CXCL12 in early mesenchymal progenitors is required for maintenance

Nature 495, 227-230 DOI: 10.1038/nature11926

Citation Report

#	Article	IF	Citations
1	AUTHORS AND AFFILIATIONS. American Journal of Epidemiology, 1979, 110, 528-528.	1.6	1
2	Interactions Between B Lymphocytes and the Osteoblast Lineage in Bone Marrow. Calcified Tissue International, 2013, 93, 261-268.	1.5	39
3	SLAM Family Markers Resolve Functionally Distinct Subpopulations of Hematopoietic Stem Cells and Multipotent Progenitors. Cell Stem Cell, 2013, 13, 102-116.	5.2	521
4	Cytokines and the Pathogenesis of Osteoporosis. , 2013, , 915-937.		1
5	Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell, 2013, 13, 285-299.	5.2	532
6	Hormonal Control of Stem Cell Systems. Annual Review of Cell and Developmental Biology, 2013, 29, 137-162.	4.0	31
7	CXC Chemokine Receptor 4 Expression, CXC Chemokine Receptor 4 Activation, and Wild-Type Nucleophosmin Are Independently Associated With Unfavorable Prognosis in Patients With Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 686-692.	0.2	16
8	Spatial organization within a niche as a determinant of stem-cell fate. Nature, 2013, 502, 513-518.	13.7	353
9	Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.	13.7	1,002
10	FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro. Biochemical and Biophysical Research Communications, 2013, 440, 125-131.	1.0	11
11	Concise review: Adult mesenchymal stromal cell therapy for inflammatory diseases: How well are we joining the dots?. Stem Cells, 2013, 31, 2033-2041.	1.4	124
12	Osteolineage cells and regulation of the hematopoietic stem cell. Best Practice and Research in Clinical Haematology, 2013, 26, 249-252.	0.7	11
13	Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533.	5.2	148
15	Haematopoietic stem cell niches: new insights inspire new questions. EMBO Journal, 2013, 32, 2535-2547.	3.5	59
16	Deficiency of GRP94 in the Hematopoietic System Alters Proliferation Regulators in Hematopoietic Stem Cells. Stem Cells and Development, 2013, 22, 3062-3073.	1.1	11
17	Immune cells and bone: coupling goes both ways. Immunological Investigations, 2013, 42, 532-543.	1.0	5
18	The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. British Medical Bulletin, 2013, 108, 25-53.	2.7	227
19	Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature, 2013, 495, 231-235.	13.7	1,017

# 20	ARTICLE This Niche Is a Maze; An Amazing Niche. Cell Stem Cell, 2013, 12, 391-392.	IF 5.2	CITATIONS 47
21	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	13.5	555
22	The Skeletal Stem Cell. , 2013, , 127-147.		3
23	Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia. EMBO Molecular Medicine, 2013, 5, 1154-1164.	3.3	15
24	Targeting hypoxia in the leukemia microenvironment. International Journal of Hematologic Oncology, 2013, 2, 279-288.	0.7	45
27	Regulation of Hematopoietic Stem Cell Activity by Inflammation. Frontiers in Immunology, 2013, 4, 204.	2.2	124
28	Aging of the hematopoietic system. Current Opinion in Hematology, 2013, 20, 355-361.	1.2	64
29	The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes and Development, 2013, 27, 1868-1885.	2.7	61
30	Umbilical Cord Blood Hematopoietic Stem Cell Expansion Ex Vivo. Journal of Blood Disorders & Transfusion, 2013, , .	0.1	4
32	Heparin-Binding Epidermal Growth Factor-like Growth Factor/Diphtheria Toxin Receptor in Normal and Neoplastic Hematopoiesis. Toxins, 2013, 5, 1180-1201.	1.5	32
33	IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells, 2013, 31, 2193-2204.	1.4	51
34	Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice. Haematologica, 2013, 98, 1848-1855.	1.7	10
35	Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells. PLoS ONE, 2013, 8, e67861.	1.1	3
36	Osterix-Cre Labeled Progenitor Cells Contribute to the Formation and Maintenance of the Bone Marrow Stroma. PLoS ONE, 2013, 8, e71318.	1.1	118
37	CXCR4 in Central and Peripheral Lymphoid Niches – Physiology, Pathology and Therapeutic Perspectives in Immune Deficiencies and Malignancies. , 2014, , .		1
38	CXCR4-Related Increase of Circulating Human Lymphoid Progenitors after Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE, 2014, 9, e91492.	1.1	5
39	The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. ELife, 2014, 3, e03696.	2.8	240
40	Cigarette Smoke Alters the Hematopoietic Stem Cell Niche. Medical Sciences (Basel, Switzerland), 2014, 2, 37-50.	1.3	21

#	Article	IF	CITATIONS
41	Mesenchymal Stem Cells: Pivotal Players in Hematopoietic Stem Cell Microenvironment. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	5
42	Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget, 2014, 5, 11501-11512.	0.8	37
43	The Adult Hematopoietic Niches — Cellular Composition, Histological Organization and Physiological Regulation. , 0, , .		2
44	Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies. Oncolmmunology, 2014, 3, e28989.	2.1	34
45	Biology of BM failure syndromes: role of microenvironment and niches. Hematology American Society of Hematology Education Program, 2014, 2014, 71-76.	0.9	29
46	Sirtuin1 (Sirt1) Promotes Cortical Bone Formation by Preventing β-Catenin Sequestration by FoxO Transcription Factors in Osteoblast Progenitors. Journal of Biological Chemistry, 2014, 289, 24069-24078.	1.6	109
47	Roles of osteoclasts in the control of medullary hematopoietic niches. Archives of Biochemistry and Biophysics, 2014, 561, 29-37.	1.4	22
48	The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhesion and Migration, 2014, 8, 563-577.	1.1	72
49	Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Frontiers in Physiology, 2014, 5, 464.	1.3	20
50	Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Frontiers in Physiology, 2014, 5, 68.	1.3	114
51	Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis. Haematologica, 2014, 99, 1149-1156.	1.7	18
52	Multipotent Hematopoietic Progenitors Divide Asymmetrically to Create Progenitors of the Lymphomyeloid and Erythromyeloid Lineages. Stem Cell Reports, 2014, 3, 1058-1072.	2.3	39
53	Inhibition of Bone Remodeling in Young Mice by Bisphosphonate Displaces the Plasma Cell Niche into the Spleen. Journal of Immunology, 2014, 193, 223-233.	0.4	16
54	SMAD Signaling Regulates CXCL12 Expression in the Bone Marrow Niche, Affecting Homing and Mobilization of Hematopoietic Progenitors. Stem Cells, 2014, 32, 3012-3022.	1.4	36
55	Concise Review: From Greenhouse to Garden: The Changing Soil of the Hematopoietic Stem Cell Microenvironment During Development. Stem Cells, 2014, 32, 1691-1700.	1.4	25
56	Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nature Communications, 2014, 5, 5611.	5.8	177
57	Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow. Experimental Cell Research, 2014, 329, 239-247.	1.2	13
58	Concise Review: Genetic Dissection of Hypoxia Signaling Pathways in Normal and Leukemic Stem Cells. Stem Cells, 2014, 32, 1390-1397.	1.4	27

#	Article	IF	CITATIONS
59	Advances in Intravital Microscopy. , 2014, , .		4
60	A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nature Cell Biology, 2014, 16, 1157-1167.	4.6	346
62	Bone marrow localization and functional properties of human hematopoietic stem cells. Current Opinion in Hematology, 2014, 21, 249-255.	1.2	8
63	p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-κB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche. Cell Reports, 2014, 9, 2084-2097.	2.9	56
64	Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. Journal of Experimental Medicine, 2014, 211, 487-497.	4.2	41
65	In Vivo Imaging of Bone Marrow Stem Cells. , 2014, , 143-162.		1
66	The Adult Stem Cell Niche. Pancreatic Islet Biology, 2014, , 15-30.	0.1	0
67	A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 2014, 12, 260.	1.8	454
68	Plasma Elevation of Vascular Endothelial Growth Factor Leads to the Reduction of Mouse Hematopoietic and Mesenchymal Stem/Progenitor Cells in the Bone Marrow. Stem Cells and Development, 2014, 23, 2202-2210.	1.1	8
69	From proliferation to proliferation: monocyte lineage comes full circle. Seminars in Immunopathology, 2014, 36, 137-148.	2.8	48
70	Sphingosine-1-Phosphate: a Master Regulator of Lymphocyte Egress and Immunity. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 103-115.	1.0	17
71	Tracking plasma cell differentiation and survival. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 15-24.	1.1	41
72	Mesenchymal Progenitors and the Osteoblast Lineage in Bone Marrow Hematopoietic Niches. Current Osteoporosis Reports, 2014, 12, 22-32.	1.5	49
73	Targeting the Molecular and Cellular Interactions of the Bone Marrow Niche in Immunologic Disease. Current Allergy and Asthma Reports, 2014, 14, 402.	2.4	7
74	Concise Review: Bone Marrow-Derived Mesenchymal Stem Cells Change Phenotype Following In Vitro Culture: Implications for Basic Research and the Clinic. Stem Cells, 2014, 32, 1713-1723.	1.4	262
75	Nice Neighborhood: Emerging Concepts of the Stem Cell Niche. Cell, 2014, 157, 41-50.	13.5	307
76	Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 2014, 3, 481.	2.7	536
77	Regulation of hematopoiesis in endosteal microenvironments. International Journal of Hematology, 2014, 99, 679-684.	0.7	35

#	Article	IF	CITATIONS
78	Influences of vascular niches on hematopoietic stem cell fate. International Journal of Hematology, 2014, 99, 699-705.	0.7	32
79	Mesenchymal progenitor cells in mouse foetal liver regulate differentiation and proliferation of hepatoblasts. Liver International, 2014, 34, 1378-1390.	1.9	19
80	CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. Journal of Molecular Medicine, 2014, 92, 433-439.	1.7	136
81	Concise Review: MicroRNA Function in Multipotent Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 1074-1082.	1.4	123
82	Combination of Imatinib with CXCR4 Antagonist BKT140 Overcomes the Protective Effect of Stroma and Targets CML <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2014, 13, 1155-1169.	1.9	59
83	Transcriptional Control of Early T and B Cell Developmental Choices. Annual Review of Immunology, 2014, 32, 283-321.	9.5	176
84	Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment. Antioxidants and Redox Signaling, 2014, 21, 1605-1619.	2.5	241
85	Loss of Gsα Early in the Osteoblast Lineage Favors Adipogenic Differentiation of Mesenchymal Progenitors and Committed Osteoblast Precursors. Journal of Bone and Mineral Research, 2014, 29, 2414-2426.	3.1	33
86	Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunology, 2014, 35, 32-37.	2.9	231
87	Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcified Tissue International, 2014, 94, 112-124.	1.5	42
88	Circadian rhythms in leukocyte trafficking. Seminars in Immunopathology, 2014, 36, 149-62.	2.8	30
89	Infection-Induced Changes in Hematopoiesis. Journal of Immunology, 2014, 192, 27-33.	0.4	96
90	The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505, 327-334.	13.7	1,910
91	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
92	Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2506-2519.	1.1	1,017
93	Megakaryocytes in the hematopoietic stem cell niche. Nature Medicine, 2014, 20, 1233-1234.	15.2	10
94	Endothelial cells translate pathogen signals into G-CSF–driven emergency granulopoiesis. Blood, 2014, 124, 1393-1403.	0.6	221
95	Function of Jam-B/Jam-C Interaction in Homing and Mobilization of Human and Mouse Hematopoietic Stem and Progenitor Cells. Stem Cells, 2014, 32, 1043-1054.	1.4	34

#	Article	IF	Citations
96	Chemokine signaling in development and disease. Development (Cambridge), 2014, 141, 4199-4205.	1.2	102
97	From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Research and Therapy, 2014, 5, 51.	2.4	68
98	The Gap Between the Physiological and Therapeutic Roles of Mesenchymal Stem Cells. Medicinal Research Reviews, 2014, 34, 1100-1126.	5.0	121
99	Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10137-10142.	3.3	128
100	Obesity-driven disruption of haematopoiesis and the bone marrow niche. Nature Reviews Endocrinology, 2014, 10, 737-748.	4.3	104
101	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32, 795-803.	9.4	492
102	Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. Acta Biomaterialia, 2014, 10, 4704-4714.	4.1	32
103	Minireview: Complexity of Hematopoietic Stem Cell Regulation in the Bone Marrow Microenvironment. Molecular Endocrinology, 2014, 28, 1592-1601.	3.7	17
104	A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 376-391.	5.2	63
105	Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 2014, 20, 833-846.	15.2	628
106	Aging of the hematopoietic stem cells niche. International Journal of Hematology, 2014, 100, 317-325.	0.7	28
107	Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. Nature, 2014, 512, 314-318.	13.7	122
108	Functional and genetic aberrations of in vitro-cultured marrow-derived mesenchymal stromal cells of patients with classical Philadelphia-negative myeloproliferative neoplasms. Leukemia, 2014, 28, 1742-1745.	3.3	30
109	"Mesenchymal―Stem Cells. Annual Review of Cell and Developmental Biology, 2014, 30, 677-704.	4.0	345
110	Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature, 2014, 508, 536-540.	13.7	192
111	The cellular mechanisms and regulation of metastasis formation. Molecular Biology, 2014, 48, 165-180.	0.4	18
112	Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone, 2014, 63, 87-94.	1.4	100
113	Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development. Developmental Cell, 2014, 29, 340-349.	3.1	365

#	Article	IF	CITATIONS
114	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	3.1	160
115	Tight relationships between B lymphocytes and the skeletal system. Trends in Molecular Medicine, 2014, 20, 405-412.	3.5	49
116	Bone Marrow Endosteal Mesenchymal Progenitors Depend on HIF Factors for Maintenance and Regulation of Hematopoiesis. Stem Cell Reports, 2014, 2, 794-809.	2.3	23
117	MicroRNAs in the skeleton: Cell-restricted or potent intercellular communicators?. Archives of Biochemistry and Biophysics, 2014, 561, 46-55.	1.4	25
118	Infection Mobilizes Hematopoietic Stem Cells through Cooperative NOD-like Receptor and Toll-like Receptor Signaling. Cell Host and Microbe, 2014, 15, 779-791.	5.1	149
119	Prostaglandin E2 imprints a long-lasting effect on dendritic cell progenitors in the bone marrow. Journal of Leukocyte Biology, 2013, 95, 225-232.	1.5	25
120	FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors. Stem Cell Reports, 2014, 2, 925-937.	2.3	42
121	Early B lymphocyte development: Similarities and differences in human and mouse. World Journal of Stem Cells, 2014, 6, 421.	1.3	34
123	SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood, 2014, 124, 277-286.	0.6	64
124	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.	0.6	39
125	Transcriptome comparison of distinct osteolineage subsets in the hematopoietic stem cell niche using a triple fluorescent transgenic mouse model. Genomics Data, 2015, 5, 318-319.	1.3	1
126	Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood, 2015, 125, 2678-2688.	0.6	111
127	MRTF-SRF signaling is required for seeding of HSC/Ps in bone marrow during development. Blood, 2015, 125, 1244-1255.	0.6	26
128	Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood, 2015, 125, 3114-3117.	0.6	54
129	The hematopoietic stem cell niche in homeostasis and disease. Blood, 2015, 126, 2443-2451.	0.6	182
130	â€ ⁻ Emergency exit' of bone-marrow-resident CD34+DNAM-1brightCXCR4+-committed lymphoid precursors during chronic infection and inflammation. Nature Communications, 2015, 6, 8109.	5.8	22
131	Gene-expression and in vitro function of mesenchymal stromal cells are affected in juvenile myelomonocytic leukemia. Haematologica, 2015, 100, 1434-1441.	1.7	5
132	PTH Signaling in Osteoprogenitors Is Essential for B-Lymphocyte Differentiation and Mobilization. Journal of Bone and Mineral Research, 2015, 30, 2273-2286.	3.1	55

#	Article	IF	CITATIONS
133	The Bone Marrow Endosteal Niche: How Far from the Surface?. Journal of Cellular Biochemistry, 2015, 116, 6-11.	1.2	35
134	Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnology Journal, 2015, 10, 1529-1545.	1.8	81
135	EphB4 Expressing Stromal Cells Exhibit an Enhanced Capacity for Hematopoietic Stem Cell Maintenance. Stem Cells, 2015, 33, 2838-2849.	1.4	29
136	Ablation of <i>Wntless</i> in endosteal niches impairs lymphopoiesis rather than HSCs maintenance. European Journal of Immunology, 2015, 45, 2650-2660.	1.6	17
137	BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression Is Essential During Fracture Repair. Journal of Bone and Mineral Research, 2015, 30, 2014-2027.	3.1	34
138	The critical and specific transcriptional regulator of the microenvironmental niche for hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2015, 22, 330-336.	1.2	16
139	Generation and characterization of mice harboring a conditional CXCL12 allele. International Journal of Developmental Biology, 2015, 59, 205-209.	0.3	5
140	Concise Review: Asymmetric Cell Divisions in Stem Cell Biology. Symmetry, 2015, 7, 2025-2037.	1.1	15
141	Beta Adrenergic Signaling: A Targetable Regulator of Angiosarcoma and Hemangiosarcoma. Veterinary Sciences, 2015, 2, 270-292.	0.6	7
142	Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?. Frontiers in Cellular Neuroscience, 2015, 9, 218.	1.8	11
143	The Perivascular Niche and Self-Renewal of Stem Cells. Frontiers in Physiology, 2015, 6, 367.	1.3	60
144	Making Blood: The Haematopoietic Niche throughout Ontogeny. Stem Cells International, 2015, 2015, 1-14.	1.2	20
145	Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. ELife, 2015, 4, e05521.	2.8	140
146	The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	21
147	Biliary Epithelial Cells Are Not the Predominant Source of Hepatic CXCL12. American Journal of Pathology, 2015, 185, 1859-1866.	1.9	5
148	Tissue engineered humanized bone supports human hematopoiesisÂinÂvivo. Biomaterials, 2015, 61, 103-114.	5.7	62
149	Perivascular deletion of murine Rac reverses the ratio of marrow arterioles and sinusoid vessels and alters hematopoiesis in vivo. Blood, 2015, 125, 3105-3113.	0.6	7
150	CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. Cancer Cell, 2015, 27, 755-768.	7.7	216

#	Article	IF	CITATIONS
151	CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 27, 769-779.	7.7	147
152	Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 2015, 16, 254-267.	5.2	358
153	Contributions of Nonhematopoietic Cells and Mediators to Immune Responses: Implications For Immunotoxicology. Toxicological Sciences, 2015, 145, 214-232.	1.4	11
154	Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny. Cardiovascular Research, 2015, 107, 352-363.	1.8	11
155	Influence of Bone Marrow Microenvironment on Leukemic Stem Cells. Advances in Cancer Research, 2015, 127, 227-252.	1.9	37
156	Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis—Lessons From Pharmacological and Genetic Models. Stem Cells, 2015, 33, 2391-2399.	1.4	81
157	Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche. Experimental Hematology, 2015, 43, 963-973.e4.	0.2	5
158	Skeletal stem cells for bone development, homeostasis and repair: one or many?. BoneKEy Reports, 2015, 4, 769.	2.7	5
159	C-CSF induces up-regulation of CXCR4 expression in human hematopoietic stem cells by beta-adrenergic agonist. Hematology, 2015, 20, 462-468.	0.7	21
160	ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking. Stem Cell Reports, 2015, 4, 255-268.	2.3	49
161	Matrix metalloproteinases in stem cell mobilization. Matrix Biology, 2015, 44-46, 175-183.	1.5	51
162	Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 2015, 17, 123-136.	4.6	120
163	B Cell Localization and Migration in Health and Disease. , 2015, , 187-214.		1
164	Mesenchymal stromal cells for sphincter regeneration. Advanced Drug Delivery Reviews, 2015, 82-83, 123-136.	6.6	21
165	Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche. Cell, 2015, 160, 241-252.	13.5	291
166	Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells. Stem Cells, 2015, 33, 1554-1565.	1.4	38
167	Experimental models of bone metastasis: Opportunities for the study of cancer dormancy. Advanced Drug Delivery Reviews, 2015, 94, 141-150.	6.6	18
168	The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cellular and Molecular Life Sciences, 2015, 72, 1517-1536.	2.4	70

#	Article	IF	CITATIONS
169	Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs. Blood Cells, Molecules, and Diseases, 2015, 55, 220-227.	0.6	39
170	Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem Cell Research, 2015, 14, 356-368.	0.3	45
172	Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial AT2R and cytoskeletal dysregulation. Nature Communications, 2015, 6, 5914.	5.8	15
173	The Lysine Acetyltransferase Activator Brpf1 Governs Dentate Gyrus Development through Neural Stem Cells and Progenitors. PLoS Genetics, 2015, 11, e1005034.	1.5	43
174	Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Human Gene Therapy, 2015, 26, 506-517.	1.4	148
175	BMSCs and hematopoiesis. Immunology Letters, 2015, 168, 129-135.	1.1	46
176	Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Experimental Biology and Medicine, 2015, 240, 1099-1106.	1.1	66
177	Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ. Cytokine, 2015, 76, 214-221.	1.4	25
178	Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia, 2015, 29, 2285-2295.	3.3	103
179	Directional migration of adult hematopoeitic progenitors to C6 glioma in vitro. Oncology Letters, 2015, 9, 1839-1844.	0.8	8
180	New Biomolecular Approaches to the Treatment of Glioblastoma Multiforme. Bulletin of Experimental Biology and Medicine, 2015, 158, 794-799.	0.3	4
181	Acute Myelogenous Leukemia and its Microenvironment: A Molecular Conversation. Seminars in Hematology, 2015, 52, 200-206.	1.8	28
182	Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. Journal of Experimental Medicine, 2015, 212, 759-774.	4.2	122
183	Neural Regulation of Hematopoiesis, Inflammation, and Cancer. Neuron, 2015, 86, 360-373.	3.8	184
184	Androgens Regulate Bone Marrow B Lymphopoiesis in Male Mice by Targeting Osteoblast-Lineage Cells. Endocrinology, 2015, 156, 1228-1236.	1.4	16
185	HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia, 2015, 29, 1366-1378.	3.3	45
186	Mesenchymal Cell Contributions to the Stem Cell Niche. Cell Stem Cell, 2015, 16, 239-253.	5.2	444
187	Microenvironmental Remodeling as a Parameter and Prognostic Factor of Heterogeneous Leukemogenesis in Acute Myelogenous Leukemia. Cancer Research, 2015, 75, 2222-2231.	0.4	124

#	ARTICLE Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death and Differentiation, 2015, 22, 1654-1664.	IF 5.0	Citations 86
189	Targeting the Microenvironment in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2015, 10, 126-131.	1.2	68
190	Making sense of hematopoietic stem cell niches. Blood, 2015, 125, 2621-2629.	0.6	342
191	Switching roles: the functional plasticity of adult tissue stem cells. EMBO Journal, 2015, 34, 1164-1179.	3.5	77
192	ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica, 2015, 100, 585-594.	1.7	38
193	Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annual Review of Immunology, 2015, 33, 715-745.	9.5	205
194	Ex Vivo Induced Regulatory Human/Murine Mesenchymal Stem Cells as Immune Modulators. Stem Cells, 2015, 33, 2256-2267.	1.4	33
195	Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention. Stem Cells, 2015, 33, 2280-2293.	1.4	34
196	Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature, 2015, 526, 126-130.	13.7	564
197	A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica, 2015, 100, 1376-1387.	1.7	90
198	Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nature Protocols, 2015, 10, 1860-1896.	5.5	234
199	Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia. Leukemia Research, 2015, 39, 1437-1442.	0.4	11
200	Ovulation and extra-ovarian origin of ovarian cancer. Scientific Reports, 2014, 4, 6116.	1.6	54
201	CXCR 2 modulates bone marrow vascular repair and haematopoietic recovery postâ€ŧransplant. British Journal of Haematology, 2015, 169, 552-564.	1.2	8
202	Bone marrow stem cells: current and emerging concepts. Annals of the New York Academy of Sciences, 2015, 1335, 32-44.	1.8	75
204	Tissue-Specific Stem Cell Niche. Pancreatic Islet Biology, 2015, , .	0.1	4
205	Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis. Stem Cell Reports, 2015, 5, 881-894.	2.3	43
206	Skeletal Stem Cell Niche of the Bone Marrow. Pancreatic Islet Biology, 2015, , 245-279.	0.1	1

#	Article	IF	CITATIONS
207	Vascular Niche in HSC Development, Maintenance and Regulation. Pancreatic Islet Biology, 2015, , 191-219.	0.1	1
208	In Vivo Femtosecond Ablation and Imaging in Bone with a High Repetition Rate Source. , 2015, , .		0
209	Mesenchymal Progenitor Cells for the Osteogenic Lineage. Current Molecular Biology Reports, 2015, 1, 95-100.	0.8	14
210	Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 343-356.	7.7	145
211	Bone metastasis and the metastatic niche. Journal of Molecular Medicine, 2015, 93, 1203-1212.	1.7	124
212	CXCL12 catches T-ALL at the entrance of the bone marrow. Trends in Immunology, 2015, 36, 504-506.	2.9	1
213	Stromal-Derived Factor-1α and Interleukin-7 Treatment Improves Homeostatic Proliferation of NaÃ ⁻ ve CD4+ T Cells afterÂAllogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1721-1731.	2.0	16
214	Connexins. International Review of Cell and Molecular Biology, 2015, 318, 27-62.	1.6	7
215	The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development. Developmental Cell, 2015, 33, 455-468.	3.1	108
216	Regulation of hematopoietic stem cells in the niche. Science China Life Sciences, 2015, 58, 1209-1215.	2.3	25
217	Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death and Differentiation, 2015, 22, 187-198.	5.0	195
218	Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia, 2015, 29, 259-268.	3.3	70
219	ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Experimental Hematology, 2015, 43, 44-52.e3.	0.2	11
220	Interleukin-1 beta enhances human multipotent mesenchymal stromal cell proliferative potential and their ability to maintain hematopoietic precursor cells. Cytokine, 2015, 71, 246-254.	1.4	22
221	Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. International Journal of Cancer, 2015, 136, 44-54.	2.3	35
222	Endogenous Mesenchymal Stromal Cells in Bone Marrow Are Required to Preserve Muscle Function in mdx Mice. Stem Cells, 2015, 33, 962-975.	1.4	22
223	Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells. Stem Cells Translational Medicine, 2015, 4, 56-65.	1.6	44
224	Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region. Bone, 2015, 71, 76-88.	1.4	14

		CITATION REI	PORT	
#	Article		IF	CITATIONS
225	Stem cell programs are retained in human leukemic lymphoblasts. Oncogene, 2015, 34	·, 2083-2093.	2.6	7
226	Stem cells and bone: A historical perspective. Bone, 2015, 70, 2-9.		1.4	41
227	Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral cir associated with OPN expression in circulating blood cells. Journal of Bone and Mineral I 2015, 33, 48-54.	culation Metabolism,	1.3	3
228	Structure and Function of the Bone Marrow Hematopoietic Niche. , 2016, , 400-406.			1
229	Pluripotent Stem Cells and Their Dynamic Niche. , 2016, , .			4
230	Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia Cancer Biology and Medicine, 2016, 13, 248-259.	: Yin and Yang.	1.4	101
231	The Role of Sex Steroids in the Effects of Immune System on Bone. , 2016, , 215-239.			1
232	Trafficking of Osteoclast Precursors. , 2016, , 25-40.			1
233	Osteoimmunology and the Osteoblast. , 2016, , 71-81.			4
234	Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis. Endocrinolog Metabolism, 2016, 31, 206.	y and	1.3	37
235	The Effects of Immune Cell Products (Cytokines and Hematopoietic Cell Growth Factor Cells. , 2016, , 143-167.	s) on Bone		9
236	Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. International, 2016, 2016, 1-14.	Stem Cells	1.2	33
237	Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Stem Cells International, 2016, 2016, 1-8.	Research.	1.2	8
238	Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Ho Stem Cells International, 2016, 2016, 1-11.	meostasis.	1.2	131
239	A T Cell View of the Bone Marrow. Frontiers in Immunology, 2016, 7, 184.		2.2	37
240	Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Aplastic Anemia. Frontiers in Immunology, 2016, 7, 330.	Acquired	2.2	48
241	Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the International Journal of Molecular Sciences, 2016, 17, 553.	Clinic.	1.8	12
242	Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—M and Clonality?. International Journal of Molecular Sciences, 2016, 17, 1009.	asters of Survival	1.8	39

	Сітатіс	on Report	
#	Article	IF	CITATIONS
243	Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis. International Journal of Molecular Sciences, 2016, 17, 1162.	1.8	19
244	Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation. PLoS ONE, 2016, 11, e0166040.	1.1	14
245	Heterogeneous Niche Activity of Ex-Vivo Expanded MSCs as Factor for Variable Outcomes in Hematopoietic Recovery. PLoS ONE, 2016, 11, e0168036.	1.1	13
246	Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Frontiers in Physiology, 2016, 7, 349.	1.3	26
247	Bone Marrow Hematopoietic Niches. , 2016, , 103-119.		1
248	Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis. Current Opinion in Hematology, 2016, 23, 339-345.	1.2	21
249	Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology, 2016, 40, 193-207.	3.3	41
250	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	6.6	212
251	Neuropeptide Y Induces Hematopoietic Stem/Progenitor Cell Mobilization by Regulating Matrix Metalloproteinase-9 Activity Through Y1 Receptor in Osteoblasts. Stem Cells, 2016, 34, 2145-2156.	1.4	33
252	CXCR4 signaling in health and disease. Immunology Letters, 2016, 177, 6-15.	1,1	197
253	Microenvironmental cues for T ell acute lymphoblastic leukemia development. Immunological Reviews, 2016, 271, 156-172.	2.8	32
254	Targeting of Mesenchymal Stromal Cells by <i>Cre</i> -Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells. Journal of Bone and Mineral Research, 2016, 31, 2001-2007.	3.1	88
255	VEGF-sdf1 recruitment of CXCR7 ⁺ bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration. American Journal of Physiology - Renal Physiology, 2016, 310, G739-G746.	1.6	55
259	Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 2016, 45, 1219-1231.	6.6	199
260	Osteoblasts secrete miRNA-containing extracellular vesicles that enhance expansion of human umbilical cord blood cells. Scientific Reports, 2016, 6, 32034.	1.6	27
261	Tumor–Stroma Interactions in Bone Metastasis: Molecular Mechanisms and Therapeutic Implications. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 151-161.	2.0	22
262	CXCL12/SDF-1 and Hematopoiesis. , 2016, , 624-631.		4
263	Identification of a CD133â^'CD55â^' population functions as a fetal common skeletal progenitor. Scientific Reports, 2016, 6, 38632.	1.6	3

#	Article	IF	CITATIONS
264	Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow. Scientific Reports, 2016, 6, 36411.	1.6	22
265	Rac signal adaptation controls neutrophil mobilization from the bone marrow. Science Signaling, 2016, 9, ra124.	1.6	14
266	The many faces of hematopoietic stem cell heterogeneity. Development (Cambridge), 2016, 143, 4571-4581.	1.2	72
267	Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Scientific Reports, 2016, 6, 22288.	1.6	75
268	New approaches to targeting the bone marrow microenvironment in multiple myeloma. Current Opinion in Pharmacology, 2016, 28, 43-49.	1.7	25
269	Specially modified stromal and immune microenvironment in injected boneÂmarrow following intrabone transplantation facilitates allogeneicÂhematopoietic stem cell engraftment. Experimental Hematology, 2016, 44, 614-623.e3.	0.2	1
270	Methods and Strategies for Lineage Tracing of Mesenchymal Progenitor Cells. Methods in Molecular Biology, 2016, 1416, 171-203.	0.4	9
271	Hematopoietic Stem Cell Niche in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 555-581.	9.6	129
273	Bone metastasis: the importance of the neighbourhood. Nature Reviews Cancer, 2016, 16, 373-386.	12.8	369
274	Hematopoietic Stem Cell and Its Bone Marrow Niche. Current Topics in Developmental Biology, 2016, 118, 21-44.	1.0	109
275	Heterogeneity of the bone marrow niche. Current Opinion in Hematology, 2016, 23, 331-338.	1.2	83
276	Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood, 2016, 127, 616-625.	0.6	80
277	Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma. Expert Opinion on Drug Discovery, 2016, 11, 1093-1109.	2.5	28
278	Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncology Letters, 2016, 12, 1721-1728.	0.8	12
279	tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood, 2016, 128, 1336-1345.	0.6	53
280	Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Bone Marrow. Stem Cell Reports, 2016, 7, 220-235.	2.3	43
281	RANKL (Receptor Activator of NFκB Ligand) Produced by Osteocytes Is Required for the Increase in B Cells and Bone Loss Caused by Estrogen Deficiency in Mice. Journal of Biological Chemistry, 2016, 291, 24838-24850.	1.6	82
283	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators. Cell Stem Cell, 2016, 19, 530-543.	5.2	136

#	Article	IF	CITATIONS
284	Inflammation and Metastasis. , 2016, , .		4
285	Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme. Journal of Anatomy, 2016, 229, 153-169.	0.9	8
286	Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E587-E593.	1.8	88
287	Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports, 2016, 6, 957-969.	2.3	11
288	A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation. Radiation Research, 2016, 186, 141.	0.7	31
289	The bone marrow pericyte: an orchestrator of vascular niche. Regenerative Medicine, 2016, 11, 883-895.	0.8	35
290	Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. BMC Genomics, 2016, 17, 944.	1.2	55
291	CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood, 2016, 128, 371-383.	0.6	61
292	Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists. Journal of Medicinal Chemistry, 2016, 59, 7512-7524.	2.9	7
293	Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocrine-Related Cancer, 2016, 23, R411-R422.	1.6	27
294	Time related variations in stem cell harvesting of umbilical cord blood. Scientific Reports, 2016, 6, 21404.	1.6	33
295	Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature, 2016, 539, 304-308.	13.7	210
296	Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nature Communications, 2016, 7, 13095.	5.8	60
297	Mesenchymal Stromal Cell-derived Extracellular Vesicles Promote Myeloid-biased Multipotent Hematopoietic Progenitor Expansion via Toll-Like Receptor Engagement. Journal of Biological Chemistry, 2016, 291, 24607-24617.	1.6	50
298	Involvement of B cells in nonâ€infectious uveitis. Clinical and Translational Immunology, 2016, 5, e63.	1.7	51
299	Multiple genetically engineered humanized microenvironments in a single mouse. Biomaterials Research, 2016, 20, 19.	3.2	11
300	Comparative miRNA-Based Fingerprinting Reveals Biological Differences inÂHuman Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells. Stem Cell Reports, 2016, 6, 729-742.	2.3	26
301	p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions. Stem Cell Reports, 2016, 6, 566-578.	2.3	32

#	Article	IF	CITATIONS
302	Noncanonical Wnt signaling in stromal cells regulates B-lymphogenesis through interleukin-7 expression. Biochemistry and Biophysics Reports, 2016, 6, 179-184.	0.7	3
303	Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity, 2016, 44, 1434-1443.	6.6	99
304	The human and murine hematopoietic stem cell niches: are they comparable?. Annals of the New York Academy of Sciences, 2016, 1370, 55-64.	1.8	15
305	Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 2016, 1370, 82-96.	1.8	235
306	Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function. Cancer Research, 2016, 76, 1641-1652.	0.4	45
307	Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells. Cell Cycle, 2016, 15, 540-545.	1.3	23
308	Polycythemia is associated with bone loss and reduced osteoblast activity in mice. Osteoporosis International, 2016, 27, 1559-1568.	1.3	22
309	Mechanisms of self-renewal in hematopoietic stem cells. International Journal of Hematology, 2016, 103, 498-509.	0.7	27
310	Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 2016, 351, 176-180.	6.0	193
311	Fabrication of bone marrow-like tissue inÂvitro from dispersed-state bone marrow cells. Regenerative Therapy, 2016, 3, 32-37.	1.4	8
312	Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. Cell Stem Cell, 2016, 18, 782-796.	5.2	346
313	SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells, Molecules, and Diseases, 2016, 58, 13-18.	0.6	15
314	Cell intrinsic and extrinsic regulation of leukemia cell metabolism. International Journal of Hematology, 2016, 103, 607-616.	0.7	23
315	Ptch2 loss drives myeloproliferation and myeloproliferative neoplasm progression. Journal of Experimental Medicine, 2016, 213, 273-290.	4.2	32
316	Retinoic Acid Receptor Î ³ Regulates B and T Lymphopoiesis via Nestin-Expressing Cells in the Bone Marrow and Thymic Microenvironments. Journal of Immunology, 2016, 196, 2132-2144.	0.4	16
317	Targeting the leukemia–stroma interaction in acute myeloid leukemia: rationale and latest evidence. Therapeutic Advances in Hematology, 2016, 7, 40-51.	1.1	52
318	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.3	400
319	Hematopoietic niches, erythropoiesis and anemia of chronic infection. Experimental Hematology, 2016, 44, 85-91.	0.2	32

#	Article	IF	Citations
320	Molecular Mechanisms of CML Stem Cell Maintenance. , 2016, , 11-28.		0
321	LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Annals of Hematology, 2016, 95, 173-178.	0.8	33
322	Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nature Reviews Rheumatology, 2016, 12, 154-168.	3.5	108
323	Exosome-mediated microenvironment dysregulation in leukemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 464-470.	1.9	63
324	The role of Eph/ephrin molecules in stromal–hematopoietic interactions. International Journal of Hematology, 2016, 103, 145-154.	0.7	20
325	Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Advanced Drug Delivery Reviews, 2016, 99, 212-220.	6.6	19
326	Hypoxia regulates the hematopoietic stem cell niche. Pflugers Archiv European Journal of Physiology, 2016, 468, 13-22.	1.3	42
327	Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cellular and Molecular Life Sciences, 2016, 73, 687-703.	2.4	20
328	Bone Development and Remodeling. , 2016, , 1038-1062.e8.		6
329	Recruitment of osteogenic cells to bone formation sites during development and fracture repair. Zeitschrift Fur Rheumatologie, 2017, 76, 5-9.	0.5	1
330	Interactions between <scp>CXCR4</scp> and <scp>CXCL12</scp> promote cell migration and invasion of canine hemangiosarcoma. Veterinary and Comparative Oncology, 2017, 15, 315-327.	0.8	16
331	Niche Extracellular Matrix Components and Their Influence on HSC. Journal of Cellular Biochemistry, 2017, 118, 1984-1993.	1.2	38
332	TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
333	Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature Cell Biology, 2017, 19, 214-223.	4.6	332
334	Latest perspectives on macrophages in bone homeostasis. Pflugers Archiv European Journal of Physiology, 2017, 469, 517-525.	1.3	28
335	Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood, 2017, 129, 2124-2131.	0.6	71
336	Impact of osteoblast maturation on their paracrine growth enhancing activity on cord blood progenitors. European Journal of Haematology, 2017, 98, 542-552.	1.1	5
337	Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis. Journal of Immunology, 2017, 198, 3089-3098.	0.4	17

#	Article	IF	CITATIONS
338	N adherin Regulation of Bone Growth and Homeostasis Is Osteolineage Stage–Specific. Journal of Bone and Mineral Research, 2017, 32, 1332-1342.	3.1	19
339	The evolving view of the hematopoietic stem cell niche. Experimental Hematology, 2017, 50, 22-26.	0.2	60
340	Neoplasms in the bone marrow niches: disturbance of the microecosystem. International Journal of Hematology, 2017, 105, 558-565.	0.7	1
341	Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia. Journal of Molecular Medicine, 2017, 95, 719-727.	1.7	18
342	Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Current Opinion in Hematology, 2017, 24, 289-299.	1.2	33
343	Paracrine regulation of normal and malignant hematopoiesis. Current Opinion in Hematology, 2017, 24, 329-335.	1.2	2
344	Older Men With Anemia Have Increased Fracture Risk Independent of Bone Mineral Density. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2199-2206.	1.8	40
345	Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation. Stem Cell Research and Therapy, 2017, 8, 106.	2.4	11
346	In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism. Proceedings of the United States of America, 2017, 114, 5419-5424.	3.3	36
347	Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nature Cell Biology, 2017, 19, 677-688.	4.6	125
348	A Chemoattractant-Guided Walk Through Lymphopoiesis. Advances in Immunology, 2017, 134, 47-88.	1.1	32
349	The Osteoblastic Niche in Hematopoiesis and Hematological Myeloid Malignancies. Current Molecular Biology Reports, 2017, 3, 53-62.	0.8	36
350	Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nature Medicine, 2017, 23, 91-99.	15.2	61
351	CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Scientific Reports, 2017, 7, 3305.	1.6	47
352	Complexity of bone marrow hematopoietic stem cell niche. International Journal of Hematology, 2017, 106, 45-54.	0.7	109
353	Ephrin ligands and Eph receptors contribution to hematopoiesis. Cellular and Molecular Life Sciences, 2017, 74, 3377-3394.	2.4	14
354	Using Zebrafish to Study Pathways that Regulate Hematopoietic Stem Cell Self-Renewal and Migration. Stem Cell Reports, 2017, 8, 1465-1471.	2.3	15
355	Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts. Cell Reports, 2017, 19, 1902-1916.	2.9	187

#	Article	IF	CITATIONS
356	Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e279.	5.9	14
357	Adult haematopoietic stem cell niches. Nature Reviews Immunology, 2017, 17, 573-590.	10.6	528
358	High-density lipoprotein (HDL) metabolism and bone mass. Journal of Endocrinology, 2017, 233, R95-R107.	1.2	47
359	Hematopoietic stem cells under pressure. Current Opinion in Hematology, 2017, 24, 314-321.	1.2	25
360	Concise Review: Stem Cells in Osteoimmunology. Stem Cells, 2017, 35, 1461-1467.	1.4	43
361	Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell, 2017, 20, 771-784.e6.	5.2	566
362	Endosteal-like extracellular matrix expression on melt electrospun written scaffolds. Acta Biomaterialia, 2017, 52, 145-158.	4.1	58
363	Sphingosine-1-Phosphate Receptor-3 Supports Hematopoietic Stem and Progenitor Cell Residence Within the Bone Marrow Niche. Stem Cells, 2017, 35, 1040-1052.	1.4	30
364	Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. International Journal of Hematology, 2017, 105, 129-140.	0.7	78
365	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
366	Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. International Journal of Clinical Oncology, 2017, 22, 991-1000.	1.0	66
367	Targeting primary acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143). Scientific Reports, 2017, 7, 7305.	1.6	25
368	Skeletal Stem Cells: Origins, Functions, and Uncertainties. Current Molecular Biology Reports, 2017, 3, 236-246.	0.8	7
369	Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. Journal of Experimental Medicine, 2017, 214, 2817-2827.	4.2	31
370	The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression. Experimental Hematology, 2017, 55, 3-18.	0.2	47
371	Notch Ligands for Lymphocyte Development. , 2017, , 3-20.		0
372	One-Dimensional Hydroxyapatite Nanostructures with Tunable Length for Efficient Stem Cell Differentiation Regulation. ACS Applied Materials & Interfaces, 2017, 9, 33717-33727.	4.0	51
373	Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Reports, 2017, 9, 1124-1138.	2.3	27

ARTICLE IF CITATIONS # Targeting subchondral bone mesenchymal stem cell activities for intrinsic joint repair in 374 0.9 21 osteoarthritis. Future Science OA, 2017, 3, FSO228. Effects of in vivo deletion of GATA2 in bone marrow stromal cells. Experimental Hematology, 2017, 56, 0.2 31-45.e2. Current Developments in Mobilization of Hematopoietic Stem and Progenitor Cells and Their 376 0.7 20 Interaction with Niches in Bone Marrow. Transfusion Medicine and Hemotherapy, 2017, 44, 151-164. Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem 5.8 34 cells. Nature Communications, 2017, 8, 221. Role of PTH in Bone Marrow Niche and HSC Regulation. Current Stem Cell Reports, 2017, 3, 210-217. 378 0.7 5 Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury. Brain Research, 2017, 1672, 91-105. 379 1.1 In Vivo Rescue of the Hematopoietic Niche By Pluripotent Stem Cell Complementation of Defective 380 1.4 8 Osteoblast Compartments. Stem Cells, 2017, 35, 2150-2159. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. 381 4.6 359 Nature Cell Biology, 2017, 19, 891-903. The Road Map for Megakaryopoietic Lineage from Hematopoietic Stem/Progenitor Cells. Stem Cells 382 1.6 13 Translational Medicine, 2017, 6, 1661-1665. Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Scientific 1.6 Reports, 2017, 7, 6859. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves 384 105 5.2 Hematopoietic Stem Cell Transplantation. Cell Stem Cell, 2017, 21, 241-255.e6. Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes. Blood 0.6 Cells, Molecules, and Diseases, 2017, 66, 37-46. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. 386 13.1 347 Physiological Reviews, 2017, 97, 1295-1349. HSC Niche Biology and HSC Expansion Ex Vivo. Trends in Molecular Medicine, 2017, 23, 799-819. 3.5 Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF ^{high} 388 6.0 270 neutrophils. Science, 2017, 358, . Thermoneutrality but Not UCP1 Deficiency Suppresses Monocyte Mobilization Into Blood. Circulation Research, 2017, 121, 662-676. 2.0 Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone 390 1.6 38 Marrow Stromal Cell Hierarchy. Scientific Reports, 2017, 7, 4928. Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and 391 engraftment. Journal of Molecular Medicine, 2017, 95, 809-819.

#	Article	IF	CITATIONS
392	Fibroblast growth factor 2 supports osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow suppression. Cell Communication and Signaling, 2017, 15, 25.	2.7	10
393	Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 2017, 97, 135-187.	13.1	541
394	The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Seminars in Hematology, 2017, 54, 25-32.	1.8	50
395	ILâ€7 and immobilized Kitâ€ligand stimulate serum―and stromal cellâ€free cultures of precursor Bâ€cell lines and clones. European Journal of Immunology, 2017, 47, 206-212.	1.6	6
396	Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Seminars in Cell and Developmental Biology, 2017, 61, 12-21.	2.3	97
397	It takes nerve to fight back: The significance of neural innervation of the bone marrow and spleen for immune function. Seminars in Cell and Developmental Biology, 2017, 61, 60-70.	2.3	74
398	Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair?. Neurochemistry International, 2017, 106, 101-107.	1.9	25
399	Enhanced Hematopoietic Stem Cell Self-Renewal-Promoting Ability of Clonal Primary Mesenchymal Stromal/Stem cells Versus Their Osteogenic Progeny. Stem Cells, 2017, 35, 473-484.	1.4	20
400	The Cytokine CXCL12 Promotes Basket Interneuron Inhibitory Synapses in the Medial Prefrontal Cortex. Cerebral Cortex, 2017, 27, 4303-4313.	1.6	24
401	Bone Density Loss Is Associated With Blood Cell Counts. Journal of Bone and Mineral Research, 2017, 32, 212-220.	3.1	43
402	The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct. Journal of Bone and Mineral Research, 2017, 32, 560-574.	3.1	91
403	Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment. Leukemia, 2017, 31, 1582-1592.	3.3	27
404	Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling. Brain, Behavior, and Immunity, 2017, 59, 288-299.	2.0	26
405	Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Translational Medicine, 2017, 6, 482-489.	1.6	23
406	CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget, 2017, 8, 54082-54095.	0.8	25
407	Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Advances, 2017, 1, 407-416.	2.5	84
408	Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia. International Journal of Molecular Sciences, 2017, 18, 1824.	1.8	27
409	Regulation of Hematopoietic Stem Cell Dynamics by Molecular Niche Signaling. , 2017, , 51-61.		0

#	Article	IF	CITATIONS
410	Use of Imaging Techniques to Illuminate Dynamics of Hematopoietic Stem Cells and Their Niches. Frontiers in Cell and Developmental Biology, 2017, 5, 62.	1.8	8
411	The Role of the Bone Marrow Stromal Compartment in the Hematopoietic Response to Microbial Infections. Frontiers in Immunology, 2016, 7, 689.	2.2	22
412	Natural Killer Cell Development and Maturation Revisited: Possible Implications of a Novel Distinct Linâ^'CD34+DNAM-1brightCXCR4+ Cell Progenitor. Frontiers in Immunology, 2017, 8, 268.	2.2	16
413	Developmental and Functional Control of Natural Killer Cells by Cytokines. Frontiers in Immunology, 2017, 8, 930.	2.2	203
414	Mesenchymal Stem Cells in Myeloid Malignancies: A Focus on Immune Escaping and Therapeutic Implications. Stem Cells International, 2017, 2017, 1-13.	1.2	15
415	Structure and Functions of Blood Vessels and Vascular Niches in Bone. Stem Cells International, 2017, 2017, 1-10.	1.2	66
416	Tsc2 disruption in mesenchymal progenitors results in tumors with vascular anomalies overexpressing Lgals3. ELife, 2017, 6, .	2.8	13
417	5.11 Engineering the Haematopoietic Stem Cell Niche In Vitro. , 2017, , 187-199.		1
418	What Are Mesenchymal Stromal Cells? Origin and Discovery of Mesenchymal Stromal Cells. , 2017, , 1-37.		2
419	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16.	0.1	2
419 420	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16. The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, , 17-34.	0.1	2
419 420 421	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16. The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, 17-34. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. Journal of Experimental and Clinical Cancer Research, 2017, 36, 108.	0.1 0.1 3.5	2 0 97
419420421422	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16. The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, 17-34. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical crials. Journal of Experimental and Clinical Cancer Research, 2017, 36, 108. The Importance of Altered Hematopoietic Microenvironmental Regulation in Chronic Myeloproliferative Disorders. Journal of Hematology & Thromboembolic Diseases, 2017, 05, .	0.1 0.1 3.5 0.1	2 0 97 0
 419 420 421 422 423 	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16.The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, , 17-34.Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. Journal of Experimental and Clinical Cancer Research, 2017, 36, 108.The Importance of Altered Hematopoietic Microenvironmental Regulation in Chronic Myeloproliferative Disorders. Journal of Hematology & Thromboembolic Diseases, 2017, 05, .Harnessing the Biology of Stem Cells' Niche. , 2017, 15-31.	0.1 0.1 3.5 0.1	2 0 97 0 4
 419 420 421 422 423 424 	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16. The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, 17-34. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. Journal of Experimental and Clinical Cancer Research, 2017, 36, 108. The Importance of Altered Hematopoietic Microenvironmental Regulation in Chronic Myeloproliferative Disorders. Journal of Hematology & Thromboembolic Diseases, 2017, 05, . Harnessing the Biology of Stem Cells' Niche. , 2017, 15-31. MiR221 promotes precursor Bâ€cell retention in the bone marrow by amplifying the PI3Kâ€signaling pathway in mice. European Journal of Immunology, 2018, 48, 975-989.	0.1 0.1 3.5 0.1 1.6	2 0 97 0 4
 419 420 421 422 423 424 425 	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16.The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, 17-34.Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. Journal of Experimental and Clinical Cancer Research, 2017, 36, 108.The Importance of Altered Hematopoietic Microenvironmental Regulation in Chronic Myeloproliferative Disorders. Journal of Hematology & Thromboembolic Diseases, 2017, 05, .Harnessing the Biology of Stem Cells' Niche. , 2017, , 15-31.MiR221 promotes precursor Bâ€cell retention in the bone marrow by amplifying the PI3Kâ€signaling pathway in mice. European Journal of Immunology, 2018, 48, 975-989.Polylactic Acid Nanopillar Array-Driven Osteogenic Differentiation of Human Adipose-Derived Stem Cells Determined by Pillar Diameter. Nano Letters, 2018, 18, 2243-2253.	0.1 0.1 3.5 0.1 1.6	2 0 97 0 4 12
 419 420 421 422 423 424 425 426 	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16.The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, , 17-34.Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. Journal of Experimental and Clinical Cancer Research, 2017, 36, 108.The Importance of Altered Hematopoietic Microenvironmental Regulation in Chronic Myeloproliferative Disorders. Journal of Hematology & Thromboembolic Diseases, 2017, 05, .Harnessing the Biology of Stem Cells' Niche. , 2017, 15-31.MiR221 promotes precursor Bâ€cell retention in the bone marrow by amplifying the PI3Kâ€signaling pathway in mice. European Journal of Immunology, 2018, 48, 975-989.Polylactic Acid Nanopillar Array-Driven Osteogenic Differentiation of Human Adipose-Derived Stem Cells Determined by Pillar Diameter. Nano Letters, 2018, 18, 2243-2253.Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications, 2018, 9, 773.	0.1 0.1 3.5 0.1 1.6 4.5	2 0 97 0 4 12 92 366

#	Article	IF	CITATIONS
428	Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to G _{Alert} . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4463-E4472.	3.3	89
429	Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 579-589.	1.1	24
430	Niches for Hematopoietic Stem Cells and Their Progeny. Immunity, 2018, 48, 632-648.	6.6	290
431	Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 788-802.	2.5	106
432	Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science, 2018, 360, 106-110.	6.0	83
433	JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica, 2018, 103, 1160-1168.	1.7	26
434	Bone Marrow Microâ€Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies. BioEssays, 2018, 40, 1700190.	1.2	17
435	Corticosterone Production during Repeated Social Defeat Causes Monocyte Mobilization from the Bone Marrow, Glucocorticoid Resistance, and Neurovascular Adhesion Molecule Expression. Journal of Neuroscience, 2018, 38, 2328-2340.	1.7	99
436	HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E992-E1001.	3.3	74
437	The hematopoietic stem cell niche: from embryo to adult. Development (Cambridge), 2018, 145, .	1.2	155
438	The good and bad faces of the CXCR4 chemokine receptor. International Journal of Biochemistry and Cell Biology, 2018, 95, 121-131.	1.2	62
439	Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nature Reviews Rheumatology, 2018, 14, 146-156.	3.5	167
440	Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 436-446.	2.3	19
441	TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2-Driven Myeloid Malignancy Progression. Stem Cell Reports, 2018, 10, 166-179.	2.3	34
442	Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell, 2018, 22, 627-638.	5.2	233
443	Hematopoietic insults damage bone marrow niche by activating p53 in vascular endothelial cells. Experimental Hematology, 2018, 63, 41-51.e1.	0.2	14
444	The crosstalk between hematopoietic stem cells and their niches. Current Opinion in Hematology, 2018, 25, 285-289.	1.2	15
445	Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. Journal of Pathology, 2018, 245, 138-146.	2.1	16

	Сітатіо	n Report	
#	Article	IF	CITATIONS
446	SDF-1 Is an Autocrine Insulin-Desensitizing Factor in Adipocytes. Diabetes, 2018, 67, 1068-1078.	0.3	21
447	Overview of Osteoimmunology. Calcified Tissue International, 2018, 102, 503-511.	1.5	52
448	Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes and Development, 2018, 32, 359-372.	2.7	110
449	Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica, 2018, 103, 810-821.	1.7	33
450	Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxidants and Redox Signaling, 2018, 29, 149-168.	2.5	109
451	Role of the microenvironment in myeloid malignancies. Cellular and Molecular Life Sciences, 2018, 75, 1377-1391.	2.4	32
452	Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. Oncolmmunology, 2018, 7, e1414129.	2.1	39
453	Concise Review: Adaptation of the Bone Marrow Stroma in Hematopoietic Malignancies: Current Concepts and Models. Stem Cells, 2018, 36, 304-312.	1.4	15
454	Hematopoietic Stem Cell Biology. , 2018, , 95-110.e13.		0
455	Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nature Medicine, 2018, 24, 95-102.	15.2	78
456	Where Hematopoietic Stem Cells Live: The Bone Marrow Niche. Antioxidants and Redox Signaling, 2018, 29, 191-204.	2.5	92
457	Imbalanced Osteogenesis and Adipogenesis in Mice Deficient in the Chemokine Cxcl12/Sdf1 in the Bone Mesenchymal Stem/Progenitor Cells. Journal of Bone and Mineral Research, 2018, 33, 679-690.	3.1	30
458	The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia, 2018, 32, 462-469.	3.3	38
459	Adult Pulmonary Mesenchymal Progenitors. , 2018, , 337-337.		0
460	Mesenchymal Stromal Cells: Role in the BM Niche and in the Support of Hematopoietic Stem Cell Transplantation. HemaSphere, 2018, 2, e151.	1.2	53
461	Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	0
462	Loss of CXCL12/CXCR4 signalling impacts several aspects of cardiovascular development but does not exacerbate Tbx1 haploinsufficiency. PLoS ONE, 2018, 13, e0207251.	1.1	11
463	Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment. Advances in Experimental Medicine and Biology, 2018, 1100, 97-110.	0.8	20

#	Article	IF	CITATIONS
464	A DSSS Signal Detection Method Based on Wavelet Decomposition and Delay Multiplication. , 2018, , .		4
465	Twisting the bone marrow stem cell niche. Haematologica, 2018, 103, 1937-1939.	1.7	2
466	Biomaterials for cell transplantation. Nature Reviews Materials, 2018, 3, 441-456.	23.3	153
467	Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. Current Stem Cell Reports, 2018, 4, 282-290.	0.7	1
468	mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports, 2018, 8, 14501.	1.6	17
469	Aging Suppresses Skin-Derived Circulating SDF1 to Promote Full-Thickness Tissue Regeneration. Cell Reports, 2018, 24, 3383-3392.e5.	2.9	44
470	Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment. Methods in Molecular Biology, 2018, 2002, 101-119.	0.4	4
472	Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Research and Therapy, 2018, 9, 268.	2.4	24
473	The Instructive Role of the Bone Marrow Niche in Aging and Leukemia. Current Stem Cell Reports, 2018, 4, 291-298.	0.7	18
476	Loss of CXCR4/CXCL12 Signaling Causes Oculomotor Nerve Misrouting and Development of Motor Trigeminal to Oculomotor Synkinesis. , 2018, 59, 5201.		14
477	Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica, 2018, 103, 1945-1955.	1.7	50
479	Isolation and Analysis of Mesenchymal Progenitors of the Adult Hematopoietic Niche. Methods in Molecular Biology, 2018, 1842, 43-54.	0.4	0
480	CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nature Communications, 2018, 9, 3660.	5.8	39
481	Murine Bone Marrow Niches from Hematopoietic Stem Cells to B Cells. International Journal of Molecular Sciences, 2018, 19, 2353.	1.8	31
482	Molecular and Cellular Requirements for the Assembly of Tertiary Lymphoid Structures. Advances in Experimental Medicine and Biology, 2018, 1060, 55-72.	0.8	10
484	Chemotherapy-induced niche perturbs hematopoietic reconstitution in B-cell acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research, 2018, 37, 204.	3.5	16
485	Sipa1 deficiency–induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Advances, 2018, 2, 534-548.	2.5	32
486	Distinct roles of mesenchymal stem and progenitor cells during the development of acute myeloid leukemia in mice. Blood Advances, 2018, 2, 1480-1494.	2.5	25

#	Article	IF	CITATIONS
487	Impaired bone marrow B-cell development in mice with a bronchiolitis obliterans model of cGVHD. Blood Advances, 2018, 2, 2307-2319.	2.5	15
488	Neural Crossroads in the Hematopoietic Stem Cell Niche. Trends in Cell Biology, 2018, 28, 987-998.	3.6	32
489	Translational models of prostate cancer bone metastasis. Nature Reviews Urology, 2018, 15, 403-421.	1.9	88
490	Extracellular matrix protein DMP1 suppresses osteogenic differentiation of Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 2018, 501, 968-973.	1.0	14
491	Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Scientific Reports, 2018, 8, 8308.	1.6	40
492	The regulation of normal and neoplastic hematopoiesis is dependent on microenvironmental cells. Advances in Biological Regulation, 2018, 69, 11-15.	1.4	16
493	Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nature Communications, 2018, 9, 2532.	5.8	109
494	Osteocyte Biology. , 2018, , 227-240.		0
495	Osteoimmunology. , 2018, , 261-282.		1
496	ICAM-1 Deficiency in the Bone Marrow Niche Impairs Quiescence andÂRepopulation of Hematopoietic Stem Cells. Stem Cell Reports, 2018, 11, 258-273.	2.3	32
497	Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nature Communications, 2018, 9, 2449.	5.8	145
498	Local exchange of metabolites shapes immunity. Immunology, 2018, 155, 309-319.	2.0	13
499	The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis. Stem Cells International, 2018, 2018, 1-13.	1.2	44
500	Promyelocytic leukemia protein in mesenchymal stem cells is essential for leukemia progression. Annals of Hematology, 2018, 97, 1749-1755.	0.8	17
501	JAK2V617F Megakaryocytes Promote Hematopoietic Stem/Progenitor Cell Expansion in Mice Through Thrombopoietin/MPL Signaling. Stem Cells, 2018, 36, 1676-1684.	1.4	28
502	Dynamic Regulation of Hematopoietic Stem Cells by Bone Marrow Niches. Current Stem Cell Reports, 2018, 4, 201-208.	0.7	17
503	Fibroblasts as a practical alternative to mesenchymal stem cells. Journal of Translational Medicine, 2018, 16, 212.	1.8	89
504	Mesenchymal stromal cells induce a permissive state in the bone marrow that enhances G-CSF-induced hematopoietic stem cell mobilization in mice. Experimental Hematology, 2018, 64, 59-70.e2.	0.2	10

#	Article	IF	CITATIONS
505	Luteinizing hormone signaling restricts hematopoietic stem cell expansion during puberty. EMBO Journal, 2018, 37, .	3.5	16
506	Retinoic Acid Receptor Î ³ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis. Journal of Bone and Mineral Research, 2018, 33, 2202-2213.	3.1	20
507	Regulation of Malignant Hematopoiesis by Bone Marrow Microenvironment. Frontiers in Oncology, 2018, 8, 119.	1.3	10
508	Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Research and Therapy, 2018, 9, 190.	2.4	54
509	Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circulation Research, 2018, 123, 415-427.	2.0	45
510	Molecular Regulation of Differentiation in Early B-Lymphocyte Development. International Journal of Molecular Sciences, 2018, 19, 1928.	1.8	26
511	The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cellular and Molecular Life Sciences, 2018, 75, 3507-3520.	2.4	35
512	Niche TWIST1 is critical for maintaining normal hematopoiesis and impeding leukemia progression. Haematologica, 2018, 103, 1969-1979.	1.7	8
513	Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1707-1718.	1.7	18
514	Cellular and Vascular Components of Tertiary Lymphoid Structures. Methods in Molecular Biology, 2018, 1845, 17-30.	0.4	9
515	The Adaptive Remodeling of Stem Cell Niche in Stimulated Bone Marrow Counteracts the Leukemic Niche. Stem Cells, 2018, 36, 1617-1629.	1.4	16
516	Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 876-888.	1.1	32
517	Distinct Bone Marrow Sources of Pleiotrophin Control Hematopoietic Stem Cell Maintenance and Regeneration. Cell Stem Cell, 2018, 23, 370-381.e5.	5.2	88
518	Myelopoiesis in the Context of Innate Immunity. Journal of Innate Immunity, 2018, 10, 365-372.	1.8	62
519	Molecular Mechanisms Regulating the Proliferation and Maturation of Hepatic Progenitor Cells During Liver Development. , 2018, , 21-34.		0
520	The hematopoietic stem cell niche: What's so special about bone?. Bone, 2019, 119, 8-12.	1.4	20
521	Bone Marrow Adiposity: Basic and Clinical Implications. Endocrine Reviews, 2019, 40, 1187-1206.	8.9	69
522	Prospective isolation of nonhematopoietic cells of the niche and their differential molecular interactions with HSCs. Blood. 2019. 134. 1214-1226.	0.6	27

#	Article	IF	CITATIONS
523	Desperately seeking a home marrow niche for T-cell acute lymphoblastic leukaemia. Advances in Biological Regulation, 2019, 74, 100640.	1.4	10
524	New Insights on Properties and Spatial Distributions of Skeletal Stem Cells. Stem Cells International, 2019, 2019, 1-11.	1.2	5
525	How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 2019, 7, 34.	1.8	26
526	Bmi1 Suppresses Adipogenesis in the Hematopoietic Stem Cell Niche. Stem Cell Reports, 2019, 13, 545-558.	2.3	28
527	Kupffer Cells Promote the Differentiation of Adult Liver Hematopoietic Stem and Progenitor Cells into Lymphocytes via ICAM-1 and LFA-1 Interaction. Stem Cells International, 2019, 2019, 1-15.	1.2	9
528	An Effective Osteogenesis Porous CaP/Collagen Interface Compatible with Various Substrates Fabricated by Controlled Mineralization in a Delicately Adjustable Organic Matrix. Chemistry - A European Journal, 2019, 25, 16366-16376.	1.7	6
529	Role of angiocrine signals in bone development, homeostasis and disease. Open Biology, 2019, 9, 190144.	1.5	48
530	Effect of Hydroxyapatite Nanorods on the Fate of Human Adiposeâ€Derived Stem Cells Assessed In Situ at the Single Cell Level with a Highâ€Throughput, Realâ€Time Microfluidic Chip. Small, 2019, 15, e1905001.	5.2	14
531	THE ROLE OF OSTEOMACS IN REGULATING STEM CELL FUNCTION AND THE HEMATOPOIETIC NICHE. Experimental Hematology, 2019, 76, S79.	0.2	0
532	Siteâ€Specific Loadâ€Induced Expansion of Scaâ€I ⁺ Prrx1 ⁺ and Scaâ€I ^{â^'} Prrx1 ⁺ Cells in Adult Mouse Long Bone Is Attenuated With Age. JBMR Plus, 2019, 3, e10199.	1.3	15
533	Metalloproteases: On the Watch in the Hematopoietic Niche. Trends in Immunology, 2019, 40, 1053-1070.	2.9	30
534	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
535	A Revised Perspective of Skeletal Stem Cell Biology. Frontiers in Cell and Developmental Biology, 2019, 7, 189.	1.8	143
536	Bmi1 restricts the adipogenic differentiation of bone marrow stromal cells to maintain the integrity of the hematopoietic stem cell niche. Experimental Hematology, 2019, 76, 24-37.	0.2	8
537	Hematopoietic-Extrinsic Cues Dictate Circadian Redistribution of Mature and Immature Hematopoietic Cells in Blood and Spleen. Cells, 2019, 8, 1033.	1.8	11
538	Human multipotent hematopoietic progenitor cell expansion is neither supported in endothelial and endothelial/mesenchymal co-cultures nor in NSG mice. Scientific Reports, 2019, 9, 12914.	1.6	4
539	NK Cell Precursors in Human Bone Marrow in Health and Inflammation. Frontiers in Immunology, 2019, 10, 2045.	2.2	8
540	Chemokines in Physiological and Pathological Bone Remodeling. Frontiers in Immunology, 2019, 10, 2182.	2.2	99

#	Article	IF	CITATIONS
541	The role of bone cells in immune regulation during the course of infection. Seminars in Immunopathology, 2019, 41, 619-626.	2.8	15
542	Muscle-derived SDF-1α/CXCL12 modulates endothelial cell proliferation but not exercise training-induced angiogenesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R770-R779.	0.9	12
543	Transplanted spleen stromal cells with osteogenic potential support ectopic myelopoiesis. PLoS ONE, 2019, 14, e0223416.	1.1	8
544	CXCR4, but not CXCR3, drives CD8 ⁺ Tâ€cell entry into and migration through the murine bone marrow. European Journal of Immunology, 2019, 49, 576-589.	1.6	44
545	Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells. Scientific Reports, 2019, 9, 1007.	1.6	26
546	Inhibition of mesenchymal stromal cells' chemotactic effect to ameliorate paraquat-induced pulmonary fibrosis. Toxicology Letters, 2019, 307, 1-10.	0.4	8
547	Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell International, 2019, 19, 139.	1.8	12
548	TGF-β Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow. Stem Cell Reports, 2019, 13, 48-60.	2.3	26
550	Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nature Reviews Immunology, 2019, 19, 626-642.	10.6	402
551	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , .	0.4	1
551 552	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , . Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707.	0.4	1
551 552 553	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , . Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.	0.4 1.0 13.5	1 39 640
551 552 553 554	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , . Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16. Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Molecular Immunology, 2019, 112, 115-122.	0.4 1.0 13.5 1.0	1 39 640 10
551 552 553 554	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , . Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16. Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Molecular Immunology, 2019, 112, 115-122. Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-14.	0.4 1.0 13.5 1.0 1.2	1 39 640 10 15
 551 552 553 554 555 556 	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , .Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707.A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Molecular Immunology, 2019, 112, 115-122.Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-14.Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends in Molecular Medicine, 2019, 25, 494-515.	0.4 1.0 13.5 1.0 1.2 3.5	1 39 640 10 15 84
 551 552 553 554 555 556 557 	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , .Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707.A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Molecular Immunology, 2019, 112, 115-122.Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-14.Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends in Molecular Medicine, 2019, 25, 494-515.Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. International Immunology, 2019, 31, 729-742.	0.4 1.0 13.5 1.0 1.2 3.5 1.8	1 39 640 10 15 84
 551 552 553 555 557 558 	Stem Cell Mobilization. Methods in Molecular Biology, 2019, , .Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707.A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Molecular Immunology, 2019, 112, 115-122.Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-14.Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends in Molecular Medicine, 2019, 25, 494-515.Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. International Immunology, 2019, 31, 729-742.PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF-1-mediated osteoclast precursor migration. Bone Reports, 2019, 10, 100203.	0.4 1.0 13.5 1.0 1.2 3.5 1.8 0.2	1 39 640 10 15 84 33 11

ARTICLE IF CITATIONS Niche cells rewired to maintain HSCs ex vivo. Nature Cell Biology, 2019, 21, 540-541. 4.6 560 1 Mesenchymal stem cells targeting PI3K/AKT pathway in leukemic model. Tumor Biology, 2019, 41, 0.8 101042831984680. Liver Sinusoidal Endothelial Cells Promote the Expansion of Human Cord Blood Hematopoietic Stem 562 7 1.8 and Progenitor Cells. International Journal of Molecular Sciences, 2019, 20, 1985. Leukocyte Trafficking and Regulation of Murine Hematopoietic Stem Cells and Their Niches. Frontiers in Immunology, 2019, 10, 387. Induction of <i>in Vivo</i> Ectopic Hematopoiesis by a Three-Dimensional Structured Extracellular Matrix Derived from Decellularized Cancellous Bone. ACS Biomaterials Science and Engineering, 2019, 564 2.6 15 5, 5669-5680. Neutrophils as regulators of the hematopoietic niche. Blood, 2019, 133, 2140-2148. 0.6 Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant 566 5.2 141 Leukemia Stem Cells. Cell Stem Cell, 2019, 24, 769-784.e6. Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the 2.9 46 Peri-sinusoidal Hematopoietic Stem Cell Niche. Cell Reports, 2019, 26, 3257-3271.e8. Parathyroid Hormone Remodels Bone Transitional Vessels and the Leptin Receptor-Positive Pericyte 568 3.1 15 Network in Mice. Journal of Bone and Mineral Research, 2019, 34, 1487-1501. Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation. Cancers, 2019, 11, 1.7 345. Targeting the Spleen as an Alternative Site for Hematopoiesis. BioEssays, 2019, 41, e1800234. 570 1.2 27 571 Cell circuits and niches controlling B cell development. Immunological Reviews, 2019, 289, 142-157. 2.8 Notch Signaling in Nestin-Expressing Cells in the Bone Marrow Maintains Erythropoiesis via 573 1.4 2 Macrophage Integrity. Stem Cells, 2019, 37, 924-936. Pericytes in Bone Marrow. Advances in Experimental Medicine and Biology, 2019, 1122, 101-114. 574 0.8 Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for 575 2.523 Hematopoietic Stem Cell Expansion. Tissue Engineering - Part B: Reviews, 2019, 25, 312-329. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. 576 Haematologica, 2019, 104, 1731-1743. 577 Translating HSC Niche Biology for Clinical Applications. Current Stem Cell Reports, 2019, 5, 38-52. 0.7 1 Development, repair, and regeneration of the limb musculoskeletal system. Current Topics in 578 Developmental Biology, 2019, 132, 451-486.

#	Article	IF	CITATIONS
579	Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Research and Therapy, 2019, 10, 56.	2.4	34
580	Haematopoietic stem cell activity andÂinteractions with the niche. Nature Reviews Molecular Cell Biology, 2019, 20, 303-320.	16.1	588
581	Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metabolism, 2019, 29, 966-978.e4.	7.2	170
582	Molecular interactome between HSCs and their niches. Blood, 2019, 134, 1197-1198.	0.6	8
583	Dysregulated megakaryocyte distribution associated with nestin+ mesenchymal stem cells in immune thrombocytopenia. Blood Advances, 2019, 3, 1416-1428.	2.5	18
584	The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Research and Therapy, 2019, 10, 327.	2.4	92
585	Niches of Hematopoietic Stem Cells in Bone Marrow. Molecular Biology, 2019, 53, 889-895.	0.4	2
586	PTPN21 Overexpression Promotes Osteogenic and Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells but Inhibits the Immunosuppressive Function. Stem Cells International, 2019, 2019, 1-19.	1.2	7
587	Apelin+ Endothelial Niche Cells Control Hematopoiesis and Mediate Vascular Regeneration after Myeloablative Injury. Cell Stem Cell, 2019, 25, 768-783.e6.	5.2	92
588	Global Transcriptomic Profiling of the Bone Marrow Stromal Microenvironment during Postnatal Development, Aging, and Inflammation. Cell Reports, 2019, 29, 3313-3330.e4.	2.9	79
589	A 3D Tissue-wide Digital Imaging Pipeline for Quantitation of Secreted Molecules Shows Absence of CXCL12 Gradients in Bone Marrow. Cell Stem Cell, 2019, 25, 846-854.e4.	5.2	26
590	Toll-like receptor signaling in hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2019, 26, 207-213.	1.2	23
591	Normal and leukemic stem cell niche interactions. Current Opinion in Hematology, 2019, 26, 249-257.	1.2	10
592	Prx1-Expressing Progenitor Primary Cilia Mediate Bone Formation in response to Mechanical Loading in Mice. Stem Cells International, 2019, 2019, 1-9.	1.2	24
593	Stem cell homeostasis by integral feedback through the niche. Journal of Theoretical Biology, 2019, 481, 100-109.	0.8	14
594	The haematopoietic stem cell niche: a new player in cardiovascular disease?. Cardiovascular Research, 2019, 115, 277-291.	1.8	14
595	Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia, 2019, 33, 1487-1500.	3.3	48
596	Remodeling the Microenvironment before Occurrence and Metastasis of Cancer. International Journal of Biological Sciences, 2019, 15, 105-113.	2.6	15

#	Article	IF	CITATIONS
597	Functional interdependence of hematopoietic stem cells and their niche in oncogene promotion of myeloproliferative neoplasms: the 159th biomedical version of "it takes two to tango― Experimental Hematology, 2019, 70, 24-30.	0.2	4
598	Resident <i>Prrx1</i> lineage stromal cells promote T cell survival in the spleen. Journal of Molecular Cell Biology, 2019, 11, 182-184.	1.5	0
599	Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell, 2019, 24, 477-486.e6.	5.2	129
600	Bone Metastasis: Find Your Niche and Fit in. Trends in Cancer, 2019, 5, 95-110.	3.8	65
601	N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. Cell Reports, 2019, 26, 652-669.e6.	2.9	106
602	Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds. Translational Research, 2019, 205, 51-63.	2.2	20
603	Mouse polycomb group gene Cbx2 promotes osteoblastic but suppresses adipogenic differentiation in postnatal long bones. Bone, 2019, 120, 219-231.	1.4	11
604	Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance. Experimental Hematology, 2019, 69, 43-53.	0.2	14
605	Features of Mesenchymal Stem Cells. , 2019, , 15-38.		2
606	Niches for hematopoietic stem cells and immune cell progenitors. International Immunology, 2019, 31, 5-11.	1.8	35
607	Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone, 2019, 119, 42-56.	1.4	13
608	Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031245.	2.9	64
609	Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone, 2019, 119, 57-64.	1.4	44
610	Parallels between hematopoietic stem cell and prostate cancer disseminated tumor cell regulation. Bone, 2019, 119, 82-86.	1.4	18
611	Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone, 2019, 119, 19-35.	1.4	27
612	The marrow stem cell niche in normal and malignant hematopoiesis. Annals of the New York Academy of Sciences, 2020, 1466, 17-23.	1.8	5
613	Cytokineâ€induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Annals of the New York Academy of Sciences, 2020, 1466, 24-38.	1.8	25
614	Bone marrow and the hematopoietic stem cell niche. , 2020, , 73-87.		2

ARTICLE IF CITATIONS # Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. 615 4.3 460 Seminars in Cancer Biology, 2020, 60, 14-27. Lipid phosphatase SHIPâ€1 regulates chondrocyte hypertrophy and skeletal development. Journal of Cellular Physiology, 2020, 235, 1425-1437. Multilevel defects in the hematopoietic niche in essential thrombocythemia. Haematologica, 2020, 105, 617 1.7 9 661-673. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic 1.8 microenvironment. Annals of the New York Academy of Sciences, 2020, 1466, 59-72. The microenvironment in myeloma. Current Opinion in Oncology, 2020, 32, 170-175. 619 1.1 45 Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 2020, 22, 38-48. 4.6 521 621 Unraveling bone marrow architecture. Nature Cell Biology, 2020, 22, 5-6. 4.6 7 Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nature Cell Biology, 4.6 86 2020, 22, 7-17. 623 Role of growth factors in hematopoietic stem cell niche. Cell Biology and Toxicology, 2020, 36, 131-144. 2.4 29 624 Epigenetic Regulation of Mesenchymal Stem Cell Homeostasis. Trends in Cell Biology, 2020, 30, 97-116. 3.6 Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discovery Today, 625 7 3.2 2020, 25, 380-391. New developments in neutrophil biology and periodontitis. Periodontology 2000, 2020, 82, 78-92. 626 6.3 108 Humanized zebrafish enhance human hematopoietic stem cell survival and promote acute myeloid 627 1.7 33 leukemia clonal diversity. Haematologica, 2020, 105, 2391-2399. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance 7.2 122 Antioxidant Defense and Escape from Chemotherapy. Cell Metabolism, 2020, 32, 829-843.e9. 629 Targeting CXCR4 in AML and ALL. Frontiers in Oncology, 2020, 10, 1672. 1.3 57 Regulation of Hematopoietic Stem Cell Fate and Malignancy. International Journal of Molecular 1.8 Sciences, 2020, 21, 4780. CXCR4 Signaling Has a CXCL12-Independent Essential Role in Murine MLL-AF9-Driven Acute Myeloid 631 2.9 28 Leukemia. Cell Reports, 2020, 31, 107684. ILâ€7 derived from lymph node fibroblastic reticular cells is dispensable for naive TÂcell homeostasis but crucial for central memory TÂcell survival. European Journal of Immunology, 2020, 50, 846-857.

#	ARTICLE	IF	CITATIONS
633	Immuno-Modulation of Hematopoietic Stem and Progenitor Cells in Inflammation. Frontiers in Immunology, 2020, 11, 585367.	2.2	16
634	The Role of the Bone Marrow Microenvironment in the Response to Infection. Frontiers in Immunology, 2020, 11, 585402.	2.2	14
635	Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. Journal of Hematology and Oncology, 2020, 13, 157.	6.9	41
636	Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Frontiers in Immunology, 2020, 11, 600127.	2.2	21
637	Hematopoietic Stem Cell Stress and Regeneration. Current Stem Cell Reports, 2020, 6, 134-143.	0.7	2
638	Ryk modulates the niche activity of mesenchymal stromal cells by fine-tuning canonical Wnt signaling. Experimental and Molecular Medicine, 2020, 52, 1140-1151.	3.2	3
639	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
640	Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Frontiers in Immunology, 2020, 11, 1499.	2.2	26
641	Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Frontiers in Cell and Developmental Biology, 2020, 8, 611.	1.8	17
642	Niches for Skeletal Stem Cells of Mesenchymal Origin. Frontiers in Cell and Developmental Biology, 2020, 8, 592.	1.8	50
643	An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. International Journal of Molecular Sciences, 2020, 21, 5263.	1.8	8
644	The mesenchymal context in inflammation, immunity and cancer. Nature Immunology, 2020, 21, 974-982.	7.0	168
646	A 3D construct based on mesenchymal stromal cells, collagen microspheres and plasma clot supports the survival, proliferation and differentiation of hematopoietic cells in vivo. Cell and Tissue Research, 2020, 382, 499-507.	1.5	4
648	The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). Advances in Experimental Medicine and Biology, 2020, 1273, 135-145.	0.8	4
649	Introductory Chapter: Development of Neutrophils and Their Role in Hematopoietic Microenvironment Regulation. , 2020, , .		1
650	Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. Journal of Bone and Mineral Research, 2020, 35, 2103-2120.	3.1	80
651	Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. Journal of NeuroImmune Pharmacology, 2020, 15, 838-851.	2.1	6
652	VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Blood, 2020, 136, 1871-1883.	0.6	38

# 653	ARTICLE Mechanisms of bone development and repair. Nature Reviews Molecular Cell Biology, 2020, 21, 696-711.	IF 16.1	Citations 433
654	Arterial endothelium creates a permissive niche for expansion of human cord blood hematopoietic stem and progenitor cells. Stem Cell Research and Therapy, 2020, 11, 358.	2.4	4
655	Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 602269.	1.8	31
656	Cells Involved in Mechanotransduction Including Mesenchymal Stem Cells. , 2020, , 311-332.		2
657	Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nature Immunology, 2020, 21, 649-659.	7.0	80
658	Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma. Cell Proliferation, 2020, 53, e12819.	2.4	10
659	Temporal modulation of calcium sensing in hematopoietic stem cells is crucial for proper stem cell expansion and engraftment. Journal of Cellular Physiology, 2020, 235, 9644-9666.	2.0	22
660	Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders?. Leukemia, 2020, 34, 2305-2316.	3.3	30
661	The dormant cancer cell life cycle. Nature Reviews Cancer, 2020, 20, 398-411.	12.8	286
662	Snai2 Maintains Bone Marrow Niche Cells by Repressing Osteopontin Expression. Developmental Cell, 2020, 53, 503-513.e5.	3.1	14
663	Canonical signaling by TGF family members in mesenchymal stromal cells is dispensable for hematopoietic niche maintenance under basal and stress conditions. PLoS ONE, 2020, 15, e0233751.	1.1	4
664	Knock-out of Hopx disrupts stemness and quiescence of hematopoietic stem cells in mice. Oncogene, 2020, 39, 5112-5123.	2.6	22
665	Thrombopoietin maintains cell numbers of hematopoietic stem and progenitor cells with megakaryopoietic potential. Haematologica, 2021, 106, 1883-1891.	1.7	10
666	When Good Guys Turn Bad: Bone Marrow's and Hematopoietic Stem Cells' Role in the Pathobiology of Diabetic Complications. International Journal of Molecular Sciences, 2020, 21, 3864.	1.8	14
667	Interactions of Hematopoietic Stem Cells with Bone Marrow Niche. Methods in Molecular Biology, 2020, 2346, 21-34.	0.4	5
668	Generation of Myeloid Cells in Cancer: The Spleen Matters. Frontiers in Immunology, 2020, 11, 1126.	2.2	41
669	Signaling in Osteoblast Differentiation. , 2020, , 416-426.		3
670	Skeletal Stem Cells for Bone Development and Repair: Diversity Matters. Current Osteoporosis Reports, 2020, 18, 189-198.	1.5	45

	CITATION	N REPORT	
#	Article	IF	CITATIONS
671	Super-assembled core/shell fibrous frameworks with dual growth factors for <i>in situ</i> cementum–ligament–bone complex regeneration. Biomaterials Science, 2020, 8, 2459-2471.	2.6	21
672	<i>Cxcl12</i> Deletion in Mesenchymal Cells Increases Bone Turnover and Attenuates the Loss of Cortical Bone Caused by Estrogen Deficiency in Mice. Journal of Bone and Mineral Research, 2020, 35, 1441-1451.	3.1	16
673	CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells, 2020, 38, 849-859.	1.4	39
674	FAK Deficiency in Bone Marrow Stromal Cells Alters Their Homeostasis and Drives Abnormal Proliferation and Differentiation of Haematopoietic Stem Cells. Cells, 2020, 9, 646.	1.8	4
675	Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development (Cambridge), 2020, 147, .	1.2	48
676	Cell-by-Cell Deconstruction of Stem Cell Niches. Cell Stem Cell, 2020, 27, 19-34.	5.2	19
677	The Bone's Role in Myeloid Neoplasia. International Journal of Molecular Sciences, 2020, 21, 4712.	1.8	2
678	The osteogenic commitment of CD271+CD56+ bone marrow stromal cells (BMSCs) in osteoarthritic femoral head bone. Scientific Reports, 2020, 10, 11145.	1.6	16
679	Intravital Imaging Reveals Motility of Adult Hematopoietic Stem Cells in the Bone Marrow Niche. Cell Stem Cell, 2020, 27, 336-345.e4.	5.2	49
680	Inferring Gene Networks in Bone Marrow Hematopoietic Stem Cell-Supporting Stromal Niche Populations. IScience, 2020, 23, 101222.	1.9	11
681	Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nature Communications, 2020, 11, 666.	5.8	44
682	A User's Guide to Novel Therapies for Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 277-288.	0.2	17
683	EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nature Immunology, 2020, 21, 261-273.	7.0	30
684	Role and therapeutic effects of skeletal muscle-derived non-myogenic cells in a rat myocardial infarction model. Stem Cell Research and Therapy, 2020, 11, 69.	2.4	8
685	CD90 ⁺ CD146 ⁺ identifies a pulmonary mesenchymal cell subtype with both immune modulatory and perivascular-like function in postnatal human lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L813-L830.	1.3	15
686	Identification of osteolineage cellâ€derived extracellular vesicle cargo implicated in hematopoietic support. FASEB Journal, 2020, 34, 5435-5452.	0.2	10
687	Heme oxygenaseâ€1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO Reports, 2020, 21, e47895.	2.0	19
688	The Effects of Sclerostin on the Immune System. Current Osteoporosis Reports, 2020, 18, 32-37.	1.5	10

#	Article	IF	CITATIONS
689	The perivascular niche. , 2020, , 113-127.		2
690	The mechanisms of pathological extramedullary hematopoiesis in diseases. Cellular and Molecular Life Sciences, 2020, 77, 2723-2738.	2.4	50
691	A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nature Communications, 2020, 11, 332.	5.8	184
692	Mesenchymal stromal cellâ€derived extracellular vesicles as cellâ€free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biology International, 2020, 44, 1078-1102.	1.4	23
693	Engineered niches support the development of human dendritic cells in humanized mice. Nature Communications, 2020, 11, 2054.	5.8	21
694	Hematopoietic stem cells. , 2020, , 757-764.		0
695	Investigating global gene expression changes in a murine model of cherubism. Bone, 2020, 135, 115315.	1.4	0
696	C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors. Stem Cell Reports, 2020, 14, 614-630.	2.3	6
697	Identification and local manipulation of bone marrow vasculature during intravital imaging. Scientific Reports, 2020, 10, 6422.	1.6	11
698	Modifiable Cardiovascular Risk, Hematopoiesis, and Innate Immunity. Circulation Research, 2020, 126, 1242-1259.	2.0	67
699	Hematopoiesis and Cardiovascular Disease. Circulation Research, 2020, 126, 1061-1085.	2.0	96
700	Granulocyte colony-stimulating factor directly acts on mouse lymphoid-biased but not myeloid-biased hematopoietic stem cells. Haematologica, 2021, 106, 1647-1658.	1.7	8
701	The bone marrow hematopoietic niche and its adaptation to infection. Seminars in Cell and Developmental Biology, 2021, 112, 37-48.	2.3	12
702	Phenotypes and pathways: Working toward an integrated skeletal biology in biological anthropology. American Journal of Human Biology, 2021, 33, e23450.	0.8	2
703	Unraveling the mystery of Gaucher bone density pathophysiology. Molecular Genetics and Metabolism, 2021, 132, 76-85.	0.5	7
704	The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment. Molecular and Cellular Biochemistry, 2021, 476, 535-551.	1.4	1
705	New insights on the reparative cells in bone regeneration and repair. Biological Reviews, 2021, 96, 357-375.	4.7	11
706	New Insights on the Role of the Mesenchymal–Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells and Development, 2021, 30, 2-16.	1.1	3

#	Article	IF	CITATIONS
707	Impact of prostate cancer stem cell niches on prostate cancer tumorigenesis and progression. Advances in Stem Cells and Their Niches, 2021, 5, 177-204.	0.1	0
708	CXCR4 in Waldenström's Macroglobulinema: chances and challenges. Leukemia, 2021, 35, 333-345.	3.3	53
709	Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells and Development, 2021, 30, 59-78.	1.1	25
710	Paradoxical Regulation of Allogeneic Bone Marrow Engraftment and Immune Privilege by Mesenchymal Cells and Adenosine. Transplantation and Cellular Therapy, 2021, 27, 92.e1-92.e5.	0.6	3
711	Hypoxia-cultured mouse mesenchymal stromal cells from bone marrow and compact bone display different phenotypic traits. Experimental Cell Research, 2021, 399, 112434.	1.2	2
712	Structural organization of the bone marrow and its role in hematopoiesis. Current Opinion in Hematology, 2021, 28, 36-42.	1.2	28
713	YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair. Journal of Bone and Mineral Research, 2020, 36, 143-157.	3.1	32
714	Flow Cytometry-Based Analysis of the Mouse Bone Marrow Stromal and Perivascular Compartment. Methods in Molecular Biology, 2021, 2308, 83-94.	0.4	9
715	Comparative hematopoiesis and signal transduction in model organisms. Journal of Cellular Physiology, 2021, 236, 5592-5619.	2.0	6
716	The skeletal stem cell. , 2021, , 75-98.		Ο
718	Archetypal autophagic players through new lenses for bone marrow stem/mature cells regulation. Journal of Cellular Physiology, 2021, 236, 6101-6114.	2.0	5
719			(
	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of Molecular Sciences, 2021, 22, 1404.	1.8	5
720	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of Molecular Sciences, 2021, 22, 1404. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 598612.	1.8 1.8	5
720 721	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of Molecular Sciences, 2021, 22, 1404. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 598612. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591, 438-444.	1.8 1.8 13.7	5 19 158
720 721 723	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of MolecularSciences, 2021, 22, 1404.Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 598612.A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591, 438-444.Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells International, 2021, 2021, 1-15.	1.8 1.8 13.7 1,2	5 19 158 2
720721723724	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of MolecularSciences, 2021, 22, 1404.Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 598612.A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591, 438-444.Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells International, 2021, 2021, 1-15.Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 614508.	1.8 1.8 13.7 1.2 2.0	5 19 158 2 13
 720 721 723 724 726 	The Progress of Stem Cell Technology for Skeletal Regeneration. International Journal of MolecularSciences, 2021, 22, 1404.Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 598612.A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591, 438-444.Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells International, 2021, 2021, 1-15.Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 614508.The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis. Blood, 2021, 138, 304-317.	1.8 1.8 13.7 1.2 2.0 0.6	5 19 158 2 13 20

#	Article	IF	CITATIONS
728	Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. Npj Precision Oncology, 2021, 5, 26.	2.3	15
729	The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cellular and Molecular Life Sciences, 2021, 78, 4639-4651.	2.4	7
731	Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Frontiers in Cell and Developmental Biology, 2021, 9, 611842.	1.8	6
732	The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Frontiers in Cell and Developmental Biology, 2021, 9, 635189.	1.8	13
733	Bone marrow niches in the regulation of bone metastasis. British Journal of Cancer, 2021, 124, 1912-1920.	2.9	35
734	Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. International Journal of Molecular Sciences, 2021, 22, 3024.	1.8	8
735	Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Frontiers in Cell and Developmental Biology, 2021, 9, 630712.	1.8	11
736	Intercellular Interactions of an Adipogenic CXCL12-Expressing Stromal Cell Subset in Murine Bone Marrow. Journal of Bone and Mineral Research, 2020, 36, 1145-1158.	3.1	14
737	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	5.2	31
738	The Chromatin Remodeling Complex CHD1 Regulates the Primitive State of Mesenchymal Stromal Cells to Control Their Stem Cell Supporting Activity. Stem Cells and Development, 2021, 30, 363-373.	1.1	3
739	Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem?. Frontiers in Immunology, 2021, 12, 658535.	2.2	13
740	Single-Cell Atlas Reveals Fatty Acid Metabolites Regulate the Functional Heterogeneity of Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 653308.	1.8	7
741	GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
742	An Evolutionary Approach to Clonally Complex Hematologic Disorders. Blood Cancer Discovery, 2021, 2, 201-215.	2.6	6
743	Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. ELife, 2021, 10, .	2.8	5
744	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2021, , .	2.5	4
745	Resistance of bone marrow stroma to genotoxic preconditioning is determined by p53. Cell Death and Disease, 2021, 12, 545.	2.7	0
746	Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Reviews, 2021, 50, 100850.	2.8	40

#	Article	IF	CITATIONS
747	Meflin defines mesenchymal stem cells and/or their early progenitors with multilineage differentiation capacity. Genes To Cells, 2021, 26, 495-512.	0.5	12
748	Singleâ€Cell <scp>RNA</scp> â€Sequencing Reveals the Breadth of Osteoblast Heterogeneity. JBMR Plus, 2021, 5, e10496.	1.3	14
749	Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Frontiers in Cell and Developmental Biology, 2021, 9, 663316.	1.8	15
750	Regulation of murine B lymphopoiesis by stromal cells. Immunological Reviews, 2021, 302, 47-67.	2.8	2
751	Loss of diacylglycerol kinase ε causes thrombotic microangiopathy by impairing endothelial VEGFA signaling. JCl Insight, 2021, 6, .	2.3	10
753	The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer and Metastasis Reviews, 2021, 40, 427-445.	2.7	15
754	Cellular components of the hematopoietic niche and their regulation of hematopoietic stem cell function. Current Opinion in Hematology, 2021, 28, 243-250.	1.2	8
755	Fibroblasts as confederates of the immune system. Immunological Reviews, 2021, 302, 147-162.	2.8	58
756	Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. Children, 2021, 8, 371.	0.6	4
757	Rheb1-Deficient Neutrophils Promote Hematopoietic Stem/Progenitor Cell Proliferation via Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 650599.	1.8	1
758	Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nature Communications, 2021, 12, 2860.	5.8	53
759	From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus, 2021, 5, e10516.	1.3	9
760	Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signalling to Promote Tumour Growth. Stem Cells International, 2021, 2021, 1-17.	1.2	14
761	Therapeutic Targeting of the Leukaemia Microenvironment. International Journal of Molecular Sciences, 2021, 22, 6888.	1.8	16
762	Prostate Cancer Dormancy and Reactivation in Bone Marrow. Journal of Clinical Medicine, 2021, 10, 2648.	1.0	11
763	Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discovery, 2021, 7, 47.	3.1	31
764	Fundamentals of bone vasculature: Specialization, interactions and functions. Seminars in Cell and Developmental Biology, 2022, 123, 36-47.	2.3	39
766	The Hematopoietic Bone Marrow Niche Ecosystem. Frontiers in Cell and Developmental Biology, 2021, 9, 705410.	1.8	34

#	Article	IF	CITATIONS
767	An effective surface modification strategy to boost PEEK osteogenesis using porous CaP generated in well-tuned collagen matrix. Applied Surface Science, 2021, 555, 149571.	3.1	3
768	The Role of Cysteine Peptidases in Hematopoietic Stem Cell Differentiation and Modulation of Immune System Function. Frontiers in Immunology, 2021, 12, 680279.	2.2	15
769	CD271+CD51+PALLADINâ^' Human Mesenchymal Stromal Cells Possess Enhanced Ossicle-Forming Potential. Stem Cells and Development, 2021, 30, 725-735.	1.1	0
770	Notch Signaling in the Bone Marrow Lymphopoietic Niche. Frontiers in Immunology, 2021, 12, 723055.	2.2	12
771	Murine bone marrow mesenchymal stromal cells have reduced hematopoietic maintenance ability in sickle cell disease. Blood, 2021, 138, 2570-2582.	0.6	12
772	Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101518.	2.2	14
773	Distinct skeletal stem cell types orchestrate long bone skeletogenesis. ELife, 2021, 10, .	2.8	38
774	TNF-α-induced alterations in stromal progenitors enhance leukemic stem cell growth via CXCR2 signaling. Cell Reports, 2021, 36, 109386.	2.9	15
775	The pathophysiology of immunoporosis: innovative therapeutic targets. Inflammation Research, 2021, 70, 859-875.	1.6	12
776	Niches that regulate stem cells and hematopoiesis in adult bone marrow. Developmental Cell, 2021, 56, 1848-1860.	3.1	116
777	Fetal hematopoietic stem cell homing is controlled by VEGF regulating the integrity and oxidative status of the stromal-vascular bone marrow niches. Cell Reports, 2021, 36, 109618.	2.9	6
778	Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. Journal of Bone and Mineral Research, 2020, 36, 1661-1679.	3.1	24
779	Bone marrow remodeling supports hematopoiesis in response to immune thrombocytopenia progression in mice. Blood Advances, 2021, 5, 4877-4889.	2.5	4
780	An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. Journal of Nanobiotechnology, 2021, 19, 247.	4.2	62
781	Cancer Stem Cells in Tumor Modeling: Challenges and Future Directions. Advanced NanoBiomed Research, 2021, 1, 2100017.	1.7	13
782	Niche-directed therapy in acute myeloid leukemia: optimization of stem cell competition for niche occupancy. Leukemia and Lymphoma, 2022, 63, 10-18.	0.6	5
783	Osteoimmunology as an intrinsic part of immunology. International Immunology, 2021, 33, 673-678.	1.8	7
784	Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nature Communications, 2021, 12, 4744.	5.8	69

~			~	
(ПТ	ΔΤΙ	ON	17 F D	OPT
			IVL1	

#	Article	IF	CITATIONS
786	Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Engineering and Regenerative Medicine, 2021, 18, 747-758.	1.6	18
787	Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Experimental Hematology, 2021, 100, 12-31.e1.	0.2	8
789	Abnormal B-cell development in TIMP-deficient bone marrow. Blood Advances, 2021, 5, 3960-3974.	2.5	2
790	Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. Current Stem Cell Reports, 2021, 7, 194-203.	0.7	9
791	Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. Journal of Cell Biology, 2021, 220, .	2.3	8
792	Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization. Leukemia, 2022, 36, 333-347.	3.3	10
793	Tianchang Capsule prevents ovariectomy induced osteoporosis in rats. Food Science and Technology, 0, 42, .	0.8	0
794	Hematopoietic Stem Cells in Wound Healing Response. Advances in Wound Care, 2022, 11, 598-621.	2.6	5
795	Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Experimental and Molecular Medicine, 2021, 53, 1319-1331.	3.2	21
796	Bone niche and bone metastases. , 2022, , 107-119.		0
797	Mesenchymal Stromal Cells as a Cellular Target in Myeloid Malignancy: Chances and Challenges in the Genome Editing of Stromal Alterations. Frontiers in Genome Editing, 2020, 2, 618308.	2.7	2
798	Cytokines and the pathogenesis of osteoporosis. , 2021, , 799-831.		1
799	Intravital Imaging of Bone Marrow Niches. Methods in Molecular Biology, 2021, 2308, 203-222.	0.4	5
800	Inactivation of mTORC1 Signaling in Osterix-Expressing Cells Impairs B-cell Differentiation. Journal of Bone and Mineral Research, 2018, 33, 732-742.	3.1	13
801	Ubiquitous overexpression of CXCL12 confers radiation protection and enhances mobilization of hematopoietic stem and progenitor cells. Stem Cells, 2020, 38, 1159-1174.	1.4	14
802	Overview of Skeletal Development. Methods in Molecular Biology, 2021, 2230, 3-16.	0.4	9
803	Assessment of Proteolytic Activities in the Bone Marrow Microenvironment. Methods in Molecular Biology, 2019, 2017, 149-163.	0.4	2
804	The Bone Marrow Niche– The Tumor Microenvironment That Ensures Leukemia Progression. Advances in Experimental Medicine and Biology, 2020, 1219, 259-293.	0.8	2

#	Article	IF	CITATIONS
805	The Bone Marrow Microenvironment for Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2017, 1041, 5-18.	0.8	33
806	Interaction of Bone Marrow Stem Cells with Other Cells. , 2017, , 81-105.		2
807	Interferon Gamma Mediates Hematopoietic Stem Cell Activation and Niche Relocalization through BST2. Cell Reports, 2020, 33, 108530.	2.9	29
808	Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver. Journal of Experimental Medicine, 2021, 218, .	4.2	26
817	Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight, 2019, 4, .	2.3	82
818	Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight, 2017, 2, .	2.3	87
819	Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. JCI Insight, 2018, 3, .	2.3	79
820	Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. Journal of Clinical Investigation, 2019, 129, 2745-2759.	3.9	32
821	Pleiotrophin mediates hematopoietic regeneration via activation of RAS. Journal of Clinical Investigation, 2014, 124, 4753-4758.	3.9	45
822	FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. Journal of Clinical Investigation, 2017, 127, 1241-1253.	3.9	128
823	Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. Journal of Clinical Investigation, 2017, 127, 3624-3639.	3.9	78
824	Endothelial transplantation rejuvenates aged hematopoietic stem cell function. Journal of Clinical Investigation, 2017, 127, 4163-4178.	3.9	109
825	Young endothelial cells revive aging blood. Journal of Clinical Investigation, 2017, 127, 3921-3922.	3.9	5
826	Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion. Blood, 2020, 135, 2071-2084.	0.6	44
827	Intra-Bone Marrow Transplantation of Endosteal Bone Marrow Cells Facilitates Allogeneic Hematopoietic and Stromal Cells Engraftment Dependent on Early Expression of CXCL-12. Medical Science Monitor, 2015, 21, 2757-2766.	0.5	3
828	ARAP3 Functions in Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e116107.	1.1	5
829	Oncostatin M Maintains the Hematopoietic Microenvironment in the Bone Marrow by Modulating Adipogenesis and Osteogenesis. PLoS ONE, 2014, 9, e116209.	1.1	28
830	GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS ONE, 2015, 10, e0133854.	1.1	25

.,		15	C
# 831	Modification of Gene Expression, Proliferation, and Function of OP9 Stroma Cells by	ır 1.1	6
832	Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice. PLoS ONE, 2016, 11, e0167673.	1.1	9
833	Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS ONE, 2017, 12, e0172430.	1.1	35
834	Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis. PLoS ONE, 2017, 12, e0182470.	1.1	19
835	Comparative analysis of gene expression identifies distinct molecular signatures of bone marrow- and periosteal-skeletal stem/progenitor cells. PLoS ONE, 2018, 13, e0190909.	1.1	17
836	Cellular Plasticity and Heterogeneity in Pancreatic Regeneration and Malignancy. Cancer Cell & Microenvironment, 0, , .	0.8	1
837	Generation of Organotypic Multicellular Spheres by Magnetic Levitation: Model for the Study of Human Hematopoietic Stem Cells Microenvironment. International Journal of Stem Cells, 2019, 12, 51-62.	0.8	10
838	Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress, 2019, 3, 221-235.	1.4	23
839	Tyrosine kinase inhibitors and mesenchymal stromal cells: effects on self-renewal, commitment and functions. Oncotarget, 2017, 8, 5540-5565.	0.8	14
840	The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget, 2017, 8, 21609-21625.	0.8	72
841	Interleukin-2-regulatory T cell axis critically regulates maintenance of hematopoietic stem cells. Oncotarget, 2017, 8, 29625-29642.	0.8	15
842	Tumor <i>Trp53</i> status and genotype affect the bone marrow microenvironment in acute myeloid leukemia. Oncotarget, 2017, 8, 83354-83369.	0.8	7
843	High capacity of purified mesenchymal stem cells for cartilage regeneration. Inflammation and Regeneration, 2015, 35, 078-085.	1.5	3
844	The beneficial effects of varicella zoster virus. Journal of Hematology and Clinical Research, 2019, 3, 016-049.	0.4	4
845	Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. International Journal of Molecular Sciences, 2020, 21, 796.	1.8	25
846	Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. International Journal of Molecular Sciences, 2020, 21, 9759.	1.8	131
847	Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean Journal of Internal Medicine, 2017, 32, 248-257.	0.7	74
848	Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets. ELife, 2015, 4, .	2.8	11

#	Article	IF	CITATIONS
849	Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. ELife, 2016, 5, .	2.8	87
850	Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ, 2020, 8, e9902.	0.9	7
851	Tumor Microenvironment. , 2021, , 243-316.		0
852	Multipotent stromal cells: One name, multiple identities. Cell Stem Cell, 2021, 28, 1690-1707.	5.2	73
853	Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 2021, 28, 1708-1725.	5.2	114
854	Identification of microenvironmental niches for hematopoietic stem cells and lymphoid progenitors—bone marrow fibroblastic reticular cells with salient features. International Immunology, 2021, 33, 821-826.	1.8	4
855	Roles of the Mesenchymal Stromal/Stem Cell Marker Meflin/Islr in Cancer Fibrosis. Frontiers in Cell and Developmental Biology, 2021, 9, 749924.	1.8	27
856	Evolving cancer–niche interactions and therapeutic targets during bone metastasis. Nature Reviews Cancer, 2022, 22, 85-101.	12.8	47
857	Mechanically-regulated bone repair. Bone, 2022, 154, 116223.	1.4	15
858	Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Frontiers in Immunology, 2021, 12, 775128.	2.2	36
859	Tributyltin protects against ovariectomy-induced trabecular bone loss in C57BL/6J mice with an attenuated effect in high fat fed mice. Toxicology and Applied Pharmacology, 2021, 431, 115736.	1.3	2
860	Mouse Genetic Background and Human Hematopoietic Stem Cells Biology; Tips for Humanization. , 2014, , 33-51.		0
861	Uncovering the origins of a niche. ELife, 2014, 3, .	2.8	3
862	The Hematopoietic Stem Cell Niche: Cell-Cell Interactions and Quiescence. Pancreatic Islet Biology, 2015, , 1-22.	0.1	1
863	Stem Cell Niche-Radiobiological Response. Pancreatic Islet Biology, 2015, , 129-146.	0.1	0
864	Aging of the Hematopoietic Stem Cell Niches. , 2015, , 245-256.		0
865	Tumor Microenvironment. , 2016, , 233-303.		0
866	Artificial Hematopoietic Stem Cell Niches-Dimensionality Matters. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	1

#	Article	IF	Citations
867	Molecular Interaction Between the Microenvironment and FLT3/ITD+ AML Cells Leading to the Refractory Phenotype. , 0, , .		0
873	Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. Journal of Experimental Medicine, 2021, 218, .	4.2	27
874	Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmunity Reviews, 2021, 20, 102980.	2.5	35
875	The vasculature niches required for hematopoiesis. Journal of Molecular Medicine, 2022, 100, 53-61.	1.7	0
876	Neural Crest Contributions to Mesenchymal Stem Cells. , 2020, , 62-68.		0
877	Immunoregulation in the Hematopoietic Stem Cell Niche. , 2020, , 69-77.		0
879	B Cells in The Regulation of Bone Metabolism. , 2020, , 20-32.		0
880	MDS Stem Cell Biology. , 2020, , 55-72.		0
881	Single-Cell Analysis of Nonhematopoietic Cells in Bone Marrow. , 2020, , 43-49.		0
882	Immune Regulation of Tumors in Bone. , 2020, , 254-264.		0
883	Osteoblast Lineage Stem and Progenitor Cells. , 2020, , 383-396.		0
884	Role of microvascular endothelial cells on proliferation, migration and adhesion of hematopoietic stem cells. Bioscience Reports, 2020, 40, .	1.1	0
886	Patient-Derived Bone Marrow Spheroids Reveal Leukemia-Initiating Cells Supported by Mesenchymal Hypoxic Niches in Pediatric B-ALL. Frontiers in Immunology, 2021, 12, 746492.	2.2	12
889	Hematopoietic Stem Cells and Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040774.	2.3	3
890	Forkhead Box C1 (FOXC1) Expression in Stromal Cells within the Microenvironment of T and NK Cell Lymphomas: Association with Tumor Dormancy and Activation. Cancer Research and Treatment, 2020, 52, 1273-1282.	1.3	1
891	The extracellular matrix of hematopoietic stem cell niches. Advanced Drug Delivery Reviews, 2022, 181, 114069.	6.6	26
892	Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where to?. Frontiers in Immunology, 2021, 12, 768439.	2.2	6
893	Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nature Communications, 2021, 12, 6990.	5.8	11

#	Article	IF	CITATIONS
894	Remodeling of the Bone Marrow Stromal Microenvironment During Pathogenic Infections. Current Topics in Microbiology and Immunology, 2021, 434, 55-81.	0.7	3
895	Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem and Progenitor Cells. Current Topics in Microbiology and Immunology, 2021, 434, 1-31.	0.7	3
897	Cellular Niches for Hematopoietic Stem Cells and Lympho-Hematopoiesis in Bone Marrow During Homeostasis and Blood Cancers. Current Topics in Microbiology and Immunology, 2021, 434, 33-54.	0.7	1
898	Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 787118.	1.8	40
899	Autophagic Mediators in Bone Marrow Niche Homeostasis. Advances in Experimental Medicine and Biology, 2021, , .	0.8	3
900	Prostacyclin is an Endosteal Bone Marrow Niche Component and its Clinical Analog Iloprost Protects Hematopoietic Stem Cell Potential During Stress. Stem Cells, 2021, 39, 1532-1545.	1.4	4
901	Disruption of hematopoiesis attenuates the osteogenic differentiation capacity of bone marrow stromal cells. Stem Cell Research and Therapy, 2022, 13, 27.	2.4	6
902	CXCL12/Stromal Cell-Derived Factor-1 and Hematopoiesis. , 2022, , .		0
903	G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Research and Therapy, 2022, 13, 37.	2.4	1
904	Regeneration of Jaw Joint Cartilage in Adult Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 777787.	1.8	9
905	Insights Into Bone Marrow Niche Stability: An Adhesion and Metabolism Route. Frontiers in Cell and Developmental Biology, 2021, 9, 798604.	1.8	6
906	Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Research and Therapy, 2022, 13, 39.	2.4	13
907	The Fetal Hematopoietic Niche: Components and Mechanisms for Hematopoietic Stem Cell Emergence and Expansion. Current Stem Cell Reports, 2022, 8, 14.	0.7	0
908	NF-κB perturbation reveals unique immunomodulatory functions in Prx1 ⁺ fibroblasts that promote development of atopic dermatitis. Science Translational Medicine, 2022, 14, eabj0324.	5.8	22
909	Osteogenic differentiation of mesenchymal stem cells promotes c-Jun-dependent secretion of interleukin 8 and mediates the migration and differentiation of CD4+ T cells. Stem Cell Research and Therapy, 2022, 13, 58.	2.4	12
910	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	1.6	198
911	Large Peritoneal Macrophages and Transitional Premonocytes Promote Survival during Abdominal Sepsis. ImmunoHorizons, 2021, 5, 994-1007.	0.8	8
912	Single-Cell Transcriptomics Profiling the Compatibility Mechanism of Realgar-Indigo Naturalis Formula (RIF) Based on Steady-State Bone Marrow Stroma Cells. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
913	Specific overexpression of SIRT1 in mesenchymal stem cells rescues hematopoiesis niche in BMI1 knockout mice through promoting CXCL12 expression. International Journal of Biological Sciences, 2022, 18, 2091-2103.	2.6	4
914	Deletion of Vhl in Dmp1-Expressing Cells Causes Microenvironmental Impairment of B Cell Lymphopoiesis. Frontiers in Immunology, 2022, 13, 780945.	2.2	5
915	Spinal cord injury reprograms muscle fibroadipogenic progenitors to form heterotopic bones within muscles. Bone Research, 2022, 10, 22.	5.4	6
916	Erk5 in Bone Marrow Mesenchymal Stem Cells Regulates Bone Homeostasis by Preventing Osteogenesis in Adulthood. Stem Cells, 2022, 40, 411-422.	1.4	8
917	Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment. International Journal of Molecular Sciences, 2022, 23, 3359.	1.8	7
918	A specialized bone marrow microenvironment for fetal haematopoiesis. Nature Communications, 2022, 13, 1327.	5.8	18
919	Periosteum-derived podoplanin-expressing stromal cells regulate nascent vascularization during epiphyseal marrow development. Journal of Biological Chemistry, 2022, 298, 101833.	1.6	3
920	IFNAR signaling in fibroblastic reticular cells can modulate CD8 ⁺ memory fate decision. European Journal of Immunology, 2022, 52, 895-906.	1.6	1
921	Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nature Communications, 2021, 12, 7199.	5.8	46
922	Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Frontiers in Immunology, 2021, 12, 798211.	2.2	7
923	Singleâ€cell transcriptomics of LepRâ€positive skeletal cells reveals heterogeneous stressâ€dependent stem and progenitor pools. EMBO Journal, 2022, 41, e108415.	3.5	33
924	Interactions of B-lymphocytes and bone cells in health and disease. Bone, 2023, 168, 116296.	1.4	6
926	Cell movement during development. , 2022, , 151-157.		0
927	TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. Journal of Clinical Investigation, 2022, 132, .	3.9	10
928	Niche Regulation of Hematopoiesis: The Environment Is "Micro,―but the Influence Is Large. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 691-699.	1.1	3
929	Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 4462.	1.8	19
931	Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Current Topics in Developmental Biology, 2022, , 203-261.	1.0	3
932	Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Frontiers in Endocrinology, 2022, 13, 882297.	1.5	4

#	Article	IF	CITATIONS
933	Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. Journal of Personalized Medicine, 2022, 12, 716.	1.1	8
934	The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers, 2022, 14, 2089.	1.7	10
935	BAP1 shapes the bone marrow niche for lymphopoiesis by fine-tuning epigenetic profiles in endosteal mesenchymal stromal cells. Cell Death and Differentiation, 2022, 29, 2151-2162.	5.0	4
936	MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Reports, 2022, 39, 110805.	2.9	10
937	Targeting the Hematopoietic Stem Cell Niche in β-Thalassemia and Sickle Cell Disease. Pharmaceuticals, 2022, 15, 592.	1.7	5
938	Bone Marrow Niches and Tumour Cells: Lights and Shadows of a Mutual Relationship. Frontiers in Immunology, 2022, 13, .	2.2	7
939	Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. Journal of Bone and Mineral Research, 2020, 37, 1321-1334.	3.1	3
940	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	5.7	16
941	Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nature Communications, 2022, 13, 2654.	5.8	13
942	SM22α-lineage niche cells regulate intramembranous bone regeneration via PDGFRβ-triggered hydrogen sulfide production. Cell Reports, 2022, 39, 110750.	2.9	3
943	The bone marrow niche regulates redox and energy balance in MLL::AF9 leukemia stem cells. Leukemia, 2022, 36, 1969-1979.	3.3	5
944	Single-cell transcriptomics profiling the compatibility mechanism of As2O3-indigo naturalis formula based on bone marrow stroma cells. Biomedicine and Pharmacotherapy, 2022, 151, 113182.	2.5	2
945	<scp>ERα</scp> Signaling in a Subset of <scp>CXCL12</scp> â€Abundant Reticular Cells Regulates Trabecular Bone in Mice. JBMR Plus, 2022, 6, .	1.3	1
947	Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. Journal of Bone and Mineral Research, 2020, 37, 1545-1561.	3.1	17
950	Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation. Bone Research, 2022, 10, .	5.4	8
951	Foxf2 represses bone formation via Wnt2b/ \hat{l}^2 -catenin signaling. Experimental and Molecular Medicine, 2022, 54, 753-764.	3.2	6
952	Regulation of Malignant Myeloid Leukemia by Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
953	Stem-Cell-Based Modeling and Single-Cell Multiomics Reveal Gene Regulatory Mechanisms Underlying Human Skeletal Development. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
954	Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. International Journal of Molecular Sciences, 2022, 23, 7285.	1.8	2
955	IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function. Blood, 2022, 140, 1607-1620.	0.6	4
956	The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2022, 57, 1357-1364.	1.3	8
957	Microâ€environment alterations through time leading to myeloid malignancies. British Journal of Pharmacology, 2024, 181, 283-294.	2.7	2
958	Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports, 2022, 17, 1509-1535.	2.3	8
959	Beyond the horizon: the newly found sinner disturbing mesenchymal stromal niche. Blood Science, 2022, 4, 179-180.	0.4	1
960	Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. British Journal of Haematology, 2022, 199, 647-664.	1.2	7
961	Hematopoietic–Mesenchymal Signals Regulate the Properties of Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2022, 23, 8238.	1.8	4
962	PDGFRβ+ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Reports, 2022, 40, 111114.	2.9	5
963	Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers, 2022, 14, 3303.	1.7	11
964	Therapeutic Potential of Human Immature Dental Pulp Stem Cells Observed in Mouse Model for Acquired Aplastic Anemia. Cells, 2022, 11, 2252.	1.8	6
966	Osteoblast Lineage Support of Hematopoiesis in Health and Disease. Journal of Bone and Mineral Research, 2020, 37, 1823-1842.	3.1	6
967	Mechanisms involved in hematopoietic stem cell aging. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
968	Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nature Communications, 2022, 13, .	5.8	9
969	Crosstalk between bone and other organs. Medical Review, 2022, 2, 331-348.	0.3	6
970	Nestin-GFP transgene labels immunoprivileged bone marrow mesenchymal stem cells in the model of ectopic foci formation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
971	Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature. Developmental Dynamics, 2024, 253, 59-77.	0.8	1
972	TNFAIP6 defines the MSC subpopulation with enhanced immune suppression activities. Stem Cell Research and Therapy, 2022, 13, .	2.4	8

#	Article	IF	CITATIONS
973	Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nature Communications, 2022, 13, .	5.8	13
974	Expression profiling of mRNA and functional network analyses of genes regulated by human papilloma virus E6 and E7 proteins in HaCaT cells. Frontiers in Microbiology, 0, 13, .	1.5	1
975	Skeletal Stem Cells: A Game Changer of Skeletal Biology and Regenerative Medicine?. , 0, , .		2
976	Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Frontiers in Endocrinology, 0, 13, .	1.5	16
977	Dysregulated stem cell niches and altered lymphocyte recirculation cause B and T cell lymphopenia in WHIM syndrome. Science Immunology, 2022, 7, .	5.6	9
980	Unravelling genetic causality of haematopoiesis on bone metabolism in human. European Journal of Endocrinology, 2022, 187, 765-775.	1.9	3
981	Hematologic cytopenia post CAR T cell therapy: Etiology, potential mechanisms and perspective. Cancer Letters, 2022, 550, 215920.	3.2	11
982	Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. International Journal of Molecular Sciences, 2022, 23, 11928.	1.8	9
983	Intravital Microscopy for Hematopoietic Studies. Methods in Molecular Biology, 2023, , 143-162.	0.4	1
984	Angelica sinensis polysaccharides prevents hematopoietic regression in D-Galactose-Induced aging model via attenuation of oxidative stress in hematopoietic microenvironment. Molecular Biology Reports, 2023, 50, 121-132.	1.0	4
985	The magnitude of CXCR4 signaling regulates resistance to quizartinib in FLT3/ITD+ cells via RUNX1. Leukemia Research, 2022, , 106983.	0.4	1
986	Neutrophil "plucking―on megakaryocytes drives platelet production and boosts cardiovascular disease. Immunity, 2022, 55, 2285-2299.e7.	6.6	24
987	Spotlighting adult stem cells: advances, pitfalls, and challenges. Trends in Cell Biology, 2023, 33, 477-494.	3.6	4
988	Insights into skeletal stem cells. Bone Research, 2022, 10, .	5.4	17
989	Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell, 2022, 29, 1547-1561.e6.	5.2	43
990	Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Frontiers in Genome Editing, 0, 4, .	2.7	3
991	Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell, 2022, 29, 1562-1579.e7.	5.2	14
992	Single-cell multiomics identifies clinically relevant mesenchymal stem-like cells and key regulators for MPNST malignancy. Science Advances, 2022, 8, .	4.7	3

#	Article	IF	CITATIONS
993	Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Reports, 2022, 41, 111592.	2.9	10
995	Osteoblastic <i>Wls</i> Ablation Protects Mice from Total Body Irradiation-Induced Impairments in Hematopoiesis and Bone Marrow Microenvironment. , 2022, .		0
996	PRRX1 promotes colorectal cancer stemness and chemoresistance via the JAK2/STAT3 axis by targeting IL-6. Journal of Gastrointestinal Oncology, 2022, 13, 2989-3008.	0.6	2
997	Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
998	Animal Models for Bone Metastatic Prostate Cancer. The Korean Journal of Urological Oncology, 2022, 20, 248-256.	0.1	0
1000	Skeletal stem cells: origins, definitions, and functions in bone development and disease. , 2022, 1, 276-293.		4
1001	The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome. Frontiers in Immunology, 0, 13, .	2.2	6
1002	Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling. Leukemia, 2023, 37, 560-570.	3.3	7
1003	Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunological Reviews, 2023, 315, 197-215.	2.8	3
1005	iPSC-Derived MSCs Are a Distinct Entity of MSCs with Higher Therapeutic Potential than Their Donor-Matched Parental MSCs. International Journal of Molecular Sciences, 2023, 24, 881.	1.8	5
1007	Brain endothelial CXCL12 attracts protective natural killer cells during ischemic stroke. Journal of Neuroinflammation, 2023, 20, .	3.1	9
1008	Cimigenol depresses acute myeloid leukemia cells protected by breaking bone marrow stromal cells via CXCR4/SDF‑1α. Experimental and Therapeutic Medicine, 2022, 25, .	0.8	1
1009	Dynamic crosstalk between hematopoietic stem cells and their niche from emergence to aging. BioEssays, 2023, 45, .	1.2	0
1010	Extracellular vesicles transfer chromatin-like structures that induce non-mutational dysfunction of p53 in bone marrow stem cells. Cell Discovery, 2023, 9, .	3.1	2
1011	Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. HemaSphere, 2023, 7, e824.	1.2	1
1012	Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2 stimulation. Frontiers in Physiology, 0, 14, .	1.3	1
1014	Age-associated declining of the regeneration potential of skeletal stem/progenitor cells. Frontiers in Physiology, 0, 14, .	1.3	5
1015	The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines, 2023, 11, 445.	1.4	21

#	Article	IF	CITATIONS
1016	A mysterious triangle of blood, bones, and nerves. Journal of Bone and Mineral Metabolism, 2023, 41, 404-414.	1.3	2
1017	Cellular niches for hematopoietic stem cells in bone marrow under normal and malignant conditions. Inflammation and Regeneration, 2023, 43, .	1.5	1
1018	Endothelial and Leptin Receptor+ cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Developmental Cell, 2023, 58, 348-360.e6.	3.1	11
1019	The role of myeloid derived suppressor cells in musculoskeletal disorders. Frontiers in Immunology, 0, 14, .	2.2	3
1020	Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. ELife, 0, 12, .	2.8	3
1022	Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen. Frontiers in Physiology, 0, 14, .	1.3	0
1023	Stem cell-based modeling and single-cell multiomics reveal gene-regulatory mechanisms underlying human skeletal development. Cell Reports, 2023, 42, 112276.	2.9	4
1024	The sinusoidal hematopoietic niche is formed by Jam1a via Notch signaling in the zebrafish kidney. IScience, 2023, 26, 106508.	1.9	0
1025	Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. International Journal of Molecular Sciences, 2023, 24, 6499.	1.8	3
1026	Characterization of mesenchymal stem cells in human fetal bone marrow by single-cell transcriptomic and functional analysis. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
1027	Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell, 2023, 30, 378-395.e8.	5.2	15
1029	WHIM Syndrome-linked CXCR4 mutations drive osteoporosis. Nature Communications, 2023, 14, .	5.8	3
1030	Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies. International Journal of Hematology, 0, , .	0.7	2
1031	Mesenchymal loss of p53 alters stem cell capacity and models human soft tissue sarcoma traits. Stem Cell Reports, 2023, 18, 1211-1226.	2.3	0
1032	Single-cell transcriptomic analysis identifies a highly replicating Cd168+ skeletal stem/progenitor cell population in mouse long bones. Journal of Genetics and Genomics, 2023, 50, 702-712.	1.7	0
1033	New insights into the properties, functions, and aging of skeletal stem cells. Osteoporosis International, 0, , .	1.3	0
1066	Mesenchymal-hĤnatopoetische Stammzellachse: Anwendungen für die Induktion von hĤnatopoetischem ChimĤsmus und Therapien für bösartige Erkrankungen. , 2023, , 41-65.		0
1067	Nutrient regulation of bone marrow adipose tissue: skeletal implications of weight loss. Nature Reviews Endocrinology, 0, , .	4.3	1

#	Article	IF	CITATIONS
1076	Bone Marrow–Resident Stem Cells. , 2024, , 357-379.		0
1096	Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nature Cell Biology, 2023, 25, 1736-1745.	4.6	3
1104	Hematopoietic Stem Cells and Their Bone Marrow Niches. Advances in Experimental Medicine and Biology, 2023, , 17-28.	0.8	0
1117	Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells byÂthe Tissue Microenvironment. Advances in Experimental Medicine and Biology, 2024, , 111-127.	0.8	0