Food waste as a valuable resource for the production of Current situation and global perspective

Energy and Environmental Science 6, 426 DOI: 10.1039/c2ee23440h

Citation Report

#	Article	IF	CITATIONS
2	Analysing global food waste problem: pinpointing the facts and estimating the energy content. Open Engineering, 2013, 3, 157-164.	0.7	99
3	Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 2013, 137, 139-146.	4.8	279
4	Valorisation of food residues: waste to wealth using green chemical technologies. Sustainable Chemical Processes, 2013, 1, .	2.3	86
6	Waste Not, Want Not: Mild and Selective Catalytic Oxidation of Uronic Acids. ChemSusChem, 2013, 6, 1640-1645.	3.6	20
7	Valorisation of bakery waste for succinic acid production. Green Chemistry, 2013, 15, 690.	4.6	157
8	Food waste biomass: a resource for high-value chemicals. Green Chemistry, 2013, 15, 307.	4.6	386
9	Green chemistry and the ocean-based biorefinery. Green Chemistry, 2013, 15, 860.	4.6	214
10	Plastics production from biomass: assessing feedstock requirement. Biomass Conversion and Biorefinery, 2013, 3, 319-326.	2.9	3
12	CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues. Materials, 2013, 6, 4641-4653.	1.3	24
13	Food Waste and Byproduct Valorization through Bio-processing: Opportunities and Challenges. BioResources, 2014, 9, 5774-5777.	0.5	16
14	Computational study of the complexation of metals ions with poly(amidoamine) PAMAM G0 dendrimers. Chemical Physics Letters, 2014, 616-617, 171-177.	1.2	16
15	Enzyme Production from Food Wastes Using a Biorefinery Concept. Waste and Biomass Valorization, 2014, 5, 903-917.	1.8	74
16	Developments in cereal-based biorefineries. , 2014, , 303-334.		7
17	Study on Kitchen Waste Characteristics of Different Catering Types in Shanghai. Advanced Materials Research, 2014, 878, 427-432.	0.3	1
18	Food Waste to Bioenergy via Anaerobic Processes. Energy Procedia, 2014, 61, 307-312.	1.8	75
19	Mixed Food Waste as Renewable Feedstock in Succinic Acid Fermentation. Applied Biochemistry and Biotechnology, 2014, 174, 1822-1833.	1.4	73
20	Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chemical Processes, 2014, 2, .	2.3	72
21	Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid. Green Chemistry, 2014, 16, 73-76.	4.6	62

#	Article	IF	CITATIONS
22	Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food and Bioproducts Processing, 2014, 92, 282-290.	1.8	84
23	Biotransformation of Citrus By-Products into Value Added Products. Waste and Biomass Valorization, 2014, 5, 529-549.	1.8	142
24	Utilization of household food waste for the production of ethanol at high dry material content. Biotechnology for Biofuels, 2014, 7, 4.	6.2	130
25	Unprecedented photocatalytic activity of carbonized leather skin residues containing chromium oxide phases. Applied Catalysis B: Environmental, 2014, 150-151, 432-437.	10.8	13
26	Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste. Bioresource Technology, 2014, 155, 266-271.	4.8	83
27	Always Look on the "Light―Side of Life: Sustainable Carbon Aerogels. ChemSusChem, 2014, 7, 670-689.	3.6	157
28	Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 2014, 43, 765-778.	18.7	539
29	Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chemistry, 2014, 16, 1700-1715.	4.6	92
30	Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 2014, 43, 2587.	18.7	437
31	Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 2014, 16, 950-963.	4.6	1,323
32	Glycerol acetylation on mesoporous KIL-2 supported sulphated zirconia catalysts. Catalysis Science and Technology, 2014, 4, 3993-4000.	2.1	40
33	Novel Catalytic Systems to Convert Chitin and Lignin into Valuable Chemicals. Catalysis Surveys From Asia, 2014, 18, 164-176.	1.0	42
34	Lipids from food waste as feedstock for biodiesel production: Case Hong Kong. Lipid Technology, 2014, 26, 206-209.	0.3	44
35	Synthesis of tsetse fly attractants from a cashew nut shell extract by isomerising metathesis. Green Chemistry, 2014, 16, 4885-4890.	4.6	42
36	Production of platform molecules from sweet sorghum. RSC Advances, 2014, 4, 2081-2088.	1.7	27
37	Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels, Bioproducts and Biorefining, 2014, 8, 686-715.	1.9	148
38	Organochalcogen compounds from glycerol: Synthesis of new antioxidants. Bioorganic and Medicinal Chemistry, 2014, 22, 6242-6249.	1.4	30
39	Recent Developments on Biobased Curing Agents: A Review of Their Preparation and Use. ACS Sustainable Chemistry and Engineering, 2014, 2, 2217-2236.	3.2	187

#	Article	IF	CITATIONS
40	A family of novel bio-based zwitterionic surfactants derived from oleic acid. RSC Advances, 2014, 4, 38393.	1.7	44
41	Heterogeneous catalysis for sustainable biodiesel production <i>via</i> esterification and transesterification. Chemical Society Reviews, 2014, 43, 7887-7916.	18.7	614
42	Effect of the Type of Bean, Processing, and Geographical Location on the Biodiesel Produced from Waste Coffee Grounds. Energy & Fuels, 2014, 28, 1166-1174.	2.5	114
43	Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. Journal of Biotechnology, 2014, 189, 36-45.	1.9	91
44	Degradation of Cellulose to Organic Acids in its Homogeneous Alkaline Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2014, 2, 897-901.	3.2	46
45	Design and optimization principles of biogas reactors in large scale applications. , 2014, , 99-134.		19
46	Synthesis of different crystallographic Al ₂ O ₃ nanomaterials from solid waste for application in dye degradation. RSC Advances, 2014, 4, 50801-50810.	1.7	37
47	Spray drying of orange peel extracts: Yield, total phenolic content, and economic evaluation. Journal of Food Engineering, 2014, 139, 31-42.	2.7	33
48	Bioconversion of food waste to energy: A review. Fuel, 2014, 134, 389-399.	3.4	534
49	Naturally occurring phenolic sources: monomers and polymers. RSC Advances, 2014, 4, 21712-21752.	1.7	226
50	The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants. Scientific Reports, 2015, 5, 9971.	1.6	30
51	AN OVERVIEW OF FOOD LOSS AND WASTE: WHY DOES IT MATTER?. Cosmos, 2015, 11, 89-103.	0.4	17
52	The use of rice bran oil within a biorefinery concept. Chemical and Biological Technologies in Agriculture, 2015, 2, .	1.9	8
53	Subcritical hydrolysis and characterization of waste proteinaceous biomass for value added applications. Journal of Chemical Technology and Biotechnology, 2015, 90, 476-483.	1.6	29
54	Facile and Low-Cost Preparation of Nb/Al Oxide Catalyst with High Performance for the Conversion of Kiwifruit Waste Residue to Levulinic Acid. Catalysts, 2015, 5, 1636-1648.	1.6	14
55	Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea) Tj ETQq1	1 0.7843: 1.7	14 ggBT /Ove
56	Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. International Journal of Molecular Sciences, 2015, 16, 17101-17159.	1.8	177
57	Opportunities and Challenges of Organic Waste Management from the Agroindustrial Sector in South America: Chimborazo Province Case Study. Communications in Soil Science and Plant Analysis, 2015, 46, 137-156.	0.6	12

#	Article	IF	CITATIONS
58	Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site. Sustainability, 2015, 7, 1446-1458.	1.6	55
59	Food Waste and Sustainable Food Waste Management in the Baltic Sea Region. Environmental Science and Engineering, 2015, , .	0.1	16
60	Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresource Technology, 2015, 185, 7-13.	4.8	79
61	Valorization of food wastes as sorbent for dye retention from aqueous medium. Desalination and Water Treatment, 2015, 54, 2570-2580.	1.0	3
62	Facile route to conformal hydrotalcite coatings over complex architectures: a hierarchically ordered nanoporous base catalyst for FAME production. Green Chemistry, 2015, 17, 2398-2405.	4.6	30
63	Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 2015, 38, 399-408.	3.7	496
64	The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production, 2015, 95, 45-54.	4.6	343
65	Successive bioanode regenerations to maintain efficient current production from biowaste. Bioelectrochemistry, 2015, 106, 133-140.	2.4	20
66	Enzymes for food waste remediation and valorisation. , 2015, , 123-145.		6
67	Novel zwitterionic surfactant derived from castor oil and its performance evaluation for oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 87-95.	2.3	78
68	Food waste generation and industrial uses: A review. Waste Management, 2015, 45, 32-41.	3.7	526
69	Agriculture biomass in India: Part 2. Post-harvest losses, cost and environmental impacts. Resources, Conservation and Recycling, 2015, 101, 143-153.	5.3	108
70	Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. Journal of Supercritical Fluids, 2015, 104, 204-211.	1.6	68
71	Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast <i>Yarrowia lipolytica</i> . Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1255-1262.	1.4	42
72	Utilization of waste rapeseed oil by rotating gliding arc plasma. International Journal of Hydrogen Energy, 2015, 40, 9039-9048.	3.8	17
73	Chitosan Derivatives as Important Biorefinery Intermediates. Quaternary Tetraalkylammonium Chitosan Derivatives Utilized in Anion Exchange Chromatography for Perchlorate Removal. International Journal of Molecular Sciences, 2015, 16, 9064-9077.	1.8	18
74	Research developments in methods to reduce carbon footprint of cooking operations: A review. Trends in Food Science and Technology, 2015, 44, 49-57.	7.8	30
75	Simultaneous treatment of food-waste recycling wastewater and cultivation of Tetraselmis suecica for biodiesel production. Bioprocess and Biosystems Engineering, 2015, 38, 1393-1398.	1.7	16

#	Article	IF	CITATIONS
76	Innovative material from paper and pulp industry for leather processing. Journal of Cleaner Production, 2015, 104, 436-444.	4.6	10
77	Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology, 2015, 45, 24-36.	7.8	416
78	Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon, 2015, 91, 386-394.	5.4	26
81	Bioethanol from Dried Household Food Waste Applying Non-isothermal Simultaneous Saccharification and Fermentation at High Substrate Concentration. Waste and Biomass Valorization, 2015, 6, 353-361.	1.8	27
82	Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chemistry, 2015, 188, 537-542.	4.2	110
83	Ethanol Production from Food Waste at High Solids Content with Vacuum Recovery Technology. Journal of Agricultural and Food Chemistry, 2015, 63, 2760-2766.	2.4	100
84	Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnology for Biofuels, 2015, 8, 147.	6.2	110
85	Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Advanced Powder Technology, 2015, 26, 1633-1638.	2.0	24
86	Identification and optimization of parameters for the semi-continuous production of garbage enzyme from pre-consumer organic waste by green RP-HPLC method. Waste Management, 2015, 44, 28-33.	3.7	36
87	Valorisation of mixed bakery waste in non-sterilized fermentation for l -lactic acid production by an evolved Thermoanaerobacterium sp. strain. Bioresource Technology, 2015, 198, 47-54.	4.8	37
88	Investigation of the Physical Properties in Rotating Gliding Arc Discharge With Rapeseed Oil. IEEE Transactions on Plasma Science, 2015, 43, 3219-3223.	0.6	7
89	Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Bioresource Technology, 2015, 198, 292-299.	4.8	117
90	Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy, 2015, 93, 1742-1747.	4.5	45
91	A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy, 2015, 140, 65-74.	5.1	160
92	Mediterranean agri-food processing wastes pyrolysis after pre-treatment and recovery of precursor materials: A TGA-based kinetic modeling study. Food Research International, 2015, 73, 44-51.	2.9	23
93	Platform chemical production from food wastes using a biorefinery concept. Journal of Chemical Technology and Biotechnology, 2015, 90, 1364-1379.	1.6	76
94	The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes. Catalysis Today, 2015, 239, 80-89.	2.2	70
95	Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catalysis Today, 2015, 242, 3-18.	2.2	148

#	Article	IF	CITATIONS
96	Heterogeneous catalyst-assisted thermochemical conversion of food waste biomass into 5-hydroxymethylfurfural. Bioresource Technology, 2015, 178, 19-27.	4.8	44
97	Microwave, ultrasound and ball mill procedures for bio-waste valorisation. Green Chemistry, 2015, 17, 684-693.	4.6	78
98	Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. Journal of Materials Chemistry A, 2015, 3, 341-351.	5.2	156
99	Harmonising conflicts between science, regulation, perception and environmental impact: The case of soil conditioners from bioenergy. Environment International, 2015, 75, 52-67.	4.8	53
100	Electricity generation using white and red wine lees in air cathode microbial fuel cells. Journal of Power Sources, 2015, 274, 393-399.	4.0	58
101	Hydrolysis of wheat straw by dilute sulfuric acid in a continuous mode. Chemical Engineering Journal, 2015, 260, 20-27.	6.6	30
102	Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review. Critical Reviews in Biotechnology, 2016, 36, 120-131.	5.1	73
103	Mannan biotechnology: from biofuels to health. Critical Reviews in Biotechnology, 2016, 36, 32-42.	5.1	96
104	Food Use for Social Innovation by Optimizing Food Waste Recovery Strategies. , 2016, , 211-236.		5
105	Synthetic Biology. , 2016, , 665-685.		0
106	Ethics of Food Resource Consumption. , 2016, , .		0
107	Microwave-Induced Biomass Fractionation. , 2016, , 103-126.		7
108	Progress towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. International Journal of Food Science, 2016, 2016, 1-22.	0.9	73
109	Feedstocks for Aviation Biofuels. , 2016, , 17-34.		3
110	Recovery of Resources From Biowaste for Pollution Prevention. , 2016, , 1-19.		8
111	Biochemical production ofÂbioalcohols. , 2016, , 237-258.		6
112	Biofuel production from food wastes. , 2016, , 617-653.		7
113	Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste. Frontiers in Microbiology, 2016, 7, 167.	1.5	18

#	Article	IF	CITATIONS
114	Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering, 2016, 3, 30.	1.6	91
115	Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid). Materials, 2016, 9, 133.	1.3	114
116	Tackling Uncertainty through Business Plan Analysis—A Case Study on Citrus Waste Valorisation in the South of Italy. Agriculture (Switzerland), 2016, 6, 5.	1.4	6
117	Physicoâ€chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. Journal of the Science of Food and Agriculture, 2016, 96, 1730-1735.	1.7	81
118	Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environmental Science and Pollution Research, 2016, 23, 24435-24450.	2.7	85
119	Selective Synthesis of 4â€Chalcogenylmethylâ€1,3â€dioxolanâ€2â€ones and 1,3â€Bis(organylchalcogenyl)propanâ€2â€ols from 3â€ <i>O</i> â€Tosyl Glycerol 1,2â€Carbonate. ChemistrySelec 2016, 1, 6238-6242.	ctQ.7	2
120	Review on heat-utilization processes and heat-exchange equipment in biogas engineering. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	24
121	Conversion of the waste rapeseed oil by aerosol gliding arc discharge-assisted pyrolysis. International Journal of Hydrogen Energy, 2016, 41, 2222-2229.	3.8	5
122	Biodegradable polymer composites based on polylactide and cellulose. Polymer Science - Series B, 2016, 58, 38-46.	0.3	15
123	Apple juice preservation through microbial adsorption by nano/micro-tubular cellulose. Innovative Food Science and Emerging Technologies, 2016, 33, 416-421.	2.7	22
124	Valorization of bakery waste for biocolorant and enzyme production by Monascus purpureus. Journal of Biotechnology, 2016, 231, 55-64.	1.9	62
125	Microwave heating for the catalytic conversion of melon rind waste into biofuel precursors. Journal of Cleaner Production, 2016, 138, 59-69.	4.6	43
126	Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, 2016, 18, 3914-3934.	4.6	239
127	An environmental analysis of options for utilising wasted food and food residue. Journal of Environmental Management, 2016, 183, 826-835.	3.8	85
128	Abating whey organic load through ethanol and lactic acid production by kefir. Toxicological and Environmental Chemistry, 2016, 98, 1191-1199.	0.6	3
129	Synthesis of biomass derived levulinate esters on novel sulfated Zr/KIL-2 composite catalysts. Microporous and Mesoporous Materials, 2016, 235, 50-58.	2.2	12
130	Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT - Food Science and Technology, 2016, 74, 493-503.	2.5	93
131	High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant <i>Pichia kudriavzevii </i> KVMP10. Letters in Applied Microbiology, 2016, 62, 75-83.	1.0	49

#	Article	IF	CITATIONS
132	Potential Utilization of Unavoidable Food Supply Chain Wastes–Valorization of Pea Vine Wastes. ACS Sustainable Chemistry and Engineering, 2016, 4, 6002-6009.	3.2	24
133	Food waste valorization via anaerobic processes: a review. Reviews in Environmental Science and Biotechnology, 2016, 15, 499-547.	3.9	194
134	Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. Bioresource Technology, 2016, 220, 523-529.	4.8	39
135	Drivers of sustainable cleaner production and sustainable energy options. Journal of Cleaner Production, 2016, 138, 1-7.	4.6	86
136	Production of Drop-In and Novel Bio-Based Platform Chemicals. , 2016, , 249-283.		3
137	Selective Synthesis of Vinyl―or Alkynyl Chalcogenides from Glycerol and their Waterâ€Soluble Derivatives. ChemistrySelect, 2016, 1, 2009-2013.	0.7	14
139	Sugars Production for Green Chemistry from 2 nd ÂGeneration Crop (Arundo donax) Tj ETQq0 0	0 rgBT /Ον 0.7	erlock 10 Tf
140	Pilot-scale open fermentation of food waste to produce lactic acid without inoculum addition. RSC Advances, 2016, 6, 104354-104358.	1.7	14
141	Analytical Techniques and Methods for Biomass. , 2016, , .		15
142	Environmental application and phytotoxicity of anaerobic digestate from pig farming by in vitro and in vivo trials. International Journal of Environmental Science and Technology, 2016, 13, 2549-2560.	1.8	22
143	Novel configurations for a citrus waste based biorefinery: from solventless to simultaneous ultrasound and microwave assisted extraction. Green Chemistry, 2016, 18, 6482-6492.	4.6	51
144	Molecular Properties and Functions of Humic Substances and Humic-Like Substances (HULIS) from Biomass and Their Transformation Products. , 2016, , 85-114.		5
145	Acid-free microwave-assisted hydrothermal extraction of pectin and porous cellulose from mango peel waste – towards a zero waste mango biorefinery. Green Chemistry, 2016, 18, 5280-5287.	4.6	64
146	Expression and Characterization of Hyperthermostable Exo-polygalacturonase TtGH28 from Thermotoga thermophilus. Molecular Biotechnology, 2016, 58, 509-519.	1.3	10
147	Promoting industrial symbiosis: empirical observations of low-carbon innovations in the Humber region, UK. Journal of Cleaner Production, 2016, 128, 116-130.	4.6	49

148	Facile synthesis of pyridinium functionalized anion exchange membranes for diffusion dialysis application. Separation and Purification Technology, 2016, 167, 108-116.	3.9	44
149	Valorization of food wastes (orange seeds) as adsorbent for dye retention from aqueous medium. Desalination and Water Treatment, 2016, 57, 29070-29081.	1.0	7
150	Green chemistry, catalysis and valorization of waste biomass. Journal of Molecular Catalysis A, 2016, 422, 3-12.	4.8	150

#	Article	IF	CITATIONS
151	Catalyst design for biorefining. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150081.	1.6	35
152	Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease. European Journal of Medicinal Chemistry, 2016, 108, 687-700.	2.6	82
153	Spent coffee ground as source for hydrocarbon fuels. Journal of Energy Chemistry, 2016, 25, 146-152.	7.1	30
154	Rational control of nano-scale metal-catalysts for biomass conversion. Chemical Communications, 2016, 52, 6210-6224.	2.2	179
155	Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 1775-1784.	3.2	39
156	Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: metagenomic profiling. RSC Advances, 2016, 6, 18641-18653.	1.7	93
157	Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresource Technology, 2016, 217, 129-136.	4.8	101
158	Novel silica-functionalized aminoisophthalic acid-based membranes for base recovery via diffusion dialysis. Journal of Membrane Science, 2016, 507, 90-98.	4.1	21
159	Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment. Energy, 2016, 98, 155-167.	4.5	32
160	Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach. Waste Management, 2016, 50, 290-299.	3.7	70
161	Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion. Journal of Materials Chemistry A, 2016, 4, 4603-4609.	5.2	30
162	Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency. Energy, 2016, 102, 335-342.	4.5	67
163	Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochemical Engineering Journal, 2016, 116, 3-16.	1.8	84
164	Exploitation of Food Industry Waste for High-Value Products. Trends in Biotechnology, 2016, 34, 58-69.	4.9	416
165	The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption. Surface Science, 2016, 646, 170-178.	0.8	40
166	Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong. Environmental Science and Pollution Research, 2016, 23, 7081-7091.	2.7	25
167	A novel bioconversion for value-added products from food waste using Musca domestica. Waste Management, 2017, 61, 455-460.	3.7	51
168	Anaerobic fermentation for n-caproic acid production: A review. Process Biochemistry, 2017, 54, 106-119.	1.8	237

#	Article	IF	CITATIONS
169	Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. Bioresource Technology, 2017, 237, 222-230.	4.8	121
170	Green conversion of municipal solid wastes into fuels and chemicals. Electronic Journal of Biotechnology, 2017, 26, 69-83.	1.2	214
171	Development of novel PVA-QUDAP based anion exchange membranes for diffusion dialysis and theoretical analysis therein. Separation and Purification Technology, 2017, 178, 269-278.	3.9	47
172	Organic waste as a sustainable feedstock for platform chemicals. Faraday Discussions, 2017, 202, 175-195.	1.6	92
173	Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in Food Science and Technology, 2017, 63, 51-59.	7.8	142
174	Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresource Technology, 2017, 238, 296-305.	4.8	62
175	Restoring of Glucose Metabolism of Engineered <i>Yarrowia lipolytica</i> for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy. Journal of Agricultural and Food Chemistry, 2017, 65, 4133-4139.	2.4	51
176	Grassroots Innovations and the Transition Towards Sustainability: Tackling the Food Waste Challenge. , 2017, , 303-327.		4
177	Luminescent calcium phosphate bioceramics doped with europium derived from fish industry byproducts. Journal of the American Ceramic Society, 2017, 100, 3402-3414.	1.9	19
178	Techno-Economic Study and Environmental Assessment of Food Waste Based Biorefinery. , 2017, , 121-146.		5
179	The Economic Case for the Circular Economy: From Food Waste to Resource. , 2017, , 25-41.		6
180	Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation. Science of the Total Environment, 2017, 598, 993-1000.	3.9	43
181	Kinetics of extraction and in situ transesterification of oils from spent coffee grounds. Journal of Environmental Chemical Engineering, 2017, 5, 2611-2616.	3.3	41
182	Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 2017, 3, 171-197.	1.3	335
183	Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environmental Science & Technology, 2017, 51, 7159-7168.	4.6	120
184	Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Bioresource Technology, 2017, 242, 68-76.	4.8	72
185	Food waste valorization options: opportunities from the bioeconomy. Open Agriculture, 2017, 2, 195-204.	0.7	84
186	Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus. Applied Biochemistry and Biotechnology, 2017, 183, 1503-1515.	1.4	4

#	Article	IF	CITATIONS
187	New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer. Bioresource Technology, 2017, 241, 448-453.	4.8	80
189	Tofu-derived carbon framework with embedded ultrasmall tin nanocrystals for high-performance energy storage devices. Journal of Alloys and Compounds, 2017, 722, 60-68.	2.8	23
190	Zr-modified hierarchical mordenite as heterogeneous catalyst for glycerol esterification. Catalysis Communications, 2017, 100, 10-14.	1.6	39
191	The Key Role of Textural Properties of Aluminosilicates in the Acidâ€Catalysed Dehydration of Glucose into 5â€Hydroxymethylfurfural. ChemistrySelect, 2017, 2, 2444-2451.	0.7	17
192	Catalytic upgrading of lactose: a rest raw material from the dairy industry. Green Chemistry, 2017, 19, 1904-1910.	4.6	14
193	The future of food colloids: Next-generation nanoparticle delivery systems. Current Opinion in Colloid and Interface Science, 2017, 28, 7-14.	3.4	59
194	Quality control of cashew apple and guava nectar by near infrared spectroscopy. Journal of Food Composition and Analysis, 2017, 56, 41-46.	1.9	28
195	Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 2017, 123, 387-394.	1.8	68
196	Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery. Applied Energy, 2017, 208, 1420-1429.	5.1	17
197	Molecular Characterization of Extracts from Biorefinery Wastes and Evaluation of Their Plant Biostimulation. ACS Sustainable Chemistry and Engineering, 2017, 5, 9023-9031.	3.2	33
198	Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology, 2017, 10, 1338-1352.	2.0	154
199	Putting together the puzzle of consumer food waste: Towards an integral perspective. Trends in Food Science and Technology, 2017, 68, 37-50.	7.8	174
200	A Multiobjective Optimization Including Results of Life Cycle Assessment in Developing Biorenewablesâ€Based Processes. ChemSusChem, 2017, 10, 3632-3643.	3.6	31
201	Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation. Renewable Energy, 2017, 113, 1523-1528.	4.3	43
202	Municipal waste management systems for domestic use. Energy, 2017, 139, 485-506.	4.5	128
203	Bioconversion of beverage waste to high fructose syrup as a value-added product. Food and Bioproducts Processing, 2017, 105, 179-187.	1.8	27
204	Development of a citrus peel-based biorefinery strategy for the production of succinic acid. Journal of Cleaner Production, 2017, 166, 706-716.	4.6	88
205	Lactic acid fermentation modelling of Streptococcus thermophilus YI-B1 and Lactobacillus casei Shirota using food waste derived media. Biochemical Engineering Journal, 2017, 127, 97-109.	1.8	26

#	Article	IF	CITATIONS
206	A roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry, 2017, 8, 18-23.	3.2	213
207	From waste to wealth using green chemistry: The way to long term stability. Current Opinion in Green and Sustainable Chemistry, 2017, 8, 10-13.	3.2	40
208	Development of an integrated process to produce d-mannose and bioethanol from coffee residue waste. Bioresource Technology, 2017, 244, 1039-1048.	4.8	45
209	A systems perspective on chemical production from mixed food waste: The case of bio-succinate in Sweden. Resources, Conservation and Recycling, 2017, 125, 86-97.	5.3	11
210	Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering. Biotechnology Reports (Amsterdam, Netherlands), 2017, 16, 32-43.	2.1	23
212	Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous BrÃ,nsted acids: Temperature and solvent effects. Chemical Engineering Journal, 2017, 327, 328-335.	6.6	99
213	High-rate lactic acid production from food waste and waste activated sludge via interactive control of pH adjustment and fermentation temperature. Chemical Engineering Journal, 2017, 328, 197-206.	6.6	80
214	Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste. Journal of Cleaner Production, 2017, 165, 157-167.	4.6	40
215	Secondary Resources in the Bio-Based Economy: A Computer Assisted Survey of Value Pathways in Academic Literature. Waste and Biomass Valorization, 2017, 8, 2229-2246.	1.8	24
216	Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Chemosphere, 2017, 184, 1099-1107.	4.2	58
217	A Methodology for Sustainable Management of Food Waste. Waste and Biomass Valorization, 2017, 8, 2209-2227.	1.8	134
218	Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 55-67.	0.8	8
219	Novel Ternary Polymer Electrolytes Based on Poly(lactic acid) from Sustainable Sources. ChemElectroChem, 2017, 4, 463-467.	1.7	16
220	Food Industry Co-streams: Potential Raw Materials for Biodegradable Mulch Film Applications. Journal of Polymers and the Environment, 2017, 25, 1110-1130.	2.4	27
221	Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. Bioresource Technology, 2017, 224, 48-55.	4.8	78
222	Food wastes derived adsorbents for carbon dioxide and benzene gas sorption. Chemosphere, 2017, 168, 326-332.	4.2	22
223	The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 2017, 19, 18-43.	4.6	912
224	Enrichment of <scp>d</scp> -lactic acid from organic wastes catalyzed by zero-valent iron: an approach for sustainable lactate isomerization. Green Chemistry, 2017, 19, 928-936.	4.6	19

#	Article	IF	CITATIONS
225	Improved acid recovery performance by novel Poly(DMAEM-co-γ-MPS) anion exchange membrane via diffusion dialysis. Journal of Membrane Science, 2017, 525, 163-174.	4.1	49
226	A life cycle assessment of biosolarization as a valorization pathway for tomato pomace utilization in California. Journal of Cleaner Production, 2017, 141, 146-156.	4.6	27
227	Microwave-Assisted Water Extraction of Carbohydrates From Unutilized Biomass. , 2017, , 199-219.		4
228	An Investigation on Food Waste Recovery: A Preliminary Step of Waste-to-Energy (WtE) Development. Energy Procedia, 2017, 138, 169-174.	1.8	4
229	Bio-refining of food waste for fuel and value products. Energy Procedia, 2017, 136, 14-21.	1.8	27
230	Development Plant Pots from Carbon Powder and Oil Palm Fiber. Applied Mechanics and Materials, 0, 866, 176-179.	0.2	0
231	Waste From Fruit Wine Production. , 2017, , 557-598.		13
232	Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein. Biotechnology for Biofuels, 2017, 10, 304.	6.2	109
233	Renewable Additives that Improve Water Resistance of Cellulose Composite Materials. Journal of Renewable Materials, 2017, 5, 1-13.	1.1	10
234	Consumers' Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability, 2017, 9, 141.	1.6	220
235	Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: A kinetic model approach. Carbohydrate Polymers, 2018, 181, 793-800.	5.1	58
236	The Road to Biorenewables: Carbohydrates to Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 4464-4480.	3.2	120
237	Valorisation of mango seed via extraction of starch: preliminary techno-economic analysis. Clean Technologies and Environmental Policy, 2018, 20, 81-94.	2.1	22
238	Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 2018, 108, 309-330.	2.9	346
239	Food waste recovery into energy in a circular economy perspective: A comprehensive review of aspects related to plant operation and environmental assessment. Journal of Cleaner Production, 2018, 184, 869-892.	4.6	134
240	Analysis of operation of a micro-cogenerator with two solid oxide fuel cells stacks for maintaining neutral water balance. Energy, 2018, 152, 888-895.	4.5	5
241	Biowaste Valorisation in a Future Circular Bioeconomy. Procedia CIRP, 2018, 69, 591-596.	1.0	78
242	High-Adsorption, Self-Extinguishing, Thermal, and Acoustic-Resistance Aerogels Based on Organic and Inorganic Waste Valorization from Cellulose Nanocrystals and Red Mud. ACS Sustainable Chemistry and Engineering, 2018, 6, 7168-7180.	3.2	68

#	Article	IF	CITATIONS
243	Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresource Technology, 2018, 265, 519-531.	4.8	235
244	Activated carbon enhanced anaerobic digestion of food waste – Laboratory-scale and Pilot-scale operation. Waste Management, 2018, 75, 270-279.	3.7	90
245	Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Management, 2018, 74, 52-62.	3.7	226
246	Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends in Food Science and Technology, 2018, 74, 119-131.	7.8	115
247	Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 2018, 118, 614-678.	23.0	1,473
248	Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion. Waste and Biomass Valorization, 2018, 9, 2295-2306.	1.8	27
249	Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Topics in Current Chemistry, 2018, 376, 3.	3.0	109
250	Bioplastics from vegetable waste <i>via</i> an eco-friendly water-based process. Green Chemistry, 2018, 20, 894-902.	4.6	99
251	Encapsulation templated approach to valorization of cocoa husk, poppy and hemp macrostructural and bioactive constituents. Industrial Crops and Products, 2018, 112, 402-411.	2.5	14
252	Mechanochemical Amorphization of α-Chitin and Conversion into Oligomers of <i>N</i> -Acetyl- <scp>d</scp> -glucosamine. ACS Sustainable Chemistry and Engineering, 2018, 6, 1662-1669.	3.2	79
253	Template-Free Synthesis of Alkaline Earth Vanadate Nanomaterials from Leaching Solutions of Oil Refinery Waste. ACS Sustainable Chemistry and Engineering, 2018, 6, 2292-2301.	3.2	8
254	Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47, 1351-1390.	18.7	440
255	Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review. Journal of Cleaner Production, 2018, 192, 316-326.	4.6	196
256	Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renewable and Sustainable Energy Reviews, 2018, 90, 700-709.	8.2	85
257	Recycling and reuse of food waste. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 39-43.	3.2	27
258	Food loss and food waste research in the Arab world: a systematic review. Food Security, 2018, 10, 311-322.	2.4	96
259	Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes. Bioresource Technology, 2018, 258, 270-278.	4.8	28
260	Integrated extraction-adsorption process for selective recovery of antioxidant phenolics from food industry by-product. Chemical Engineering and Processing: Process Intensification, 2018, 127, 83-92.	1.8	18

CITATION REPOR	~		~	
	(ITA	TION		DUBL

#	Article	IF	CITATIONS
261	Valorization of food waste into biofertiliser and its field application. Journal of Cleaner Production, 2018, 187, 273-284.	4.6	118
262	Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science and Technology, 2018, 75, 93-104.	7.8	256
263	Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica‣upported Ir–ReO _{<i>x</i>} Bimetallic Catalyst. ChemSusChem, 2018, 11, 1446-1454.	3.6	66
264	Gateâ€toâ€gate life cycle assessment of biosurfactants and bioplasticizers production via biotechnological exploitation of fats and waste oils. Journal of Chemical Technology and Biotechnology, 2018, 93, 2833-2841.	1.6	36
265	Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks. Journal of Polymers and the Environment, 2018, 26, 830-837.	2.4	54
266	Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresource Technology, 2018, 248, 100-112.	4.8	132
267	Development of Novel Biodegradable Polysaccharide-Based Composites and Investigation of Their Structure and Properties. Journal of Polymers and the Environment, 2018, 26, 1727-1736.	2.4	15
268	Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste. Bioresource Technology, 2018, 248, 134-140.	4.8	51
269	Plants as resources for organic molecules: Facing the green and sustainable future today. Current Opinion in Green and Sustainable Chemistry, 2018, 9, 1-7.	3.2	21
270	The implications of stakeholder perspective for LCA of wasted food and green waste. Journal of Cleaner Production, 2018, 170, 1554-1564.	4.6	54
271	Concentration of phenolic compounds from apple pomace extracts by nanofiltration at lab and pilot scale with a technoâ€economic assessment. Journal of Food Process Engineering, 2018, 41, e12629.	1.5	28
272	Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic. Bioresource Technology, 2018, 249, 16-23.	4.8	139
273	Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature. Bioresource Technology, 2018, 247, 890-896.	4.8	60
274	Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 2018, 247, 1047-1058.	4.8	626
275	Value added products from fermentation of sugars derived from agro-food residues. Trends in Food Science and Technology, 2018, 71, 52-64.	7.8	56
276	Efficient bioconversion of organic wastes to high optical activity of l-lactic acid stimulated by cathode in mixed microbial consortium. Water Research, 2018, 131, 1-10.	5.3	32
277	Recycling food waste to clean water: the use of a biodigester's residual liquid inoculum (RLI) to decolourise textile azo dyes. Water Science and Technology, 2018, 77, 398-408.	1.2	3
278	Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resources, Conservation and Recycling, 2018, 129, 153-167.	5.3	207

#	Article	IF	CITATIONS
279	Variation of density and flash point in acid degummed waste cooking oil. Journal of Food Processing and Preservation, 2018, 42, e13533.	0.9	11
280	Understanding and managing the food-energy-water nexus – opportunities for water resources research. Advances in Water Resources, 2018, 111, 259-273.	1.7	218
281	Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 2018, 248, 2-12.	4.8	504
282	Making Virtue Out of Necessity: Managing the Citrus Waste Supply Chain for Bioeconomy Applications. Sustainability, 2018, 10, 4821.	1.6	38
283	Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects. Energies, 2018, 11, 2341.	1.6	11
284	Valorization of waste foods using pullulan hydrolase from Thermococcus kodakarensis. Amylase, 2018, 2, 39-43.	0.7	1
285	Simultaneous Extraction and Emulsification of Food Waste Liquefaction Bio-Oil. Energies, 2018, 11, 3031.	1.6	10
286	Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates. AMB Express, 2018, 8, 92.	1.4	32
287	Bentonite as a Refining Agent in Waste Cooking Oils Recycling: Flash Point, Density and Color Evaluation. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	15
288	Kinetic Studies of Acid Hydrolysis of Food Waste-Derived Saccharides. Industrial & Engineering Chemistry Research, 2018, 57, 17365-17374.	1.8	13
289	Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives. Energies, 2018, 11, 1263.	1.6	20
290	Advanced material applications of starch and its derivatives. European Polymer Journal, 2018, 108, 570-581.	2.6	150
291	Thermally assisted bio-drying of food waste: Synergistic enhancement and energetic evaluation. Waste Management, 2018, 80, 327-338.	3.7	32
293	Integrated Approach for the Valorization of Red Grape Pomace: Production of Oil, Polyphenols, and Acetone–Butanol–Ethanol. ACS Sustainable Chemistry and Engineering, 2018, 6, 16279-16286.	3.2	42
294	Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. Npj Science of Food, 2018, 2, 19.	2.5	74
295	Complete Utilization of Waste Pomegranate Peels To Produce a Hydrocolloid, Punicalagin Rich Phenolics, and a Hard Carbon Electrode. ACS Sustainable Chemistry and Engineering, 2018, 6, 16363-16374.	3.2	33
296	New Route for Valorization of Oil Mill Wastes: Isolation of Humic-Like Substances to be Employed in Solar-Driven Processes for Pollutants Removal. ACS Omega, 2018, 3, 13073-13080.	1.6	16
297	Direct-Continuous Preparation of Nanostructured Titania-Silica Using Surfactant-Free Non-Scaffold Rice Starch Template. Nanomaterials, 2018, 8, 514.	1.9	12

#	Article	IF	CITATIONS
298	Anti-inflammatory bowel effect of industrial orange by-products in DSS-treated mice. Food and Function, 2018, 9, 4888-4896.	2.1	34
299	Biofuel Potential of Fruit Juice Industry Waste. Journal of Hazardous, Toxic, and Radioactive Waste, 2018, 22, 05018002.	1.2	11
300	Enzymatic processing of mussel shells to produce biorenewable calcium carbonate in seawater. Green Chemistry, 2018, 20, 2913-2920.	4.6	12
301	Recycling of food waste into chemical building blocks. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 118-122.	3.2	24
302	Acidogenic Biorefinery: Food Waste Valorization to Biogas and Platform Chemicals. , 2018, , 203-218.		19
303	Microwave-Driven Biorefinery for Utilization of Food and Agricultural Waste Biomass. , 2018, , 393-408.		9
304	A Barbeque-Analog Route to Carbonize Moldy Bread for Efficient Steam Generation. IScience, 2018, 3, 31-39.	1.9	50
305	Food Waste Valorization. , 2018, , 371-399.		21
306	Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 80-88.	3.2	91
307	Cobalt-Catalyzed Oxidation of the β-O-4 Bond in Lignin and Lignin Model Compounds. ACS Omega, 2018, 3, 8386-8392.	1.6	30
308	Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789. Biotechnology for Biofuels, 2018, 11, 145.	6.2	21
309	Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology, 2018, 267, 356-362.	4.8	89
310	The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds. Materials, 2018, 11, 451.	1.3	23
311	Foods and supplements. , 2018, , 327-362.		0
312	Global trends and future prospects of food waste research: a bibliometric analysis. Environmental Science and Pollution Research, 2018, 25, 24600-24610.	2.7	54
313	A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel. E3S Web of Conferences, 2018, 31, 05013.	0.2	13
314	Efficient solid acid catalysts based on sulfated tin oxides for liquid phase esterification of levulinic acid with ethanol. Applied Catalysis A: General, 2018, 560, 119-131.	2.2	37
315	Selectively biorefining astaxanthin and triacylglycerol co-products from microalgae with supercritical carbon dioxide extraction. Bioresource Technology, 2018, 269, 81-88.	4.8	33

#	Article	IF	CITATIONS
316	A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 2018, 48, 614-654.	6.6	189
317	Carbon Dioxide Mediated Transesterification of Mixed Triacylglyceride Substrates. Energy & Fuels, 2018, 32, 9624-9632.	2.5	5
318	Anaerobic Digestion of Food Waste for Bioenergy Production. , 2019, , 530-537.		4
319	Development and characterization of liquors prepared with an underutilized citrus by-product, the peel. European Food Research and Technology, 2019, 245, 41-50.	1.6	8
320	Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy, 2019, 65, 104006.	8.2	149
321	Mechanical Properties and Biodegradability of Polylactide—Polysaccharide Compositions. Polymer Science - Series D, 2019, 12, 300-304.	0.2	1
322	Effects of high-voltage electric field treatment on physicochemical properties of potato starch. Journal of Food Measurement and Characterization, 2019, 13, 3069-3076.	1.6	10
323	Biowaste Management in Italy: Challenges and Perspectives. Sustainability, 2019, 11, 4213.	1.6	33
324	Innovative applications of waste cooking oil as raw material. Science Progress, 2019, 102, 153-160.	1.0	38
325	Enhanced food waste anaerobic digestion: An encapsulated metal additive for shear stress-based controlled release. Journal of Cleaner Production, 2019, 235, 85-95.	4.6	23
326	Predictive deep learning models for environmental properties: the direct calculation of octanol–water partition coefficients from molecular graphs. Green Chemistry, 2019, 21, 4555-4565.	4.6	69
327	A powdered orange peel combined carboxymethyl chitosan and its acylated derivative for the emulsification of marine diesel and 2T-oil with different qualities of water. Journal of Molecular Liquids, 2019, 291, 111327.	2.3	6
328	Evaluation of catalytic subcritical water gasification of food waste for hydrogen production: Effect of process conditions and different types of catalyst loading. International Journal of Hydrogen Energy, 2019, 44, 21451-21463.	3.8	30
329	Effect of different co-treatments of waste activated sludge on biogas production and shaping microbial community in subsequent anaerobic digestion. Chemical Engineering Journal, 2019, 378, 122098.	6.6	28
330	Composites Based on Starch and Polylactide. Polymer Science - Series B, 2019, 61, 334-340.	0.3	8
331	Precipitation Characteristics in the Community Atmosphere Model and Their Dependence on Model Physics and Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2352-2374.	1.3	47
332	Valorization of Carbohydrates of Agricultural Residues and Food Wastes: A Key Strategy for Carbon Conservation. ACS Sustainable Chemistry and Engineering, 2019, 7, 17799-17807.	3.2	17
333	Growth performance of roselle (Hibiscus sabdariffa) under application of food waste compost and Fe3O4 nanoparticle treatment. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 299-309.	2.0	0

#	Article	IF	Citations
334	Accelerating the implementation of circular economy. , 2019, , 69-109.		2
335	Circular economy in action. , 2019, , 111-206.		1
336	Food waste from a university campus in the Middle East: Drivers, composition, and resource recovery potential. Waste Management, 2019, 98, 14-20.	3.7	48
337	Biodegradable Waste Frying Oil-Based Ethoxylated Esters as Highly Efficient Plasticizers for Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2019, 7, 15957-15965.	3.2	34
338	Polyphenols From Vitis vinifera Lambrusco By-Products (Leaves From Pruning): Extraction Parameters Evaluation Through Design of Experiment. Natural Product Communications, 2019, 14, 1934578X1986290.	0.2	3
339	Spent Coffee Grounds-Templated Magnetic Nanocatalysts for Mild Oxidations. ACS Sustainable Chemistry and Engineering, 2019, 7, 17030-17038.	3.2	13
340	A Bifunctional Zwitterion That Serves as Both a Membrane Modifier and a Draw Solute for Forward Osmosis Wastewater Treatment. ACS Applied Materials & Interfaces, 2019, 11, 36118-36129.	4.0	31
341	Circular agri-food approaches: will consumers buy novel products made from vegetable waste?. Rural Society, 2019, 28, 91-107.	0.4	36
342	Waste-to-useful: a biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New Journal of Chemistry, 2019, 43, 2134-2140.	1.4	57
343	D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species. IScience, 2019, 12, 132-140.	1.9	19
344	Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT - Food Science and Technology, 2019, 105, 182-189.	2.5	92
345	Valorization of Residues From Beverage Production. , 2019, , 451-494.		7
346	Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chemistry, 2019, 21, 1186-1201.	4.6	75
347	Towards a Zero-Waste Biorefinery Using Edible Oils as Solvents for the Green Extraction of Volatile and Non-Volatile Bioactive Compounds from Rosemary. Antioxidants, 2019, 8, 140.	2.2	21
348	Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas. Renewable and Sustainable Energy Reviews, 2019, 112, 1-10.	8.2	78
349	Ash behavior of various fuels: The role of the intrinsic distribution of ash species. Fuel, 2019, 253, 930-940.	3.4	56
350	Material flow analysis of alternative biorefinery systems for managing Chinese food waste. Resources, Conservation and Recycling, 2019, 149, 197-209.	5.3	36
351	Valorisation of Cashew Nut Shell Liquid Phenolics in the Synthesis of UV Absorbers. European Journal of Organic Chemistry, 2019, 2019, 4778-4790.	1.2	8

ARTICLE IF CITATIONS Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. 352 218 6.6 Chemical Engineering Journal, 2019, 375, 121983. Turning food waste to energy and resources towards a great environmental and economic 353 6.0 218 sustainability: An innovative integrated biological approach. Biotechnology Advances, 2019, 37, 107414. Multifunctional food waste fertilizer having the capability of Fusarium-growth inhibition and 354 phosphate solubility: A new horizon of food waste recycle using microorganisms. Waste Management, 3.7 33 2019, 94, 77-84. Branched Medium Chain Fatty Acids: Iso-Caproate Formation from Iso-Butyrate Broadens the Product Spectrum for Microbial Chain Elongation. Environmental Science & amp; Technology, 2019, 53, 7704-7713. Cheese whey to biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L. 356 1.6 44 acidophilus. Scientific Reports, 2019, 9, 8320. Valorization of food-waste hydrolysate by Lentibacillus salarius NS12IITR for the production of branched chain fatty acid enriched lipid with potential application as a feedstock for improved 357 3.7 biodiesel. Waste Management, 2019, 94, 1-9 Rapid, enhanced and eco-friendly recovery of punicalagin from fresh waste pomegranate peels via 358 4.6 18 aqueous ball milling. Journal of Cleaner Production, 2019, 228, 1238-1247. Efficient sophorolipids production using food waste. Journal of Cleaner Production, 2019, 232, 1-11. 4.6 Agricultural waste biomass-assisted nanostructures: Synthesis and application. Green Processing and 360 1.3 56 Synthesis, 2019, 8, 421-429. Pd/Câ \in catalyzed reduction of NaHCO 3 into formate with 2â \in pyrrolidone under hydrothermal conditions. Energy Science and Engineering, 2019, 7, 881-889. A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. Renewable and 362 8.2 177 Sustainable Energy Reviews, 2019, 111, 115-131. Bioaccumulation and health risk assessments of trace elements in housefly (Musca domestica L.) 3.9 28 larvae fed with food wastes. Science of the Total Environment, 2019, 682, 485-493. How Charge and Triple Size-Selective Membrane Separation of Peptides from Salmon Protein 364 Hydrolysate Orientate their Biological Response on Glucose Uptake. International Journal of 1.8 19 Molecular Sciences, 2019, 20, 1939. Design and synthesis of ethoxylated esters derived from waste fryingÂoil as anti-ultraviolet and efficient primary plasticizers for poly(vinylÂchloride). Journal of Cleaner Production, 2019, 229, 4.6 38 1274-1282. Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic 366 antioxidants by supercritical fluid extraction. Journal of Food Science and Technology, 2019, 56, 1.4 36 3055-3066. Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. Journal of 50 Cleaner Production, 2019, 227, 624-633. Three-stage anaerobic co-digestion of food waste and waste activated sludge: Identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters. 368 4.8 20 Bioresource Technology, 2019, 285, 121333. 369 Industrial Food Waste Valorization: A General Overview., 2019, , 253-277. 24

#	Article	IF	CITATIONS
370	Particle Size and Hydration Properties of Dried Apple Pomace: Effect on Dough Viscoelasticity and Quality of Sugar-Snap Cookies. Food and Bioprocess Technology, 2019, 12, 1083-1092.	2.6	26
371	Sustainable waste management through synergistic utilisation of commercial and domestic organic waste for efficient resource recovery and valorisation in the UK. Journal of Cleaner Production, 2019, 227, 248-262.	4.6	57
372	Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International, 2019, 123, 226-240.	2.9	123
373	Production of bioplastic through food waste valorization. Environment International, 2019, 127, 625-644.	4.8	328
374	Biomass for Biorefineries: Availability and Costs. , 2019, , 37-48.		1
375	Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chemical Engineering Journal, 2019, 371, 804-812.	6.6	40
376	Valorisation of orange peel: supplement in fermentation media for ethanol production and source of limonene. Environmental Sustainability, 2019, 2, 33-41.	1.4	16
377	Valorization of Oceanic Waste Biomass: A Catalytic Perspective. Chemical Record, 2019, 19, 1995-2021.	2.9	15
378	Renewable energy in cement manufacturing: A quantitative assessment of energy and environmental efficiency of food residue biofuels. Renewable and Sustainable Energy Reviews, 2019, 107, 568-586.	8.2	14
379	The effect of dietary substitution of Undaria pinnatifida with carrot leaf by-product on the growth and soft body composition of juvenile abalone (Haliotis discus, Reeve 1846). Journal of Applied Phycology, 2019, 31, 3235-3243.	1.5	9
380	Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chemical Engineering Journal, 2019, 373, 1042-1053.	6.6	36
381	Changes in crop rotations would impact food production in an organically farmed world. Nature Sustainability, 2019, 2, 378-385.	11.5	46
382	Correlative metabolite profiling approach to understand antioxidant and antimicrobial activities from citrus essential oils. International Journal of Food Science and Technology, 2019, 54, 2615-2623.	1.3	15
383	Biomineralization of orange peel peroxidase within metal organic frameworks (OPP–MOFs) for dye degradation. Journal of Environmental Chemical Engineering, 2019, 7, 102969.	3.3	43
384	Life-Cycle Assessment of Microwave-Assisted Pectin Extraction at Pilot Scale. ACS Sustainable Chemistry and Engineering, 2019, 7, 5167-5175.	3.2	46
385	Economic assessment of food waste co-digestion with sewage sludge in five Asian cities. Journal of Material Cycles and Waste Management, 2019, 21, 872-884.	1.6	3
386	Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 2019, 144, 310-320.	5.3	239
387	Healthy lifestyle and food waste behavior. Journal of Consumer Marketing, 2019, 37, 148-159.	1.2	17

#	Article	IF	CITATIONS
388	Biodegradable Polymer Materials Based on Polylactide. Russian Journal of Physical Chemistry B, 2019, 13, 812-818.	0.2	12
389	Green Chemistry Extractions of Carotenoids from Daucus carota L.—Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules, 2019, 24, 4339.	1.7	37
391	Tomato's Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin. ACS Omega, 2019, 4, 19071-19080.	1.6	38
392	Densification and Fuel Properties of Onion Husks. Energies, 2019, 12, 4687.	1.6	22
393	Education and training for industrial biotechnology and engineering biology. Engineering Biology, 2019, 3, 6-11.	0.8	8
394	Synthesis and Pharmacological Evaluation of Novel Selenoethers Glycerol Derivatives for the Treatment of Pain and Inflammation: Involvement of Nitrergic and Glutamatergic Systems. Applied Biochemistry and Biotechnology, 2019, 187, 1398-1423.	1.4	10
395	Share, Optimise, Closed-Loop for Food Waste (SOL4FoodWaste): The Case of Walmart-Mexico. The New Synthese Historical Library, 2019, , 165-190.	0.1	0
396	Application of Nanobiocatalysts on Food Waste. , 2019, , 785-793.		1
397	A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. Biocatalysis and Agricultural Biotechnology, 2019, 17, 470-479.	1.5	54
398	Mechanism of process imbalance of long-term anaerobic digestion of food waste and role of trace elements in maintaining anaerobic process stability. Bioresource Technology, 2019, 275, 172-182.	4.8	79
399	An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 2019, 233, 352-370.	3.8	261
400	An innovative green extraction and re-use strategy to valorize food supplement by-products: Castanea sativa bud preparations as case study. Food Research International, 2019, 115, 276-282.	2.9	26
401	Chemical characterisation, antioxidant and antimicrobial screening for the revaluation of wine supply chain by-products oriented to circular economy. Plant Biosystems, 2019, 153, 809-816.	0.8	12
402	Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach. Carbohydrate Polymers, 2019, 205, 626-635.	5.1	35
403	Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 2019, 657, 262-269.	3.9	153
404	Opportunities for waste valorisation in the food industry \hat{a} €" A case study with four UK food manufacturers. Journal of Cleaner Production, 2019, 211, 1339-1356.	4.6	110
405	Characterization of food waste from different sources in Hong Kong. Journal of the Air and Waste Management Association, 2019, 69, 277-288.	0.9	46
406	Hydrogen and Methane Production from Food Residue Biomass Product (FORBI). Waste and Biomass Valorization, 2020, 11, 1647-1655.	1.8	20

#	Article	IF	CITATIONS
407	Conversion of Renewable and Food Wastes Into Useful Products With Environmental Perspectives. , 2020, , 413-424.		0
408	Simultaneous Saccharification and Fermentation of Watermelon Waste for Ethanol Production. Lecture Notes on Multidisciplinary Industrial Engineering, 2020, , 185-197.	0.4	2
409	Food loss and waste metrics: a proposed nutritional cost footprint linking linear programming and life cycle assessment. International Journal of Life Cycle Assessment, 2020, 25, 1197-1209.	2.2	30
410	Production of more sustainable emulsions formulated with eco-friendly materials. Journal of Cleaner Production, 2020, 243, 118661.	4.6	7
411	Between green and gray: Smog risk and rationale behind vehicle switching. Journal of Cleaner Production, 2020, 244, 118674.	4.6	24
412	From second generation feed-stocks to innovative fermentation and downstream techniques for succinic acid production. Critical Reviews in Environmental Science and Technology, 2020, 50, 1829-1873.	6.6	37
413	Studies on the extraction of polyphenolic compounds from pre-consumer organic solid waste. Journal of Industrial and Engineering Chemistry, 2020, 82, 130-137.	2.9	15
414	Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly. Renewable Energy, 2020, 149, 1174-1181.	4.3	16
415	Sustainable and innovative practices of small and medium-sized enterprises in the water and waste management sector. , 2020, , 255-290.		0
416	Substitution effect of <i>Undaria pinnatifida</i> with citrus (<i>Citrus unshiu</i> , Marcovitch) peel byâ€product in feed on the growth, body composition and air exposure stressor of juvenile abalone () Tj ETQq1	1 01718431	4 r g BT /Over
417	Bioconversion of biomass waste into high value chemicals. Bioresource Technology, 2020, 298, 122386.	4.8	228
418	The Evolution of Microbial Community during Acclimation for High Sodium Food Waste Anaerobic digestion. Waste and Biomass Valorization, 2020, 11, 6057-6063.	1.8	15
419	From waste to value. , 2020, , 1-32.		3
420	Properties of bioliquids and their impacts on combustion and boiler operation. Energy, 2020, 193, 116782.	4.5	7
421			
	Direct Conversion of McDonald's Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 1171-1177.	3.2	42
422		3.2 4.6	42
422 423	3D-Printing Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 1171-1177. Innovation and by-product valorization: A comparative analysis of the absorptive capacity of food		

#	Article	IF	CITATIONS
425	Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Research, 2020, 170, 115305.	5.3	30
426	Effect of carbon dioxide on thermal treatment of food waste as a sustainable disposal method. Journal of CO2 Utilization, 2020, 36, 76-81.	3.3	29
427	Ultrasound-Ionic Liquid Pretreatment Enhanced Conversion of the Sugary Food Waste to 5-Hydroxymethylfurfural in Ionic Liquid/Solid Acid Catalyst System. Catalysis Letters, 2020, 150, 1373-1388.	1.4	13
428	Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties. Carbohydrate Polymers, 2020, 231, 115725.	5.1	58
429	Connecting precursors to a protic ionic liquid: Effects of hydrogen bond synergy in acid-base binary mixtures on the solvent-solute interactions. Journal of Molecular Liquids, 2020, 297, 111746.	2.3	4
430	Recent developments in key biorefinery areas. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 64-74.	3.2	31
431	Production of flavonol quercetin and fructooligosaccharides from onion (Allium cepa L.) waste: An environmental life cycle approach. Chemical Engineering Journal, 2020, 392, 123772.	6.6	32
432	Changes in global trends in food waste composting: Research challenges and opportunities. Bioresource Technology, 2020, 299, 122555.	4.8	161
433	Environmental and socioeconomic impact assessment of biofuels from lignocellulosic biomass. , 2020, , 283-299.		9
434	Pyrone Synthesis from Renewable Sources: Easy Preparation of 3â€Acetoxyâ€2â€oxoâ€2 <i>H</i> â€pyranâ€6â€carboxylic Salts and their Derivatives as 3â€Hydroxyâ€2 <i>Hfrom C6 Aldaric Acids. European Journal of Organic Chemistry, 2020, 2020, 241-251.</i>	∍â €p₂ yranâ	€ 2â€o ne
435	Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology, 2020, 297, 122497.	4.8	225
436	Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass. Bioresource Technology, 2020, 300, 122645.	4.8	25
437	Engineered food supplement excipients from bitter cassava for minimisation of cassava processing waste in environment. Future Foods, 2020, 1-2, 100003.	2.4	4
438	Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen. Fuel Processing Technology, 2020, 210, 106558.	3.7	28
439	Revisiting the scope and applications of food enzymes from extremophiles. Journal of Food Biochemistry, 2020, 44, e13475.	1.2	12
441	Valorization of walnut processing waste as a novel resource: Production and characterization of pectin. Journal of Food Processing and Preservation, 2020, 44, e14941.	0.9	12
442	Characterization of the Nutritional Composition of a Biotechnologically Produced Oyster Mushroom and its Physiological Effects in Obese Zucker Rats. Molecular Nutrition and Food Research, 2020, 64, e2000591.	1.5	7
443	Yeasts from indigenous culture for cachaça production and brewer's spent grain: Biodiversity and phenotypic characterization for biotechnological purposes. Food and Bioproducts Processing, 2020, 124, 107-120.	1.8	3

#	Article	IF	CITATIONS
444	Briquettes of citrus peel and rice husk. Journal of Cleaner Production, 2020, 276, 123820.	4.6	13
445	Life cycle assessment of agro-industrial by-product reuse: a comparison between anaerobic digestion and conventional disposal treatments. Green Chemistry, 2020, 22, 7119-7139.	4.6	27
446	Determination of Minimum Effective Concentration of Cashew Nut Shell (CNS) Pyrolysis Products for Antibacterial Escherichia coli Using Kinetics Approach. IOP Conference Series: Earth and Environmental Science, 2020, 465, 012039.	0.2	0
448	The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health. Foods, 2020, 9, 1716.	1.9	30
449	A Novel Approach Using Conventional Methodologies to Scale up BNC Production Using Komagataeibacter medellinensis and Rotten Banana Waste as Alternative. Processes, 2020, 8, 1469.	1.3	7
450	Sustainable Single-Stage Solid–Liquid Extraction of Hesperidin and Rutin from Agro-Products Using Cyrene. ACS Sustainable Chemistry and Engineering, 2020, 8, 18245-18257.	3.2	37
451	Valorization of rice straw for ethylene and jet fuel production: a technoeconomic assessment. , 2020, , 201-221.		1
452	The specifics of food design: Insights from professional design practice. International Journal of Food Design, 2020, 4, 101-138.	0.6	7
453	Acid hydrolysis of the waste newspaper: Comparison of process variables for finding the best condition to produce quality fermentable sugars. Journal of Environmental Chemical Engineering, 2020, 8, 104345.	3.3	5
454	Cultivation of heterotrophic algae on enzymatically hydrolyzed municipal food waste. Algal Research, 2020, 50, 101993.	2.4	19
455	Agricultural Utilization of Unused Resources: Liquid Food Waste Material as a New Source of Plant Growth-Promoting Microbes. Agronomy, 2020, 10, 954.	1.3	8
456	Assessing the environmental performance for more local and more circular biowaste management options at city-region level. Science of the Total Environment, 2020, 745, 140690.	3.9	44
457	On farm storage, storage losses and the effects of loss reduction in China. Resources, Conservation and Recycling, 2020, 162, 105062.	5.3	23
458	Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements. Sustainability, 2020, 12, 5222.	1.6	26
459	Mordant Free Dyeing and Functionalization of Wool Fabrics with Biocolorants Derived from <i>Apocynum venetum</i> L. Bast. ACS Sustainable Chemistry and Engineering, 2020, 8, 12686-12695.	3.2	21
460	Effect of Torrefaction on Physicochemical Properties and Steam Gasification Reactivity of Chars Produced from the Pyrolysis of Typical Food Wastes. Energy & Fuels, 2020, 34, 15332-15342.	2.5	10
461	Valorization of food waste to multiple bio-energies based on enzymatic pretreatment: A critical review and blueprint for the future. Journal of Cleaner Production, 2020, 277, 124091.	4.6	27
462	Secondary Bioactive Metabolites from Plant-Derived Food Byproducts through Ecopharmacognostic Approaches: A Bound Phenolic Case Study. Plants, 2020, 9, 1060.	1.6	6

#	Article	IF	CITATIONS
463	Co-Fermentation of Food Waste and Municipal Sludge from the Saudi Arabian Environment to Improve Lactic Acid Production by Lactobacillus rhamnosus AW3 Isolated from Date Processing Waste. Sustainability, 2020, 12, 6899.	1.6	16
464	Assessment of Dehydration as a Commercial-Scale Food Waste Valorization Strategy. Sustainability, 2020, 12, 5959.	1.6	5
465	Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Applied Sciences, 2020, 2, 1.	1.5	18
466	From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Scientific Reports, 2020, 10, 14184.	1.6	40
467	Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules, 2020, 25, 3829.	1.7	40
468	Preparation and Characterization of Zein-Based Nanoparticles via Ring-Opening Reaction and Self-Assembly as Aqueous Nanocarriers for Pesticides. Journal of Agricultural and Food Chemistry, 2020, 68, 9624-9635.	2.4	23
469	Sustainable Extraction and Use of Natural Bioactive Compounds from the Waste Management Process of Castanea spp. Bud-Derivatives: The FINNOVER Project. Sustainability, 2020, 12, 10640.	1.6	7
470	Biomass waste rice husk derived silica supported palladium nanoparticles: an efficient catalyst for Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. SN Applied Sciences, 2020, 2, 1.	1.5	3
471	On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement. Green Chemistry, 2020, 22, 8642-8655.	4.6	29
472	Conversion of Paper and Food-rich Municipal Solid Waste Streams to Ethanol through Bioprocessing. ACS Sustainable Chemistry and Engineering, 2020, 8, 16889-16896.	3.2	5
473	Composting of byproducts from the orange (<i>Citrus sinensis</i> (L.) Osbeck) and sugarcane (<i>Saccharum</i> spp. hybrids) agroindustries. Ingenieria E Investigacion, 2020, 40, 81-88.	0.2	3
475	Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems. Computers and Chemical Engineering, 2020, 140, 106881.	2.0	57
476	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8124-8136.	3.2	42
477	Food Wastes: Feedstock for Value-Added Products. Fermentation, 2020, 6, 47.	1.4	4
478	Synthesis and Interfacial Properties of Bio-Based Zwitterionic Surfactants Derived from Different Fatty Acids in Non-Edible Vegetable Oils. Journal of Renewable Materials, 2020, 8, 417-429.	1.1	7
479	Production of biopolymers and feed protein from food wastes. , 2020, , 143-162.		2
480	Production of organic acids and enzymes/biocatalysts from food waste. , 2020, , 119-141.		8
481	Bioelectrochemical Methane Production from Food Waste in Anaerobic Digestion Using a Carbon-Modified Copper Foam Electrode. Processes, 2020, 8, 416.	1.3	18

#	Article	IF	CITATIONS
482	Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan. Resources, 2020, 9, 53.	1.6	25
483	Techno-economic analysis and environmental aspects of food waste management. , 2020, , 325-342.		2
484	Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. Environmental Pollution, 2020, 265, 114854.	3.7	31
485	Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2020, 45, 17104-17117.	3.8	36
486	Quality and textural analysis of noodles enriched with apple pomace. Journal of Food Processing and Preservation, 2020, 44, e14579.	0.9	19
487	Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene) Tj ETQq1 1 0.7	84314 rgl 2.0	3T40verloc <mark>k</mark>
488	Green chemicals from used cooking oils: Trends, challenges, and opportunities. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100369.	3.2	46
489	Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 2020, 154, 112621.	2.5	59
490	Physiological and histological aspects of innate and shiitake-induced resistance against bacterial spot on tomatoes. European Journal of Plant Pathology, 2020, 157, 453-463.	0.8	2
491	Valorization of food waste for biodiesel production. , 2020, , 75-96.		3
492	Analysis and regulation policies of food waste based on circular bioeconomies. , 2020, , 389-400.		0
493	Towards a green and sustainable fruit waste valorisation model in Brazil: optimisation of homogenizer-assisted extraction of bioactive compounds from mango waste using a response surface methodology. Pure and Applied Chemistry, 2020, 92, 617-629.	0.9	22
494	Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry. Sustainability, 2020, 12, 1284.	1.6	47
495	Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Conversion and Management, 2020, 209, 112654.	4.4	125
496	Converting Pomelo Peel into Eco-friendly and Low-Consumption Photothermic Biomass Sponge toward Multifunctioal Solar-to-Heat Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 5328-5337.	3.2	79
497	Available Technologies and Materials for Waste Cooking Oil Recycling. Processes, 2020, 8, 366.	1.3	74
498	A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 2020, 22, 2325-2353.	4.6	396
499	Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. Journal of Hazardous Materials, 2020, 400, 123258.	6.5	67

Сітатіоі	n Report	
	IF	CITATIONS
roxy-2-pyrones through ng, 2020, 8, 11152-11161.	3.2	10

500	Synthesis of Functionalized Aromatic Carboxylic Acids from Biosourced 3-Hydroxy-2-pyrones through a Base-Promoted Domino Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 11152-11161.	3.2	10
501	Comparative Studies on Different Citrus Cultivars: A Revaluation of Waste Mandarin Components. Antioxidants, 2020, 9, 517.	2.2	36
502	Pre-feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochemical Engineering Journal, 2020, 161, 107680.	1.8	33
503	Reducing the stickiness of dragon fruit skin extract powder as food colorant by addition of maltodextrin during freeze drying. AIP Conference Proceedings, 2020, , .	0.3	1
504	Waste aroma profile in the framework of food waste management through household composting. Journal of Cleaner Production, 2020, 257, 120340.	4.6	39
505	Chromohalobacter salixigens uronate dehydrogenase: Directed evolution for improved thermal stability and mutant CsUDH-inc X-ray crystal structure. Process Biochemistry, 2022, 114, 185-192.	1.8	2
506	Decoupling Economic Development from the Consumption of Finite Resources Using Circular Economy. A Model for Developing Countries. Sustainability, 2020, 12, 1291.	1.6	41
507	Comprehensive Kinetic Modeling Study of CO ₂ Gasification of Char Derived from Food Waste. Energy & Fuels, 2020, 34, 1883-1895.	2.5	9
508	Valorization of food processing by-products via biofuel production. , 2020, , 53-69.		1
509	Food waste and social acceptance of a circular bioeconomy: the role of stakeholders. Current Opinion in Green and Sustainable Chemistry, 2020, 23, 55-60.	3.2	39
510	The valorization of food waste via pyrolysis. Journal of Cleaner Production, 2020, 259, 120816.	4.6	119
511	Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste. Renewable Energy, 2020, 153, 420-429.	4.3	5
512	The Roles of H2O/Tetrahydrofuran System in Lignocellulose Valorization. Frontiers in Chemistry, 2020, 8, 70.	1.8	16
513	Novel approach for the treatment of the organic fraction of municipal solid waste: Coupling thermal hydrolysis with anaerobic digestion and photo-fermentation. Science of the Total Environment, 2020, 714, 136845.	3.9	22
514	The "Prevention Paradox― food waste prevention and the quandary of systemic surplus production. Agriculture and Human Values, 2020, 37, 805-817.	1.7	48
515	Two novel ACE inhibitory peptides isolated from longan seeds: purification, inhibitory kinetics and mechanisms. RSC Advances, 2020, 10, 12711-12720.	1.7	29
516	Fruit and vegetable waste management: Conventional and emerging approaches. Journal of Environmental Management, 2020, 265, 110510.	3.8	235
517	Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohydrate Polymers, 2020, 240, 116341.	5.1	21

ARTICLE

#

#	Article	IF	CITATIONS
518	Preparation and Characterization of Environmentally Friendly Controlled Release Fertilizers Coated by Leftovers-Based Polymer. Processes, 2020, 8, 417.	1.3	16
519	Valorization of Food Waste via Torrefaction: Effect of Food Waste Type on the Characteristics of Torrefaction Products. Energy & Fuels, 2020, 34, 6041-6051.	2.5	34
520	Optimization of the Recovery of Anthocyanins from Chokeberry Juice Pomace by Homogenization in Acidified Water. Waste and Biomass Valorization, 2021, 12, 1815-1827.	1.8	15
521	A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions, 2021, 229, 108-130.	1.6	5
522	Valorisation of restaurant food waste under the concept of a biorefinery. Biomass Conversion and Biorefinery, 2021, 11, 661-671.	2.9	24
523	Waste into energy conversion technologies and conversion of food wastes into the potential products: a review. International Journal of Ambient Energy, 2021, 42, 1083-1101.	1.4	26
524	A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 2021, 272, 115985.	3.7	76
525	Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. Journal of Hazardous Materials, 2021, 402, 123543.	6.5	45
526	Measurement, mitigation and prevention of food waste in supply chains: An online shopping perspective. Industrial Marketing Management, 2021, 93, 545-562.	3.7	13
527	Development of astaxanthin production from citrus peel extract using Xanthophyllomyces dendrorhous. Environmental Science and Pollution Research, 2021, 28, 12640-12647.	2.7	16
528	Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environmental Pollution, 2021, 270, 116045.	3.7	56
529	An efficient plasticizer based on waste cooking oil: Structure and application. Journal of Applied Polymer Science, 2021, 138, 50128.	1.3	15
530	Present scenario and future scope of food waste to biofuel production. Journal of Food Process Engineering, 2021, 44, e13594.	1.5	29
531	Pre-treatment of used cooking oils for the production of green chemicals: A review. Journal of Cleaner Production, 2021, 289, 125129.	4.6	38
532	A techno-economic feasibility of a process for extraction of starch from waste avocado seeds. Clean Technologies and Environmental Policy, 2021, 23, 581-595.	2.1	18
533	Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks. Journal of Environmental Chemical Engineering, 2021, 9, 104610.	3.3	12
534	Recovery of nutrients from sewage using zeolite-chitosan-biochar adsorbent: Current practices and perspectives. Journal of Water Process Engineering, 2021, 40, 101845.	2.6	21
535	Efficiency and key functional genera responsible for simultaneous methanation and bioelectricity generation within a continuous stirred microbial electrolysis cell (CSMEC) treating food waste. Science of the Total Environment, 2021, 757, 143746.	3.9	19

#	Article	IF	Citations
536	A sustainable approach for bioconversion of food and lignocellulosic wastes into liquid biofuel using a new <scp> <i>Metschnikowia pulcherrima</i> </scp> isolate. International Journal of Energy Research, 2021, 45, 3430-3441.	2.2	9
537	Enhancement of ultrasound assisted aqueous extraction of polyphenols from waste fruit peel using dimethyl sulfoxide as surfactant: Assessment of kinetic models. Chemosphere, 2021, 263, 128071.	4.2	26
538	Effect of Alkaline Surface Modification and Carbonization on Biochemical Properties of Rice and Coffee Husks for Use in Briquettes and Fiber-Reinforced Plastics. Journal of Natural Fibers, 2021, 18, 620-629.	1.7	19
539	Foods and supplements. , 2021, , 483-501.		0
540	Predictive deep learning models for environmental properties. , 2021, , 39-66.		0
541	Recent trends on the food wastes valorization to value-added commodities. , 2021, , 171-196.		2
542	Current and future trends in food waste valorization for the production of chemicals, materials, and fuels by advanced technology to convert food wastes into fuels and chemicals. , 2021, , 135-147.		0
543	Coffee and Yeasts: From Flavor to Biotechnology. Fermentation, 2021, 7, 9.	1.4	25
544	Food Waste Properties. , 2021, , 11-41.		3
545	Valorization of food waste. , 2021, , 157-172.		0
546	Environmental Degradation and Sustainability Food Production and Waste Valorization: A Value Chain Analysis in Pakistan. Industrial Ecology, 2021, , 87-111.	0.8	0
547	Development of Glass Ceramics from Agricultural Wastes. , 2021, , 229-250.		0
548	Sustainable management of municipal solid waste to fuel: an overview for a better tomorrow. , 2021, , 289-314.		0
549	A review of thermal and thermocatalytic valorization of food waste. Green Chemistry, 2021, 23, 2806-2833.	4.6	28
550	Emerging Technologies for the Treatment of Food Waste. , 2021, , 345-376.		1
551	Valorization of Industrial Wastes for Biofuel Production: Challenges and Opportunities. , 2021, , 231-245.		0
552	Environmental impact assessment of wastewater based biorefinery for the recovery of energy and valuable bio-based chemicals in a circular bioeconomy. , 2021, , 67-101.		2
553	Future Perspective of Solid Waste Management Strategy in India. , 2021, , 1-36.		4

		EPORT	
#	Article	IF	CITATIONS
554	Resource recovery from food waste via biological processes. , 2021, , 327-354.		0
555	Cashew nutshell liquid catalyzed green chemistry approach for synthesis of a Schiff base and its divalent metal complexes: molecular docking and DNA reactivity. Nucleosides, Nucleotides and Nucleic Acids, 2021, 40, 264-287.	0.4	7
556	Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Critical Reviews in Environmental Science and Technology, 2022, 52, 2453-2509.	6.6	19
557	Thermal degradation of dry kitchen waste: kinetics and pyrolysis products. Biomass Conversion and Biorefinery, 2023, 13, 2779-2796.	2.9	13
558	Catalytic Conversion of Biomass to Furanic Derivatives with Deep Eutectic Solvents. ChemSusChem, 2021, 14, 1496-1506.	3.6	42
559	Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting. Environmental Science and Pollution Research, 2021, 28, 32844-32855.	2.7	13
560	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
561	How does business model redesign foster resilience in emerging circular value chains?. Journal of Cleaner Production, 2021, 289, 125823.	4.6	51
562	Co-pyrolysis for the valorization of food waste and oriental herbal medicine byproduct. Journal of Analytical and Applied Pyrolysis, 2021, 154, 105016.	2.6	25
563	An assessment of the utilization of waste apple slurry in bio-succinic acid and bioenergy production. International Journal of Environmental Science and Technology, 2022, 19, 1323-1334.	1.8	20
564	Consumer acceptance of watermelon fleshâ€rind blends and the effect of rind on refreshing perception. Journal of Food Science, 2021, 86, 1384-1392.	1.5	13
565	Increased Revenue with High Value-Added Products from Cashew Apple (Anacardium occidentale) Tj ETQq1 1 0	.784314 rg 2.6	gBT_/Overlock
567	From Food Waste to Volatile Fatty Acids towards a Circular Economy. , 0, , .		4
568	The Limonene Biorefinery: From Extractive Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts, 2021, 11, 387.	1.6	10
569	Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules, 2021, 26, 1968.	1.7	24
570	Optimized conversion of waste cooking oil into ecofriendly bio-based polymeric surfactant- A solution for enhanced oil recovery and green fuel compatibility. Journal of Cleaner Production, 2021, 294, 126214.	4.6	19
571	PRINCIPLES OF SPRAY DRYING AND FREEZE DRYING TECHNIQUES AND THEIR USE IN POWDER PRODUCTION FROM FOOD WASTES. Gıda, 2021, 46, 583-607.	0.1	4
572	Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review. Environmental Chemistry Letters, 2021, 19, 2921-2939.	8.3	71

#	Article	IF	CITATIONS
573	Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. Sustainability, 2021, 13, 4200.	1.6	32
574	Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Fermentation, 2021, 7, 50.	1.4	49
575	TowardÂpetroleum-free with plant-based chemistry. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100450.	3.2	21
576	Development and integrated assessment of the circular economy in the European Union: the outranking approach. Journal of Enterprise Information Management, 2021, , .	4.4	13
577	Valorization of Bilberry (Vaccinium myrtillus L.) Pomace by Enzyme-Assisted Extraction: Process Optimization and Comparison with Conventional Solid-Liquid Extraction. Antioxidants, 2021, 10, 773.	2.2	15
579	Back-propagation neural network: Box–Behnken design modelling for optimization of copper adsorption on orange zest biochar. International Journal of Environmental Science and Technology, 2022, 19, 4321-4336.	1.8	15
580	Continuous and pulsed ultrasound pectin extraction from navel orange peels. Ultrasonics Sonochemistry, 2021, 73, 105480.	3.8	46
582	Circular bioeconomy strategies: From scientific research to commercially viable products. Journal of Cleaner Production, 2021, 295, 126407.	4.6	72
583	Research on Environmental Issue and Sustainable Consumption of Online Takeout Food—Practice and Enlightenment Based on China's Meituan. Sustainability, 2021, 13, 6722.	1.6	12
584	Comparative analysis of various waste cooking oils for esterification and transesterification processes to produce biodiesel. Green Chemistry Letters and Reviews, 2021, 14, 462-473.	2.1	11
585	Research on transforming food waste into valuable products. IOP Conference Series: Earth and Environmental Science, 2021, 766, 012061.	0.2	0
586	Selective Production of Phenol on Bifunctional, Hierarchical ZSM-5 Zeolites. Molecules, 2021, 26, 3576.	1.7	5
587	Well-being perception and lovemarks formation through experiential value in the context of the eco-friendly restaurant. British Food Journal, 2021, 123, 4264-4283.	1.6	5
588	A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. Renewable and Sustainable Energy Reviews, 2021, 143, 110972.	8.2	68
589	Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability, 2021, 13, 6921.	1.6	20
590	Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. Applied Nanoscience (Switzerland), 2022, 12, 3677-3701.	1.6	25
591	Quantifying global warming potential of alternative biorefinery systems for producing fuels from Chinese food waste. Waste Management, 2021, 130, 38-47.	3.7	5
592	Crucial Challenges in the Development of Green Extraction Technologies to Obtain Antioxidant Bioactive Compounds from Agro-industrial By–Products. Chemical and Biochemical Engineering Quarterly, 2021, 35, 105-138.	0.5	7

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
593	Valorisation of food wastes to produce natural pigments using nonâ€ŧhermal novel extraction methods: a review. International Journal of Food Science and Technology, 2021, 56, 4823-4833.	1.3	24
594	Processes for the valorization of food and agricultural wastes to value-added products: recent practices and perspectives. Systems Microbiology and Biomanufacturing, 2022, 2, 50-66.	1.5	21
595	Enzymes, <i>In Vivo</i> Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chemical Reviews, 2021, 121, 10367-10451.	23.0	111
596	Bioactive Peptides from Agriculture and Food Industry Co-Products: Peptide Structure and Health Benefits. , 0, , .		2
597	COVID-19 demand-induced scarcity effects on nutrition and environment: investigating mitigation strategies for eggs and wheat flour in the United Kingdom. Sustainable Production and Consumption, 2021, 27, 1255-1272.	5.7	20
598	Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview. Polymers, 2021, 13, 2561.	2.0	38
599	Biofuel Resources Plan: Theoretical Case Assessment of Automotive Industries. Engineering and Technology Journal, 2021, 06, .	0.0	0
600	Hybrid catalyst with combined Lewis and BrÃ,nsted acidity based on ZrIV substituted polyoxometalate grafted on mesoporous MCM-41 silica for esterification of renewable levulinic acid. Microporous and Mesoporous Materials, 2021, 323, 111203.	2.2	17
601	Food waste bioconversion into new food: A mini-review on nutrients circularity in the production of mushrooms, microalgae and insects. Waste Management and Research, 2022, 40, 47-53.	2.2	5
602	Enhancement of anaerobic co-digestion performance at the high organic load by application of waste seashell: the synergistic impacts of alkaline additive. International Journal of Environmental Science and Technology, 2022, 19, 4221-4236.	1.8	3
603	The role of soils in provision of energy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200180.	1.8	8
604	Review of ecosystem services in a bio-based circular economy and governance mechanisms. Ecosystem Services, 2021, 50, 101298.	2.3	13
605	Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105330.	3.3	41
606	A novel photoelectrochemical system to disrupt microalgae for maximizing lipid-extraction efficiency. Chemical Engineering Journal, 2021, 420, 130517.	6.6	20
607	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
608	Multiple Antioxidative and Bioactive Molecules of Oats (Avena sativa L.) in Human Health. Antioxidants, 2021, 10, 1454.	2.2	23
609	Revalorization of the Cooking Water (Aquafaba) from Soybean Varieties Generated as a By-Product of Food Manufacturing in Korea. Foods, 2021, 10, 2287.	1.9	13
610	Effect of the solvent on the extraction of polyphenols from distillery stillage and on their antioxidant activity. Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 17, 54-62.	1.0	1

#	Article	IF	CITATIONS
612	Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresource Technology, 2021, 337, 125433.	4.8	49
613	Bioconversion of Food Waste to produce Industrial-scale Sophorolipid Syrup and Crystals: dynamic Life Cycle Assessment (dLCA) of Emerging Biotechnologies. Bioresource Technology, 2021, 337, 125474.	4.8	22
614	Contributions of pyrolysis, volatile reforming and char gasification to syngas production during steam gasification of raw and torrefied leftover rice. Fuel, 2021, 304, 121486.	3.4	15
615	Co-composting Olive Mill Wastes with Food Residues and Evaluation of the Obtained Compost Maturity. Journal of Environmental Engineering, ASCE, 2021, 147, .	0.7	1
616	Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions. Renewable Energy, 2021, 178, 1070-1083.	4.3	12
617	Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis. Energy Reports, 2021, 7, 4022-4034.	2.5	52
618	Food processing wastes as a potential source of adsorbent for toxicant removal from water. , 2022, , 491-507.		2
619	Recycling of Synthetic Fibre Reinforced Plastics. Composites Science and Technology, 2021, , 143-168.	0.4	1
620	Microbial Valorization: Strategies for Agro-Industry Waste Minimization and Value-Added Product Generation. Environmental and Microbial Biotechnology, 2021, , 73-110.	0.4	0
621	Nanotechnology in processing, preservation, and packing of food. , 2021, , 69-96.		0
622	Sustainability of agri-food supply chains through innovative waste management models. , 2021, , 591-605.		2
623	The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules, 2021, 26, 515.	1.7	153
624	Plant-based by-products. , 2021, , 367-397.		4
625	The future trends in the production of biojet fuel. , 2021, , 241-254.		2
626	Integrating Shelf Life Constraints inÂCapacitated Lot Sizing and Scheduling for Perishable Products. Lecture Notes in Management and Industrial Engineering, 2021, , 33-46.	0.3	0
627	Anaerobic Digestion of Food Waste: Effect of the Organic Load Variation in a Demo-Scale System. Waste and Biomass Valorization, 2021, 12, 4407-4417.	1.8	6
628	Effect of Process Variables on Food Waste Valorization via Hydrothermal Liquefaction. ACS ES&T Engineering, 2021, 1, 363-374.	3.7	49
631	Removal of sugars in wastewater from food production through heterotrophic growth of <i>Galdieria sulphuraria</i> . Engineering in Life Sciences, 2021, 21, 233-241.	2.0	13

#	ARTICLE Green Chemistry in Analytical Chemistry. , 2018, , 1-24.	IF	Citations 3
634	Potential Industrial Use of Compounds from By-Products of Fruits and Vegetables. , 2019, , 273-307.		10
635	Food Waste and Manure. , 2020, , 899-938.		2
637	Insects, Food Security and Sustainable Aquaculture. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.0	3
638	Platform Chemicals from Biomass Using Microwave Irradiation. Biofuels and Biorefineries, 2015, , 129-144.	0.5	5
639	Facile Mechanical-Induced Functionalization of Hexagonal Boron Nitride and Its Application as Vehicles for Antibacterial Essential Oil. ACS Sustainable Chemistry and Engineering, 2020, 8, 15120-15133.	3.2	25
640	From Polysaccharides toÂStarbons®. RSC Green Chemistry, 2015, , 53-81.	0.0	2
641	The Thermochemical Conversion of Biomass into High-Value Products: Microwave Pyrolysis. RSC Green Chemistry, 2013, , 38-63.	0.0	2
642	Waste to Wealth using Green Chemistry. Issues in Environmental Science and Technology, 2013, , 66-82.	0.4	4
643	6: Isolation, Purification and Encapsulation Techniques for Bioactive Compounds from Agricultural and Food Production Waste. , 2017, , 159-194.		1
644	Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage. PLoS ONE, 2016, 11, e0168590.	1.1	7
645	To separate or not to separate: what is necessary and enough for a green and sustainable extraction of bioactive compounds from Brazilian citrus waste. Pure and Applied Chemistry, 2021, 93, 13-27.	0.9	8
646	Nanoparticles from food waste: a "green" future for traditional building materials. , 0, , .		16
648	Reciclaje de residuos de cuero: una revisión de estudios experimentales. Informador Técnico, 2015, 79, 188.	0.1	2
649	Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules, 2019, 24, 466.	1.7	95
650	Application of food waste leachate to a municipal solid waste incinerator for reduction of NOx emission and ammonia water consumption. Environmental Engineering Research, 2015, 20, 171-174.	1.5	1
651	Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews, 2021, 10, 1662-1739.	2.6	50
652	Current State of Art of the Usual Food Waste Valorization. , 2021, , 79-105.		0

#	Article	IF	CITATIONS
653	Variation of Used Vegetable Oils' Composition upon Treatment with Algerian Clays. Recycling, 2021, 6, 68.	2.3	2
654	Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-17.	0.5	50
655	Waste Management: Valorisation Is the Way. Foods, 2021, 10, 2373.	1.9	7
656	Vitis vinifera L. Pruning Waste for Bud-Preparations as Source of Phenolic Compounds–Traditional and Innovative Extraction Techniques to Produce New Natural Products. Plants, 2021, 10, 2233.	1.6	6
657	A systematic review in recycling/reusing/re-manufacturing supply chain research: a tertiary study. International Journal of Sustainable Engineering, 2021, 14, 1411-1432.	1.9	9
658	The way towards food sustainability: some insights for pasta supply chain. Economia Politica, 2023, 40, 679-702.	1.2	3
659	Twin reactor catalytic assisted pyrolysis for food court waste conversion into high end chemicals. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105351.	2.6	1
660	Comprehensive research on mango by-products applications in food industry. Trends in Food Science and Technology, 2021, 118, 179-188.	7.8	18
661	Food Waste in the European Union. RSC Green Chemistry, 2013, , 25-37.	0.0	0
662	Food Waste and Catering Waste; Focus on Valorisation of Used Cooking Oil and Recovered Triglycerides. RSC Green Chemistry, 2013, , 130-184.	0.0	0
663	Methods of Food Waste Reduction. Environmental Science and Engineering, 2015, , 51-80.	0.1	1
664	Causes of Food Waste Generation. Environmental Science and Engineering, 2015, , 31-50.	0.1	1
665	Renewable Energy Derived from Food Waste and Co-digestion of Food Waste with Waste-Activated Sludge. , 2015, , 257-278.		0
666	Utilization Of Household Food Waste For The Production Of Ethanol At High Dry Material Content. , 2015, , 35-53.		0
667	Fodder Legumes for Green Biorefineries: A Perspective for Sustainable Agricultural Production Systems. , 2017, , 69-78.		1
668	Effects of potential level, rotation speed and electrode gap on food waste recovery using an electrostatic separator. Environmental Protection Engineering, 2017, 43, .	0.1	0
669	Techno-Economic Evaluation of Refining of Food Supply Chain Wastes for the Production of Chemicals and Biopolymers. , 2017, , 147-164.		2
670	Main Industrial Citrus By-Products in Spain—Citrus Dietary Fiber. Functional Foods & Nutraceuticals Series, 2017, , 409-436.	0.1	0

#	Article	IF	Citations
671	Recent Insight Into Fermented Foods and Production. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 83-115.	0.3	0
672	Enzymes Production From Food Waste and Their Application. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 1-19.	0.3	0
673	Green Chemistry in Analytical Chemistry. , 2019, , 613-636.		1
674	Comparison of SHF and SSF Processes under Fed Batch Mode on Ethanol Production from Pretreated Vegetable Processing Residues. European Journal of Sustainable Development Research, 2019, 3, .	0.4	1
675	Biotechnology Application of Pretreated Biomass. Green Energy and Technology, 2020, , 67-81.	0.4	1
678	Addressing food loss and waste prevention. British Food Journal, 2022, 124, 2434-2460.	1.6	6
679	Overview on Sustainability Criteria for Food Waste Bioproducts Management. IOP Conference Series: Earth and Environmental Science, 0, 616, 012059.	0.2	0
680	Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species. Processes, 2021, 9, 47.	1.3	4
681	Enzymes Production From Food Waste and Their Application. , 2022, , 293-307.		0
682	Rice wastes for green production and sustainable nanomaterials: An overview. , 2022, , 707-728.		6
683	Biochar production from the pyrolysis of tomato processing residues. , 2022, , 171-200.		4
684	Food wastes/residues: Valuable source of energy in circular economy. , 2022, , 147-163.		0
685	Development of Glass Ceramics from Agricultural Wastes. , 2020, , 1-22.		0
686	BIOLOGIÅKAI SKAIDŽIŲ ATLIEKŲ TVARKYMAS KURIANT ŽIEDINÄ~ BIOEKONOMIKÄ". , 0, , .		0
687	Insects, Food Security, and Sustainable Aquaculture. Encyclopedia of the UN Sustainable Development Goals, 2020, , 425-435.	0.0	1
688	Circular economy in food industry. Materials Protection, 2020, 61, 229-250.	0.1	6
689	Food Processing Waste to Biofuel: A Sustainable Approach. , 2020, , 371-386.		0
690	Production of fine chemicals from food wastes. , 2020, , 163-188.		12

# 691	ARTICLE Valorization of organic waste into biofertilizer and its field application. , 2020, , 179-198.	IF	CITATIONS 3
692	Anaerobic digestion of food waste at varying operating conditions. Detritus, 2020, , 99-105.	0.4	4
693	Food use for social innovation by optimizing food waste recovery strategies. , 2022, , 209-227.		3
694	Application of IR and UV–VIS spectroscopies and multivariate analysis for the classification of waste vegetable oils. Resources, Conservation and Recycling, 2022, 178, 106088.	5.3	10
695	A well-defined diamine from lignin depolymerization mixtures for constructing bio-based polybenzoxazines. Chem Catalysis, 2021, 1, 1466-1466.	2.9	9
696	A Quantitative Sustainability Assessment of Food Waste Management in the European Union. Environmental Science & Technology, 2021, 55, 16099-16109.	4.6	31
697	Renewable energy potential of anaerobic mono- and co-digestion of chicken manure, goat manure, potato peels and maize pap in South Africa. South African Journal of Science, 2021, 117, .	0.3	0
698	Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Critical Reviews in Biotechnology, 2022, 42, 1284-1303.	5.1	22
699	Acid functionalized hydrochar as heterogeneous catalysts for solventless synthesis of biofuel precursors. Green Chemistry, 2022, 24, 898-910.	4.6	24
700	Mitigation of Commercial Food Waste-Related Salinity Stress Using Halotolerant Rhizobacteria in Chinese Cabbage Plants. Horticulturae, 2022, 8, 49.	1.2	3
701	A facile one-pot bioconversion of frying oil waste to single cell oils and related products using fungi via response surface methodology. Biomass Conversion and Biorefinery, 0, , 1.	2.9	6
702	Potential applications of brewery spent grain: Critical an overview. Journal of Environmental Chemical Engineering, 2022, 10, 106951.	3.3	30
703	Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chemical Engineering Journal, 2022, 431, 134094.	6.6	24
704	Oligomer-first mechanism in the transformation of biomass derivatives selectively to produce D-lactic acid. Chemical Engineering Journal, 2022, 432, 134359.	6.6	8
705	Use of Agrochemicals in Agriculture: Alarming Issues and Solutions. , 2021, , 85-122.		4
706	Life Cycle Assessment of Anaerobic Digestion Systems: An Approach Towards Sustainable Waste Management. Applied Environmental Science and Engineering for A Sustainable Future, 2022, , 391-414.	0.2	1
707	Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. Fermentation, 2022, 8, 28.	1.4	14
709	Polyhydroxyalkanoate production from food industry residual streams using mixed microbial cultures. , 2022, , 265-284.		0

#	Article	IF	CITATIONS
710	Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7, 117-137.	23.3	550
711	Antioxidant Properties of Pulp, Peel and Seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at Different Stages of Fruit Ripening. Antioxidants, 2022, 11, 187.	2.2	24
712	Recent Development in Bioactive Compounds and Health Benefits of Kumquat Fruits. Food Reviews International, 2023, 39, 4312-4332.	4.3	7
714	Antiâ€inflammatory and antiâ€aggregating effects of rangpur in the first trimester of growth: ultraâ€performance liquid chromatography–electrospray mass spectrometry profile and quantification of hesperidin. Journal of the Science of Food and Agriculture, 2022, 102, 4151-4161.	1.7	3
715	Recent Advances in Biorefineries for Energy and Nutrient Recovery from Food Waste. Energy, Environment, and Sustainability, 2022, , 449-485.	0.6	2
717	Recent Advances in Circular Bioeconomy. , 2022, , 59-84.		1
718	Thermal catalytic conversion of bioderived oils to biodiesel with sulfonic acid–functionalized solid materials. , 2022, , 163-209.		0
719	Future Perspective of Solid Waste Management Strategy in India. , 2022, , 191-226.		0
720	Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends in Food Science and Technology, 2022, 122, 157-170.	7.8	18
721	Green synthesis of biomethanol—managing food waste for carbon footprint and bioeconomy. Biomass Conversion and Biorefinery, 2022, 12, 1889-1909.	2.9	14
722	Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods, 2021, 10, 3152.	1.9	26
723	Slow pyrolysis of waste navel orange peels with metal oxide catalysts to produce high-grade bio-oil. Green Processing and Synthesis, 2022, 11, 218-228.	1.3	4
725	Kitchen waste: sustainable bioconversion to value-added product and economic challenges. Biomass Conversion and Biorefinery, 0, , 1.	2.9	5
726	Biowaste valorization for production of bacterial cellulose and its multifarious applications contributing to environmental sustainability. Environmental Sustainability, 2022, 5, 51-63.	1.4	1
728	Food waste to bioenergy: current status and role in future circular economies in Indonesia. Energy, Ecology and Environment, 2022, 7, 297-339.	1.9	8
729	Environmental comparison of banana waste valorisation strategies under a biorefinery approach. Waste Management, 2022, 142, 77-87.	3.7	22
730	Improved the lipopeptide production of Bacillus amyloliquefaciens HM618 under co-culture with the recombinant Corynebacterium glutamicum producing high-level proline. Bioresource Technology, 2022, 349, 126863.	4.8	14
731	A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells. Environmental Technology Reviews, 2022, 11, 72-90.	2.1	10

#	Article	IF	CITATIONS
732	Perspectives on food waste management: Prevention and social innovations. Sustainable Production and Consumption, 2022, 31, 190-208.	5.7	44
733	Copyrolysis of food waste and rice husk to biochar to create a sustainable resource for soil amendment: A pilot-scale case study in Jinhua, China. Journal of Cleaner Production, 2022, 347, 131269.	4.6	8
734	Transiting from the inhibited steady-state to the steady-state through the ammonium bicarbonate mediation in the anaerobic digestion of low-C/N-ratio food wastes. Bioresource Technology, 2022, 351, 127046.	4.8	8
735	Organic micropollutants, heavy metals and pathogens in anaerobic digestate based on food waste. Journal of Environmental Management, 2022, 313, 114997.	3.8	25
736	A Review of Various Feedstocks Utilized in Thermochemical Processes. , 2021, , .		0
737	Fully Biobased Reactive Extrusion of Biocomposites Based on PLA Blends and Hazelnut Shell Powders (HSP). Chemistry, 2021, 3, 1464-1480.	0.9	4
738	Free Amino Acids and Volatile Aroma Compounds in Watermelon Rind, Flesh, and Three Rind-Flesh Juices. Molecules, 2022, 27, 2536.	1.7	7
739	In Vitro Cytotoxic Activity and Phytochemical Characterization (UPLC/T-TOF-MS/MS) of the Watermelon (Citrullus lanatus) Rind Extract. Molecules, 2022, 27, 2480.	1.7	2
740	Application of Food Waste Valorization Technology in Hong Kong. RSC Green Chemistry, 2014, , 93-116.	0.0	1
741	Molecular design of environmental friendly green plasticizers. Chinese Science Bulletin, 2022, 67, 2835-2847.	0.4	2
742	Enhanced biobutanol production from starch waste via orange peel doping. Renewable Energy, 2022, 193, 576-583.	4.3	16
743	Environmental, nutritional and social assessment of nuts. Sustainability Science, 2023, 18, 933-949.	2.5	6
744	Processing of palm oil mill effluent (POME) into food waste digesting microbes: An investigation of acclimatization strategies. Sustainable Energy Technologies and Assessments, 2022, 52, 102287.	1.7	5
745	Utilization of Food Waste for Biofuel Production. Clean Energy Production Technologies, 2022, , 1-23.	0.3	1
749	Skills and education for engineering biology. , 2022, , 47-79.		0
750	Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFAs production in rats with TNBS-induced colitis. Food Research International, 2022, 157, 111390.	2.9	18
751	Synthesis of branched surfactant via ethoxylation of oleic acid derivative and its surface properties. Chemical Engineering Science, 2022, 258, 117747.	1.9	5
752	Extraction of Phenolic Compounds from Cherry Seeds: A Preliminary Study. Agronomy, 2022, 12, 1227.	1.3	6

#	Article	IF	CITATIONS
753	An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 2022, 6, 100086.	3.3	26
754	Value-added product development from food scraps. , 2022, , 417-435.		0
755	What is the best scenario to utilize landfill gas? Quantitative and qualitative approaches for technical, economic, and environmental feasibility. Green Chemistry, 0, , .	4.6	2
756	Turning Food Protein Waste into Sustainable Technologies. Chemical Reviews, 2023, 123, 2112-2154.	23.0	58
757	Organic Waste as Reducing and Capping Agents for Synthesis of Silver Nanoparticles with Various Applications. ChemistrySelect, 2022, 7, .	0.7	2
758	Production of biopolymers from food waste: Constrains and perspectives. Bioresource Technology, 2022, 361, 127650.	4.8	23
759	Development of the degradation bacteria in household food waste and analysis of the microbial community in aerobic composting. Biotechnology and Applied Biochemistry, 0, , .	1.4	1
760	Potentiality of recovering bioresource from food waste through multi-stage Co-digestion with enzymatic pretreatment. Journal of Environmental Management, 2022, 319, 115777.	3.8	9
761	Biodiesel from microalgae: Recent progress and key challenges. Progress in Energy and Combustion Science, 2022, 93, 101020.	15.8	43
762	Antibacterial activity and chemical characterization of almond (<i>Prunus dulcis</i> L.) peel extract. Natural Product Research, 2023, 37, 1680-1686.	1.0	3
763	Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives. International Journal of Environmental Research and Public Health, 2022, 19, 9519.	1.2	10
764	Physicochemical analysis of wastewater generated from a coating industry in Mauritius. Environmental Monitoring and Assessment, 2022, 194, .	1.3	1
765	Sustainable synthesis of zwitterionic galactaric acid monoamides as monomers of hydroxylated polyamides. Journal of Carbohydrate Chemistry, 0, , 1-15.	0.4	0
766	Utilization of Olive Pomace in Green Synthesis of Selenium Nanoparticles: Physico-Chemical Characterization, Bioaccessibility and Biocompatibility. International Journal of Molecular Sciences, 2022, 23, 9128.	1.8	10
767	Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural. Bioresource Technology, 2022, 362, 127782.	4.8	7
768	Influence of carbon-to-phosphorus ratios on phosphorus fractions transformation and bacterial community succession in phosphorus-enriched composting. Bioresource Technology, 2022, 362, 127786.	4.8	13
769	How Blockchain Facilitates the Transition toward Circular Economy in the Food Chain?. Sustainability, 2022, 14, 11754.	1.6	12
770	Food Waste Management for Biogas Production in the Context of Sustainable Development. Energies, 2022, 15, 6268.	1.6	17

#	Article	IF	CITATIONS
771	Efficient production of the \hat{l}^2 -ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain. Frontiers in Microbiology, 0, 13, .	1.5	6
772	Direct Conversion of Food Waste into 3D Porous Carbon Traps for Selective Adsorption of Cationic Dyes. Clean - Soil, Air, Water, 0, , 2200284.	0.7	1
773	Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh. Sustainability, 2022, 14, 12035.	1.6	6
774	Long-Term Preservation of Orange Peel Waste for the Production of Acids and Biogas. ACS Sustainable Chemistry and Engineering, 2022, 10, 13733-13741.	3.2	2
775	The marginal abatement cost of co-producing biomethane, food and biofertiliser in a circular economy system. Renewable and Sustainable Energy Reviews, 2022, 169, 112946.	8.2	13
776	Production of medium chain fatty acids through co-fermentation of food waste and sewage sludge without external electron donors. Journal of Environmental Chemical Engineering, 2022, 10, 108688.	3.3	2
777	Food Wastes for Biofuel Production. Clean Energy Production Technologies, 2022, , 309-333.	0.3	0
778	Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy and Environmental Science, 2022, 15, 4928-4981.	15.6	30
779	Biorefinery of Cashew By-Products: Recovery of Value-Added Compounds. Food and Bioprocess Technology, 2023, 16, 944-960.	2.6	4
780	Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods, 2022, 11, 3068.	1.9	14
781	Apple pomace management by anaerobic digestion and composting: a life cycle assessment. Biofuels, Bioproducts and Biorefining, 2023, 17, 29-45.	1.9	8
782	Energy recovery from brewery spent grains and spent coffee grounds: a circular economy approach to waste valorization. Biofuels, 0, , 1-10.	1.4	4
783	Recovery of oils and antioxidants from olive stones. Biomass and Bioenergy, 2022, 166, 106623.	2.9	2
784	Mutualistic microbial community of Bacillus amyloliquefaciens and recombinant Yarrowia lipolytica co-produced lipopeptides and fatty acids from food waste. Chemosphere, 2023, 310, 136864.	4.2	6
785	Nutritional effects and feeding behavior in ewes fed with biscuit bran and cashew nut bran, with different energy levels. Tropical Animal Health and Production, 2022, 54, .	0.5	0
786	Waste cooking oil as a promising source for bio lubricants- A review. Journal of the Indian Chemical Society, 2023, 100, 100820.	1.3	18
787	Challenges for a Sustainable Food Supply Chain: A Review on Food Losses and Waste. Sustainability, 2022, 14, 16764.	1.6	10
788	Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes, 2023, 11, 20.	1.3	12

#	Article	IF	Citations
789	Sustainable process design for circular fashion: Advances in sustainable chemistry for textile waste valorisation. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100747.	3.2	6
790	A Case Study for the Extraction, Purification, and Co-Pigmentation of Anthocyanins from Aronia melanocarpa Juice Pomace. Foods, 2022, 11, 3875.	1.9	2
791	Agri-food loss and waste management: Win-win strategies for edible discarded fruits and vegetables sustainable reuse. Innovative Food Science and Emerging Technologies, 2023, 83, 103235.	2.7	11
792	Food waste valorization for handling environmental problems: a review. Environmental Sustainability, 2022, 5, 401-421.	1.4	3
793	Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production. Critical Reviews in Biotechnology, 2024, 44, 236-254.	5.1	9
794	Nematode-Suppressive Potential of Digestates to <i>Meloidogyne incognita </i> and <i>Heterodera schachtii</i> . Plant Disease, 0, , .	0.7	0
795	Anaerobic Co-digestion of Liquid Dairy Manure with Food Waste: A Sustainable Source of Green Energy. , 2023, , 1-32.		0
796	Persistence and remote sensing of agri-food wastes in the environment: Current state and perspectives. Chemosphere, 2023, 317, 137822.	4.2	12
797	Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. Environmental Research, 2023, 221, 115284.	3.7	15
798	Mechanical Properties and Waste Management Approaches of Banana in India. International Journal of Life Science and Pharma Research, 0, , P37-P45.	0.1	0
799	Using fly larvae to convert food waste for growing Oujiang color common carps: health risk assessment of polycyclic aromatic hydrocarbons. Environmental Science and Pollution Research, 2023, 30, 43496-43504.	2.7	1
800	Production of biogas via anaerobic digestion. , 2023, , 253-311.		0
801	Preparation of supercapacitor carbon materials from food waste via low-temperature pyrolysis. Journal of Analytical and Applied Pyrolysis, 2023, 170, 105880.	2.6	5
802	Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocolloids, 2023, 139, 108496.	5.6	42
803	Phosphorus transformation behavior and phosphorus cycling genes expression in food waste composting with hydroxyapatite enhanced by phosphate-solubilizing bacteria. Bioresource Technology, 2023, 376, 128882.	4.8	7
804	Food waste hydrochar: An alternate clean fuel for steel industry. Fuel, 2023, 346, 128395.	3.4	3
805	Enhancement of sustainable bioenergy production by valorising tomato residues: A GIS-based model. Science of the Total Environment, 2023, 869, 161766.	3.9	8
806	Ocean Resources for the Production of Renewable Chemicals and Materials. , 2014, , 443-458.		1

#	Article	IF	CITATIONS
807	Waste as A Medium for Agriculture- An Example of Sustainable Waste Management: A Case Study of Titagarh Municipal Dump Site, West Bengal. International Journal of Environment and Geoinformatics, 2023, 10, 111-119.	0.5	0
808	A review on remanufacturing, reuse, and recycling in supply chain—Exploring the evolution of information technology over two decades. International Journal of Information Management Data Insights, 2023, 3, 100160.	6.5	1
809	Pectooligosaccharides rich in galacturonic acid produced from Orange Processing Waste by autohydrolysis: Process optimization and kinetic analysis. Bioresource Technology Reports, 2023, 21, 101369.	1.5	3
810	Towards sustainable rubber compounds: The use of waste raw materials. Journal of Applied Polymer Science, 2023, 140, .	1.3	0
811	Lipids: Valorization of biomass for lipids production. , 2023, , 87-111.		0
812	Health Benefits of Key Constituents in Cichorium intybus L Nutrients, 2023, 15, 1322.	1.7	5
813	Impact of reactivity controlled compression ignition (RCCI) mode engine operation in diesel engine powered with B20 blend of waste cooking oil biodiesel. Scientific Reports, 2023, 13, .	1.6	5
814	Anaerobic fermentation featuring wheat bran and rice bran realizes the clean transformation of Chinese cabbage waste into livestock feed. Frontiers in Microbiology, 0, 14, .	1.5	1
815	Bioprocesses for Sustainable Bioeconomy: Fermentation, Benefits, and Constraints. , 2023, , 115-138.		0
816	Feasibility of Efficient, Direct, Butanol Production from Food Waste without Nutrient Supplement by Clostridium saccharoperbutylacetonicum N1-4. Sustainability, 2023, 15, 6061.	1.6	1
820	Comparative study of composts produce from different organic waste for proper waste management. AIP Conference Proceedings, 2023, , .	0.3	0
826	Challenges and Prospects of Tackling Food Loss and Wastes in the Circular Economy Context. , 2023, , 15-36.		0
829	Next-generation Bioactive Delivery Systems. , 2023, , 477-498.		0
833	Generation of Bioenergy from Industrial Waste Materials. Clean Energy Production Technologies, 2023, , 289-309.	0.3	0
835	Sacrifice and valorization of biomass to realize energy exploitation and transformation in a photoelectrochemical way. Green Chemistry, 2023, 25, 7843-7862.	4.6	1
845	A holistic valorization of food waste for sustainable biofuel production. , 2023, , 137-154.		0
848	Potential of Rhodosporidium toruloides for Fatty Acids Production Using Lignocellulose Biomass. Applied Biochemistry and Biotechnology, 0, , .	1.4	2
855	Food Waste Bioconversion To High-value Products. , 2023, , 61-78.		Ο

#	Article	IF	CITATIONS
859	Evaluation of Co-digested Biogas Production Using Waste Cooking Oil as a Co-substrate. Environmental Science and Engineering, 2023, , 559-567.	0.1	0
864	Solar reforming as an emerging technology for circular chemical industries. Nature Reviews Chemistry, 2024, 8, 87-105.	13.8	Ο
874	Wastes from Fruits and Vegetables Processing Industry for Value-Added Products. , 2024, , 127-146.		0