A Series of Exceptionally Robust Luminescent Coordination Polymers Based on a Bipyridyldicarboxylate Ligand and Rareâ€Earthâ€Metal Ions. European Journal of Inorganic Chemistry, 2013, 2013, 6111-6118.	1.0	16
85	Expanded Organic Building Units for the Construction of Highly Porous Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14886-14894.	1.7	66
86	Adsorption of Bismarck Brown R Dye Onto Multiwall Carbon Nanotubes. Journal of Environmental Analytical Chemistry, 2014, 01, .	0.3	6
87	Perspective: Metal-organic frameworks—Opportunities and challenges. APL Materials, 2014, 2, .	2.2	3
88	Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. Structure and Bonding, 2014, , 75-107.	1.0	15
90	Amide and N-oxide functionalization of T-shaped ligands for isoreticular MOFs with giant enhancements in CO ₂ separation. Chemical Communications, 2014, 50, 14631-14634.	2.2	107
91	Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chemical Communications, 2014, 50, 1092-1094.	2.2	339
93	Enhanced Uptake and Selectivity of CO ₂ Adsorption in a Hydrostable Metal–Organic Frameworks via Incorporating Methylol and Methyl Groups. ACS Applied Materials & Interfaces, 2014, 6, 16932-16940.	4.0	46
94	Coordination copolymerization of three carboxylate linkers into a pillared layer framework. Chemical Science, 2014, 5, 3729.	3.7	53
95	Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO ₂ Capture. ACS Applied Materials & Interfaces, 2014, 6, 20340-20349.	4.0	66
97	Highly Selective CO ₂ Capture by Triazine-Based Benzimidazole-Linked Polymers. Macromolecules, 2014, 47, 8328-8334.	2.2	141
98	Selective Adsorption of Volatile Hydrocarbons and Gases in High Surface Area Chalcogels Containing [ES ₃] ^{3–} Anions (E = As, Sb). Chemistry of Materials, 2014, 26, 6454-6460.	3.2	21
99	Molecular Basis for the High CO ₂ Adsorption Capacity of Chabazite Zeolites. ChemSusChem, 2014, 7, 3031-3038.	3.6	81
101	Alkylamineâ€Tethered Stable Metal–Organic Framework for CO ₂ Capture from Flue Gas. ChemSusChem, 2014, 7, 734-737.	3.6	131
102	A Uniformly Oriented MFI Membrane for Improved CO ₂ Separation. Angewandte Chemie - International Edition, 2014, 53, 3492-3495.	7.2	132
103	Two luminescent metalâ^'organic frameworks constructed by unsymmetric tricarboxylate. Inorganic Chemistry Communication, 2014, 40, 62-65.	1.8	12
104	Stitching 2D Polymeric Layers into Flexible Interpenetrated Metal–Organic Frameworks within Single Crystals. Angewandte Chemie - International Edition, 2014, 53, 4628-4632.	7.2	62
105	A novel 3D metal organic framework based on an Azolate ligand. Chemical Research in Chinese Universities, 2014, 30, 1-3.	1.3	4

#	Article	IF	CITATIONS
106	Synthesis and Carbon Dioxide Sorption of Layered Double Hydroxide/Silica Foam Nanocomposites with Hierarchical Mesostructure. ChemSusChem, 2014, 7, 1035-1039.	3.6	17
107	Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 2014, 43, 5815-5840.	18.7	3,704
108	Crystal Engineering of an nbo Topology Metal–Organic Framework for Chemical Fixation of CO ₂ under Ambient Conditions. Angewandte Chemie - International Edition, 2014, 53, 2615-2619.	7.2	505
109	Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N,Nâ \in^2 linkers. CrystEngComm, 2014, 16, 2305.	1.3	33
110	Investigating the Gas Sorption Mechanism in an <i>rht</i> -Metal–Organic Framework through Computational Studies. Journal of Physical Chemistry C, 2014, 118, 439-456.	1.5	40
111	The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials. Microporous and Mesoporous Materials, 2014, 185, 30-50.	2.2	176
112	Covalent Heme Framework as a Highly Active Heterogeneous Biomimetic Oxidation Catalyst. Chemistry of Materials, 2014, 26, 1639-1644.	3.2	76
113	Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical Society Reviews, 2014, 43, 5867-5895.	18.7	739
114	A Microporous Metal–Organic Framework Constructed from a New Tetracarboxylic Acid for Selective Gas Separation. Crystal Growth and Design, 2014, 14, 2522-2526.	1.4	58
115	MOFs as proton conductors – challenges and opportunities. Chemical Society Reviews, 2014, 43, 5913-5932.	18.7	1,183
116	High CO ₂ /N ₂ /O ₂ /CO separation in a chemically robust porous coordination polymer with low binding energy. Chemical Science, 2014, 5, 660-666.	3.7	181
117	Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today, 2014, 17, 136-146.	8.3	349
118	New Lithium Ion Clusters for Construction of Porous MOFs. Crystal Growth and Design, 2014, 14, 897-900.	1.4	38
119	A Luminescent Dye@MOF Platform: Emission Fingerprint Relationships of Volatile Organic Molecules. Angewandte Chemie - International Edition, 2014, 53, 1575-1579.	7.2	297
120	High CO ₂ /N ₂ and CO ₂ /CH ₄ selectivity in a chiral metal–organic framework with contracted pores and multiple functionalities. Chemical Communications, 2014, 50, 6886-6889.	2.2	63
121	Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal–Organic Framework Thin Film. Angewandte Chemie - International Edition, 2014, 53, 6454-6458.	7.2	119
122	Theoretical investigation of layered zeolite frameworks: Surface properties of 2D zeolites. Catalysis Today, 2014, 227, 2-8.	2.2	25
123	Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature Materials, 2014, 13, 333-343.	13.3	187

#	Article	IF	CITATIONS
124	A Stable Microporous Mixedâ€Metal Metal–Organic Framework with Highly Active Cu ²⁺ Sites for Efficient Crossâ€Dehydrogenative Coupling Reactions. Chemistry - A European Journal, 2014, 20, 1447-1452.	1.7	55
125	A Crystalline Porous Coordination Polymer Decorated with Nitroxyl Radicals Catalyzes Aerobic Oxidation of Alcohols. Journal of the American Chemical Society, 2014, 136, 7543-7546.	6.6	105
126	Porous Inorganic Membranes for CO ₂ Capture: Present and Prospects. Chemical Reviews, 2014, 114, 1413-1492.	23.0	481
127	A porous sodalite-type MOF based on tetrazolcarboxylate ligands and [Cu ₄ Cl] ⁷⁺ squares with open metal sites for gas sorption. Dalton Transactions, 2014, 43, 2365-2368.	1.6	28
128	Tuning the Host–Guest Interactions in a Phosphine Coordination Polymer through Different Types of <i>post</i> -Synthetic Modification. Inorganic Chemistry, 2014, 53, 282-288.	1.9	32
129	Drastic Enhancement of the CO ₂ Adsorption Properties in Sulfone-Functionalized Zr- and Hf-UiO-67 MOFs with Hierarchical Mesopores. Inorganic Chemistry, 2014, 53, 679-681.	1.9	87
130	Combinational Synthetic Approaches for Isoreticular and Polymorphic Metal–Organic Frameworks with Tuned Pore Geometries and Surface Properties. Chemistry of Materials, 2014, 26, 1711-1719.	3.2	38
131	Metal-Cation-Directed <i>de Novo</i> Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 1202-1205.	6.6	168
132	A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. Journal of Materials Chemistry A, 2014, 2, 2628.	5.2	91
133	Designed amyloid fibers as materials for selective carbon dioxide capture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 191-196.	3.3	93
134	A hybrid absorption–adsorption method to efficiently capture carbon. Nature Communications, 2014, 5, 5147.	5.8	163
135	A two dimensional microporous metal-organic framework for selective gas separation. Inorganic Chemistry Communication, 2014, 50, 106-109.	1.8	10
136	Selective Gas Adsorption in a Pair of Robust Isostructural MOFs Differing in Framework Charge and Anion Loading. Inorganic Chemistry, 2014, 53, 12076-12083.	1.9	29
137	Tuning Two-Dimensional Layer to Three-Dimensional Pillar-Layered Metal–Organic Frameworks: Polycatenation and Interpenetration Behaviors. Crystal Growth and Design, 2014, 14, 6261-6268.	1.4	54
138	A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework. Advanced Functional Materials, 2014, 24, 7666-7673.	7.8	81
139	Carbon dioxide adsorption using amine-functionalized mesocellular siliceous foams. Journal of Materials Science, 2014, 49, 7585-7596.	1.7	12
140	Modeling PCN-61 and PCN-66: Isostructural <i>rht</i> -Metal–Organic Frameworks with Distinct CO ₂ Sorption Mechanisms. Crystal Growth and Design, 2014, 14, 5599-5607.	1.4	23
141	A highly stable multifunctional three-dimensional microporous framework: excellent selective sorption and visible photoluminescence. Dalton Transactions, 2014, 43, 6811.	1.6	13

#	Article	IF	CITATIONS
142	Visualizing the distinctly different crystal-to-crystal structural dynamism and sorption behavior of interpenetration-direction isomeric coordination networks. Chemical Science, 2014, 5, 4755-4762.	3.7	56
143	Tailoring hierarchically structured SiO ₂ spheres for high pressure CO ₂ adsorption. Journal of Materials Chemistry A, 2014, 2, 13624-13634.	5.2	15
144	Synthesis, structure and properties of 2D lanthanide coordination polymers based on N-heterocyclic arylpolycarboxylate ligands. Dalton Transactions, 2014, 43, 17385-17394.	1.6	32
145	Bent tritopic carboxylates for coordination networks: clues to the origin of self-penetration. CrystEngComm, 2014, 16, 7722-7730.	1.3	21
146	Construction of 2D interwoven and 3D interpenetrated metal–organic frameworks of Zn(<scp>ii</scp>) by varying N,N′-donor spacers. CrystEngComm, 2014, 16, 4805-4815.	1.3	44
147	Multiple transition metal oxide mesoporous nanospheres with controllable composition for lithium storage. Journal of Materials Chemistry A, 2014, 2, 5041-5050.	5.2	29
148	Synthesis of zeolite from multilayer food packing and sugar cane bagasse ash for CO ₂ adsorption. RSC Advances, 2014, 4, 48576-48581.	1.7	11
149	A channel-type mesoporous In(<scp>iii</scp>)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. Journal of Materials Chemistry A, 2014, 2, 9828-9834.	5.2	124
150	Two porous metal–organic frameworks (MOFs) based on mixed ligands: synthesis, structure and selective gas adsorption. CrystEngComm, 2014, 16, 3097.	1.3	14
151	Porous Molecular Crystals by Macrocyclic Coordination Supramolecules. Journal of the American Chemical Society, 2014, 136, 14883-14895.	6.6	48
152	Does functionalisation enhance CO ₂ uptake in interpenetrated MOFs? An examination of the IRMOF-9 series. Chemical Communications, 2014, 50, 3238-3241.	2.2	57
153	Gas Storage and Diffusion through Nanocages and Windows in Porous Metal–Organic Framework Cu2(2,3,5,6-tetramethylbenzene-1,4-diisophthalate)(H2O)2. Chemistry of Materials, 2014, 26, 4679-4695.	3.2	73
154	Capturing CO ₂ into the Precipitate of a Phase-Changing Solvent after Absorption. Environmental Science & Technology, 2014, 48, 8905-8910.	4.6	100
155	A new tetrazolate zeolite-like framework for highly selective CO ₂ /CH ₄ and CO ₂ /N ₂ separation. Chemical Communications, 2014, 50, 12101-12104.	2.2	91
156	Pyridinium linkers and mixed anions in cationic metal–organic frameworks. Inorganic Chemistry Frontiers, 2014, 1, 302-305.	3.0	28
157	Cu ^{II} –PDC-bpe frameworks (PDC = 2,5-pyridinedicarboxylate, bpe = 1,2-di(4-pyridyl)ethylene): mapping of herringbone-type structures. CrystEngComm, 2014, 16, 8726-8735.	1.3	13
158	A Rodâ€Packing Microporous Hydrogenâ€Bonded Organic Framework for Highly Selective Separation of C ₂ H ₂ /CO ₂ at Room Temperature. Angewandte Chemie - International Edition, 2015, 54, 574-577.	7.2	289
159	Post-synthetic pore-space expansion in a di-tagged metal–organic framework. CrystEngComm, 2014, 16, 9158-9162.	1.3	14

#	Article	IF	CITATIONS
160	Synthesis, characterization, and luminescence modulation of a rare barium-tetracarboxylate framework with I ² O ¹ connectivity. CrystEngComm, 2014, 16, 8706-8709.	1.3	15
161	ROD-8, a rod MOF with a pyrene-cored tetracarboxylate linker: framework disorder, derived nets and selective gas adsorption. CrystEngComm, 2014, 16, 6291-6295.	1.3	28
162	Two 3D metal–organic frameworks of Cd(<scp>ii</scp>): modulation of structures and porous properties based on linker functionalities. CrystEngComm, 2014, 16, 4877-4885.	1.3	21
163	The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chemical Science, 2014, 5, 620-624.	3.7	203
164	Selective adsorption of CO ₂ /CH ₄ and CO ₂ /N ₂ within a charged metal–organic framework. Journal of Materials Chemistry A, 2014, 2, 17771-17778.	5.2	80
165	Investigation of the effect of pore size on gas uptake in two fsc metal–organic frameworks. Chemical Communications, 2014, 50, 4911.	2.2	29
166	Exceptional CO ₂ Adsorbing Materials under Different Conditions. Chemical Record, 2014, 14, 1134-1148.	2.9	29
167	Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials. Journal of Materials Chemistry A, 2014, 2, 13884.	5.2	27
168	A highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO ₂ adsorption behaviour under ambient conditions. Chemical Communications, 2014, 50, 4047-4049.	2.2	104
169	Nanoporous covalent organic polymers incorporating Tröger's base functionalities for enhanced CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 12507.	5.2	90
170	Enhanced CO ₂ sorption and selectivity by functionalization of a NbO-type metal–organic framework with polarized benzothiadiazole moieties. Chemical Communications, 2014, 50, 12105-12108.	2.2	103
171	CO ₂ Adsorption Thermodynamics over N-Substituted/Grafted Graphanes: A DFT Study. Langmuir, 2014, 30, 1837-1844.	1.6	30
172	Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 2014, 114, 10575-10612.	23.0	1,951
173	Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules, 2014, 47, 2875-2882.	2.2	108
174	Enhanced water stability of a microporous acylamide-functionalized metal–organic framework via interpenetration and methyl decoration. CrystEngComm, 2014, 16, 9586-9589.	1.3	35
175	Redox-active Cu(<scp>i</scp>) boron imidazolate framework for mechanochromic and catalytic applications. Chemical Communications, 2014, 50, 8754.	2.2	55
176	A Joint Experimental/Computational Exploration of the Dynamics of Confined Water/Zr-Based MOFs Systems. Journal of Physical Chemistry C, 2014, 118, 14441-14448.	1.5	29
177	Enhanced selective CO ₂ adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2, 14658-14665.	5.2	121

		CITATION REPORT		
#	Article		IF	Citations
178	Template-directed synthesis of metal–organic materials. Chemical Society Reviews, 2014	1, 43, 5444-5455.	18.7	254
179	Evaluating different classes of porous materials for carbon capture. Energy and Environmer Science, 2014, 7, 4132-4146.	ntal	15.6	186
180	Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO ₂ conversion. Journal of Materials Chemistry A, 2014, 2, 18360-18366.		5.2	75
181	Size-Selective Crystallization of Homochiral Camphorate Metal–Organic Frameworks for Separation. Journal of the American Chemical Society, 2014, 136, 12572-12575.	Lanthanide	6.6	138
182	Enhancing Metal–Organic Framework Net Robustness by Successive Linker Coordination From a Hydrogen-Bonded Two-Dimensional Supramolecular Net to a Covalent One Keepinş Topology. Crystal Growth and Design, 2014, 14, 5227-5233.		1.4	36
183	Zinc Metal–Organic Frameworks Based on a Flexible Benzylaminetetracarboxylic Acid an Colinkers. European Journal of Inorganic Chemistry, 2014, 2014, 3133-3139.	d Bipyridine	1.0	3
184	Solubility of the Precombustion Gases CO ₂ , CH ₄ , CO, H _{2< N₂, and H₂S in the Ionic Liquid [bmim][Tf₂N] from Simulations. Journal of Physical Chemistry C, 2014, 118, 23599-23604.}	, Monte Carlo	1.5	67
185	Distinct Temperature-Dependent CO ₂ Sorption of Two Isomeric Metal–Org Frameworks. Crystal Growth and Design, 2014, 14, 2003-2008.	anic	1.4	31
186	Interpenetration Control, Sorption Behavior, and Framework Flexibility in Zn(II) Metal–O Frameworks. Crystal Growth and Design, 2014, 14, 699-704.	rganic	1.4	43
187	Divergent Kinetic and Thermodynamic Hydration of a Porous Cu(II) Coordination Polymer v Exclusive CO ₂ Sorption Selectivity. Journal of the American Chemical Society, 10906-10909.	vith 2014, 136,	6.6	227
188	Perspective of microporous metal–organic frameworks for CO ₂ capture and Energy and Environmental Science, 2014, 7, 2868.	l separation.	15.6	693
189	The Potential Applications of Nanoporous Materials for the Adsorption, Separation, and Ca Conversion of Carbon Dioxide. Advanced Energy Materials, 2014, 4, 1301873.	talytic	10.2	165
190	A Combinatorial Approach towards Waterâ€6table Metal–Organic Frameworks for Highl Carbon Dioxide Separation. ChemSusChem, 2014, 7, 2791-2795.	y Efficient	3.6	82
191	High performance gas adsorption and separation of natural gas in two microporous metal frameworks with ternary building units. Chemical Communications, 2014, 50, 8648-8650.	쀓organic	2.2	109
192	Microgravimetric Thermodynamic Modeling for Optimization of Chemical Sensing Nanoma Analytical Chemistry, 2014, 86, 4178-4187.	iterials.	3.2	66
193	Theoretical Investigations of CO ₂ and CH ₄ Sorption in an Interp Diamondoid Metal–Organic Material. Langmuir, 2014, 30, 6454-6462.	enetrated	1.6	35
194	A porous metal–organic framework with an elongated anthracene derivative exhibiting a working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11		5.2	40
195	A DIH-based equation for separation of CO2–CH4 in metal–organic frameworks and content of Materials Chemistry A, 2014, 2, 11341.	ovalent–organic	5.2	28

#	Article	IF	CITATIONS
196	Ultramicroporous MOF with High Concentration of Vacant Cu ^{II} Sites. Chemistry of Materials, 2014, 26, 4640-4646.	3.2	29
197	Topotactic Transformations of Metal–Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration. Chemistry of Materials, 2014, 26, 5231-5243.	3.2	107
198	A Luminescent Microporous Metal–Organic Framework with Highly Selective CO ₂ Adsorption and Sensing of Nitro Explosives. Inorganic Chemistry, 2014, 53, 9457-9459.	1.9	99
199	A porous metal–organic framework with –COOH groups for highly efficient pollutant removal. Chemical Communications, 2014, 50, 14455-14458.	2.2	154
200	Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why?. Journal of Physical Chemistry Letters, 2014, 5, 3468-3479.	2.1	505
201	Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabaziteâ€Type Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2014, 53, 10645-10648.	7.2	225
202	The three-dimensional coordination polymer poly[[aqua[μ4-2,2′-(diazene-1,2-diyl)dibenzoato]lead(II)] 1,2-bis(pyridin-4-yl)ethylene hemisolvate]. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 934-936.	0.2	1
203	Polymeric Luminescent Zn(II) and Cd(II) Dicarboxylates Decorated by Oxime Ligands: Tuning the Dimensionality and Adsorption Capacity. Crystal Growth and Design, 2014, 14, 3935-3948.	1.4	32
204	Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energy and Environmental Science, 2014, 7, 4053-4060.	15.6	135
205	Discrete and polymeric Cu(ii) complexes featuring substituted indazole ligands: their synthesis and structural chemistry. Dalton Transactions, 2014, 43, 16450-16458.	1.6	15
206	Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels. Chemical Communications, 2014, 50, 7283-7286.	2.2	16
207	Selective CO ₂ Capture in Metal–Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis. Crystal Growth and Design, 2014, 14, 2092-2096.	1.4	148
208	A novel activating strategy to achieve highly porous carbon monoliths for CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 4819-4826.	5.2	127
209	Highly porous carbons with superior performance for CO2 capture through hydrogen-bonding interactions. RSC Advances, 2014, 4, 27414.	1.7	22
210	Interpenetrated Metal–Organic Framework with Selective Gas Adsorption and Luminescent Properties. Crystal Growth and Design, 2014, 14, 2742-2746.	1.4	36
211	Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nature Communications, 2014, 5, 4228.	5.8	510
212	Metal–organic framework membranes: from synthesis to separation application. Chemical Society Reviews, 2014, 43, 6116-6140.	18.7	1,365
213	Synthesis, structure and luminescence properties of metal-organic frameworks based on benzo-bis(imidazole). Science China Chemistry, 2014, 57, 135-140.	4.2	15

#	Article	IF	CITATIONS
214	A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 2014, 136, 6207-6210.	6.6	311
215	Assembly of Two Flexible Metal–Organic Frameworks with Stepwise Gas Adsorption and Highly Selective CO2 Adsorption. Crystal Growth and Design, 2014, 14, 2375-2380.	1.4	42
216	Effective catalytic decomposition of nitrous oxide over highly active and stable bimetallic Coln-mordenite zeolite. Journal of Molecular Catalysis A, 2014, 395, 202-209.	4.8	8
217	The influence of the enantiomeric ratio of an organic ligand on the structure and chirality of metal–organic frameworks. Chemical Communications, 2014, 50, 13829-13832.	2.2	30
218	4,6-Connected fsb Topology Networks Obtained through Two-Step Crystal Engineering of Decorated Trigonal Prismatic Nodes. Crystal Growth and Design, 2014, 14, 2115-2117.	1.4	14
219	Revealing the structure–property relationship of covalent organic frameworks for CO ₂ capture from postcombustion gas: a multi-scale computational study. Physical Chemistry Chemical Physics, 2014, 16, 15189-15198.	1.3	69
220	Utilising hinged ligands in MOF synthesis: a covalent linking strategy for forming 3D MOFs. CrystEngComm, 2014, 16, 6364-6371.	1.3	10
221	Application of pyrene-derived benzimidazole-linked polymers to CO ₂ separation under pressure and vacuum swing adsorption settings. Journal of Materials Chemistry A, 2014, 2, 12492-12500.	5.2	85
222	Rationally Designed Nitrogen-Rich Metal–Organic Cube Material: An Efficient CO2 Adsorbent and H2 Confiner. Crystal Growth and Design, 2014, 14, 739-746.	1.4	33
223	Introduction of ï€-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. Journal of the American Chemical Society, 2014, 136, 8654-8660.	6.6	383
224	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	18.7	1,792
225	Microporous Metal–Organic Frameworks for Gas Separation. Chemistry - an Asian Journal, 2014, 9, 1474-1498.	1.7	183
226	Metal–Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. Journal of the American Chemical Society, 2014, 136, 8863-8866.	6.6	369
227	One rutile Co(II) coordinated polymer with bifunctional ligand. Inorganic Chemistry Communication, 2014, 46, 191-193.	1.8	2
228	Syntheses, Crystal Structures, and Reversible Structural Transformation of Two Zinc Coordination Polymers. Chemistry Letters, 2014, 43, 997-998.	0.7	2
232	Ultramicroporous silicon nitride ceramics for CO ₂ capture. Journal of Materials Research, 2015, 30, 2958-2966.	1.2	11
233	Enhanced gravimetric CO ₂ capacity and viscosity for ionic liquids with cyanopyrrolide anion. AICHE Journal, 2015, 61, 2280-2285.	1.8	34
238	Mesoporous Fluorinated Metal–Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs. Angewandte Chemie - International Edition, 2015, 54, 13902-13906.	7.2	95

#	ARTICLE	IF	CITATIONS
239	A Cationic MOF with High Uptake and Selectivity for CO ₂ due to Multiple CO ₂ â€Philic Sites. Chemistry - A European Journal, 2015, 21, 16525-16531.	1.7	72
240	Combination of Optimization and Metalatedâ€Ligand Exchange: An Effective Approach to Functionalize UiOâ€66(Zr) MOFs for CO ₂ Separation. Chemistry - A European Journal, 2015, 21, 17246-17255.	1.7	82
241	Green Synthesis of a Microporous, Partially Fluorinated Zn ^{II} Paddlewheel Metal–Organic Framework: H ₂ /CO ₂ Adsorption Behavior and Solid‣tate Conversion to a ZnO–C Nanocomposite. European Journal of Inorganic Chemistry, 2015, 2015, 5669-5676.	1.0	28
242	Thermally Stable Coordination Polymer with Hybrid Functional Groups and Mn–SO ₄ Double Chains. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 673-677.	0.6	1
243	Direct Air Capture of CO ₂ by Physisorbent Materials. Angewandte Chemie - International Edition, 2015, 54, 14372-14377.	7.2	382
244	Highâ€performance Polymer Membranes with Multiâ€functional Amphiphilic Micelles for CO ₂ Capture. ChemSusChem, 2015, 8, 3783-3792.	3.6	37
245	Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in <i>rht</i> â€Metal–Organic Frameworks. ChemPhysChem, 2015, 16, 3170-3179.	1.0	14
246	Enhanced CO ₂ Adsorption Affinity in a NbOâ€ŧype MOF Constructed from a Low ost Diisophthalate Ligand with a Piperazineâ€Ring Bridge. Chemistry - an Asian Journal, 2015, 10, 1864-1869.	1.7	26
247	High CO ₂ /CH ₄ Selectivity of a Flexible Copper(II) Porous Coordination Polymer under Humid Conditions. ChemPlusChem, 2015, 80, 1517-1524.	1.3	19
248	Metal–Organic Frameworks: New Interlayer Dielectric Materials. ChemElectroChem, 2015, 2, 786-788.	1.7	59
249	Ultraâ€Tuning of the Rareâ€Earth fcuâ€MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angewandte Chemie - International Edition, 2015, 54, 14353-14358.	7.2	222
250	An Overview of Detection and Neutralization of Chemical Warfare Agents Using Metal Organic Frameworks. Journal of Bioterrorism & Biodefense, 2015, 06, .	0.1	2
251	Preparation of Threeâ€Dimensional Chitosan–Graphene Oxide Aerogel for Residue Oil Removal. Water Environment Research, 2016, 88, 768-778.	1.3	23
252	Recent advances in the methanol synthesis <i>via</i> methane reforming processes. RSC Advances, 2015, 5, 21945-21972.	1.7	34
253	Solvent-free heterogeneous catalysis for cyanosilylation in a modified sodalite-type Cu(<scp>ii</scp>)-MOF. RSC Advances, 2015, 5, 24293-24298.	1.7	29
254	CO ₂ capture by dry alkanolamines and an efficient microwave regeneration process. Journal of Materials Chemistry A, 2015, 3, 6440-6446.	5.2	45
255	The effect of the aliphatic carboxylate linkers on the electronic structures, chemical bonding and optical properties of the uranium-based metal–organic frameworks. RSC Advances, 2015, 5, 26735-26748.	1.7	9
256	Auxiliary Ligand-Assisted Structural Variation of Cd(II) Metal–Organic Frameworks Showing 2D → 3D Polycatenation and Interpenetration: Synthesis, Structure, Luminescence Properties, and Selective Sensing of Trinitrophenol. Crystal Growth and Design, 2015, 15, 3356-3365.	1.4	125

#	Article	IF	CITATIONS
257	Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers. Chemistry of Materials, 2015, 27, 4149-4155.	3.2	60
258	Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nature Communications, 2015, 6, 7328.	5.8	404
259	Novel diamine-modified composite nanofiltration membranes with chlorine resistance using monomers of 1,2,4,5-benzene tetracarbonyl chloride and m-phenylenediamine. Journal of Materials Chemistry A, 2015, 3, 8816-8824.	5.2	54
260	Metal-Organic Frameworks as Platforms for Hydrogen Generation from Chemical Hydrides. Green Chemistry and Sustainable Technology, 2015, , 421-467.	0.4	Ο
261	Multifunctional Phosphate-Based Inorganic–Organic Hybrid Nanoparticles. Journal of the American Chemical Society, 2015, 137, 7329-7336.	6.6	71
262	MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles. Nanoscale, 2015, 7, 10817-10822.	2.8	40
263	A (3,6)-connected metal–organic framework with high CH ₄ binding affinity and uptake capacity. CrystEngComm, 2015, 17, 4793-4798.	1.3	18
264	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.4	4
265	Turn-on luminescence based discrimination of protic acids using a flexible layered metal–organic coordination polymer. RSC Advances, 2015, 5, 48169-48175.	1.7	8
266	Computational exploration of the gas adsorption on the iron tetracarboxylate metal-organic framework MIL-102. Molecular Simulation, 2015, 41, 1357-1370.	0.9	14
267	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	6.0	1,272
268	Exceptional sensitivity to the synthetic approach and halogen substituent for Zn(ii) coordination assemblies with 5-halonicotinic acids. Dalton Transactions, 2015, 44, 11109-11118.	1.6	18
269	Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. Journal of Materials Chemistry A, 2015, 3, 12777-12785.	5.2	171
270	A 2D metal–organic framework composed of a bi-functional ligand with ultra-micropores for post-combustion CO ₂ capture. RSC Advances, 2015, 5, 47384-47389.	1.7	10
271	A novel trinuclear Cd(ii) cluster-based metal–organic framework: synthesis, structure and luminescence properties. RSC Advances, 2015, 5, 102525-102529.	1.7	10
272	Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 16209-16215.	6.6	350
273	A single-ligand ultra-microporous MOF for precombustion CO ₂ capture and hydrogen purification. Science Advances, 2015, 1, e1500421.	4.7	127
274	Structural studies of metal–organic frameworks under high pressure. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 587-607.	0.5	82

#	Article	IF	CITATIONS
275	Enhanced Performance of Mixedâ€Matrix Membranes through a Graft Copolymerâ€Ðirected Interface and Interaction Tuning Approach. ChemSusChem, 2015, 8, 650-658.	3.6	70
276	A porous metal–organic framework containing multiple active Cu ²⁺ sites for highly efficient cross dehydrogenative coupling reaction. Dalton Transactions, 2015, 44, 2038-2041.	1.6	27
277	Interpenetration in coordination polymers: structural diversities toward porous functional materials. Materials Today, 2015, 18, 97-116.	8.3	57
278	Flux Response Technology (FRT) Applied in Zero Length Column Diffusivity and Adsorption Measurements. Transport in Porous Media, 2015, 107, 731-744.	1.2	0
279	Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers. Chemistry of Materials, 2015, 27, 1349-1358.	3.2	220
280	Separation of CO ₂ from CH ₄ and CO ₂ capture in the presence of water vapour in NOTT-400. New Journal of Chemistry, 2015, 39, 2400-2403.	1.4	38
281	Luminescent MOF material based on cadmium(<scp>ii</scp>) and mixed ligands: application for sensing volatile organic solvent molecules. RSC Advances, 2015, 5, 18087-18091.	1.7	48
282	Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C, 2015, 3, 2763-2767.	2.7	41
283	Hysteretic Gas and Vapor Sorption in Flexible Interpenetrated Lanthanide-Based Metal–Organic Frameworks with Coordinated Molecular Gating via Reversible Single-Crystal-to-Single-Crystal Transformation for Enhanced Selectivity. Chemistry of Materials, 2015, 27, 1502-1516.	3.2	76
284	Mechanism and Kinetics of CO ₂ Adsorption on Surface Bonded Amines. Journal of Physical Chemistry C, 2015, 119, 4126-4135.	1.5	111
285	A stable metal–organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 7361-7367.	5.2	86
286	Pore Space Partition by Symmetry-Matching Regulated Ligand Insertion and Dramatic Tuning on Carbon Dioxide Uptake. Journal of the American Chemical Society, 2015, 137, 1396-1399.	6.6	284
287	Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand. Nature Communications, 2015, 6, 5851.	5.8	92
288	Theoretical investigation for adsorption of CO2 and CO on MIL-101 compounds with unsaturated metal sites. Computational and Theoretical Chemistry, 2015, 1055, 8-14.	1.1	15
289	Lanthanide contraction effects on the structures, thermostabilities, and CO ₂ adsorption and separation behaviors of isostructural lanthanide–organic frameworks. CrystEngComm, 2015, 17, 1637-1645.	1.3	19
291	Functionalization of Metal–Organic Framework via Mixed-Ligand Strategy for Selective CO ₂ Sorption at Ambient Conditions. Crystal Growth and Design, 2015, 15, 961-965.	1.4	80
292	A Combined Experimental and Computational Study on the Stability of Nanofluids Containing Metal Organic Frameworks. Journal of Physical Chemistry B, 2015, 119, 8992-8999.	1.2	29
293	Quest for Anionic MOF Membranes: Continuous sod -ZMOF Membrane with CO ₂ Adsorption-Driven Selectivity. Journal of the American Chemical Society, 2015, 137, 1754-1757.	6.6	138

#	Article	IF	CITATIONS
294	A new (3,8)-connected pillared-layer lanthanide–organic framework with interconnected channel and mesoporous cage. Inorganic Chemistry Communication, 2015, 53, 50-54.	1.8	7
295	A robust luminescent Ba (II) metal–organic framework based on pyridine carboxylate ligand for sensing of small molecules. Inorganic Chemistry Communication, 2015, 53, 42-45.	1.8	22
296	Facile fabrication of cost-effective porous polymer networks for highly selective CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 3252-3256.	5.2	96
297	A microporous metal–organic framework with rare lvt topology for highly selective C ₂ H ₂ /C ₂ H ₄ separation at room temperature. Chemical Communications, 2015, 51, 5610-5613.	2.2	61
298	Monodentate hydroxide as a super strong yet reversible active site for CO ₂ capture from high-humidity flue gas. Energy and Environmental Science, 2015, 8, 1011-1016.	15.6	233
299	Amine-Based CO ₂ Capture Technology Development from the Beginning of 2013—A Review. ACS Applied Materials & Interfaces, 2015, 7, 2137-2148.	4.0	686
300	Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation. Journal of Membrane Science, 2015, 478, 130-139.	4.1	140
301	Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports. Chemical Science, 2015, 6, 1668-1675.	3.7	32
302	Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition. Journal of Solid State Chemistry, 2015, 226, 17-23.	1.4	36
303	Adsorption of carbon dioxide using activated carbon impregnated with Cu promoted by zinc. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52, 109-117.	2.7	54
304	Tuning fluorocarbon adsorption in new isoreticular porous coordination frameworks for heat transformation applications. Chemical Science, 2015, 6, 2516-2521.	3.7	57
305	A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO ₂ capture and hydrocarbon separation. Journal of Materials Chemistry A, 2015, 3, 6276-6281.	5.2	105
306	Dual-Functionalized Metal–Organic Frameworks Constructed from Hexatopic Ligand for Selective CO ₂ Adsorption. Inorganic Chemistry, 2015, 54, 2310-2314.	1.9	33
307	Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6, 6350.	5.8	65
308	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	3.2	72
309	A stable luminescent anionic porous metal–organic framework for moderate adsorption of CO ₂ and selective detection of nitro explosives. Journal of Materials Chemistry A, 2015, 3, 7224-7228.	5.2	93
310	Metal–Organic Framework Based upon the Synergy of a BrÃ,nsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	6.6	242
311	Gas storage and separation in a water-stable [Cu ^l ₅ BTT ₃] ^{4â^'} anion framework comprising a giant multi-prismatic nanoscale cage. Chemical Communications, 2015, 51, 5691-5694.	2.2	44

	CHATION I	KEPORT	
#	Article	IF	CITATIONS
312	Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 2015, 519, 303-308.	13.7	1,026
313	Interfacial Growth of Metal Organic Framework/Graphite Oxide Composites through Pickering Emulsion and Their CO ₂ Capture Performance in the Presence of Humidity. Langmuir, 2015, 31, 7410-7417.	1.6	70
314	Ultrasonic synthesis of highly dispersed Au nanoparticles supported on Ti-based metal–organic frameworks for electrocatalytic oxidation of hydrazine. Journal of Materials Chemistry A, 2015, 3, 14669-14674.	5.2	55
		704014	
315	Bifunctionalized Metal Organic Frameworks, UiO-66-NO ₂ -N (N = -NH ₂ ,) Tj ETQq1 1 C	1.0 1.0	gBT /Overloor 67
	CO ₂ and N ₂ . Journal of Chemical & Engineering Data, 2015, 60, 2152-2161.		
316	Functional materials from local and earth-abundant precursors: Scalable and cost-efficient synthetic approach. Resource-efficient Technologies, 2015, 1, 68-70.	0.1	0
317	Functionalized Polysilsesquioxane-Based Hybrid Silica Solid Amine Sorbents for the Regenerative Removal of CO ₂ from Air. ACS Applied Materials & Interfaces, 2015, 7, 17969-17976.	4.0	29
318	Two microporous MOFs constructed from different metal cluster SBUs for selective gas adsorption. Chemical Communications, 2015, 51, 14211-14214.	2.2	51
319	Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy and Environmental Science, 2015, 8, 2504-2511.	15.6	126
320	A facile solvent-free synthesis route for the assembly of a highly CO ₂ selective and H ₂ S tolerant NiSIFSIX metal–organic framework. Chemical Communications, 2015, 51, 13595-13598.	2.2	134
321	A MOF platform for incorporation of complementary organic motifs for CO ₂ binding. Chemical Communications, 2015, 51, 12478-12481.	2.2	45
322	Carbon Dioxide Capture by a Metal–Organic Framework with Nitrogen-Rich Channels Based on Rationally Designed Triazole-Functionalized Tetraacid Organic Linker. Inorganic Chemistry, 2015, 54, 6829-6835.	1.9	44
323	Isolation of a structural intermediate during switching of degree of interpenetration in a metal–organic framework. Chemical Science, 2015, 6, 4986-4992.	3.7	52
324	A Novel Radial Adsorber with Parallel Layered Beds for Prepurification of Large-Scale Air Separation Units. Industrial & Engineering Chemistry Research, 2015, 54, 7502-7515.	1.8	14
325	Mechanically Interlocked Linkers inside Metal–Organic Frameworks: Effect of Ring Size on Rotational Dynamics. Journal of the American Chemical Society, 2015, 137, 9643-9651.	6.6	98
326	Towards multifunctional lanthanide-based metal–organic frameworks. Chemical Communications, 2015, 51, 13313-13316.	2.2	38
327	An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. Chemical Communications, 2015, 51, 13393-13396.	2.2	71
328	Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chemical Engineering Journal, 2015, 281, 606-612.	6.6	238
329	Two stable 3D porous metal–organic frameworks with high performance for gas adsorption and separation. Journal of Materials Chemistry A, 2015, 3, 16627-16632.	5.2	92

#	Article	IF	CITATIONS
330	3D Metal–Organic Framework Based on a Lower-Rim Acid-Functionalized Calix[4]arene: Crystal-to-Crystal Transformation upon Lattice Solvent Removal. Crystal Growth and Design, 2015, 15, 3556-3560.	1.4	31
331	Tuning the cavities of zirconium-based MIL-140 frameworks to modulate CO ₂ adsorption. Chemical Communications, 2015, 51, 11286-11289.	2.2	47
332	Interpenetrated Frameworks with Anisotropic Pore Structures from a Tetrahedral Pyridine Ligand. Crystal Growth and Design, 2015, 15, 3539-3544.	1.4	15
333	Adsorption of CO ₂ on a micro-/mesoporous polyimine modified with tris(2-aminoethyl)amine. Journal of Materials Chemistry A, 2015, 3, 16229-16234.	5.2	65
334	Thermo-processable covalent scaffolds with reticular hierarchical porosity and their high efficiency capture of carbon dioxide. Journal of Materials Chemistry A, 2015, 3, 14871-14875.	5.2	8
335	Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption. Chemical Engineering Journal, 2015, 276, 44-50.	6.6	40
336	A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry, 2015, 54, 4862-4868.	1.9	313
337	Creating extra pores in microporous carbon via a template strategy for a remarkable enhancement of ambient-pressure CO2uptake. Chemical Communications, 2015, 51, 8683-8686.	2.2	11
338	MOF based luminescence tuning and chemical/physical sensing. Microporous and Mesoporous Materials, 2015, 216, 171-199.	2.2	303
339	polyMOFs: A Class of Interconvertible Polymerâ€Metalâ€Organicâ€Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-6157.	7.2	200
340	A Euâ€Đoped Yâ€Based Luminescent Metal–Organic Framework as a Highly Efficient Sensor for Nitroaromatic Explosives. European Journal of Inorganic Chemistry, 2015, 2015, 1390-1397.	1.0	43
341	Understanding the Adsorption Mechanism of Xe and Kr in a Metal–Organic Framework from X-ray Structural Analysis and First-Principles Calculations. Journal of Physical Chemistry Letters, 2015, 6, 1790-1794.	2.1	38
342	Adsorption of CO2 and H2 on nitrogen-doped porous carbon from ionic liquid precursor. Chemical Research in Chinese Universities, 2015, 31, 130-137.	1.3	10
343	A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases. Journal of Materials Chemistry A, 2015, 3, 10747-10752.	5.2	80
344	Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability. Inorganic Chemistry, 2015, 54, 4279-4284.	1.9	133
345	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
346	Interactions of CO ₂ with various functional molecules. Physical Chemistry Chemical Physics, 2015, 17, 10925-10933.	1.3	106
347	Microporous Metal–Organic Framework Based on a Bifunctional Linker for Selective Sorption of CO ₂ over N ₂ and CH ₄ . Inorganic Chemistry, 2015, 54, 5512-5518.	1.9	64

		CITATION REPORT		
#	Article		IF	Citations
348	Hydrogen Storage Materials. Neutron Scattering Applications and Techniques, 2015, ,	205-239.	0.2	5
349	H ₂ 0 Adsorption/Desorption in MOF-74: <i>Ab Initio</i> Molecular Dynan Experiments. Journal of Physical Chemistry C, 2015, 119, 13021-13031.	nics and	1.5	43
350	A triazine-based covalent organic polymer for efficient CO ₂ adsorption. C Communications, 2015, 51, 10050-10053.	hemical	2.2	248
351	Removal of CO ₂ from CH ₄ and CO ₂ capture in the sub>2O vapour in NOTT-401. Inorganic Chemistry Frontiers, 2015, 2, 442-44		3.0	35
352	Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Hostâ Cooperation and Bimetallic Synergy in Catalysis. ACS Catalysis, 2015, 5, 2062-2069.	€"Guest	5.5	363
353	A porous cobalt-based MOF with high CO2 selectivity and uptake capacity. RSC Advan 29505-29508.	ces, 2015, 5,	1.7	6
354	Effect of Acid-Catalyzed Formation Rates of Benzimidazole-Linked Polymers on Porosit CO ₂ Capture from Gas Mixtures. Environmental Science & amp; Technolog 4715-4723.		4.6	41
355	Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework com CO ₂ capture in the presence of water. Journal of Materials Chemistry A, 2		5.2	72
356	Mesoporous Siloxane Films Through Thermal Oxidation of Siloxane–Carbon Nanocor Advanced Engineering Materials, 2015, 17, 1547-1555.	nposites.	1.6	5
357	The local electric field favours more than exposed nitrogen atoms on CO ₂ study on the rht -type MOF platform. Chemical Communications, 2015, 51, 96	capture: a case 36-9639.	2.2	48
358	A tetranuclear copper cluster-based MOF with sulfonate–carboxylate ligands exhibiti conduction properties. Chemical Communications, 2015, 51, 8150-8152.	ng high proton	2.2	96
359	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Ga Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015		6.6	308
360	Charge-Complementary-Ligands Directed Assembly of a Lithium Dimer into a Three-Din Framework. Crystal Growth and Design, 2015, 15, 2550-2554.	iensional Porous	1.4	10
361	Synthesis of a Highly Porous Bis(imino)pyridine-Linked Polymer and Its Postsynthetic M with Inorganic Fluorinated Ions for Selective CO ₂ Capture. Journal of Phys C, 2015, 119, 8174-8182.		1.5	32
362	Selective CO ₂ adsorption in a microporous metal–organic framework v sizes and open metal sites. Inorganic Chemistry Frontiers, 2015, 2, 550-557.	ith suitable pore	3.0	26
363	Conversion of a metal–organic framework to N-doped porous carbon incorporating on an oparticles: direct oxidation of alcohols to esters. Chemical Communications, 2015,		2.2	191
364	Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Con Carbon Capture via Multicomponent Adsorption of CO ₂ , N ₂ H ₂ O. Journal of the American Chemical Society, 2015, 137, 4787-4803.	ibustion , and	6.6	305
365	A highly thermal stable microporous lanthanide–organic framework for CO2 sorption separation. Inorganic Chemistry Communication, 2015, 61, 173-176.	h and	1.8	3

#	Article	IF	CITATIONS
366	Selective carbon dioxide adsorption by mixed-ligand porous coordination polymers. CrystEngComm, 2015, 17, 8388-8413.	1.3	50
367	UV–Visible and Plasmonic Nanospectroscopy of the CO ₂ Adsorption Energetics in a Microporous Polymer. Analytical Chemistry, 2015, 87, 10161-10165.	3.2	15
368	<scp>l</scp> -Aspartate links for stable sodium metal–organic frameworks. Chemical Communications, 2015, 51, 17463-17466.	2.2	28
369	A luminescent Zr-based metal–organic framework for sensing/capture of nitrobenzene and high-pressure separation of CH ₄ /C ₂ H ₆ . Journal of Materials Chemistry A, 2015, 3, 23493-23500.	5.2	22
370	Solvothermal Metal Metathesis on a Metal–Organic Framework with Constricted Pores and the Study of Gas Separation. ACS Applied Materials & Interfaces, 2015, 7, 25402-25412.	4.0	18
371	Synthesis and crystal structure of a new 1D Pb(II) coordination polymer containing salicylate and 2,2′-bipyridine ligands. Main Group Metal Chemistry, 2015, .	0.6	0
372	A Zn Metal–Organic Framework with High Stability and Sorption Selectivity for CO2. Inorganic Chemistry, 2015, 54, 10587-10592.	1.9	26
373	Targeted capture and pressure/temperature-responsive separation in flexible metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 22574-22583.	5.2	30
374	The accessibility of nitrogen sites makes a difference in selective CO2 adsorption of a family of isostructural metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 19417-19426.	5.2	80
375	De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Transactions, 2015, 44, 19018-19040.	1.6	155
376	A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr ³⁺ . Journal of Materials Chemistry A, 2015, 3, 23426-23434.	5.2	117
377	Synthesis and Selective CO ₂ Capture Properties of a Series of Hexatopic Linker-Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10065-10072.	1.9	57
378	Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015, 7, 22767-22774.	4.0	71
379	CO ₂ capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science, 2015, 350, 302-306.	6.0	203
380	Titanium-incorporated organic–inorganic hybrid adsorbent for improved CO2 adsorption performance. Materials Research Bulletin, 2015, 62, 200-205.	2.7	5
381	Highly Selective CO ₂ Capture by Small Pore Scandium-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 23592-23598.	1.5	38
382	Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption. RSC Advances, 2015, 5, 73980-73988.	1.7	57
383	Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chemical Engineering Science, 2015, 137, 504-514.	1.9	62

#	Article	IF	CITATIONS
384	Carbon dioxide capture in the presence of water vapour in InOF-1. Inorganic Chemistry Frontiers, 2015, 2, 898-903.	3.0	46
385	Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal-organic framework. Journal of Membrane Science, 2015, 495, 169-175.	4.1	57
386	Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride. ACS Nano, 2015, 9, 9148-9157.	7.3	88
387	A microporous metal–organic framework with polarized trifluoromethyl groups for high methane storage. Chemical Communications, 2015, 51, 14789-14792.	2.2	40
388	Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene) ₂ (Cr ₂ O ₇)] _n . Chemical Communications, 2015, 51, 14832-14835.	2.2	47
389	Homodiamine-functionalized metal–organic frameworks with a MOF-74-type extended structure for superior selectivity of CO ₂ over N ₂ . Journal of Materials Chemistry A, 2015, 3, 19177-19185.	5.2	75
390	A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetracarboxylic acid: sensing of solvent polarity and explosive nitroaromatics. IUCrJ, 2015, 2, 552-562.	1.0	35
391	A Mixed-Crystal Lanthanide Zeolite-like Metal–Organic Framework as a Fluorescent Indicator for Lysophosphatidic Acid, a Cancer Biomarker. Journal of the American Chemical Society, 2015, 137, 12203-12206.	6.6	324
392	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	6.6	632
393	A triazine–resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO ₂ uptake under humid conditions. Journal of Materials Chemistry A, 2015, 3, 21116-21122.	5.2	39
394	New luminescent porous coordination polymers with an acylamide-decorated linker for anion recognition and reversible I ₂ accommodation. CrystEngComm, 2015, 17, 8226-8230.	1.3	13
395	Hydrophobic pillared square grids for selective removal of CO ₂ from simulated flue gas. Chemical Communications, 2015, 51, 15530-15533.	2.2	115
396	Two novel cadmium(<scp>ii</scp>) carboxyphosphonates with 3D framework structure: synthesis, crystal structures, luminescence and molecular recognition properties. RSC Advances, 2015, 5, 79041-79049.	1.7	15
397	Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties. Journal of Solid State Chemistry, 2015, 232, 62-66.	1.4	4
398	High and selective CO2 uptake in a nitrogen-rich pillar-layered metal organic framework. RSC Advances, 2015, 5, 104932-104935.	1.7	9
399	DFT Study of CO ₂ Activation on Doped and Ultrathin MgO Films Journal of Physical Chemistry C, 2015, 119, 27594-27602.	1.5	36
400	Highly Selective Capture of the Greenhouse Gas CO ₂ in Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 3077-3085.	3.2	168
401	A Convenient Strategy for Designing a Soft Nanospace: An Atomic Exchange in a Ligand with Isostructural Frameworks. Journal of the American Chemical Society, 2015, 137, 15825-15832.	6.6	37

#	Article	IF	CITATIONS
402	Visible detection of explosive nitroaromatics facilitated by a large stokes shift of luminescence using europium and terbium doped yttrium based MOFs. RSC Advances, 2015, 5, 102076-102084.	1.7	53
403	Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature, 2015, 527, 503-507.	13.7	212
404	Assembly of Metal–Organic Frameworks Based on 3,3′,5,5′-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorganic Chemistry, 2015, 54, 586-595.	1.9	56
405	Lone pair‑'Ï€ interaction-induced generation of non-interpenetrated and photochromic cuboid 3-D naphthalene diimide coordination networks. Dalton Transactions, 2015, 44, 653-658.	1.6	46
406	Cobalt–citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. Journal of Materials Chemistry A, 2015, 3, 593-599.	5.2	71
407	Ionized Zr-MOFs for highly efficient post-combustion CO2 capture. Chemical Engineering Science, 2015, 124, 61-69.	1.9	108
408	Formation of a metal–organic framework with high gas uptakes based upon amino-decorated polyhedral cages. RSC Advances, 2015, 5, 2374-2377.	1.7	20
409	Coordination polymers with free BrÃ,nsted acid sites for selective catalysis. New Journal of Chemistry, 2015, 39, 810-812.	1.4	26
410	Construction of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 2015, 17, 1935-1943.	1.3	48
411	CO2 capture using calcium oxide under biomass gasification conditions. Journal of CO2 Utilization, 2015, 9, 1-7.	3.3	13
412	Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate. CrystEngComm, 2015, 17, 532-539.	1.3	32
413	Porous Coordination Polymers of Diverse Topologies Based on a Twisted Tetrapyridylbiaryl: Application as Nucleophilic Catalysts for Acetylation of Phenols. Chemistry - A European Journal, 2015, 21, 2241-2249.	1.7	29
414	Thermally Robust 3-D Co-DpyDtolP-MOF with Hexagonally Oriented Micropores: Formation of Polyiodine Chains in a MOF Single Crystal. Crystal Growth and Design, 2015, 15, 268-277.	1.4	43
415	Zeolitic BIF Crystal Directly Producing Noble-Metal Nanoparticles in Its Pores for Catalysis. Scientific Reports, 2014, 4, 3923.	1.6	48
416	Selective adsorption in two porous triazolate–oxalate-bridged antiferromagnetic metal-azolate frameworks obtained via in situ decarboxylation of 3-amino-1,2,4-triazole-5-carboxylic acid. Journal of Solid State Chemistry, 2015, 223, 73-78.	1.4	9
417	Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chemical Society Reviews, 2015, 44, 228-249.	18.7	662
418	A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 2015, 23, 1-11.	2.9	540
419	Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm, 2015, 17, 229-246.	1.3	237

#	Article	IF	CITATIONS
420	A flexible zwitterion ligand based lanthanide metal–organic framework for luminescence sensing of metal ions and small molecules. Dalton Transactions, 2015, 44, 10914-10917.	1.6	124
421	Crystal Chemistry and Selected Physical Properties of Inorganic Fluorides and Oxide-Fluorides. Chemical Reviews, 2015, 115, 1191-1254.	23.0	135
422	Transport Phenomena in Nanoporous Materials. ChemPhysChem, 2015, 16, 24-51.	1.0	105
423	Structural stability of metal organic frameworks in aqueous media – Controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous and Mesoporous Materials, 2015, 201, 61-90.	2.2	142
424	Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite. Journal of Alloys and Compounds, 2015, 620, 361-367.	2.8	74
425	A Family of Nitrogen-Enriched Metal Organic Frameworks with CCS Potential. Crystals, 2016, 6, 14.	1.0	12
426	Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection. Sensors, 2016, 16, 758.	2.1	46
427	Humidity Detection Using Metal Organic Framework Coated on QCM. Journal of Sensors, 2016, 2016, 1-8.	0.6	25
428	Stability and Hydrocarbon/Fluorocarbon Sorption of a Metal-Organic Framework with Fluorinated Channels. Materials, 2016, 9, 327.	1.3	11
429	Hg(II) Coordination Polymers Based on N,N'-bis(pyridine-4-yl)formamidine. Polymers, 2016, 8, 137.	2.0	10
430	Recent Advances in Metal-Organic Frameworks for Heterogeneous Catalyzed Organic Transformations. Synthesis and Catalysis Open Access, 2016, 01, .	0.4	11
432	An unusual H2 sorption mechanism in PCN-14: insights from molecular simulation. Physical Chemistry Chemical Physics, 2016, 18, 21421-21430.	1.3	11
433	Tetrazole–Viologen-based Flexible Microporous Metal–Organic Framework with High CO ₂ Selective Uptake. Inorganic Chemistry, 2016, 55, 7335-7340.	1.9	48
434	A Bifunctional Metal–Organic Framework: Striking CO ₂ â€Selective Sorption Features along with Guestâ€Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, 702-707.	1.3	12
435	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	1.3	21
436	Hybrid Ultraâ€Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte Chemie, 2016, 128, 8425-8429.	1.6	38
437	Hybrid Ultraâ€Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte Chemie - International Edition, 2016, 55, 8285-8289.	7.2	137
438	The Utilization of Amide Groups To Expand and Functionalize Metal–Organic Frameworks Simultaneously. Chemistry - A European Journal, 2016, 22, 6277-6285.	1.7	83

#	Article	IF	CITATIONS
439	Increasing the CO ₂ /N ₂ Selectivity with a Higher Surface Density of Pyridinic Lewis Basic Sites in Porous Carbon Derived from a Pyridylâ€Ligandâ€Based Metal–Organic Framework. Chemistry - an Asian Journal, 2016, 11, 1913-1920.	1.7	24
440	Dynamic Entangled Porous Framework for Hydrocarbon (C2–C3) Storage, CO ₂ Capture, and Separation. Chemistry - A European Journal, 2016, 22, 6059-6070.	1.7	48
441	Covalent Organic Frameworks for CO2Capture. Advanced Materials, 2016, 28, 2855-2873.	11.1	873
442	A metal-organic framework–based splitter for separating propylene from propane. Science, 2016, 353, 137-140.	6.0	892
443	Molecular sieves for gas separation. Science, 2016, 353, 121-122.	6.0	168
444	A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO ₂ Removal and Air Capture Using Physisorption. Journal of the American Chemical Society, 2016, 138, 9301-9307.	6.6	366
445	Rational synthesis of a novel 3,3,5-c polyhedral metal–organic framework with high thermal stability and hydrogen storage capability. Journal of Materials Chemistry A, 2016, 4, 11630-11634.	5.2	114
446	Solventâ€Driven Gate Opening in MOFâ€76â€Ce: Effect on CO ₂ Adsorption. ChemSusChem, 2016, 9, 713-719.	3.6	49
447	Framework Isomerism: Highly Augmented Copper(II)â€Paddlewheelâ€ÂBased MOF with Unusual (3,4)â€Net Topology. European Journal of Inorganic Chemistry, 2016, 2016, 1939-1943.	1.0	11
448	Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. CheM, 2016, 1, 753-765.	5.8	349
449	Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds. IUCrJ, 2016, 3, 430-439.	1.0	49
450	Nonlinear-Based Switch Triggered by Gas Using Electrostatically Actuated Microbeams. , 2016, , .		0
451	A smart microelectromechanical sensor and switch triggered by gas. Applied Physics Letters, 2016, 109, .	1.5	39
452	Picking the Right Material for the Right Application. CheM, 2016, 1, 666-667.	5.8	3
453	Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature. Scientific Reports, 2016, 6, 21114.	1.6	23
454	Photo-responsive azo MOF exhibiting high selectivity for CO ₂ and xylene isomers. Journal of Coordination Chemistry, 2016, 69, 1179-1187.	0.8	20
455	Adsorption Properties of MFM-400 and MFM-401 with CO ₂ and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions. Inorganic Chemistry, 2016, 55, 7219-7228.	1.9	41
456	Polyaniline-intercalated MIL-101: selective CO ₂ sorption and supercapacitor properties. New Journal of Chemistry, 2016, 40, 5306-5312.	1.4	46

#	Article	IF	CITATIONS
457	Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials?. Chemical Engineering Journal, 2016, 296, 386-397.	6.6	260
458	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. ACS Applied Materials & Interfaces, 2016, 8, 14648-14655.	4.0	76
459	Adsorption and separation of carbon dioxide and methane in new zeolites using the Grand Canonical Monte Carlo method. Adsorption, 2016, 22, 891-899.	1.4	3
460	Identification of High-CO ₂ -Capacity Cationic Zeolites by Accurate Computational Screening. Chemistry of Materials, 2016, 28, 3887-3896.	3.2	57
461	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	6.0	1,088
462	Cutting the cost of carbon capture: a case for carbon capture and utilization. Faraday Discussions, 2016, 192, 391-414.	1.6	33
463	Two- and three-dimensional Zn(<scp>ii</scp>) coordination polymers constructed from mixed ligand systems: interpenetration, structural transformation and sensing behavior. CrystEngComm, 2016, 18, 4349-4358.	1.3	10
464	Impact of chabazite SSZ-13 textural properties and chemical composition on CO ₂ adsorption applications. New Journal of Chemistry, 2016, 40, 4375-4385.	1.4	40
465	A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016, 532, 348-352.	13.7	490
466	Dynamic separation of Xe and Kr by metal-organic framework and covalent-organic materials: a comparison with activated charcoal. Science China Chemistry, 2016, 59, 643-650.	4.2	24
467	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	1.4	36
468	Nanoporous chalcogenides for adsorption and gas separation. Physical Chemistry Chemical Physics, 2016, 18, 13449-13458.	1.3	11
469	Microgravimetric Analysis Method for Activation-Energy Extraction from Trace-Amount Molecule Adsorption. Analytical Chemistry, 2016, 88, 4903-4908.	3.2	10
470	Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers. Chemical Science, 2016, 7, 5470-5476.	3.7	66
471	The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy, 2016, 1, .	19.8	374
472	Finely tuning MOFs towards high performance in C ₂ H ₂ storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group. Chemical Communications, 2016, 52, 7241-7244.	2.2	131
473	UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513, 155-165.	4.1	284
474	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. Journal of the American Chemical Society, 2016, 138, 5678-5684.	6.6	489

#	Article	IF	CITATIONS
475	Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Research, 2016, 9, 1752-1762.	5.8	46
476	Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016, 45, 9565-9573.	1.6	70
477	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	1.9	124
478	Accurate H ₂ Sorption Modeling in the <i>rht</i> MOF NOTT-112 Using Explicit Polarization. Crystal Growth and Design, 2016, 16, 6024-6032.	1.4	17
479	Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Materials, 2016, 8, e301-e301.	3.8	98
480	Two heterovalent copper–organic frameworks with multiple secondary building units: high performance for gas adsorption and separation and I ₂ sorption and release. Journal of Materials Chemistry A, 2016, 4, 15081-15087.	5.2	52
481	The construction, structures, and functions of pillared layer metal–organic frameworks. Inorganic Chemistry Frontiers, 2016, 3, 1208-1226.	3.0	83
482	Cleavage of a C–C σ bond between two phenyl groups under mild conditions during the construction of Zn(<scp>ii</scp>) organic frameworks. Green Chemistry, 2016, 18, 5418-5422.	4.6	14
483	Influence of the Amide Groups in the CO ₂ /N ₂ Selectivity of a Series of Isoreticular, Interpenetrated Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 6016-6023.	1.4	73
484	An Anionic Interpenetrated Zeoliteâ€Like Metal–Organic Framework Composite As a Tunable Dualâ€Emission Luminescent Switch for Detecting Volatile Organic Molecules. Chemistry - A European Journal, 2016, 22, 17298-17304.	1.7	71
485	Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 14828-14831.	6.6	44
486	Adsorption behaviors of CO2 and CH4 on zeolites JSR and NanJSR using the GCMC simulations. Adsorption, 2016, 22, 1065-1073.	1.4	7
487	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€ S haped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
488	Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization. Crystal Growth and Design, 2016, 16, 6531-6536.	1.4	11
489	Direct Utilization of Elemental Sulfur in the Synthesis of Microporous Polymers for Natural Gas Sweetening. CheM, 2016, 1, 482-493.	5.8	46
490	Nanoscaled Porphyrinic Metal–Organic Frameworks for Electrochemical Detection of Telomerase Activity via Telomerase Triggered Conformation Switch. Analytical Chemistry, 2016, 88, 10680-10686.	3.2	99
491	Two New (3,6)-Connected MOFs with <i>eea</i> Topology and High CH ₄ Uptake. Crystal Growth and Design, 2016, 16, 6156-6159.	1.4	8
492	A highly porous rht-type acylamide-functionalized metal–organic framework exhibiting large CO ₂ uptake capabilities. Chemical Communications, 2016, 52, 12988-12991.	2.2	44

#	Article	IF	CITATIONS
493	Gaining Insights on the H ₂ –Sorbent Interactions: Robust soc-MOF Platform as a Case Study. Chemistry of Materials, 2016, 28, 7353-7361.	3.2	43
494	Pitch-based hyper-cross-linked polymers with high performance for gas adsorption. Journal of Materials Chemistry A, 2016, 4, 16490-16498.	5.2	110
495	A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture. Separation and Purification Technology, 2016, 170, 68-77.	3.9	16
496	Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. Journal of the American Chemical Society, 2016, 138, 10100-10103.	6.6	214
497	Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal–CO2 interactions. Chemical Communications, 2016, 52, 10559-10562.	2.2	40
498	MOF surface method for the ultrafast and one-step generation of metal-oxide-NP@MOF composites as lithium storage materials. Journal of Materials Chemistry A, 2016, 4, 13603-13610.	5.2	37
499	An Ultrahydrophobic Fluorous Metal–Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills. Chemistry - A European Journal, 2016, 22, 10937-10943.	1.7	91
500	A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO ₂ adsorption and separation of organic dyes. Journal of Materials Chemistry A, 2016, 4, 13844-13851.	5.2	70
501	A Robust Sulfonate-Based Metal–Organic Framework with Permanent Porosity for Efficient CO ₂ Capture and Conversion. Chemistry of Materials, 2016, 28, 6276-6281.	3.2	180
502	Functionalized graphene oxide as an efficient adsorbent for CO ₂ capture and support for heterogeneous catalysis. RSC Advances, 2016, 6, 72055-72068.	1.7	58
503	Shape effect of nanochannels on water mobility. Frontiers of Physics, 2016, 11, 1.	2.4	4
504	Four new 3D metal–organic frameworks constructed by the asymmetrical pentacarboxylate: gas sorption behaviour and magnetic properties. Dalton Transactions, 2016, 45, 15473-15480.	1.6	29
505	A metal–organic framework with rod secondary building unit based on the Boerdijk–Coxeter helix. Chemical Communications, 2016, 52, 11543-11546.	2.2	11
506	Incorporation of Alkylamine into Metal–Organic Frameworks through a BrÃ,nsted Acid–Base Reaction for CO ₂ Capture. ChemSusChem, 2016, 9, 2832-2840.	3.6	77
507	<i>In Situ</i> Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO ₂ Capture Performance. Journal of the American Chemical Society, 2016, 138, 11497-11500.	6.6	200
508	A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO ₂ sorbents. Journal of Materials Chemistry A, 2016, 4, 14693-14702.	5.2	90
509	Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chemical Reviews, 2016, 116, 11436-11499.	23.0	176
510	Creation of new guest accessible space under gas pressure in a flexible MOF: multidimensional insight through combination of in situ techniques. Chemical Communications, 2016, 52, 11374-11377.	2.2	23

#	Article	IF	CITATIONS
511	Direct Capture of CO ₂ from Ambient Air. Chemical Reviews, 2016, 116, 11840-11876.	23.0	1,455
513	DFT Calculated Structures and Electronic Properties of ETS-10, AM-6, and SGU-29: Structure Stabilization through Periodic Distortions. Journal of Physical Chemistry C, 2016, 120, 20206-20215.	1.5	4
514	Eyeâ€Catching Dualâ€Fluorescent Dynamic Metal–Organic Framework Senses Traces of Water: Experimental Findings and Theoretical Correlation. Chemistry - A European Journal, 2016, 22, 14998-15005.	1.7	69
515	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie, 2016, 128, 15251-15254.	1.6	16
516	Selective Carbon Dioxide Adsorption by Two Robust Microporous Coordination Polymers. Inorganic Chemistry, 2016, 55, 12923-12929.	1.9	25
517	Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture. Scientific Reports, 2016, 6, 23224.	1.6	59
518	Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine. ChemSusChem, 2016, 9, 2796-2803.	3.6	82
519	A chiral metal–organic framework with polar channels: unique interweaving six-fold helices and high CO ₂ /CH ₄ separation. Inorganic Chemistry Frontiers, 2016, 3, 1326-1331.	3.0	28
520	Highly selective sorption of CO ₂ and N ₂ O and strong gas-framework interactions in a nickel(<scp>ii</scp>) organic material. Journal of Materials Chemistry A, 2016, 4, 16198-16204.	5.2	42
521	Amide-CO ₂ Interaction Induced Gate-Opening Behavior for CO ₂ Adsorption in 2-Fold Interpenetrating Framework. ChemistrySelect, 2016, 1, 2923-2929.	0.7	14
522	Construction of 3-Fold-Interpenetrated Three-Dimensional Metal–Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide. Inorganic Chemistry, 2016, 55, 9757-9766.	1.9	78
523	[Cu ₃ (BTC) ₂]-polyethyleneimine: an efficient MOF composite for effective CO ₂ separation. RSC Advances, 2016, 6, 93003-93009.	1.7	41
524	Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions. Journal of Solid State Chemistry, 2016, 244, 6-11.	1.4	14
525	Substitution Effect Guided Synthesis of Task-Specific Nanoporous Polycarbazoles with Enhanced Carbon Capture. Macromolecules, 2016, 49, 5325-5330.	2.2	38
526	Tuning Pore Size in Square‣attice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	1.6	43
527	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	7.2	237
528	Selective gas capture via kinetic trapping. Physical Chemistry Chemical Physics, 2016, 18, 21760-21766.	1.3	5
529	Enhancement of gas-framework interaction in a metal–organic framework by cavity modification. Science Bulletin, 2016, 61, 1255-1259.	4.3	18

#	Article	IF	CITATIONS
530	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
531	A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature. Science China Chemistry, 2016, 59, 965-969.	4.2	30
532	Synthesis of [Mg 2 (DOBDC)(DMF) 2]@polystyrene composite and its carbon dioxide adsorption. Microporous and Mesoporous Materials, 2016, 232, 161-166.	2.2	13
533	Hydrophobic Porous Polyketimines for the Capture of CO ₂ . ChemPlusChem, 2016, 81, 58-63.	1.3	9
534	CO ₂ capture enhancement in InOF-1 via the bottleneck effect of confined ethanol. Chemical Communications, 2016, 52, 10273-10276.	2.2	48
535	Rhodium–Organic Cuboctahedra as Porous Solids with Strong Binding Sites. Inorganic Chemistry, 2016, 55, 10843-10846.	1.9	97
536	Two Functional Porous Metal–Organic Frameworks Constructed from Expanded Tetracarboxylates for Gas Adsorption and Organosulfurs Removal. Crystal Growth and Design, 2016, 16, 7301-7307.	1.4	20
537	Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks. Nature Communications, 2016, 7, 13377.	5.8	132
538	One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture. Scientific Reports, 2016, 6, 30049.	1.6	82
539	Multivariable Modular Design of Pore Space Partition. Journal of the American Chemical Society, 2016, 138, 15102-15105.	6.6	132
541	A highly stable amino-coordinated MOF for unprecedented block off N ₂ adsorption and extraordinary CO ₂ /N ₂ separation. Chemical Communications, 2016, 52, 13568-13571.	2.2	33
542	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	7.2	166
543	Doubly Interpenetrated Metal–Organic Framework for Highly Selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ Separation at Room Temperature. Crystal Growth and Design, 2016, 16, 7194-7197.	1.4	80
544	From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation. Chemical Communications, 2016, 52, 13897-13900.	2.2	34
545	A Highly Stable 3D Luminescent Indium–Polycarboxylic Framework for the Turn-off Detection of UO ₂ ²⁺ , Ru ³⁺ , and Biomolecule Thiamines. ACS Applied Materials & Interfaces, 2016, 8, 28718-28726.	4.0	50
546	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. CheM, 2016, 1, 557-580.	5.8	297
547	Network diversity through two-step crystal engineering of a decorated 6-connected primary molecular building block. CrystEngComm, 2016, 18, 8578-8581.	1.3	14
548	Theoretical Investigations of CO ₂ and H ₂ Sorption in Robust Molecular Porous Materials. Langmuir, 2016, 32, 11492-11505.	1.6	17

C 1-			DEDODT
CI I	IAI	ION	Report

#	Article	IF	CITATIONS
549	Complete multinuclear solidâ€state <scp>NMR</scp> of metalâ€organic frameworks: The case of αâ€Mgâ€formate. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2016, 45A, .	0.2	12
550	Festkörperchemie. Nachrichten Aus Der Chemie, 2016, 64, 246-254.	0.0	0
551	Three New Complexes Based on the Flexible Zwitterionic Dicarboxylate Ligand: Synthesis, Structures, and Properties. Chinese Journal of Chemistry, 2016, 34, 225-232.	2.6	3
552	A Highly Sensitive Luminescent Dye@MOF Composite for Probing Different Volatile Organic Compounds. ChemPlusChem, 2016, 81, 758-763.	1.3	31
553	Interpenetrated Zirconium–Organic Frameworks: Small Cavities versus Functionalization for CO ₂ Capture. Journal of Physical Chemistry C, 2016, 120, 13013-13023.	1.5	13
554	Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. International Journal of Hydrogen Energy, 2016, 41, 14351-14359.	3.8	61
555	Theoretical Optimization of Pore Size and Chemistry in SIFSIX-3-M Hybrid Ultramicroporous Materials. Crystal Growth and Design, 2016, 16, 3890-3897.	1.4	37
556	Design and synthesis of luminescent porous coordination polymers for chromaticity modulation, sensing of nitrobenzene and iodine encapsulation. CrystEngComm, 2016, 18, 5639-5646.	1.3	20
557	Control of Uniform and Interconnected Macroporous Structure in PolyHIPE for Enhanced CO2 Adsorption/Desorption Kinetics. Environmental Science & Technology, 2016, 50, 7879-7888.	4.6	45
558	Hydrogen storage capacity enhancement of MIL-53(Cr) by Pd loaded activated carbon doping. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 463-472.	2.7	25
559	Dual Functionalized Cages in Metal–Organic Frameworks via Stepwise Postsynthetic Modification. Chemistry of Materials, 2016, 28, 4781-4786.	3.2	55
560	A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	1.0	20
561	Controlled partial interpenetration in metal–organic frameworks. Nature Chemistry, 2016, 8, 250-257.	6.6	113
562	Syntheses, structure and characterization of a fourfold interpenetrated 3D Cd(II) organic framework constructed with a zwitterionic ligand. Journal of Coordination Chemistry, 2016, 69, 879-885.	0.8	4
563	Imparting BrÃ,nsted acidity into a zeolitic imidazole framework. Inorganic Chemistry Frontiers, 2016, 3, 393-396.	3.0	19
564	Exploration of Gate-Opening and Breathing Phenomena in a Tailored Flexible Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1920-1925.	1.9	81
565	Control of interpenetration in a microporous metal–organic framework for significantly enhanced C ₂ H ₂ /CO ₂ separation at room temperature. Chemical Communications, 2016, 52, 3494-3496.	2.2	94
566	Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal–Organic Frameworks for Optimal Carbon Dioxide Separation. Inorganic Chemistry, 2016, 55, 1134-1141.	1.9	161

#	Article	IF	CITATIONS
567	A charged metal–organic framework for CO2/CH4 and CO2/N2 separation. Inorganica Chimica Acta, 2016, 443, 299-303.	1.2	16
568	Massive preparation of pitch-based organic microporous polymers for gas storage. Chemical Communications, 2016, 52, 2780-2783.	2.2	62
569	Four metal–organic frameworks based on the 5-(1H-tetrazol-5-yl)isophthalic acid ligand: luminescence and magnetic properties. CrystEngComm, 2016, 18, 1523-1531.	1.3	23
570	Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal–organic frameworks. Chemical Communications, 2016, 52, 3223-3226.	2.2	70
571	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	1.9	82
572	An effective strategy to boost the robustness of metal–organic frameworks via introduction of size-matching ligand braces. Chemical Communications, 2016, 52, 1971-1974.	2.2	33
573	Crystal Engineering of a 4,6-c fsc Platform That Can Serve as a Carbon Dioxide Single-Molecule Trap. Crystal Growth and Design, 2016, 16, 1071-1080.	1.4	21
574	Facile Fabricating Hierarchically Porous Metal–Organic Frameworks via a Template-Free Strategy. Crystal Growth and Design, 2016, 16, 504-510.	1.4	52
575	CO ₂ capture in the presence of water vapour in MIL-53(Al). New Journal of Chemistry, 2016, 40, 68-72.	1.4	31
576	Adsorption of Small Molecules in the Porous Zirconium-Based Metal Organic Framework MIL-140A (Zr): A Joint Computational-Experimental Approach. Journal of Physical Chemistry C, 2016, 120, 7192-7200.	1.5	12
577	Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth and Design, 2016, 16, 2295-2301.	1.4	128
578	Seed-Mediated Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5316-5320.	6.6	104
579	A pH-responsive phase transformation of a sulfonated metal–organic framework from amorphous to crystalline for efficient CO ₂ capture. CrystEngComm, 2016, 18, 2803-2807.	1.3	34
580	Catalysis and Sensing for our Environment (CASE2015) and the Supramolecular Chemistry Ireland Meeting (SCI 2015): Dublin and Maynooth, Ireland. 8th–11th July. Supramolecular Chemistry, 2016, 28, 921-931.	1.5	20
581	PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chemical Communications, 2016, 52, 5581-5584.	2.2	121
582	A rare cationic building block that generates a new type of polyhedral network with "cross-linked― pto topology. Chemical Communications, 2016, 52, 4160-4162.	2.2	18
583	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
584	Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 3484-3492.	6.6	252

#	Article	IF	CITATIONS
585	Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 2524-2527.	6.6	290
586	Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 2016, 49, 483-493.	7.6	1,403
587	Enhanced Selective CO2 Capture upon Incorporation of Dimethylformamide in the Cobalt Metal–Organic Framework [Co3(OH)2(btca)2]. Energy & Fuels, 2016, 30, 526-530.	2.5	11
588	Controlling Interpenetration in Electroactive Co(II) Frameworks Based on the Tris(4-(pyridin-4-yl)phenyl)amine Ligand. Crystal Growth and Design, 2016, 16, 1149-1155.	1.4	15
589	Defect engineering of UiO-66 for CO ₂ and H ₂ O uptake – a combined experimental and simulation study. Dalton Transactions, 2016, 45, 4496-4500.	1.6	171
590	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH) ₂ Metal–Organic Framework Nanoparticles for Efficient H ₂ /CO ₂ Separation. Industrial & Engineering Chemistry Research, 2016, 55, 7933-7940.	1.8	44
591	Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 3295-3304.	1.5	155
592	Exceptionally Robust In-Based Metal–Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion. Inorganic Chemistry, 2016, 55, 3558-3565.	1.9	199
593	Hyper-Cross-Linked Organic Microporous Polymers Based on Alternating Copolymerization of Bismaleimide. ACS Macro Letters, 2016, 5, 377-381.	2.3	67
594	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	23.3	1,490
595	Highly stable porous covalent triazine–piperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture. Chemical Engineering Science, 2016, 145, 21-30.	1.9	27
596	Alkyl group-directed assembly of coordination polymers based on bis-(4-imidazol-1-yl-phenyl)-amine and their photocatalytic properties. New Journal of Chemistry, 2016, 40, 2479-2488.	1.4	3
597	Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn(II) complexes using the thiophene-based terpyridine ligands. Dyes and Pigments, 2016, 130, 216-225.	2.0	31
598	Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Analytical and Bioanalytical Chemistry, 2016, 408, 2759-2780.	1.9	134
599	Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. Journal of the American Chemical Society, 2016, 138, 920-925.	6.6	214
600	Simultaneous <i>in Situ</i> X-ray Diffraction and Calorimetric Studies as a Tool To Evaluate Gas Adsorption in Microporous Materials. Journal of Physical Chemistry C, 2016, 120, 360-369.	1.5	18
601	Perfluorocarbon liquid under pressure: a medium for gas delivery. CrystEngComm, 2016, 18, 1273-1276.	1.3	6
602	Hierarchical N-Doped Carbon as CO ₂ Adsorbent with High CO ₂ Selectivity from Rationally Designed Polypyrrole Precursor. Journal of the American Chemical Society, 2016, 138, 1001-1009.	6.6	405

#	Article	IF	CITATIONS
603	MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO ₂ selectivity and fast CO ₂ transport. Journal of Materials Chemistry A, 2016, 4, 1383-1389.	5.2	82
604	Kinetic molecular sieving, thermodynamic and structural aspects of gas/vapor sorption on metal organic framework [Ni1.5(4,4′-bipyridine)1.5(H3L)(H2O)3][H2O]7 where H6L = 2,4,6-trimethylbenzene-1,3,5-triyl tris(methylene)triphosphonic acid. Journal of Materials Chemistry A, 2016. 4. 1353-1365.	5.2	26
605	An indirect generation of 1D M ^{II} -2,5-dihydroxybenzoquinone coordination polymers, their structural rearrangements and generation of materials with a high affinity for H ₂ , CO ₂ and CH ₄ . Dalton Transactions, 2016, 45, 1339-1344.	1.6	26
606	Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 2016, 162, 613-621.	5.1	102
607	A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews, 2016, 54, 1148-1171.	8.2	177
608	Palladium nanoparticles stabilized with N-doped porous carbons derived from metal–organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability. Green Chemistry, 2016, 18, 1212-1217.	4.6	148
609	Enhancing the carbon capture capacities of a rigid ultra-microporous MOF through gate-opening at low CO ₂ pressures assisted by swiveling oxalate pillars. Chemical Communications, 2016, 52, 1851-1854.	2.2	44
610	Tunable gas adsorption properties of porous coordination polymers by modification of macrocyclic metallic tectons. CrystEngComm, 2016, 18, 4084-4093.	1.3	11
611	Modulating the electrical conductivity of metal–organic framework films with intercalated guest Ï€-systems. Journal of Materials Chemistry C, 2016, 4, 894-899.	2.7	80
612	Removal and safe reuse of highly toxic allyl alcohol using a highly selective photo-sensitive metal–organic framework. Green Chemistry, 2016, 18, 2047-2055.	4.6	46
613	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	5.2	120
614	High acetylene/ethylene separation in a microporous zinc(<scp>ii</scp>) metal–organic framework with low binding energy. Chemical Communications, 2016, 52, 1166-1169.	2.2	67
615	Synthesis and characterization of divalent metal complexes with bipyridylamide ligands. Journal of Coordination Chemistry, 2016, 69, 375-388.	0.8	3
616	Metal–Organic Framework Derived Hierarchical Porous Anatase TiO ₂ as a Photoanode for Dye-Sensitized Solar Cell. Crystal Growth and Design, 2016, 16, 121-125.	1.4	68
617	Dynamic metal–organic frameworks: syntheses, characterizations, sorption studies and their hydrolytic inter-conversion. CrystEngComm, 2016, 18, 4074-4083.	1.3	18
618	Zeolite@Mesoporous silica-supported-amine hybrids for the capture of CO2 in the presence of water. Microporous and Mesoporous Materials, 2016, 222, 113-119.	2.2	61
619	Synthetic design of functional boron imidazolate frameworks. Coordination Chemistry Reviews, 2016, 307, 255-266.	9.5	108
620	Neutral N-donor ligand based flexible metal–organic frameworks. Dalton Transactions, 2016, 45, 4060-4072.	1.6	73

#	Article	IF	CITATIONS
621	Finely tuning MOFs towards high-performance post-combustion CO ₂ capture materials. Chemical Communications, 2016, 52, 443-452.	2.2	131
622	Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous and Mesoporous Materials, 2016, 219, 186-189.	2.2	35
623	Two-dimensional metal–organic frameworks for selective separation of CO ₂ /CH ₄ and CO ₂ /N ₂ . Materials Chemistry Frontiers, 2017, 1, 1514-1519.	3.2	30
624	Pore Space Partition in Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 407-417.	7.6	423
625	Ultralow Parasitic Energy for Postcombustion CO ₂ Capture Realized in a Nickel Isonicotinate Metal–Organic Framework with Excellent Moisture Stability. Journal of the American Chemical Society, 2017, 139, 1734-1737.	6.6	121
626	Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Journal of Membrane Science, 2017, 528, 273-283.	4.1	177
627	CO ₂ capture under humid conditions in metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1471-1484.	3.2	92
628	Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc -MOF platform for the operative removal of H ₂ S. Journal of Materials Chemistry A, 2017, 5, 3293-3303.	5.2	94
629	Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chemical Engineering Journal, 2017, 315, 92-100.	6.6	186
630	Highly Selective Separation of C ₂ H ₂ from CO ₂ by a New Dichromate-Based Hybrid Ultramicroporous Material. ACS Applied Materials & Interfaces, 2017, 9, 33395-33400.	4.0	116
631	Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. Chemical Communications, 2017, 53, 2394-2397.	2.2	72
632	Syntheses, structural diversities and characterization of a series of coordination polymers with two isomeric oxadiazol-pyridine ligands. RSC Advances, 2017, 7, 9704-9718.	1.7	17
633	Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation. Journal of Membrane Science, 2017, 528, 72-81.	4.1	45
634	2-Fold Interpenetrating Bifunctional Cd-Metal–Organic Frameworks: Highly Selective Adsorption for CO ₂ and Sensitive Luminescent Sensing of Nitro Aromatic 2,4,6-Trinitrophenol. ACS Applied Materials & Interfaces, 2017, 9, 4701-4708.	4.0	113
635	Mixed-linker strategy for the construction of multifunctional metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 4280-4291.	5.2	163
636	Sizable dynamics in small pores: CO ₂ location and motion in the α-Mg formate metal–organic framework. Physical Chemistry Chemical Physics, 2017, 19, 6130-6141.	1.3	35
637	A mesoporous (3,36)-connected txt-type metal–organic framework constructed by using a naphthyl-embedded ligand exhibiting high CO ₂ storage and selectivity. Inorganic Chemistry Frontiers, 2017, 4, 736-740.	3.0	18
638	Peptide Metal–Organic Frameworks for Enantioselective Separation of Chiral Drugs. Journal of the American Chemical Society, 2017, 139, 4294-4297.	6.6	247

# 639	ARTICLE The role of weak interactions in controlling the mode of interpenetration in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 3978-3981.	IF 2.2	Citations 33
640	Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media. ACS Applied Materials & Interfaces, 2017, 9, 10276-10285.	4.0	133
641	MOF nano-crystals of ZIF-8 identified as ambient NO <inf>2</inf> gas absorbent by using resonant micro-cantilever experiment. , 2017, , .		0
642	Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO ₂ Capture from Flue Gas in Metal–Organic Frameworks. ChemSusChem, 2017, 10, 1543-1553.	3.6	89
643	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	6.6	104
644	Water-Stable In(III)-Based Metal–Organic Frameworks with Rod-Shaped Secondary Building Units: Single-Crystal to Single-Crystal Transformation and Selective Sorption of C ₂ H ₂ over CO ₂ and CH ₄ . Inorganic Chemistry, 2017, 56. 2188-2197.	1.9	83
645	Flexible Zirconium MOF as the Crystalline Sponge for Coordinative Alignment of Dicarboxylates. ACS Applied Materials & Interfaces, 2017, 9, 33408-33412.	4.0	48
646	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	7.6	644
647	Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO ₂ Adsorption and Catalytic Property for CO ₂ Cycloaddition with Epoxides. Inorganic Chemistry, 2017, 56, 2337-2344.	1.9	226
648	Green chemistry and polymers made from sulfur. Green Chemistry, 2017, 19, 2748-2761.	4.6	290
649	Metal–organic frameworks for H ₂ and CH ₄ storage: insights on the pore geometry–sorption energetics relationship. IUCrJ, 2017, 4, 131-135.	1.0	33
650	A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing. Journal of Solid State Chemistry, 2017, 249, 87-97.	1.4	23
651	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	1.4	26
652	Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 2017, 124, 461-480.	4.5	115
653	Gas confinement in compartmentalized coordination polymers for highly selective sorption. Chemical Science, 2017, 8, 3109-3120.	3.7	15
654	Monitoring instability of linear amine impregnated UiO-66 by in-situ temperature resolved powder X-ray diffraction. Microporous and Mesoporous Materials, 2017, 243, 85-90.	2.2	7
655	Why Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics. Inorganic Chemistry, 2017, 56, 2614-2620.	1.9	12
656	Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework. Nature Communications, 2017, 8, 14212.	5.8	75

#	Article	IF	CITATIONS
657	Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation. Dalton Transactions, 2017, 46, 3223-3228.	1.6	23
658	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	23.0	837
659	Binding CO ₂ by a Cr ₈ Metallacrown. Angewandte Chemie - International Edition, 2017, 56, 5527-5530.	7.2	18
660	Beyond Equilibrium: Metal–Organic Frameworks for Molecular Sieving and Kinetic Gas Separation. Crystal Growth and Design, 2017, 17, 2291-2308.	1.4	109
661	Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chemical Communications, 2017, 53, 5946-5949.	2.2	99
662	3d-4f Heterometal–Organic Frameworks for Efficient Capture and Conversion of CO ₂ . Crystal Growth and Design, 2017, 17, 3128-3133.	1.4	43
663	Silver-Decorated Hafnium Metal–Organic Framework for Ethylene/Ethane Separation. Industrial & Engineering Chemistry Research, 2017, 56, 4508-4516.	1.8	58
664	Selective CO ₂ Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 13520-13536.	4.0	48
665	A cobalt metalâ€organic framework with small pore size for adsorptive separation of CO ₂ over N ₂ and CH ₄ . AICHE Journal, 2017, 63, 4532-4540.	1.8	21
666	The preparation of a porous melamine–formaldehyde adsorbent grafted with polyethyleneimine and its CO ₂ adsorption behavior. New Journal of Chemistry, 2017, 41, 5297-5304.	1.4	22
667	Confinement of alcohols to enhance CO ₂ capture in MIL-53(Al). RSC Advances, 2017, 7, 24833-24840.	1.7	24
668	Local Deprotonation Enables Cation Exchange, Porosity Modulation, and Tunable Adsorption Selectivity in a Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3387-3394.	1.4	23
669	Active Response of Six-Coordinate Cu ²⁺ on CO ₂ Uptake in Cu(dpa) ₂ SiF ₆ - <i>i</i> from <i>in Situ</i> X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11519-11523.	1.5	3
670	A dual-emission probe to detect moisture and water in organic solvents based on green-Tb ³⁺ post-coordinated metal–organic frameworks with red carbon dots. Dalton Transactions, 2017, 46, 7098-7105.	1.6	98
671	Solventâ€Free Selfâ€Assembly to the Synthesis of Nitrogenâ€Doped Ordered Mesoporous Polymers for Highly Selective Capture and Conversion of CO ₂ . Advanced Materials, 2017, 29, 1700445.	11.1	162
672	Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. Journal of Membrane Science, 2017, 535, 103-112.	4.1	19
673	Binding CO ₂ by a Cr ₈ Metallacrown. Angewandte Chemie, 2017, 129, 5619-5622.	1.6	4
674	Ultraâ€microporous Metal–Organic Framework Built from Rigid Linkers Showing Structural Flexibility Resulting in a Marked Change in Carbon Dioxide Capacity. European Journal of Inorganic Chemistry, 2017, 2017, 2464-2468.	1.0	2

#	Article	IF	CITATIONS
675	Bottleneck Effect of <i>N</i> , <i>N</i> -Dimethylformamide in InOF-1: Increasing CO ₂ Capture in Porous Coordination Polymers. Inorganic Chemistry, 2017, 56, 5863-5872.	1.9	34
676	A nanoscale Cu-metal organic framework with Schiff base ligand: Synthesis, characterization and investigation catalytic activity in the oxidation of alcohols. Inorganic Chemistry Communication, 2017, 81, 37-42.	1.8	21
677	3D lanthanide metal-organic frameworks constructed from 2,6-naphthalenedicarboxylate ligand: synthesis, structure, luminescence and dye adsorption. Journal of Solid State Chemistry, 2017, 251, 248-254.	1.4	24
678	Metalâ€Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy Materials, 2017, 7, 1601296.	10.2	334
679	Flue-gas and direct-air capture of CO ₂ by porous metal–organic materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160025.	1.6	80
680	Polar Pore Surface Guided Selective CO ₂ Adsorption in a Prefunctionalized Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3581-3587.	1.4	34
681	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	18.7	1,519
682	<i>In situ</i> biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. Nanotechnology, 2017, 28, 365604.	1.3	16
683	A New Microporous Metalâ€Organic Framework for Highly Selective <scp>C₂H₂</scp> / <scp>CH₄</scp> and <scp>C₂H₂</scp> / <scp>CO₂</scp> Separation at Room Temperature. Chinese Journal of Chemistry, 2017, 35, 1289-1293.	2.6	5
684	A highly stable metalâ€organic framework with optimum aperture size for CO ₂ capture. AICHE Journal, 2017, 63, 4103-4114.	1.8	85
685	Mixedâ€Matrixâ€Membranen. Angewandte Chemie, 2017, 129, 9420-9439.	1.6	69
686	CO ₂ regulates molecular rotor dynamics in porous materials. Chemical Communications, 2017, 53, 7776-7779.	2.2	37
687	Experimental and theoretical studies on efficient carbon dioxide capture using novel bis(3-aminopropyl)amine (APA)-activated aqueous 2-amino-2-methyl-1-propanol (AMP) solutions. RSC Advances, 2017, 7, 21518-21530.	1.7	11
688	Understanding the Photochemical Response of Zeolitic Imidazolate Framework-8 in the Sight of Framework, Uncoordinated 2-Methylimidazole and ZnxOy Clusters. Journal of Physical Chemistry C, 2017, 121, 12278-12284.	1.5	5
689	A microporous metal–organic framework for selective C 2 H 2 and CO 2 separation. Journal of Solid State Chemistry, 2017, 252, 138-141.	1.4	31
690	Adsorptive Denitrogenation of Model Fuel with CuCl-Loaded Adsorbents: Contribution of Î-Complexation and Direct Interaction between Adsorbates and Cuprous Ions. Journal of Physical Chemistry C, 2017, 121, 11601-11608.	1.5	20
691	Design of salt–metal organic framework composites for seasonal heat storage applications. Journal of Materials Chemistry A, 2017, 5, 12889-12898.	5.2	129
692	Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 2017, 356, 731-735.	6.0	275

#	Article	IF	CITATIONS
693	Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO ₂ . ACS Applied Materials & Interfaces, 2017, 9, 17969-17976.	4.0	173
694	Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes. Physical Chemistry Chemical Physics, 2017, 19, 18587-18602.	1.3	24
695	Metal–Organic Frameworks: Examples, Counterexamples, and an Actionable Definition. Crystal Growth and Design, 2017, 17, 4043-4048.	1.4	55
696	Dynamic Covalent Chemistry of Carbon Dioxide: Opportunities to Address Environmental Issues. Accounts of Chemical Research, 2017, 50, 1692-1701.	7.6	8
697	An Exceptionally Water Stable Metal–Organic Framework with Amideâ€Functionalized Cages: Selective CO ₂ /CH ₄ Uptake and Removal of Antibiotics and Dyes from Water. Chemistry - A European Journal, 2017, 23, 13058-13066.	1.7	64
698	Syntheses and single crystal X-ray diffraction studies of hydroxynicotinic acid based complexes involving supramolecular interactions. Polyhedron, 2017, 133, 222-230.	1.0	2
699	Water Vapor Sorption in Hybrid Pillared Square Grid Materials. Journal of the American Chemical Society, 2017, 139, 8508-8513.	6.6	90
700	Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating. Journal of Materials Chemistry A, 2017, 5, 13565-13572.	5.2	15
701	Activationâ€Ðependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie - International Edition, 2017, 56, 8874-8878.	7.2	53
702	Resonant-Gravimetric Identification of Competitive Adsorption of Environmental Molecules. Analytical Chemistry, 2017, 89, 7031-7037.	3.2	20
703	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	18.7	1,033
704	Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials. Advanced Materials, 2017, 29, 1606929.	11.1	183
705	Accurate van der Waals force field for gas adsorption in porous materials. Journal of Computational Chemistry, 2017, 38, 1991-1999.	1.5	26
706	Cadmium Metal–Organic Frameworks Based on Ditopic Triazamacrocyclic Linkers: Unusual Structural Features and Selective CO ₂ Capture. Crystal Growth and Design, 2017, 17, 3665-3676.	1.4	12
707	Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Journal of the American Chemical Society, 2017, 139, 8022-8028.	6.6	417
708	Comparing the mechanism and energetics of CO ₂ sorption in the SIFSIX series. CrystEngComm, 2017, 19, 3338-3347.	1.3	22
709	Temperature-regulated guest admission and release in microporous materials. Nature Communications, 2017, 8, 15777.	5.8	60
710	Flexible–Robust Metal–Organic Framework for Efficient Removal of Propyne from Propylene. Journal of the American Chemical Society, 2017, 139, 7733-7736.	6.6	242

#	Article	IF	CITATIONS
711	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie, 2017, 129, 9000-9004.	1.6	6
712	Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth and Design, 2017, 17, 4467-4488.	1.4	123
713	Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure. ACS Central Science, 2017, 3, 662-667.	5.3	79
714	Improvement of the CO ₂ Capture Capability of a Metal–Organic Framework by Encapsulating Dye Molecules inside the Mesopore Space. Crystal Growth and Design, 2017, 17, 2688-2693.	1.4	14
715	Preparation of ordered N-doped mesoporous carbon materials via a polymer–ionic liquid assembly. Chemical Communications, 2017, 53, 4915-4918.	2.2	29
716	Mixedâ€Matrix Membranes. Angewandte Chemie - International Edition, 2017, 56, 9292-9310.	7.2	545
717	Robust MOFs of "tsg―Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal to Single Crystal Postsynthetic Metal Exchange and Selective CO ₂ Capture. Chemistry - A European Journal, 2017, 23, 7297-7305.	1.7	26
718	An automated lab-scale flue gas permeation membrane testing system at the National Carbon Capture Center. Journal of Membrane Science, 2017, 533, 28-37.	4.1	6
719	Minimal edge-transitive nets for the design and construction of metal–organic frameworks. Faraday Discussions, 2017, 201, 127-143.	1.6	32
720	Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 2017, 5, 8954-8963.	5.2	117
721	Exceptionally stable Bakelite-type polymers for efficient pre-combustion CO2capture and H2purification. Journal of Materials Chemistry A, 2017, 5, 8431-8439.	5.2	11
722	Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption. Chemical Engineering Journal, 2017, 322, 366-374.	6.6	204
723	Enhanced Stability toward Humidity in a Family of Hybrid Ultramicroporous Materials Incorporating Cr ₂ O ₇ ^{2–} Pillars. Crystal Growth and Design, 2017, 17, 1933-1937.	1.4	12
724	Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption. Polymer Chemistry, 2017, 8, 2509-2515.	1.9	11
725	Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 2017, 321, 40-47.	6.6	61
726	Continuous Oneâ€Step Synthesis of Porous Mâ€XF ₆ â€Based Metalâ€Organic and Hydrogenâ€Bond Frameworks. Chemistry - A European Journal, 2017, 23, 6829-6835.	ed 1.7	28
727	Preparation of zinc chabazite (ZnCHA) for CO2 capture. Research on Chemical Intermediates, 2017, 43, 1783-1792.	1.3	13
728	The electrochemical discrimination of pinene enantiomers by a cyclodextrin metal–organic framework. Dalton Transactions, 2017, 46, 6830-6834.	1.6	34

#	Article	IF	Citations
729	Perspectives on water-facilitated CO ₂ capture materials. Journal of Materials Chemistry A, 2017, 5, 6794-6816.	5.2	56
730	Enhancement of Cas Sorption and Separation Performance via Ligand Functionalization within Highly Stable Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 2131-2139.	1.4	35
731	Cation exchanged MOF-derived nitrogen-doped porous carbons for CO ₂ capture and supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 9544-9552.	5.2	149
732	Fineâ€Tuning of the Carbon Dioxide Capture Capability of Diamineâ€Grafted Metal–Organic Framework Adsorbents Through Amine Functionalization. ChemSusChem, 2017, 10, 541-550.	3.6	88
733	A Transferable Model for Adsorption in MOFs with Unsaturated Metal Sites. Journal of Physical Chemistry C, 2017, 121, 441-458.	1.5	28
734	N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon, 2017, 114, 473-481.	5.4	148
735	Two Li–Zn Cluster-Based Metal–Organic Frameworks: Strong H ₂ /CO ₂ Binding and High Selectivity to CO ₂ . Inorganic Chemistry, 2017, 56, 705-708.	1.9	23
736	Emerging materials for lowering atmospheric carbon. Environmental Technology and Innovation, 2017, 7, 30-43.	3.0	13
737	Template-directed flower-like lactose with micro-meso-macroporous structure. Materials and Design, 2017, 117, 178-184.	3.3	22
738	Beyond pristine MOFs: carbon dioxide capture by metal–organic frameworks (MOFs)-derived porous carbon materials. RSC Advances, 2017, 7, 1266-1270.	1.7	41
739	Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nature Materials, 2017, 16, 526-531.	13.3	201
740	Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8, 2373-2380.	3.7	121
741	Carbon Dioxide Capture Adsorbents: Chemistry and Methods. ChemSusChem, 2017, 10, 1303-1317.	3.6	313
742	Construction and Photocatalytic Activities of a Series of Isostructural Co ²⁺ /Zn ²⁺ Metal-Doped Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 1096-1102.	1.4	41
743	Chemical vs Electrochemical Formation of Li ₂ CO ₃ as a Discharge Product in Li–O ₂ /CO ₂ Batteries by Controlling the Superoxide Intermediate. Journal of Physical Chemistry Letters, 2017, 8, 214-222.	2.1	108
744	Structural Diversity in Six Mixed Ligand Zn(II) Metal–Organic Frameworks Constructed by Rigid and Flexible Dicarboxylates and Different N,N′ Donor Ligands. Crystal Growth and Design, 2017, 17, 6613-6624.	1.4	43
745	CO ₂ Capture Using the SIFSIX-2-Cu-i Metal–Organic Framework: A Computational Approach. Journal of Physical Chemistry C, 2017, 121, 27462-27472.	1.5	14
746	Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature Communications, 2017, 8, 1233.	5.8	286

#	Article	IF	CITATIONS
747	Selective Gas Adsorption in Highly Porous Chromium(II)-Based Metal–Organic Polyhedra. Chemistry of Materials, 2017, 29, 8583-8587.	3.2	68
748	Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO ₂ Capture and Separation Performance. ACS Applied Materials & Interfaces, 2017, 9, 35802-35810.	4.0	61
749	PCN-250 under Pressure: Sequential Phase Transformation and the Implications for MOF Densification. Joule, 2017, 1, 806-815.	11.7	65
750	Porphyrinic coordination lattices with fluoropillars. Journal of Materials Chemistry A, 2017, 5, 21189-21195.	5.2	26
751	Lewis basic site (LBS)-functionalized zeolite-like supramolecular assemblies (ZSAs) with high CO ₂ uptake performance and highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2017, 5, 21429-21434.	5.2	21
752	Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2017, 139, 15212-15221.	6.6	61
753	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie, 2017, 129, 16500-16505.	1.6	41
754	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie - International Edition, 2017, 56, 16282-16287.	7.2	146
755	Fluorine-functionalized metal–organic frameworks and porous coordination polymers. NPG Asia Materials, 2017, 9, e433-e433.	3.8	92
756	The effect of centred versus offset interpenetration on C ₂ H ₂ sorption in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 11592-11595.	2.2	40
757	Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm, 2017, 19, 6612-6619.	1.3	17
758	A Water-Stable Twofold Interpenetrating Microporous MOF for Selective CO ₂ Adsorption and Separation. Inorganic Chemistry, 2017, 56, 13991-13997.	1.9	88
759	An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption. AIP Conference Proceedings, 2017, , .	0.3	5
760	Direct Organization of Morphology-Controllable Mesoporous SnO ₂ Using Amphiphilic Graft Copolymer for Gas-Sensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 37246-37253.	4.0	24
761	Isostructural functionalization by –OH and –NH ₂ : different contributions to CO ₂ adsorption. RSC Advances, 2017, 7, 47219-47224.	1.7	14
762	A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO ₂ from CO ₂ –N ₂ and CO ₂ –CH ₄ gas mixtures with high CO ₂ loading. Dalton Transactions, 2017, 46, 15280-15286.	1.6	46
763	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
764	A Triphasic Modulated Hydrothermal Approach for the Synthesis of Multivariate Metal–Organic Frameworks with Hydrophobic Moieties for Highly Efficient Moistureâ€Resistant CO ₂ Capture. Advanced Sustainable Systems, 2017, 1, 1700092.	2.7	43

#	Article	IF	CITATIONS
765	Optimizing the Preparation of Meso- and Microporous Canola Stalk-Derived Hydrothermal Carbon via Response Surface Methodology for Methylene Blue Removal. Energy & Fuels, 2017, 31, 12327-12338.	2.5	32
766	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83
767	Investigating gas sorption in an rht -metal–organic framework with 1,2,3-triazole groups. Physical Chemistry Chemical Physics, 2017, 19, 29204-29221.	1.3	8
768	A highly crystalline oriented metal–organic framework thin film with an inorganic pillar. Chemical Communications, 2017, 53, 10112-10115.	2.2	14
769	Probing Gas Adsorption in Metal–Organic Framework ZIF-8 by EPR of Embedded Nitroxides. Journal of Physical Chemistry C, 2017, 121, 19880-19886.	1.5	19
770	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
771	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	11.1	88
772	Exploration of Macroporous Polymeric Sponges As Drug Carriers. Biomacromolecules, 2017, 18, 3215-3221.	2.6	62
773	NLDFT Pore Size Distribution in Amorphous Microporous Materials. Langmuir, 2017, 33, 11138-11145.	1.6	134
774	Tuning Two-Photon Absorption Cross Section in Metal Organic Frameworks. Chemistry of Materials, 2017, 29, 7424-7430.	3.2	31
775	Optimal Size of a Cylindrical Pore for Post-Combustion CO ₂ Capture. Journal of Physical Chemistry C, 2017, 121, 22025-22030.	1.5	9
776	Rational Design of a Bifunctional, Twoâ€Fold Interpenetrated Zn ^{II} â€Metal–Organic Framework for Selective Adsorption of CO ₂ and Efficient Aqueous Phase Sensing of 2,4,6â€Trinitrophenol. Chemistry - A European Journal, 2017, 23, 16204-16212.	1.7	100
777	Diverse coordination polymers from a new bent dipyridyl-type ligand 3,6-di(pyridin-4-yl)-9H-carbazole. CrystEngComm, 2017, 19, 6164-6169.	1.3	5
778	Two Analogous Polyhedron-Based MOFs with High Density of Lewis Basic Sites and Open Metal Sites: Significant CO ₂ Capture and Gas Selectivity Performance. ACS Applied Materials & Interfaces, 2017, 9, 32820-32828.	4.0	57
779	Metalâ€Free Carbon Materials for CO ₂ Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.	11.1	558
780	Acid/hydrazide-appended covalent triazine frameworks for low-pressure CO ₂ capture: pre-designable or post-synthesis modification. Journal of Materials Chemistry A, 2017, 5, 21266-21274.	5.2	40
781	Enhanced Trace Carbon Dioxide Capture on Heteroatom‧ubstituted RHO Zeolites under Humid Conditions. ChemSusChem, 2017, 10, 4207-4214.	3.6	23
782	A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO ₂ Capture from Coal Flue Gas via a Mixed Adsorption Mechanism. Journal of the American Chemical Society, 2017, 139, 13541-13553.	6.6	206

#	Article	IF	CITATIONS
783	Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science, 2017, 8, 7560-7565.	3.7	57
784	A prototype reactor for highly selective solar-driven CO ₂ reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy and Environmental Science, 2017, 10, 2256-2266.	15.6	116
785	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8, 485.	5.8	171
786	Construction of bimetallic nanoparticles immobilized by porous functionalized metal-organic frameworks toward remarkably enhanced catalytic activity for the room-temperature complete conversion of hydrous hydrazine into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 19096-19105.	3.8	32
787	Construction of a Multi-Cage-Based MOF with a Unique Network for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 26177-26183.	4.0	75
788	The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2, .	23.3	1,075
789	Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 18984-18988.	5.2	88
790	Xe adsorption and separation properties of a series of microporous metal–organic frameworks (MOFs) with V-shaped linkers. Journal of Materials Chemistry A, 2017, 5, 16611-16615.	5.2	42
791	A series of novel cadmium(<scp>ii</scp>) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands. New Journal of Chemistry, 2017, 41, 9152-9158.	1.4	10
792	Highly Selective Aqueous Phase Detection of Azinphosâ€Methyl Pesticide in ppb Level Using a Cageâ€Connected 3D MOF. ChemistrySelect, 2017, 2, 5760-5768.	0.7	37
793	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	6.6	118
794	Five 1D to 3D Zn(<scp>ii</scp>)/Mn(<scp>ii</scp>)-CPs based on dicarboxyphenyl-terpyridine ligand: stepwise adsorptivity and magnetic properties. CrystEngComm, 2017, 19, 4789-4796.	1.3	14
795	Diffusion of Carbon Dioxide and Nitrogen in the Smallâ€Pore Titanium Bis(phosphonate) Metal–Organic Framework MILâ€91 (Ti): A Combination of Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations. ChemPhysChem, 2017, 18, 2739-2746.	1.0	11
796	Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nature Communications, 2017, 8, 100.	5.8	100
797	Facile Synthesis of MgO-Modified Carbon Adsorbents with Microwave- Assisted Methods: Effect of MgO Particles and Porosities on CO2 Capture. Scientific Reports, 2017, 7, 5653.	1.6	52
798	Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO ₂ Removal. ACS Applied Materials & Interfaces, 2017, 9, 29093-29100.	4.0	152
799	Confined methanol within InOF-1: CO ₂ capture enhancement. Dalton Transactions, 2017, 46, 15208-15215.	1.6	25
800	Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO ₂ Capture and Sequestration. ACS Applied Materials & Interfaces, 2017, 9, 30002-30013.	4.0	37

#	Article	IF	CITATIONS
801	Tuning ethylene gas adsorption via metal node modulation: Cu-MOF-74 for a high ethylene deliverable capacity. Chemical Communications, 2017, 53, 9376-9379.	2.2	59
802	Pyridine-Functionalized and Metallized Meso-Macroporous Polymers for Highly Selective Capture and Catalytic Conversion of CO ₂ into Cyclic Carbonates. Industrial & Engineering Chemistry Research, 2017, 56, 15008-15016.	1.8	32
803	Cooperative CO ₂ Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol. ACS Central Science, 2017, 3, 1271-1275.	5.3	11
804	Increased CO2 selectivity of asphalt-derived porous carbon through introduction of water into pore space. Nature Energy, 2017, 2, 932-938.	19.8	31
805	Enhanced xenon adsorption and separation with an anionic indium–organic framework by ion exchange with Co ²⁺ . RSC Advances, 2017, 7, 55012-55019.	1.7	26
806	Controlling the Uptake and Regulating the Release of Nitric Oxide in Microporous Solids. ACS Applied Materials & Interfaces, 2017, 9, 43520-43528.	4.0	15
807	Non-interpenetrated Cu-based MOF constructed from a rediscovered tetrahedral ligand. CrystEngComm, 2017, 19, 7236-7243.	1.3	10
808	Efficient light hydrocarbon separation and CO ₂ capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chemical Communications, 2017, 53, 12970-12973.	2.2	121
809	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310
810	Microporous Lanthanide Metal–Organic Framework Constructed from Lanthanide Metalloligand for Selective Separation of C ₂ H ₂ /CO ₂ and C ₂ H ₂ /CH ₄ at Room Temperature. Inorganic Chemistry, 2017, 56, 7145-7150.	1.9	72
811	Gas Adsorption and Separation by the Al-Based Metal–Organic Framework MIL-160. Journal of Physical Chemistry C, 2017, 121, 26822-26832.	1.5	51
812	The simplest and fascinating metal–organic polyhedra: Tetrahedra. Coordination Chemistry Reviews, 2017, 353, 180-200.	9.5	24
813	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO ₂ Capture. Chemistry of Materials, 2017, 29, 10326-10338.	3.2	78
814	A remarkable adsorbent for removal of contaminants of emerging concern from water: Porous carbon derived from metal azolate framework-6. Journal of Hazardous Materials, 2017, 340, 179-188.	6.5	88
815	Fine-tuning optimal porous coordination polymers using functional alkyl groups for CH ₄ purification. Journal of Materials Chemistry A, 2017, 5, 17874-17880.	5.2	32
816	Pore space partition via secondary metal ions entrapped by pyrimidine hooks: influences on structural flexibility and carbon dioxide capture. Journal of Materials Chemistry A, 2017, 5, 17287-17292.	5.2	24
817	Tuning Gas Adsorption Properties of Zeolite-like Supramolecular Assemblies with gis Topology via Functionalization of Isoreticular Metal–Organic Squares. ACS Applied Materials & Interfaces, 2017, 9, 33521-33527.	4.0	27
818	Structural-failure resistance of metal–organic frameworks toward multiple-cycle CO2 sorption. Chemical Communications, 2017, 53, 8653-8656.	2.2	24

#	Article	IF	CITATIONS
819	High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal–organic framework. Dalton Transactions, 2017, 46, 10197-10201.	1.6	102
820	Design of a Peripheral Building Block for H-Bonded Dendritic Frameworks and Analysis of the Void Space in the Bulk Dendrimers. Scientific Reports, 2017, 7, 3649.	1.6	11
821	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 24555-24560.	4.0	112
822	Rare Earth Chalcogels Na <i>Ln</i> SnS ₄ (<i>Ln</i> = Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 953-961.	0.6	5
823	A new set of Cd(<scp>ii</scp>)-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO ₂ and cationic dyes. Dalton Transactions, 2017, 46, 9901-9911.	1.6	55
824	CO ₂ capture in a carbazole-based supramolecular polyhedron structure: the significance of Cu(<scp>ii</scp>) open metal sites. Inorganic Chemistry Frontiers, 2017, 4, 56-64.	3.0	25
825	Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chemical Engineering Science, 2017, 158, 539-544.	1.9	55
826	Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332, 48-74.	9.5	331
827	Ab-initio investigation of adsorption of CO and CO 2 molecules on graphene: Role of intrinsic defects on gas sensing. Applied Surface Science, 2017, 394, 219-230.	3.1	87
828	Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement. Applied Thermal Engineering, 2017, 113, 1097-1106.	3.0	77
829	Modelling adsorption in fluorinated TKL MOFs. Molecular Simulation, 2017, 43, 213-221.	0.9	1
830	Semiconductor Metal–Organic Frameworks: Future Lowâ€Bandgap Materials. Advanced Materials, 2017, 29, 1605071.	11.1	211
831	Rational design of temperature swing adsorption cycles for post-combustion CO 2 capture. Chemical Engineering Science, 2017, 158, 381-394.	1.9	96
832	Chemical Blowing Approach for Ultramicroporous Carbon Nitride Frameworks and Their Applications in Gas and Energy Storage. Advanced Functional Materials, 2017, 27, 1604658.	7.8	92
833	Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity. Materials Chemistry and Physics, 2017, 186, 353-364.	2.0	33
834	Kryptonâ€xenon separation properties of SAPOâ€34 zeolite materials and membranes. AICHE Journal, 2017, 63, 761-769.	1.8	40
835	MgCO3-crystal-containing mixed matrix membranes with enhanced CO2 permselectivity. Chemical Engineering Journal, 2017, 307, 503-512.	6.6	22
836	Strategically designed azolyl-carboxylate MOFs for potential humid CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 535-543.	5.2	50

#	Article	IF	CITATIONS
837	A metal–organic framework functionalized with piperazine exhibiting enhanced CH ₄ storage. Journal of Materials Chemistry A, 2017, 5, 349-354.	5.2	41
838	Luminescent rare-earth-based MOFs as optical sensors. Dalton Transactions, 2017, 46, 301-328.	1.6	237
839	Synthesis, characterization, and dye capture of a 3D Cd(II)–carboxylate pcu network. Polyhedron, 2017, 122, 124-130.	1.0	5
840	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	3.2	518
841	Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chinese Journal of Catalysis, 2017, 38, 1956-1969.	6.9	136
842	Synthesis, Crystal Structure, Gas Absorption, and Separation Properties of a Novel Complex Based on Pr and a Three-Connected Ligand. Crystals, 2017, 7, 370.	1.0	3
843	Solvent exchange in a metal–organic framework single crystal monitored by dynamic <i>in situ</i> X-ray diffraction. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 669-674.	0.5	5
844	Simple synthesis of porous melamine-formaldehyde resins by low temperature solvothermal method and its CO2 adsorption properties. EXPRESS Polymer Letters, 2017, 11, 873-884.	1.1	8
845	Solvates and Hydrates—Supramolecular Compounds â~†. , 2017, , 89-108.		1
846	General strategies for effective capture and separation of noble gases by metal–organic frameworks. Dalton Transactions, 2018, 47, 4027-4031.	1.6	33
847	CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells. Journal of Environmental Chemical Engineering, 2018, 6, 1995-2002.	3.3	88
848	Functional Sensing Materials Based on Lanthanide N-Heterocyclic Polycarboxylate Crystal Frameworks for Detecting Thiamines. Crystal Growth and Design, 2018, 18, 2259-2269.	1.4	11
849	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	11.1	109
850	Binding CO ₂ from Air by a Bulky Organometallic Cation Containing Primary Amines. ACS Applied Materials & Interfaces, 2018, 10, 9495-9502.	4.0	35
851	A novel polyhedron-based metal–organic framework with high performance for gas uptake and light hydrocarbon separation. Dalton Transactions, 2018, 47, 5005-5010.	1.6	17
852	Selective molecular-gating adsorption in a novel copper-based metal–organic framework. Journal of Materials Chemistry A, 2018, 6, 5910-5918.	5.2	23
853	Review: Metal-organic framework based crystalline sponge method for structure analysis. TrAC - Trends in Analytical Chemistry, 2018, 102, 290-310.	5.8	36
854	Transferability of CO ₂ Force Fields for Prediction of Adsorption Properties in All-Silica Zeolites. Journal of Physical Chemistry C, 2018, 122, 10892-10903.	1.5	12

#	Article	IF	CITATIONS
855	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO ₂ Combined with Ultrahigh Uptake Capacity. ACS Applied Materials & Interfaces, 2018, 10, 16628-16635.	4.0	78
856	Fabrication of mixedâ€matrix membranes with MOFâ€derived porous carbon for CO ₂ separation. AICHE Journal, 2018, 64, 3400-3409.	1.8	27
857	Fabrication of a Robust Lanthanide Metal–Organic Framework as a Multifunctional Material for Fe(III) Detection, CO ₂ Capture, and Utilization. Crystal Growth and Design, 2018, 18, 2956-2963.	1.4	89
859	One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications. Chemical Engineering Journal, 2018, 347, 432-439.	6.6	56
860	Controlled flexibility of porous coordination polymers by shifting the position of the –CH ₃ group around coordination sites and their highly efficient gas separation. Inorganic Chemistry Frontiers, 2018, 5, 1780-1786.	3.0	23
861	Enhancement of CO ₂ Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. Inorganic Chemistry, 2018, 57, 5074-5082.	1.9	50
862	Preferential Adsorption of CO ₂ in an Ultramicroporous MOF with Cavities Lined by Basic Groups and Open-Metal Sites. Inorganic Chemistry, 2018, 57, 5267-5272.	1.9	57
863	Chromium chains as polydentate fluoride ligands for actinides and group IV metals. Dalton Transactions, 2018, 47, 6361-6369.	1.6	2
864	Copper Sulfide (Cu <i>_x</i> S) Nanowireâ€inâ€Carbon Composites Formed from Direct Sulfurization of the Metalâ€Organic Framework HKUSTâ€1 and Their Use as Liâ€ion Battery Cathodes. Advanced Functional Materials, 2018, 28, 1800587.	7.8	77
865	Diamineâ€Functionalization of a Metal–Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties. ChemSusChem, 2018, 11, 1694-1707.	3.6	40
866	Hydrogen-bond supramolecular hydrogels as efficient precursors in the preparation of freestanding 3D carbonaceous architectures containing BCNO nanocrystals and exhibiting a high CO2/CH4 adsorption ratio. Carbon, 2018, 134, 470-479.	5.4	13
867	An alkaline-resistant Ag(<scp>i</scp>)-anchored pyrazolate-based metal–organic framework for chemical fixation of CO ₂ . Chemical Communications, 2018, 54, 4469-4472.	2.2	48
868	A Lanthanum Carboxylate Framework with Exceptional Stability and Highly Selective Adsorption of Gas and Liquid. Inorganic Chemistry, 2018, 57, 5013-5018.	1.9	23
869	A Multifaceted Study of Methane Adsorption in Metal–Organic Frameworks by Using Three Complementary Techniques. Chemistry - A European Journal, 2018, 24, 7866-7881.	1.7	29
870	Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Research, 2018, 11, 4441-4467.	5.8	70
871	Flying MOFs: polyamine-containing fluidized MOF/SiO ₂ hybrid materials for CO ₂ capture from post-combustion flue gas. Chemical Science, 2018, 9, 4589-4599.	3.7	27
872	Tuning a layer to a three-dimensional cobalt-tris(4′-carboxybiphenyl)amine framework by introducing potassium ions. Inorganic Chemistry Communication, 2018, 90, 65-68.	1.8	5
873	Xenon Gas Separation and Storage Using Metal-Organic Frameworks. CheM, 2018, 4, 466-494.	5.8	182

#	Article	IF	CITATIONS
874	Adsorption characterization and CO2 breakthrough of MWCNT/Mg-MOF-74 and MWCNT/MIL-100(Fe) composites. International Journal of Energy and Environmental Engineering, 2018, 9, 169-185.	1.3	20
875	A luminescent cadmium based MOF as selective and sensitive iodide sensor in aqueous medium. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 389-396.	2.0	42
876	Design and Construction of Chemically Stable Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 1-35.	0.3	2
877	Novel MgO/hollow carbon sphere composites for CO ₂ adsorption. New Journal of Chemistry, 2018, 42, 5674-5679.	1.4	11
878	Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO ₂ Capture and Conversion under Ambient Conditions. ACS Catalysis, 2018, 8, 2519-2525.	5.5	125
879	Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Letters, 2018, 3, 598-611.	8.8	130
880	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	13.3	449
881	Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO ₂ sorption. Green Chemistry, 2018, 20, 1074-1084.	4.6	129
882	Crystal engineering of dichromate pillared hybrid ultramicroporous materials incorporating pyrazole-based ligands. CrystEngComm, 2018, 20, 1193-1197.	1.3	11
883	A Dual-Functional Luminescent MOF Sensor for Phenylmethanol Molecule and Tb ³⁺ Cation. Inorganic Chemistry, 2018, 57, 2654-2662.	1.9	52
884	Porous Metal–Organic Frameworks with Chelating Multiamine Sites for Selective Adsorption and Chemical Conversion of Carbon Dioxide. Inorganic Chemistry, 2018, 57, 2695-2704.	1.9	87
885	Hydrogen-motivated electrolysis of sodium carbonate with extremely low cell voltage. Chemical Communications, 2018, 54, 3582-3585.	2.2	5
886	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie - International Edition, 2018, 57, 3332-3336.	7.2	52
887	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
888	Pillar-Assisted Construction of a Three-Dimensional Framework from a Two-Dimensional Bilayer Based on a Zn/Cd Heterometal Cluster: Pore Tuning and Gas Adsorption. Crystal Growth and Design, 2018, 18, 1826-1833.	1.4	6
889	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie, 2018, 130, 3390-3394.	1.6	12
890	Highly Selective Carbon Dioxide Capture and Cooperative Catalysis of a Waterâ€Stable Acylamideâ€Functionalized Metal–Organic Framework. European Journal of Inorganic Chemistry, 2018, 2018, 1309-1314.	1.0	30
891	A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials. Advanced Materials, 2018, 30, 1705374.	11.1	133

#	Article	IF	CITATIONS
892	Integration of Open Metal Sites and Lewis Basic Sites for Construction of a Cu MOF with a Rare Chiral <i>O</i> _h â€ŧype cage for high performance in methane purification. Chemistry - A European Journal, 2018, 24, 13181-13187.	1.7	26
893	Highly CO ₂ selective pillar[n]arene-based supramolecular organic frameworks. Supramolecular Chemistry, 2018, 30, 648-654.	1.5	23
894	A 3D Microporous MOF with <i>mab</i> Topology for Selective CO ₂ Adsorption and Separation. ChemistrySelect, 2018, 3, 917-921.	0.7	15
895	Finely Controlled Stepwise Engineering of Pore Environments and Mechanistic Elucidation of Waterâ€Stable, Flexible 2D Porous Coordination Polymers. Chemistry - A European Journal, 2018, 24, 6412-6417.	1.7	16
896	Synthesis of Triazine-Based Porous Organic Polymers Derived N-Enriched Porous Carbons for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 2856-2865.	1.8	102
897	A microporous metal–organic framework with commensurate adsorption and highly selective separation of xenon. Journal of Materials Chemistry A, 2018, 6, 4752-4758.	5.2	86
898	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	11.1	1,740
899	A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO ₂ gas uptake capability. CrystEngComm, 2018, 20, 1874-1881.	1.3	40
900	A Moisture‣table 3D Microporous Co ^{II} â€Metal–Organic Framework with Potential for Highly Selective CO ₂ Separation under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 5982-5986.	1.7	37
901	Microporous Luminescent Metal–Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. ACS Applied Materials & Interfaces, 2018, 10, 5618-5625.	4.0	121
902	Targeted Construction of Light-Harvesting Metal–Organic Frameworks Featuring Efficient Host–Guest Energy Transfer. ACS Applied Materials & Interfaces, 2018, 10, 5633-5640.	4.0	47
903	Carbonâ€based adsorbents for postâ€combustion capture: a review. , 2018, 8, 11-36.		77
904	Highly selective luminescent sensor for CCl ₄ vapor and pollutional anions/cations based on a multi-responsive MOF. Journal of Materials Chemistry C, 2018, 6, 2010-2018.	2.7	31
905	Construction of unprecedented pillar-layered metal organic frameworks via a dual-ligand strategy for dye degradation. Dalton Transactions, 2018, 47, 4032-4035.	1.6	23
906	Carbon doping of hexagonal boron nitride porous materials toward CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 1832-1839.	5.2	131
907	Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. CheM, 2018, 4, 94-105.	5.8	282
908	Porous nanofibrous composite membrane for unparalleled proton conduction. Journal of Membrane Science, 2018, 550, 136-144.	4.1	25
909	CuSiF ₆ (4,4′-bipyridine) ₂ , a Crystalline Complex with Excellent Adsorptivity for Thiophenic Sulfur Compounds in Model Oil. Energy & Fuels, 2018, 32, 696-702.	2.5	4

#	Article	IF	CITATIONS
910	Zn/Cd/Cu- frameworks constructed by 3,3′-diphenyldicarboxylate and 1,4-bis(1,2,4-triazol-1-yl)butane: Syntheses, structure, luminescence and luminescence sensing for metal ion in aqueous medium. Journal of Solid State Chemistry, 2018, 258, 744-752.	1.4	20
911	Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO ₂ over CH ₄ or N ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 703-709.	1.8	78
912	Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich <i>rht</i> -metal–organic framework. Physical Chemistry Chemical Physics, 2018, 20, 1761-1777.	1.3	15
913	Potassium Tethered Carbons with Unparalleled Adsorption Capacity and Selectivity for Low-Cost Carbon Dioxide Capture from Flue Gas. ACS Applied Materials & Interfaces, 2018, 10, 3495-3505.	4.0	18
914	Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chinese Chemical Letters, 2018, 29, 865-868.	4.8	38
915	A new metal-organic framework for separation of C2H2/CH4 and CO2/CH4 at room temperature. Journal of Solid State Chemistry, 2018, 260, 31-33.	1.4	23
916	Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon. Microporous and Mesoporous Materials, 2018, 270, 102-108.	2.2	68
917	Solutionâ€reprocessable microporous polymeric adsorbents for carbon dioxide capture. AICHE Journal, 2018, 64, 3376-3389.	1.8	15
918	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
919	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	5.8	251
920	Efficient Absorption of CO ₂ by Introduction of Intramolecular Hydrogen Bonding in Chiral Amino Acid Ionic Liquids. Energy & Fuels, 2018, 32, 6130-6135.	2.5	47
921	Microporous carbons derived from melamine and isophthalaldehyde: One-pot condensation and activation in a molten salt medium for efficient gas adsorption. Scientific Reports, 2018, 8, 6092.	1.6	33
922	One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers <i>via</i> temperature- and adsorbate-dependent molecular sieving. Energy and Environmental Science, 2018, 11, 1226-1231.	15.6	103
923	Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study. AIP Advances, 2018, 8, .	0.6	35
924	Exceptionally Stable and 20-Connected Lanthanide Metal–Organic Frameworks for Selective CO ₂ Capture and Conversion at Atmospheric Pressure. Crystal Growth and Design, 2018, 18, 2432-2440.	1.4	95
925	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. Journal of the American Chemical Society, 2018, 140, 4596-4603.	6.6	181
926	Electrically Conductive Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 655-686.	0.3	8
927	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal Ions on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	3.2	27

#	Article	IF	CITATIONS
928	Three-dimensional iron(<scp>ii</scp>) porous coordination polymer exhibiting carbon dioxide-dependent spin crossover. Chemical Communications, 2018, 54, 4262-4265.	2.2	29
929	Impact of partial interpenetration in a hybrid ultramicroporous material on C ₂ H ₂ H ₂ H ₄ separation performance. Chemical Communications, 2018, 54, 3488-3491.	2.2	38
930	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	4.7	158
931	Formation of CO ₂ Hydrates within Single-Walled Carbon Nanotubes at Ambient Pressure: CO ₂ Capture and Selective Separation of a CO ₂ /H ₂ Mixture in Water. Journal of Physical Chemistry C, 2018, 122, 7951-7958.	1.5	21
932	Functionalization of MOFs <i>via</i> a mixed-ligand strategy: enhanced CO ₂ uptake by pore surface modification. Dalton Transactions, 2018, 47, 5298-5303.	1.6	33
933	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
934	Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 6931-6937.	5.2	74
935	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
936	Comments on "Past, current and future of biomass energy research: A bibliometric analysis―by Mao et al. (2015). Renewable and Sustainable Energy Reviews, 2018, 82, 4235-4237.	8.2	21
937	Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data. Transport in Porous Media, 2018, 125, 5-22.	1.2	17
938	Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO2 capture. Microporous and Mesoporous Materials, 2018, 255, 76-83.	2.2	53
939	An Aminoâ€Functionalized Metalâ€Organic Framework, Based on a Rare Ba ₁₂ (COO) ₁₈ (NO ₃) ₂ Cluster, for Efficient C ₃ /C ₂ /C ₁ Separation and Preferential Catalytic Performance. Chemistry - A European Journal, 2018, 24, 2137-2143.	1.7	61
940	An Uncommon Carboxylâ€Decorated Metal–Organic Framework with Selective Gas Adsorption and Catalytic Conversion of CO ₂ . Chemistry - A European Journal, 2018, 24, 865-871.	1.7	112
941	Effect of Pore Size on the Carbon Dioxide Adsorption Behavior of Porous Liquids Based on Hollow Silica. ChemPhysChem, 2018, 19, 130-137.	1.0	53
942	Overcoming double-step CO ₂ adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg ₂ (dobpdc). Chemical Science, 2018, 9, 160-174.	3.7	88
943	A search for selectivity to enable CO ₂ capture with porous adsorbents. Energy and Environmental Science, 2018, 11, 57-70.	15.6	457
944	Porous ionic polymers: Design, synthesis, and applications. Progress in Polymer Science, 2018, 79, 121-143.	11.8	161
945	Adsorption separation of acetylene and ethylene in a highly thermostable microporous metal-organic framework. Separation and Purification Technology, 2018, 195, 238-243.	3.9	23

#	Article	IF	CITATIONS
946	Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 2018, 21, 108-121.	8.3	1,167
947	A Macroporous Metal–Organic Framework with Enhanced Hydrophobicity for Efficient Oil Adsorption. Chemistry - A European Journal, 2018, 24, 3754-3759.	1.7	38
948	Model fitting of sorption kinetics data: Misapplications overlooked and their rectifications. AICHE Journal, 2018, 64, 1793-1805.	1.8	11
949	High performance composite membranes comprising Zn(pyrz) 2 (SiF 6) nanocrystals for CO 2 /CH 4 separation. Journal of Industrial and Engineering Chemistry, 2018, 60, 279-285.	2.9	45
950	A Metal–Organic Framework to CuO Nanospheres of Uniform Morphology for the Synthesis of α-Aminonitriles under Solvent-Free Condition along with Crystal Structure of the Framework. Crystal Growth and Design, 2018, 18, 189-199.	1.4	13
951	Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chemical Engineering Journal, 2018, 331, 124-131.	6.6	164
953	3D porous metal–organic framework for selective adsorption of methane over dinitrogen under ambient pressure. Chemical Communications, 2018, 54, 14104-14107.	2.2	32
954	Humidity-induced CO ₂ capture enhancement in Mg-CUK-1. Dalton Transactions, 2018, 47, 15827-15834.	1.6	29
955	A highly sensitive flexible metal–organic framework sets a new benchmark for separating propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 24452-24458.	5.2	67
956	Potential of ultramicroporous metal–organic frameworks in CO ₂ clean-up. Chemical Communications, 2018, 54, 13472-13490.	2.2	49
957	A supramolecular porous material comprising Fe(<scp>ii</scp>) mesocates. Chemical Communications, 2018, 54, 13391-13394.	2.2	15
958	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24
959	Systematic analysis of biomass derived fuels for fuel cells. International Journal of Hydrogen Energy, 2018, 43, 23178-23192.	3.8	52
960	Finding the Optimal Balance between the Pore Size and Pore Chemistry in Hybrid Ultramicroporous Materials for Trace Acetylene Capture. ACS Applied Nano Materials, 2018, 1, 6000-6004.	2.4	12
961	Metal–Organic Framework Membranes: From Fabrication to Gas Separation. Crystals, 2018, 8, 412.	1.0	51
963	Development of Alumina–Mesoporous Organosilica Hybrid Materials for Carbon Dioxide Adsorption at 25 °C. Materials, 2018, 11, 2301.	1.3	15
964	Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2, 21-49.	2.3	77
965	A new Cd based metal–organic framework for quick and convenient detection of trace water in isopropanol and 1,4-dioxane. Journal of Materials Chemistry C, 2018, 6, 12341-12346.	2.7	29

#	Article	IF	CITATIONS
966	CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations. Journal of CO2 Utilization, 2018, 28, 145-151.	3.3	16
967	Gradientâ€Ðistributed Metal–Organic Framework–Based Porous Membranes for Nonaqueous Redox Flow Batteries. Advanced Energy Materials, 2018, 8, 1802533.	10.2	70
968	A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie - International Edition, 2018, 57, 15183-15188.	7.2	124
969	Adsorption of propane and propylene in zeolitic imidazolate framework ZIF-8 pore: periodic SCC-DFTB method. Adsorption, 2018, 24, 691-701.	1.4	5
970	A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie, 2018, 130, 15403-15408.	1.6	98
971	Biporous Metal–Organic Framework with Tunable CO ₂ /CH ₄ Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Interfaces, 2018, 10, 36144-36156.	4.0	33
972	A Nano‣ized [Mn ^{II} ₁₈] Metallamacrocycle as a Building Unit to Construct Stable Metal–Organic Frameworks: Effective Gas Adsorption and Magnetic Properties. Chemistry - A European Journal, 2018, 24, 19152-19155.	1.7	13
973	Toward Engineering Chiral Rodlike Metal–Organic Frameworks with Rare Topologies. Inorganic Chemistry, 2018, 57, 12869-12875.	1.9	13
974	High Yield, Low-Waste Synthesis of a Family of Pyridyl and Imidazolyl-Substituted Schiff Base Linker Ligands. ACS Sustainable Chemistry and Engineering, 2018, 6, 14589-14598.	3.2	12
975	<i>In situ</i> analysis of the adsorption behaviors of CO ₂ on the surface of MIL-91(Al). New Journal of Chemistry, 2018, 42, 16985-16991.	1.4	12
976	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	1.9	80
977	A Dynamic 3D Hydrogenâ€Bonded Organic Frameworks with Highly Water Affinity. Advanced Functional Materials, 2018, 28, 1804822.	7.8	80
978	Phosphonates Meet Metalâ^'Organic Frameworks: Towards CO 2 Adsorption. Israel Journal of Chemistry, 2018, 58, 1164-1170.	1.0	4
979	Enhanced Breakthrough Efficiency by a Chemically Stable Porous Coordination Polymer with Optimized Nanochannel. ACS Applied Materials & Interfaces, 2018, 10, 39025-39031.	4.0	22
980	Multifunctional Behavior of Sulfonate-Based Hydrolytically Stable Microporous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 39049-39055.	4.0	18
981	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362, 443-446.	6.0	763
982	Postsynthetic Selective Ligand Cleavage by Solid–Gas Phase Ozonolysis Fuses Micropores into Mesopores in Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15022-15030.	6.6	91
983	Unusual Moisture-Enhanced CO ₂ Capture within Microporous PCN-250 Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 38638-38647.	4.0	57

ARTICLE IF CITATIONS Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High 984 7.2 128 Humidity. Angewandte Chemie - International Edition, 2018, 57, 16501-16505. Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High 1.6 Humidity. Angewandte Chemie, 2018, 130, 16739-16743. Simultaneous Trapping of C₂H₂ and C₂H₆ from a Ternary Mixture of 986 C₂H₂H₂H₄/C₂H₆ in a Robust 223 7.2 Metal–Organic Framework for the Purification of C₂H₄. Angewandte Chemie International Edition, 2018, 57, 16067-16071. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. 214 Nature Energy, 2018, 3, 1059-1066. Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with 988 increased capacity and selectivity by polyaniline introduction. Journal of CO2 Utilization, 2018, 28, 3.3 47 319-325. Controlled Construction of Cu(I) Sites within Confined Spaces via Host–Guest Redox: Highly Efficient Adsorbents for Selective CO Adsorption. ACS Applied Materials & amp; Interfaces, 2018, 10, 40044-40053. 4.0 Simultaneous Trapping of C₂H₂ and C₂H₆ from a Ternary Mixture of 990 $\label{eq:csub} C < sub > 2 < / sub > H < sub > 2 < / sub > H < sub > 2 < / sub > H < sub > 4 < / sub > 2 < / sub > H < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > in a Robust > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 1 < sub > 6 < / sub > 6 <$ 1.6 71 Metal–Organic Framework for the Purification of C₂H₄. Angewandte Chemie, 2018, 130, 16299-16303. Solvent- and pH-Dependent Formation of Four Zinc Porous Coordination Polymers: Framework 1.4 Isomerism and Gas Separation. Crystal Growth and Design, 2018, 18, 7674-7682. Detection of Pesticides in Aqueous Medium and in Fruit Extracts Using a Three-Dimensional 992 Metal–Organic Framework: Experimental and Computational Study. Inorganic Chemistry, 2018, 57, 1.9 47 12155-12165. Higher Symmetry Multinuclear Clusters of Metal–Organic Frameworks for Highly Selective 993 6.6 CO₂ Capture. Journal of the American Chemical Society, 2018, 140, 17825-17829. Three microporous metal–organic frameworks assembled from dodecanuclear {Nill6Lnlll6} subunits: 994 17 1.6 synthesis, structure, gas adsorption and magnetism. Dalton Transactions, 2018, 47, 15344-15352. Cu@nano-bio-MOF-7 composite: having more potential for in vitro drug adsorption/release and photocatalytic water splitting as compared to its parent nano-bio-MOF-7. Applied Nanoscience 1.6 . Switzerland), 2018, 8, 1831-1841) Achieving Superprotonic Conduction with a 2D Fluorinated Metal–Organic Framework. Journal of 996 6.6 103 the American Chemical Society, 2018, 140, 13156-13160. Microporous mixed-metal mixed-ligand metal organic framework for selective CO₂ capture. CrystEngComm, 2018, 20, 6088-6093. 1.3 Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H₂S and 998 7.2 176 CO₂ from Natural Gas. Angewandte Chemie - International Edition, 2018, 57, 14811-14816. Binding of halogens by a Cr₈ metallacrown. Dalton Transactions, 2018, 47, 13771-13775. 999 Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H₂S and 1000 1.6 17 CO₂ from Natural Gas. Angewandte Chemie, 2018, 130, 15027-15032. Five transition metal coordination polymers driven by a semirigid trifunctional nicotinic acid ligand: 1.3 selective adsorption and magnetic properties. CrystEngComm, 2018, 20, 5726-5734.

#	Article	IF	CITATIONS
1002	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	6.6	42
1003	Screening of Metal–Organic Frameworks for Highly Effective Hydrogen Isotope Separation by Quantum Sieving. ACS Applied Materials & Interfaces, 2018, 10, 32128-32132.	4.0	22
1004	Rational Design of a 3D Mn ^{II} â€Metal–Organic Framework Based on a Nonmetallated Porphyrin Linker for Selective Capture of CO ₂ and Oneâ€Pot Synthesis of Styrene Carbonates. Chemistry - A European Journal, 2018, 24, 16662-16669.	1.7	65
1005	Dye Adsorption and Fluorescence Sensing Behaviour About Rare Earth-Indole Carboxylic Acid Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1839-1849.	1.9	6
1006	Enhancement of CO2 solubility in a mixture of 40†wt% aqueous N-Methyldiethanolamine solution and diethylenetriamine functionalized graphene oxide. Journal of Natural Gas Science and Engineering, 2018, 55, 219-234.	2.1	20
1007	CO2 Adsorption in SIFSIX-14-Cu-i: High Performance, Inflected Isotherms, and Water-Triggered Release via Reversible Structural Transformation. European Journal of Inorganic Chemistry, 2018, 2018, 1993-1997.	1.0	8
1008	Three Cd(<scp>ii</scp>) coordination polymers constructed from a series of multidentate ligands derived from cyclotriphosphazene: synthesis, structures and luminescence properties. CrystEngComm, 2018, 20, 3535-3542.	1.3	8
1009	Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene. Industrial & Engineering Chemistry Research, 2018, 57, 7266-7274.	1.8	70
1010	Present and future of MOF research in the field of adsorption and molecular separation. Current Opinion in Chemical Engineering, 2018, 20, 132-142.	3.8	152
1011	Direct synthesis of an aliphatic amine functionalized metal–organic framework for efficient CO ₂ removal and CH ₄ purification. CrystEngComm, 2018, 20, 5969-5975.	1.3	13
1012	One-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditions. Chemical Engineering Journal, 2018, 350, 867-871.	6.6	51
1013	Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. Journal of Materials Chemistry A, 2018, 6, 12115-12124.	5.2	45
1014	Bimetallic catalysts for green methanol production <i>via</i> CO ₂ and renewable hydrogen: a mini-review and prospects. Catalysis Science and Technology, 2018, 8, 3450-3464.	2.1	104
1015	Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids Confined in a Small-Pore Metal–Organic Framework. Journal of Physical Chemistry Letters, 2018, 9, 3014-3020.	2.1	8
1016	The impact of surface chemistry and texture on the CO2 uptake capacity of graphene oxide. Inorganica Chimica Acta, 2018, 482, 470-477.	1.2	13
1017	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie, 2018, 130, 11137-11141.	1.6	85
1018	Microporous Cu metal-organic framework constructed from V-shaped tetracarboxylic ligand for selective separation of C2H2/CH4 and C2H2/N2 at room temperature. Journal of Solid State Chemistry, 2018, 265, 285-290.	1.4	10
1019	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835

#	Article	IF	CITATIONS
1020	Assessing the Impact of Point Defects on Molecular Diffusion in ZIF-8 Using Molecular Simulations. Journal of Physical Chemistry Letters, 2018, 9, 4037-4044.	2.1	39
1021	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie - International Edition, 2018, 57, 10971-10975.	7.2	365
1022	Cooperative Gas Adsorption without a Phase Transition in Metal-Organic Frameworks. Physical Review Letters, 2018, 121, 015701.	2.9	17
1023	Controllable synthesis and magnetic properties of two stable cobalt-organic frameworks based on 5-(4-carboxybenzyloxy)isophthalic acid. Inorganic Chemistry Communication, 2018, 95, 27-31.	1.8	3
1024	Physicochemical characterization of nanomaterials: size, morphology, optical, magnetic, and electrical properties. , 2018, , 279-304.		13
1025	Metal–Organic Framework with Trifluoromethyl Groups for Selective C ₂ H ₂ and CO ₂ Adsorption. Crystal Growth and Design, 2018, 18, 4522-4527.	1.4	26
1026	An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	3.0	62
1027	Upgrading gasoline to high octane numbers using a zeolite-like metal–organic framework molecular sieve with ana -topology. Chemical Communications, 2018, 54, 9414-9417.	2.2	23
1028	One unique neutral boron imidazolate framework with fluorescent property. Inorganic Chemistry Communication, 2018, 95, 130-133.	1.8	4
1029	Microporous Humins Synthesized in Concentrated Sulfuric Acid Using 5-Hydroxymethyl Furfural. ACS Omega, 2018, 3, 8537-8545.	1.6	13
1030	Metal–Organic Frameworks with Reduced Hydrophilicity for Postcombustion CO ₂ Capture from Wet Flue Gas. ACS Sustainable Chemistry and Engineering, 2018, 6, 11904-11912.	3.2	43
1031	Capture of CO2 in carbon nanotube bundles supported with room-temperature ionic liquids: A molecular simulation study. Chemical Engineering Science, 2018, 192, 94-102.	1.9	29
1032	Investigating C ₂ H ₂ Sorption in α-[M ₃ (O ₂ CH) ₆] (M = Mg, Mn) Through Theoretical Studies. Crystal Growth and Design, 2018, 18, 5342-5352.	1.4	2
1033	Structure-directed fabrication of ultrathin carbon nanosheets from layered metal salts: A separation and supercapacitor study. Carbon, 2018, 139, 740-749.	5.4	30
1034	Nickel-4′-(3,5-dicarboxyphenyl)-2,2′,6′,2″-terpyridine Framework: Efficient Separation of Ethylene from Acetylene/Ethylene Mixtures with a High Productivity. Inorganic Chemistry, 2018, 57, 9489-9494.	1.9	30
1035	Trace-level and selective detection of uric acid by a luminescent Zn (II) based 1D coordination polymer in aqueous medium. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 125-132.	2.0	8
1036	An Ultramicroporous Nickel-Based Metal–Organic Framework for Adsorption Separation of CO ₂ over N ₂ or CH ₄ . Energy & Fuels, 2018, 32, 8676-8682.	2.5	23
1037	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	1.3	54

#	Article	IF	CITATIONS
1038	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	5.2	13
1039	Synthesis and Crystal Structure of a Zn(II)-Based MOF Bearing Neutral N-Donor Linker and SiF62â^' Anion. Crystals, 2018, 8, 37.	1.0	16
1040	A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping. Energies, 2018, 11, 1103.	1.6	24
1041	Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10. Korean Journal of Chemical Engineering, 2018, 35, 1642-1649.	1.2	13
1042	Coordination driven architectures based on metalloligands offering appended carboxylic acid groups. Journal of Chemical Sciences, 2018, 130, 1.	0.7	6
1043	Microporosity and CO2 Capture Properties of Amorphous Silicon Oxynitride Derived from Novel Polyalkoxysilsesquiazanes. Materials, 2018, 11, 422.	1.3	4
1044	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
1045	Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 26678-26686.	4.0	52
1046	Hierarchical Nâ€doped carbons from designed Nâ€rich polymer: Adsorbents with a recordâ€high capacity for desulfurization. AICHE Journal, 2018, 64, 3786-3793.	1.8	64
1047	Highly Luminescent Metal–Organic Frameworks Based on an Aggregation-Induced Emission Ligand as Chemical Sensors for Nitroaromatic Compounds. Crystal Growth and Design, 2018, 18, 5166-5173.	1.4	46
1048	Isosteric Heats of Adsorption of Gases and Vapors on a Microporous Carbonaceous Material. Journal of Chemical & Engineering Data, 2018, 63, 3107-3116.	1.0	11
1049	Comparative study of activation methods to design nitrogen-doped ultra-microporous carbons as efficient contenders for CO2 capture. Chemical Engineering Journal, 2018, 352, 539-548.	6.6	88
1050	Cycloaddition of CO 2 and propylene oxide by using M (HBTC)(4,4′-bipy)·3DMF (M = Ni, Co, Zn) metal-organic frameworks. Chinese Journal of Catalysis, 2018, 39, 1311-1319.	6.9	13
1051	Metal-organic framework adsorbents and membranes for separation applications. Current Opinion in Chemical Engineering, 2018, 20, 122-131.	3.8	77
1052	Pyrrolic N-enriched carbon fabricated from dopamine-melamine via fast mechanochemical copolymerization for highly selective separation of CO2 from CO2/N2. Chemical Engineering Journal, 2018, 349, 92-100.	6.6	34
1053	Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future. Renewable and Sustainable Energy Reviews, 2018, 92, 570-607.	8.2	89
1054	Regulating the luminescent and magnetic properties of rare-earth complexes with β-diketonate coligands. New Journal of Chemistry, 2018, 42, 11417-11429.	1.4	23
1056	Interfacially Polymerized Particles with Heterostructured Nanopores for Glycopeptide Separation. Advanced Materials, 2018, 30, e1803299.	11.1	54

#	Article	IF	CITATIONS
1057	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
1058	Selective Adsorptive Separation of CO ₂ /CH ₄ and CO ₂ /N ₂ by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2018, 57, 12215-12224.	1.8	48
1059	A Cationic Zinc–Organic Framework with Lewis Acidic and Basic Bifunctional Sites as an Efficient Solvent-Free Catalyst: CO ₂ Fixation and Knoevenagel Condensation Reaction. Inorganic Chemistry, 2018, 57, 11157-11164.	1.9	106
1060	Passing it up the ranks: hierarchical ion-size dependent supramolecular response in 1D coordination polymers. CrystEngComm, 2018, 20, 5127-5131.	1.3	3
1061	A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Research, 2018, 11, 6325-6335.	5.8	14
1063	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2018, 130, 13329-13333.	1.6	34
1064	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2018, 57, 13145-13149.	7.2	85
1065	Erbium(<scp>iii</scp>)-based metal–organic frameworks with tunable upconversion emissions. Dalton Transactions, 2018, 47, 12868-12872.	1.6	30
1066	A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature. Scientific Reports, 2018, 8, 11827.	1.6	24
1067	Kinetic separation of propylene over propane in a microporous metal-organic framework. Chemical Engineering Journal, 2018, 354, 977-982.	6.6	108
1068	Loading across the Periodic Table: Introducing 14 Different Metal Ions To Enhance Metal–Organic Framework Performance. ACS Applied Materials & Interfaces, 2018, 10, 30296-30305.	4.0	20
1069	CO2 adsorption under humid conditions: Self-regulated water content in CAU-10. Polyhedron, 2018, 155, 163-169.	1.0	25
1070	Rational Synthesis of Chabazite (CHA) Zeolites with Controlled Si/Al Ratio and Their CO ₂ /CH ₄ /N ₂ Adsorptive Separation Performances. Chemistry - an Asian Journal, 2018, 13, 3222-3230.	1.7	30
1071	Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage. Chemical Engineering Journal, 2018, 354, 1075-1082.	6.6	114
1072	A new anionic metal-organic framework based on tetranuclear zinc clusters: Selective absorption of CO2 and luminescent response to lanthanide (III) ions. Inorganica Chimica Acta, 2018, 482, 154-159.	1.2	5
1073	A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water. Chemical Communications, 2018, 54, 7495-7498.	2.2	51
1074	Heterometallic In(III)–Pd(II) Porous Metal–Organic Framework with Square-Octahedron Topology Displaying High CO ₂ Uptake and Selectivity toward CH ₄ and N ₂ . Inorganic Chemistry, 2018, 57, 7244-7251.	1.9	37
1075	Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability. Inorganic Chemistry Frontiers, 2018, 5, 2018-2022.	3.0	5

#	Article	IF	CITATIONS
1076	Highly efficient separation of methane from nitrogen on a squarateâ€based metalâ€organic framework. AICHE Journal, 2018, 64, 3681-3689.	1.8	94
1077	Porous Metalâ€Organic Polyhedral Framework containing Cuboctahedron Cages as SBUs with High Affinity for H ₂ and CO ₂ Sorption: A Heterogeneous Catalyst for Chemical Fixation of CO ₂ . Chemistry - A European Journal, 2018, 24, 10988-10993.	1.7	48
1078	Diverse cobalt(<scp>ii</scp>) coordination polymers for water/ethanol separation and luminescence for water sensing applications. CrystEngComm, 2018, 20, 3891-3897.	1.3	15
1080	A Trifunctional Luminescent 3D Microporous MOF with Potential for CO ₂ Separation, Selective Sensing of a Metal Ion, and Recognition of a Small Organic Molecule. European Journal of Inorganic Chemistry, 2018, 2018, 2785-2792.	1.0	28
1081	Hydrogen Adsorption in a Zeolitic Imidazolate Framework with lta Topology. Journal of Physical Chemistry C, 2018, 122, 15435-15445.	1.5	17
1082	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	6.6	129
1083	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	1.3	29
1084	Synthesis of PAN/PVDF nanofiber composites-based carbon adsorbents for CO2 capture. Composites Part B: Engineering, 2019, 156, 95-99.	5.9	53
1085	Homochiral Metal–Organic Frameworks for Enantioselective Separations in Liquid Chromatography. Journal of the American Chemical Society, 2019, 141, 14306-14316.	6.6	93
1086	A Microporous Co-MOF for Highly Selective CO ₂ Sorption in High Loadings Involving Aryl C–H···Oâ•Câ•O Interactions: Combined Simulation and Breakthrough Studies. Inorganic Chemistry, 2019, 5 11553-11560.	8,1.9	23
1087	Three 3D Co(<scp>ii</scp>) cluster-based MOFs constructed from polycarboxylate acids and bis(imidazole) ligands and their derivatives: magnetic properties and catalytic performance for the ORR. Dalton Transactions, 2019, 48, 13369-13377.	1.6	20
1088	Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design. Sustainable Energy and Fuels, 2019, 3, 2819-2827.	2.5	28
1089	Cleaving Carboxyls: Understanding Thermally Triggered Hierarchical Pores in the Metal–Organic Framework MIL-121. Journal of the American Chemical Society, 2019, 141, 14257-14271.	6.6	53
1090	Two novel d 10 transition metal complexes based on 1 H â€benzimidazoleâ€5,6â€dicarboxylic acid: Synthesis, structure and multifunctional luminescence detection. Applied Organometallic Chemistry, 2019, 33, e5151.	1.7	4
1091	Diverse π–π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal–organic frameworks. Chemical Science, 2019, 10, 8558-8565.	3.7	128
1092	Microstructural control of a SSZ-13 zeolite film via rapid thermal processing. Journal of Membrane Science, 2019, 591, 117342.	4.1	24
1093	Unraveling the Sorption Mechanism of CO ₂ in a Molecular Crystal without Intrinsic Porosity. Journal of Physical Chemistry B, 2019, 123, 7471-7481.	1.2	1
1094	Minute/instant-MOFs: versatile, high quality, ultrafast, scalable production at room temperature. Nanoscale Advances, 2019, 1, 3379-3382.	2.2	7

#	Article	IF	CITATIONS
1095	MPMC and MCMD: Free Highâ€Performance Simulation Software for Atomistic Systems. Advanced Theory and Simulations, 2019, 2, 1900113.	1.3	8
1096	Metalâ€Organicâ€Frameworkâ€Based Cathodes for Enhancing the Electrochemical Performances of Batteries: A Review. ChemElectroChem, 2019, 6, 5358-5374.	1.7	36
1097	Trends in Solid Adsorbent Materials Development for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 34533-34559.	4.0	215
1098	Engineering the Pore Size of Pillared-Layer Coordination Polymers Enables Highly Efficient Adsorption Separation of Acetylene from Ethylene. ACS Applied Materials & Interfaces, 2019, 11, 28197-28204.	4.0	71
1099	A Microporous Organic Copolymer for Selective CO ₂ Capture under Humid Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 13941-13948.	3.2	29
1100	Carbon beads with a well-defined pore structure derived from ion-exchange resin beads. Journal of Materials Chemistry A, 2019, 7, 18285-18294.	5.2	16
1101	Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18, 994-998.	13.3	133
1102	Synthesis of Porous Organic Polymers with Tunable Amine Loadings for CO2 Capture: Balanced Physisorption and Chemisorption. Nanomaterials, 2019, 9, 1020.	1.9	32
1103	Micro- and Mesoporous Carbons Derived from KOH Activations of Polycyanurates with High Adsorptions for CO ₂ and Iodine. ACS Omega, 2019, 4, 12018-12027.	1.6	7
1104	Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMOF by Surface Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 4205-4210.	1.0	21
1105	Metal-organic framework based carbon capture and purification technologies for clean environment. , 2019, , 5-61.		21
1106	Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Letters, 2019, 11, 54.	14.4	87
1107	Unravelling the Dynamic Capture of Antibiotics by Conjugated Microporous Polymers. ChemistrySelect, 2019, 4, 8043-8053.	0.7	3
1108	MILâ€53(Al) as a Versatile Platform for Ionicâ€Liquid/MOF Composites to Enhance CO ₂ Selectivity over CH ₄ and N ₂ . Chemistry - an Asian Journal, 2019, 14, 3655-3667.	1.7	44
1109	Crystalline Anionic Germanate Covalent Organic Framework for High CO ₂ Selectivity and Fast Li Ion Conduction. Chemistry - A European Journal, 2019, 25, 13479-13483.	1.7	29
1110	Metal-Assisted Salphen Organic Frameworks (MaSOFs) with Trinuclear Metal Units for Synergic Gas Sorption. Chemistry of Materials, 2019, 31, 6210-6223.	3.2	15
1111	Fabricating Mechanically Robust Binderâ€Free Structured Zeolites by 3D Printing Coupled with Zeolite Soldering: A Superior Configuration for CO ₂ Capture. Advanced Science, 2019, 6, 1901317.	5.6	61
1112	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chemical Engineering Journal, 2019, 375, 122074.	6.6	50

#	Article	IF	CITATIONS
1113	Crystal structures, one- and two-photon excited fluorescence of two complexes based on D-Ï€-A structural 2,2-bipyridine derivative. Dyes and Pigments, 2019, 171, 107669.	2.0	3
1114	Single-File Diffusion of Neo-Pentane Confined in the MIL-47(V) Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 17360-17367.	1.5	12
1115	Fluorinated porous organic frameworks for improved CO ₂ and CH ₄ capture. Chemical Communications, 2019, 55, 8999-9002.	2.2	40
1116	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
1117	CO ₂ Behavior in a Highly Selective Ultramicroporous Framework: Insights from Single-Crystal X-ray Diffraction and Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 17798-17807.	1.5	16
1118	Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 2019, 11, 26956-26969.	4.0	28
1119	Electrode Materials Engineering in Electrocatalytic CO ₂ Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 2020, 32, e1903796.	11.1	87
1120	Visibleâ€Light Facilitated Fluorescence "Switchâ€On―Labelling of 5â€Formylpyrimidine RNA. Advanced Synthesis and Catalysis, 2019, 361, 5406-5411.	2.1	11
1121	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie - International Edition, 2019, 58, 18025-18031.	7.2	205
1122	lsoreticular Expansion of Metal–Organic Frameworks via Pillaring of Metal Templated Tunable Building Layers: Hydrogen Storage and Selective CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 14500-14505.	1.7	15
1123	Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science, 2019, 366, 241-246.	6.0	360
1124	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Interfaces, 2019, 11, 42179-42185.	4.0	17
1126	Waterâ€stable Adenineâ€based MOFs with Polar Pores for Selective CO 2 Capture. Chemistry - an Asian Journal, 2019, 14, 3736-3741.	1.7	23
1127	Tailoring Coordination Polymers by Substituent Effect: A Bifunctional Co II â€Doped 1Dâ€Coordination Network with Electrochemical Water Oxidation and Nitroaromatics Sensing. Chemistry - an Asian Journal, 2019, 14, 3742-3747.	1.7	17
1128	Shaping of Flexible Metalâ€Organic Frameworks: Combining Macroscopic Stability and Framework Flexibility. European Journal of Inorganic Chemistry, 2019, 2019, 4700-4709.	1.0	41
1129	An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angewandte Chemie, 2019, 131, 16217-16222.	1.6	6
1130	Thermodynamic Properties for Carbon Dioxide. ACS Omega, 2019, 4, 19193-19198.	1.6	98
1131	Pore Characteristics for Efficient CO ₂ Storage in Hydrated Carbons. ACS Applied Materials & Interfaces, 2019, 11, 44390-44398.	4.0	18

#	Article	IF	CITATIONS
1132	Interplay of Tri- and Bidentate Linkers to Evolve Micropore Environment in a Family of Quasi-3D and 3D Porous Coordination Polymers for Highly Selective CO2 Capture. Inorganic Chemistry, 2019, 58, 16241-16249.	1.9	7
1133	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
1134	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie, 2019, 131, 18193-18199.	1.6	62
1135	An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angewandte Chemie - International Edition, 2019, 58, 16071-16076.	7.2	56
1136	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nature Communications, 2019, 10, 3861.	5.8	164
1137	Reversing C ₂ H ₂ –CO ₂ adsorption selectivity in an ultramicroporous metal–organic framework platform. Chemical Communications, 2019, 55, 11354-11357.	2.2	46
1139	Pure-Supramolecular-Linker Approach to Highly Connected Metal–Organic Frameworks for CO ₂ Capture. Journal of the American Chemical Society, 2019, 141, 14539-14543.	6.6	47
1140	Tailoring the pore geometry and chemistry in microporous metal–organic frameworks for high methane storage working capacity. Chemical Communications, 2019, 55, 11402-11405.	2.2	13
1141	Two microporous Co ^{II} -MOFs with dual active sites for highly selective adsorption of CO ₂ /CH ₄ and CO ₂ /N ₂ . Dalton Transactions, 2019, 48, 13541-13545.	1.6	14
1142	Pseudomorphic transformation and post synthetic modification of amorphous silica for CO2 sorption applications. SN Applied Sciences, 2019, 1, 1.	1.5	1
1143	Linker functionalized metal-organic frameworks. Coordination Chemistry Reviews, 2019, 399, 213023.	9.5	170
1144	Solid-state facilitated transport of carbon monoxide through mixed matrix membranes. Journal of Membrane Science, 2019, 592, 117373.	4.1	13
1145	Assembly of Metal–Organic Frameworks of SiF ₆ ^{2–} in Situ Formed from Borosilicate Glass. Inorganic Chemistry, 2019, 58, 12501-12505.	1.9	5
1146	Multi-bidder First Price Auction with Beliefs. Studies in Microeconomics, 2019, 7, 140-160.	0.4	0
1147	Grafting Free Carboxylic Acid Groups onto the Pore Surface of 3D Porous Coordination Polymers for High Proton Conductivity. Chemistry of Materials, 2019, 31, 8494-8503.	3.2	40
1148	Highly Selective and Sensitive Detection of PO ₄ ^{3–} Ions in Aqueous Solution by a Luminescent Terbium Metal–Organic Framework. ACS Omega, 2019, 4, 16378-16384.	1.6	24
1149	Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nature Communications, 2019, 10, 4362.	5.8	91
1150	Solvents-Dependent Formation of Three MOFs from the Fe ₃ O Cluster and 3,3′,5,5′-Diphenyltetracarboxylic Acid and Their Selective CO ₂ Adsorption. Inorganic Chemistry, 2019, 58, 13836-13842.	1.9	17

ARTICLE IF CITATIONS Design of robust rod-packing [In(OH)(BDC)] frameworks and their high CO2/C2-hydrocarbons over 1151 1.4 8 CH4 separation performance. Journal of Solid State Chemistry, 2019, 279, 120936. Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic 10.1 frameworks. EnergyChem, 2019, 1, 100016. A diamine-grafted metalâ€" organic framework with outstanding CO₂ capture properties 1153 and a facile coating approach for imparting exceptional moisture stability. Journal of Materials 5.252 Chemistry A, 2019, 7, 8177-8183. A robust and water-stable two-fold interpenetrated metalâ€"organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO₂ 1154 capture. Dalton Transactions, 2019, 48, 415-425. Two 2D microporous MOFs based on bent carboxylates and a linear spacer for selective 1155 1.3 13 CO₂adsorption. CrystEngComm, 2019, 21, 535-543. Selective Adsorption of Water, Methanol, and Ethanol by Naphthalene Diimide-Based Coordination Polymers with Constructed Open Cu²⁺ Metal Sites and Separation of 1.6 Ethanol/Acetonitrile. ACS Omega, 2019, 4, 1995-2000. Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, 1157 11.1 98 and Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1805293. Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte 7.2 109 Chemie - International Edition, 2019, 58, 4221-4226. Stable Amide-Functionalized Metal–Organic Framework with Highly Selective CO2 Adsorption. 1159 1.9 51 Inorganic Chemistry, 2019, 58, 2729-2735. Exploiting π–Ï€ Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & amp; Interfaces, 2019, 11, 6097-6103. Porous Polymers Derived from Octavinylsilsesquioxane by Cationic Polymerization. Macromolecular 1161 1.1 20 Chemistry and Physics, 2019, 220, 1800536. Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte 1.6 Chemie, 2019, 131, 4265-4270. Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture. 1163 1.9 54 Nanomaterials, 2019, 9, 103. Rapid room temperature conversion of hydroxy double salt to MOF-505 for CO₂ capture. 1164 1.3 CrystEngComm, 2019, 21, 165-171. Two ultramicroporous metal–organic frameworks assembled from binuclear secondary building 1165 1.6 8 units for highly selective CO2/N2 separation. Dalton Transactions, 2019, 48, 1680-1685. Topology and porosity control of metal–organic frameworks through linker functionalization. 129 Chemical Science, 2019, 10, 1186-1192. A metal–organic framework with suitable pore size and dual functionalities for highly efficient 1167 5.2124 post-combustion CO₂ capture. Journal of Materials Chemistry A, 2019, 7, 3128-3134. Robust multivariate metal–porphyrin frameworks for efficient ambient fixation of CO₂ to 2.2 cyclic carbonates. Chemical Communications, 2019, 55, 412-415.

#	Article	IF	CITATIONS
1170	Functionalized Cuâ€MOF@CNT Hybrid: Synthesis, Crystal Structure and Applicability in Supercapacitors. Chemistry - an Asian Journal, 2019, 14, 3566-3571.	1.7	32
1171	Carbon capture by DEA-infused hydrogels. International Journal of Greenhouse Gas Control, 2019, 88, 226-232.	2.3	10
1172	Ultramicroporous carbons with extremely narrow pore size distribution via in-situ ionic activation for efficient gas-mixture separation. Chemical Engineering Journal, 2019, 375, 121931.	6.6	54
1173	A Highly Symmetric Bimetallic-Tetracarboxylate Framework: Two-Step Crystallization and Gas Separation Properties. Inorganic Chemistry, 2019, 58, 9425-9431.	1.9	6
1174	Computational prediction of promising pyrazine and bipyridine analogues of a fluorinated MOF platform, MFN-Ni-L (M = SI/AL; N = SIX/FIVE; L = pyr/bipyr), for CO2 capture under pre-humidified conditions. Physical Chemistry Chemical Physics, 2019, 21, 16127-16136.	1.3	13
1175	Molecular Sieving and Direct Visualization of CO ₂ in Binding Pockets of an Ultramicroporous Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Interfaces, 2019, 11, 23192-23197.	4.0	26
1176	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	3.2	80
1177	Gas separation by adsorption: technological drivers and opportunities for improvement. Current Opinion in Chemical Engineering, 2019, 24, 131-142.	3.8	69
1178	A highly selective multifunctional Zn oordination polymer sensor for detection of Cr (III), Cr (VI) ion, and TNP molecule. Applied Organometallic Chemistry, 2019, 33, e4988.	1.7	76
1179	Investigating CO ₂ Sorption in SIFSIX-3-M (M = Fe, Co, Ni, Cu, Zn) through Computational Studies. Crystal Growth and Design, 2019, 19, 3732-3743.	1.4	35
1180	N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 2019, 395, 146-192.	9.5	98
1181	Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. Journal of the American Chemical Society, 2019, 141, 9808-9812.	6.6	49
1182	Stable fluorinated 3D isoreticular nanotubular triazole MOFs: synthesis, characterization and CO2 separation. Journal of Porous Materials, 2019, 26, 1573-1579.	1.3	2
1183	Pore structure regulation and carbon dioxide adsorption capacity improvement on porous BN fibers: Effects of high-temperature treatments in gaseous ambient. Chemical Engineering Journal, 2019, 373, 616-623.	6.6	33
1184	Isotherms of individual pores by gas adsorption crystallography. Nature Chemistry, 2019, 11, 562-570.	6.6	88
1185	Highly Porous Cellulose Microbeads and their Adsorption for Methylene Blue. Fibers and Polymers, 2019, 20, 794-803.	1.1	22
1186	Construction of a Stable Crystalline Polyimide Porous Organic Framework for C ₂ H ₂ /C ₂ H ₄ and CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2019, 25, 9045-9051.	1.7	36
1187	Three Co(II) Metal–Organic Frameworks with Diverse Architectures for Selective Gas Sorption and Magnetic Studies. Inorganic Chemistry, 2019, 58, 6246-6256.	1.9	34

#	Article	IF	CITATIONS
1189	Metalâ^'organic framework with dual-functionalized sites for efficient C2H2/CO2 separation. Inorganic Chemistry Communication, 2019, 105, 4-8.	1.8	7
1190	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.	4.0	31
1191	CO ₂ Adsorption under Dynamic Conditions: An Overview on Rice Husk-Derived Sorbents and Other Materials. Combustion Science and Technology, 2019, 191, 1484-1498.	1.2	4
1192	Highly selective C ₂ H ₂ and CO ₂ capture and magnetic properties of a robust Co-chain based metal–organic framework. Dalton Transactions, 2019, 48, 7938-7945.	1.6	18
1193	Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers. Journal of Materials Science, 2019, 54, 10168-10178.	1.7	10
1194	5 Ultramicropore-rich renewable porous carbon from biomass tar with excellent adsorption capacity and selectivity for CO2 capture. Chemical Engineering Journal, 2019, 373, 171-178.	6.6	68
1195	The utility of the template effect in metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 44-68.	9.5	74
1196	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
1197	A Tailor-Made Interpenetrated MOF with Exceptional Carbon-Capture Performance from Flue Gas. CheM, 2019, 5, 950-963.	5.8	118
1198	Microporous Metal–Organic Frameworks for Adsorptive Separation of C5–C6 Alkane Isomers. Accounts of Chemical Research, 2019, 52, 1968-1978.	7.6	160
1199	Deep eutectic solvents appended to UiO-66 type metal organic frameworks: Preserved open metal sites and extra adsorption sites for CO2 capture. Applied Surface Science, 2019, 480, 770-778.	3.1	48
1200	Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks. Microporous and Mesoporous Materials, 2019, 281, 44-49.	2.2	18
1201	Fluorescent Dye-Based Metal–Organic Framework Piezochromic and Multicolor-Emitting Two-Dimensional Materials for Light-Emitting Devices. ACS Applied Nano Materials, 2019, 2, 1614-1620.	2.4	20
1202	Construction of bifunctional 2-fold interpenetrated Zn(<scp>ii</scp>) MOFs exhibiting selective CO ₂ adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2019, 6, 1058-1067.	3.0	48
1203	MOF-derived N-doped nanoporous carbon framework embedded with Pt NPs for sensitive monitoring of endogenous dopamine release. Journal of Electroanalytical Chemistry, 2019, 839, 247-255.	1.9	18
1204	Water-Stable Europium 1,3,6,8-Tetrakis(4-carboxylphenyl)pyrene Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2019, 58, 5089-5095.	1.9	71
1205	Anomalous Dynamics of a Nanoconfined Gas in a Soft Metal–Organics Framework. Journal of Physical Chemistry Letters, 2019, 10, 1698-1708.	2.1	5
1206	Coal Bed Methane Enhancement Techniques: A Review. ChemistrySelect, 2019, 4, 3585-3601.	0.7	38

#	Article	IF	CITATIONS
1207	A pH indicating carboxymethyl cellulose/chitosan sponge for visual monitoring of wound healing. Cellulose, 2019, 26, 4541-4552.	2.4	22
1208	Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors. Carbon, 2019, 148, 80-90.	5.4	37
1209	Highly Connected Metal-Organic Framework Constructed from Heptanuclear SBUs: Structure, Topology, and Fluorescence. Journal of Solid State Chemistry, 2019, 274, 315-321.	1.4	3
1210	Synthesis of fly ash-based microporous copper silicate for CO2 capture from humid flue gases. Korean Journal of Chemical Engineering, 2019, 36, 450-455.	1.2	3
1211	Influence of interpenetration on the flexibility of MUV-2 . CrystEngComm, 2019, 21, 3031-3035.	1.3	10
1212	Specific K ⁺ Binding Sites as CO ₂ Traps in a Porous MOF for Enhanced CO ₂ 2 Selective Sorption. Small, 2019, 15, e1900426.	5.2	67
1213	Finely Tuned Porous Coordination Polymers To Boost Methane Separation Efficiency. Chemistry - A European Journal, 2019, 25, 8790-8796.	1.7	5
1214	Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake. Chemical Engineering Journal, 2019, 372, 65-73.	6.6	110
1215	Five new 3D transition MOFs based on 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid displaying unique luminescence sensing towards Fe ³⁺ and magnetic properties. Dalton Transactions, 2019, 48, 7786-7793.	1.6	17
1216	Four isostructural lanthanide(III) coordination compounds based on a new <i>N</i> -oxydic pyridyl naphthalenediimide ligand: synthesis and characterization. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 38-45.	0.2	2
1217	Noble gas separation by a MOF with one-dimensional channels. BMC Chemical Engineering, 2019, 1, .	3.4	14
1221	A novel interpenetrated anion-pillared porous material with high water tolerance afforded efficient C ₂ H ₂ /C ₂ H ₄ separation. Chemical Communications, 2019, 55, 5001-5004.	2.2	41
1222	Constructing and finely tuning the CO ₂ traps of stable and various-pore-containing MOFs towards highly selective CO ₂ capture. Chemical Communications, 2019, 55, 3477-3480.	2.2	29
1223	Polyethyleneimine entwine thermally-treated Zn/Co zeolitic imidazolate frameworks to enhance CO2 adsorption. Chemical Engineering Journal, 2019, 364, 530-540.	6.6	51
1224	Harnessing solvent effects to integrate alkylamine into metal–organic frameworks for exceptionally high CO ₂ uptake. Journal of Materials Chemistry A, 2019, 7, 7867-7874.	5.2	39
1225	Experimental studies of air-blast atomization on the CO2 capture with aqueous alkali solutions. Chinese Journal of Chemical Engineering, 2019, 27, 2390-2396.	1.7	7
1226	One-step fabrication of PEI-modified GO particles for CO2 capture. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	22
1227	Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO ₂ at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 3925-3936.	1.9	111

#	Article	IF	CITATIONS
1228	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	3.2	65
1229	Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coordination Chemistry Reviews, 2019, 386, 85-95.	9.5	74
1230	Porous High-Valence Metal–Organic Framework Featuring Open Coordination Sites for Effective Water Adsorption. Inorganic Chemistry, 2019, 58, 3058-3064.	1.9	22
1231	Highly selective CO ₂ removal for one-step liquefied natural gas processing by physisorbents. Chemical Communications, 2019, 55, 3219-3222.	2.2	31
1232	A new approach to enhancing the CO ₂ capture performance of defective UiO-66 <i>via</i> post-synthetic defect exchange. Dalton Transactions, 2019, 48, 3349-3359.	1.6	57
1233	Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone. New Carbon Materials, 2019, 34, 533-538.	2.9	12
1234	Modification of Potassium Chabazites Derived from Fly Ash by Dosing Extra Cations: Promoted CO 2 Adsorption Capacities and Fineâ€Tuned Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1365-1371.	0.6	2
1235	Recent Advances in CO2 Adsorption from Air: a Review. Current Pollution Reports, 2019, 5, 272-293.	3.1	31
1236	Computational screening of metal–organic frameworks for biogas purification. Molecular Systems Design and Engineering, 2019, 4, 1125-1135.	1.7	15
1237	A local hydrophobic environment in a metal–organic framework for boosting photocatalytic CO ₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784.	2.2	38
1237 1238		2.2 4.7	38 143
	CO ₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784. Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science		
1238	CO ₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784. Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171. Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & amp; Interfaces, 2019, 11,	4.7	143
1238 1239	 CO₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784. Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171. Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 47649-47657. Synthesis and Applications of Porous Glass. Journal of Shanghai Jiaotong University (Science), 2019, 	4.7	143 33
1238 1239 1241	 CO₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784. Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171. Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 47649-47657. Synthesis and Applications of Porous Glass. Journal of Shanghai Jiaotong University (Science), 2019, 24, 681-698. Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous 	4.7 4.0 0.5	143 33 9
1238 1239 1241 1242	 CO₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784. Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171. Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 47649-47657. Synthesis and Applications of Porous Class. Journal of Shanghai Jiaotong University (Science), 2019, 24, 681-698. Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous Materials. Chemistry - A European Journal, 2019, 25, 2103-2111. Polyethylenimine-impregnated resins: The effect of support structures on selective adsorption for 	4.7 4.0 0.5 1.7	143 33 9 4
1238 1239 1241 1242 1243	 CO₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784. Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171. Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 47649-47657. Synthesis and Applications of Porous Glass. Journal of Shanghai Jiaotong University (Science), 2019, 24, 681-698. Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous Materials. Chemistry - A European Journal, 2019, 25, 2103-2111. Polyethylenimine-impregnated resins: The effect of support structures on selective adsorption for CO2 from simulated biogas. Chemical Engineering Journal, 2019, 355, 822-829. Adsorptive Separation of Methane from Carbon Dioxide by Zeolite@ZIF Composite. Energy & amp; Fuels, 	4.7 4.0 0.5 1.7 6.6	143 33 9 4 25

#	Article	IF	Citations
1247	Improving isosteric heat of CO2 adsorption by introducing nitro moieties into jungle-gym-type porous coordination polymers. Journal of Solid State Chemistry, 2019, 270, 11-18.	1.4	5
1248	Analyses of Adsorption Behavior of CO ₂ , CH ₄ , and N ₂ on Different Types of BETA Zeolites. Chemical Engineering and Technology, 2019, 42, 327-342.	0.9	36
1249	lonic porous organic polymers for CO2 capture and conversion. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 20-25.	3.2	43
1250	Selective uptake of cationic organic dyes in a series of isostructural Co2+/Cd2+ metal-doped metal–organic frameworks. Journal of Solid State Chemistry, 2019, 270, 180-186.	1.4	6
1251	Adsorbent Characteristic Regulation and Performance Optimization for Pressure Swing Adsorption via Temperature Elevation. Energy & amp; Fuels, 2019, 33, 1767-1773.	2.5	8
1252	Synthesis of nitrogen-rich hollow microspheres for CO2 adsorption. Journal of Materials Science, 2019, 54, 3805-3816.	1.7	8
1253	Economical synthesis strategy of RHO zeolites with fine-tuned composition and porosity for enhanced trace CO2 capture. Chemical Engineering Journal, 2019, 359, 344-353.	6.6	18
1254	Hydrocarbon recovery using ultra-microporous fluorinated MOF platform with and without uncoordinated metal sites: I- structure properties relationships for C2H2/C2H4 and CO2/C2H2 separation. Chemical Engineering Journal, 2019, 359, 32-36.	6.6	77
1255	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
1256	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
1257	Water-Based Synthesis and Enhanced CO ₂ Capture Performance of Perfluorinated Cerium-Based Metal–Organic Frameworks with UiO-66 and MIL-140 Topology. ACS Sustainable Chemistry and Engineering, 2019, 7, 394-402.	3.2	75
1258	Syntheses, crystal structures and fluorescent properties of two metal-organic frameworks based on pamoic acid. Journal of Solid State Chemistry, 2019, 270, 335-338.	1.4	10
1259	Anion Pillared Metal–Organic Framework Embedded with Molecular Rotors for Size-Selective Capture of CO ₂ from CH ₄ and N ₂ . ACS Sustainable Chemistry and Engineering, 2019, 7, 3138-3144.	3.2	47
1260	Highly Efficient Synthesis of a Moisture-Stable Nitrogen-Abundant Metal–Organic Framework (MOF) for Large-Scale CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 1773-1777.	1.8	22
1261	Scalable and Sustainable Synthesis of Advanced Porous Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 3647-3670.	3.2	54
1262	Porous Polymers as Multifunctional Material Platforms toward Taskâ€5pecific Applications. Advanced Materials, 2019, 31, e1802922.	11.1	315
1263	Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption. Separation and Purification Technology, 2019, 211, 540-550.	3.9	42
1264	A Zn(II)-based pillar-layered metal–organic framework: Synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158, 283-289.	1.0	10

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
1265	Metallopolymers for advanced sustainable applications. Chemical Society Reviews, 201	9, 48, 558-636.	18.7	139
1266	Magnetically responsive porous materials for efficient adsorption and desorption proce Journal of Chemical Engineering, 2019, 27, 1324-1338.	sses. Chinese	1.7	15
1267	Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carrie Structure, wettability, degradation, biocompatibility and brain distribution. Materials So Engineering C, 2019, 94, 453-464.		3.8	59
1268	Four coordination polymers based on 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine: Synth and properties. Journal of Solid State Chemistry, 2019, 269, 118-124.	eses, structures	1.4	11
1269	A calcium-based microporous metal-organic framework for efficient adsorption separat hydrocarbons. Chemical Engineering Journal, 2019, 358, 446-455.	ion of light	6.6	75
1270	Exploration of porous metal–organic frameworks for gas separation and purification. Chemistry Reviews, 2019, 378, 87-103.	Coordination	9.5	538
1271	Metal–Organic Framework Materials for the Separation and Purification of Light Hyd Advanced Materials, 2020, 32, e1806445.	rocarbons.	11.1	408
1272	Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tu adsorption. Chemical Engineering Journal, 2020, 382, 122825.	inable CO2	6.6	58
1273	Reversed ethane/ethylene adsorption in a metal–organic framework via introduction Chinese Journal of Chemical Engineering, 2020, 28, 593-597.	of oxygen.	1.7	19
1274	Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nar for efficient carbon dioxide capture. Journal of Colloid and Interface Science, 2020, 560		5.0	34
1275	Broad spectrum detection of veterinary drugs with a highly stable metal-organic framevor of Hazardous Materials, 2020, 382, 121018.	vork. Journal	6.5	64
1276	Sorbenten zur direkten Gewinnung von CO ₂ aus der Umgebungsluft. Ang 2020, 132, 7048-7072.	ewandte Chemie,	1.6	18
1277	Sorbents for the Direct Capture of CO ₂ from Ambient Air. Angewandte Ch International Edition, 2020, 59, 6984-7006.	iemie -	7.2	341
1278	Metal-organic framework MIL-101 loaded with polymethacrylamide with or without fur reduction: Effective and selective CO2 adsorption with amino or amide functionality. C Engineering Journal, 2020, 380, 122496.		6.6	68
1279	Polyvinylamine-loaded metal–organic framework MIL-101 for effective and selective under atmospheric or lower pressure. Chemical Engineering Journal, 2020, 389, 12342		6.6	50
1280	Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Or Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30	ganic), 581-595.	1.9	11
1281	Carbon-derived from metal-organic framework MOF-74: A remarkable adsorbent to rem range of contaminants of emerging concern from water. Applied Surface Science, 2020		3.1	44
1282	From Molecular Precursors to Nanoparticles—Tailoring the Adsorption Properties of P Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 20	orous Carbon 20, 30, 1908371.	7.8	57

#	Article	IF	CITATIONS
1283	Tetrazole-based porous metal–organic frameworks for selective CO2 adsorption and isomerization studies. Dalton Transactions, 2020, 49, 2145-2150.	1.6	16
1284	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	5.2	120
1285	Halogen–C ₂ H ₂ Binding in Ultramicroporous Metal–Organic Frameworks (MOFs) for Benchmark C ₂ H ₂ /CO ₂ Separation Selectivity. Chemistry - A European Journal, 2020, 26, 4923-4929.	1.7	72
1286	The effect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks. Adsorption, 2020, 26, 663-685.	1.4	36
1287	Three stable dinuclear [M ₂ (OH) _{0.5} (NO ₃) _{0.5} (RCOO) ₂ (RN) _{4(M = Cu, Ni) based metal–organic frameworks with high CO₂ adsorption and selective separation for O₂/N₂ and C₃H₈/CH₄. Inorganic Chemistry Frontiers, 2020, 7, 731-736.}	0>] 3.0	4
1288	Isoelectronic Doping and External Electric Field Regulate the Gas-Separation Performance of Graphdiyne. Journal of Physical Chemistry C, 2020, 124, 2712-2720.	1.5	14
1289	Application of computational chemistry for adsorption studies on metal–organic frameworks used for carbon capture. Physical Sciences Reviews, 2020, 5, .	0.8	0
1290	Accelerated C ₂ H ₂ /CO ₂ Separation by a Se-Functionalized Porous Coordination Polymer with Low Binding Energy. ACS Applied Materials & Interfaces, 2020, 12, 3764-3772.	4.0	58
1291	Combined experimental and computational studies on preferential CO ₂ adsorption over a zinc-based porous framework solid. New Journal of Chemistry, 2020, 44, 1806-1816.	1.4	4
1292	A multifunctional Zr-MOF for the rapid removal of Cr ₂ O ₇ ^{2â^'} , efficient gas adsorption/separation, and catalytic performance. Materials Chemistry Frontiers, 2020, 4, 1150-1157.	3.2	27
1293	Mapping of climate change research in the Arab world: a bibliometric analysis. Environmental Science and Pollution Research, 2020, 27, 3523-3540.	2.7	33
1294	Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler. Journal of Membrane Science, 2020, 597, 117772.	4.1	23
1295	Zinc hydroxide nitrate nanosheets conversion into hierarchical zeolitic imidazolate frameworks nanocomposite and their application for CO2 sorption. Materials Today Chemistry, 2020, 15, 100222.	1.7	34
1296	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	5.8	528
1297	From chitosan to urea-modified carbons: Tailoring the ultra-microporosity for enhanced CO2 adsorption. Carbon, 2020, 159, 625-637.	5.4	127
1299	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Size‧ieving. Angewandte Chemie, 2020, 132, 3451-3456.	1.6	63
1300	Amino functionalized ZIF-90@GO/MDEA nanofluid: As a new class of multi-hybrid systems to enhance the performance of amine solutions in CO2 absorption. Journal of Natural Gas Science and Engineering, 2020, 74, 103110.	2.1	23
1301	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2020, 142, 633-640.	6.6	183

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1302	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicropo Materials by Inverse Sizeâ€Sieving. Angewandte Chemie - International Edition, 2020, 59, 3423-3		7.2	91
1303	CO2/CH4 separation using flexible microporous organic polymers with expansion/shrinkage transformations during adsorption/desorption processes. Chemical Engineering Journal, 2020, 39 123521.	1,	6.6	7
1304	An overview on trace CO2 removal by advanced physisorbent materials. Journal of Environmental Management, 2020, 255, 109874.		3.8	45
1305	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materi 2020, 10, 1902494.	als,	10.2	97
1306	Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109582.	?	8.2	212
1307	Metal–organic frameworks for carbon dioxide capture. MRS Energy & Sustainability, 2020, 7, 1.		1.3	31
1308	The Role of CO2 as a Mild Oxidant in Oxidation and Dehydrogenation over Catalysts: A Review. Catalysts, 2020, 10, 1075.		1.6	14
1309	A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feeds for fuels. Journal of Cleaner Production, 2020, 277, 123999.	.ock	4.6	45
1310	Porous Metal–Organic Frameworks for Carbon Dioxide Adsorption and Separation at Low Press ACS Sustainable Chemistry and Engineering, 2020, 8, 15378-15404.	ure.	3.2	81
1311	Diammonium-Pillared MOPS with Dynamic CO2 Selectivity. Cell Reports Physical Science, 2020, 1 100210.		2.8	7
1312	Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF. Journal of Molecular Graphics and Modelling, 2020, 101, 107731.	l	1.3	8
1313	Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding. Inorganic Chemistr 2020, 59, 15646-15658.	у,	1.9	16
1314	Selective CO ₂ or CH ₄ adsorption of two anionic bcu-MOFs with two different counterions: experimental and simulation studies. Inorganic Chemistry Frontiers, 2020, 7 4631-4639.	7,	3.0	7
1315	Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux bala analysis. Metabolic Engineering, 2020, 62, 138-149.	ince	3.6	45
1316	Can COFs replace MOFs in flue gas separation? high-throughput computational screening of COF CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2020, 8, 14609-1		5.2	69
1317	Recent Progress on Microfine Design of Metal–Organic Frameworks: Structure Regulation and (Sorption and Separation. Advanced Materials, 2020, 32, e2002563.	Gas	11.1	160
1318	Polar Sulfone-Functionalized Oxygen-Rich Metal–Organic Frameworks for Highly Selective CO ₂ Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS Applied Ma & Interfaces, 2020, 12, 11724-11736.	aterials	4.0	53
1319	Insensitivity in the pore size distribution of ultramicroporous carbon materials by CO2 adsorption Carbon, 2020, 168, 508-514.		5.4	14

ARTICLE IF CITATIONS Polyelectrolyte membranes with tunable hollow CO2-philic clusters via sacrificial template for 1320 4.1 6 biogas upgrading. Journal of Membrane Science, 2020, 612, 118445. Tuning the Ultra-Micropore Size of Fluorinated MOFs (Mâ€2F6-Ni-L) for CO2 Capture from Flue Gases by 1.5 23 Advanced Computational Methods. Journal of Physical Chemistry C, 2020, 124, 16975-16989. Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric 1322 or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 6.6 58 2020, 402, 126254. The synthesis of metal–organic frameworks with template strategies. Dalton Transactions, 2020, 49, 11467-11479. Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS 1324 3.2 65 Sustainable Chemistry and Engineering, 2020, 8, 17042-17053. Polyethyleneimine (PEI) Functionalized Metal Oxide Nanoparticles Recovered From the Catalytic Converters of Spent Automotive Exhaust Systems and Application for CO2 Adsorption. Frontiers in 1.2 Energy Research, 2020, 8, . Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Bréathing Behavior and Unusual Gas Adsorption Phenomenon. Journal of the American Chemical Society, 2020, 142, 20088-20097. 1326 6.6 62 Fineâ€Tuning Pore Dimension in Hybrid Ultramicroporous Materials Boosting Simultaneous Trapping of Trace Alkynes from Alkenes. Small, 2020, 16, e2005360. 5.2 28 A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption. Journal of 1328 1.3 9 Porous Materials, 2020, 27, 1773-1782. Bent 1,10-Phenanthroline Ligands within Octahedral Complexes Constructed around a 1329 1.9 TiO₄N₂ Core. Inorganic Chemistry, 2020, 59, 12005-12016. Removal of particulate matter with metalâ€"organic framework-incorporated materials. Coordination 1330 9.5 66 Chemistry Reviews, 2020, 422, 213477. Synthesis and development of metal–organic frameworks. , 2020, , 3-43. Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. 1332 2.2 123 Chemical Communications, 2020, 56, 10419-10441. Hexane isomers separation on an isoreticular series of microporous Zr carboxylate metal organic 5.2 frameworks. Journal of Materials Chemistry A, 2020, 8, 17780-17789. What Fluorine Can Do in CO₂ Chemistry: Applications from Homogeneous to 1334 3.6 18 Heterogeneous Systems. ChemSusChem, 2020, 13, 6182-6200. Optimized nanospace of coordination isomers with selenium sites for acetylene separation. Inorganic Chemistry Frontiers, 2020, 7, 3195-3203. Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779. 133623.3149 Catalytic Degradation of Nerve Agents. Catalysts, 2020, 10, 881. 1.6

#	Article	IF	CITATIONS
1338	Covalent organic frameworks: Polymer chemistry and functional design. Progress in Polymer Science, 2020, 108, 101288.	11.8	78
1339	Triazine-functionalized highly ordered hierarchically porous organic polymer with high CO2 uptake capacity and catalytic activity for microwave-assisted Knoevenagel condensation reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125475.	2.3	8
1340	Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites. Nature Communications, 2020, 11, 5456.	5.8	68
1341	Carbon capture using nanoporous adsorbents. , 2020, , 265-303.		Ο
1342	Tuning Gateâ€Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie - International Edition, 2020, 59, 22756-22762.	7.2	173
1343	Formation of a mixed-valence Cu(<scp>i</scp>)/Cu(<scp>ii</scp>) metal–organic framework with the full light spectrum and high selectivity of CO ₂ photoreduction into CH ₄ . Chemical Science, 2020, 11, 10143-10148.	3.7	40
1344	Tuning Gateâ€Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie, 2020, 132, 22944-22950.	1.6	33
1345	An Ultramicroporous Metal–Organic Framework for Sieving Separation of Carbon Dioxide from Methane. Small Structures, 2020, 1, 2000022.	6.9	33
1346	Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423, 213485.	9.5	127
1347	Acid–Base-Resistant Metal–Organic Framework for Size-Selective Carbon Dioxide Capture. Inorganic Chemistry, 2020, 59, 13542-13550.	1.9	16
1348	Hydrogen Direct Adsorptive Separation: Development Status and Trends. Energy & Fuels, 2020, 34, 15126-15140.	2.5	12
1349	Hollow Mesoporous Carbon Sphere Loaded Ni–N ₄ Singleâ€Atom: Support Structure Study for CO ₂ Electrocatalytic Reduction Catalyst. Small, 2020, 16, e2003943.	5.2	82
1350	Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly Efficient CO ₂ Separation under Dry and Wet Environments through Direct CO ₂ –Sulfone Interactions. ACS Applied Materials & Interfaces, 2020, 12, 41177-41184.	4.0	30
1352	Designing the future atomic electrocatalyst for efficient energy systems. Engineering Reports, 2020, 2, e12327.	0.9	5
1353	Covalent organic framework shows high isobutene adsorption selectivity from C4 hydrocarbons: Mechanism of interpenetration isomerism and pedal motion. Green Energy and Environment, 2020, 7, 296-296.	4.7	8
1354	Pore engineering of metal–organic frameworks for ethylene purification. Dalton Transactions, 2020, 49, 17093-17105.	1.6	7
1355	Design and Construction of a Porous Heterometallic Organic Framework Based on Cu ₆ 1 ₆ Clusters and One-Dimensional Tb ^{III} Chains: Syntheses, Crystal Structure, and Various Properties. Crystal Growth and Design, 2020, 20, 4135-4143.	1.4	8
1356	Heat of Adsorption: A Comparative Study between the Experimental Determination and Theoretical Models Using the System CH ₄ -MOFs. Journal of Chemical & Engineering Data, 2020, 65, 3130-3145.	1.0	7

ARTICLE IF CITATIONS Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on 1357 5.2 21 CO₂â€"matrix interactions. Journal of Materials Chemistry A, 2020, 8, 11406-11413. Opportunities and critical factors of porous metal–organic frameworks for industrial light olefins separation. Materials Chemistry Frontiers, 2020, 4, 1954-1984. 3.2 48 Microporous 3D Graphene-like Zeolite-Templated Carbons for Preferential Adsorption of Ethane. ACS 1359 4.0 25 Applied Materials & amp; Interfaces, 2020, 12, 28484-28495. Structural analysis of and selective CO₂ adsorption in mixed-ligand hydroxamate-based 1360 metal–organic frameworks. Dalton Transactions, 2020, 49, 9948-9952. <i>Ab Initio</i> Prediction of Metal-Organic Framework Structures. Chemistry of Materials, 2020, 32, 1361 3.2 11 5835-5844. Porous silica beads produced by nanofluid emulsion freezing. Microporous and Mesoporous Materials, 2020, 305, 110362. 2.2 Building a robust 3D Ca-MOF by a new square Ca₄O SBU for purification of natural gas. 1363 1.6 19 Dalton Transactions, 2020, 49, 8836-8840. Metal organic frameworks for adsorption-based separation of fluorocompounds: a review. Materials 1364 2.6 Advances, 2020, 1, 310-320. Multi-Metals CaMgAl Metal-Organic Framework as CaO-based Sorbent to Achieve Highly CO2 Capture 1365 1.3 8 Capacity and Cyclic Performance. Materials, 2020, 13, 2220. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 303 120, 8303-8377. Preparation and characterization of cellulose nanofiber cryogels as oil absorbents and enzymatic 1367 4 1.1 lipolysis scaffolds. Carbohydrate Research, 2020, 493, 108020. Polyaniline-derived carbons: Remarkable adsorbents to remove atrazine and diuron herbicides from 1368 6.5 water. Journal of Hazardous Materials, 2020, 396, 122624. Molecular Simulation Study on Factors Affecting Carbon Dioxide Adsorption on Amorphous Silica 1369 1.5 9 Surfaces. Journal of Physical Chemistry C, 2020, 124, 12580-12588. Designing CO₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309. 1370 15.6 251 Controllable construction and efficient photocatalysis performance of Bi@Bi6O7FCl3 1371 3.3 5 heterostructures exposed with the (012) plane bi-quantum-dots. Materials and Design, 2020, 192, 108737. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368, 179 1002-1006. Mechano-assisted synthesis of an ultramicroporous metal–organic framework for trace 1373 2.249 CO₂capture. Chemical Communications, 2020, 56, 7726-7729. Nanoporous Fluorinated Metal–Organic Framework-Based Membranes for CO₂ Capture. 1374 2.4 ACS Applied Nano Materials, 2020, 3, 6432-6439.

#	Article	IF	CITATIONS
1375	Thermally Activated Adsorption in Metal–Organic Frameworks with a Temperature‶unable Diffusion Barrier Layer. Angewandte Chemie - International Edition, 2020, 59, 18468-18472.	7.2	8
1376	Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 2020, 511, 119801.	1.2	75
1377	Highly Efficient and Facile Removal of Pb ²⁺ from Water by Using a Negatively Charged Azoxy-Functionalized Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 5251-5260.	1.4	54
1378	Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nature Communications, 2020, 11, 3103.	5.8	54
1379	Highly efficient, reversible iodine capture and exceptional uptake of amines in viologen-based porous organic polymers. RSC Advances, 2020, 10, 20460-20466.	1.7	13
1380	Thermally Activated Adsorption in Metal–Organic Frameworks with a Temperatureâ€∓unable Diffusion Barrier Layer. Angewandte Chemie, 2020, 132, 18626-18630.	1.6	0
1381	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	3.0	88
1382	The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 419, 213388.	9.5	197
1383	A robust metal–organic framework for post-combustion carbon dioxide capture. Journal of Materials Chemistry A, 2020, 8, 12028-12034.	5.2	41
1384	Synthesis of Ionic Ultramicroporous Polymers for Selective Separation of Acetylene from Ethylene. Advanced Materials, 2020, 32, e1907601.	11.1	54
1385	Anomalous diffusion and sorption-desorption process in complex fluid systems. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105411.	1.7	2
1386	Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Mikrochimica Acta, 2020, 187, 234.	2.5	72
1387	Robust Bimetallic Ultramicroporous Metal–Organic Framework for Separation and Purification of Noble Gases. Inorganic Chemistry, 2020, 59, 4868-4873.	1.9	39
1388	Secondary building units of MOFs. , 2020, , 11-44.		7
1389	An Imide-Decorated Indium-Organic Framework for Efficient and Selective Capture of Carcinogenic Dyes with Diverse Adsorption Interactions. Crystal Growth and Design, 2020, 20, 3199-3207.	1.4	30
1390	A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 414, 213295.	9.5	84
1391	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
1392	Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand, Journal of the American Chemical Society, 2020, 142, 6896-6901	6.6	51

#	Article	IF	CITATIONS
1393	Supramolecular Metal–Organic Framework for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 7866-7874.	1.8	42
1394	Three metal–organic framework isomers of different pore sizes for selective CO ₂ adsorption and isomerization studies. Dalton Transactions, 2020, 49, 5618-5624.	1.6	18
1395	Highly efficient CO ₂ capture and conversion of a microporous acylamide functionalized <i>rht</i> -type metal–organic framework. Inorganic Chemistry Frontiers, 2020, 7, 1939-1948.	3.0	24
1396	Structural Features of Zirconium-Based Metal–Organic Frameworks Affecting Radiolytic Stability. Industrial & Engineering Chemistry Research, 2020, 59, 7520-7526.	1.8	41
1397	Adsorption of Acid Orange â; with Two Step Modified Sepiolite: Optimization, Adsorption Performance, Kinetics, Thermodynamics and Regeneration. International Journal of Environmental Research and Public Health, 2020, 17, 1732.	1.2	11
1398	Salts Induced Formation of Hierarchical Porous ZIFâ€8 and Their Applications for CO ₂ Sorption and Hydrogen Generation via NaBH ₄ Hydrolysis. Macromolecular Chemistry and Physics, 2020, 221, 2000031.	1.1	51
1399	Probing the Water Stability Limits and Degradation Pathways of Metal–Organic Frameworks. Chemistry - A European Journal, 2020, 26, 7109-7117.	1.7	50
1400	Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes. Trends in Chemistry, 2020, 2, 254-269.	4.4	71
1401	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	23.0	755
1402	Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of CO ₂ . Molecular Systems Design and Engineering, 2020, 5, 1205-1218.	1.7	37
1403	Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chemical Society Reviews, 2020, 49, 5359-5406.	18.7	370
1404	Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chemical Engineering Journal, 2020, 402, 126166.	6.6	55
1405	Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. Journal of Environmental Chemical Engineering, 2020, 8, 104257.	3.3	94
1406	Rational design of metal–ligands for the conversion of CH ₄ and CO ₂ to acetates: role of acids and Lewis acids. Journal of Materials Chemistry A, 2020, 8, 14671-14679.	5.2	7
1407	Heterogeneous Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction Reaction. Advanced Materials, 2020, 32, e2001848.	11.1	366
1408	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	11.1	182
1409	Finely Tuned Framework Isomers for Highly Efficient C ₂ H ₂ and CO ₂ Separation. Inorganic Chemistry, 2020, 59, 9569-9578.	1.9	15
1410	Chiral and SHG-Active Metal–Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization. Journal of the American Chemical Society, 2020, 142, 14210-14221.	6.6	34

#	Article	IF	CITATIONS
1411	Investigating greenhouse gas adsorption in MOFs SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu through computational studies. Journal of Molecular Modeling, 2020, 26, 188.	0.8	7
1412	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	5.8	62
1413	Gallate-Based Metal–Organic Frameworks for Highly Efficient Removal of Trace Propyne from Propylene. Industrial & Engineering Chemistry Research, 2020, 59, 13716-13723.	1.8	13
1414	Tailoring microenvironment of adsorbents to achieve excellent <scp>CO₂</scp> uptakes from wet gases. AICHE Journal, 2020, 66, e16645.	1.8	16
1415	Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O ₂ Binding: Design Rules and Ambient Temperature O ₂ Chemisorption in a Cobalt–Triazolate Framework. Journal of the American Chemical Society, 2020, 142, 4317-4328.	6.6	67
1416	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	3.2	89
1417	Inserting V-Shaped Bidentate Partition Agent into MIL-88-Type Framework for Acetylene Separation from Acetylene-Containing Mixtures. Crystal Growth and Design, 2020, 20, 2099-2105.	1.4	17
1418	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	6.6	69
1419	Porous Carbons: Structureâ€Oriented Design and Versatile Applications. Advanced Functional Materials, 2020, 30, 1909265.	7.8	316
1420	Prediction of MOF Performance in Vacuum Swing Adsorption Systems for Postcombustion CO ₂ Capture Based on Integrated Molecular Simulations, Process Optimizations, and Machine Learning Models. Environmental Science & Technology, 2020, 54, 4536-4544.	4.6	117
1421	Robust Heterometallic Tb ^{III} /Mn ^{II} –Organic Framework for CO ₂ /CH ₄ Separation and I ₂ Adsorption. ACS Applied Nano Materials, 2020, 3, 2680-2686.	2.4	28
1422	Fluorinated Biphenyldicarboxylate-Based Metal–Organic Framework Exhibiting Efficient Propyne/Propylene Separation. Inorganic Chemistry, 2020, 59, 4030-4036.	1.9	28
1423	Efficient gas and alcohol uptake and separation driven by two types of channels in a porous MOF: an experimental and theoretical investigation. Journal of Materials Chemistry A, 2020, 8, 5227-5233.	5.2	36
1424	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	6.6	65
1425	Halogenated Metal–Organic Framework Glasses and Liquids. Journal of the American Chemical Society, 2020, 142, 3880-3890.	6.6	83
1426	Multifunctional Graphene-Based Composite Sponge. Sensors, 2020, 20, 329.	2.1	10
1427	Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers. Inorganic Chemistry Frontiers, 2020, 7, 984-990.	3.0	39
1428	Small-Pore Gallates MOFs for Environmental Applications: Sorption Behaviors and Structural Elucidation of Their High Affinity for CO ₂ . Journal of Physical Chemistry C, 2020, 124, 3188-3195.	1.5	13

#	Article	IF	CITATIONS
1429	Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation. Journal of the American Chemical Society, 2020, 142, 2222-2227.	6.6	199
1430	Type 3 porous liquids based on non-ionic liquid phases – a broad and tailorable platform of selective, fluid gas sorbents. Chemical Science, 2020, 11, 2077-2084.	3.7	81
1431	Robust Metal–Triazolate Frameworks for CO ₂ Capture from Flue Gas. Journal of the American Chemical Society, 2020, 142, 2750-2754.	6.6	159
1432	Influence of synthesis parameters on preparation of AIPO-18 membranes by single DIPEA for CO2/CH4 separation. Journal of Membrane Science, 2020, 601, 117853.	4.1	17
1433	HiGee Strategy toward Rapid Mass Production of Porous Covalent Organic Polymers with Superior Methane Deliverable Capacity. Advanced Functional Materials, 2020, 30, 1908079.	7.8	14
1434	Extended adsorbing surface reach and memory effects on the diffusive behavior of particles in confined systems. International Journal of Heat and Mass Transfer, 2020, 151, 119433.	2.5	8
1435	In Situ Cu-Loaded Porous Boron Nitride Nanofiber as an Efficient Adsorbent for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2020, 8, 7454-7462.	3.2	30
1436	Production of MOF Adsorbent Spheres and Comparison of Their Performance with Zeolite 13X in a Moving-Bed TSA Process for Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2020, 59, 7198-7211.	1.8	25
1437	Open metal site (OMS) and Lewis basic site (LBS)-functionalized copper–organic framework with high CO ₂ uptake performance and highly selective CO ₂ /N ₂ and CO ₂ /CH ₄ separation. CrystEngComm, 2020, 22, 3378-3384.	1.3	6
1438	Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO ₂ . New Journal of Chemistry, 2020, 44, 9090-9096.	1.4	15
1439	Lithium Functionalization Promoted by Amide-Containing Ligands of a Cu(<i>pzdc</i>)(<i>pia</i>) Porous Coordination Polymer for CO ₂ Adsorption Enhancement. Crystal Growth and Design, 2020, 20, 3898-3912.	1.4	8
1440	Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework. Science Advances, 2020, 6, eaaz4322.	4.7	107
1441	Highly efficient separation of linear and branched C4 isomers with a tailorâ€nade metal–organic framework. AICHE Journal, 2020, 66, e16236.	1.8	34
1442	Nanomaterials for detection and removal of gases. , 2020, , 219-260.		Ο
1443	Realization of an Ultrasensitive and Highly Selective OFET NO ₂ Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin–MOF. ACS Applied Materials & Interfaces, 2020, 12, 18748-18760.	4.0	75
1444	Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2020, 142, 9258-9266.	6.6	141
1445	Two Closely Related Zn(II)-MOFs for Their Large Difference in CO ₂ Uptake Capacities and Selective CO ₂ Sorption. Inorganic Chemistry, 2020, 59, 7056-7066.	1.9	35
1446	Cost-Effective Monolithic Hierarchical Carbon Cryogels with Nitrogen Doping and High-Performance Mechanical Properties for CO ₂ Capture. ACS Applied Materials & Interfaces, 2020, 12, 21748-21760.	4.0	31

#	Article	IF	CITATIONS
1447	Crystal Engineering of Hybrid Coordination Networks: From Form to Function. Trends in Chemistry, 2020, 2, 506-518.	4.4	55
1448	Application and Properties of Microporous Carbons Activated by ZnCl ₂ : Adsorption Behavior and Activation Mechanism. ACS Omega, 2020, 5, 9398-9407.	1.6	46
1449	Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sensors and Actuators B: Chemical, 2021, 329, 129144.	4.0	94
1450	A 3D Ba-MOF for selective adsorption of CO2/CH4 and CO2/N2. Chinese Chemical Letters, 2021, 32, 1169-1172.	4.8	22
1451	A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Research, 2021, 14, 546-553.	5.8	39
1452	Separation of propylene and propane with a microporous metal–organic framework via equilibriumâ€kinetic synergetic effect. AICHE Journal, 2021, 67, .	1.8	35
1453	Tuning of Delicate Host–Guest Interactions in Hydrated MILâ€53 and Functional Variants for Furfural Capture from Aqueous Solution. Angewandte Chemie - International Edition, 2021, 60, 1629-1634.	7.2	17
1454	Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal–organic framework. Chemical Engineering Journal, 2021, 405, 126937.	6.6	32
1455	Facile synthesis of anionic porous organic polymer for ethylene purification. Journal of Colloid and Interface Science, 2021, 582, 631-637.	5.0	10
1456	é~´ç¦»å功è∱½åŒ–è¶å¾®å"MOFé«~æ•^选择性æ•获低浓度 CO2. Science China Materials, 2021,	6 4, 5691-6	59 2 8
1457	Tuning of Delicate Host–Guest Interactions in Hydrated MILâ€53 and Functional Variants for Furfural Capture from Aqueous Solution. Angewandte Chemie, 2021, 133, 1653-1658.	1.6	4
1458	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
1459	High CO2 uptake capacity and selectivity in a N-oxide-functionalized 3D Ni(II) microporous metal–organic framework. Polyhedron, 2021, 193, 114839.	1.0	3
1460	A rare case of Ag(I) coordination polymer having five-coordinate planar pentagon metal center. Inorganic Chemistry Communication, 2021, 125, 108410.	1.8	0
1461	Thermodynamic Phase-like Transition Effect of Molecular Self-assembly. Journal of Physical Chemistry Letters, 2021, 12, 126-131.	2.1	4
1462	Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 2021, 138, 110490.	8.2	219
1463	Utility of Core–Shell Nanomaterials in the Catalytic Transformations of Renewable Substrates. Chemistry - A European Journal, 2021, 27, 12-19.	1.7	4
1464	Uncovering the true cost of hydrogen production routes using life cycle monetisation. Applied Energy, 2021, 281, 115958.	5.1	167

#	Article	IF	CITATIONS
1465	A unique 3D microporous MOF constructed by cross-linking 1D coordination polymer chains for effectively selective separation of CO2/CH4 and C2H2/CH4. Chinese Chemical Letters, 2021, 32, 1153-1156.	4.8	28
1466	Stepped enhancement of <scp>CO₂</scp> adsorption and separation in <scp>ILâ€ZIFâ€IL</scp> composites with shellâ€interlayerâ€core structure. AICHE Journal, 2021, 67, e17112.	1.8	16
1467	A Carbocationic Triarylmethaneâ€Based Porous Covalent Organic Network. Chemistry - A European Journal, 2021, 27, 2342-2347.	1.7	10
1468	Conversion of Y into SSZ-13 zeolite, in the absence of extra silica, alumina and seed crystals, with N,N,N-dimethylethylcyclohexylammonium bromide, and application of the SSZ-13 zeolite in the propylene production from ethylene. Catalysis Today, 2021, 375, 94-100.	2.2	10
1469	Indium metal–organic frameworks based on pyridylcarboxylate ligands and their potential applications. Dalton Transactions, 2021, 50, 5713-5723.	1.6	9
1470	Understanding the opportunities of metal–organic frameworks (MOFs) for CO ₂ capture and gas-phase CO ₂ conversion processes: a comprehensive overview. Reaction Chemistry and Engineering, 2021, 6, 787-814.	1.9	31
1471	Enhanced Guest@MOF Interaction via Stepwise Thermal Annealing: TCNQ@Cu ₃ (BTC) ₂ . Crystal Growth and Design, 2021, 21, 817-828.	1.4	5
1473	Vapor-assisted self-conversion of basic carbonates in metal–organic frameworks. Nanoscale, 2021, 13, 5069-5076.	2.8	5
1474	Adsorptive Purification of Water Contaminated with Hazardous Organics by Using Functionalized Metal-Organic Frameworks. , 2021, , 269-290.		0
1475	Catalytic Nanoparticles in Metal–Organic Frameworks. Monographs in Supramolecular Chemistry, 2021, , 396-427.	0.2	0
1476	Unprecedented CO ₂ adsorption behaviour by 5A-type zeolite discovered in lower pressure region and at 300 K. Journal of Materials Chemistry A, 2021, 9, 7531-7545.	5.2	12
1477	A novel anion-pillared metal–organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 9248-9255.	5.2	55
1478	Nanowire-based sensor electronics for chemical and biological applications. Analyst, The, 2021, 146, 6684-6725.	1.7	16
1479	Hybridization of MOFs and ionic POFs: a new strategy for the construction of bifunctional catalysts for CO ₂ cycloaddition. Green Chemistry, 2021, 23, 1766-1771.	4.6	26
1480	Metal-Organic Frameworks Derived From Multitopic Ligands: Structural Aspects. , 2021, , 1021-1054.		0
1481	Efficient detection of Fe(<scp>iii</scp>) and chromate ions in water using two robust lanthanide metal–organic frameworks. CrystEngComm, 2021, 23, 1677-1683.	1.3	24
1482	Screening of gallate-based metal-organic frameworks for single-component CO2 and CH4 gas. E3S Web of Conferences, 2021, 287, 02005.	0.2	0
1483	Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50.	1.6	34

#	Article	IF	CITATIONS
1484	Carbon capture Using Metal–Organic Frameworks. , 2021, , 155-204.		1
1485	The application of machine learning for predicting the methane uptake and working capacity of MOFs. Faraday Discussions, 2021, 231, 224-234.	1.6	9
1486	Wettability control of metal-organic frameworks. , 2021, , 131-166.		2
1487	Carbon Capture: Innovation for a Green Environment. Energy, Environment, and Sustainability, 2021, , 11-31.	0.6	1
1488	The inorganic cation-tailored "trapdoor―effect of silicoaluminophosphate zeolite for highly selective CO ₂ separation. Chemical Science, 2021, 12, 8803-8810.	3.7	32
1489	Towards MOFs' mass market adoption: MOF Technologies' efficient and versatile one-step extrusion of shaped MOFs directly from raw materials. Faraday Discussions, 2021, 231, 312-325.	1.6	21
1490	Thermally stable and robust gadolinium-based metal-organic framework: Synthesis, structure and heterogeneous catalytic O-arylation reaction. Polyhedron, 2021, 194, 114934.	1.0	2
1491	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
1492	Unravelling moisture-induced CO ₂ chemisorption mechanisms in amine-modified sorbents at the molecular scale. Journal of Materials Chemistry A, 2021, 9, 5542-5555.	5.2	28
1493	Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 2021, 3, 76-86.	8.3	172
1494	CO ₂ adsorption mechanisms on MOFs: a case study of open metal sites, ultra-microporosity and flexible framework. Reaction Chemistry and Engineering, 2021, 6, 1118-1133.	1.9	22
1495	Four 3D Co(<scp>ii</scp>) MOFs based on 2,4,6-tris(4-pyridyl)-1,3,5-triazine and polycarboxylic acid ligands and their derivatives as efficient electrocatalysts for oxygen reduction reaction. Dalton Transactions, 2021, 50, 4904-4913.	1.6	9
1496	lsomeric Scandium–Organic Frameworks with High Hydrolytic Stability and Selective Adsorption of Acetylene. Inorganic Chemistry, 2021, 60, 2996-3005.	1.9	21
1497	Adsorbed Natural Gas Storage for Onboard Applications. Advanced Sustainable Systems, 2021, 5, 2000200.	2.7	16
1498	Ultrathin Reduced Graphene Oxide/Organosilica Hybrid Membrane for Gas Separation. Jacs Au, 2021, 1, 328-335.	3.6	16
1499	Hybrid Perovskites, Metal–Organic Frameworks, and Beyond: Unconventional Degrees of Freedom in Molecular Frameworks. Accounts of Chemical Research, 2021, 54, 1288-1297.	7.6	29
1500	Nanoporous Metal Phosphonate Hybrid Materials as a Novel Platform for Emerging Applications: A Critical Review. Small, 2021, 17, e2005304.	5.2	48
1501	A Ni ^{II} Phosphonate as an Efficient Catalyst for the Synthesis of Cyclic Carbonate under Ambient Conditions. Crystal Growth and Design, 2021, 21, 1413-1417.	1.4	13

#	Article	IF	CITATIONS
1502	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie, 2021, 133, 7625-7630.	1.6	26
1503	An Unprecedented Pillar age Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie - International Edition, 2021, 60, 7547-7552.	7.2	120
1504	Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors, 2021, 9, 41.	1.8	30
1505	Fluorocarbon-Functionalized Superhydrophobic Metal–Organic Framework: Enhanced CO ₂ Uptake via Photoinduced Postsynthetic Modification. Inorganic Chemistry, 2021, 60, 3823-3833.	1.9	19
1506	Separation of Xylene Isomers in the Anionâ€Pillared Square Grid Material SIFSIXâ€1â€Cu. Chemistry - A European Journal, 2021, 27, 6187-6190.	1.7	9
1507	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	23.3	166
1508	Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials. Materials Today Communications, 2021, 26, 101987.	0.9	4
1509	Efficient and Highly Selective CO ₂ Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 5071-5080.	1.9	23
1510	Optimization Strategies for Selective CO2 Electroreduction to Fuels. Transactions of Tianjin University, 2021, 27, 180-200.	3.3	50
1511	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie - International Edition, 2021, 60, 10304-10310.	7.2	104
1512	The "Chemistree―of Porous Coordination Networks: Taxonomic Classification of Porous Solids to Guide Crystal Engineering Studies. Small, 2021, 17, e2006351.	5.2	25
1513	Metal–Organic Frameworks for Highly Selective Separation of Xylene Isomers and Single-Crystal X-ray Study of Aromatic Guest–Host Inclusion Compounds. ACS Applied Materials & Interfaces, 2021, 13, 14768-14777.	4.0	27
1514	Preparation of Temperature-Sensitive Inverse Macroporous Membranes Using Silica Spheres as a Template. Integrated Ferroelectrics, 2021, 215, 267-277.	0.3	0
1515	Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation. ACS Applied Materials & Interfaces, 2021, 13, 11039-11049.	4.0	60
1516	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie, 2021, 133, 10392-10398.	1.6	29
1517	MUF-16: A Robust Metal–Organic Framework for Pre- and Post-Combustion Carbon Dioxide Capture. ACS Applied Materials & Interfaces, 2021, 13, 12141-12148.	4.0	32
1523	Aminoâ€Functionalised Hybrid Ultramicroporous Materials that Enable Singleâ€Step Ethylene Purification from a Ternary Mixture. Angewandte Chemie, 2021, 133, 10997-11004.	1.6	10
1524	Molecular simulations of the adsorption and separation of hydrogen sulfide, carbon dioxide, methane, and nitrogen and their binary mixtures (H2S/CH4), (CO2/CH4) on NUM-3a metal-organic frameworks. Journal of Molecular Modeling, 2021, 27, 133.	0.8	5

#	Article	IF	CITATIONS
1525	Facile synthesis of seed crystals and gelless growth of pure silica DDR zeolite membrane on low cost silica support for high performance in CO2 separation. Journal of Membrane Science, 2021, 624, 119110.	4.1	24
1526	A Highly Efficient and Stable Composite of Polyacrylate and Metal–Organic Framework Prepared by Interface Engineering for Direct Air Capture. ACS Applied Materials & Interfaces, 2021, 13, 21775-21785.	4.0	32
1529	Aminoâ€Functionalised Hybrid Ultramicroporous Materials that Enable Single‣tep Ethylene Purification from a Ternary Mixture. Angewandte Chemie - International Edition, 2021, 60, 10902-10909.	7.2	56
1530	Flexible carbon sieve based on nanoporous carbon cloth for efficient CO2/CH4 separation. Surfaces and Interfaces, 2021, 23, 100960.	1.5	13
1531	Selective CO2 adsorption using N-rich porous carbon derived from KOH-activated polyaniline. Korean Journal of Chemical Engineering, 2021, 38, 862-871.	1.2	7
1532	Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.	9.5	141
1533	lonic Liquids Grafted Mesoporous Silica for Chemical Fixation of CO2 to Cyclic Carbonate: Morphology Effect. Catalysis Letters, 0, , 1.	1.4	11
1534	Deciphering the Weak CO ₂ ···Framework Interactions in Microporous MOFs Functionalized with Strong Adsorption Sites—A Ubiquitous Observation. ACS Applied Materials & Interfaces, 2021, 13, 24976-24983.	4.0	17
1535	Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271, 129425.	4.2	64
1536	Alkyl‣inked Porphyrin Porous Polymers for Gas Capture and Precious Metal Adsorption. Small Science, 2021, 1, 2000078.	5.8	14
1537	High-efficiency CO2 separation using hybrid LDH-polymer membranes. Nature Communications, 2021, 12, 3069.	5.8	56
1538	A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chemical Engineering Journal Advances, 2021, 6, 100091.	2.4	102
1539	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	23.0	194
1540	The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. Journal of CO2 Utilization, 2021, 48, 101526.	3.3	41
1541	The Impact of Ionic Liquid Loading in Three-Dimensional Carbon Nanotube Networks on the Separation of CO2/CH4 Fluid Mixtures: Insights from Molecular Simulations. Journal of Physical Chemistry C, 2021, 125, 13508-13522.	1.5	2
1542	Porous metal–organic frameworks for methane storage and capture: status and challenges. New Carbon Materials, 2021, 36, 468-496.	2.9	37
1543	Deep Desulfurization with Record SO ₂ Adsorption on the Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9040-9047.	6.6	108
1544	Computer-Aided Discovery of MOFs with Calixarene-Analogous Microenvironment for Exceptional SF ₆ Capture. Chemistry of Materials, 2021, 33, 5108-5114.	3.2	37

#	Article	IF	CITATIONS
1545	A Two Step Postsynthetic Modification Strategy: Appending Short Chain Polyamines to Zn-NH ₂ -BDC MOF for Enhanced CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 11720-11729.	1.9	21
1546	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie, 2021, 133, 20667-20673.	1.6	1
1547	Structural modulation of UiO-66-NH2 metal-organic framework via interligands cross-linking: Cooperative effects of pore diameter and amide group on selective CO2 separation. Applied Surface Science, 2021, 553, 149547.	3.1	17
1548	Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature, 2021, 595, 542-548.	13.7	273
1549	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	6.0	179
1550	Development of Rubber Seed Shell–Activated Carbon Using Impregnated Pyridinium-Based Ionic Liquid for Enhanced CO2 Adsorption. Processes, 2021, 9, 1161.	1.3	5
1551	The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations. Chemical Engineering Journal, 2021, 415, 128824.	6.6	51
1552	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie - International Edition, 2021, 60, 20504-20510.	7.2	8
1553	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	3.2	22
1554	Mixed-amine modified mesocellular siliceous foam: Improving the dispersity of polyethylenimine for CO2 adsorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115172.	1.7	1
1555	Construction of a Porous Metal–Organic Framework with a High Density of Open Cr Sites for Record N ₂ /O ₂ Separation. Advanced Materials, 2021, 33, e2100866.	11.1	18
1556	A pore-engineered metal-organic framework with mixed ligands enabling highly efficient separation of hexane isomers for gasoline upgrading. Separation and Purification Technology, 2021, 268, 118646.	3.9	23
1557	Synthesis, Structures of <scp>2D</scp> Coordination Layers <scp>Metalâ€Organic</scp> Frameworks with Highly Selective <scp>CO₂</scp> Uptake ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2789-2794.	2.6	11
1558	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie, 2021, 133, 22696-22702.	1.6	10
1559	Squarate-Calcium Metal–Organic Framework for Molecular Sieving of CO ₂ from Flue Gas with High Water Vapor Resistance. Energy & Fuels, 2021, 35, 13900-13907.	2.5	10
1560	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie, 2021, 133, 20546-20553.	1.6	14
1561	Breaking the trade-off between selectivity and adsorption capacity for gas separation. CheM, 2021, 7, 3085-3098.	5.8	68
1562	The Magnetism of Metal–Organic Frameworks for Spintronics. Bulletin of the Korean Chemical Society, 2021, 42, 1170-1183.	1.0	18

#	Article	IF	CITATIONS
1563	Post-synthetic modification of tetrazine functionalized porous MOF for CO2 sorption performances modulation. Journal of Solid State Chemistry, 2021, 300, 122257.	1.4	8
1564	Cascade Dynamics of Multiple Molecular Rotors in a MOF: Benchmark Mobility at a Few Kelvins and Dynamics Control by CO ₂ . Journal of the American Chemical Society, 2021, 143, 13082-13090.	6.6	20
1565	Bispropylurea bridged polysilsesquioxane: A microporous MOF-like material for molecular recognition. Chemosphere, 2021, 276, 130181.	4.2	14
1566	State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. Polymer, 2021, 229, 123988.	1.8	18
1567	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie - International Edition, 2021, 60, 20383-20390.	7.2	56
1568	Achieving High Performance Metal–Organic Framework Materials through Pore Engineering. Accounts of Chemical Research, 2021, 54, 3362-3376.	7.6	158
1569	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
1570	A Review on Mechanical Models for Cellular Media: Investigation on Material Characterization and Numerical Simulation. Polymers, 2021, 13, 3283.	2.0	6
1571	Pore functionalization, single-crystal transformation and selective CO2 adsorption in chemical stable pillared-layer Co(II) based metal–organic framework. Inorganic Chemistry Communication, 2021, 131, 108758.	1.8	5
1572	Functionalized lignin-based magnetic adsorbents with tunable structure for the efficient and selective removal of Pb(II) from aqueous solution. Chemical Engineering Journal, 2021, 420, 130409.	6.6	63
1573	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie - International Edition, 2021, 60, 22522-22528.	7.2	112
1574	lsoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 2021, 443, 213968.	9.5	246
1575	Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media?. Coordination Chemistry Reviews, 2021, 443, 214020.	9.5	33
1576	High-Throughput Screening of Anion-Pillared Metal–Organic Frameworks for the Separation of Light Hydrocarbons. Journal of Physical Chemistry C, 2021, 125, 20076-20086.	1.5	17
1577	Solubility selectivity-enhanced SIFSIX-3-Ni-containing mixed matrix membranes for improved CO2/CH4 separation efficiency. Journal of Membrane Science, 2021, 633, 119390.	4.1	13
1578	Metal–Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Accounts of Chemical Research, 2021, 54, 3593-3603.	7.6	29
1579	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
1580	Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation. Microporous and Mesoporous Materials, 2021, 326, 111385.	2.2	19

#	Article	IF	CITATIONS
1581	Tubular porous coordination polymer for selective adsorption of CO2. Inorganic Chemistry Communication, 2021, 132, 108798.	1.8	1
1582	The effects of nitrogen functional groups and narrow micropore sizes on CO2 adsorption onto N-doped biomass-based porous carbon under different pressure. Microporous and Mesoporous Materials, 2021, 327, 111404.	2.2	30
1583	Solvent mediated photoluminescence responses over mixed-linker cadmium (II) based metal–organic frameworks. Polyhedron, 2021, 208, 115444.	1.0	1
1584	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
1585	Microchannel zeolite 13X adsorbent with high CO2 separation performance. Separation and Purification Technology, 2021, 277, 119483.	3.9	13
1586	A metal-doped flexible porous carbon cloth for enhanced CO2/CH4 separation. Separation and Purification Technology, 2021, 277, 119511.	3.9	23
1587	Tuning surface inductive electric field in microporous organic polymers for Xe/Kr separation. Chemical Engineering Journal, 2021, 426, 131271.	6.6	13
1588	A metal-organic framework for C2H2/CO2 separation under highly humid conditions: Balanced hydrophilicity/hydrophobicity. Chemical Engineering Journal, 2022, 427, 132033.	6.6	53
1589	Tuneable CO ₂ binding enthalpies by redox modulation of an electroactive MOF-74 framework. Materials Advances, 2021, 2, 2112-2119.	2.6	1
1590	Interfacial growth of 2D MOF membranes <i>via</i> contra-diffusion for CO ₂ separation. Materials Chemistry Frontiers, 2021, 5, 5150-5157.	3.2	19
1591	Pore Engineering for One-Step Ethylene Purification from a Three-Component Hydrocarbon Mixture. Journal of the American Chemical Society, 2021, 143, 1485-1492.	6.6	143
1592	A new strategy for the adsorption and removal of fenitrothion from real samples by active-extruded MOF (AE-MOF UiO-66) as an adsorbent. New Journal of Chemistry, 2021, 45, 5029-5039.	1.4	14
1593	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
1594	Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials, 2021, 14, 310.	1.3	112
1595	Computational Screening of MOFs for CO2 Capture. , 2021, , 205-238.		0
1596	Preparation of TiO2/porous glass-H with the coupling of photocatalysis oxidation–adsorption system in the initial position and its desulfurization performance on model fuel. RSC Advances, 2021, 11, 28508-28520.	1.7	4
1597	Comparative Study of Nanocarbon-Based Flexible Multifunctional Composite Electrodes. ACS Omega, 2021, 6, 2526-2541.	1.6	10
1598	Tunable and ordered porous carbons with folding-like nanoscale framework via interdigitation and twisting. Materials Advances, 2021, 2, 4029-4040.	2.6	1

~		_	
C	ON	Repo	DT
<u> </u>		INLEO	IN I

#	Article	IF	CITATIONS
1599	Direct air capture of CO ₂ <i>via</i> crystal engineering. Chemical Science, 2021, 12, 12518-12528.	3.7	38
1600	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	11.1	184
1601	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate. Angewandte Chemie, 2020, 132, 16322-16328.	1.6	8
1602	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate. Angewandte Chemie - International Edition, 2020, 59, 16188-16194.	7.2	28
1603	Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat, 2021, 2, 38-55.	6.4	44
1604	Remarkable separation of C5 olefins in anion-pillared hybrid porous materials. Nano Research, 2021, 14, 541-545.	5.8	16
1605	Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 19.	3.0	11
1606	Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020, 80, 100849.	15.8	235
1607	Probing the Core–Shell Organization of Nanoconfined Methane in Cylindrical Silica Pores Using <i>In Situ</i> Small-Angle Neutron Scattering and Molecular Dynamics Simulations. Energy & Fuels, 2020, 34, 15246-15256.	2.5	7
1608	A Collection of More than 900 Gas Mixture Adsorption Experiments in Porous Materials from Literature Meta-Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 639-651.	1.8	48
1609	Fine-Tuning the Porosities of the Entangled Isostructural Zn(II)-Based Metal–Organic Frameworks with Active Sites by Introducing Different N-Auxiliary Ligands: Selective Gas Sorption and Efficient CO ₂ Conversion. Inorganic Chemistry, 2020, 59, 2450-2457.	1.9	20
1610	Ultramicroporous Carbons Derived from Semi-Cycloaliphatic Polyimide with Outstanding Adsorption Properties for H ₂ , CO ₂ , and Organic Vapors. Journal of Physical Chemistry C, 2017, 121, 22753-22761.	1.5	17
1611	Metal–Organic Framework (MOF)-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 153-205.	0.5	1
1612	Multifunctional indium complexes with fluorescent sensing and selective adsorption dye properties. New Journal of Chemistry, 2017, 41, 6883-6892.	1.4	8
1613	Near-infrared luminescence and magnetic properties of dinuclear rare earth complexes modulated by β-diketone co-ligands. New Journal of Chemistry, 2020, 44, 3912-3921.	1.4	12
1614	A multifunctional double walled zirconium metal–organic framework: high performance for CO ₂ adsorption and separation and detecting explosives in the aqueous phase. Journal of Materials Chemistry A, 2020, 8, 17106-17112.	5.2	23
1615	Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based metal–organic framework. IUCrJ, 2019, 6, 85-95.	1.0	10
1616	Effect of Counter Cations on the Hydrothermal Conversion of FAU-Type Zeolites into ABW or ANA and Their Potential Applicability for CO ₂ /N ₂ Separation. Journal of Chemical Engineering of Japan, 2020, 53, 17-23.	0.3	5

#	Article	IF	CITATIONS
1617	Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Frontiers in Energy Research, 2020, 8, .	1.2	165
1618	Theoretical study of the effect of halogen substitution in molecular porous materials for CO ₂ and C ₂ H ₂ sorption. AIMS Materials Science, 2018, 5, 226-245.	0.7	1
1619	Removal of volatile organic compounds from air using activated carbon impregnated cellulose acetate electrospun mats. Environmental Engineering Research, 2019, 24, 600-607.	1.5	16
1620	A Triazole Functionalized <i>txt</i> -Type Metal–Organic Framework with High Performance for CH ₄ Uptake and Selective CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 15646-15652.	1.9	5
1621	Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends. Nature Communications, 2021, 12, 6140.	5.8	49
1622	Efficient micropore sizes for carbon dioxide physisorption of pine cone-based carbonaceous materials at different temperatures. Journal of CO2 Utilization, 2021, 54, 101770.	3.3	14
1623	Exotic Functions of Flexible Coordination Polymer Crystals. Bulletin of Japan Society of Coordination Chemistry, 2018, 71, 30-38.	0.1	0
1626	Fabrication of Polymeric Blend Membranes Using PBEM-POEM Comb Copolymer and Poly(ethylene) Tj ETQq1 1 ().784314 ı 0.2	rgBT /Overlo
1627	An Old but Lively Nanomaterial: Exploiting Carbon Black for the Synthesis of Advanced Materials. Eurasian Chemico-Technological Journal, 2019, 21, 203.	0.3	3
1628	Versatile and Scalable Approaches to Tune Carbon Black Characteristics for Boosting Adsorption and VOC Sensing Applications. , 0, , .		1
1629	Computational Design of Porous Framework Materials with Transition-Metal Alkoxide Ligands for Highly Selective Separation of N ₂ over CH ₄ . Industrial & Engineering Chemistry Research, 2021, 60, 378-386.	1.8	7
1630	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
1631	A pH-responsive MOF for site-specific delivery of fungicide to control citrus disease of Botrytis cinerea. Chemical Engineering Journal, 2022, 431, 133351.	6.6	29
1632	Role of brush-like additives in CO2 adsorbents for the enhancement of amine efficiency. Journal of Environmental Chemical Engineering, 2021, 9, 106709.	3.3	9
1633	Efficient Separation of Propylene from Propane in an Ultramicroporous Cyanideâ€Based Compound with Open Metal Sites. Small Structures, 2022, 3, 2100125.	6.9	17
1634	High CO ₂ separation performance on a metal–organic framework composed of nano-cages lined with an ultra-high density of dual-side open metal sites. Materials Advances, 2022, 3, 493-497.	2.6	8
1635	One-step ethylene production from a four-component gas mixture by a single physisorbent. Nature Communications, 2021, 12, 6507.	5.8	64
1636	A series of three dimensional lanthanoid(III)-metal-organic frameworks with zwitterionic linker. Journal of Coordination Chemistry, 2021, 74, 2657-2669.	0.8	2

CITAT	ION.	DEDODT
CHAI	IUN	Report

#	Article	IF	CITATIONS
1637	Tuning the Selectivity between C2H2 and CO2 in Molecular Porous Materials. Langmuir, 2021, 37, 13838-13845.	1.6	9
1638	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie - International Edition, 2022, 61, e202115585.	7.2	12
1639	Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine. Chemical Engineering Journal, 2022, 433, 133800.	6.6	24
1640	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie, 2022, 134, e202114132.	1.6	2
1641	Regulation of Catenation in Metal–Organic Frameworks with Tunable Clathrochelate-Based Building Blocks. Crystal Growth and Design, 2021, 21, 6665-6670.	1.4	7
1642	Probing the Node Chemistry of a Metal–Organic Framework to Achieve Ultrahigh Hydrophobicity and Highly Efficient CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15897-15907.	3.2	17
1643	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie, 2022, 134, .	1.6	1
1644	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
1645	Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 56777-56792.	4.0	19
1646	Precision release systems of food bioactive compounds based on metal-organic frameworks: synthesis, mechanisms and recent applications. Critical Reviews in Food Science and Nutrition, 2022, 62, 3991-4009.	5.4	32
1647	Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chemical Research in Chinese Universities, 2022, 38, 18-30.	1.3	18
1648	Cobalt-seamed C-methylpyrogallol[4]arene nanocapsules-derived magnetic carbon cubes as advanced adsorbent toward drug contaminant removal. Chemical Engineering Journal, 2022, 433, 133857.	6.6	31
1649	Finely Tuning Tridentate Carboxylic Acids for the Construction of Rod Scandium Metal–Organic Frameworks with High Chemical Stability and Selective Gas Adsorption. Inorganic Chemistry, 2021, 60, 18789-18793.	1.9	3
1650	An overview of the materials and methodologies for CO ₂ capture under humid conditions. Journal of Materials Chemistry A, 2021, 9, 26498-26527.	5.2	29
1651	The First Sulfateâ€Pillared Hybrid Ultramicroporous Material, SOFOURâ€1â€Zn, and Its Acetylene Capture Properties. Angewandte Chemie, 2022, 134, e202116145.	1.6	3
1652	The First Sulfateâ€Pillared Hybrid Ultramicroporous Material, SOFOURâ€1â€Zn, and Its Acetylene Capture Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1654	Ultra-highly porous carbon from Wasted soybean residue with tailored porosity and doped structure as renewable multi-purpose absorbent for efficient CO2, toluene and water vapor capture. Journal of Cleaner Production, 2022, 337, 130283.	4.6	24
1655	A pore matching amine-functionalized strategy for efficient CO2 physisorption with low energy penalty. Chemical Engineering Journal, 2022, 432, 134403.	6.6	21

	CITATION	Report	
# 1656	ARTICLE Modification, Production, and Methods of KOHâ€Activated Carbon. ChemBioEng Reviews, 2022, 9, 164-189.	IF 2.6	Citations 23
1657	Binary Solvent Regulated Architecture of Ultraâ€Microporous Hydrogenâ€Bonded Organic Frameworks with Tunable Polarization for Highlyâ€Selective Gas Separation. Angewandte Chemie, 2022, 134, .	1.6	8
1658	Inorganic Pillar Center-Facilitated Counterdiffusion Synthesis for Highly H ₂ Perm-Selective KAUST-7 Membranes. ACS Applied Materials & Interfaces, 2022, 14, 4297-4306.	4.0	14
1659	Progress in carbon dioxide capture materials for deep decarbonization. CheM, 2022, 8, 141-173.	5.8	56
1660	Two Face Diagonally Linked Cuboid Coordination Networks with Enhanced Thermal Stability. Crystal Growth and Design, 2022, 22, 1384-1389.	1.4	1
1661	A facile method to enhance the output performance of triboelectric nanogenerators based on coordination polymers by modulating terminal coordination groups. CrystEngComm, 2021, 24, 192-198.	1.3	7
1662	Investigation on the catalytic behavior of a novel thulium-organic framework with a planar tetranuclear {Tm ₄ } cluster as the active center for chemical CO ₂ fixation. Dalton Transactions, 2022, 51, 532-540.	1.6	6
1663	Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. Korean Journal of Chemical Engineering, 2022, 39, 1-19.	1.2	40
1664	Adsorption and diffusion behavior of CO2/H2 mixture in calcite slit pores: A molecular simulation study. Journal of Molecular Liquids, 2022, 346, 118306.	2.3	18
1665	Meniscus-Guided 3D Microprinting of Pure Metal–Organic Frameworks with High Gas-Uptake Performance. ACS Applied Materials & Interfaces, 2022, 14, 7184-7191.	4.0	7
1666	A New Covalent Organic Framework Modified with Sulfonic Acid for CO ₂ Uptake and Selective Dye Adsorption. Acta Chimica Sinica, 2022, 80, 37.	0.5	3
1667	A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO ₂ capture. RSC Advances, 2021, 12, 664-670.	1.7	12
1668	Tuning the switching pressure in square lattice coordination networks by metal cation substitution. Materials Advances, 2022, 3, 1240-1247.	2.6	9
1669	Binary Solvent Regulated Architecture of Ultraâ€Microporous Hydrogenâ€Bonded Organic Frameworks with Tunable Polarization for Highlyâ€Selective Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
1670	Fabrication of hierarchical porous polymer particles via blending strategy of water and polymer mixture. Polymer International, 2022, 71, 921-930.	1.6	1
1671	Synergic morphology engineering and pore functionality within a metal–organic framework for trace CO ₂ capture. Journal of Materials Chemistry A, 2022, 10, 881-890.	5.2	22
1672	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal–Organic Frameworks on Toxic Gas Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 3048-3056.	4.0	18
1673	Control of intracrystalline diffusion in a bilayered metal-organic framework for efficient kinetic separation of propylene from propane. Chemical Engineering Journal, 2022, 434, 134784.	6.6	11

#	Article	IF	CITATIONS
1674	Research progress in metal–organic frameworks (MOFs) in CO ₂ capture from post-combustion coal-fired flue gas: characteristics, preparation, modification and applications. Journal of Materials Chemistry A, 2022, 10, 5174-5211.	5.2	54
1675	Metal imidazolate sulphate frameworks as a variation of zeolitic imidazolate frameworks. Chemical Communications, 2022, 58, 2983-2986.	2.2	1
1676	Opening the Toolbox: 18 Experimental Techniques for Measurement of Mixed Gas Adsorption. Industrial & Engineering Chemistry Research, 2022, 61, 2367-2391.	1.8	28
1677	Hypothetical yet effective: Computational identification of high-performing MOFs for CO2 capture. Computers and Chemical Engineering, 2022, 160, 107705.	2.0	11
1678	Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation. Fuel, 2022, 317, 123085.	3.4	63
1679	A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374, 1464-1469.	6.0	308
1680	Synthesis, structure and properties of coordination polymers formed from bridging 4-hydroxybenzoic acid anions. CrystEngComm, 2022, 24, 1924-1933.	1.3	1
1681	Selective CO ₂ adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022, 10, 8856-8865.	5.2	29
1682	A Review on Anion-Pillared Metal Organic Framework (Apmof) and its Composites with the Balance of Adsorption Capacity and Separation Selectivity for Efficient Gas Separation. SSRN Electronic Journal, 0, , .	0.4	0
1683	The effect of pore sizes on D ₂ /H ₂ separation conducted by MOF-74 analogues. Inorganic Chemistry Frontiers, 2022, 9, 1674-1680.	3.0	10
1684	Effect of Framework Si/Al Ratio on the Adsorption Mechanism of Co2 on Small-Pore Zeolites: Ii. Merlinoite. SSRN Electronic Journal, 0, , .	0.4	0
1685	Performance-Based Ranking of Porous Materials for Psa Carbon Capture Under the Uncertainty of Experimental Data. SSRN Electronic Journal, 0, , .	0.4	0
1686	Selective luminescent sensing of metal ions and nitroaromatics over a porous mixed-linker cadmium(<scp>ii</scp>) based metal–organic framework. New Journal of Chemistry, 2022, 46, 8523-8533.	1.4	6
1688	Thermal plasma gasification of organic waste stream coupled with CO ₂ -sorption enhanced reforming employing different sorbents for enhanced hydrogen production. RSC Advances, 2022, 12, 6122-6132.	1.7	21
1689	CO2 capture on HKUST-1@lignin biocomposite. MRS Advances, 2022, 7, 504-507.	0.5	2
1690	MOF adsorbents capture CO2 on an industrial scale. Science Bulletin, 2022, 67, 885-887.	4.3	8
1691	Emerging Separation Applications of Surface Superwettability. Nanomaterials, 2022, 12, 688.	1.9	12
1692	Improving Ethane/Ethylene Separation Performance under Humid Conditions by Spatially Modified Zeolitic Imidazolate Frameworks, ACS Applied Materials & amp: Interfaces, 2022, 14, 11547-11558	4.0	13

#	Article	IF	CITATIONS
1693	Flexible Metal–Organic Frameworks as CO ₂ Adsorbents en Route to Energyâ€Efficient Carbon Capture. Small Structures, 2022, 3, .	6.9	15
1694	CF ₄ Capture and Separation of CF ₄ –SF ₆ and CF ₄ –N ₂ Fluid Mixtures Using Selected Carbon Nanoporous Materials and Metal–Organic Frameworks: A Computational Study. ACS Omega, 2022, 7, 6691-6699.	1.6	1
1695	Uncoordinated Hexafluorosilicates in a Microporous Metal–Organic Framework Enabled C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2022, 61, 4251-4256.	1.9	15
1696	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	3.3	36
1697	N-oxide-functionalized pillared Cd(II) porous metalâ^'organic frameworks: Gas sorption and luminescent behavior. Journal of Solid State Chemistry, 2022, 309, 122993.	1.4	2
1698	Designing of three mixed ligand MOFs in searching of length induced flexibility in ligand for the creation of interpenetration. Polyhedron, 2022, 218, 115763.	1.0	4
1699	Multinuclear solid-state NMR: Unveiling the local structure of defective MOF MIL-120. Solid State Nuclear Magnetic Resonance, 2022, 119, 101793.	1.5	3
1700	Performance-based ranking of porous materials for PSA carbon capture under the uncertainty of experimental data. Chemical Engineering Journal, 2022, 437, 135395.	6.6	9
1701	Carbon dioxide capture in gallate-based metal-organic frameworks. Separation and Purification Technology, 2022, 292, 121031.	3.9	23
1702	Porous aromatic frameworks with metallized catecholate ligands for CO2 capture from gas mixtures: A molecular simulation study. Fuel, 2022, 319, 123768.	3.4	7
1703	Cu-Based Metal–Organic Framework Nanosheets Synthesized via a Three-Layer Bottom-Up Method for the Catalytic Conversion of <i>S</i> -Nitrosoglutathione to Nitric Oxide. ACS Applied Nano Materials, 2022, 5, 486-496.	2.4	2
1704	Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels. Engineering, 2022, 11, 80-86.	3.2	13
1705	Orthogonalization of Polyaryl Linkers as a Route to More Porous Phosphonate Metalâ€Organic Frameworks. Chemistry - A European Journal, 2022, 28, .	1.7	3
1706	Modulated self-assembly of an interpenetrated MIL-53 Sc metal–organic framework with excellent volumetric H2 storage and working capacity. Materials Today Chemistry, 2022, 24, 100887.	1.7	4
1710	Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 2022, 51, 8133-8159.	1.6	22
1711	Metal-organic frameworks for the prolific purification of hazardous airborne pollutants. , 2022, , 47-104.		0
1712	Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal. ACS Omega, 2022, 7, 14535-14543.	1.6	13
1713	Highly Efficient I ₂ Sorption, CO ₂ Capture, and Catalytic Conversion by Introducing Nitrogen Donor Sites in a Microporous Co(II)-Based Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 7005-7016.	1.9	10

#	Article	IF	CITATIONS
1714	CO ₂ /N ₂ Separation on Highly Selective Carbon Nanofibers Investigated by Dynamic Gas Adsorption. ChemSusChem, 2022, 15, .	3.6	7
1715	A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption. Chemical Research in Chinese Universities, 2022, 38, 834-837.	1.3	6
1716	Isoreticular Double Interpenetrating Copper–Pyrazolate–Carboxylate Frameworks for Efficient CO ₂ Capture. Crystal Growth and Design, 2022, 22, 3853-3861.	1.4	5
1717	Ultrahigh Size Exclusion Selectivity for Carbon Dioxide from Nitrogen/Methane in an Ultramicroporous Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 7970-7979.	1.9	8
1718	Stable Fluorinated Hybrid Microporous Material for the Efficient Separation of C ₂ –C ₃ Alkyne/Alkene Mixtures. Inorganic Chemistry, 2022, 61, 7530-7536.	1.9	11
1719	Bifunctional imidazolium/amine polymer foams: One-pot synthesis and synergistic promotion of CO2 sorption. Chemical Engineering Journal, 2022, 446, 137012.	6.6	6
1720	Effect of framework Si/Al ratio on the adsorption mechanism of CO2 on small-pore zeolites: II. Merlinoite. Chemical Engineering Journal, 2022, 446, 137100.	6.6	8
1721	One step synthesis of a bimetallic (Ni and Co) metal–organic framework for the efficient electrocatalytic oxidation of water and hydrazine. New Journal of Chemistry, 2022, 46, 13422-13430.	1.4	4
1722	One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator. Nature Communications, 2022, 13, .	5.8	22
1723	Efficient One-Step Purification of C ₁ and C ₂ Hydrocarbons over CO ₂ in a New CO ₂ -Selective MOF with a Gate-Opening Effect. ACS Applied Materials & Interfaces, 2022, 14, 26858-26865.	4.0	16
1724	Modification of Metalâ^'Organic Frameworks for CO ₂ Capture. ACS Symposium Series, 0, , 269-308.	0.5	2
1725	Strategies to improve electrocatalytic performance of MoS ₂ -based catalysts for hydrogen evolution reactions. RSC Advances, 2022, 12, 17959-17983.	1.7	10
1726	Substituent Dependence on Series of Cationic Gyroidal MOFs in utc-c Topology with High CO ₂ Affinity and Ultrahigh Anionic Dye Adsorption Capacity. Inorganic Chemistry, 2022, 61, 9897-9905.	1.9	4
1727	CO ₂ Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1728	Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation. Angewandte Chemie, 2022, 134, .	1.6	1
1729	Research advances on photo-assisted CO2 conversion to methanol. Applied Catalysis A: General, 2022, 643, 118738.	2.2	8
1730	Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 2022, 298, 121448.	3.9	70
1731	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Interfaces, 2022, 14, 30443-30453.	4.0	18

#	Article	IF	CITATIONS
1732	Performance of Silicon Carbide Nanomaterials in Separation Process. Separation and Purification Reviews, 2023, 52, 205-220.	2.8	3
1733	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
1734	CO2 Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie, 0, , .	1.6	3
1735	Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1736	Porous polyvinyl alcohol/graphene oxide composite film for strain sensing and energy-storage applications. Nanotechnology, 2022, 33, 415701.	1.3	6
1737	A Two-Dimensional Stacked Metal-Organic Framework for Ultra Highly-Efficient CO2 Sieving. Chemical Engineering Journal, 2022, 449, 137768.	6.6	10
1738	Unraveling the role of operating pressure in the rapid formation of Cu-BDC MOF via a microdroplet approach. Chemical Engineering Journal, 2022, 447, 137544.	6.6	7
1739	è¶å¾®å"碳å₅晄å‰,实现å®ç"¶æ°"äää,™çf∙和乙çf∙çš"é«~选æ<©æ€§æå⊷. Science China Materials,	2023,66,	319-326.
1740	Anion-Pillared Porous Materials with Suitable Pore Size for the Efficient Discrimination of Cyclohexene from Cyclohexane. SSRN Electronic Journal, 0, , .	0.4	0
1741	Applications of metal-organic framework based membranes in energy storage and conversion. , 2022, , 259-272.		0
1742	Separation of Volatile Organic Compounds in TAMOF-1. ACS Applied Materials & Interfaces, 2022, 14, 30772-30785.	4.0	3
1743	Covalent Organic Frameworks for Carbon Dioxide Capture from Air. Journal of the American Chemical Society, 2022, 144, 12989-12995.	6.6	118
1744	Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Science & Technology, 2022, 4, 100059.	4.9	48
1745	Large-Scale Screening and Machine Learning for Metal–Organic Framework Membranes to Capture CO2 from Flue Gas. Membranes, 2022, 12, 700.	1.4	5
1746	Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications. EnergyChem, 2022, 4, 100079.	10.1	21
1747	Two Solvent-Induced In(III)-Based Metal–Organic Frameworks with Controllable Topology Performing High-Efficiency Separation of C ₂ H ₂ /CH ₄ and CO ₂ /CH ₄ . Inorganic Chemistry, 2022, 61, 11057-11065.	1.9	12
1748	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	10.1	35
1749	Bifunctional metal–organic frameworks afforded by postsynthetic modification for efficient cycloaddition of CO ₂ and epoxides. Applied Organometallic Chemistry, 2022, 36, .	1.7	4

#	Article	IF	CITATIONS
1750	Theoretical investigation on two-dimensional conjugated aromatic polymer membranes for high-efficiency hydrogen separation: The effects of pore size and interaction. Separation and Purification Technology, 2022, 299, 121674.	3.9	1
1751	MOF Pillaring Method: Ligand-to-Ligand and Axial-to-Axial Cross-Linking of "Paddlewheels― Inorganic Chemistry, 0, , .	1.9	0
1752	Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108300.	3.3	86
1753	A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coordination Chemistry Reviews, 2022, 470, 214714.	9.5	32
1754	Size exclusion propyne/propylene separation in an ultramicroporous yet hydrophobic metal–organic framework. Inorganic Chemistry Frontiers, 2022, 9, 4952-4961.	3.0	5
1755	Recent advances in microporous metal–organic frameworks as promising adsorbents for gas separation. Journal of Materials Chemistry A, 2022, 10, 17878-17916.	5.2	29
1756	Straightforward Mechanosynthesis of a Phase-Pure Interpenetrated MOF-5 Bearing a Size-Matching Tetrazine-Based Linker. Inorganic Chemistry, 2022, 61, 11695-11701.	1.9	3
1757	<scp>GeFSIXâ€1â€Cu</scp> based semiâ€interpenetrating network mixed matrix membranes for efficient <scp>CO₂</scp> separation. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
1758	Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials. Frontiers of Chemical Science and Engineering, 0, , .	2.3	0
1759	Pillar Modularity in fsc Topology Hybrid Ultramicroporous Materials Based upon Tetra(4-pyridyl)benzene. Crystal Growth and Design, 2022, 22, 5472-5480.	1.4	3
1760	Engineering Anionâ€Pillared Metal–Organic Frameworks for Record Acetylene/Methane Separation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	4
1761	Exploring the coordination chemistry of a low symmetry, bent dipyridyl ligand. Journal of Coordination Chemistry, 0, , 1-20.	0.8	0
1762	Electrospinning strategy for the preparation of nanoâ€porous fibers as modifier for inducing the network structure and enhancing mechanical properties of <scp>SBS</scp> â€modified asphalt. Polymer Composites, 2022, 43, 6505-6520.	2.3	7
1763	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
1764	Thermodynamic–Kinetic Synergistic Separation for O ₂ /N ₂ and CO ₂ /CH ₄ on Nanoporous Carbon Molecular Sieves. ACS Applied Nano Materials, 2022, 5, 11414-11422.	2.4	2
1765	Pore size effect of 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene-based metal-organic frameworks for enhanced SF6 adsorption with high selectivity. Microporous and Mesoporous Materials, 2022, 343, 112161.	2.2	4
1766	Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications. Renewable and Sustainable Energy Reviews, 2022, 167, 112807.	8.2	36
1767	Structure- and phase-transformable coordination polymers/metal complexes with fluorinated anions. Coordination Chemistry Reviews, 2022, 471, 214728.	9.5	7

#	Article	IF	CITATIONS
1768	A green approach towards sorption of CO2 on waste derived biochar. Environmental Research, 2022, 214, 113954.	3.7	12
1769	One-step ethylene purification from ternary mixture by synergetic molecular shape and size matching in a honeycomb-like ultramicroporous material. Chemical Engineering Journal, 2022, 450, 138272.	6.6	10
1770	A series of MOFs optimized by pore environment engineering strategy for boosting acetylene-trapping performance. Chemical Engineering Journal, 2023, 451, 138431.	6.6	5
1771	Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
1772	Tuning of surface structure of porous glass-supported titania with fibrous silica for efficient coupling adsorption‒catalysis‒resorption desulfurization scheme. Surfaces and Interfaces, 2022, 33, 102264.	1.5	1
1773	Construction of selective gas permeation channels in polymeric membranes using nanocage tuned ionic liquid/MIL-53 (Al) filler nanoparticles for effective CO2 separation. Journal of Natural Gas Science and Engineering, 2022, 106, 104728.	2.1	4
1774	Hofmann-type metal-organic frameworks with dual open nickel centers for efficient capture of CO2 from CH4 and N2. Journal of Solid State Chemistry, 2022, 315, 123532.	1.4	2
1775	Facile synthesis of dptz-CuGeF6 at room temperature and its adsorption performance for separation of CO2, CH4 and N2. Separation and Purification Technology, 2022, 302, 122054.	3.9	4
1776	Anion-pillared porous materials with suitable pore size for the efficient discrimination of cyclohexene from cyclohexane. Separation and Purification Technology, 2022, 302, 122095.	3.9	3
1777	Engineered Biochar: Sink and Sequestration of Carbon. , 2022, , 223-235.		1
1778	A charge-decorated porous framework with polar pores and open O donor sites for CO ₂ /CH ₄ and C ₂ H ₂ /C ₂ H ₄ separations. Dalton Transactions, 2022, 51, 13419-13425.	1.6	0
1779	Controllable Preparation of Highly Dispersed Vertical Eg/Ldhs Composites and Fluorinion Adsorption Properties and Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
1780	Carbon dioxide capture with zeotype materials. Chemical Society Reviews, 2022, 51, 9340-9370.	18.7	63
1781	Beyond the Metallacrown: Controlling First- and Second-Order Coordination Spheres Towards Discrete and Extended Architectures. , 2022, , 221-275.		0
1782	Responsive Shape Recognition of Styrene Over Ethylbenzene with Excellent Selectivity and Capacity in a Hybrid Porous Material. SSRN Electronic Journal, 0, , .	0.4	0
1783	Fluorinated metal–organic frameworks for gas separation. Chemical Society Reviews, 2022, 51, 7427-7508.	18.7	76
1784	Anchored growth of highly dispersed LDHs nanosheets on expanded graphite for fluoride adsorption properties and mechanism. Journal of Hazardous Materials, 2023, 442, 130068.	6.5	27
1785	Three-Dimensional Metal–Organic Network Glasses from Bridging MF ₆ ^{2–} Anions and Their Dynamic Insights by Solid-State NMR. Inorganic Chemistry, 2022, 61, 16103-16109.	1.9	3

#	Article	IF	CITATIONS
1786	In Situ Generated UiO-66/Cotton Fabric Easily Recyclable for Reactive Dye Adsorption. Langmuir, 2022, 38, 12095-12102.	1.6	11
1787	Energetic Systematics of Metal–Organic Frameworks: A Case Study of Al(III)-Trimesate MOF Isomers. Inorganic Chemistry, 2022, 61, 15152-15165.	1.9	4
1788	Modified Metal-Organic Frameworks as an Efficient Nanoporous Adsorbent for the Removal of Naproxen from Water Sources. Polycyclic Aromatic Compounds, 2023, 43, 6235-6248.	1.4	1
1789	An anthracene-9-carboxylic acid-based [Cu ₂₀] cluster templated by a bromine anion for heterogeneous catalytic chemical fixation of carbon dioxide. Journal of Materials Chemistry A, 0, , .	5.2	1
1790	MOF/Polymer-Integrated Multi-Hotspot Mid-Infrared Nanoantennas for Sensitive Detection of CO2 Gas. Nano-Micro Letters, 2022, 14, .	14.4	20
1791	Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 2022, 16, 17911-17930.	7.3	54
1792	Development of a Supervised Learning Model to Predict Permeability of Porous Carbon Composites. AIAA Journal, 2023, 61, 843-858.	1.5	4
1793	Dual poreâ€size sieving in a novel oxygenateâ€pillared microporous adsorbent for <scp>C6</scp> alkane isomers separation. AICHE Journal, 2023, 69, .	1.8	5
1794	Fabrication of bimetallic Cu-Zn adsorbents with high dispersion by using confined space for gas adsorptive separation. Frontiers of Chemical Science and Engineering, 2022, 16, 1623-1631.	2.3	0
1795	Aluminum formate, Al(HCOO) ₃ : An earth-abundant, scalable, and highly selective material for CO ₂ capture. Science Advances, 2022, 8, .	4.7	39
1796	Discovering the impact of targeted defects in SP-MOF for CO2 capture from flue gas in presence of humidity through computational modelling. Journal of CO2 Utilization, 2022, 66, 102264.	3.3	3
1797	Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Computational Materials Science, 2023, 216, 111872.	1.4	1
1798	Constructing C2H2 anchoring traps within MOF interpenetration nets as C2H2/CO2 and C2H2/C2H4 bifunctional separator. Chemical Engineering Journal, 2023, 453, 139713.	6.6	19
1799	Responsive shape recognition of styrene over ethylbenzene with excellent selectivity and capacity in a hybrid porous material. Chemical Engineering Journal, 2023, 453, 139756.	6.6	5
1800	Rational regulation of acetylene adsorption and separation for ultra-microporous copper-1,2,4-triazolate frameworks by halogen hydrogen bonds. Nanoscale, 2022, 14, 18200-18208.	2.8	6
1801	Mixed-Valent Stellated Cuboctahedral Cu(2,4-Imdb)-MOF for Trace Water Detection. Inorganic Chemistry, 2022, 61, 18340-18345.	1.9	6
1802	Hollow, porous, and flexible Co ₃ O ₄ dopped carbon nanofibers for efficient CO ₂ capture. Advanced Engineering Materials, 0, , .	1.6	3
1803	Mechanical grinding of FeNC nanomaterial with Fe3O4 to construct magnetic adsorbents for desulfurization. Separation and Purification Technology, 2023, 306, 122574.	3.9	7

#	Article	IF	CITATIONS
1804	Metalâ€Organic Frameworks for Catalytic Construction of Câ^'B Bond and Related Reactions. ChemCatChem, 2023, 15, .	1.8	4
1805	Formation of a Polar Flow Channel with Embedded Gas Recognition Pockets in a Yttrium-Based MOF for Enhanced C ₂ H ₂ /C ₂ H ₄ and CO ₂ Selective Adsorptions. Inorganic Chemistry, 2022, 61, 18653-18659.	1.9	1
1806	Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. Journal of Environmental Chemical Engineering, 2022, 10, 108930.	3.3	28
1807	A new TIFSIX anion pillared metal organic framework with abundant electronegative sites for efficient C ₂ H ₂ /CO ₂ separation. Inorganic Chemistry Frontiers, 2023, 10, 522-528.	3.0	8
1808	Two-dimensional oxalamide based isostructural MOFs for CO2 capture. Journal of Solid State Chemistry, 2023, 319, 123778.	1.4	2
1809	Robust acid–base Ln-MOFs: searching for efficient catalysts in cycloaddition of CO ₂ with epoxides and cascade deacetalization–Knoevenagel reactions. RSC Advances, 2022, 12, 33501-33509.	1.7	4
1810	[EMmim][NTf ₂]—a Novel Ionic Liquid (IL) in Catalytic CO ₂ Capture and ILs' Applications. Advanced Science, 2023, 10, .	5.6	7
1811	Unexpectedly efficient ion desorption of graphene-based materials. Nature Communications, 2022, 13, .	5.8	9
1812	A bottom-up method to construct Ru-doped FeP nanosheets on foam iron with ultra-high activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 4686-4693.	3.8	8
1813	Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere, 2022, 13, 1958.	1.0	9
1814	Selective Low-Level Detection of a Perilous Nitroaromatic Compound Using Tailor-Made Cd(II)-Based Coordination Polymers: Study of Photophysical Properties and Effect of Functional Groups. Inorganic Chemistry, 2023, 62, 98-113.	1.9	11
1815	CO2-Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review. Clean Technologies, 2023, 5, 1-24.	1.9	3
1816	A new perchlorate-based hybrid ultramicroporous material with rich bare oxygen atoms for high C2H2/CO2 separation. Chinese Chemical Letters, 2023, 34, 108039.	4.8	12
1817	Preferential CO2 adsorption over cadmium-based Porous Metal-organic Framework. Journal of Porous Materials, 2023, 30, 1163-1170.	1.3	1
1818	Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metalâ€Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0
1819	Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1820	A Robust Molecular Porous Material for C ₂ H ₂ /CO ₂ Separation. Small, 2023, 19, .	5.2	6
1821	Role of the Number of Adsorption Sites and Adsorption Dynamics of Diffusing Particles in a Confined Liquid with Langmuir Kinetics. Physchem, 2023, 3, 1-12.	0.5	0

#	Article	IF	Citations
" 1822	Significantly Enhanced Carbon Dioxide Selective Adsorption via Gradual Acylamide Truncation in MOFs: Experimental and Theoretical Research. Inorganic Chemistry, 2022, 61, 19944-19950.	1.9	5
1823	Adsorption Phenomena and Anomalous Behavior. PoliTO Springer Series, 2023, , 237-271.	0.3	0
1824	Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	4.7	12
1825	Functionality-Induced Locking of Zeolitic Imidazolate Frameworks. Chemistry of Materials, 2023, 35, 490-498.	3.2	5
1826	Structural Phase Transformations Induced by Guest Molecules in a Nickel-Based 2D Square Lattice Coordination Network. Chemistry of Materials, 2023, 35, 783-791.	3.2	6
1827	Early-Stage Formation of the SIFSIX-3-Zn Metal–Organic Framework: An Automated Computational Study. Inorganic Chemistry, 2023, 62, 1210-1217.	1.9	3
1828	Pore Environment Optimization of Microporous Metal–Organic Frameworks with Huddled Pyrazine Pillars for C ₂ H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2023, 15, 4208-4215.	4.0	6
1829	Revisiting Competitive Adsorption of Small Molecules in the Metal–Organic Framework Ni-MOF-74. Inorganic Chemistry, 2023, 62, 950-956.	1.9	5
1830	Boosting xenon adsorption with record capacity in microporous carbon molecular sieves. Science China Chemistry, 2023, 66, 601-610.	4.2	5
1831	Metal-organic frameworks as regeneration optimized sorbents for atmospheric water harvesting. Cell Reports Physical Science, 2023, 4, 101252.	2.8	11
1832	Strategies, Synthesis, and Applications of Metal-Organic Framework Materials. , 2023, , 1-82.		0
1833	Voronoi tessellation-based algorithm for determining rigorously defined classical and generalized geometric pore size distributions. Physical Review E, 2023, 107, .	0.8	2
1834	Adsorptive Separation of CO ₂ by a Hydrophobic Carborane-Based Metal–Organic Framework under Humid Conditions. ACS Applied Materials & Interfaces, 2023, 15, 5309-5316.	4.0	7
1835	Newâ€Generation Anionâ€Pillared Metal–Organic Frameworks with Customized Cages for Highly Efficient CO ₂ Capture. Advanced Functional Materials, 2023, 33, .	7.8	29
1836	Low-concentration CO ₂ capture using metal–organic frameworks – current status and future perspectives. Dalton Transactions, 2023, 52, 1841-1856.	1.6	11
1837	Modulation on interlayer channels of LDH/polymer hybrid membranes for efficient CO2 separation. Applied Surface Science, 2023, 618, 156651.	3.1	8
1838	Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO ₂ /N ₂ gas separation. Journal of Materials Chemistry A, 2023, 11, 5320-5327.	5.2	4
1839	Hydrogen-bonded Molecular Square with Tricarbonyl Rhenium(I) Biimidazolate Complex. Chemistry Letters, 2023, 52, 344-347.	0.7	0

#	Article	IF	CITATIONS
1840	Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coordination Chemistry Reviews, 2023, 482, 215093.	9.5	23
1841	Revealing acetylene separation performances of anion-pillared MOFs by combining molecular simulations and machine learning. Chemical Engineering Journal, 2023, 464, 142731.	6.6	6
1842	Recent progress in mixed rare earth metal-organic frameworks: From synthesis to application. Coordination Chemistry Reviews, 2023, 485, 215121.	9.5	15
1843	MOF-gold core-satellite nanostructure based SERS platform for fentanyl detection in multiple complex samples. Sensors and Actuators B: Chemical, 2023, 385, 133710.	4.0	2
1844	Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coordination Chemistry Reviews, 2023, 484, 215111.	9.5	20
1845	Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas Adsorption at Low Pressure. Polymers, 2023, 15, 760.	2.0	2
1846	Computational Investigation of Structure–Function Relationship in Fluorine-Functionalized MOFs for PFOA Capture from Water. Journal of Physical Chemistry C, 2023, 127, 3204-3216.	1.5	9
1847	A rapid self-healing glassy polymer/metal–organic-framework hybrid membrane at room temperature. Dalton Transactions, 2023, 52, 3148-3157.	1.6	0
1848	Breakthrough analysis for parameter estimation of CO2 adsorption on pelletized flexible metal–organic framework. Chemical Engineering Journal, 2023, 460, 141781.	6.6	5
1849	Highly scalable acid-base resistant Cu-Prussian blue metal-organic framework for C2H2/C2H4, biogas, and flue gas separations. Chemical Engineering Journal, 2023, 460, 141795.	6.6	12
1850	Enhanced CO2/N2 separation performance in HP-Cu-BTCs by modifying the open-metal sites and porosity using added templates. Korean Journal of Chemical Engineering, 2023, 40, 675-692.	1.2	1
1851	Cooperative CO ₂ adsorption mechanism in a perfluorinated Ce ^{IV} -based metal organic framework. Journal of Materials Chemistry A, 2023, 11, 5568-5583.	5.2	5
1852	Advances in metal-organic frameworks for efficient separation and purification of natural gas. , 2023, 42, 100034.		14
1853	Zeolites as Selective Adsorbents for CO ₂ Separation. ACS Applied Energy Materials, 2023, 6, 2634-2656.	2.5	45
1854	Synergistic Effects of Lewis Acid–Base Pair Sites─Hf-MOFs with Functional Groups as Distinguished Catalysts for the Cycloaddition of Epoxides with CO ₂ . Inorganic Chemistry, 2023, 62, 3817-3826.	1.9	10
1855	Improving performance of mesoporous MOF AITp impregnated with ionic liquids for CO2 adsorption. Scientific Reports, 2023, 13, .	1.6	4
1856	A review on adsorption isotherms and kinetics of CO2 and various adsorbent pairs suitable for carbon capture and green refrigeration applications. Sadhana - Academy Proceedings in Engineering Sciences, 2023, 48, .	0.8	4
1857	Customizing Metalâ€Organic Frameworks by Legoâ€Brick Strategy for Oneâ€Step Purification of Ethylene from a Quaternary Gas Mixture. Small, 2023, 19, .	5.2	19

#	Article	IF	CITATIONS
1858	Engineering Pore Environments of Sulfateâ€Pillared Metalâ€Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation with Record Selectivity. Advanced Materials, 2023, 35, .	11.1	28
1859	Overview of Metal Organic Frameworks. Engineering Materials, 2023, , 1-14.	0.3	1
1860	The Adsorptive Separation of Ethylene from C ₂ Hydrocarbons by Metalâ€Organic Frameworks. Chemistry - A European Journal, 2023, 29, .	1.7	3
1861	Nanoporous Carbon Materials for Energy Harvesting, Storage, and Conversion. Materials Horizons, 2023, , 41-63.	0.3	0
1862	Ascertaining Uncertain Nanopore Boundaries in 2D Images of Porous Materials for Accurate 3D Microstructural Reconstruction and Heat Transfer Performance Prediction. Industrial & Engineering Chemistry Research, 2023, 62, 5358-5369.	1.8	2
1863	Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. Separations, 2023, 10, 196.	1.1	4
1864	Evaluating the harmonic approximation for the prediction of thermodynamic formation properties of solids. Computational Materials Science, 2023, 223, 112152.	1.4	2
1865	Anionâ€pillared microporous material incorporated mixedâ€matrix fiber adsorbents for removal of trace propyne from propylene. AICHE Journal, 2023, 69, .	1.8	3
1866	CO2 adsorption on ionic liquid–modified cupper terephthalic acid metal organic framework grown on quartz crystal microbalance electrodes. Journal of the Taiwan Institute of Chemical Engineers, 2023, 145, 104849.	2.7	1
1867	An investigation for H2/N2 adsorptive separation in SIFSIX-2-Cu-i. International Journal of Hydrogen Energy, 2023, , .	3.8	1
1868	MOF based CO2 capture: Adsorption and membrane separation. Inorganic Chemistry Communication, 2023, 152, 110722.	1.8	8
1892	Zeolites and metal–organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chemical Society Reviews, 2023, 52, 4586-4602.	18.7	21
1896	Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases. Science China Chemistry, 2023, 66, 2181-2203.	4.2	3
1904	Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews, 2023, 123, 10432-10467.	23.0	31
1910	A SIFSIX-MOF constructed from a metalloligand yields enhanced stability for selective CO ₂ adsorption. Chemical Communications, 0, , .	2.2	0
1922	Emerging porous materials for carbon dioxide adsorptive capture: progress and challenges. Materials Chemistry Frontiers, 2023, 7, 6463-6482.	3.2	1
1927	Enhanced CO ₂ sorption properties in a polarizable [WO ₂ F ₄] ^{2â^'} -pillared physisorbent under direct air capture conditions. Chemical Communications, 2023, 59, 11540-11543.	2.2	0
1936	Recent advances in the chemistry and applications of fluorinated metal–organic frameworks (F-MOFs). RSC Advances, 2023, 13, 29215-29230.	1.7	Ο

		CITATION	CITATION REPORT	
#	Article		IF	Citations
1937	Adsorption technology for upgrading biogas to biomethane. , 2024, , 85-115.			0
1938	Research progress of electronic nose technology in exhaled breath disease analysis. Mid and Nanoengineering, 2023, 9, .	crosystems	3.4	6
1951	Water vapour induced structural flexibility in a square lattice coordination network. Ch Communications, 2023, 59, 13867-13870.	emical	2.2	0
1959	Introduction of Energy Materials. , 2024, , 1-8.			0
1966	Tiny pores turning the tide. Nature Reviews Chemistry, 0, , .		13.8	0
1973	Real-time observation of the exchange process between H ₂ O and NO in tl framework Ni-MOF-74. Journal of Materials Chemistry A, 2024, 12, 6880-6884.	ne metal–organic	5.2	0
1985	Recent advances on metal–organic frameworks for deep purification of olefins. Journ Chemistry A, 2024, 12, 5563-5580.	al of Materials	5.2	2
1986	A (4,6)-c copper–organic framework constructed from triazole-inserted dicarboxylate CO ₂ selective adsorption. CrystEngComm, 2024, 26, 1204-1208.	linker with	1.3	0
1997	Surface modification of metal-organic frameworks and their applications for the gas ad 2024, , 961-986.	sorption.,		0