Tubicolous enteropneusts from the Cambrian period

Nature 495, 503-506

DOI: 10.1038/nature12017

Citation Report

#	Article	IF	CITATIONS
1	Identification of an intact ParaHox cluster with temporal colinearity but altered spatial colinearity in the hemichordate Ptychodera flava. BMC Evolutionary Biology, 2013, 13, 129.	3.2	37
2	The Cambrian Explosion: The Reconstruction of Animal Biodiversity.— By Douglas H. Erwin and James W. Valentine Systematic Biology, 2013, 62, 915-917.	5.6	2
3	Modern Antarctic acorn worms form tubes. Nature Communications, 2013, 4, 2738.	12.8	26
4	Evolution of bilaterian central nervous systems: a single origin?. EvoDevo, 2013, 4, 27.	3.2	139
5	Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies. Die Naturwissenschaften, 2013, 100, 1187-1191.	1.6	12
6	GEOCHEMISTRY ARTICLES - March 2013. Organic Geochemistry, 2013, 59, e1-e28.	1.8	O
7	Tubular worms from the Burgess Shale. Nature, 2013, 495, 458-459.	27.8	0
8	Phylogenomics: A Primer. — By Rob DeSalle and Jeffrey A. Rosenfeld Systematic Biology, 2013, 62, 917-918.	5.6	O
9	Diversity and species abundance patterns of the Early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology, 2014, 40, 50-69.	2.0	58
10	Comparative anatomy of the heart–glomerulus complex of Cephalodiscus gracilis (Pterobranchia): structure, function, and phylogenetic implications. Zoomorphology, 2014, 133, 83-98.	0.8	4
11	Phylogenomic Resolution of the Hemichordate and Echinoderm Clade. Current Biology, 2014, 24, 2827-2832.	3.9	117
12	Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. BioEssays, 2015, 37, 836-850.	2.5	29
13	Using experimental decay of modern forms to reconstruct the early evolution and morphology of fossil enteropneusts. Paleobiology, 2015, 41, 460-478.	2.0	26
14	Rare primitive deuterostomes from the Cambrian (Series 3) of Utah. Journal of Paleontology, 2015, 89, 631-636.	0.8	11
15	Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data. Systematic Biology, 2015, 64, 256-266.	5.6	53
16	HedgehogExpression During Development and Regeneration in the Hemichordate,Ptychodera flava. Zoological Science, 2015, 32, 33-37.	0.7	13
17	Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. Organisms Diversity and Evolution, 2015, 15, 405-422.	1.6	29
18	The macro―and microfossil record of the Cambrian priapulid <i>Ottoia</i> . Palaeontology, 2015, 58, 705-721.	2.2	49

#	ARTICLE	IF	CITATIONS
19	The early history of the metazoaâ€"a paleontologist's viewpoint. Biology Bulletin Reviews, 2015, 5, 415-461.	0.9	4
20	Hemichordata., 2015, , 59-89.		14
21	A reexamination of <i>Yuknessia</i> from the Cambrian of British Columbia and Utah. Journal of Paleontology, 2015, 89, 82-95.	0.8	25
22	Cambrian suspension-feeding tubicolous hemichordates. BMC Biology, 2016, 14, 56.	3.8	40
23	The Global Diversity of Hemichordata. PLoS ONE, 2016, 11, e0162564.	2.5	28
24	Shedding light on ovothiol biosynthesis in marine metazoans. Scientific Reports, 2016, 6, 21506.	3.3	44
26	<i>Saccoglossus testa</i> from the Mazon Creek fauna (Pennsylvanian of Illinois) and the evolution of acorn worms (Enteropneusta: Hemichordata). Palaeontology, 2016, 59, 329-336.	2.2	4
27	Cambrian Explosion: A Molecular Paleobiological Overview. , 2016, , 246-253.		0
28	Hemichordate models. Current Opinion in Genetics and Development, 2016, 39, 71-78.	3.3	15
29	The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25Âyears of new techniques, new discoveries, and new ideas. Organisms Diversity and Evolution, 2016, 16, 401-418.	1.6	30
30	Fossil priapulidOttoiafrom the Kaili biota (Cambrian Series 3) of South China. Journal of Systematic Palaeontology, 2016, 14, 527-543.	1.5	9
31	Tiny fossils in the animal family tree. Nature, 2017, 542, 170-171.	27.8	3
32	The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings. Scientific Reports, 2017, 7, 45773.	3.3	24
34	Fossilization processes of graptolites: insights from the experimental decay of <i>Rhabdopleura</i> sp. (Pterobranchia). Palaeontology, 2017, 60, 389-400.	2.2	9
35	Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8835-8840.	7.1	27
36	Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: Exploring the onset of complex burrowing. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495, 171-185.	2.3	21
37	<i>Malongitubus</i> : a possible pterobranch hemichordate from the early Cambrian of South China. Journal of Paleontology, 2018, 92, 26-32.	0.8	6
38	Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland. Geology, 2018, 46, 107-110.	4.4	20

#	Article	IF	Citations
39	9. Enteropneusta. , 2018, , 299-326.		1
40	Biogeography and adaptations of torquaratorid acorn worms (Hemichordata: Enteropneusta) including two new species from the Canadian Arctic. Canadian Journal of Zoology, 2018, 96, 1221-1229.	1.0	10
41	Tracing the evolutionary origins of the Hemichordata (Enteropneusta and Pterobranchia). Palaeoworld, 2019, 28, 58-72.	1.1	15
42	Evolution of Chordate Cardiopharyngeal Muscles and the Origin of Vertebrate Head Muscles. Fascinating Life Sciences, 2019, , 1-22.	0.9	0
43	The hemichordate pharynx and gill pores impose functional constraints at small and large body sizes. Biological Journal of the Linnean Society, 2019, 127, 75-87.	1.6	5
44	A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. Nature Communications, 2019, 10, 1366.	12.8	20
45	Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus. Royal Society Open Science, 2019, 6, 172074.	2.4	14
46	Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios, 2019, 52, 27-36.	1.4	38
47	Cambrian Tentaculate Worms and the Origin of the Hemichordate Body Plan. Current Biology, 2020, 30, 4238-4244.e1.	3.9	10
48	Filter feeding, deviations from bilateral symmetry, developmental noise, and heterochrony of hemichordate and cephalochordate gills. Ecology and Evolution, 2020, 10, 13544-13554.	1.9	6
49	The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian). PeerJ, 2021, 9, e10509.	2.0	16
50	Evo-Devo Lessons Learned from Hemichordates. , 2021, , 767-790.		0
51	Symbiosis in the Cambrian: enteropneust tubes from the Burgess Shale co-inhabited by commensal polychaetes. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210061.	2.6	11
52	Molecular insights into deuterostome evolution from hemichordate developmental biology. Current Topics in Developmental Biology, 2021, 141, 75-117.	2.2	11
53	The Mesozoic Marine Revolution. Topics in Geobiology, 2016, , 19-134.	0.5	28
54	The Cambrian Explosion. Topics in Geobiology, 2016, , 73-126.	0.5	37
56	Tube-dwelling in early animals exemplified by Cambrian scalidophoran worms. BMC Biology, 2021, 19, 243.	3.8	11
57	Heterochrony and parallel evolution of echinoderm, hemichordate and cephalochordate internal bars. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220258.	2.6	2

#	Article	IF	CITATIONS
58	Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. Contributions To Zoology, 2022, 91, 1-68.	0.5	0
59	Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biological Reviews, 2023, 98, 316-351.	10.4	12
60	Exceptional soft tissue preservation reveals a cnidarian affinity for a Cambrian phosphatic tubicolous enigma. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	3
61	Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome. Current Biology, 2023, 33, 2359-2366.e2.	3.9	4
62	A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan. Nature Communications, $2023, 14, \dots$	12.8	1
63	A Silurian pseudocolonial pterobranch. Current Biology, 2023, 33, 5225-5232.e3.	3.9	0
64	The seabed—Where life began and still evolves. , 2024, , 1-74.		0