Synthesis of MoS₂ and MoSe₂

Nano Letters 13, 1341-1347 DOI: 10.1021/nl400258t

Citation Report

#	Article	IF	CITATIONS
15	Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction. Electrochemistry Communications, 2013, 34, 219-222.	4.7	109
16	Room Temperature Electrodeposition of Molybdenum Sulfide for Catalytic and Photoluminescence Applications. ACS Nano, 2013, 7, 8199-8205.	14.6	92
18	Salts of C ₆₀ (OH) ₈ Electrodeposited onto a Glassy Carbon Electrode: Surprising Catalytic Performance in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2013, 52, 10867-10870.	13.8	98
19	First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy and Environmental Science, 2013, 6, 3553.	30.8	946
20	MoS ₂ Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction. ACS Catalysis, 2013, 3, 2101-2107.	11.2	340
21	Atomic-layer triangular WSe ₂ sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013, 24, 465705.	2.6	120
22	Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method. ACS Applied Materials & Interfaces, 2013, 5, 11427-11433.	8.0	392
23	Optical and Vibrational Studies of Partially Edge-Terminated Vertically Aligned Nanocrystalline MoS2 Thin Films. Journal of Physical Chemistry C, 2013, 117, 26262-26268.	3.1	51
24	Site-Dependent Free Energy Barrier for Proton Reduction on MoS ₂ Edges. Journal of Physical Chemistry C, 2013, 117, 21772-21777.	3.1	26
25	Controllable Disorder Engineering in Oxygen-Incorporated MoS ₂ Ultrathin Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2013, 135, 17881-17888.	13.7	2,107
26	Ultrathin MoS ₂ Nanoplates with Rich Active Sites as Highly Efficient Catalyst for Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2013, 5, 12794-12798.	8.0	392
27	Electrochemical tuning of vertically aligned MoS ₂ nanofilms and its application in improving hydrogen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19701-19706.	7.1	894
28	Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 19186-19192.	13.7	897
29	In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Communications, 2013, 49, 7516.	4.1	120
30	Defectâ€Rich MoS ₂ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2013, 25, 5807-5813.	21.0	2,705
31	Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.	3.3	380
32	Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS ₂ Nanosheets. Journal of the American Chemical Society, 2013, 135, 10274-10277.	13.7	3,022
33	MoSe ₂ and WSe ₂ Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Letters, 2013, 13, 3426-3433.	9.1	653

#	Article	IF	CITATIONS
35	Superior Field Emission Properties of Layered WS2-RGO Nanocomposites. Scientific Reports, 2013, 3, 3282.	3.3	218
36	Metallic Fewâ€Layer Flowerlike VS ₂ Nanosheets as Field Emitters. European Journal of Inorganic Chemistry, 2014, 2014, 5331-5336.	2.0	51
37	Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochimica Acta, 2014, 149, 324-329.	5.2	79
38	Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO ₂ Reduction. ChemCatChem, 2014, 6, 1899-1905.	3.7	255
39	Facile Synthesis of MoS ₂ @CNT as an Effective Catalyst for Hydrogen Production in Microbial Electrolysis Cells. ChemElectroChem, 2014, 1, 1828-1833.	3.4	107
40	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	3.1	87
42	FeP Nanoparticles Film Grown on Carbon Cloth: An Ultrahighly Active 3D Hydrogen Evolution Cathode in Both Acidic and Neutral Solutions. ACS Applied Materials & Interfaces, 2014, 6, 20579-20584.	8.0	166
43	Highly Textured Tin(II) Sulfide Thin Films Formed from Sheetlike Nanocrystal Inks. Chemistry of Materials, 2014, 26, 7106-7113.	6.7	33
44	Effect of radio frequency power on composition, structure and optical properties of MoSex thin films. Physica B: Condensed Matter, 2014, 444, 21-26.	2.7	8
45	Will Solar-Driven Water-Splitting Devices See the Light of Day?. Chemistry of Materials, 2014, 26, 407-414.	6.7	654
46	Threeâ€Dimensional Molybdenum Sulfide Sponges for Electrocatalytic Water Splitting. Small, 2014, 10, 895-900.	10.0	82
47	Tuning the MoS ₂ Edge-Site Activity for Hydrogen Evolution via Support Interactions. Nano Letters, 2014, 14, 1381-1387.	9.1	660
48	Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014, 7, 511-517.	10.4	331
49	Band Gapâ€Tunable Molybdenum Sulfide Selenide Monolayer Alloy. Small, 2014, 10, 2589-2594.	10.0	109
50	Edge-exposed MoS ₂ nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 2014, 6, 2131-2136.	5.6	260
51	Exciton diffusion in monolayer and bulk MoSe ₂ . Nanoscale, 2014, 6, 4915-4919.	5.6	103
52	Engineering a Cu ₂ 0/NiO/Cu ₂ MoS ₄ hybrid photocathode for H ₂ generation in water. Nanoscale, 2014, 6, 6506-6510.	5.6	62
53	Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014, 2, 8981-8987.	10.3	552

	CITATION R	EPORT	
#	Article	IF	Citations
54	Few-Layer MoS ₂ : A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099.	14.6	1,181
55	Ultrahigh Hydrogen Evolution Performance of Underâ€Water "Superaerophobic―MoS ₂ Nanostructured Electrodes. Advanced Materials, 2014, 26, 2683-2687.	21.0	775
56	Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014, 297, 139-146.	6.1	144
58	Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Nonâ€Nobleâ€Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 6710-6714.	13.8	939
59	Petaled Molybdenum Disulfide Surfaces: Facile Synthesis of a Superior Cathode for QDSSCs. Advanced Energy Materials, 2014, 4, 1400495.	19.5	32
60	Thermal Expansion, Anharmonicity and Temperatureâ€Dependent Raman Spectra of Single―and Few‣ayer MoSe ₂ and WSe ₂ . ChemPhysChem, 2014, 15, 1592-1598.	2.1	242
61	Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Applied Physics Letters, 2014, 104, .	3.3	180
62	Ultrathin WS ₂ Nanoflakes as a Highâ€Performance Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7860-7863.	13.8	622
63	First-principles investigation of the bulk and low-index surfaces of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mo</mml:mi><mml:msub><mml:mi>SePhysical Review B, 2014, 89, .</mml:mi></mml:msub></mml:math 	:mi 8¢2mml:	mmb92
64	Electrochemical Tuning of MoS ₂ Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano, 2014, 8, 4940-4947.	14.6	566
65	Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Applied Catalysis B: Environmental, 2014, 154-155, 232-237.	20.2	183
66	Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 2014, 4, 1693-1705.	11.2	769
67	Ultrathin S-doped MoSe ₂ nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 5597-5601.	10.3	317
68	High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS ₂ Transistors. ACS Nano, 2014, 8, 5304-5314.	14.6	610
69	MoSe ₂ nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. Journal of Materials Chemistry A, 2014, 2, 360-364.	10.3	564
70	MoS ₂ Nanocube Structures as Catalysts for Electrochemical H ₂ Evolution from Acidic Aqueous Solutions. ACS Applied Materials & Interfaces, 2014, 6, 2003-2010.	8.0	51
71	Temperature Dependent Phonon Shifts in Single-Layer WS ₂ . ACS Applied Materials & Interfaces, 2014, 6, 1158-1163.	8.0	188
72	Layer-Dependent Electrocatalysis of MoS ₂ for Hydrogen Evolution. Nano Letters, 2014, 14, 553-558.	9.1	667

#	Article	IF	CITATIONS
73	Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 5979-5985.	10.3	258
74	Highly efficient and stable DSSCs of wet-chemically synthesized MoS ₂ counter electrode. Dalton Transactions, 2014, 43, 5256-5259.	3.3	77
75	Hanoi Tower-like Multilayered Ultrathin Palladium Nanosheets. Nano Letters, 2014, 14, 7188-7194.	9.1	122
76	Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in Highâ€Rate Lithiumâ€Ion Batteries and the Hydrogen Evolution Reaction. ChemSusChem, 2014, 7, 2489-2495.	6.8	82
77	High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS ₂ Materials. Nano Letters, 2014, 14, 7138-7144.	9.1	269
78	Understanding the Reactivity of Layered Transition-Metal Sulfides: A Single Electronic Descriptor for Structure and Adsorption. Journal of Physical Chemistry Letters, 2014, 5, 3884-3889.	4.6	70
79	Selfâ€Supported Cu ₃ P Nanowire Arrays as an Integrated Highâ€Performance Threeâ€Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie - International Edition, 2014, 53, 9577-9581.	13.8	784
80	Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS ₂ and WS ₂ . Nano Letters, 2014, 14, 6842-6849.	9.1	251
81	Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity. ACS Catalysis, 2014, 4, 4065-4069.	11.2	419
82	Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Advanced Materials, 2014, 26, 5702-5707.	21.0	783
83	Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS ₂ for high-performance hydrogen evolution. Nanotechnology, 2014, 25, 465401.	2.6	57
84	Edgeâ€Oriented MoS ₂ Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices. Advanced Materials, 2014, 26, 8163-8168.	21.0	552
85	NiP ₂ nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6, 13440-13445.	5.6	400
86	Enhanced Electrocatalytic Activity of MoS _{<i>x</i>} on TCNQ-Treated Electrode for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 17679-17685.	8.0	78
87	Single-Layer MoS ₂ with Sulfur Vacancies: Structure and Catalytic Application. Journal of Physical Chemistry C, 2014, 118, 5346-5351.	3.1	260
88	Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catalysis, 2014, 4, 3957-3971.	11.2	1,355
89	CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C, 2014, 118, 29294-29300.	3.1	216
90	CVD synthesis of large-area, highly crystalline MoSe ₂ atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6, 8949.	5.6	418

#	Article	IF	CITATIONS
91	Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A, 2014, 2, 17263-17267.	10.3	99
92	Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation. ACS Nano, 2014, 8, 11567-11575.	14.6	47
93	Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe ₂ by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014, 8, 11543-11551.	14.6	146
94	Three-Dimensional Hierarchical Frameworks Based on MoS ₂ Nanosheets Self-Assembled on Graphene Oxide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2014, 6, 21534-21540.	8.0	235
95	Enhanced Electrocatalysis for Hydrogen Evolution Reactions from WS ₂ Nanoribbons. Advanced Energy Materials, 2014, 4, 1301875.	19.5	128
96	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	13.8	252
97	CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 14634.	10.3	227
98	Valley and spin dynamics in MoSe ₂ two-dimensional crystals. Nanoscale, 2014, 6, 12690-12695.	5.6	67
99	<i>Operando</i> Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. ACS Catalysis, 2014, 4, 2866-2873.	11.2	122
100	CoP Nanosheet Arrays Supported on a Ti Plate: An Efficient Cathode for Electrochemical Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4326-4329.	6.7	285
101	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie - International Edition, 2014, 53, 12855-12859.	13.8	816
102	Photoanode Current of Large–Area MoS ₂ Ultrathin Nanosheets with Vertically Mesh–Shaped Structure on Indium Tin Oxide. ACS Applied Materials & Interfaces, 2014, 6, 5983-5987.	8.0	79
103	Nanometer-Sized MoS ₂ Clusters on Graphene Flakes for Catalytic Formic Acid Decomposition. ACS Catalysis, 2014, 4, 3950-3956.	11.2	49
104	Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS ₂ . Nano Letters, 2014, 14, 4314-4321.	9.1	258
105	Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43, 6555.	38.1	2,037
106	Chemically Synthesized Heterostructures of Two-Dimensional Molybdenum/Tungsten-Based Dichalcogenides with Vertically Aligned Layers. ACS Nano, 2014, 8, 9550-9557.	14.6	70
107	Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe _{2â^'x} nanosheets for high-performance hydrogen evolution. Nanoscale, 2014, 6, 11046-11051.	5.6	200
108	Robust carbon dioxide reduction on molybdenum disulphide edges. Nature Communications, 2014, 5, 4470.	12.8	644

		CHAHON RE		
# 109	ARTICLE Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.		IF 47.7	Citations 329
110	Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for e hydrogen evolution. Chemical Science, 2014, 5, 4615-4620.	fficient	7.4	455
111	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversi applications. Energy and Environmental Science, 2014, 7, 3519-3542.	ion	30.8	1,151
112	Synthesis and Characterization of Molybdenum(0) and Tungsten(0) Complexes of Tetr Single-Source Precursors for MoS ₂ and WS ₂ . Organometallio 5238-5245.	amethylthiourea: cs, 2014, 33,	2.3	20
113	MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts f evolution reaction. Journal of Materials Chemistry A, 2014, 2, 11358.	for hydrogen	10.3	262
114	Threeâ€Dimensional Structures of MoS ₂ Nanosheets with Ultrahigh Hydr Reaction in Water Reduction. Advanced Functional Materials, 2014, 24, 6123-6129.	ogen Evolution	14.9	173
115	Amorphous carbon supported MoS ₂ nanosheets as effective catalysts for hydrogen evolution. Nanoscale, 2014, 6, 10680.	electrocatalytic	5.6	155
117	Active guests in the MoS ₂ /MoSe ₂ host lattice: efficient hydr using few-layer alloys of MoS _{2(1â^²x)} Se _{2x} . Nanoscale, 2014,	ogen evolution 6, 12856-12863.	5.6	199
118	Higher-Order Nanostructures of Two-Dimensional Palladium Nanosheets for Fast Hydro Nano Letters, 2014, 14, 5953-5959.	ogen Sensing.	9.1	86
119	A Universal Method for Preparation of Noble Metal Nanoparticleâ€Decorated Transition Dichalcogenide Nanobelts. Advanced Materials, 2014, 26, 6250-6254.	n Metal	21.0	71
120	Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotul hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 1919-1923.	bes for	30.8	845
121	Efficient Hydrogen Evolution by Mechanically Strained MoS ₂ Nanosheets. 30, 9866-9873.	. Langmuir, 2014,	3.5	108
122	Van der Waals Epitaxial Growth of Transition Metal Dichalcogenides on Pristine and N-I Graphene. Crystal Growth and Design, 2014, 14, 4920-4928.	Doped	3.0	17
123	Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous col films. Journal of Materials Chemistry A, 2014, 2, 13835-13839.	balt selenide	10.3	133
124	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nan 8617-8624.	o, 2014, 8,	14.6	158
125	Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6, 9889-9924.		5.6	888
126	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction Materials, 2014, 26, 2344-2353.		6.7	634
127	Active edge sites in MoSe ₂ and WSe ₂ catalysts for the hydro reaction: a density functional study. Physical Chemistry Chemical Physics, 2014, 16, 13	ogen evolution 3156-13164.	2.8	426

#	Article	IF	CITATIONS
128	Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 2624-2629.	30.8	1,164
129	Synthesis of well-defined functional crystals by high temperature gas-phase reactions. Science Bulletin, 2014, 59, 2135-2143.	1.7	4
130	Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Communications, 2014, 5, 4214.	12.8	832
131	Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. Journal of Materials Chemistry A, 2014, 2, 14812-14816.	10.3	147
133	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	14.6	404
134	Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets. Nanotechnology, 2014, 25, 335702.	2.6	40
135	Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 7862.	10.3	226
136	Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 2014, 6, 8359-8367.	5.6	248
137	Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale, 2014, 6, 8185.	5.6	48
138	Ni ₂ P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6, 11031-11034.	5.6	277
139	Growth Mechanism for Single- and Multi-Layer MoS2 Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 22768-22773.	3.1	69
140	Band engineering of dichalcogenide MX2 nanosheets (M = Mo, W and X = S, Se) by out-of-plane pressure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 745-749.	2.1	19
141	Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014, 264, 229-234.	7.8	271
142	Graphene film-confined molybdenum sulfide nanoparticles: Facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst. Journal of Power Sources, 2014, 263, 181-185.	7.8	83
143	Solvothermal Synthesis of Ternary Cu ₂ MoS ₄ Nanosheets: Structural Characterization at the Atomic Level. Small, 2014, 10, 4637-4644.	10.0	97
144	Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2014, 50, 7359-7362.	4.1	74
145	Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Advances, 2014, 4, 26407.	3.6	49
146	CoSe ₂ Nanoparticles Grown on Carbon Fiber Paper: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2014, 136, 4897-4900	13.7	1,317

#	Article	IF	CITATIONS
147	Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction. Nano Letters, 2014, 14, 1228-1233.	9.1	634
148	Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties. Materials Letters, 2014, 131, 122-124.	2.6	90
149	Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Frontiers in Energy Research, 2014, 2, .	2.3	84
150	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie, 2014, 126, 13069-13073.	2.0	168
151	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	3.5	71
152	Face the Edges: Catalytic Active Sites of Nanomaterials. Advanced Science, 2015, 2, 1500085.	11.2	145
153	AACVD of Molybdenum Sulfide and Oxide Thin Films From Molybdenum(V)â€based Singleâ€source Precursors ^{**} . Chemical Vapor Deposition, 2015, 21, 71-77.	1.3	21
154	Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction. Scientific Reports, 2015, 5, 17542.	3.3	156
155	Native defects in bulk and monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2first principles. Physical Review B, 2015, 91, .</mml:mn></mml:msub></mml:math 	:m a. 2 <td>nl:masob></td>	nl:m aso b>
156	Fullerene-Structured MoSe2 Hollow Spheres Anchored on Highly Nitrogen-Doped Graphene as a Conductive Catalyst for Photovoltaic Applications. Scientific Reports, 2015, 5, 13214.	3.3	46
157	Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector. Scientific Reports, 2015, 5, 15313.	3.3	129
158	Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific Reports, 2015, 5, 18730.	3.3	105
159	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	10.4	30
160	Synthesis and characterization of Mo and W compounds containing aminothiolate ligand for disulfide materials. Polyhedron, 2015, 100, 199-205.	2.2	3
162	Hierarchical Transitionâ€Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7426-7431.	21.0	123
163	Enhanced Electrochemical H ₂ Evolution by Few‣ayered Metallic WS _{2(1â`'<i>x</i>)} Se _{2<i>x</i>} Nanoribbons. Advanced Functional Materials, 2015, 25, 6077-6083.	14.9	111
164	A Review of Phosphideâ€Based Materials for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2015, 5, 1500985.	19.5	707
165	In Situ Carbon-Doped Mo(Se _{0.85} S _{0.15}) ₂ Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries. Small, 2015, 11, 5667-5674.	10.0	101

#	Article	IF	CITATIONS
166	Hierarchical βâ€Mo ₂ C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 15395-15399.	13.8	546
167	Structural Engineering of Electrocatalysts for the Hydrogen Evolution Reaction: Order or Disorder?. ChemCatChem, 2015, 7, 2568-2580.	3.7	144
168	Pristine Basal―and Edgeâ€Planeâ€Oriented Molybdenite MoS ₂ Exhibiting Highly Anisotropic Properties. Chemistry - A European Journal, 2015, 21, 7170-7178.	3.3	133
169	CVD Growth of MoS ₂ â€based Twoâ€dimensional Materials. Chemical Vapor Deposition, 2015, 21, 241-259.	1.3	167
170	Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics. Electronics (Switzerland), 2015, 4, 1033-1061.	3.1	21
171	Effect of Polymer Addition on the Structure and Hydrogen Evolution Reaction Property of Nanoflower-Like Molybdenum Disulfide. Metals, 2015, 5, 1829-1844.	2.3	39
172	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	11.2	420
173	Single-Crystal Atomic-Layered Molybdenum Disulfide Nanobelts with High Surface Activity. ACS Nano, 2015, 9, 6478-6483.	14.6	72
174	Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films. ACS Nano, 2015, 9, 6548-6554.	14.6	225
175	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015, 5, 10378.	3.3	28
176	Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution. Journal of Power Sources, 2015, 291, 195-200.	7.8	133
177	Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 14113-14122.	8.0	295
178	<i>Operando</i> Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7448-7455.	13.7	330
179	Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14942-14962.	10.3	1,061
180	Synthesis of two-dimensional materials for beyond graphene devices. Proceedings of SPIE, 2015, , .	0.8	1
181	Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS2-phenolic resin duplex coatings on magnesium alloys. Materials Chemistry and Physics, 2015, 160, 212-220.	4.0	12
182	CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15, 634-641.	16.0	357
183	Metallic CoS ₂ nanowire electrodes for high cycling performance supercapacitors. Nanotechnology, 2015, 26, 494001.	2.6	52

#	Article	IF	CITATIONS
184	Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2015, 10, 446.	5.7	34
185	MoS2(1â^'x)Se2x Nanobelts for Enhanced Hydrogen Evolution. Electrochimica Acta, 2015, 185, 236-241.	5.2	32
186	Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. ACS Applied Materials & Interfaces, 2015, 7, 28412-28419.	8.0	187
187	Large-area MoS ₂ grown using H ₂ S as the sulphur source. 2D Materials, 2015, 2, 044005.	4.4	78
188	High Turnover Frequency of Hydrogen Evolution Reaction on Amorphous MoS ₂ Thin Film Directly Grown by Atomic Layer Deposition. Langmuir, 2015, 31, 1196-1202.	3.5	183
189	Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2015, 278, 540-545.	7.8	82
190	First-principles study of H2S adsorption and dissociation on Mo(1 1 0). Computational Materials Science, 2015, 101, 47-55.	3.0	13
191	Porous metallic MoO ₂ -supported MoS ₂ nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale, 2015, 7, 5203-5208.	5.6	267
192	Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts: Structural and Electrochemical Studies. Inorganic Chemistry, 2015, 54, 2128-2136.	4.0	97
193	Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surface Science, 2015, 640, 133-140.	1.9	315
194	Nanoarray based "superaerophobic―surfaces for gas evolution reaction electrodes. Materials Horizons, 2015, 2, 294-298.	12.2	146
195	Millisecond Laser Ablation of Molybdenum Target in Reactive Gas toward MoS ₂ Fullerene-Like Nanoparticles with Thermally Stable Photoresponse. ACS Applied Materials & Interfaces, 2015, 7, 1949-1954.	8.0	18
196	Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research, 2015, 8, 566-575.	10.4	594
197	Structure dependent active sites of Ni _x S _y as electrocatalysts for hydrogen evolution reaction. Nanoscale, 2015, 7, 5157-5163.	5.6	121
198	Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale, 2015, 7, 4400-4405.	5.6	83
199	Plasmonic hot electron enhanced MoS ₂ photocatalysis in hydrogen evolution. Nanoscale, 2015, 7, 4482-4488.	5.6	169
200	Highly Scalable, Atomically Thin WSe ₂ Grown <i>via</i> Metal–Organic Chemical Vapor Deposition. ACS Nano, 2015, 9, 2080-2087.	14.6	339
201	Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Advances, 2015, 5, 7495-7514.	3.6	288

#	Article	IF	CITATIONS
202	An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6, 5982.	12.8	897
203	A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A, 2015, 3, 5041-5046.	10.3	100
204	Two-Dimensional Layered Chalcogenides: From Rational Synthesis to Property Control via Orbital Occupation and Electron Filling. Accounts of Chemical Research, 2015, 48, 81-90.	15.6	74
205	A limited anodic and cathodic potential window of MoS ₂ : limitations in electrochemical applications. Nanoscale, 2015, 7, 3126-3129.	5.6	35
206	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	10.3	100
207	Seed Growth of Tungsten Diselenide Nanotubes from Tungsten Oxides. Small, 2015, 11, 2192-2199.	10.0	20
208	MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Research, 2015, 8, 281-287.	10.4	87
209	Vertical Heterostructure of Two-Dimensional MoS ₂ and WSe ₂ with Vertically Aligned Layers. Nano Letters, 2015, 15, 1031-1035.	9.1	194
210	A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale, 2015, 7, 8731-8738.	5.6	116
211	Two-dimensional dichalcogenides for light-harvesting applications. Nano Today, 2015, 10, 128-137.	11.9	208
212	Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni ₂ P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51, 6738-6741.	4.1	149
213	Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2015, 26, 8160-8166.	2.2	62
214	Origin of hydrogen evolution activity on MS ₂ (M = Mo or Nb) monolayers. Journal of Materials Chemistry A, 2015, 3, 18898-18905.	10.3	30
215	Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS ₂ Crystals. Nano Letters, 2015, 15, 5081-5088.	9.1	174
216	Perpendicularly oriented few-layer MoSe ₂ on SnO ₂ nanotubes for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16263-16271.	10.3	105
217	One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction. Advanced Powder Technology, 2015, 26, 1273-1280.	4.1	10
218	A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy, 2015, 16, 10-18.	16.0	155
219	Amorphous Co-doped MoS ₂ nanosheet coated metallic CoS ₂ nanocubes as an excellent electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15020-15023.	10.3	159

#	Article	IF	CITATIONS
220	Defect- and S-rich ultrathin MoS ₂ nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15927-15934.	10.3	124
221	Hierarchical ultrathin Mo(S _x Se _{1â^'x}) ₂ nanosheets with tunable ferromagnetism and efficient hydrogen evolution reaction activity: towards defect site effect. CrystEngComm, 2015, 17, 6420-6425.	2.6	23
222	Nanostructure formation via post growth of particles. CrystEngComm, 2015, 17, 6796-6808.	2.6	12
223	Facile synthesis of a Ag/MoS ₂ nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catalysis Science and Technology, 2015, 5, 4133-4143.	4.1	95
224	Edge-terminated molybdenum disulfide with a 9.4-Ã interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6, 7493.	12.8	628
225	Ultrathin MoSe ₂ Nanosheets Decorated on Carbon Fiber Cloth as Binder-Free and High-Performance Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 14170-14175.	8.0	165
226	Incorporated oxygen in MoS ₂ ultrathin nanosheets for efficient ORR catalysis. Journal of Materials Chemistry A, 2015, 3, 16050-16056.	10.3	91
227	Flexible and porous catalyst electrodes constructed by Co nanoparticles@nitrogen-doped graphene films for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15962-15968.	10.3	74
228	Ultrastable Polymolybdate-Based Metal–Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. Journal of the American Chemical Society, 2015, 137, 7169-7177.	13.7	584
229	Co ₃ ZnC core–shell nanoparticle assembled microspheres/reduced graphene oxide as an advanced electrocatalyst for hydrogen evolution reaction in an acidic solution. Journal of Materials Chemistry A, 2015, 3, 11066-11073.	10.3	31
230	Mo <i>_x</i> W _{1â^'<i>x</i>} S ₂ Solid Solutions as 3D Electrodes for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2015, 2, 1500041.	3.7	49
231	SDBS-assisted hydrothermal preparation and electrocatalytic properties of few-layer and edge-rich MoS2 nanospheres. Superlattices and Microstructures, 2015, 83, 112-120.	3.1	7
232	A General Salt-Templating Method To Fabricate Vertically Aligned Graphitic Carbon Nanosheets and Their Metal Carbide Hybrids for Superior Lithium Ion Batteries and Water Splitting. Journal of the American Chemical Society, 2015, 137, 5480-5485.	13.7	310
233	Hydrothermal synthesis and controlled growth of tungsten disulphide nanostructures from oneâ€dimension to threeâ€dimensions. Micro and Nano Letters, 2015, 10, 183-186.	1.3	6
234	Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. ACS Nano, 2015, 9, 5164-5179.	14.6	184
235	Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40, 14272-14278.	7.1	63
236	Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Materials Letters, 2015, 152, 244-247.	2.6	88
237	Nanostructured catalyst for hydrogen electrochemical reduction based on molybdenum diselenide thin films. Technical Physics Letters, 2015, 41, 231-234.	0.7	4

ARTICLE IF CITATIONS One-step hydrothermal synthesis of monolayer MoS₂ quantum dots for highly efficient 238 10.3 320 electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 10693-10697. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 38.1 4,776 5148-5180. Large-area synthesis of monolayered MoS_{$2(1\hat{a}^x)}Se_{2x} with a tunable band gap$ 240 5.6 133 and its enhanced electrochemical catalytic activity. Nanoscale, 2015, 7, 10490-10497. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS₂. 241 140 Journal of Materials Chemistry A, 2015, 3, 13050-13056. Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction. 242 10.3 66 Journal of Materials Chemistry A, 2015, 3, 13066-13071. Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution 243 7.8 214 reaction. Journal of Power Sources, 2015, 292, 15-22. N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active 244 electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 10.3 105 1915-1919. A Silicon-Based Two-Dimensional Chalcogenide: Growth of Si₂Te₃ 245 9.1 Nanoribbons and Nanoplates. Nano Letters, 2015, 15, 2285-2290. Vertical ultrathin MoS₂nanosheets on a flexible substrate as an efficient counter 246 70 5.6 electrode for dye-sensitized solar cells. Nanoscale, 2015, 7, 10459-10464. Confining MoS₂ nanodots in 3D porous nitrogen-doped graphene with amendable ORR 247 10.3 performance. Journal of Materials Chemistry A, 2015, 3, 7616-7622. CoSe₂ necklace-like nanowires supported by carbon fiber paper: a 3D integrated electrode 248 10.3 125 for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 9415-9420. Reduced Graphene Oxideâ€Modified Carbon Nanotube/Polyimide Film Supported MoS₂ Nanoparticles for Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 249 14.9 2693-2700. Phosphorusâ€Modified Tungsten Nitride/Reduced Graphene Oxide as a Highâ€Performance, Nonâ€Nobleâ€Metal 250 Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 13.8 515 2015, 54, 6325-6329. Phase Transition Mechanism and Electrochemical Properties of Nanocrystalline MoSe₂ as Anode Materials for the High Performance Lithium-Ion Battery. Journal of Physical Chemistry C, 2015, 3.1 122 119, 10197-10205. Ultrathin MoS_{2(1â€"<i>x</i>)}Se_{2<i>x</i>/i>} Alloy Nanoflakes For Electrocatalytic 252 11.2 473 Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2213-2219. 2H â†' 1T phase transition and hydrogen evolution activity of MoS₂, MoSe₂, WS₂ and WSe₂ strongly depends on the MX₂ composition. Chemical Communications, 2015, 51, 8450-8453 Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chemistry, 2015, 17, 254 9.0 64 2764-2768. Formation and Interlayer Decoupling of Colloidal MoSe₂ Nanoflowers. Chemistry of Materials, 2015, 27, 3167-3175.

#	Article	IF	CITATIONS
257	Comparative Study of Potential Applications of Graphene, MoS ₂ , and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015, 7, 7809-7832.	8.0	362
258	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	3.3	72
259	Ferric phosphide nanoparticles film supported onÂtitanium plate: A high-performance hydrogen evolution cathode in both acidic and neutral solutions. International Journal of Hydrogen Energy, 2015, 40, 5092-5098.	7.1	16
260	Li adsorption, hydrogen storage and dissociation using monolayer MoS ₂ : an ab initio random structure searching approach. Physical Chemistry Chemical Physics, 2015, 17, 11367-11374.	2.8	65
261	Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 8083-8087.	8.0	180
262	3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. Electrochimica Acta, 2015, 168, 133-138.	5.2	147
263	Investigation of 2D transition metal dichalcogenide films for electronic devices. , 2015, , .		4
264	Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015, 115, 11941-11966.	47.7	719
265	Catalytic Activity in Lithium-Treated Core–Shell MoO _{<i>x</i>} /MoS ₂ Nanowires. Journal of Physical Chemistry C, 2015, 119, 22908-22914.	3.1	30
266	Pulsed laser deposition of nanocomposite MoSe /Mo thin-film catalysts for hydrogen evolution reaction. Thin Solid Films, 2015, 592, 175-181.	1.8	29
267	Preparation and Study of thin Films of Tungsten Selenides for Electrocatalytic Hydrogen Evolution. Physics Procedia, 2015, 71, 348-353.	1.2	8
268	In-Situ Growth of Few-Layered MoS ₂ Nanosheets on Highly Porous Carbon Aerogel as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2015, 3, 3140-3148.	6.7	105
269	Hierarchical composite structure of few-layers MoS 2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy, 2015, 18, 196-204.	16.0	191
270	Enhanced hydrogen evolution catalysis in MoS ₂ nanosheets by incorporation of a metal phase. Journal of Materials Chemistry A, 2015, 3, 24414-24421.	10.3	88
271	Hydrothermal synthesis of 2D MoS ₂ nanosheets for electrocatalytic hydrogen evolution reaction. RSC Advances, 2015, 5, 89389-89396.	3.6	110
272	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	14.6	2,069
273	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	5.6	327
274	Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2015, 7, 14813-14816.	5.6	103

#	Article	IF	CITATIONS
275	Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015, 5, 75500-75518.	3.6	105
276	Hydrothermal synthesis and tribological properties of MoSe ₂ nanoflowers. Micro and Nano Letters, 2015, 10, 339-342.	1.3	25
277	Cubic platinum-tungsten alloy nanocrystals in-situ grown on molybdenum disulfide nanosheets for high specific and ultra sensitive detection of hydrogen peroxide. , 2015, , .		1
278	Structure and photoluminescence of molybdenum selenide nanomaterials grown by hot filament chemical vapor deposition. Journal of Alloys and Compounds, 2015, 647, 734-739.	5.5	14
279	Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability. Nano Letters, 2015, 15, 7616-7620.	9.1	425
280	Three-Dimensional Heterostructures of MoS ₂ Nanosheets on Conducting MoO ₂ as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23328-23335.	8.0	150
281	Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications, 2015, 6, 8311.	12.8	260
282	Activating and tuning basal planes of MoO ₂ , MoS ₂ , and MoSe ₂ for hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2015, 17, 29305-29310.	2.8	60
283	2D nanosheet molybdenum disulphide (MoS ₂) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 2015, 7, 18152-18168.	5.6	104
284	A CNT@MoSe ₂ hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale, 2015, 7, 18595-18602.	5.6	162
285	Component-controllable synthesis of Co(S Se1â^')2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy, 2015, 18, 1-11.	16.0	130
286	Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS ₂ Layers. ACS Nano, 2015, 9, 9314-9321.	14.6	417
287	Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1, e1500259.	10.3	427
288	Nanosheet-assembled MoSe ₂ and S-doped MoSe _{2â^'x} nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorganic Chemistry Frontiers, 2015, 2, 931-937.	6.0	72
289	Physical vapor deposition of amorphous MoS ₂ nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19277-19281.	10.3	97
290	Beneficial effect of Re doping on the electrochemical HER activity of MoS ₂ fullerenes. Dalton Transactions, 2015, 44, 16399-16404.	3.3	66
291	3D architecture constructed via the confined growth of MoS ₂ nanosheets in nanoporous carbon derived from metal–organic frameworks for efficient hydrogen production. Nanoscale, 2015, 7, 18004-18009.	5.6	82
292	The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase. Physical Chemistry Chemical Physics, 2015, 17, 23448-23459.	2.8	41

#	Article	IF	CITATIONS
293	Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochimica Acta, 2015, 180, 770-777.	5.2	144
294	Nanoflower-like metallic conductive MoO ₂ as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 20080-20085.	10.3	139
295	A Se-doped MoS ₂ nanosheet for improved hydrogen evolution reaction. Chemical Communications, 2015, 51, 15997-16000.	4.1	167
296	Colloidally synthesized MoSe ₂ /graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 19706-19710.	10.3	92
297	Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015, 2, .	12.1	143
298	High-Performance Electrocatalysis for Hydrogen Evolution Reaction Using Se-Doped Pyrite-Phase Nickel Diphosphide Nanostructures. ACS Catalysis, 2015, 5, 6355-6361.	11.2	258
299	Co-Doped MoS ₂ Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 27242-27253.	8.0	422
300	Field emission properties of vertically aligned MoS <inf>2</inf> nanosheets. , 2015, , .		0
301	Photocatalytic Stability of Single- and Few-Layer MoS ₂ . ACS Nano, 2015, 9, 11302-11309.	14.6	197
302	MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 2015, 8, 1108-1115.	10.4	70
303	CO catalytic oxidation on iron-embedded monolayer MoS2. Applied Surface Science, 2015, 328, 71-77.	6.1	100
304	Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 2014, 4, 7557.	3.3	93
305	Oneâ€pot Synthesis of CdS Nanocrystals Hybridized with Single‣ayer Transitionâ€Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 1210-1214.	13.8	584
307	High-Efficiency Electrochemical Hydrogen Evolution Catalyzed by Tungsten Phosphide Submicroparticles. ACS Catalysis, 2015, 5, 145-149.	11.2	231
308	Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2015, 44, 2664-2680.	38.1	694
309	Vertically oriented MoS ₂ and WS ₂ nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. Journal of Materials Chemistry A, 2015, 3, 131-135.	10.3	254
310	Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015, 44, 2744-2756.	38.1	709
311	Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015, 44, 2587-2602.	38.1	334

#	Article	IF	CITATIONS
312	A Novel MoSe ₂ –Reduced Graphene Oxide/Polyimide Composite Film for Applications in Electrocatalysis and Photoelectrocatalysis Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1814-1820.	14.9	165
313	Metal Dichalcogenides Monolayers: Novel Catalysts for Electrochemical Hydrogen Production. Scientific Reports, 2014, 4, 5348.	3.3	151
314	Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2015, 164, 1-9.	20.2	465
315	Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles. Scientific Reports, 2014, 4, 4063.	3.3	70
316	Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution. Small, 2015, 11, 414-419.	10.0	276
317	E'' Raman Mode in Thermal Strain-Fractured CVD-MoS2. Crystals, 2016, 6, 151.	2.2	17
318	Twoâ€Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications. , 0, , .		2
320	Graphene and monolayer transition-metal dichalcogenides: properties and devices. Journal of Materials Research, 2016, 31, 845-877.	2.6	15
321	Layered Platinum Dichalcogenides (PtS ₂ , PtSe ₂ , and PtTe ₂) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Advanced Functional Materials, 2016, 26, 4306-4318.	14.9	228
322	Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6197-6206.	21.0	769
323	Two-Dimensional, Few-Layer Phosphochalcogenide, FePS ₃ : A New Catalyst for Electrochemical Hydrogen Evolution over Wide pH Range. ACS Energy Letters, 2016, 1, 367-372.	17.4	178
324	Microwave Synthesized Three-dimensional Hierarchical Nanostructure CoS2/MoS2 Growth on Carbon Fiber Cloth: A Bifunctional Electrode for Hydrogen Evolution Reaction and Supercapacitor. Electrochimica Acta, 2016, 212, 941-949.	5.2	93
325	Study on glutathione's inhibition to dopamine polymerization and its application in dopamine determination in alkaline environment based on silver selenide/molybdenum selenide/glassy carbon electrode. Sensors and Actuators B: Chemical, 2016, 237, 685-692.	7.8	24
326	Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Research, 2016, 9, 2641-2651.	10.4	43
327	A Floating Sheet for Efficient Photocatalytic Water Splitting. Advanced Energy Materials, 2016, 6, 1600510.	19.5	74
328	Fabrication of 3 D Mesoporous Black TiO ₂ /MoS ₂ /TiO ₂ Nanosheets for Visibleâ€Lightâ€Driven Photocatalysis. ChemSusChem, 2016, 9, 1118-1124.	6.8	164
329	MoS ₂ /TiO ₂ Edgeâ€On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600464.	19.5	264
330	Substrate effect on the growth of monolayer dendritic MoS ₂ on LaAlO ₃ (100) and its electrocatalytic applications. 2D Materials, 2016, 3, 035001.	4.4	22

#	Article	IF	CITATIONS
331	CdS Nanowires Decorated with Ultrathin MoS ₂ Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution. ChemSusChem, 2016, 9, 624-630.	6.8	223
332	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	19.5	43
333	Seleniumâ€Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie, 2016, 128, 7033-7038.	2.0	65
334	Metal Induced Growth of Transition Metal Dichalcogenides at Controlled Locations. Scientific Reports, 2016, 6, 38394.	3.3	28
335	Electrocatalytic Hydrogen Evolution Reaction of 2H MoSe2 Nanoflowers and 2H-MoSe2/α-MoO3 Heterostucture. Electrochimica Acta, 2016, 222, 499-504.	5.2	20
336	All The Catalytic Active Sites of MoS ₂ for Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 16632-16638.	13.7	664
337	The Role of Transition Metal and Nitrogen in Metal–N–C Composites for Hydrogen Evolution Reaction at Universal pHs. Journal of Physical Chemistry C, 2016, 120, 29047-29053.	3.1	69
338	Cold cathode emission studies on topographically modified few layer and single layer MoS2 films. Applied Physics Letters, 2016, 108, 043103.	3.3	9
339	Correlation of nanostructure changes with the electrical properties of molybdenum disulfide (MoS2) as affected by sulfurization temperature. Applied Physics Letters, 2016, 109, 242104.	3.3	1
340	Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chemical Reviews, 2016, 116, 5464-5519.	47.7	1,942
341	Semimetallic MoP ₂ : an active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale, 2016, 8, 8500-8504.	5.6	155
342	Controlled growth of MoS ₂ nanopetals and their hydrogen evolution performance. RSC Advances, 2016, 6, 18483-18489.	3.6	32
343	Two-dimensional TaC nanosheets on a reduced graphene oxide hybrid as an efficient and stable electrocatalyst for water splitting. Chemical Communications, 2016, 52, 8810-8813.	4.1	35
344	Insights into MoS2-coated LiVPO4F for lithium ion batteries: A first-principles investigation. Journal of Alloys and Compounds, 2016, 681, 253-259.	5.5	8
345	Novel Fe ₂ P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage. Journal of Materials Chemistry A, 2016, 4, 9923-9930.	10.3	45
346	Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Applied Catalysis B: Environmental, 2016, 196, 193-198.	20.2	189
347	Highly active and durable self-standing WS ₂ /graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9472-9476.	10.3	75
348	Templated Electrochemical Fabrication of Hollow Molybdenum Sulfide Microstructures and Nanostructures with Catalytic Properties for Hydrogen Production. ACS Catalysis, 2016, 6, 3985-3993.	11.2	80

#	Article	IF	CITATIONS
349	Co-Te-Se Nano-Compounds as Electrocatalysts for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H625-H629.	2.9	12
350	Strongly coupled MoS2–3D graphene materials for ultrafast charge slow discharge LIBs and water splitting applications. Energy Storage Materials, 2016, 4, 84-91.	18.0	55
351	General Formation of M–MoS ₃ (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 92-97.	21.0	364
352	Photo-Promoted Platinum Nanoparticles Decorated MoS ₂ @Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2016, 8, 10866-10873.	8.0	72
353	Novel hydrothermal synthesis of MoS ₂ nanocluster structure for sensitive electrochemical detection of human and environmental hazardous pollutant 4-aminophenol. RSC Advances, 2016, 6, 40399-40407.	3.6	32
354	Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004.	4.4	172
355	Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations. Thin Solid Films, 2016, 606, 143-147.	1.8	13
356	Synthesis of uniform WS2 nanoflowers via a sodium silicate-assisted hydrothermal process. Journal of Materials Science: Materials in Electronics, 2016, 27, 3821-3825.	2.2	5
357	Structural, mechanical and tribological properties of Mo–S–N solid lubricant films. Surface and Coatings Technology, 2016, 296, 185-191.	4.8	50
358	Growth and photoluminescence of oriented MoSe ₂ nanosheets produced by hot filament CVD. RSC Advances, 2016, 6, 37236-37245.	3.6	24
359	Three-dimensional hierarchical MoS2 nanosheet arrays/carbon cloth as flexible electrodes for high-performance hydrogen evolution reaction. Materials Letters, 2016, 177, 139-142.	2.6	26
360	A 3D Co–CN framework as a high performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 42014-42018.	3.6	22
361	Synthesis of Molybdenum Disulfide Nanowire Arrays Using a Block Copolymer Template. Chemistry of Materials, 2016, 28, 4017-4023.	6.7	28
362	Ultrafast charge transfer in MoS ₂ /WSe ₂ p–n Heterojunction. 2D Materials, 2016, 3, 025020.	4.4	179
363	Large-Area Buckled MoS ₂ Films on the Graphene Substrate. ACS Applied Materials & Interfaces, 2016, 8, 13512-13519.	8.0	38
364	Electrocatalysts for hydrogen oxidation and evolution reactions. Science China Materials, 2016, 59, 217-238.	6.3	142
365	Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2016, 384, 51-57.	6.1	121
366	Growth of MoSe ₂ nanosheets with small size and expanded spaces of (002) plane on the surfaces of porous N-doped carbon nanotubes for hydrogen production. Nanoscale, 2016, 8, 16886-16893.	5.6	72

ARTICLE IF CITATIONS Electrocatalytic hydrogen evolution using the MS < sub > 2 < sub367 4.1 36 hybrid catalyst. Chemical Communications, 2016, 52, 11795-11798. In situ growth of metallic 1T-WS2 nanoislands on single-walled carbon nanotube films for improved 3.6 29 electrochemical performance. RSC Advances, 2016, 6, 87919-87925. Solvent-Assisted Oxygen Incorporation of Vertically Aligned MoS₂ Ultrathin Nanosheets 369 Decorated on Reduced Graphene Oxide for Improved Electrocatalytic Hydrogen Evolution. ACS Applied 8.0 103 Materials & amp; Interfaces, 2016, 8, 25210-25218. High-Yield Preparation and Electrochemical Properties of Few-Layer MoS2 Nanosheets by Exfoliating Natural Molybdenite Powders Directly via a Coupled Ultrasonication-Milling Process. Nanoscale 371 Research Letters, 2016, 11, 409. Engineering active sites of two-dimensional MoS₂ nanosheets for improving hydrogen 372 6.0 22 evolution. Inorganic Chemistry Frontiers, 2016, 3, 1376-1380. Synthesis of layer-expanded MoS2 nanosheets/carbon fibers nanocomposites for electrochemical hydrogen evolution reaction. Materials Chemistry and Physics, 2016, 183, 18-23. 4.0 Optical thermometry of MoS₂Eu³⁺ 2D luminescent nanosheets. Journal of 374 5.5 34 Materials Chemistry C, 2016, 4, 9937-9941. Vertical 2D MoO₂/MoSe₂ Coreâ€"Shell Nanosheet Arrays as Highâ€Performance 14.9 167 Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 8537-8544. Scalable synthesis of high-quality transition metal dichalcogenide nanosheets and their application 376 10.3 72 as sodium-ion battery anodes. Journal of Materials Chemistry A, 2016, 4, 17370-17380. Hydrogen evolution reaction performance of the molybdenum disulfide/nickel–phosphorus 7.1 composites in alkaline solution. International Journal of Hydrogen Energy, 2016, 41, 18942-18952. Self-sacrificial template method of Mo 3 O 10 (C 6 H 8 N) 2 •2H 2 O to fabricate MoS 2 /carbon-doped MoO 2 nanobelts as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 378 5.2 26 2016, 216, 397-404. Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Materials, 2016, 3, 041003. 379 4.4 Vertically oriented few-layered HfS ₂ nanosheets: growth mechanism and optical 380 4.4 88 properties. 2D Materials, 2016, 3, 035024. Synthesis of MoSe₂/Carbon Nanofibers Hybrid and Its Hydrogen Evolution Reaction 1.3 Performance. Chemistry Letters, 2016, 45, 69-71. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology. Optical 382 70 3.6 Materials, 2016, 60, 601-617. Ultrafast, Broadband Photodetector Based on MoSe₂/Silicon Heterojunction with Vertically Standing Layered Structure Using Graphene as Transparent Electrode. Advanced Science, 11.2 210 2016, 3, 1600018 384 Emerging Applications of 2D TMDCs. Springer Series in Materials Science, 2016, , 473-512. 0.6 3 From 3D to 2D: Fabrication Methods. Springer Series in Materials Science, 2016, , 79-107.

	CITATION	CITATION REPORT	
# 386	ARTICLE Electrospun transition/alkaline earth metal oxide composite nanofibers under mild condition for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 13915-13922.	lF 7.1	Citations 24
387	Facile synthesis of hollow carbon microspheres embedded with molybdenum carbide nanoparticles as an efficient electrocatalyst for hydrogen generation. RSC Advances, 2016, 6, 75870-75874.	3.6	26
388	Diatom Frustules as a Biomineralized Scaffold for the Growth of Molybdenum Disulfide Nanosheets. Chemistry of Materials, 2016, 28, 5582-5586.	6.7	13
389	Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications. Solid-State Electronics, 2016, 125, 39-51.	1.4	36
390	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	17.4	1,100
391	Hydrothermal synthesis of selenium-doped graphene-like molybdenum disulfide/graphene hybrid as an efficient electrocatalyst for hydrogen evolution. Advanced Powder Technology, 2016, 27, 2153-2160.	4.1	6
392	Growth and Tunable Surface Wettability of Vertical MoS ₂ Layers for Improved Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2016, 8, 22190-22195.	8.0	94
393	Hierarchically nanostructured MoS ₂ with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 14577-14585.	10.3	58
394	Ultra-small nickel phosphide nanoparticles as a high-performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 74895-74902.	3.6	12
395	Scalable Patterning of MoS ₂ Nanoribbons by Micromolding in Capillaries. ACS Applied Materials & Interfaces, 2016, 8, 20993-21001.	8.0	23
396	Contact and Support Considerations in the Hydrogen Evolution Reaction Activity of Petaled MoS ₂ Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 25185-25192.	8.0	27
397	Two-Dimensional Materials as Catalysts for Energy Conversion. Catalysis Letters, 2016, 146, 1917-1921.	2.6	58
398	MoS2 yolk–shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Research, 2016, 9, 3038-3047.	10.4	41
399	Phonon transport in single-layerMo1â^'xWxS2alloy embedded withWS2nanodomains. Physical Review B, 2016, 94, .	3.2	18
400	Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS ₂ . Nano Letters, 2016, 16, 5742-5750.	9.1	102
401	Synthetic methods and potential applications of transition metal dichalcogenide/graphene nanocomposites. Coordination Chemistry Reviews, 2016, 326, 86-110.	18.8	48
402	Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11, 1098-1104.	31.5	681
403	DNA mediated electrocatalytic enhancement of α-Fe ₂ 0 ₃ –PEDOT–C-MoS ₂ hybrid nanostructures for riboflavin detection on screen printed electrode. RSC Advances, 2016, 6, 81500-81509.	3.6	13

#	Article	IF	CITATIONS
404	Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13731-13735.	10.3	48
405	Effects of p―and nâ€ŧype Doping in Inorganic Fullerene MoS ₂ on the Hydrogen Evolution Reaction. ChemElectroChem, 2016, 3, 1937-1943.	3.4	24
406	In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. Nano Letters, 2016, 16, 7588-7596.	9.1	186
407	Deposition of the MoSe <inf>2</inf> ethanol dispersions on tapered fiber. , 2016, , .		0
408	Synthesis, Properties, and Stacking of Two-Dimensional Transition Metal Dichalcogenides. Semiconductors and Semimetals, 2016, 95, 189-219.	0.7	12
409	ZnO nanonails: Organometallic synthesis, self-assembly and enhanced hydrogen gas production. Materials Science in Semiconductor Processing, 2016, 56, 228-237.	4.0	17
410	Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 1160-1166.	6.0	55
411	Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale, 2016, 8, 17256-17261.	5.6	83
412	Synthesis of 1T-MoSe ₂ ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 14949-14953.	10.3	190
413	Hybrid catalyst of MoS2-CoMo2S4 on graphene for robust electrochemical hydrogen evolution. Fuel, 2016, 184, 559-564.	6.4	40
414	Asymmetric MoS ₂ /Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Advanced Materials, 2016, 28, 8256-8264.	21.0	64
415	Hierarchical polypyrrole/Ni ₃ S ₂ @MoS ₂ core–shell nanostructures on a nickel foam for high-performance supercapacitors. RSC Advances, 2016, 6, 68460-68467.	3.6	32
416	Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogenâ€Đoped Carbon Nanotubes for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 6766-6776.	14.9	110
417	Inâ€Situ Fabrication of Tungsten Diphosphide Nanoparticles on Tungsten foil: A Hydrogenâ€Evolution Cathode for a Wide pH Range. Energy Technology, 2016, 4, 1030-1034.	3.8	11
418	2D Materials Beyond Graphene for Highâ€Performance Energy Storage Applications. Advanced Energy Materials, 2016, 6, 1600671.	19.5	436
419	Composition and Interface Engineering of Alloyed MoS ₂ <i>_x</i> Se _{2(1–} <i>_x</i> ₎ Nanotubes for Enhanced Hydrogen Evolution Reaction Activity. Small, 2016, 12, 4379-4385.	10.0	72
420	Transfer hydrogenation of nitroarenes to arylamines catalysed by an oxygen-implanted MoS 2 catalyst. Applied Catalysis A: General, 2016, 525, 85-93.	4.3	31
421	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	30.8	503

ARTICLE IF CITATIONS Investigating the tribological performance of nanosized MoS₂ on graphene dispersion in 422 3.6 30 perfluoropolyether under high vacuum. RSC Advances, 2016, 6, 98606-98610. Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe 2 Nanosheets for Hydrogen 423 5.2 Evolution. Electrochimica Acta, 2016, 217, 181-186. Vertically standing layered MoS_2 nanosheets on TiO_2 nanofibers for enhanced nonlinear optical 424 3.4 36 property. Optics Express, 2016, 24, 25337. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related 425 Compounds. CheM, 2016, 1, 699-726. Effect of magnetron sputtering parameters and stress state of W film precursors on WSe2 layer 426 3.3 16 texture by rapid selenization. Scientific Reports, 2016, 6, 36451. One dimensional metal dithiolene (M = Ni, Fe, Zn) coordination polymers for the hydrogen evolution reaction. Dalton Transactions, 2016, 45, 19311-19321. 3.3 Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals 428 3.3 116 Heterostructure. Scientific Reports, 2016, 6, 25456. A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC 429 3.6 14 Advances, 2016, 6, 107158-107162. Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles. Scientific 430 3.3 31 Reports, 2016, 6, 30320. Synthesis of Vertically Standing MoS2 Triangles on SiC. Scientific Reports, 2016, 6, 31980. 3.3 Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine 432 12.8 179 reaction. Nature Communications, 2016, 7, 11857. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nature 12.8 179 Communications, 2016, 7, 12206. Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer 434 3.3 111 Number, Stacking Orientation and Resonant Effects. Scientific Reports, 2016, 6, 19476. Synthesis and characterization of vertically standing MoS2 nanosheets. Scientific Reports, 2016, 6, 3.3 168 21171. 436 Phase crossover in transition metal dichalcogenide nanoclusters. Nanoscale, 2016, 8, 19154-19160. 5.6 8 Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nature 136 Communications, 2016, 7, 13211. Oxidation-Sulfidation Approach for Vertically Growing MoS₂ Nanofilms Catalysts on 438 3.156 Molybdenum Foils as Efficient HER Catalysts. Journal of Physical Chemistry C, 2016, 120, 25843-25850. 3D Binder-free MoSe2 Nanosheets/Carbon Cloth Electrodes for Efficient and Stable Hydrogen 439 3.3

Evolution Prepared by Simple Electrophoresis Deposition Strategy. Scientific Reports, 2016, 6, 22516.

#	Article	IF	CITATIONS
440	Noble metal-free ultrathin MoS ₂ nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation. Journal of Materials Chemistry A, 2016, 4, 18551-18558.	10.3	118
441	Nanostructured MoS ₂ Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. Chemistry - A European Journal, 2016, 22, 5969-5975.	3.3	14
442	Edgeâ€Oriented Tungsten Disulfide Catalyst Produced from Mesoporous WO ₃ for Highly Efficient Dye‧ensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1501814.	19.5	45
443	Seleniumâ€Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie - International Edition, 2016, 55, 6919-6924.	13.8	307
444	Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials, 2016, 3, 022002.	4.4	736
445	Triethylenetetramine-assisted hydrothermal synthesis of sulfur-doped few-layer MoSe 2 /nitrogenated graphene hybrids and their catalytic activity for hydrogen evolution reaction. Advanced Powder Technology, 2016, 27, 1560-1567.	4.1	9
446	Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. Journal of the American Chemical Society, 2016, 138, 7965-7972.	13.7	1,055
447	Doping MoS2 with Graphene Quantum Dots: Structural and Electrical Engineering towards Enhanced Electrochemical Hydrogen Evolution. Electrochimica Acta, 2016, 211, 603-610.	5.2	72
448	Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: An enhanced electrochemical hydrogen evolution catalyst. International Journal of Hydrogen Energy, 2016, 41, 12049-12061.	7.1	35
449	Hydrothermal assisted morphology designed MoS 2 material as alternative cathode catalyst for PEM electrolyser application. International Journal of Hydrogen Energy, 2016, 41, 13331-13340.	7.1	45
450	Mechanism of Hydrogen Evolution Reaction on 1T-MoS ₂ from First Principles. ACS Catalysis, 2016, 6, 4953-4961.	11.2	678
451	Structure and catalytic properties of MoSe x thin films containing Mo nanoparticles in electrochemical production of hydrogen in solution. Russian Journal of Physical Chemistry B, 2016, 10, 238-244.	1.3	3
452	Activating Inert Basal Planes of MoS ₂ for Hydrogen Evolution Reaction through the Formation of Different Intrinsic Defects. Chemistry of Materials, 2016, 28, 4390-4396.	6.7	388
453	High hydrogen sensitivity of vertically standing layered MoS2/Si heterojunctions. Journal of Alloys and Compounds, 2016, 682, 29-34.	5.5	36
454	3D MoS 2 nanosheet/TiO 2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. Journal of Alloys and Compounds, 2016, 686, 137-144.	5.5	69
455	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ PbI ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	14.6	130
456	Design, synthesis, and energy-related applications of metal sulfides. Materials Horizons, 2016, 3, 402-421.	12.2	243
457	First-principles study of monolayer MoS2 with deficient and excessive Mo and S (n= â^'3 → 3) clusters on 5 × 5 supercells. Computational Materials Science, 2016, 121, 124-130.	3.0	11

#	Article	IF	CITATIONS
458	Efficient and durable electrochemical hydrogen evolution using cocoon-like MoS2 with preferentially exposed edges. International Journal of Hydrogen Energy, 2016, 41, 9344-9354.	7.1	74
459	Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607.	11.2	80
460	Effective charge separation and enhanced photocatalytic activity by the heterointerface in MoS ₂ /reduced graphene oxide composites. RSC Advances, 2016, 6, 60318-60326.	3.6	32
461	Mo <i>_x</i> W _{1â^'} <i>_x</i> (S <i>_y</i> Se _{1â^'} <i>< Alloy Nanoflakes for Highâ€Performance Electrocatalytic Hydrogen Evolution. Particle and Particle Systems Characterization, 2016, 33, 576-582.</i>	sub>y2.3	b>) <su 24</su
462	High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes. Small, 2016, 12, 2492-2498.	10.0	113
463	Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction. Nano Energy, 2016, 27, 44-50.	16.0	96
464	Cobalt-Doped FeSe ₂ -RGO as Highly Active and Stable Electrocatalysts for Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2016, 8, 18036-18042.	8.0	96
465	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	21.0	1,214
466	Morphological Engineering of CVDâ€Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2016, 28, 6207-6212.	21.0	58
467	Theoretical and experimental investigation on structural and electronic properties of Al/O/Al, O-doped WS 2. Journal of Physics and Chemistry of Solids, 2016, 89, 84-88.	4.0	9
468	Intercalation in two-dimensional transition metal chalcogenides. Inorganic Chemistry Frontiers, 2016, 3, 452-463.	6.0	181
469	Two-dimensional layered nanomaterials for gas-sensing applications. Inorganic Chemistry Frontiers, 2016, 3, 433-451.	6.0	306
470	Synthesis and characterization of porous carbon–MoS ₂ nanohybrid materials: electrocatalytic performance towards selected biomolecules. Journal of Materials Chemistry B, 2016, 4, 1448-1457.	5.8	23
471	Synthesis and characterization of MoS ₂ nanosheets. Nanotechnology, 2016, 27, 075604.	2.6	98
472	From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016, 3, 11-22.	4.3	70
473	MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon, 2016, 100, 236-242.	10.3	103
474	A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale, 2016, 8, 3823-3833.	5.6	127
475	3D flexible hydrogen evolution electrodes with Se-promoted molybdenum sulfide nanosheet arrays. RSC Advances, 2016, 6, 11077-11080.	3.6	28

#	Article	IF	CITATIONS
476	Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Research, 2016, 9, 72-93.	10.4	62
477	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	30.8	138
478	Wavelength dependent UV-Vis photodetectors from SnS ₂ flakes. RSC Advances, 2016, 6, 422-427.	3.6	57
479	Direct synthesis of large-scale hierarchical MoS ₂ films nanostructured with orthogonally oriented vertically and horizontally aligned layers. Nanoscale, 2016, 8, 431-439.	5.6	39
480	Layered rhenium sulfide on free-standing three-dimensional electrodes is highly catalytic for the hydrogen evolution reaction: Experimental and theoretical study. Electrochemistry Communications, 2016, 63, 39-43.	4.7	54
481	One-pot synthesis of nanosheet-assembled hierarchical MoSe ₂ /CoSe ₂ microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 23-30.	3.6	62
482	Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS ₂ Nanosheet and Nanosheet–Carbon Nanotube Composite Catalytic Electrodes. ACS Nano, 2016, 10, 672-683.	14.6	116
483	Heterostructures based on two-dimensional layered materials and their potential applications. Materials Today, 2016, 19, 322-335.	14.2	469
484	Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application. Sensors and Actuators B: Chemical, 2016, 225, 391-397.	7.8	60
485	Kinetic Study of Hydrogen Evolution Reaction over Strained MoS ₂ with Sulfur Vacancies Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 5123-5129.	13.7	244
486	Growth of vertically aligned MoS ₂ nanosheets on a Ti substrate through a self-supported bonding interface for high-performance lithium-ion batteries: a general approach. Journal of Materials Chemistry A, 2016, 4, 5932-5941.	10.3	51
487	Electrocatalytic regeneration of atmospherically aged MoS ₂ nanostructures via solution-phase sulfidation. RSC Advances, 2016, 6, 26689-26695.	3.6	5
488	Hierarchical nanotubes assembled from MoS 2 -carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy, 2016, 22, 27-37.	16.0	333
489	Amorphous Molybdenum Sulfide on Graphene–Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 5961-5971.	8.0	121
490	Two-dimensional graphene-like MoSe ₂ nanosheets anchored on hollow carbon nanofibers as a cathode catalyst for rechargeable Li–O ₂ batteries. RSC Advances, 2016, 6, 19843-19847.	3.6	18
491	Laser induced MoS ₂ /carbon hybrids for hydrogen evolution reaction catalysts. Journal of Materials Chemistry A, 2016, 4, 6824-6830.	10.3	134
492	Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 3929-3935.	3.1	101
493	A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7, 10771.	12.8	418

#	ARTICLE Two-dimensional layered MoS ₂ : rational design, properties and electrochemical	IF	Citations
494	applications. Energy and Environmental Science, 2016, 9, 1190-1209.	30.8	532
495	Indented Cu ₂ MoS ₄ nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering. Physical Chemistry Chemical Physics, 2016, 18, 6713-6721.	2.8	47
496	Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe ₂ to be the most effective hydrogen evolution catalyst. Nanoscale, 2016, 8, 5737-5749.	5.6	127
497	One-Step Synthesis of MoS ₂ /WS ₂ Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films. ACS Nano, 2016, 10, 2004-2009.	14.6	164
498	Bottom-up Electrosynthesis of Highly Active Tungsten Sulfide (WS _{3–<i>x</i>}) Films for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 3948-3957.	8.0	67
499	Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenumÂsulfide. Nature Materials, 2016, 15, 640-646.	27.5	490
500	Enhanced field emission behavior of layered MoSe ₂ . Materials Research Express, 2016, 3, 035003.	1.6	31
501	Hierarchical spheres constructed by defect-rich MoS 2 /carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy, 2016, 22, 490-498.	16.0	267
502	Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. Structure and Bonding, 2016, , 201-289.	1.0	1
503	Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.	6.7	98
504	Aqueous phase preparation of ultrasmall MoSe ₂ nanodots for efficient photothermal therapy of cancer cells. Nanoscale, 2016, 8, 2720-2726.	5.6	142
505	Reduced Graphene Oxide/O-MWCNT Hybrids Functionalized with p-Phenylenediamine as High-Performance MoS ₂ Electrocatalyst Support for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 1478-1487.	3.1	49
506	Carbon-coated MoS ₂ nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction. Nanotechnology, 2016, 27, 045402.	2.6	32
507	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. Chemistry of Materials, 2016, 28, 1147-1154.	6.7	22
508	Graphene decorated with MoS ₂ nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton Transactions, 2016, 45, 2637-2646.	3.3	200
509	P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 1647-1652.	10.3	60
510	Multilayer MoS ₂ growth by metal and metal oxide sulfurization. Journal of Materials Chemistry C, 2016, 4, 1295-1304.	5.5	57
511	Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 2016, 15, 48-53.	27.5	2,021

#	Article	IF	CITATIONS
512	Ultra-thin and porous MoSe ₂ nanosheets: facile preparation and enhanced electrocatalytic activity towards the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2016, 18, 70-74.	2.8	111
513	CTAB-assisted synthesis of novel ultrathin MoSe ₂ nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale, 2016, 8, 440-450.	5.6	163
514	Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries. Electrochimica Acta, 2016, 187, 55-64.	5.2	70
515	MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon, 2016, 98, 84-89.	10.3	89
516	Synthesis and lithium storage properties of MoS 2 nanoparticles prepared using supercritical ethanol. Chemical Engineering Journal, 2016, 285, 517-527.	12.7	33
517	Heterostructures of MoS2 nanofilms on TiO2 nanorods used as field emitters. Vacuum, 2016, 123, 17-22.	3.5	8
518	Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 59-66.	10.3	95
519	A scanning probe investigation of the role of surface motifs in the behavior of p-WSe ₂ photocathodes. Energy and Environmental Science, 2016, 9, 164-175.	30.8	33
520	Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide–graphene composites and Exonuclease III assisted signal amplification. Biosensors and Bioelectronics, 2016, 77, 69-75.	10.1	124
521	Catalytic synergy effect of MoS ₂ /reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction. RSC Advances, 2017, 7, 5480-5487.	3.6	67
522	Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS ₂ . Chemistry - A European Journal, 2017, 23, 4863-4869.	3.3	31
523	Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution. Scientific Reports, 2017, 7, 41190.	3.3	31
524	Copper nanoparticle interspersed MoS ₂ nanoflowers with enhanced efficiency for CO ₂ electrochemical reduction to fuel. Dalton Transactions, 2017, 46, 10569-10577.	3.3	81
525	A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2017, 401, 190-197.	6.1	25
526	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	8.0	98
527	Epitaxial Stitching and Stacking Growth of Atomically Thin Transitionâ€Metal Dichalcogenides (TMDCs) Heterojunctions. Advanced Functional Materials, 2017, 27, 1603884.	14.9	73
528	Molybdenum diselenide (MoSe 2) for energy storage, catalysis, and optoelectronics. Applied Materials Today, 2017, 8, 1-17.	4.3	316
529	Molybdenum disulfide and Au ultrasmall nanohybrids as highly active electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 4122-4128.	10.3	41

#	Article	IF	CITATIONS
530	Cracked monolayer 1T MoS ₂ with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 718-724.	4.1	83
531	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355,	12.6	7,837
532	Recent Progress in Energyâ€Driven Water Splitting. Advanced Science, 2017, 4, 1600337.	11.2	643
533	Aerosol synthesis of molybdenum diselenide–reduced graphene oxide composite with empty nanovoids and enhanced hydrogen evolution reaction performances. Chemical Engineering Journal, 2017, 315, 355-363.	12.7	43
534	Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. Journal of Materials Chemistry A, 2017, 5, 3735-3758.	10.3	329
535	Stacking sequence dependent photo-electrocatalytic performance of CVD grown MoS ₂ /graphene van der Waals solids. Nanotechnology, 2017, 28, 085101.	2.6	36
536	Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS ₂ . 2D Materials, 2017, 4, 025029.	4.4	63
537	Two-Dimensional Water-Coupled Metallic MoS ₂ with Nanochannels for Ultrafast Supercapacitors. Nano Letters, 2017, 17, 1825-1832.	9.1	337
538	MoTe 2 nanodendrites based on Mo doped reduced graphene oxide/polyimide composite film for electrocatalytic hydrogen evolution in neutral solution. Electrochimica Acta, 2017, 229, 121-128.	5.2	26
539	Mass-producible 2D-MoSe ₂ bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustainable Energy and Fuels, 2017, 1, 74-83.	4.9	39
540	In situ growth of MoS2 on carbon nanofibers with enhanced electrochemical catalytic activity for the hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 9419-9427.	7.1	20
541	Cobalt-Doped Iron Sulfide as an Electrocatalyst for Hydrogen Evolution. Journal of the Electrochemical Society, 2017, 164, F276-F282.	2.9	46
542	Regulated Synthesis of Mo Sheets and Their Derivative MoX Sheets (X: P, S, or C) as Efficient Electrocatalysts for Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 8041-8046.	8.0	43
543	The effect of varying solvents for MoS ₂ treatment on its catalytic efficiencies for HER and ORR. Physical Chemistry Chemical Physics, 2017, 19, 6610-6619.	2.8	25
544	One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction. Scientific Reports, 2017, 7, 42309.	3.3	87
545	Three-dimensional hierarchical MoS2/CoS2 heterostructure arrays for highly efficient electrocatalytic hydrogen evolution. Green Energy and Environment, 2017, 2, 134-141.	8.7	64
546	Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal. Nano Letters, 2017, 17, 1474-1481.	9.1	24
547	Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017, 9, 1554-1568.	3.7	88

#	Article	IF	CITATIONS
548	Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 11053-11077.	7.1	613
549	Large scale growth of vertically standing MoS ₂ flakes on 2D nanosheet using organic promoter. 2D Materials, 2017, 4, 025042.	4.4	24
550	3R phase of MoS ₂ and WS ₂ outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017, 53, 3054-3057.	4.1	180
551	DFT investigation of capacious, ultrafast and highly conductive hexagonal Cr ₂ C and V ₂ C monolayers as anode materials for high-performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 7807-7819.	2.8	59
552	Fabrication of a Cu ₂ O/g ₃ N ₄ /WS ₂ Triple‣ayer Photocathode for Photoelectrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1498-1502.	3.4	24
553	Nanostructured Materials for Heterogeneous Electrocatalytic CO ₂ Reduction and their Related Reaction Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 11326-11353.	13.8	811
554	Nanostrukturierte Materialien für die elektrokatalytische CO ₂ â€Reduktion und ihre Reaktionsmechanismen. Angewandte Chemie, 2017, 129, 11482-11511.	2.0	102
555	Hierarchical, Dual-Scale Structures of Atomically Thin MoS ₂ for Tunable Wetting. Nano Letters, 2017, 17, 1756-1761.	9.1	66
556	Ultrathin 1T-phase MoS 2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. Journal of Power Sources, 2017, 345, 156-164.	7.8	62
557	P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in MoS ₂ Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 2017, 2, 745-752.	17.4	304
558	Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Research, 2017, 10, 1178-1188.	10.4	177
559	Enabling Colloidal Synthesis of Edge-Oriented MoS ₂ with Expanded Interlayer Spacing for Enhanced HER Catalysis. Nano Letters, 2017, 17, 1963-1969.	9.1	225
560	Colloidal synthesis of MoSe 2 nanonetworks and nanoflowers with efficient electrocatalytic hydrogen-evolution activity. Electrochimica Acta, 2017, 231, 69-76.	5.2	49
561	Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon, 2017, 116, 223-231.	10.3	92
562	Flexible full-solid-state supercapacitors based on self-assembly of mesoporous MoSe ₂ nanomaterials. Inorganic Chemistry Frontiers, 2017, 4, 675-682.	6.0	37
563	Mapping the electrocatalytic activity of MoS ₂ across its amorphous to crystalline transition. Journal of Materials Chemistry A, 2017, 5, 5129-5141.	10.3	41
564	Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small, 2017, 13, 1700111.	10.0	70
565	Exfoliated MoS 2 nanosheets promoted PtCu/graphene nanocomposites with superior electrocatalytic activity toward methanol oxidation. Materials Letters, 2017, 198, 148-151.	2.6	3

#	Article	IF	CITATIONS
566	Interface Band Engineering Charge Transfer for 3D MoS ₂ Photoanode to Boost Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 3829-3836.	6.7	51
567	Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nature Communications, 2017, 8, 14430.	12.8	488
568	Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 106-112.	2.7	60
569	Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 2017, 8, 15113.	12.8	555
570	RhMoS ₂ Nanocomposite Catalysts with Pt‣ike Activity for Hydrogen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1700359.	14.9	185
571	Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017, 139, 6669-6674.	13.7	451
572	Design, synthesis and electrocatalytic properties of coaxial and layer-tunable MoS2nanofragments/TiO2nanorod arrays. Chemical Communications, 2017, 53, 5461-5464.	4.1	17
573	Direct deposition of MoSe ₂ nanocrystals onto conducting substrates: towards ultra-efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 13364-13372.	10.3	64
574	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. Small Methods, 2017, 1, 1700118.	8.6	96
575	Mechanistic Study on Electrocatalytic Hydrogen Evolution by High Efficiency Graphene/MoS ₂ Heterostructure. ChemistrySelect, 2017, 2, 3657-3667.	1.5	22
576	Hydrogen evolution activity of individual mono-, bi-, and few-layer MoS 2 towards photocatalysis. Applied Materials Today, 2017, 8, 132-140.	4.3	32
577	Electron-Doped 1T-MoS ₂ via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2017, 29, 4738-4744.	6.7	270
578	Self-template synthesis of hierarchical CoMoS ₃ nanotubes constructed of ultrathin nanosheets for robust water electrolysis. Journal of Materials Chemistry A, 2017, 5, 11309-11315.	10.3	86
579	One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. Nano Research, 2017, 10, 2667-2682.	10.4	48
580	Annealing tunes interlayer coupling and optoelectronic property of bilayer SnSe2/MoSe2 heterostructures. Applied Surface Science, 2017, 419, 460-464.	6.1	18
581	MoS ₂ -DNA and MoS ₂ based sensors. RSC Advances, 2017, 7, 23573-23582.	3.6	45
582	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W _{<i>x</i>} Mo _{1–<i>x</i>} S ₂) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112.	14.6	157
583	3D-hierarchical MoSe ₂ nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Materials, 2017, 4, 025092.	4.4	78

#	Article	IF	CITATIONS
584	Ultrathin MoS 2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 212, 7-14.	20.2	167
585	A nitrogen-doped nano carbon dodecahedron with Co@Co ₃ O ₄ implants as a bi-functional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2017, 5, 9533-9536.	10.3	87
586	Hydrazine solution processed CuSbSe2: Temperature dependent phase and crystal orientation evolution. Solar Energy Materials and Solar Cells, 2017, 168, 112-118.	6.2	23
587	Strongly coupled MoS ₂ nanoflake–carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 1558-1566.	10.3	117
588	Graphene Oxide-Directed Tunable Assembly of MoS2 Ultrathin Nanosheets for Electrocatalytic Hydrogen Evolution. ChemistrySelect, 2017, 2, 4696-4704.	1.5	5
589	Mechanical properties of RF-sputtering MoS ₂ thin films. Surface Topography: Metrology and Properties, 2017, 5, 025003.	1.6	14
590	Superaerophobic graphene nano-hills for direct hydrazine fuel cells. NPG Asia Materials, 2017, 9, e378-e378.	7.9	64
591	Designing MoS ₂ nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction. Catalysis Science and Technology, 2017, 7, 2998-3007.	4.1	39
592	Ultra-high electrocatalytic activity of VS ₂ nanoflowers for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15080-15086.	10.3	189
593	Composite of Few-Layered MoS ₂ Grown on Carbon Black: Tuning the Ratio of Terminal to Total Sulfur in MoS ₂ for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 14413-14425.	3.1	58
594	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	10.0	139
595	Fe3+-Clinoptilolite/graphene oxide and layered MoS2@Nitrogen doped graphene as novel graphene based nanocomposites for DMFC. International Journal of Hydrogen Energy, 2017, 42, 16741-16751.	7.1	19
596	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	32.8	176
597	Activation of Ternary Transition Metal Chalcogenide Basal Planes through Chemical Strain for the Hydrogen Evolution Reaction. ChemPlusChem, 2017, 82, 785-791.	2.8	25
598	Defect-Laden MoSe ₂ Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts. Small, 2017, 13, 1700565.	10.0	31
599	Large-area snow-like MoSe ₂ monolayers: synthesis, growth mechanism, and efficient electrocatalyst application. Nanotechnology, 2017, 28, 275704.	2.6	26
600	Effects of hydrogen on the structural and optical properties of MoSe2 grown by hot filament chemical vapor deposition. Journal of Crystal Growth, 2017, 475, 1-9.	1.5	7
601	Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A, 2017, 5, 14950-14968.	10.3	38

#	Article	IF	CITATIONS
602	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	4.3	212
603	Non-planar vertical photodetectors based on free standing two-dimensional SnS ₂ nanosheets. Nanoscale, 2017, 9, 9167-9174.	5.6	57
604	Electrodeposition of Amorphous Molybdenum Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction. Langmuir, 2017, 33, 9354-9360.	3.5	41
605	Enhanced second and third harmonic generations of vertical and planar spiral MoS ₂ nanosheets. Nanotechnology, 2017, 28, 295301.	2.6	16
606	Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization. Journal of Materials Science, 2017, 52, 10127-10139.	3.7	16
607	Template-Grown MoS ₂ Nanowires Catalyze the Hydrogen Evolution Reaction: Ultralow Kinetic Barriers with High Active Site Density. ACS Catalysis, 2017, 7, 5097-5102.	11.2	78
608	Interlayer Nanoarchitectonics of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications. Advanced Energy Materials, 2017, 7, 1700571.	19.5	303
609	Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction. Biosensors and Bioelectronics, 2017, 94, 616-625.	10.1	104
610	One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts. Electrochimica Acta, 2017, 236, 280-287.	5.2	10
611	MoS 2 nanosheets on C 3 N 4 realizing improved electrochemical hydrogen evolution. Materials Letters, 2017, 197, 41-44.	2.6	14
612	Engineering the Electronic Properties of Twoâ€Dimensional Transition Metal Dichalcogenides by Introducing Mirror Twin Boundaries. Advanced Electronic Materials, 2017, 3, 1600468.	5.1	85
613	Layer-by-layer thinning of MoSe 2 by soft and reactive plasma etching. Applied Surface Science, 2017, 411, 182-188.	6.1	38
614	Microwave-Electrochemical Deposition of a Fe-Co Alloy with Catalytic Ability in Hydrogen Evolution. Electrochimica Acta, 2017, 235, 480-487.	5.2	19
615	Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8187-8208.	10.3	229
616	Aligned MoO ₂ /MoS ₂ and MoO ₂ /MoTe ₂ Freestanding Core/Shell Nanoplates Driven by Surface Interactions. Journal of Physical Chemistry Letters, 2017, 8, 1631-1636.	4.6	15
617	Fe(<scp>iii</scp>) doped NiS ₂ nanosheet: a highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 10173-10181.	10.3	137
618	Enhanced nonlinear optical response of Se-doped MoS ₂ nanosheets for passively Q-switched fiber laser application. Nanotechnology, 2017, 28, 215206.	2.6	9
619	Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction. Chemical Engineering Journal, 2017, 321, 105-112.	12.7	63

ARTICLE IF CITATIONS # Dendritic growth of monolayer ternary WS_{2(1â[^]x)}Se_{2x} flakes for enhanced 620 5.6 31 hydrogen evolution reaction. Nanoscale, 2017, 9, 5641-5647. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS 2 heterostructures for efficient 621 12.7 photocatalytic hydrogen evolution. Chemical Engineering Journal, 2017, 321, 366-374. Enhanced electrocatalytic hydrogen evolution performance of MoS 2 ultrathin nanosheets via Sn 622 4.3 45 doping. Applied Catalysis A: General, 2017, 538, 1-8. Facile synthesis of three dimensional MoS 2 porous film with high electrochemical performance. Materials Letters, 2017, 195, 147-150. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331. 624 47.7 3,940 The important role of water in growth of monolayer transition metal dichalcogenides. 2D Materials, 2017, 4, 021024. 4.4 Nickel Phosphide Nanorod Arrays Vertically Grown on Ni Foam as Highâ€Efficiency Electrocatalyst for 626 4.9 17 the Hydrogen Evolution Reaction. Chinese Journal of Chemistry, 2017, 35, 405-409. CoNi2S4 nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction in 7.1 alkaline media. International Journal of Hydrogen Energy, 2017, 42, 3043-3050. The Origin of MoS₂ Significantly Influences Its Performance for the Hydrogen Evolution 628 3.3 20 Reaction due to Differences in Phase Purity. Chemistry - A European Journal, 2017, 23, 3169-3177. Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS 2 629 1.8 synthesis. Thin Solid Films, 2017, 641, 79-86. Texture control and growth mechanism of WSe 2 film prepared by rapid selenization of W film. 630 6.1 18 Applied Surface Science, 2017, 394, 142-148. Edge-Enriched 2D MoS₂ Thin Films Grown by Chemical Vapor Deposition for Enhanced 11.2 123 Catalytic Performance. ACS Catalysis, 2017, 7, 877-886. Carbon/two-dimensional MoTe₂core/shell-structured microspheres as an anode material 632 5.6 93 for Na-ion batteries. Nanoscale, 2017, 9, 1942-1950. Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today, 2017, 12, 116-135. 11.9 Phase engineering of a multiphasic 1T/2H MoS₂ catalyst for highly efficient hydrogen 634 10.3 391 evolution. Journal of Materials Chemistry A, 2017, 5, 2681-2688. Large-Scale Synthesis of Graphene-Like MoSe₂ Nanosheets for Efficient Hydrogen 3.1 Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 1974-1981. Oriented Stacking along Vertical (002) Planes of MoS2: A Novel Assembling Style to Enhance Activity 636 5.2116 for Hydrogen Evolution. Electrochimica Acta, 2017, 224, 25-31. Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon 14.6 208 Dioxide. ACS Nano, 2017, 11, 453-460.

#	Article	IF	CITATIONS
638	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	19.5	286
639	Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. CrystEngComm, 2017, 19, 404-418.	2.6	138
640	Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603.	30.8	284
641	Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy, 2017, 32, 422-432.	16.0	58
642	Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. Journal of Alloys and Compounds, 2017, 696, 900-906.	5.5	89
643	Materials for solar fuels and chemicals. Nature Materials, 2017, 16, 70-81.	27.5	1,163
644	On the Preferred Active Sites of Promoted MoS ₂ for Hydrodesulfurization with Minimal Organonitrogen Inhibition. ACS Catalysis, 2017, 7, 501-509.	11.2	78
645	Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sensors and Actuators B: Chemical, 2017, 243, 812-822.	7.8	194
646	Activating MoS ₂ for pH-Universal Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2017, 139, 16194-16200.	13.7	164
647	Record Low Thermal Conductivity of Polycrystalline MoS ₂ Films: Tuning the Thermal Conductivity by Grain Orientation. ACS Applied Materials & Interfaces, 2017, 9, 37905-37911.	8.0	35
648	Noble metal-coated MoS2 nanofilms with vertically-aligned 2D layers for visible light-driven photocatalytic degradation of emerging water contaminants. Scientific Reports, 2017, 7, 14944.	3.3	51
649	Three electron channels toward two types of active sites in MoS ₂ @Pt nanosheets for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 22654-22661.	10.3	42
650	Platinum-Group Metal Grown on Vertically Aligned MoS2 as Electrocatalysts for Hydrogen Evolution Reaction. Electrochimica Acta, 2017, 257, 49-55.	5.2	19
651	Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.	21.0	107
652	Defect-Induced Epitaxial Growth for Efficient Solar Hydrogen Production. Nano Letters, 2017, 17, 6676-6683.	9.1	96
653	Arrays of ZnSe/MoSe ₂ Nanotubes with Electronic Modulation as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700948.	3.7	39
654	Inducing High Coercivity in MoS ₂ Nanosheets by Transition Element Doping. Chemistry of Materials, 2017, 29, 9066-9074.	6.7	81
655	Partial Etching of Al from MoAlB Single Crystals To Expose Catalytically Active Basal Planes for the Hydrogen Evolution Reaction. Chemistry of Materials, 2017, 29, 8953-8957.	6.7	110

#	Article	IF	CITATIONS
656	Synthesis of MoS _{2(1â^'x)} Se _{2x} and WS _{2(1â^'x)} Se _{2x} alloys for enhanced hydrogen evolution reaction performance. Inorganic Chemistry Frontiers, 2017, 4, 2068-2074.	6.0	27
657	Identification of pH-dependent synergy on Ru/MoS ₂ interface: a comparison of alkaline and acidic hydrogen evolution. Nanoscale, 2017, 9, 16616-16621.	5.6	120
658	Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy, 2017, 42, 26-33.	16.0	109
659	Anomalous thermal anisotropy of two-dimensional nanoplates of vertically grown MoS2. Applied Physics Letters, 2017, 111, .	3.3	8
660	Highly Periodic Metal Dichalcogenide Nanostructures with Complex Shapes, High Resolution, and High Aspect Ratios. Advanced Functional Materials, 2017, 27, 1703842.	14.9	12
661	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	16.0	157
662	Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24193-24198.	10.3	154
663	Hydrothermal synthesis of N-doped RGO/MoSe2 composites and enhanced electro-catalytic hydrogen evolution. Journal of Materials Science, 2017, 52, 13561-13571.	3.7	42
664	Improved catalytic activity of Mo _{1â^'x} W _x Se ₂ alloy nanoflowers promotes efficient hydrogen evolution reaction in both acidic and alkaline aqueous solutions. Nanoscale, 2017, 9, 13998-14005.	5.6	59
665	Considering the spin–orbit coupling effect on the photocatalytic performance of AlN/MX ₂ nanocomposites. Journal of Materials Chemistry C, 2017, 5, 9412-9420.	5.5	36
666	Photoelectric response properties under UV/red light irradiation of ZnO nanorod arrays coated with vertically aligned MoS ₂ nanosheets. Nanotechnology, 2017, 28, 415202.	2.6	15
667	MoS ₂ Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction. ACS Omega, 2017, 2, 5087-5094.	3.5	38
668	Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Applied Physics Letters, 2017, 111, .	3.3	53
669	Regulated growth of quasi-amorphous MoS thin-film hydrogen evolution catalysts by pulsed laser deposition of Mo in reactive H2S gas. Thin Solid Films, 2017, 642, 58-68.	1.8	24
670	Vertically Aligned MoS ₂ /Mo ₂ C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution. ACS Catalysis, 2017, 7, 7312-7318.	11.2	181
671	Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures. Chemistry of Materials, 2017, 29, 8100-8110.	6.7	68
672	Anion Engineering on Free-Standing Two-Dimensional MoS2 Nanosheets toward Hydrogen Evolution. Inorganic Chemistry, 2017, 56, 11462-11465.	4.0	20
673	Magnetic Co-Doped MoS ₂ Nanosheets for Efficient Catalysis of Nitroarene Reduction. ACS Omega, 2017, 2, 5891-5897.	3.5	66

#	Article	IF	CITATIONS
674	Morphologyâ€Ðependent Catalytic Performance of <scp>MoS₂</scp> /MoO <i>_x</i> Heterojunction Nanostructures for Hydrogen Evolution Reaction. Bulletin of the Korean Chemical Society, 2017, 38, 1226-1230.	1.9	0
675	Flexible MoS 2 nanosheets/polypyrrole nanofibers for highly efficient electrochemical hydrogen evolution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3584-3588.	2.1	16
676	Deposition of porous few-layer WSe 2 flakes with high density of exposed edge sites. Vacuum, 2017, 145, 4-10.	3.5	5
677	Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry A, 2017, 5, 22040-22094.	10.3	341
678	Earth abundant transition metal-doped few-layered MoS ₂ nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 20851-20859.	10.3	75
679	Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. Science China Materials, 2017, 60, 849-856.	6.3	23
680	Layer Structured Materials for Advanced Energy Storage and Conversion. Small, 2017, 13, 1701649.	10.0	129
681	Atomically Thin Transitionâ€Metal Dichalcogenides for Electrocatalysis and Energy Storage. Small Methods, 2017, 1, 1700156.	8.6	98
682	In Situ XPS Investigation of Transformations at Crystallographically Oriented MoS ₂ Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 32394-32404.	8.0	141
683	Improving Visible-light Responses and Electric Conductivities by Incorporating Sb2S3 and Reduced Graphene Oxide in a WO3 Nanoplate Array for Photoelectrochemical Water Oxidation. Electrochimica Acta, 2017, 252, 235-244.	5.2	27
684	Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS ₂ and MoSe ₂ . ACS Energy Letters, 2017, 2, 2234-2238.	17.4	78
685	Formation of hybrid nanostructures comprising perovskite (Ba5Nb4O15)-MoS2 ultrathin nanosheets on CdS nanorods: Toward enhanced solar-driven H2 production. Journal of Catalysis, 2017, 352, 617-626.	6.2	15
686	Boosting Hydrogen Evolution Performance of MoS ₂ by Band Structure Engineering. Advanced Materials Interfaces, 2017, 4, 1700303.	3.7	40
687	Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28.	5.2	9
688	Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Advances, 2017, 7, 27033-27039.	3.6	21
689	Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy, 2017, 39, 409-417.	16.0	107
690	Optimization of Active Sites of MoS ₂ Nanosheets Using Nonmetal Doping and Exfoliation into Few Layers on CdS Nanorods for Enhanced Photocatalytic Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7651-7658.	6.7	73
691	Capture the growth kinetics of CVD growth of two-dimensional MoS2. Npj 2D Materials and Applications, 2017, 1, .	7.9	115

# 692	ARTICLE Facile and one-step synthesis of a free-standing 3D MoS ₂ –rGO/Mo binder-free electrode for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18081-18087.	lF 10.3	Citations 39
693	FeS ₂ Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, Highâ€Performance Electrocatalysts. Advanced Energy Materials, 2017, 7, 1700482.	19.5	144
694	Few-layer MoS ₂ as nitrogen protective barrier. Nanotechnology, 2017, 28, 415706.	2.6	6
695	Hydrothermal fabrication of few-layer MoS 2 nanosheets within nanopores on TiO 2 derived from MIL-125(Ti) for efficient photocatalytic H 2 evolution. Applied Surface Science, 2017, 426, 177-184.	6.1	53
696	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	5.6	403
697	Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS ₂): basal vs. edge plane activity. Chemical Science, 2017, 8, 6583-6593.	7.4	159
698	Nanostructured Threeâ€Ðimensional (3D) Assembly of 2D MoS ₂ and Graphene Directly Build From Acidic Graphite Oxide. Chemistry - an Asian Journal, 2017, 12, 2528-2532.	3.3	8
699	Horizontally and vertically aligned growth of strained MoS ₂ layers with dissimilar wetting and catalytic behaviors. CrystEngComm, 2017, 19, 5068-5078.	2.6	39
700	In Situ Electrochemical Activation of Atomic Layer Deposition Coated MoS ₂ Basal Planes for Efficient Hydrogen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1701825.	14.9	87
701	Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Advanced Functional Materials, 2017, 27, 1702317.	14.9	339
702	In Situ Transmission Electron Microscopy Characterization and Manipulation of Twoâ€Đimensional Layered Materials beyond Graphene. Small, 2017, 13, 1604259.	10.0	75
703	Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse. Nano Letters, 2017, 17, 5817-5822.	9.1	29
704	Material Effects on the Electrocapacitive Performance for the Energy-storage Electrode with Nickel Cobalt Oxide Core/shell Nanostructures. Electrochimica Acta, 2017, 250, 335-347.	5.2	31
705	Molybdenum dichalcogenide nanotube arrays for hydrogen-evolution-reaction catalysis: Synergistic effects of sulfur and selenium in a core-shell tube wall. Electrochemistry Communications, 2017, 82, 112-116.	4.7	11
706	Synthesis of Transition Metal Dichalcogenides. , 0, , 344-358.		0
707	Electrodeposition of Cu-Doped MoS ₂ for Charge Storage in Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2017, 164, D674-D679.	2.9	24
708	Graphene/graphene nanoribbon aerogels as tunable three-dimensional framework for efficient hydrogen evolution reaction. Electrochimica Acta, 2017, 250, 91-98.	5.2	41
709	Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 876-882.	5.2	30

#	Article	IF	CITATIONS
710	Termination of Ge surfaces with ultrathin GeS and GeS ₂ layers <i>via</i> solid-state sulfurization. Physical Chemistry Chemical Physics, 2017, 19, 32473-32480.	2.8	25
711	Identifying light impurities in transition metal dichalcogenides: the local vibrational modes of S and O in ReSe2 and MoSe2. Npj 2D Materials and Applications, 2017, 1, .	7.9	5
712	Molybdenum Diselenide Nanolayers Prepared on Carbon Black as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 26686-26697.	3.1	28
713	One-pot hydrothermal synthesis and selective etching method of a porous MoSe ₂ sand rose-like structure for electrocatalytic hydrogen evolution reaction. RSC Advances, 2017, 7, 52345-52351.	3.6	22
714	Aligned and stable metallic MoS ₂ on plasma-treated mass transfer channels for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 25359-25367.	10.3	31
715	Hierarchical MoS ₂ nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination. Environmental Science: Nano, 2017, 4, 2286-2296.	4.3	23
716	Elastic Properties of Few Nanometers Thick Polycrystalline MoS ₂ Membranes: A Nondestructive Study. Nano Letters, 2017, 17, 7647-7651.	9.1	22
717	Stable monolayer α-phase of CdTe: strain-dependent properties. Journal of Materials Chemistry C, 2017, 5, 12249-12255.	5.5	9
718	MoS ₂ quantum dot-modified Ag/polyaniline composites with enhanced photogenerated carrier separation for highly efficient visible light photocatalytic H ₂ evolution performance. Catalysis Science and Technology, 2017, 7, 3531-3538.	4.1	28
719	Atomic Structure and Dynamics of Defects in 2D MoS ₂ Bilayers. ACS Omega, 2017, 2, 3315-3324.	3.5	32
720	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	14.6	102
721	Colloidally synthesized MoSe2 nano-flowers anchored on three-dimensional porous reduced graphene oxide thin films as advanced counter electrode for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 15418-15422.	2.2	6
722	Heterogeneous Nanostructure Based on 1T-Phase MoS ₂ for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 25291-25297.	8.0	202
723	Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting. Chemical Engineering Journal, 2017, 328, 474-483.	12.7	103
724	Low-frequency noise characteristics of lamellar ferrielectric crystal CuInP2S6 at the phase transition. Journal of Applied Physics, 2017, 122, 024101.	2.5	2
725	Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem, 2017, 4, 68-80.	5.6	24
726	Carbon-Nanotube-Incorporated Graphene Scroll-Sheet Conjoined Aerogels for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 6994-7002.	6.7	40
727	Highly Scalable Synthesis of MoS ₂ Thin Films with Precise Thickness Control via Polymer-Assisted Deposition. Chemistry of Materials, 2017, 29, 5772-5776.	6.7	96

#	Article	IF	CITATIONS
728	Enhanced Photocatalytic Activity of WS2 Film by Laser Drilling to Produce Porous WS2/WO3 Heterostructure. Scientific Reports, 2017, 7, 3125.	3.3	31
729	On the impact of Vertical Alignment of MoS2 for Efficient Lithium Storage. Scientific Reports, 2017, 7, 3280.	3.3	43
730	Highly dispersed few-layer MoS2 nanosheets on S, N co-doped carbon for electrocatalytic H2 production. Chinese Journal of Catalysis, 2017, 38, 1028-1037.	14.0	19
731	Environmental Applications of 2D Molybdenum Disulfide (MoS ₂) Nanosheets. Environmental Science & Technology, 2017, 51, 8229-8244.	10.0	647
732	First principles study of adsorption and oxidation mechanism of elemental mercury by HCl over MoS 2 (1 0 0) surface. Chemical Engineering Journal, 2017, 308, 1225-1232.	12.7	31
733	Activating MoS2/CNs by tuning (001) plane as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 2088-2095.	7.1	75
734	Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Mikrochimica Acta, 2017, 184, 229-235.	5.0	24
735	Large area growth of vertically aligned luminescent MoS ₂ nanosheets. Nanoscale, 2017, 9, 277-287.	5.6	54
736	Effect of edge structure on the activity for hydrogen evolution reaction in MoS2 nanoribbons. Applied Surface Science, 2017, 396, 138-143.	6.1	28
737	Colloidal nanocrystals for electrochemical reduction reactions. Journal of Colloid and Interface Science, 2017, 485, 308-327.	9.4	17
738	Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2 nanoflowers for all-around enhancement of supercapacitor performance. Journal of Alloys and Compounds, 2017, 693, 955-963.	5.5	34
739	Co–Fe–Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. Journal of Applied Electrochemistry, 2017, 47, 361-367.	2.9	14
740	Template-assisted synthesis of highly dispersed MoS2 nanosheets with enhanced activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 2054-2060.	7.1	40
741	One-dimensional hierarchical structured MoS2with an ordered stacking of nanosheets: a facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19, 218-223.	2.6	5
742	Synthesis of a MoS2(1â^'x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst. International Journal of Hydrogen Energy, 2017, 42, 1912-1918.	7.1	30
743	Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method. Applied Catalysis B: Environmental, 2017, 202, 374-380.	20.2	189
744	Facile Synthesis of MoS _x and MoS _x â€rGO Composite: Excellent Electrocatalyst for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 11590-11598.	1.5	11
745	An efficient porous molybdenum diselenide catalyst for electrochemical hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 20993-21001.	10.3	27

#	Article	IF	CITATIONS
746	Piezoreflectance study of Nb-doped MoS2single crystals. IOP Conference Series: Materials Science and Engineering, 2017, 237, 012041.	0.6	0
747	Enhanced optical sensitivity of molybdenum diselenide (MoSe_2) coated side polished fiber for humidity sensing. Optics Express, 2017, 25, 9823.	3.4	42
748	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	2.8	44
749	Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution. Catalysts, 2017, 7, 285.	3.5	72
750	Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Nano Convergence, 2017, 4, 19.	12.1	49
751	Interface engineering: The Ni(OH) 2 /MoS 2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy, 2017, 37, 74-80.	16.0	436
752	RGO-MoS ₂ Supported NiCo ₂ O ₄ Catalyst toward Solar Water Splitting and Dye Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 5238-5247.	6.7	93
753	Enlarged interlayer spaced molybdenum disulfide supported on nanocarbon hybrid network for efficient hydrogen evolution reaction. Electrochimica Acta, 2018, 264, 329-340.	5.2	32
754	Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Materials Today, 2018, 21, 749-770.	14.2	228
755	Phosphine-free synthesis and shape evolution of MoSe ₂ nanoflowers for electrocatalytic hydrogen evolution reactions. CrystEngComm, 2018, 20, 2491-2498.	2.6	21
756	MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy, 2018, 47, 224-234.	16.0	358
757	Vertical 1Tâ€TaS ₂ Synthesis on Nanoporous Gold for Highâ€Performance Electrocatalytic Applications. Advanced Materials, 2018, 30, e1705916.	21.0	75
758	Growth of MoS ₂ –MoO ₃ Hybrid Microflowers via Controlled Vapor Transport Process for Efficient Gas Sensing at Room Temperature. Advanced Materials Interfaces, 2018, 5, 1800071.	3.7	93
759	Annealing effect on the ferromagnetism of MoS2 nanoparticles. Journal of Alloys and Compounds, 2018, 746, 399-404.	5.5	27
760	Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today, 2018, 19, 16-40.	11.9	142
761	Selfâ€Formed Channel Devices Based on Vertically Grown 2D Materials with Largeâ€6urfaceâ€Area and Their Potential for Chemical Sensor Applications. Small, 2018, 14, e1704116.	10.0	57
762	Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst. Applied Surface Science, 2018, 444, 320-329.	6.1	76
763	Layer-controlled synthesis of wafer-scale MoSe2 nanosheets for photodetector arrays. Journal of Materials Science, 2018, 53, 8436-8444.	3.7	38

#	Article	IF	CITATIONS
764	Improved HER Catalysis through Facile, Aqueous Electrochemical Activation of Nanoscale WSe ₂ . Nano Letters, 2018, 18, 2329-2335.	9.1	66
765	Controllable Edge Exposure of MoS ₂ for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 2018, 1, 1268-1275.	5.1	44
766	Large-scale controlled synthesis of porous two-dimensional nanosheets for the hydrogen evolution reaction through a chemical pathway. Nanoscale, 2018, 10, 6168-6176.	5.6	23
767	Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. Journal of Alloys and Compounds, 2018, 747, 100-108.	5.5	30
768	3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Frontiers of Chemical Science and Engineering, 2018, 12, 417-424.	4.4	28
769	Controlled Growth of MoS ₂ Flakes from in-Plane to Edge-Enriched 3D Network and Their Surface-Energy Studies. ACS Applied Nano Materials, 2018, 1, 2356-2367.	5.0	44
770	Engineering Molybdenum Diselenide and Its Reduced Graphene Oxide Hybrids for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2018, 1, 2143-2152.	5.0	22
771	MoSe ₂ nanosheet/MoO ₂ nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte. Nanoscale, 2018, 10, 9268-9275.	5.6	56
772	Precious Versus Non-precious Electrocatalyst Centers. Nanostructure Science and Technology, 2018, , 101-168.	0.1	0
773	Metallic Twin Boundaries Boost the Hydrogen Evolution Reaction on the Basal Plane of Molybdenum Selenotellurides. Advanced Energy Materials, 2018, 8, 1800031.	19.5	80
774	Synthesis of MoSe2/SrTiO3 Heterostructures with Enhanced Ultraviolet-Light-Driven and Visible-Light-Driven Photocatalytic Properties. Nano, 2018, 13, 1850038.	1.0	11
775	Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS ₂ nanosheets. RSC Advances, 2018, 8, 14369-14376.	3.6	36
776	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	10.0	49
777	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS ₂ : large area, thickness control and tuneable morphology. Nanoscale, 2018, 10, 8615-8627.	5.6	90
778	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	21.0	86
779	Vanadiumâ€Đoped WS ₂ Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 1438-1446.	3.3	49
780	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	6.8	77
781	Hydrogen Evolution Reaction at Anion Vacancy of Two-Dimensional Transition-Metal Dichalcogenides: Ab Initio Computational Screening. Journal of Physical Chemistry Letters, 2018, 9, 2049-2055.	4.6	98

#	Article	IF	CITATIONS
782	Janus effect of O2 plasma modification on the electrocatalytic hydrogen evolution reaction of MoS2. Journal of Catalysis, 2018, 361, 384-392.	6.2	40
783	The vertical growth of MoS2 layers at the initial stage of CVD from first-principles. Journal of Chemical Physics, 2018, 148, 134704.	3.0	18
784	2D MoSe ₂ Structures Prepared by Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800023.	2.4	39
785	Hydrogen evolution reaction: The role of arsenene nanosheet and dopant. International Journal of Hydrogen Energy, 2018, 43, 21634-21641.	7.1	39
786	Exfoliation of ultrathin FePS ₃ layers as a promising electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4481-4484.	4.1	63
787	MoSe ₂ modified TiO ₂ nanotube arrays with superior photoelectrochemical performance. Materials Research Express, 2018, 5, 045014.	1.6	4
788	Role of Hyper-Reduced States in Hydrogen Evolution Reaction at Sulfur Vacancy in MoS ₂ . ACS Catalysis, 2018, 8, 4508-4515.	11.2	45
789	Fast, Selfâ€Driven, Airâ€Stable, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction. Advanced Functional Materials, 2018, 28, 1705970.	14.9	314
790	Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst. Materials Today Physics, 2018, 4, 1-6.	6.0	72
791	Molybdenum diselenide nanosheet/carbon nanofiber heterojunctions: Controllable fabrication and enhanced photocatalytic properties with a broad-spectrum response from visible to infrared light. Journal of Colloid and Interface Science, 2018, 518, 1-10.	9.4	28
792	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	8.0	55
793	Catalytic chemical vapor deposition and structural analysis of MoS ₂ nanotubes. Japanese Journal of Applied Physics, 2018, 57, 030304.	1.5	10
794	Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy, 2018, 51, 786-792.	16.0	98
795	Inverse Opal-like Porous MoSe _{<i>x</i>} Films for Hydrogen Evolution Catalysis: Overpotential-Pore Size Dependence. ACS Applied Materials & Interfaces, 2018, 10, 4937-4945.	8.0	36
796	Nanocatalysts for hydrogen evolution reactions. Physical Chemistry Chemical Physics, 2018, 20, 6777-6799.	2.8	100
797	Large-area synthesis and photoelectric properties of few-layer MoSe ₂ on molybdenum foils. Nanotechnology, 2018, 29, 125605.	2.6	20
798	Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2018, 118, 6091-6133.	47.7	1,000
799	Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs. Applied Surface Science, 2018, 439, 343-349.	6.1	21

#	Article	IF	CITATIONS
800	Novel Amorphous Molybdenum Selenide as an Efficient Catalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8659-8665.	8.0	49
801	A vertically layered MoS ₂ /Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. Journal of Materials Chemistry C, 2018, 6, 3233-3239.	5.5	132
802	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	21.0	476
803	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	19.5	152
804	Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 2018, 229, 227-236.	20.2	176
805	MoS _x -coated NbS ₂ nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3444-3450.	5.6	24
806	High Activity Hydrogen Evolution Catalysis by Uniquely Designed Amorphous/Metal Interface of Core–shell Phosphosulfide/Nâ€Đoped CNTs. Advanced Energy Materials, 2018, 8, 1702806.	19.5	39
807	One-step chemical vapor deposition of MoS ₂ nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production. Nanoscale, 2018, 10, 3518-3525.	5.6	57
808	Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction. Advanced Sustainable Systems, 2018, 2, 1700142.	5.3	36
809	Large Dendritic Monolayer MoS ₂ Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 4630-4639.	8.0	88
810	Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018, 47, 1822-1873.	38.1	1,274
811	Nanostructured MoS ₂ -Based Advanced Biosensors: A Review. ACS Applied Nano Materials, 2018, 1, 2-25.	5.0	238
812	Synergistic Interlayer and Defect Engineering in VS ₂ Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, 1703098.	10.0	180
813	Normal and grazing incidence pulsed laser deposition of nanostructured MoS hydrogen evolution catalysts from a MoS2 target. Optics and Laser Technology, 2018, 102, 74-84.	4.6	24
814	Photocatalytic activity of 3D flower-like MoS2 hemispheres. Materials Research Bulletin, 2018, 100, 249-253.	5.2	48
815	Nitrogen-doped carbon active sites boost the ultra-stable hydrogen evolution reaction on defect-rich MoS2 nanosheets. International Journal of Hydrogen Energy, 2018, 43, 2026-2033.	7.1	35
816	Electron Field Emission of Geometrically Modulated Monolayer Semiconductors. Advanced Functional Materials, 2018, 28, 1706113.	14.9	23
817	Nickel Hydr(oxy)oxide Nanoparticles on Metallic MoS ₂ Nanosheets: A Synergistic Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2018, 5, 1700644.	11.2	104

#	Article	IF	CITATIONS
818	Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. Nano Letters, 2018, 18, 482-490.	9.1	105
819	Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors. Energy Storage Materials, 2018, 12, 241-251.	18.0	117
820	High Edge Selectivity of In Situ Electrochemical Pt Deposition on Edgeâ€Rich Layered WS ₂ Nanosheets. Advanced Materials, 2018, 30, 1704779.	21.0	84
821	Few-Layer Iron Selenophosphate, FePSe ₃ : Efficient Electrocatalyst toward Water Splitting and Oxygen Reduction Reactions. ACS Applied Energy Materials, 2018, 1, 220-231.	5.1	80
822	Hybrid of Fe4[Fe(CN)6]3 nanocubes and MoS2 nanosheets on nitrogen-doped graphene realizing improved electrochemical hydrogen production. Electrochimica Acta, 2018, 263, 140-146.	5.2	38
823	Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Separation and Purification Technology, 2018, 197, 147-155.	7.9	104
824	Direct, large area growth of few-layered MoS ₂ nanostructures on various flexible substrates: growth kinetics and its effect on photodetection studies. Flexible and Printed Electronics, 2018, 3, 015002.	2.7	33
825	In Situ Engineering of Double-Phase Interface in Mo/Mo ₂ C Heteronanosheets for Boosted Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 341-348.	17.4	144
826	<i>In situ</i> tribochemical sulfurization of molybdenum oxide nanotubes. Nanoscale, 2018, 10, 3281-3290.	5.6	29
827	Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction. Small, 2018, 14, 1703862.	10.0	37
828	Preparation of MoSe>3/Mo-NPs catalytic films for enhanced hydrogen evolution by pulsed laser ablation of MoSe2 target. Nuclear Instruments & Methods in Physics Research B, 2018, 416, 30-40.	1.4	12
829	Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability. Applied Physics Letters, 2018, 112, .	3.3	30
830	An electrochemical anodization strategy towards high-activity porous MoS ₂ electrodes for the hydrogen evolution reaction. RSC Advances, 2018, 8, 15030-15035.	3.6	5
831	Structural defects in a nanomesh of bulk MoS2 using an anodic aluminum oxide template for photoluminescence efficiency enhancement. Scientific Reports, 2018, 8, 6648.	3.3	19
832	Understanding the Origin of Formation and Active Sites for Thiomolybdate [Mo ₃ S ₁₃] ^{2–} Clusters as Hydrogen Evolution Catalyst through the Selective Control of Sulfur Atoms. ACS Catalysis, 2018, 8, 5221-5227.	11.2	56
833	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47, 4332-4356.	38.1	232
834	Dimensional construction and morphological tuning of heterogeneous MoS ₂ /NiS electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9833-9838.	10.3	114
835	WS2/CoSe2 heterostructure: A designed structure as catalysts for enhanced hydrogen evolution performance. Journal of Industrial and Engineering Chemistry, 2018, 65, 167-174.	5.8	34

#	Article	IF	CITATIONS
836	Cobalt incorporated MoS2 hollow structure with rich out-of-plane edges for efficient hydrogen production. Electrochimica Acta, 2018, 276, 81-91.	5.2	31
837	Identification of few-layer ReS2 as photo-electro integrated catalyst for hydrogen evolution. Nano Energy, 2018, 48, 337-344.	16.0	71
838	Theoretical and Experimental Insight into the Effect of Nitrogen Doping on Hydrogen Evolution Activity of Ni ₃ S ₂ in Alkaline Medium. Advanced Energy Materials, 2018, 8, 1703538.	19.5	225
839	Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Research, 2018, 11, 4368-4379.	10.4	52
840	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 232, 446-453.	20.2	63
841	Unilamellar Metallic MoS ₂ /Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Letters, 2018, 3, 997-1005.	17.4	184
842	MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage. Energy Storage Materials, 2018, 15, 65-74.	18.0	96
843	Highly enhanced response of MoS ₂ /porous silicon nanowire heterojunctions to NO ₂ at room temperature. RSC Advances, 2018, 8, 11070-11077.	3.6	53
844	Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 7326-7337.	7.1	23
845	Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochimica Acta, 2018, 270, 256-263.	5.2	42
846	Ultrasensitive supersandwich-type biosensor for enzyme-free amplified microRNA detection based on N-doped graphene/Au nanoparticles and hemin/G-quadruplexes. Journal of Materials Chemistry B, 2018, 6, 2134-2142.	5.8	60
847	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552
848	Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chemical Reviews, 2018, 118, 6134-6150.	47.7	285
849	Amorphous MoS2 nanosheets grown on copper@nickel-phosphorous dendritic structures for hydrogen evolution reaction. Applied Surface Science, 2018, 432, 183-189.	6.1	26
850	Facile synthesis of Ni ₃ S ₂ /rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Journal of Materials Research, 2018, 33, 519-527.	2.6	18
851	Native point defects in MoS 2 and their influences on optical properties by first principles calculations. Physica B: Condensed Matter, 2018, 532, 184-194.	2.7	11
852	Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction. Chemical Physics Letters, 2018, 691, 243-249.	2.6	15
854	<i>In situ</i> crystallization kinetics of two-dimensional MoS ₂ . 2D Materials, 2018, 5, 011009.	4.4	31

#	Article	IF	CITATIONS
855	High photoelectrochemical activity and stability of Au-WS2/silicon heterojunction photocathode. Solar Energy Materials and Solar Cells, 2018, 174, 300-306.	6.2	16
856	Optimized expanding of interlayer distance for molybdenum disulfide towards enhanced hydrogen evolution reaction. Applied Surface Science, 2018, 428, 948-953.	6.1	10
857	Graphene/surfactant-assisted synthesis of edge-terminated molybdenum disulfide with enlarged interlayer spacing. Materials Letters, 2018, 210, 248-251.	2.6	16
858	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	32.8	195
859	Comparative studies on the electrocatalytic hydrogen evolution property of Cu 2 SnS 3 and Cu 4 SnS 4 ternary alloys prepared by solvothermal method. International Journal of Hydrogen Energy, 2018, 43, 3967-3975.	7.1	29
860	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	2.0	37
861	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	13.8	398
862	Plasma-assisted synthesis of MoS ₂ . 2D Materials, 2018, 5, 015005.	4.4	19
863	Quasiâ€Emulsion Confined Synthesis of Edgeâ€Rich Ultrathin MoS ₂ Nanosheets/Graphene Hybrid for Enhanced Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 556-560.	3.3	55
864	Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon, 2018, 127, 699-706.	10.3	114
865	Direct Exfoliation of Highâ€Quality, Atomically Thin MoSe ₂ Layers in Water. Advanced Sustainable Systems, 2018, 2, 1700107.	5.3	11
866	Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 1347-1355.	8.0	49
867	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	10.3	104
868	Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (Fe _{<i>x</i>} Ni _{1–<i>x</i>}) ₉ S ₈ Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 987-996.	11.2	134
869	ELECTROCATALYTIC PROCESSES IN ENERGY TECHNOLOGIES. , 2018, , 291-341.		0
870	Tuning the activity of the inert MoS ₂ surface <i>via</i> graphene oxide support doping towards chemical functionalization and hydrogen evolution: a density functional study. Physical Chemistry Chemical Physics, 2018, 20, 1861-1871.	2.8	22
871	Electric field tuned MoS ₂ /metal interface for hydrogen evolution catalyst from first-principles investigations. Nanotechnology, 2018, 29, 03LT01.	2.6	16
872	Ultrahigh, Ultrafast, and Selfâ€Powered Visibleâ€Nearâ€Infrared Optical Positionâ€Sensitive Detector Based on a CVDâ€Prepared Vertically Standing Fewâ€Layer MoS ₂ /Si Heterojunction. Advanced Science, 2018, 5, 1700502.	11.2	87

#	Article	IF	CITATIONS
873	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	8.0	309
874	Fewâ€Layered Black Phosphorus: From Fabrication and Customization to Biomedical Applications. Small, 2018, 14, 1702830.	10.0	76
875	Constructing 1D hierarchical heterostructures of MoS2/In2S3 nanosheets on CdS nanorod arrays for enhanced photoelectrocatalytic H2 evolution. Applied Surface Science, 2018, 436, 613-623.	6.1	42
876	Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application. Sensors and Actuators A: Physical, 2018, 269, 355-362.	4.1	30
877	Theoretical prediction of borophene monolayer as anode materials for high-performance lithium-ion batteries. Ionics, 2018, 24, 1603-1615.	2.4	28
878	Ciant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction. Journal of Alloys and Compounds, 2018, 735, 88-97.	5.5	33
879	Preparation of MoS ₂ /TiO ₂ based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale, 2018, 10, 34-68.	5.6	247
880	Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43, 359-367.	16.0	49
881	Chemical vapor deposition growth of two-dimensional heterojunctions. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	52
882	Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Research, 2018, 11, 751-761.	10.4	83
883	New Directions in Science Technology—Atomically-Thin Metal Dichalcogenides. , 2018, , 181-250.		1
884	Simultaneous edge and electronic control of MoS ₂ nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale, 2018, 10, 20113-20119.	5.6	63
885	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	10.3	250
886	Catalytic activity for the hydrogen evolution reaction of edges in Janus monolayer MoXY (X/Y = S, Se,) Tj ETQq1	0,784314 2.8	rgBT /Overl
887	Highly active single-layer MoS ₂ catalysts synthesized by swift heavy ion irradiation. Nanoscale, 2018, 10, 22908-22916.	5.6	39
888	Urchin-like Mo ₂ S ₃ prepared <i>via</i> a molten salt assisted method for efficient hydrogen evolution. Chemical Communications, 2018, 54, 12714-12717.	4.1	27
889	Vertically Aligned Ultrathin 1T-WS2 Nanosheets Enhanced the Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2018, 13, 167.	5.7	57
891	Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 28113-28122.	3.1	104

#	Article	IF	CITATIONS
892	Cu@Cu ₃ P Core–Shell Nanowires Attached to Nickel Foam as Highâ€Performance Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 1083-1089.	3.3	24
893	Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting. Catalysts, 2018, 8, 551.	3.5	45
894	Growth Mechanisms and Electronic Properties of Vertically Aligned MoS2. Scientific Reports, 2018, 8, 16480.	3.3	28
895	Epitaxial Growth of Monolayer MoS ₂ on SrTiO ₃ Single Crystal Substrates for Applications in Nanoelectronics. ACS Applied Nano Materials, 2018, 1, 6976-6988.	5.0	34
896	Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS ₂ Using MoO ₃ Thin Film as a Precursor for Coevaporation. ACS Omega, 2018, 3, 18943-18949.	3.5	30
897	Properties of Atomically Thin WSe2 Grown Via Metal-Organic Chemical Vapor Deposition. Springer Theses, 2018, , 45-72.	0.1	0
898	Nickel-Doped Silver Sulfide: An Efficient Air-Stable Electrocatalyst for Hydrogen Evolution from Neutral Water. ACS Omega, 2018, 3, 17070-17076.	3.5	18
899	MoSe2-GO/rGO Composite Catalyst for Hydrogen Evolution Reaction. Polymers, 2018, 10, 1309.	4.5	36
900	Sugar-Based Natural Deep Eutectic Mixtures as Green Intercalating Solvents for High-Yield Preparation of Stable MoS ₂ Nanosheets: Application to Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 5896-5906.	5.1	37
901	Growth of Largeâ€Area SnS Films with Oriented 2D SnS Layers for Energyâ€Efficient Broadband Optoelectronics. Advanced Functional Materials, 2018, 28, 1804737.	14.9	42
902	Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Convergence, 2018, 5, 26.	12.1	119
903	Recent Advances in Synthesis and Applications of 2D Junctions. Small, 2018, 14, e1801606.	10.0	19
904	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	4.3	139
905	Surface extension of MeS2 (Me=Mo or W) nanosheets by embedding MeSx for hydrogen evolution reaction. Electrochimica Acta, 2018, 292, 136-141.	5.2	31
906	Epitaxial MoS2 nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution. Electrochimica Acta, 2018, 292, 407-418.	5.2	31
907	Transition metal modification and carbon vacancy promoted Cr ₂ CO ₂ (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 20956-20965.	10.3	74
908	Enhancing Catalytic Activity of MoS ₂ Basal Plane S-Vacancy by Co Cluster Addition. ACS Energy Letters, 2018, 3, 2685-2693.	17.4	121
909	Selfâ€Assembly of Largeâ€Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis. Advanced Materials, 2018, 30, e1805188.	21.0	84

#	Article	IF	CITATIONS
910	Dielectric Properties and Ion Transport in Layered MoS ₂ Grown by Vapor-Phase Sulfurization for Potential Applications in Nanoelectronics. ACS Applied Nano Materials, 2018, 1, 6197-6204.	5.0	25
911	Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations. Nanomaterials, 2018, 8, 851.	4.1	90
912	Modulating Schottky Barrier of MoS ₂ to Enhance Hydrogen Evolution Reaction Activity by Incorporating with Vertical Graphene Nanosheets Derived from Organic Liquid Waste. ChemElectroChem, 2018, 5, 3841-3846.	3.4	7
913	In Situ Optical Tracking of Electroablation in Two-Dimensional Transition-Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2018, 10, 40773-40780.	8.0	7
914	Rheniumâ€Doped and Stabilized MoS ₂ Atomic Layers with Basalâ€Plane Catalytic Activity. Advanced Materials, 2018, 30, e1803477.	21.0	164
915	Selective growth of vertically aligned two-dimensional MoS2/WS2 nanosheets with decoration of Bi2S3 nanorods by microwave-assisted hydrothermal synthesis: Enhanced photo-and electrochemical performance for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 21290-21298.	7.1	26
916	2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography. Advanced Functional Materials, 2018, 28, 1804508.	14.9	41
917	CoSe2 nanoparticles grown on carbon nanofibers derived from bacterial cellulose as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 20704-20711.	7.1	27
918	Highâ€Performance Waferâ€Scale MoS ₂ Transistors toward Practical Application. Small, 2018, 14, e1803465.	10.0	88
919	Liquid Crystal Template Assisted Electrodeposition of Molybdenum Sulfide Nanoparticles Supported on Carbon Fiber as Efficient Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2018, 13, 5488-5496.	1.3	1
920	High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene–MoS ₂ Heterojunctions. ACS Applied Materials & Interfaces, 2018, 10, 37258-37266.	8.0	30
921	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	21.0	173
922	Band offset and an ultra-fast response UV-VIS photodetector in γ-In ₂ Se ₃ /p-Si heterojunction heterostructures. RSC Advances, 2018, 8, 29555-29561.	3.6	17
923	Metallic-Phase MoS ₂ Nanopetals with Enhanced Electrocatalytic Activity for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 13435-13442.	6.7	48
924	Nanodots of transition metal (Mo and W) disulfides grown on NiNi Prussian blue analogue nanoplates for efficient hydrogen production. Chemical Communications, 2018, 54, 11044-11047.	4.1	12
925	Optimized single-layer MoS ₂ field-effect transistors by non-covalent functionalisation. Nanoscale, 2018, 10, 17557-17566.	5.6	26
926	Versatile and Scalable Strategy To Grow Sol–Gel Derived 2H-MoS ₂ Thin Films with Superior Electronic Properties: A Memristive Case. ACS Applied Materials & Interfaces, 2018, 10, 34392-34400.	8.0	22
927	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 34098-34107.	8.0	75

#	Article	IF	CITATIONS
928	General Construction of Molybdenumâ€Based Nanowire Arrays for pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804600.	14.9	134
929	Facile MoS2 Growth on Reduced Graphene-Oxide via Liquid Phase Method. Frontiers in Materials, 2018, 5, .	2.4	5
930	Controlling the morphology of ultrathin MoS2/MoO2 nanosheets grown by chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G509.	2.1	3
931	Lithium Electrochemical Tuning for Electrocatalysis. Advanced Materials, 2018, 30, e1800978.	21.0	51
932	Earthâ€Abundant Transitionâ€Metalâ€Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Chemistry - A European Journal, 2018, 24, 18334-18355.	3.3	203
933	CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4040-4052.	3.0	47
934	Cu _{2–<i>x</i>} S–MoS ₂ Nano-Octahedra at the Atomic Scale: Using a Template To Activate the Basal Plane of MoS ₂ for Hydrogen Production. Chemistry of Materials, 2018, 30, 4489-4492.	6.7	48
935	Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nature Communications, 2018, 9, 2120.	12.8	461
936	Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT. RSC Advances, 2018, 8, 17773-17785.	3.6	44
937	Controllable synthesis of flower-like MoSe ₂ 3D microspheres for highly efficient visible-light photocatalytic degradation of nitro-aromatic explosives. Journal of Materials Chemistry A, 2018, 6, 11424-11434.	10.3	66
938	Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe ₂ Single Crystals and Their Thickness-Dependent Electronic Properties. Nano Letters, 2018, 18, 3523-3529.	9.1	147
939	Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	17
940	Vertically Aligned MoS ₂ Quantum Dots/Nanoflakes Heterostructure: Facile Deposition with Excellent Performance toward Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 8374-8382.	6.7	36
941	Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS ₂ and clarification of the role of growth-induced strain. 2D Materials, 2018, 5, 035035.	4.4	23
942	Strainâ€Driven and Layerâ€Numberâ€Dependent Crossover of Growth Mode in van der Waals Heterostructures: 2D/2D Layerâ€By‣ayer Horizontal Epitaxy to 2D/3D Vertical Reorientation. Advanced Materials Interfaces, 2018, 5, 1800382.	3.7	35
943	Selfâ€Limited onâ€Site Conversion of MoO ₃ Nanodots into Vertically Aligned Ultrasmall Monolayer MoS ₂ for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1800734.	19.5	112
944	First-principles studies of SnS2, MoS2 and WS2 stacked van der Waals hetero-multilayers. Computational Condensed Matter, 2018, 16, e00303.	2.1	5
945	Facile Synthesis of Molybdenum Diselenide Layers for High-Performance Hydrogen Evolution Electrocatalysts. ACS Omega, 2018, 3, 5799-5807.	3.5	20

#	Article	IF	CITATIONS
946	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS 2 Nanosheets. Advanced Functional Materials, 2018, 28, 1801286.	14.9	35
947	2Dâ€Layered MoS 2 â€Incorporated TiO 2 â€Nanofiber―Based Dyeâ€Sensitized Solar Cells. ChemistrySelect, 20 3, 5801-5807.	18. 1.5	17
948	MoS ₂ –Carbon Nanotube Porous 3 D Network for Enhanced Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 2960-2966.	6.8	46
949	Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. Nano Letters, 2018, 18, 3943-3949.	9.1	267
950	Topotactic Growth of Edge-Terminated MoS ₂ from MoO ₂ Nanocrystals. ACS Nano, 2018, 12, 5351-5358.	14.6	26
951	Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates. Nanotechnology, 2018, 29, 315706.	2.6	7
952	The rise of two-dimensional MoS2 for catalysis. Frontiers of Physics, 2018, 13, 1.	5.0	93
953	Rational design of a 3D MoS ₂ /dual-channel graphene framework hybrid as a free-standing electrode for enhanced lithium storage. Journal of Materials Chemistry A, 2018, 6, 13797-13805.	10.3	23
954	3D MoS2-rGO@Mo nanohybrids for enhanced hydrogen evolution: The importance of the synergy on the Volmer reaction. Electrochimica Acta, 2018, 283, 357-365.	5.2	39
955	Free-standing graphene/NiMoS paper as cathode for quasi-solid state dye-sensitized solar cells. Journal of Colloid and Interface Science, 2018, 530, 179-188.	9.4	26
956	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908.	38.1	513
957	Synthesis of binder-free MoSe2 nanoflakes as a new electrode for electrocatalytic hydrogen evolution. Journal of Electroanalytical Chemistry, 2018, 823, 278-286.	3.8	24
958	2D SnSe-based vdW heterojunctions: tuning the Schottky barrier by reducing Fermi level pinning. Nanoscale, 2018, 10, 13767-13772.	5.6	32
959	Optimizing edges and defects of supported MoS ₂ catalysts for hydrogen evolution <i>via</i> an external electric field. Physical Chemistry Chemical Physics, 2018, 20, 26083-26090.	2.8	25
960	Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing. Biosensors and Bioelectronics, 2018, 119, 10-17.	10.1	97
961	Efficient hydrogen evolution and rapid degradation of organic pollutants by robust catalysts of MoS2/TNT@CNTs. International Journal of Hydrogen Energy, 2018, 43, 16024-16037.	7.1	19
962	CVD growth of molybdenum diselenide surface structures with tailored morphology. CrystEngComm, 2018, 20, 4867-4874.	2.6	13
963	More active sites exposed few-layer MoSe2 supported on nitrogen-doped carbon as highly efficient and durable electrocatalysts for water splitting. Electrochimica Acta, 2018, 285, 103-110.	5.2	18

#	Article	IF	CITATIONS
964	Centimeter-Scale Periodically Corrugated Few-Layer 2D MoS ₂ with Tensile Stretch-Driven Tunable Multifunctionalities. ACS Applied Materials & Interfaces, 2018, 10, 30623-30630.	8.0	21
965	Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coordination Chemistry Reviews, 2018, 376, 1-19.	18.8	49
966	Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications. Materials, 2018, 11, 57.	2.9	21
967	CVD-Grown MoSe ₂ Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 27771-27779.	8.0	60
968	Boosting electrocatalytic activity of ultrathin MoSe2/C composites for hydrogen evolution via a surfactant assisted hydrothermal method. International Journal of Hydrogen Energy, 2018, 43, 15749-15761.	7.1	19
969	Metallic MoS ₂ for High Performance Energy Storage and Energy Conversion. Small, 2018, 14, e1800640.	10.0	218
970	3D Interconnected MoS ₂ with Enlarged Interlayer Spacing Grown on Carbon Nanofibers as a Flexible Anode Toward Superior Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26982-26989.	8.0	56
971	Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS ₂ Films. ACS Nano, 2018, 12, 8758-8769.	14.6	51
972	Tuning Band Alignments and Charge-Transport Properties through MoSe ₂ Bridging between MoS ₂ and Cadmium Sulfide for Enhanced Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 26153-26161.	8.0	43
973	Prickly Pear-Like Three-Dimensional Porous MoS2: Synthesis, Characterization and Advanced Hydrogen Evolution Reaction. Catalysts, 2018, 8, 235.	3.5	3
974	Electronic structure tuning during facile construction of two-phase tungsten based electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 283, 834-841.	5.2	16
975	Electronic properties of GaSe/MoS2 and GaS/MoSe2 heterojunctions from first principles calculations. AIP Advances, 2018, 8, 075207.	1.3	14
976	Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS ₂ . Chemistry of Materials, 2018, 30, 5404-5411.	6.7	33
977	Molecular Beam Epitaxy of Highly Crystalline MoSe ₂ on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 7562-7570.	14.6	70
978	Transport and Field Emission Properties of MoS2 Bilayers. Nanomaterials, 2018, 8, 151.	4.1	70
979	Highly Dispersive MoP Nanoparticles Anchored on Reduced Graphene Oxide Nanosheets for an Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 26258-26263.	8.0	60
980	NiO hollow microspheres as efficient bifunctional electrocatalysts for Overall Water-Splitting. International Journal of Hydrogen Energy, 2018, 43, 21665-21674.	7.1	72
981	Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. Journal of Power Sources, 2018, 398, 9-26.	7.8	163

#	Article	IF	CITATIONS
982	Scalable integration of periodically aligned 2D-MoS ₂ nanoribbon array. APL Materials, 2018, 6, 076102.	5.1	10
983	Formation of vertically oriented graphenes: what are the key drivers of growth?. 2D Materials, 2018, 5, 044002.	4.4	31
984	A high-performance sodium anode composed of few-layer MoSe ₂ and N, P doped reduced graphene oxide composites. Inorganic Chemistry Frontiers, 2018, 5, 2189-2197.	6.0	53
985	Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. Applied Surface Science, 2018, 459, 588-595.	6.1	170
986	Identifying the high activity of the basal plane in 1T′-phase MoS ₂ towards electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1490-1492.	6.0	6
987	Millimeter-sized PbI ₂ flakes and Pb ₅ S ₂ I ₆ nanowires for flexible photodetectors. Journal of Materials Chemistry C, 2018, 6, 7188-7194.	5.5	13
988	Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. Journal of Materials Chemistry C, 2018, 6, 7501-7511.	5.5	32
989	Colloidal synthesis of 1T' phase dominated WS2 towards endurable electrocatalysis. Nano Energy, 2018, 50, 176-181.	16.0	123
990	Electronic transport properties of heterojunction devices constructed by single-wall Fe ₂ Si and carbon nanotubes. Journal of Materials Chemistry C, 2018, 6, 5794-5802.	5.5	11
991	Defect- and Phase-Induced Acceleration of Electrocatalytic Hydrogen Production by Ultrathin and Small MoS ₂ -Decorated rGO Sheets. ACS Applied Nano Materials, 2018, 1, 4622-4632.	5.0	33
992	Promoting the water reduction reaction of transition metal dichalcogenides in a basic electrolyte by interface engineering. Journal of Materials Chemistry A, 2018, 6, 17488-17494.	10.3	13
993	Toward the use of CVD-grown MoS ₂ nanosheets as field-emission source. Beilstein Journal of Nanotechnology, 2018, 9, 1686-1694.	2.8	26
994	Mo0.25Co1.257W0.25S3 hybridized with graphene oxide as a nanocatalyst based on transition metal dichalcogenides for methanol electro-oxidation. Chemical Physics Letters, 2018, 708, 146-152.	2.6	1
995	MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution. Journal of Catalysis, 2018, 366, 8-15.	6.2	48
996	Tuning the activity/stability balance of anion doped CoS Se2â^' dichalcogenides. Journal of Catalysis, 2018, 366, 50-60.	6.2	17
997	Three dimensionally-ordered 2D MoS ₂ vertical layers integrated on flexible substrates with stretch-tunable functionality and improved sensing capability. Nanoscale, 2018, 10, 17525-17533.	5.6	31
998	Hybridizing Strong Quadrupole Gap Plasmons Using Optimized Nanoantennas with Bilayer MoS ₂ for Excellent Photoâ€Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801184.	19.5	19
999	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 21747-21784.	10.3	85

#	Article	IF	CITATIONS
1000	Vertically aligned MoS ₂ on Ti ₃ C ₂ (MXene) as an improved HER catalyst. Journal of Materials Chemistry A, 2018, 6, 16882-16889.	10.3	146
1001	Sensitive photoelectrochemical immunosensor for squamous cell carcinoma antigen based on MoSe2 nanosheets and hollow gold nanospheres. Sensors and Actuators B: Chemical, 2018, 275, 199-205.	7.8	32
1002	SiC/MoS2 layered heterostructures: Promising photocatalysts revealed by a first-principles study. Materials Chemistry and Physics, 2018, 216, 64-71.	4.0	63
1003	Molybdenum carbide/phosphide hybrid nanoparticles embedded P, N co-doped carbon nanofibers for highly efficient hydrogen production in acidic, alkaline solution and seawater. Electrochimica Acta, 2018, 281, 710-716.	5.2	53
1004	Electrochemical Formation of Amorphous Molybdenum Phosphosulfide for Enabling the Hydrogen Evolution Reaction in Alkaline and Acidic Media. ACS Applied Energy Materials, 2018, 1, 2849-2858.	5.1	18
1005	MoS ₂ Nanosheets Vertically Grown on Carbonized Corn Stalks as Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 22067-22073.	8.0	45
1006	Two-dimensional MTe2 (M = Co, Fe, Mn, Sc, Ti) transition metal tellurides as sodium ion battery anode materials: Density functional theory calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2781-2786.	2.1	21
1007	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. ACS Applied Materials & Interfaces, 2018, 10, 22042-22049.	8.0	22
1008	CoSe2 nanosheets decorated on carbon fibers as efficient and stable catalysts for hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2018, 29, 12300-12305.	2.2	10
1009	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions, ACS Catalysis, 2018, 8, 6707-6732.	11.2	320
1010	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">MoS<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow> nanostructures grown on Au/ <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>6.1</td><td>37</td></mml:math>	6.1	37
1011	altimg="si2.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">SiOInterface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.</mml:mi </mml:msub></mml:mrow>	47.7	505
1012	Light-trapping enhanced ZnO–MoS ₂ core–shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. Journal of Materials Chemistry C, 2018, 6, 7077-7084.	5.5	52
1013	Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities. Applied Surface Science, 2018, 456, 808-816.	6.1	61
1014	In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Science Bulletin, 2018, 63, 853-876.	9.0	107
1015	Nanoparticle@MoS ₂ Core–Shell Architecture: Role of the Core Material. Chemistry of Materials, 2018, 30, 4675-4682.	6.7	31
1016	Recent Progress in Twoâ€Dimensional Antimicrobial Nanomaterials. Chemistry - A European Journal, 2019, 25, 929-944.	3.3	59
1017	Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768.	4.6	45

ARTICLE IF CITATIONS Metal Oxides/Chalcogenides and Composites. SpringerBriefs in Materials, 2019, , . 0.3 16 1018 Electroactive Materials. SpringerBriefs in Materials, 2019, , 31-67. 0.3 Hydrothermally synthesized nickel molybdenum selenide composites as cost-effective and efficient 1020 trifunctional electrocatalysts for water splitting reactions. International Journal of Hydrogen 7.1 42 Energy, 2019, 44, 22796-22805. Fe2O3 and Co bimetallic decorated nitrogen doped graphene nanomaterial for effective electrochemical water split hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 849, 113345. Enhancing the photoelectrochemical water splitting performance of WS2 nanosheets by doping titanium and molybdenum via a low temperature CVD method. Journal of Electroanalytical Chemistry, 1022 3.8 10 2019, 849, 113361. Two-Dimensional and Screw Growth of MoS2 Films in the Process of Chemical Deposition from the Gas Phase. Russian Journal of Applied Chemistry, 2019, 92, 596-601. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides 1024 7.9 35 under reaction conditions. Npj 2D Materials and Applications, 2019, 3, . Room-Temperature Production of Nanocrystalline Molybdenum Disulfide (MoS₂) at the 6.7 16 Liquidâ[^]Liquid Interface. Chemistry of Materials, 2019, 31, 5384-5391. The Origin of High Activity of Amorphous MoS₂ in the Hydrogen Evolution Reaction. 1026 90 6.8 ChemSusChem, 2019, 12, 4383-4389. Sublimation-Induced Sulfur Vacancies in MoS₂ Catalyst for One-Pot Synthesis of 11.2 Secondary Amines. ACS Catalysis, 2019, 9, 7967-7975. Defect-engineered MoS₂ with extended photoluminescence lifetime for high-performance 1028 5.534 hydrogen evolution. Journal of Materials Chemistry C, 2019, 7, 10173-10178. Challenges and recent advancements of functionalization of two-dimensional nanostructured 1029 5.6 molybdenum trioxide and dichalcogenides. Nanoscale, 2019, 11, 15709-15738. Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for 1030 20.2 43 electrochemical hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 258, 117995. Edgeâ€Enriched Ultrathin MoS₂ Embedded Yolkâ€Shell TiO₂ with Boosted Charge Transfer for Superior Photocatalytic H₂ Evolution. Advanced Functional Materials, 2019, 14.9 29, 1901958. Activating MoS2 basal planes for hydrogen evolution through the As doping and strain. Physics 1032 2.1 11 Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2997-3000. Structural Evolutions of Vertically Aligned Two-Dimensional MoS₂ Layers Revealed by in 3.1 Situ Heating Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 27843-27853. Dominant ZA phonons and thermal carriers in HfS2. Journal of Applied Physics, 2019, 126, . 1034 2.59 Growth of vertical MoS₂ nanosheets on carbon materials by chemical vapor deposition: 1.6 influence of substrates. Materials Research Express, 2019, 6, 1150c1.

#	ARTICLE Interface Engineering of an RGO/MoS ₂ /Pd 2D Heterostructure for Electrocatalytic	IF	CITATIONS
1036	Overall Water Splitting in Alkaline Medium. ACS Applied Materials & amp; Interfaces, 2019, 11, 42094-42103.	8.0	62
1037	Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 28143-28150.	7.1	27
1038	Molecularly imprinted photoelectrochemical sensor for carcinoembryonic antigen based on polymerized ionic liquid hydrogel and hollow gold nanoballs/MoSe2 nanosheets. Analytica Chimica Acta, 2019, 1090, 64-71.	5.4	55
1039	Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction. FlatChem, 2019, 18, 100140.	5.6	39
1040	FeP/MoS ₂ Enriched with Dense Catalytic Sites and High Electrical Conductivity for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 17671-17681.	6.7	24
1041	Recent advances in synthesis and biosensors of two-dimensional MoS ₂ . Nanotechnology, 2019, 30, 502004.	2.6	11
1042	Highly Crystalline MoS ₂ Thin Films Fabricated by Sulfurization. Physica Status Solidi (B): Basic Research, 2019, 256, 1900342.	1.5	4
1043	Depletion of VOC in wastewater by vacuum membrane distillation using a dual-layer membrane: mechanism of mass transfer and selectivity. Environmental Science: Water Research and Technology, 2019, 5, 119-130.	2.4	13
1044	Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides. Nanotechnology, 2019, 30, 182002.	2.6	54
1045	Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries. Nano-Micro Letters, 2019, 11, 96.	27.0	51
1046	Metallic edge states in zig-zag vertically-oriented MoS2 nanowalls. Scientific Reports, 2019, 9, 15602.	3.3	10
1047	MoS ₂ Moiré Superlattice for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 2830-2835.	17.4	98
1048	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nature Communications, 2019, 10, 4975.	12.8	75
1050	Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction (HER). Scientific Reports, 2019, 9, 15961.	3.3	36
1051	Polarized Raman Reveals Alignment of Few-Layer MoS ₂ Films. Journal of Physical Chemistry C, 2019, 123, 29468-29475.	3.1	14
1052	Atomic Insights of Iron Doping in Nickel Hydroxide Nanosheets for Enhanced Oxygen Catalysis to Boost Broad Temperature Workable Zincâ~'Air Batteries. ChemCatChem, 2019, 11, 6002-6007.	3.7	17
1053	Twoâ€5tep Hydrothermal Synthesis of CoSe/MoSe ₂ as Hydrogen Evolution Electrocatalysts in Acid and Alkaline Electrolytes. ChemElectroChem, 2019, 6, 4842-4847.	3.4	29
1054	Synthesis and electrocatalytic activity of Ni0.85Se/MoS2 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 26109-26117.	7.1	18

#	Article	IF	CITATIONS
1055	High air humidity is sufficient for successful egg incubation and early postâ€embryonic development in the marbled crayfish (<i>Procambarus virginalis</i>). Freshwater Biology, 2019, 64, 1603-1612.	2.4	16
1056	Facile Synthesis of Nâ€Ðoped Hollow Carbon Spheres @MoS 2 via Polymer Microspheres Template Method and Oneâ€Step Calcination for Enhanced Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 1101-1106.	3.4	18
1057	Transition metal atom (Ti, V, Mn, Fe, and Co) anchored silicene for hydrogen evolution reaction. RSC Advances, 2019, 9, 26321-26326.	3.6	25
1058	Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 2019, 18, 1309-1314.	27.5	280
1059	1T/2H MoS2/MoO3 hybrid assembles with glycine as highly efficient and stable electrocatalyst for water splitting. International Journal of Hydrogen Energy, 2019, 44, 24237-24245.	7.1	19
1060	A unique hierarchical composite with auricular-like MoS2 nanosheets erected on graphene for enhanced lithium storage. Journal of Solid State Electrochemistry, 2019, 23, 2759-2770.	2.5	3
1061	A Two-Dimensional MoS ₂ Catalysis Transistor by Solid-State Ion Gating Manipulation and Adjustment (SIGMA). Nano Letters, 2019, 19, 7293-7300.	9.1	46
1062	2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16440-16449.	6.7	10
1063	Electrospun Cobalt-Doped MoS ₂ Nanofibers for Electrocatalytic Hydrogen Evolution. Journal of the Electrochemical Society, 2019, 166, F996-F999.	2.9	8
1064	A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coordination Chemistry Reviews, 2019, 399, 213020.	18.8	101
1065	Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy. Nano Energy, 2019, 65, 104053.	16.0	18
1066	Synthesis of MoWS ₂ on Flexible Carbon-Based Electrodes for High-Performance Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 37550-37558.	8.0	31
1067	Active Sites in Single-Layer BiOX (X = Cl, Br, and I) Catalysts for the Hydrogen Evolution Reaction. Inorganic Chemistry, 2019, 58, 13195-13202.	4.0	29
1068	Effect of bilayer period on the oxidation and corrosion resistance of Pb-Ti/MoS2 nanoscale multilayer films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	2
1069	Graphene oxide supported cobalt phosphide nanorods designed from a molecular complex for efficient hydrogen evolution at low overpotential. Chemical Communications, 2019, 55, 2186-2189.	4.1	15
1070	Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale, 2019, 11, 717-724.	5.6	37
1071	Aligned Heterointerfaceâ€Induced 1Tâ€MoS ₂ Monolayer with Nearâ€Ideal Gibbs Free for Stable Hydrogen Evolution Reaction. Small, 2019, 15, e1804903.	10.0	63
1072	Novel Binder-Free Three-Dimensional MoS ₂ -Based Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 1102-1110.	5.1	42

#	Article	IF	CITATIONS
1073	N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental, 2019, 248, 239-248.	20.2	131
1074	Sub-5â€ ⁻ nm edge-rich 1T′-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage. Nano Energy, 2019, 58, 660-668.	16.0	41
1075	Ultrathin Graphitic Carbon Coated Molybdenum Phosphide as Nobleâ€Metalâ€Free Electrocatalyst for Hydrogen Evolution. ChemistrySelect, 2019, 4, 846-852.	1.5	5
1076	Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 129-139.	20.2	63
1077	Vertically aligned MoS ₂ nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions. Nanoscale, 2019, 11, 2439-2446.	5.6	100
1078	Two-dimensional (PEA) ₂ PbBr ₄ perovskite single crystals for a high performance UV-detector. Journal of Materials Chemistry C, 2019, 7, 1584-1591.	5.5	138
1079	Catalysis of hydrogen evolution reaction by Ni ₁₂ P ₅ single crystalline nanoplates and spherical nanoparticles. CrystEngComm, 2019, 21, 228-235.	2.6	14
1080	Electrochemically active novel amorphous carbon (a-C)/Cu3P peapod nanowires by low-temperature chemical vapor phosphorization reaction as high efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 318, 374-383.	5.2	13
1081	A novel co-electrodeposited Co/MoSe2/reduced graphene oxide nanocomposite as electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 19816-19826.	7.1	20
1082	Edge-Site Nanoengineering of WS ₂ by Low-Temperature Plasma-Enhanced Atomic Layer Deposition for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 5104-5115.	6.7	57
1083	Manganese Doping of MoSe ₂ Promotes Active Defect Sites for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 25155-25162.	8.0	70
1084	Phase, Conductivity, and Surface Coordination Environment in Two-Dimensional Electrochemistry. ACS Applied Materials & Interfaces, 2019, 11, 25108-25114.	8.0	3
1085	Quality enhancement of low temperature metal organic chemical vapor deposited MoS ₂ : an experimental and computational investigation. Nanotechnology, 2019, 30, 395402.	2.6	6
1086	Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Applied Surface Science, 2019, 490, 165-171.	6.1	79
1087	Agent-assisted VSSe ternary alloy single crystals as an efficient stable electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15714-15721.	10.3	26
1088	Carbon‣imited Conversion of Molybdenum Carbide into Curved Ultrasmall Monolayer Molybdenum Disulfide under Effects of ZrO 2 Crystal Phases for Efficient Sulfurâ€Resistant Methanation. ChemCatChem, 2019, 11, 3046-3053.	3.7	5
1089	On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum, 2019, 167, 90-97.	3.5	37
1090	Growth of Complex 2D Material-Based Structures with Naturally Formed Contacts. ACS Omega, 2019, 4, 9557-9562.	3.5	5

#	Article	IF	CITATIONS
1091	Facile fabrication of MoS2-P3HT hybrid microheterostructure with enhanced photovoltaic performance in TiO2 nanorod array based hybrid solar cell. Solid State Sciences, 2019, 94, 92-98.	3.2	8
1092	Fabrication of MoSe2 decorated three-dimensional graphene composites structure as a highly stable electrocatalyst for improved hydrogen evolution reaction. Renewable Energy, 2019, 143, 1659-1669.	8.9	32
1093	Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction. Materials Today Energy, 2019, 13, 134-144.	4.7	31
1094	Interconnected Vertically Stacked 2D-MoS ₂ for Ultrastable Cycling of Rechargeable Li-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 20762-20769.	8.0	37
1095	NiS–MoS ₂ hetero-nanosheet array electrocatalysts for efficient overall water splitting. Sustainable Energy and Fuels, 2019, 3, 2056-2066.	4.9	61
1096	Co Doping and 1T Phase Jointly Enhanced HER Activity for Co-1T/2H MoS2. IOP Conference Series: Earth and Environmental Science, 2019, 267, 022044.	0.3	2
1097	Atomic Insight into Thermolysisâ€Ðriven Growth of 2D MoS ₂ . Advanced Functional Materials, 2019, 29, 1902149.	14.9	28
1098	Growth process of molybdenum disulfide thin films grown by thermal vapour sulfurization. Journal of Materials Science: Materials in Electronics, 2019, 30, 10419-10426.	2.2	2
1099	The Effect of Nickel on MoS ₂ Growth Revealed with <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2019, 13, 7117-7126.	14.6	48
1100	High-performance hydrogen evolution reaction catalysis achieved by small core-shell copper nanoparticles. Journal of Colloid and Interface Science, 2019, 551, 130-137.	9.4	9
1101	Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution. Chemistry of Materials, 2019, 31, 4726-4731.	6.7	32
1102	A MOF-mediated strategy for constructing human backbone-like CoMoS ₃ @N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 13751-13761.	10.3	85
1103	Propelling Polysulfide Conversion by Defect-Rich MoS ₂ Nanosheets for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20788-20795.	8.0	89
1104	Effect of oxygen incorporation in amorphous molybdenum sulfide on electrochemical hydrogen evolution. Applied Surface Science, 2019, 487, 981-989.	6.1	17
1105	Ultrathin MoSSe alloy nanosheets anchored on carbon nanotubes as advanced catalysts for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 16110-16119.	7.1	23
1106	MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16566-16574.	7.1	57
1107	Growth controlling behavior of vertically aligned MoSe2 film. Applied Surface Science, 2019, 487, 719-725.	6.1	3
1108	Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction, ACS Nano, 2019, 13, 6720-6729	14.6	40

#	Article	IF	CITATIONS
1109	Enhanced Gas Sensing Performance of Hydrothermal MoS2 Nanosheets by Post-Annealing in Hydrogen Ambient. Bulletin of the Chemical Society of Japan, 2019, 92, 1094-1099.	3.2	16
1110	Beyond 1Tâ€phase? Synergistic Electronic Structure and Defects Engineering in 2Hâ€MoS _{2x} Se _{2(1â€x)} Nanosheets for Enhanced Hydrogen Evolution Reaction and Sodium Storage. ChemCatChem, 2019, 11, 3200-3211.	3.7	21
1111	Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy and Environmental Science, 2019, 12, 2298-2304.	30.8	227
1112	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	3.4	72
1113	Chemical optimization towards superior electrocatalysis of Janus 1T-MoSX (X = O, Se, Te) for hydrogen evolution: Small composition tuning makes big difference. Electrochimica Acta, 2019, 310, 153-161.	5.2	9
1114	Facile chemical-vapour-deposition synthesis of vertically aligned co-doped MoS2 nanosheets as an efficient catalyst for triiodide reduction and hydrogen evolution reaction. Journal of Catalysis, 2019, 373, 250-259.	6.2	32
1115	Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy, 2019, 61, 267-274.	16.0	35
1116	2D Single Crystal WSe ₂ and MoSe ₂ Nanomeshes with Quantifiable High Exposure of Layer Edges from 3D Mesoporous Silica Template. ACS Applied Materials & Interfaces, 2019, 11, 17670-17677.	8.0	28
1117	A facile method to enhance the tribological performances of MoSe2 nanoparticles as oil additives. Tribology International, 2019, 137, 22-29.	5.9	27
1118	Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Applied Catalysis B: Environmental, 2019, 254, 432-442.	20.2	185
1119	Hierarchical MoS ₂ Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano, 2019, 13, 5533-5540.	14.6	187
1120	Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 3530-3548.	3.4	73
1121	Surface intercalated spherical MoS _{2x} Se _{2(1â^'x)} nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Transactions, 2019, 48, 8279-8287.	3.3	89
1122	Engineering of molybdenum sulfide nanostructures towards efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 15009-15016.	7.1	21
1123	A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. Journal of Materials Chemistry A, 2019, 7, 12434-12439.	10.3	58
1124	Hydrogen interaction with selectively desulfurized MoS2 surface using Ne+ sputtering. Journal of Applied Physics, 2019, 125, .	2.5	10
1125	Unveiling Electrochemical Reaction Pathways of CO ₂ Reduction to C _{<i>N</i>} Species at Sâ€Vacancies of MoS ₂ . ChemSusChem, 2019, 12, 2671-2678.	6.8	25
1126	Structure, mechanical and tribological properties of Mo-S-N solid lubricant coatings. Applied Surface Science, 2019, 486, 1-14.	6.1	51

#	Article	IF	CITATIONS
1127	Simultaneous formation of ultra-thin MoSe2 nanosheets, Inorganic Fullerene-Like MoSe2 and MoO3 quantum dots using fast and ecofriendly Pulsed Laser Ablation in Liquid followed by microwave treatment. Materials Science in Semiconductor Processing, 2019, 99, 68-77.	4.0	29
1128	Hydrogen interaction with a sulfur-vacancy-induced occupied defect state in the electronic band structure of MoS ₂ . Physical Chemistry Chemical Physics, 2019, 21, 15302-15309.	2.8	17
1129	MoS ₂ nanosheet/MoS ₂ flake homostructures for efficient electrocatalytic hydrogen evolution. Materials Research Express, 2019, 6, 085005.	1.6	8
1130	Boundary activated hydrogen evolution reaction on monolayer MoS2. Nature Communications, 2019, 10, 1348.	12.8	263
1131	Bi2Te3–MoS2 Layered Nanoscale Heterostructures for Electron Transfer Catalysis. ACS Applied Nano Materials, 2019, 2, 2005-2012.	5.0	19
1132	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	5.6	75
1134	Facile Preparation of 1T/2Hâ€Mo(S _{1â€x} Se _x) ₂ Nanoparticles for Boosting Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 2217-2222.	3.7	124
1135	Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS ₂ for High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 14239-14248.	8.0	10
1136	Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe ₂ few-layers on SiO ₂ /Si. 2D Materials, 2019, 6, 035019.	4.4	8
1137	Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Research, 2019, 12, 2140-2149.	10.4	33
1138	Colloidally synthesized defect-rich \$\$hbox {MoSe}_{2}\$ MoSe 2 nanosheets for superior catalytic activity. Bulletin of Materials Science, 2019, 42, 1.	1.7	12
1139	Advances in the mass transport for 2D nano-catalyst: Toward superior electrocatalytic water splitting. FlatChem, 2019, 14, 100087.	5.6	3
1140	Controllable thermal conversion of thiomolybdate to active few-layer MoS2 on alumina for efficient hydrodesulfurization. SN Applied Sciences, 2019, 1, 1.	2.9	13
1141	Horizontal-to-Vertical Transition of 2D Layer Orientation in Low-Temperature Chemical Vapor Deposition-Grown PtSe ₂ and Its Influences on Electrical Properties and Device Applications. ACS Applied Materials & Interfaces, 2019, 11, 13598-13607.	8.0	77
1142	Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nature Communications, 2019, 10, 1217.	12.8	322
1143	Lateral Photovoltaic Effect and Photoâ€Induced Resistance Effect in Nanoscale Metalâ€Semiconductor Systems. Annalen Der Physik, 2019, 531, 1800440.	2.4	18
1144	The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. CheM, 2019, 5, 1371-1397.	11.7	273
1145	Vertically Grown MoS ₂ Nanoplates on VN with an Enlarged Surface Area as an Efficient and Stable Electrocatalyst for HER. ACS Applied Energy Materials, 2019, 2, 2854-2861.	5.1	37

#	Article	IF	CITATIONS
1146	Nanoporous gold supported chromium-doped NiFe oxyhydroxides as high-performance catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9690-9697.	10.3	33
1147	Defect-rich MoS _{2(1â^'x)} Se _{2x} few-layer nanocomposites: a superior anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9837-9843.	10.3	35
1148	Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS ₂ /WTe ₂ Hybrid Structures. Small, 2019, 15, e1900078.	10.0	58
1149	Synthesis of Au-nanoparticle-loaded 1T@2H-MoS2 nanosheets with high photocatalytic performance. Journal of Materials Science, 2019, 54, 9656-9665.	3.7	44
1150	Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 7, 9386-9405.	10.3	225
1151	Construction of g-C3N4/BCN two-dimensional heterojunction photoanode for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 10498-10507.	7.1	23
1152	Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019, 4, 840-858.	8.0	207
1153	High-performance FET arrays enabled by improved uniformity of wafer-scale MoS2 synthesized via thermal vapor sulfurization. Applied Surface Science, 2019, 483, 1136-1141.	6.1	6
1154	Edge-terminated few-layer MoS2 nanoflakes supported on TNAs@C with enhanced electrocatalysis activity for iodine reduction reaction. Materials Today Nano, 2019, 6, 100033.	4.6	12
1155	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	21.0	470
1156	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	21.0	998
1157	Atomic layer deposition of ZnO on MoS2 and WSe2. Applied Surface Science, 2019, 480, 43-51.	6.1	23
1158	Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. Npj Computational Materials, 2019, 5, .	8.7	39
1159	Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts. Advanced Materials Interfaces, 2019, 6, 1801838.	3.7	25
1160	One-step preparation of molybdenum disulfide/graphene nano-catalysts through a simple co-exfoliation method for high-performance electrocatalytic hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 542, 355-362.	9.4	17
1161	1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chemical Engineering Journal, 2019, 366, 163-171.	12.7	105
1162	Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Scientific Reports, 2019, 9, 2001.	3.3	19
1163	Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.5	5

# 1164	ARTICLE Chemical Vapor Deposition Growth of Vertical MoS ₂ Nanosheets on p-GaN Nanorods for Photodetector Application. ACS Applied Materials & Interfaces, 2019, 11, 8453-8460.	IF 8.0	CITATIONS
1165	Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst. Chinese Chemical Letters, 2019, 30, 1253-1260.	9.0	46
1166	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	18.0	189
1167	Electrochemical intercalation of sodium in vertically aligned molybdenum disulfide for hydrogen evolution reaction. FlatChem, 2019, 14, 100086.	5.6	5
1168	Seaweedâ€like 2Dâ€⊋D Architecture of MoS ₂ /rGO Composites for Enhanced Selective Aerobic Oxidative Coupling of Amines. ChemCatChem, 2019, 11, 1935-1942.	3.7	22
1169	Facile and cost-effective growth of MoS2 on 3D porous graphene-coated Ni foam for robust and stable hydrogen evolution reaction. Journal of Alloys and Compounds, 2019, 788, 267-276.	5.5	27
1170	Noble-Metal-Free Nanoelectrocatalysts for Hydrogen Evolution Reaction. Environmental Chemistry for A Sustainable World, 2019, , 73-120.	0.5	2
1171	Facial Synthesis of 1T Phase MoS ₂ Nanoflowers via Anion Exchange Method for Efficient Hydrogen Evolution. ChemistrySelect, 2019, 4, 2070-2074.	1.5	7
1172	Few-layered MoS2 vertically aligned on 3D interconnected porous carbon nanosheets for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 248, 357-365.	20.2	68
1173	Centimeter-scale Green Integration of Layer-by-Layer 2D TMD vdW Heterostructures on Arbitrary Substrates by Water-Assisted Layer Transfer. Scientific Reports, 2019, 9, 1641.	3.3	44
1174	Size-dependent magnetism of patterned MoTe ₂ monolayer. Materials Research Express, 2019, 6, 126115.	1.6	2
1175	Synthesis of Large Area Two-Dimensional MoS ₂ Films by Sulfurization of Atomic Layer Deposited MoO ₃ Thin Film for Nanoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 7521-7531.	5.0	34
1176	Study of indium tin oxide—MoS2 interface by atom probe tomography. MRS Communications, 2019, 9, 1261-1266.	1.8	2
1177	Boosting the electrocatalytic activity of amorphous molybdenum sulfide nanoflakes <i>via</i> nickel sulfide decoration. Nanoscale, 2019, 11, 22971-22979.	5.6	19
1178	Enhanced catalytic activity of edge-exposed 1T phase WS ₂ grown directly on a WO ₃ nanohelical array for water splitting. Journal of Materials Chemistry A, 2019, 7, 26378-26384.	10.3	23
1179	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11, 21622-21678.	5.6	201
1180	Synthesis of low-symmetry 2D Ge _(1â^'x) Sn _x Se ₂ alloy flakes with anisotropic optical response and birefringence. Nanoscale, 2019, 11, 23116-23125.	5.6	9
1181	Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density. Journal of Materials Chemistry A, 2019, 7, 25985-25992.	10.3	12

#	Article	IF	CITATIONS
1182	Constructing Mono-/Di-/Tri-Types of Active Sites in MoS ₂ Film toward Understanding Their Electrocatalytic Activity for the Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 8974-8984.	5.1	8
1184	CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation. Materials, 2019, 12, 3882.	2.9	21
1185	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Materials, 2019, 1, .	6.8	21
1186	Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS ₂ Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms. Environmental Science & Technology, 2020, 54, 537-549.	10.0	69
1187	Polarized Raman spectroscopy to elucidate the texture of synthesized MoS ₂ . Nanoscale, 2019, 11, 22860-22870.	5.6	13
1188	Tuning the orientation of few-layer MoS ₂ films using one-zone sulfurization. RSC Advances, 2019, 9, 29645-29651.	3.6	24
1189	Fabrication of MoS2 Nanoflakes Supported on Carbon Nanotubes for High Performance Anode in Lithium-Ion Batteries (LIBs). Journal of Nanomaterials, 2019, 2019, 1-7.	2.7	5
1190	Uniform coating of molybdenum disulfide over porous carbon substrates and its electrochemical application. Chemical Engineering Journal, 2019, 356, 292-302.	12.7	10
1191	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	20.2	214
1192	Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124.	12.9	174
1193	Nanosheets of MoSe2@M (M = Pd and Rh) function as widespread pH tolerable hydrogen evolution catalyst. Journal of Colloid and Interface Science, 2019, 534, 131-141.	9.4	30
1194	MoS <i>_x</i> @NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807562.	14.9	83
1195	Chemically activated MoS2 for efficient hydrogen production. Nano Energy, 2019, 57, 535-541.	16.0	95
1196	Effect of Ru Doping on the Properties of MoSe ₂ Nanoflowers. Journal of Physical Chemistry C, 2019, 123, 1987-1994.	3.1	60
1197	Benchmarking the Activity, Stability, and Inherent Electrochemistry of Amorphous Molybdenum Sulfide for Hydrogen Production. Advanced Energy Materials, 2019, 9, 1802614.	19.5	85
1198	Synthesis of Surface Grown Pt Nanoparticles on Edge-Enriched MoS ₂ Porous Thin Films for Enhancing Electrochemical Performance. Chemistry of Materials, 2019, 31, 387-397.	6.7	40
1199	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	47.7	745
1200	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	38.1	1,354

#	Article	IF	CITATIONS
1201	Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. Applied Catalysis B: Environmental, 2019, 244, 76-86.	20.2	122
1202	3D sandwiched nanosheet of MoS2/C@RGO achieved by supramolecular self-assembly method as high performance material in supercapacitor. Journal of Alloys and Compounds, 2019, 777, 1176-1183.	5.5	38
1203	Low-temperature wafer-scale growth of MoS2-graphene heterostructures. Applied Surface Science, 2019, 470, 129-134.	6.1	44
1204	Threeâ€Dimensional Graphene@Carbon Nanotube Aerogelâ€Supported Layered MoS ₂ /Co ₉ S ₈ Composite as an Efficient pHâ€Universal Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2019, 6, 748-756.	3.4	22
1205	Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance. Journal of Alloys and Compounds, 2019, 777, 514-523.	5.5	47
1206	Facile hydrothermal synthesis of 3D flowerâ€like Laâ€MoS ₂ nanostructure for photocatalytic hydrogen energy production. International Journal of Energy Research, 2019, 43, 491-499.	4.5	45
1207	Synergistically Configuring Intrinsic Activity and Fin-Tube-Like Architecture of Mn-Doped MoS ₂ -Based Catalyst for Improved Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 493-502.	5.1	40
1208	Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochimica Acta, 2019, 296, 701-708.	5.2	70
1209	Facile construction of a molybdenum disulphide/zinc oxide nanosheet hybrid for an advanced photocatalyst. Journal of Alloys and Compounds, 2019, 778, 761-767.	5.5	16
1210	Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sensors and Actuators B: Chemical, 2019, 282, 259-267.	7.8	119
1211	Engineering an Earthâ€Abundant Elementâ€Based Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Functional Materials, 2019, 29, 1807031.	14.9	146
1212	Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor. Applied Surface Science, 2019, 475, 793-802.	6.1	69
1213	Mo–S–Ti–C Nanocomposite Films for Solid-State Lubrication. ACS Applied Nano Materials, 2019, 2, 1302-1312.	5.0	16
1214	2D Metallic Transitional Metal Dichalcogenides for Electrochemical Hydrogen Evolution. Energy Technology, 2019, 7, 1801025.	3.8	10
1215	Tuning Active Sites of MXene for Efficient Electrocatalytic N2 Fixation. CheM, 2019, 5, 15-17.	11.7	28
1216	Wafer-scale transferred multilayer MoS ₂ for high performance field effect transistors. Nanotechnology, 2019, 30, 174002.	2.6	37
1217	Vertical-slate-like MoS2 nanostructures on 3D-Ni-foam for binder-free, low-cost, and scalable solid-state symmetric supercapacitors. Current Applied Physics, 2019, 19, 1-7.	2.4	27
1218	2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques. Advanced Materials Interfaces, 2019, 6, 1800688.	3.7	21

#	Article	IF	CITATIONS
1219	Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Materials, 2019, 21, 97-106.	18.0	128
1220	Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage. Journal of Alloys and Compounds, 2019, 776, 912-918.	5.5	29
1221	Metallic 1T-MoS2 nanosheets in-situ entrenched on N,P,S-codoped hierarchical carbon microflower as an efficient and robust electro-catalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243, 614-620.	20.2	77
1222	Heterojunction of TiO2 nanoparticle embedded into ZSM5 to 2D and 3D layered-structures of MoS2 nanosheets fabricated by pulsed laser ablation and microwave technique in deionized water: structurally enhanced photocatalytic performance. Applied Nanoscience (Switzerland), 2019, 9, 19-32.	3.1	24
1223	Molybdenum diselenide – black phosphorus heterostructures for electrocatalytic hydrogen evolution. Applied Surface Science, 2019, 467-468, 328-334.	6.1	47
1224	Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS ₂ Nanosheet–Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation. Advanced Energy Materials, 2019, 9, 1802553.	19.5	159
1225	Phaseâ€Controlled Synthesis of 1Tâ€MoSe ₂ /NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution. Small Methods, 2019, 3, 1800317.	8.6	67
1226	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	3.4	133
1227	P,Se odoped MoS ₂ Nanosheets as Accelerated Electrocatalysts for Hydrogen Evolution. ChemCatChem, 2019, 11, 689-692.	3.7	71
1228	Layer-dependent photoresponse of 2D MoS ₂ films prepared by pulsed laser deposition. Journal of Materials Chemistry C, 2019, 7, 2522-2529.	5.5	45
1229	Design of Basal Plane Edges in Metal-Doped Nanostripes-Structured MoSe ₂ Atomic Layers To Enhance Hydrogen Evolution Reaction Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 458-469.	6.7	58
1230	Growth of 1T′ MoTe ₂ by Thermally Assisted Conversion of Electrodeposited Tellurium Films. ACS Applied Energy Materials, 2019, 2, 521-530.	5.1	30
1231	Partial Surface Selenization of Cobalt Sulfide Microspheres for Enhancing the Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 456-465.	11.2	71
1232	MoS ₂ Nanoflowers as a Gateway for Solar-Driven CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 265-275.	6.7	50
1233	Heteroatomâ€doped MoSe ₂ Nanosheets with Enhanced Hydrogen Evolution Kinetics for Alkaline Water Splitting. Chemistry - an Asian Journal, 2019, 14, 301-306.	3.3	41
1234	Temperature dependence of the dielectric function of monolayer MoS2. Current Applied Physics, 2019, 19, 182-187.	2.4	17
1235	Construction of dye-sensitized solar cells using wet chemical route synthesized MoSe2 counter electrode. Journal of Industrial and Engineering Chemistry, 2019, 69, 379-386.	5.8	18
1236	3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2019, 69, 116-126.	5.8	13

#	Article	IF	CITATIONS
1237	Defects engineering monolayer MoSe2 magnetic states for 2D spintronic device. Journal of Alloys and Compounds, 2019, 774, 160-167.	5.5	31
1238	Rational Design of Transition Metalâ€Based Materials for Highly Efficient Electrocatalysis. Small Methods, 2019, 3, 1800211.	8.6	250
1239	Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Progress in Materials Science, 2019, 100, 99-169.	32.8	235
1240	Structure, properties and growth mechanism of a self-assembled nanocylindrical MoS2/Mo-S-C composite film. Applied Surface Science, 2019, 465, 564-574.	6.1	25
1241	3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263, 117750.	20.2	82
1242	Self‣upported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	21.0	986
1243	Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. Electrochemical Energy Reviews, 2020, 3, 395-430.	25.5	59
1244	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	20.2	40
1245	Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 260, 118220.	20.2	113
1246	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	19.5	322
1247	Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Science China Materials, 2020, 63, 62-74.	6.3	38
1248	Facile synthesis of hybrid MoS2/graphene nanosheets as high-performance anode for sodium-ion batteries. Ionics, 2020, 26, 711-717.	2.4	18
1249	Defect-rich exfoliated MoSe2 nanosheets by supercritical fluid process as an attractive catalyst for hydrogen evolution in water. Applied Surface Science, 2020, 505, 144537.	6.1	19
1250	Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2020, 146, 118884.	4.8	55
1251	Enhanced bulk photovoltaic effect in ZnO:Bi x (p-type)/MoS2 (n-type) heterostructure by tuning Bi content. Semiconductor Science and Technology, 2020, 35, 015006.	2.0	0
1252	Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. Journal of Power Sources, 2020, 446, 227319.	7.8	64
1253	Construction of WS2/MoSe2 heterojunction for efficient photoelectrocatalytic hydrogen evolution. Materials Science in Semiconductor Processing, 2020, 107, 104822.	4.0	15
1254	Selfâ€Powered Photodetectors Based on 2D Materials. Advanced Optical Materials, 2020, 8, 1900765.	7.3	245

#	Article	IF	CITATIONS
1255	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	47.7	1,767
1256	Electrodeposition and texture control of Ag-doped SnS thin films with high-electrical transmission properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 2854-2861.	2.2	2
1257	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	10.3	69
1258	Structure Engineering of MoS ₂ via Simultaneous Oxygen and Phosphorus Incorporation for Improved Hydrogen Evolution. Small, 2020, 16, e1905738.	10.0	112
1259	Tailoring the electrochemical properties of 2D-hBN <i>via</i> physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2020, 2, 264-273.	4.6	11
1260	Support interactions dictated active edge sites over MoS ₂ –carbon composites for hydrogen evolution. Nanoscale, 2020, 12, 1109-1117.	5.6	23
1261	Ultrafast growth of large single crystals of monolayer WS2 and WSe2. National Science Review, 2020, 7, 737-744.	9.5	64
1262	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	38.1	522
1263	Exfoliated Mo2C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H2 production under visible light irradiation. Applied Catalysis B: Environmental, 2020, 264, 118541.	20.2	79
1264	One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation. Applied Surface Science, 2020, 507, 145072.	6.1	28
1265	Au–Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic hydrogen production. Journal of Alloys and Compounds, 2020, 820, 153440.	5.5	29
1266	CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution. Journal of Colloid and Interface Science, 2020, 564, 77-87.	9.4	44
1267	Probing the Origin and Suppression of Vertically Oriented Nanostructures of 2D WS ₂ Layers. ACS Applied Materials & Interfaces, 2020, 12, 3873-3885.	8.0	22
1268	Robust Hydrogen-Evolving Electrocatalyst from Heterogeneous Molybdenum Disulfide-Based Catalyst. ACS Catalysis, 2020, 10, 1511-1519.	11.2	88
1269	Solarâ€Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. Solar Rrl, 2020, 4, 1900400.	5.8	133
1270	In situ TEM observation of controlled growth of two-dimensional WS2 with vertically aligned layers and high-temperature stability. Nano Energy, 2020, 67, 104221.	16.0	26
1271	DFT calculation for stability and quantum capacitance of MoS2 monolayer-based electrode materials. Materials Today Communications, 2020, 22, 100772.	1.9	15
1272	Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nature Nanotechnology, 2020, 15, 29-34.	31.5	94

#	Article	IF	CITATIONS
1273	Boronâ€Modified Electron Transfer in Metallic 1T MoSe ₂ for Enhanced Inherent Activity on Perâ€Catalytic Site toward Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 1901560.	3.7	22
1274	Constructing 1D/2D heterojunction photocatalyst from FeSe ₂ nanorods and MoSe ₂ nanoplates with high photocatalytic and photoelectrochemical performance. International Journal of Energy Research, 2020, 44, 1205-1217.	4.5	27
1275	The synergistic effect of proton intercalation and electron transfer via electro-activated molybdenum disulfide/graphite felt toward hydrogen evolution reaction. Journal of Catalysis, 2020, 381, 175-185.	6.2	21
1276	Synthesis of scalable 1T/2H–MoSe2 nanosheets with a new source of Se in basic media and study of their HER activity. International Journal of Hydrogen Energy, 2020, 45, 6090-6101.	7.1	27
1277	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	12.8	153
1278	Improvement of HER activity for MoS ₂ : insight into the effect and mechanism of phosphorus post-doping. New Journal of Chemistry, 2020, 44, 1493-1499.	2.8	41
1279	MoS2 microflowers with enriched active edges self-assembled on Ti mesh as a binder-free electrode for catalytic hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124186.	4.7	6
1280	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370.	4.3	27
1281	One-dimensional CoMoS4 nanorod arrays as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 821, 153245.	5.5	8
1282	A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113727.	3.8	37
1283	Photo-Carrier-Guiding Behavior of Vertically Grown MoS2 and MoSe2 in Highly Efficient Low-Light Transparent Photovoltaic Devices on Large-Area Rough Substrates. ACS Applied Materials & Interfaces, 2020, 12, 1368-1377.	8.0	6
1284	Microwave synthesized dry leaf-like mesoporous MoSe2 nanostructure as an efficient catalyst for enhanced hydrogen evolution and supercapacitor applications. Microchemical Journal, 2020, 153, 104446.	4.5	26
1285	Photo/Electrochemical Applications of Metal Sulfide/TiO ₂ Heterostructures. Advanced Energy Materials, 2020, 10, 1902355.	19.5	236
1286	Facile preparation of amorphous NiWSex and CoWSex nanoparticles for the electrocatalytic hydrogen evolution reaction in alkaline condition. Journal of Electroanalytical Chemistry, 2020, 856, 113674.	3.8	9
1287	NiS _{<i>x</i>} @MoS ₂ heterostructure prepared by atomic layer deposition as high-performance hydrogen evolution reaction electrocatalysts in alkaline media. Journal of Materials Research, 2020, 35, 822-830.	2.6	15
1288	Heterostructured MoS2@Bi2Se3 nanoflowers: A highly efficient electrocatalyst for hydrogen evolution. Journal of Catalysis, 2020, 381, 590-598.	6.2	39
1289	Synthesis of the rod-like NiS2@C for hydrogen evolution reaction in acidic solution. Functional Materials Letters, 2020, 13, 2050009.	1.2	2
1290	Evaluating the Effect of Varying the Metal Precursor in the Colloidal Synthesis of MoSe2 Nanomaterials and Their Application as Electrodes in the Hydrogen Evolution Reaction. Nanomaterials, 2020, 10, 1786.	4.1	9

IF

CITATIONS

1291	Transition metal–incorporated tungsten-based ternary refractory metal selenides (MWSex; MÂ= Fe, Co,) Tj ETQo 100510.	4.7 0 0 0 rgB	3T /Overlock 13
1292	Defect Engineering of van der Waals Solids for Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 3682-3695.	3.3	4
1293	Substrate Impact on the Structure and Electrocatalyst Properties of Molybdenum Disulfide for HER from Water. Metals, 2020, 10, 1251.	2.3	8
1294	MnS-Nanoparticles-Decorated Three-Dimensional Graphene Hybrid as Highly Efficient Bifunctional Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Reduction Reaction. Catalysts, 2020, 10, 1141.	3.5	9
1295	General Synthesis of Nanoporous 2D Metal Compounds with 3D Bicontinous Structure. Advanced Materials, 2020, 32, e2004055.	21.0	20
1296	Fused Porphyrin Thin Films as Heterogeneous Visible-Light Active Photocatalysts with Well-Defined Active Metal Sites for Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 9848-9855.	5.1	26
1297	Healing Sulfur Vacancies in Monolayer MoS ₂ by High-Pressure Sulfur and Selenium Annealing: Implication for High-Performance Transistors. ACS Applied Nano Materials, 2020, 3, 10462-10469.	5.0	24
1298	Longitudinal unzipping of 2D transition metal dichalcogenides. Nature Communications, 2020, 11, 5032.	12.8	18
1299	Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2. Applied Surface Science, 2020, 529, 147158.	6.1	29
1300	Stabilizing Hydrogen Adsorption through Theory-Guided Chalcogen Substitution in Chevrel-Phase Mo ₆ X ₈ (X=S, Se, Te) Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 35995-36003.	8.0	26
1301	Mn incorporated MoS2 nanoflowers: A high performance electrode material for symmetric supercapacitor. Electrochimica Acta, 2020, 338, 135815.	5.2	68
1302	Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS ₂ . Journal of the American Chemical Society, 2020, 142, 4298-4308.	13.7	585
1303	Design and synthesis of two-dimensional materials and their heterostructures. , 2020, , 13-54.		1
1304	Electrocatalytic properties of two-dimensional transition metal dichalcogenides and their hetrostructures in energy applications. , 2020, , 215-241.		6
1305	Direct Tellurization of Pt to Synthesize 2D PtTe ₂ for High-Performance Broadband Photodetectors and NIR Image Sensors. ACS Applied Materials & Interfaces, 2020, 12, 53921-53931.	8.0	48
1306	Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. Journal of Materials Chemistry A, 2020, 8, 25465-25498.	10.3	112
1307	Complementary growth of 2D transition metal dichalcogenide semiconductors on metal oxide interfaces. Applied Physics Letters, 2020, 117, 213104.	3.3	2
1308	Hierarchical Ultrathin Mo/MoS _{2(1â^'} <i>_x</i> _{a^'} <i>_y</i> ₎ P <i>_{xNanosheets Assembled on P, N Coâ€Doped Carbon Nanotubes for Hydrogen Evolution in Both Acidic and Alkaline Electrolytes, Small. 2020. 16, e2004973.}</i>	;ub> 10.0	29

ARTICLE

#

#	Article	IF	CITATIONS
1309	Atomic Layer Deposition of MoSe ₂ Nanosheets on TiO ₂ Nanotube Arrays for Photocatalytic Dye Degradation and Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 12034-12045.	5.0	25
1310	Molybdenum Tungsten Disulfide with a Large Number of Sulfur Vacancies and Electronic Unoccupied States on Silicon Micropillars for Solar Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 54671-54682.	8.0	23
1311	Vertically Aligned 2D MoS ₂ Layers with Strain-Engineered Serpentine Patterns for High-Performance Stretchable Gas Sensors: Experimental and Theoretical Demonstration. ACS Applied Materials & Interfaces, 2020, 12, 53174-53183.	8.0	35
1312	Tuning Transport and Chemical Sensitivity via Niobium Doping of Synthetic MoS ₂ . Advanced Materials Interfaces, 2020, 7, 2000856.	3.7	19
1313	Inkjet-defined site-selective (IDSS) growth for controllable production of in-plane and out-of-plane MoS2 device arrays. Nanoscale, 2020, 12, 16917-16927.	5.6	7
1314	Tellurene based biosensor for detecting DNA/RNA nucleobases and amino acids: A theoretical insight. Applied Surface Science, 2020, 532, 147451.	6.1	27
1315	Rational Design of MoS ₂ /C ₃ N ₄ Hybrid Aerogel with Abundant Exposed Edges for Highly Sensitive NO ₂ Detection at Room Temperature. Chemistry of Materials, 2020, 32, 7215-7225.	6.7	43
1316	Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 2020, 40, 132-139.	14.2	79
1317	Hydrothermally Synthesized MoS ₂ Nanoclusters for Hydrogen Evolution Reaction. Electroanalysis, 2020, 32, 2564-2570.	2.9	9
1318	Defect-rich MoS2/r-GO hybrid via microwave-assisted solvothermal process for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 22459-22468.	7.1	13
1319	Environment-dependent edge reconstruction of transition metal dichalcogenides: a global search. Materials Today Advances, 2020, 8, 100079.	5.2	21
1320	Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy, 2020, 78, 105234.	16.0	250
1321	Scalable lateral heterojunction by chemical doping of 2D TMD thin films. Scientific Reports, 2020, 10, 12970.	3.3	30
1322	Facile one-pot supercritical synthesis of MoS2/pristine graphene nanohybrid as a highly active advanced electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2020, 531, 147282.	6.1	12
1323	Carbon Anode in Carbon History. Molecules, 2020, 25, 4996.	3.8	4
1324	Nanostructured materials for energy conversion and storage. , 2020, , 351-386.		0
1325	Synthesis and characterization of WS2/graphene/SiC van der Waals heterostructures via WO3â^'x thin film sulfurization. Scientific Reports, 2020, 10, 17334.	3.3	15
1326	Identification of the anti-triangular etched MoS2 with comparative activity with commercial Pt for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 33457-33465.	7.1	11

#	Article	IF	Citations
" 1327	Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods, 2020, 4, 2000494.	8.6	146
1328	Defect Engineering in Metastable Phases of Transitionâ€Metal Dichalcogenides for Electrochemical Applications. Chemistry - an Asian Journal, 2020, 15, 3961-3972.	3.3	8
1329	Scalable Fabrication of Molybdenum Disulfide Nanostructures and their Assembly. Advanced Materials, 2020, 32, e2003439.	21.0	14
1330	Single-Step Chemical Vapor Deposition Growth of Platinum Nanocrystal: Monolayer MoS ₂ Dendrite Hybrid Materials for Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 8243-8256.	6.7	23
1331	Steer the Rheology of Solvent with Little Surfactant to Exfoliate MoS ₂ Nanosheet by Liquid Phase Exfoliation Method. Nano, 2020, 15, 2050118.	1.0	3
1332	Self-Assembly Synthesis of the MoS2/PtCo Alloy Counter Electrodes for High-Efficiency and Stable Low-Cost Dye-Sensitized Solar Cells. Nanomaterials, 2020, 10, 1725.	4.1	7
1333	Large‣cale and Robust Multifunctional Vertically Aligned MoS ₂ Photoâ€Memristors. Advanced Functional Materials, 2020, 30, 2005718.	14.9	22
1334	Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chemical Reviews, 2020, 120, 12563-12591.	47.7	163
1335	Boosting Solar Hydrogen Production of Molybdenum Tungsten Sulfide-Modified Si Micropyramids by Introducing Phosphate. ACS Applied Materials & Interfaces, 2020, 12, 41515-41526.	8.0	10
1336	Controllable synthesis of platinum diselenide (PtSe ₂) inorganic fullerene. Journal of Materials Chemistry A, 2020, 8, 18925-18932.	10.3	12
1337	Transition metal dichalcogenide metamaterials with atomic precision. Nature Communications, 2020, 11, 4604.	12.8	69
1338	Synthesis of Heat-Resistant Oxygen-Free Nb–Cr–Mo–Si–B Coatings from Compositions Modified with Refractory Group IV – Via Metal Chalcogenides. Refractories and Industrial Ceramics, 2020, 61, 61-67.	0.6	0
1339	Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochemical Energy Reviews, 2020, 3, 690-729.	25.5	56
1340	Spaceâ€Confined Fabrication of MoS ₂ @Carbon Tubes with Semienclosed Architecture Achieving Superior Cycling Capability for Sodium Ion Storage. Advanced Materials Interfaces, 2020, 7, 2000953.	3.7	10
1341	Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Frontiers of Physics, 2020, 15, 1.	5.0	20
1342	Design of Core–Shell Quantum Dots–3D WS ₂ Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano, 2020, 14, 12668-12678.	14.6	49
1343	Uncovering topographically hidden features in 2D MoSe2 with correlated potential and optical nanoprobes. Npj 2D Materials and Applications, 2020, 4, .	7.9	24
1344	Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS ₂ Crystals. ACS Applied Materials & Interfaces, 2020, 12, 58140-58148.	8.0	22

#	Article	IF	CITATIONS
1345	Solid-state synthesis of few-layer cobalt-doped MoS ₂ with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis. RSC Advances, 2020, 10, 34323-34332.	3.6	14
1346	Vertically-oriented MoS ₂ nanosheets for nonlinear optical devices. Nanoscale, 2020, 12, 10491-10497.	5.6	28
1347	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	5.1	100
1348	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	5.6	41
1349	Ternary TiO2/MoSe2/Î ³ -graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. Journal of Materials Science: Materials in Electronics, 2020, 31, 8796-8804.	2.2	9
1350	Wafer-Scale Two-Dimensional MoS ₂ Layers Integrated on Cellulose Substrates Toward Environmentally Friendly Transient Electronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 25200-25210.	8.0	31
1351	Na ₂ SO ₄ -Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion. Chemistry of Materials, 2020, 32, 5616-5625.	6.7	23
1352	Lubrication degradation mechanism of Mo-S-Ti composite films irradiated by heavy ions. Applied Surface Science, 2020, 517, 146131.	6.1	3
1353	Canonicâ€Like HER Activity of Cr _{1–} <i>_x</i> Mo <i>_x</i> B ₂ Solid Solution: Overpowering Pt/C at High Current Density. Advanced Materials, 2020, 32, e2000855.	21.0	61
1354	Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e2002584.	21.0	82
1355	2H-MoS2 nanoflowers with exposed edges for hydrogen producing electrochemical cell. Materials Today Communications, 2020, 25, 101270.	1.9	6
1356	Thermolytic Deposition of MoS ₂ Nanolayer for Si Solar Cell Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900993.	1.8	5
1357	Promoting Active Sites for Hydrogen Evolution in MoSe ₂ via Transition-Metal Doping. Journal of Physical Chemistry C, 2020, 124, 12324-12336.	3.1	38
1358	Direct Transformation of Crystalline MoO3 into Few-Layers MoS2. Materials, 2020, 13, 2293.	2.9	2
1359	Investigation of the versatility of SPES membranes customized with sulfonated molybdenum disulfide nanosheets for DMFC applications. International Journal of Hydrogen Energy, 2020, 45, 15507-15520.	7.1	16
1360	Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review. Nanomaterials, 2020, 10, 1012.	4.1	73
1361	Influence of uniform deposition of molybdenum disulfide particles on electrochemical reaction. Electrochimica Acta, 2020, 353, 136480.	5.2	6
1362	Multi-wafer-scale growth of WSe2 films using a traveling flow-type reactor with a remote thermal Se cracker. Applied Surface Science, 2020, 528, 146951.	6.1	0

#	Article	IF	CITATIONS
1363	Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS ₂ and 1T-TaS ₂ . 2D Materials, 2020, 7, 045005.	4.4	15
1364	Supercritical hydrothermal synthesis of MoS ₂ nanosheets with controllable layer number and phase structure. Dalton Transactions, 2020, 49, 9377-9384.	3.3	17
1365	Fabrication of a preferentially [001]-oriented Sb ₂ Se ₃ thin film on diverse substrates and its application in photoelectrochemical water reduction. Sustainable Energy and Fuels, 2020, 4, 3943-3950.	4.9	15
1366	Electrical properties tunability of large area MoS2 thin films by oxygen plasma treatment. Applied Physics Letters, 2020, 116, .	3.3	12
1367	Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction. Applied Physics Letters, 2020, 116, .	3.3	18
1368	Mechanism of hydrogen generation on stable Mo-edge of 2H-MoS2 in water from density functional theory. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	6
1369	Oxide Inhibitor-Assisted Growth of Single-Layer Molybdenum Dichalcogenides (MoX ₂ , X =) Tj ETQq0	0.0 rgBT / 14.6	Oyerlock 10
1370	Visible range photoresponse of vertically oriented on-chip MoS2 and WS2 thin films. AIP Advances, 2020, 10, 065114.	1.3	2
1371	Low-temperature synthesis and electrocatalytic application of large-area PtTe ₂ thin films. Nanotechnology, 2020, 31, 375601.	2.6	23
1373	Ni―and Coâ€Substituted Metallic MoS ₂ for the Alkaline Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 3606-3615.	3.4	24
1374	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616.	30.8	166
1375	Robust Sample Preparation of Large-Area In- and Out-of-Plane Cross Sections of Layered Materials with Ultramicrotomy. ACS Applied Materials & amp; Interfaces, 2020, 12, 15867-15874.	8.0	8
1376	Cyclic Silylselenides: Convenient Selenium Precursors for Atomic Layer Deposition. ChemPlusChem, 2020, 85, 576-579.	2.8	8
1377	Magnetic Enhancement for Hydrogen Evolution Reaction on Ferromagnetic MoS ₂ Catalyst. Nano Letters, 2020, 20, 2923-2930.	9.1	130
1378	Covalently Connected Nb ₄ N _{5–<i>x</i>} O _{<i>x</i>} –MoS ₂ Heterocatalysts with Desired Electron Density to Boost Hydrogen Evolution. ACS Nano, 2020, 14, 4925-4937.	14.6	50
1379	Self-supported molybdenum selenide nanosheets grown on urchin-like cobalt selenide nanowires array for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 13282-13289.	7.1	13
1380	Ultrafast 27 GHz cutoff frequency in vertical WSe2 Schottky diodes with extremely low contact resistance. Nature Communications, 2020, 11, 1574.	12.8	39
1381	Distance Synergy of MoS ₂ onfined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 10502-10507.	13.8	122

#	Article	IF	CITATIONS
1382	Distance Synergy of MoS ₂ â€Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 10588-10593.	2.0	37
1383	Theoretical Analysis of the Geometrical Effects of Tilted/Horizontal MoS ₂ /WSe ₂ van der Waals Heterostructures: Implications for Photoelectric Properties and Energy Conversion. ACS Applied Nano Materials, 2020, 3, 3930-3938.	5.0	10
1384	A Scalable Interfacial Engineering Strategy for a Finely Tunable, Homogeneous MoS 2 /rGOâ€Based HER Catalytic Structure. Advanced Materials Interfaces, 2020, 7, 1902022.	3.7	18
1385	Interface Engineering of MoS ₂ â€Modified Graphitic Carbon Nitride Nanoâ€photocatalysts for an Efficient Hydrogen Evolution Reaction. ChemPlusChem, 2020, 85, 1379-1388.	2.8	19
1386	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	11.2	190
1387	Construction of Active Orbital via Single-Atom Cobalt Anchoring on the Surface of 1T-MoS ₂ Basal Plane toward Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 2315-2322.	5.1	50
1388	Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials, 2020, 10, 1903870.	19.5	169
1389	Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2020, 2, 526-553.	10.0	312
1390	Surface Plasmon Resonance-Enhanced Near-Infrared Absorption in Single-Layer MoS ₂ with Vertically Aligned Nanoflakes. ACS Applied Materials & Interfaces, 2020, 12, 14476-14483.	8.0	22
1391	Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Research, 2020, 13, 2371-2377.	10.4	5
1392	Sequential plan-view imaging of sub-surface structures in the transmission electron microscope. Materialia, 2020, 12, 100798.	2.7	2
1393	Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2020, 3, 6270-6296.	5.0	70
1394	MoS ₂ Quantum Dots as Efficient Electrocatalyst for Hydrogen Evolution Reaction over a Wide pH Range. Energy & Fuels, 2020, 34, 10268-10275.	5.1	54
1395	Graphene-MoS ₂ vertically anchored on an MXene-derived accordion-like TiO ₂ /C skeleton: an ultrastable HER catalyst. Journal of Materials Chemistry A, 2020, 8, 14223-14233.	10.3	28
1396	Continuous phase regulation of MoSe ₂ from 2H to 1T for the optimization of peroxidase-like catalysis. Journal of Materials Chemistry B, 2020, 8, 6451-6458.	5.8	14
1397	Controlling the preferred orientation of layered BiOI solar absorbers. Journal of Materials Chemistry C, 2020, 8, 10791-10797.	5.5	25
1398	Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 21502-21511.	7.1	20
1399	MoS ₂ nanoâ€flowers stacked by ultrathin sheets coupling with oxygen selfâ€doped porous biochar for efficient photocatalytic N ₂ fixation. ChemCatChem, 2020, 12, 5221-5228.	3.7	14

#	Article	IF	CITATIONS
1400	Real time detection of Hg2+ ions using MoS2 functionalized AlGaN/GaN high electron mobility transistor for water quality monitoring. Sensors and Actuators B: Chemical, 2020, 309, 127832.	7.8	40
1401	Manufacturing strategies for wafer-scale two-dimensional transition metal dichalcogenide heterolayers. Journal of Materials Research, 2020, 35, 1350-1368.	2.6	12
1402	MoS ₂ â€Based Nanomaterials for Roomâ€Temperature Gas Sensors. Advanced Materials Technologies, 2020, 5, 1901062.	5.8	138
1403	Novel self-supported MoS2/FeS2 nanocomposite as an excellent electrocatalyst for hydrogen evolution. Solid State Sciences, 2020, 101, 106156.	3.2	8
1404	In-Situ Formation of MoS2 and WS2 Tribofilms by the Synergy Between Transition Metal Oxide Nanoparticles and Sulphur-Containing Oil Additives. Tribology Letters, 2020, 68, 1.	2.6	17
1405	High photocatalytic and photoelectrochemical performance of a novel 0D/2D heterojunction photocatalyst constructed by ZnSe nanoparticles and MoSe2 nanoflowers. Ceramics International, 2020, 46, 13651-13659.	4.8	26
1406	Research progress on the preparations, characterizations and applications of large scale 2D transition metal dichalcogenides films. FlatChem, 2020, 21, 100161.	5.6	42
1407	Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63, 921-948.	6.3	76
1408	A novel Ni-S-Mn electrode with hierarchical morphology fabricated by gradient electrodeposition for hydrogen evolution reaction. Applied Surface Science, 2020, 514, 145944.	6.1	25
1409	Rational Construction of a WS ₂ /CoS ₂ Heterostructure Electrocatalyst for Efficient Hydrogen Evolution at All pH Values. ACS Sustainable Chemistry and Engineering, 2020, 8, 4474-4480.	6.7	63
1410	Stable zigzag edges of transition-metal dichalcogenides with high catalytic activity for oxygen reduction. Electrochimica Acta, 2020, 338, 135865.	5.2	14
1411	The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124431.	4.7	26
1412	Reorientation of ï€-conjugated molecules on few-layer MoS ₂ films. Physical Chemistry Chemical Physics, 2020, 22, 3097-3104.	2.8	11
1413	Nonvolatile Resistive Switching in Nanocrystalline Molybdenum Disulfide with Ionâ€Based Plasticity. Advanced Electronic Materials, 2020, 6, 1900892.	5.1	19
1414	Engineering Substrate Interaction To Improve Hydrogen Evolution Catalysis of Monolayer MoS ₂ Films beyond Pt. ACS Nano, 2020, 14, 1707-1714.	14.6	97
1415	Promoting the hydrogen evolution performance of 1T-MoSe2-Se: Optimizing the two-dimensional structure of MoSe2 by layered double hydroxide limited growth. Applied Surface Science, 2020, 509, 145364.	6.1	26
1416	Incorporation of active phase in porous MoS2 for enhanced hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 4121-4128.	2.2	3
1417	Fabrication of a novel 3D E-Fe2O3-Pi-MoS2 film with highly enhanced carrier mobility and photoelectrocatalytic activity. Electrochimica Acta, 2020, 337, 135748.	5.2	8

#	Article	IF	CITATIONS
1418	Improved charge injection of edge aligned MoS ₂ /MoO ₂ hybrid nanosheets for highly robust and efficient electrocatalysis of H ₂ production. Nanoscale, 2020, 12, 5003-5013.	5.6	26
1419	Ultrathin MoSe2 three-dimensional nanospheres as high carriers transmission channel and full spectrum harvester toward excellent photocatalytic and photoelectrochemical performance. International Journal of Hydrogen Energy, 2020, 45, 6519-6528.	7.1	20
1420	Transition metal dichalcogenides-based flexible gas sensors. Sensors and Actuators A: Physical, 2020, 303, 111875.	4.1	125
1421	Evaporationâ€Induced Vertical Alignment Enabling Directional Ion Transport in a 2Dâ€Nanosheetâ€Based Battery Electrode. Advanced Materials, 2020, 32, e1907941.	21.0	66
1422	Nickel nanograins anchored on a carbon framework for an efficient hydrogen evolution electrocatalyst and a flexible electrode. Journal of Materials Chemistry A, 2020, 8, 3499-3508.	10.3	18
1423	A general route to free-standing films of nanocrystalline molybdenum chalcogenides at a liquid/liquid interface under hydrothermal conditions. Applied Surface Science, 2020, 511, 145579.	6.1	3
1424	Comparative Study of the Structure, Composition, and Electrocatalytic Performance of Hydrogen Evolution in MoSx~2+Î′/Mo and MoSx~3+δ Films Obtained by Pulsed Laser Deposition. Nanomaterials, 2020, 10, 201.	4.1	18
1425	NiCo2Se4 as an anode material for sodium-ion batteries. Electrochemistry Communications, 2020, 112, 106684.	4.7	29
1426	Synergetic effect between MoS2 and N, S- doped reduced graphene oxide supported palladium nanoparticles for hydrogen evolution reaction. Materials Chemistry and Physics, 2020, 251, 123106.	4.0	23
1427	Electronic and optical properties of InN-MTe2(M=Mo, W) heterostructures from first-principles. Materials Science in Semiconductor Processing, 2020, 114, 105067.	4.0	9
1428	Stability of 2H- and 1T-MoS ₂ in the presence of aqueous oxidants and its protection by a carbon shell. RSC Advances, 2020, 10, 9324-9334.	3.6	10
1429	All printed wide range humidity sensor array combining MoSe2 and PVOH in series. Journal of Materials Science: Materials in Electronics, 2020, 31, 7683-7697.	2.2	12
1430	A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020, 39, 335-351.	7.1	196
1431	Atomic Layer Deposition of MoSe2 Using New Selenium Precursors. FlatChem, 2020, 21, 100166.	5.6	16
1432	Insight into the electrochemical-cycling activation of Pt/molybdenum carbide toward synergistic hydrogen evolution catalysis. Journal of Catalysis, 2020, 384, 169-176.	6.2	12
1433	Chemical vapor deposition of molybdenum disulphide on platinum foil. Materials Chemistry and Physics, 2020, 249, 123017.	4.0	5
1434	Tunable Molybdenum Disulfide-Enabled Fiber Mats for High-Efficiency Removal of Mercury from Water. ACS Applied Materials & Interfaces, 2020, 12, 18446-18456.	8.0	55
1435	Electrokinetic Analysis of Poorly Conductive Electrocatalytic Materials. ACS Catalysis, 2020, 10, 4990-4996.	11.2	43

#	Article	IF	CITATIONS
1436	Printable Highly Stable and Superfast Humidity Sensor Based on Two Dimensional Molybdenum Diselenide. Scientific Reports, 2020, 10, 5509.	3.3	36
1437	An <i>in situ</i> grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution. Catalysis Science and Technology, 2020, 10, 3247-3254.	4.1	19
1438	Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale, 2020, 12, 8608-8625.	5.6	32
1439	2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7, 021304.	11.3	126
1440	Recent Advances in 2D-MoS ₂ and its Composite Nanostructures for Supercapacitor Electrode Application. Energy & amp; Fuels, 2020, 34, 6558-6597.	5.1	143
1441	Automated Assembly of Wafer-Scale 2D TMD Heterostructures of Arbitrary Layer Orientation and Stacking Sequence Using Water Dissoluble Salt Substrates. Nano Letters, 2020, 20, 3925-3934.	9.1	25
1442	Graphitic nanopetals and their applications in electrochemical energy storage and biosensing. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	6
1443	Alternative synthesis of structurally defective MoS2 nanoflakes for efficient hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 256, 114539.	3.5	15
1444	Thickness-Dependent Ultrafast Photocarrier Dynamics in Selenizing Platinum Thin Films. Journal of Physical Chemistry C, 2020, 124, 10719-10726.	3.1	23
1445	2D molybdenum disulphide nanosheets incorporated with single heteroatoms for the electrochemical hydrogen evolution reaction. Nanoscale, 2020, 12, 10447-10455.	5.6	14
1446	Emerging 2D Materials and Their Van Der Waals Heterostructures. Nanomaterials, 2020, 10, 579.	4.1	92
1447	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	10.3	33
1448	2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 2021, 33, e1907818.	21.0	284
1449	Position-sensitive detectors based on two-dimensional materials. Nano Research, 2021, 14, 1889-1900.	10.4	14
1450	In situ growth of MoS2 on three-dimensional porous carbon for sensitive electrochemical determination of bisphenol A. Journal of Applied Electrochemistry, 2021, 51, 307-316.	2.9	3
1451	Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125836.	4.7	81
1452	Vertically aligned MoS2 films prepared by RF-magnetron sputtering method as electrocatalysts for hydrogen evolution reactions. Composite Interfaces, 2021, 28, 707-716.	2.3	10
1453	Catalytic activity for hydrogen evolution reaction in square phase Janus MoSSe monolayer: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114485.	2.7	4

#	Article	IF	CITATIONS
1454	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	18.8	66
1455	Catalytic activity of synthesized 2D MoS2/graphene nanohybrids for the hydrodesulfurization of SRLGO: experimental and DFT study. Environmental Science and Pollution Research, 2021, 28, 5978-5990.	5.3	12
1456	FeS2 bridging function to enhance charge transfer between MoS2 and g–C3N4 for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 421, 127804.	12.7	51
1457	Modulating in-plane electron density of molybdenum diselenide via spontaneously atomic-scale palladium doping enables high performance lithium oxygen batteries. Journal of Alloys and Compounds, 2021, 855, 157484.	5.5	5
1458	Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Research, 2021, 14, 1985-2002.	10.4	98
1459	Single nanoflake-based PtSe2 p–n junction (in-plane) formed by optical excitation of point defects in BN for ultrafast switching photodiodes. Journal of Materials Chemistry C, 2021, 9, 199-207.	5.5	23
1460	Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries. Electrochimica Acta, 2021, 367, 137482.	5.2	24
1461	Metal organic framework derived Ni0.15Co0.85S2@MoS2 heterostructure as an efficient and stable electrocatalyst for hydrogen evolution. Separation and Purification Technology, 2021, 254, 117629.	7.9	9
1462	Low ligand field strength ion (lâ^') mediated 1D inorganic material Mol3: Synthesis and application to photo-detectors. Journal of Alloys and Compounds, 2021, 853, 157375.	5.5	11
1463	Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass. Journal of Materials Chemistry A, 2021, 9, 5415-5424.	10.3	32
1464	Ruthenium nanodendrites on reduced graphene oxide: an efficient water and 4-nitrophenol reduction catalyst. New Journal of Chemistry, 2021, 45, 1556-1564.	2.8	13
1465	Metal chalcogenide-associated catalysts enabling CO ₂ electroreduction to produce low-carbon fuels for energy storage and emission reduction: catalyst structure, morphology, performance, and mechanism. Journal of Materials Chemistry A, 2021, 9, 2526-2559.	10.3	26
1466	Hierarchical few-layer fluorine-free Ti ₃ C ₂ T _X (T = O,) Tj ETQq0 0 0 rgBT /Ov Chemistry A, 2021, 9, 922-927.	verlock 10 10.3	Tf 50 267 Tc 29
1467	An MoS2/NiCo2O4 composite supported on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Physics and Chemistry of Solids, 2021, 150, 109842.	4.0	25
1468	Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chemical Society Reviews, 2021, 50, 9152-9201.	38.1	254
1469	Free-standing electrochemically coated MoS _x based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale, 2021, 13, 5744-5756.	5.6	52
1470	In Situ Characterization of Transformations in Nanoscale Layered Metal Chalcogenide Materials: A Review. ChemNanoMat, 2021, 7, 208-222.	2.8	6
1471	In Situ TEM Investigations on the Controlled Phase Transformation of Vertically Aligned WS ₂ at Designated Locations on an Atomic Scale. Journal of Physical Chemistry C, 2021, 125, 2761-2769.	3.1	3

#	Article	IF	CITATIONS
1472	Research Progress of Electrocatalyst for Hydrogen Evolution Reaction. Hans Journal of Nanotechnology, 2021, 11, 155-165.	0.0	0
1473	Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe ₂ . Physical Chemistry Chemical Physics, 2021, 23, 18869-18884.	2.8	17
1474	Vertically oriented MoS ₂ /WS ₂ heterostructures on reduced graphene oxide sheets as electrocatalysts for hydrogen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 3396-3403.	5.9	20
1475	Structural and surface morphological studies of WSe2 2-D material. AIP Conference Proceedings, 2021, , .	0.4	1
1476	Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review. Journal of Materials Chemistry C, 2021, 9, 8776-8808.	5.5	115
1477	Self-regulated catalysis for the selective synthesis of primary amines from carbonyl compounds. Green Chemistry, 2021, 23, 7115-7121.	9.0	15
1478	Enhanced photocatalytic activity and easy recovery of visible light active MoSe ₂ /BiVO ₄ heterojunction immobilized on <i>Luffa cylindrica</i> – experimental and DFT study. Environmental Science: Nano, 2021, 8, 3028-3041.	4.3	6
1479	Active Site Engineering on Two-Dimensional-Layered Transition Metal Dichalcogenides for Electrochemical Energy Applications: A Mini-Review. Catalysts, 2021, 11, 151.	3.5	9
1480	Electronic Property of PdSe2 Thin Films Fabricated by Post-selenization of Pd Films. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 779.	1.3	0
1481	Electron beam lithography for direct patterning of MoS ₂ on PDMS substrates. RSC Advances, 2021, 11, 19908-19913.	3.6	5
1482	Fluorination activates the basal plane HER activity of ReS ₂ : a combined experimental and theoretical study. Journal of Materials Chemistry A, 2021, 9, 14451-14458.	10.3	21
1483	Mechanically rollable photodetectors enabled by centimetre-scale 2D MoS2 layer/TOCN composites. Nanoscale Advances, 2021, 3, 3028-3034.	4.6	5
1484	Catalytically Active Site Identification of Molybdenum Disulfide as Gas Cathode in a Nonaqueous Li–CO ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 6156-6167.	8.0	18
1485	Ellipsometric Investigation of Thick Vertically Oriented MoS2 Films Grown on Mo Foil at High Temperatures. Journal of Physical Chemistry C, 2021, 125, 2005-2014.	3.1	1
1486	Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy and Environmental Science, 2021, 14, 3717-3756.	30.8	98
1487	Highly Efficient Electrocatalytic Water Splitting. , 2021, , 1335-1367.		1
1488	Tuning of structural and optical properties with enhanced catalytic activity in chemically synthesized Co-doped MoS ₂ nanosheets. RSC Advances, 2021, 11, 1303-1319.	3.6	29
1489	Deposition of MoSe ₂ flakes using cyclic selenides. RSC Advances, 2021, 11, 22140-22147.	3.6	2

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
1490	Strategy and Future Prospects to Develop Room-Temperature-Recoverable NO2 Gas Sensor Based on Two-Dimensional Molybdenum Disulfide. Nano-Micro Letters, 2021, 13, 38.	27.0	103
1491	A highly stable CoMo ₂ S ₄ /Ni ₃ S ₂ heterojunction electrocatalyst for efficient hydrogen evolution. Chemical Communications, 2021, 57, 785-788.	4.1	20
1493	Hierarchically Ordinated Two-Dimensional MoS2 Nanosheets on Three-Dimensional Reduced Graphene Oxide Aerogels as Highly Active and Stable Catalysts for Hydrogen Evolution Reaction. Catalysts, 2021, 11, 182.	3.5	14
1494	Band Alignment of Graphene/MoS 2 /Fluorine Tin Oxide Heterojunction for Photodetector Application. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000744.	1.8	1
1495	Surface Coordination Chemistry of Nanomaterials and Catalysis. , 2021, , 204-227.		1
1496	Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis. , 2021, , 3075-3101.		0
1497	Thermal Annealing Effects on Naturally Contacted Monolayer MoS 2. Physica Status Solidi (B): Basic Research, 2021, 258, 2000426.	1.5	1
1498	Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 9087-9100.	7.1	85
1499	Lateral photovoltaic effect based on novel materials and external modulations. Journal Physics D: Applied Physics, 2021, 54, 153003.	2.8	11
1500	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie. 2021, 133, 7089-7093 Theoretical prediction of electronic, transport, optical, and thermoelectric properties of Janus	2.0	20
1501	monolayers <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>In </mml:mi> <mml:n< td=""><td>n>2<td>l:mn></td></td></mml:n<></mml:msub></mml:mrow></mml:math 	n>2 <td>l:mn></td>	l:mn>

#	Article	IF	CITATIONS
1509	VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction. Journal Physics D: Applied Physics, 2021, 54, 214006.	2.8	6
1510	Growth of MoSe2 electrocatalyst from metallic molybdenum nanoparticles for efficient hydrogen evolution. Materials Today Communications, 2021, 26, 101976.	1.9	6
1511	Elimination of Interlayer Potential Barriers of Chromium Sulfide by Self-Intercalation for Enhanced Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 13055-13062.	8.0	17
1512	From Monolayers to Nanotubes: Toward Catalytic Transition-Metal Dichalcogenides for Hydrogen Evolution Reaction. Energy & Fuels, 2021, 35, 6282-6288.	5.1	10
1513	Regulation of vertical and biaxial strain on electronic and optical properties of G-GaN-G sandwich heterostructure. Journal of Materials Science, 2021, 56, 11402-11413.	3.7	3
1514	Three-dimensional networks of superconducting NbSe2 flakes with nearly isotropic large upper critical field. Npj 2D Materials and Applications, 2021, 5, .	7.9	6
1515	Solution-Processed MoS ₂ Film with Functional Interfaces via Precursor-Assisted Chemical Welding. ACS Applied Materials & Interfaces, 2021, 13, 12221-12229.	8.0	19
1516	Work Function Engineering of 2D Materials: The Role of Polar Edge Reconstructions. Journal of Physical Chemistry Letters, 2021, 12, 2320-2326.	4.6	18
1517	3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. Journal of the Korean Ceramic Society, 2021, 58, 379-398.	2.3	12
1518	Electrical Properties and Thermal Annealing Effects of Polycrystalline MoS2-MoSX Nanowalls Grown by Sputtering Deposition Method. Crystals, 2021, 11, 351.	2.2	0
1519	Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catalysis Letters, 2022, 152, 315-323.	2.6	2
1520	<scp>CoSe₂</scp> / <scp>MoS₂</scp> Heterostructures to Couple Polysulfide Adsorption and Catalysis in <scp>Lithiumâ€Sulfur</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1138-1144.	4.9	21
1521	Developments in stability and passivation strategies for black phosphorus. Nano Research, 2021, 14, 4386-4397.	10.4	18
1522	Epitaxial Growth of Nanostructured Li ₂ Se on Lithium Metal for All Solid‣tate Batteries. Advanced Science, 2021, 8, e2004204.	11.2	36
1523	Electrochemical Evaluation of MoS2-Cu-RGO as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cell. International Journal of Electrochemical Science, 2021, 16, 210458.	1.3	7
1524	Insights into the principles, design methodology and applications of electrocatalysts towards hydrogen evolution reaction. Energy Reports, 2021, 7, 8577-8596.	5.1	4
1525	Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chemical Engineering Journal, 2021, 409, 128158.	12.7	98
1526	Orientation of Few-Layer MoS ₂ Films: In-Situ X-ray Scattering Study During Sulfurization. Journal of Physical Chemistry C, 2021, 125, 9461-9468.	3.1	7

ARTICLE IF CITATIONS Tailoring the structure and energy level over transition-metal doped MoS2 towards enhancing 1527 6.7 27 4-nitrophenol reduction reaction. Journal of Environmental Chemical Engineering, 2021, 9, 105101. The construction of hierarchical PEDOT@MoS2 nanocomposite for high-performance supercapacitor. 6.1 Applied Surface Science, 2021, 546, 149088. The More, the Better–Recent Advances in Construction of 2D Multiâ€Heterostructures. Advanced 1529 14.9 27 Functional Materials, 2021, 31, 2102049. Efficient hydrothermal growth of high-performance MoS2/pyramid-Si photocathodes by surface hydrophilicity engineering. Applied Physics Letters, 2021, 118, . Enhancing the CO₂-to-CO Conversion from 2D Silver Nanoprisms <i>via</i> 1531 14.6 35 Superstructure Assembly. ACS Nano, 2021, 15, 7682-7693. Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renewable and Sustainable 16.4 Energy Reviews, 2021, 139, 110709 Edge Engineering in 2D Molybdenum Disulfide: Simultaneous Regulation of Lithium and Polysulfides 1533 5.8 6 for Stable Lithium–Sulfur Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100053. Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped 1534 2.4 oligothiophenes. Physical Review Materials, 2021, 5, . Investigating the Photodetectors and pH Sensors of Two-Dimensional MoS2 with Different 1535 0 1.8 Substrates. ECS Journal of Solid State Science and Technology, 2021, 10, 055015. Recent Advances in Two-Dimensional MoS₂ Nanosheets for Environmental Application. Industrial & amp; Engineering Chemistry Research, 2021, 60, 8007-8026. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial 1537 29 8.0 electrosynthesis of volatile fatty acids from CO2. Science of the Total Environment, 2021, 768, 144477. Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides. Journal of 1538 1.8 24 Physics Condensed Matter, 2021, 33, 225503. Charge-Modulated VS₂ Monolayer for Effective Hydrogen Evolution Reaction. Journal of 1539 3.1 13 Physical Chemistry C, 2021, 125, 12004-12011. Difunctional hierarchical CoxP QDs-MoS2@Ni3S2/NF nanostructure as advanced electrocatalyst for 1540 2.2 water electrolysis. Journal of Materials Science: Materials in Electronics, 2021, 32, 16126-16138. Metalâ€Assisted Efficient Nanotubular Electrocatalyst of MoS₂ for Hydrogen Production. 1541 2 3.7 ChemCatChem, 2021, 13, 3237-3246. Tuning structure, electronic, and catalytic properties of non-metal atom doped Janus transition metal 1542 6.1 33 dichalcogenides for hydrogen evolution. Applied Surface Science, 2021, 552, 149146. Flexible gas sensor based on MoSe2-Mo2C heterostructure for hydrogen sulfide detection at room 1543 0 temperature., 2021,,. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen 1544 12.8 evolution. Nature Communications, 2021, 12, 3502.

#	Article	IF	CITATIONS
1545	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	1.8	65
1546	Family of low dimensional materials with ternary elements Ta2NixSey: Growth strategy for Ta2NiSe5 and Ta2NiSe7. Journal of Alloys and Compounds, 2021, 867, 159054.	5.5	8
1547	Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catalysis, 2021, 1, 44-68.	6.1	83
1548	Recent Advances in Two-Dimensional Quantum Dots and Their Applications. Nanomaterials, 2021, 11, 1549.	4.1	39
1549	Intrinsic effects of thickness, surface chemistry and electroactive area on nanostructured MoS2 electrodes with superior stability for hydrogen evolution. Electrochimica Acta, 2021, 382, 138257.	5.2	9
1550	Wideband Enhancement of Quantum Scattering from Material Impurities. Physical Review Applied, 2021, 15, .	3.8	5
1551	Versatile noble-metal-free electrocatalyst synergistically accelerating for the highly comprehensive understanding evidence for Electrochemical Water Splitting: Future Achievements & Perspectives. Surfaces and Interfaces, 2021, 24, 101104.	3.0	10
1552	Substrate-mediated growth of oriented, vertically aligned MoS2 nanosheets on vicinal and on-axis SiC substrates. Applied Surface Science, 2021, 552, 149303.	6.1	12
1553	Ultrasonication-assisted synthesis of 2D porous MoS2/GO nanocomposite catalysts as high-performance hydrodesulfurization catalysts of vacuum gasoil: Experimental and DFT study. Ultrasonics Sonochemistry, 2021, 74, 105558.	8.2	13
1554	Nitrogen-Doped MoS ₂ /Ti ₃ C ₂ T _{<i>X</i>} Heterostructures as Ultra-Efficient Alkaline HER Electrocatalysts. Inorganic Chemistry, 2021, 60, 9932-9940.	4.0	37
1555	Noble metal interlayer-doping enhances the catalytic activity of 2H–MoS2 from first-principles investigations. International Journal of Hydrogen Energy, 2021, 46, 21040-21049.	7.1	77
1556	Construction of sheet-on-sheet hierarchical MoS2/NiS2 heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2021, 385, 138438.	5.2	30
1557	Phonon modes contribution in thermal rectification in graphene-C3B junction: A molecular dynamics study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 131, 114724.	2.7	6
1558	Roadmap and Direction toward High-Performance MoS ₂ Hydrogen Evolution Catalysts. ACS Nano, 2021, 15, 11014-11039.	14.6	179
1559	Self-Supported Ceramic Electrode of 1T-2H MoS ₂ Grown on the TiC Membrane for Hydrogen Production. Chemistry of Materials, 2021, 33, 6217-6226.	6.7	26
1560	Highly Efficient and Robust MoS ₂ Nanoflake-Modified-TiN-Ceramic-Membrane Electrode for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 6730-6739.	5.1	17
1561	Theoretical Approach toward Optimum Anion-Doping on MXene Catalysts for Hydrogen Evolution Reaction: an Ab Initio Thermodynamics Study. ACS Applied Materials & Interfaces, 2021, 13, 37035-37043.	8.0	17
1562	Ni(OH) ₂ Templated Synthesis of Ultrathin Ni ₃ S ₂ Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2021, 17, e2102097.	10.0	54

ARTICLE IF CITATIONS Effect of concentration of MoS2 on the TCO-Pt free polyaniline nano-rod based counter electrode 1563 3.0 1 for dye sensitised solar cell application. Materials Technology, 0, , 1-9. Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution 1564 reaction. Journal of Fuel Chemistry and Technology, 2021, 49, 986-996. MoSe2 Thin Films and Thin-Film Transistors Prepared by Electron Beam Evaporation. Journal of 1565 2.2 2 Electronic Materials, 2021, 50, 5765-5773. Chemical Vapor Deposition Growth of 2D Transition Metal Dichalcogenides on 3D Substrates toward 1566 5.8 Electrocatalyticâ€Related Applications. Advanced Energy and Sustainability Research, 2021, 2, 2100089. Covalent Fixing of MoS₂ Nanosheets with SnS Nanoparticles Anchored on g-C₃N₄/Graphene Boosting Fast Charge/Ion Transport for Sodium-Ion Hybrid 1567 8.0 28 Capacitors. ACS Applied Materials & amp; Interfaces, 2021, 13, 34238-34247. Experimental and theoretical investigation of the control and balance of active sites on oxygen plasma-functionalized MoSe2 nanosheets for efficient hydrogen evolution reaction. Applied Catalysis 20.2 B: Environmental, 2021, 288, 119983. Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS₂ via Tiny Zn 1569 Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry - A European 3.3 19 Journal, 2021, 27, 15992-15999. One pot synthesis of 1T@2H-MoS2/SnS2 heterojunction as a photocatalyst with excellent visible light 16 response due to multiphase synergistic effect. Chemical Physics, 2021, 548, 111230. Flowerâ€Like Interlayerâ€Expanded MoS_{2â^'}<i>_x</i> Nanosheets Confined in 1571 Hollow Carbon Spheres with Highâ€Efficiency Electrocatalysis Sites for Advanced Sodium–Sulfur 10.0 53 Battery. Small, 2021, 17, e2101879. Identifying the Evolution of Seâ€Vacancyâ€Modulated MoSe2 Preâ€Catalyst in Li–S Chemistry. Angewandte Chemie, 0, , . Identifying the Evolution of Seleniumâ€Vacancyâ€Modulated MoSe₂Precatalyst in 1573 113 13.8 Lithium†Sulfur Chemistry. Angewandte Chemie - International Edition, 2021, 60, 24558-24565. Approaching 23% silicon heterojunction solar cells with dual-functional SiOx/MoS2 quantum dots 1574 6.2 interface layers. Solar Energy Materials and Solar Cells, 2021, 227, 111110. Impact of H 2 gas on the properties of MoS 2 thin films deposited by sulfurization of Mo thin films. 1575 1.3 0 Micro and Nano Letters, 2021, 16, 525-532. Defects in multilayer MoS2 grown by pulsed laser deposition and their impact on electronic structure. Journal of Applied Physics, 2021, 130, . 2.5 Insights into the Interfacial Lewis Acidâ€"Base Pairs in CeO₂‣oaded CoS₂ 1577 10.0 41 Electrocatalysts for Alkaline Hydrogen Evolution. Small, 2021, 17, e2103018. Characterization of Jet nebulizer spray pyrolysis coated MoS2 thin films and fabrication of p-Si/n-MoS2 junction diodes for optoelectronic application. Inorganic Chemistry Communication, 2021, 130, 10870Ĭ Unraveling the Synergy of Chemical Hydroxylation and the Physical Heterointerface upon Improving 1579 14.6 59 the Hydrogen Evolution Kinetics. ACS Nano, 2021, 15, 15017-15026. Gamma-ray initiated polymerization from polydopamine-modified MoS2 nanosheets with poly (ionic) Tj ETQq1 1 0.784314 rgBT /Ove 5.26 Engineering Journal Advances, 2021, 7, 100134.

#	Article	IF	CITATIONS
1581	Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. Chemical Engineering Journal, 2021, 418, 129369.	12.7	26
1582	Activating the Basal Plane of 2H-MoS ₂ by Doping Phosphor for Enhancement in the Photocatalytic Degradation of Organic Contaminants. ACS Applied Materials & Interfaces, 2021, 13, 38586-38594.	8.0	14
1584	Nano-patterning on multilayer MoS2 via block copolymer lithography for highly sensitive and responsive phototransistors. Communications Materials, 2021, 2, .	6.9	19
1585	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:msub> <mml:m <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo> (</mml:mo> <mml:mi>X </mml:mi> <mml:mo> = <</mml:mo></mml:math </mml:m </mml:msub></mml:mrow>		
1586	Physical Review B, 2021, 104, . Free standing bimetallic nickel cobalt selenide nanosheets as three-dimensional electrocatalyst for water splitting. Journal of Electroanalytical Chemistry, 2021, 897, 115568.	3.8	19
1587	Creating Fluorineâ€Doped MoS ₂ Edge Electrodes with Enhanced Hydrogen Evolution Activity. Small Methods, 2021, 5, e2100612.	8.6	44
1588	Atmosphere plasma treatment and Co heteroatoms doping on basal plane of colloidal 2D VSe2 nanosheets for enhanced hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 32425-32434.	7.1	10
1589	Effect of the strain on spin-valley transport properties in MoS2 superlattice. Scientific Reports, 2021, 11, 17617.	3.3	11
1590	A theoretical study on elastic, electronic, transport, optical and thermoelectric properties of Janus SnSO monolayer. Journal Physics D: Applied Physics, 2021, 54, 475306.	2.8	7
1591	Electrode Architecture Design to Promote Chargeâ€Transport Kinetics in High‣oading and Highâ€Energy Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2100518.	8.6	27
1592	Rapid Degradation of the Electrical Properties of 2D MoS ₂ Thin Films under Long-Term Ambient Exposure. ACS Omega, 2021, 6, 24075-24081.	3.5	8
1593	A Universal and Facile Method of Tailoring the Thickness of Mo(S _{<i>x</i>} ,Se _{1â^'<i>x</i>}) ₂ , Contributing to Highly Efficient Flexible Cu ₂ ZnSn(S,Se) ₄ Solar Cells. Solar Rrl, 2021, 5, 2100598.	5.8	13
1594	Nanoâ€MOFâ€5 (Zn) Derived Porous Carbon as Support Electrocatalyst for Hydrogen Evolution Reaction. ChemCatChem, 2021, 13, 4342-4349.	3.7	18
1595	Ultra-thin pine tree-like MoS2 nanosheets with maximally exposed active edges terminated at side surfaces on stainless steel fiber felt for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 876, 160163.	5.5	9
1596	High-Performance Nanostructured MoS ₂ Electrodes with Spontaneous Ultralow Gold Loading for Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 20940-20951.	3.1	9
1597	One-step hydrothermal synthesis of Ag2Se/amorphous MoSex heterojunction with enhanced visible-light photocatalytic degradation performance. Materials Letters, 2021, 300, 130218.	2.6	6
1598	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421, 129645.	12.7	62
1599	Enhanced electrocatalytic hydrogen evolution performance of 2D few-layer WS2 nanosheets via piezoelectric effects. Inorganic Chemistry Communication, 2021, 132, 108822.	3.9	5

#	Article	IF	Citations
1600	High proportion of 1ÂT phase MoS2 prepared by a simple solvothermal method for high-efficiency electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 422, 130100.	12.7	28
1601	First-principles calculations to investigate electronic properties of ZnO/PtSSe van der Waals heterostructure: Effects of vertical strain and electric field. Chemical Physics, 2021, 551, 111333.	1.9	9
1602	Strain-induced changes of electronic and optical properties of O adsorbed ReS2 monolayer. Chemical Physics Letters, 2021, 783, 139057.	2.6	1
1603	The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways. Applied Catalysis B: Environmental, 2021, 297, 120460.	20.2	73
1604	Hydrazine hydrate-assisted adjustment of sulfur-rich MoS2 as hydrogen evolution electrocatalyst. Journal of Alloys and Compounds, 2021, 885, 160990.	5.5	16
1605	Se and O co-insertion induce the transition of MoS2 from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction. Chemical Engineering Journal, 2021, 425, 130611.	12.7	25
1606	Surface-dominant transport properties in MoSe2 nanosheets. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 135, 114988.	2.7	4
1607	Interface engineering heterostructured MoS2/WS2-reduced graphene Oxide for enhanced hydrogen Evolution electrocatalysts. Separation and Purification Technology, 2021, 278, 119569.	7.9	10
1608	Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS ₂ interfacial layer. Journal of Materials Chemistry C, 2021, 9, 3846-3853.	5.5	28
1609	Ni–Mo–S Ternary Chalcogenide Thin Film for Enhanced Hydrogen Evolution Reaction. Catalysis Letters, 2021, 151, 2228.	2.6	5
1610	Ferromagnetism of two-dimensional transition metal chalcogenides: both theoretical and experimental investigations. Nanoscale, 2021, 13, 12772-12787.	5.6	12
1611	HERs in an acidic medium over MoS ₂ nanosheets: from fundamentals to synthesis and the recent progress. Sustainable Energy and Fuels, 2021, 5, 1952-1987.	4.9	30
1612	Van der Waals PdSe ₂ /WS ₂ Heterostructures for Robust Highâ€Performance Broadband Photodetection from Visible to Infrared Optical Communication Band. Advanced Optical Materials, 2021, 9, 2001991.	7.3	40
1613	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
1614	Engineered MoSe2/WSe2 based heterostructures for efficient hydrogen evolution reaction. Materials Today: Proceedings, 2021, 45, 4787-4791.	1.8	14
1615	Tuning the defects in MoS ₂ /reduced graphene oxide 2D hybrid materials for optimizing battery performance. Sustainable Energy and Fuels, 2021, 5, 4002-4014.	4.9	5
1616	Recent Advanced Study of Novel Electrode Materials. Advances in Analytical Chemistry, 2021, 11, 200-216.	0.1	1
1617	P-Doped CdS integrated with multiphasic MoSe ₂ nanosheets accomplish prominent photocatalytic activity for hydrogen evolution. Catalysis Science and Technology, 2021, 11, 5849-5858.	4.1	6

#	Article	IF	CITATIONS
1619	Recent Progress in Chemiresistive Gas Sensing Technology Based on Molybdenum and Tungsten Chalcogenide Nanostructures. Advanced Materials Interfaces, 2020, 7, 1901992.	3.7	38
1620	In Situ Synthesis of Few‣ayered g ₃ N ₄ with Vertically Aligned MoS ₂ Loading for Boosting Solarâ€toâ€Hydrogen Generation. Small, 2018, 14, 1703003.	10.0	90
1621	MoS2- and MoO3-Based Ultrathin Layered Materials for Optoelectronic Applications. Materials Horizons, 2020, , 211-244.	0.6	2
1622	Synthesis and structural characterization of MoS2 micropyramids. Journal of Materials Science, 2020, 55, 12203-12213.	3.7	16
1623	Large-Scale characterization of Two-Dimensional Monolayer MoS2 Island Domains Using Spectroscopic Ellipsometry and Reflectometry. Applied Surface Science, 2020, 524, 146418.	6.1	18
1624	Few-layer FePS3 decorated with thin MoS2 nanosheets for efficient hydrogen evolution reaction in alkaline and acidic media. Applied Surface Science, 2020, 525, 146623.	6.1	32
1625	Molten salt assisted synthesis of three dimensional FeNx/N,S–C bifunctional catalyst for highly compressible, stretchable and rechargeable Zn-Air battery. Carbon, 2020, 166, 64-73.	10.3	17
1626	Heterojunction of vertically aligned MoS2 layers to Hydrogenated Black TiO2 and Rutile Based Inorganic Hollow Microspheres for the highly enhanced visible light arsenic photooxidation. Composites Part B: Engineering, 2020, 185, 107785.	12.0	32
1627	The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1136-1139.	12.9	56
1628	Cu2SnS3 nanocrystals decorated rGO nanosheets towards efficient and stable hydrogen evolution reaction in both acid and alkaline solutions. Materials Today Energy, 2020, 17, 100435.	4.7	12
1629	TiO ₂ Nanorod Array Conformally Coated with a Monolayer MoS ₂ Film: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 10854-10862.	5.1	11
1630	Three-Dimensional NiS-MoS ₂ /Graphene Heterostructured Nanohybrids as High-Performance Hydrodesulfurization Catalysts. ACS Applied Nano Materials, 2018, 1, 3114-3123.	5.0	35
1631	Activating the MoS ₂ Basal Plane toward Enhanced Solar Hydrogen Generation via <i>in Situ</i> Photoelectrochemical Control. ACS Energy Letters, 2021, 6, 267-276.	17.4	27
1632	Controllable assembly of Pd nanosheets: a solution for 2D materials storage. CrystEngComm, 2017, 19, 3439-3444.	2.6	12
1633	Topology of transition metal dichalcogenides: the case of the core–shell architecture. Nanoscale, 2020, 12, 23897-23919.	5.6	14
1634	Tuning the phase stability and surface HER activity of 1T′-MoS ₂ by covalent chemical functionalization. Journal of Materials Chemistry C, 2020, 8, 15852-15859.	5.5	8
1635	Monolayer MoS ₂ on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Materials, 2021, 8, 025003.	4.4	26
1636	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	5.3	14

#	Article	IF	CITATIONS
1637	Catalytic Behavior of Molybdenum Sulfide for the Hydrogen Evolution Reaction as a Function of Crystallinity and Particle Size Using Carbon Multiwall Nanotubes as Substrates. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1021-1043.	2.8	9
1638	Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research, 2020, 2020, 8748602.	5.7	93
1639	Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides. Journal of the Korean Ceramic Society, 2019, 56, 24-36.	2.3	24
1640	Co ₉ S ₈ Nanotubes as an Efficient Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte. American Journal of Analytical Chemistry, 2016, 07, 210-218.	0.9	9
1641	First principles study on molecule doping in MoS2 monolayer. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 117101.	0.5	8
1642	Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: First-principles study. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 217102.	0.5	2
1643	Controllable fabrication and photocatalytic performance of nanoscale single-layer MoSe ₂ islands with substantial edges on an Ag(111) substrate. Nanoscale, 2021, 13, 19165-19171.	5.6	5
1644	Construction of 1T@2H MoS ₂ heterostructures <i>in situ</i> from natural molybdenite with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2021, 11, 33481-33489.	3.6	8
1645	Correlation of grain orientations and the thickness of gradient MoS2 films. RSC Advances, 2021, 11, 34269-34274.	3.6	2
1646	The local electronic structure modulation of the molybdenum selenide–nitride heterojunction for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 26113-26118.	10.3	22
1647	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	12.7	14
1648	Sulfurization Engineering of Oneâ€Step Lowâ€Temperature MoS ₂ and WS ₂ Thin Films for Memristor Device Applications. Advanced Electronic Materials, 2022, 8, 2100515.	5.1	14
1649	Position ontrolled Fabrication of Vertically Aligned Mo/MoS ₂ Core–Shell Nanopillar Arrays. Advanced Functional Materials, 2022, 32, 2107880.	14.9	3
1650	Elucidation of Novel Potassium-Mediated Oxidation and Etching of Two-Dimensional Transition Metal Dichalcogenides. ACS Applied Materials & amp; Interfaces, 2021, 13, 49163-49171.	8.0	1
1651	Constructing a new 2D Janus black phosphorus/SMoSe heterostructure for spontaneous wide-spectral-responsive photocatalytic overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 39183-39194.	7.1	17
1652	Facile Synthesis of Copper Oxide-Cobalt Oxide/Nitrogen-Doped Carbon (Cu2O-Co3O4/CN) Composite for Efficient Water Splitting. Applied Sciences (Switzerland), 2021, 11, 9974.	2.5	25
1653	Fabrication and application of arrays related to two-dimensional materials. Rare Metals, 2022, 41, 262-286.	7.1	17
1654	First-principles investigations of the geometric structures and electronic properties of pristine and Ag/Au-doped Janus MoSSe/C60 and WSSe/C60 heterostructures. Applied Surface Science, 2022, 575, 151660	6.1	5

#	Article	IF	CITATIONS
1655	Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4,6-DMDBT. Petroleum Science, 2022, 19, 375-386.	4.9	8
1656	Wafer-Scale Uniform Growth of an Atomically Thin MoS ₂ Film with Controlled Layer Numbers by Metal–Organic Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 50497-50504.	8.0	11
1658	Sauna-like process prepared periodic molybdenum metal catalytic electrodes and their applications in water reduction. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 048801.	0.5	0
1659	Synthesis, Characterization, and Catalytic Application of 2D Mo(W) Dichalcogenides Nanosheets. Advances in Chemical and Materials Engineering Book Series, 2017, , 1-30.	0.3	0
1661	Chapter 4. Surface Science, X-ray and Electron Spectroscopy Studies of Electrocatalysis. RSC Energy and Environment Series, 2018, , 117-153.	0.5	0
1662	Effect of layer variation on the electronic structure of stacked MoS _{2(1-<i>x</i>)} Se _{2<i>x</i>} alloy. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 240601.	0.5	0
1663	Facile synthesis of MoS2 nanosheets-carbon nanofibers composite as catalysts for hydrogen evolution reaction. Journal of Ceramic Processing Research, 2019, 20, 148-151.	0.4	0
1664	Growth mechanism for vertically oriented layered In2Se3 nanoplates. Physical Review Materials, 2020, 4, .	2.4	3
1665	Few-layered MoS2 with S-vacancies anchored on N-doped carbon flower for high performance sodium storage. Journal of Alloys and Compounds, 2022, 895, 162514.	5.5	14
1667	Co–Mo–Se ternary chalcogenide thin film coated <i>p</i> -Si photocathode for efficient solar hydrogen production. Functional Materials Letters, 2021, 14, 2151002.	1.2	1
1668	Luminescent vertically oriented nanosheets MoS2 by low temperature MOCVD. Journal of Physics: Conference Series, 2020, 1695, 012029.	0.4	0
1669	The Electronic and Physical Structure Evaluation of MoS2(1â^'x)Te2x Alloy Fabricated with Co-Sputtering and Post-Deposition Annealing in Chalcogen Ambient. ECS Journal of Solid State Science and Technology, 2020, 9, 093018.	1.8	1
1670	Unveiling the role of 2D monolayer Mn-doped MoS ₂ material: toward an efficient electrocatalyst for H ₂ evolution reaction. Physical Chemistry Chemical Physics, 2021, 24, 265-280.	2.8	21
1671	High temperature oxidation resistance of Ti-5553 alloy with electro-deposited SiO2 coating. Materials Chemistry and Physics, 2022, 275, 125306.	4.0	6
1672	The high performance NiFe layered double hydroxides@ÂTi3C2Tx/reduced graphene oxide hybrid catalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 894, 162393.	5.5	22
1673	Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis. , 2020, , 1-28.		0
1674	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
1675	Bifunctional nanocatalysts for water splitting and its challenges. , 2020, , 59-95.		1

#	Article	IF	Citations
1676	Synthesis of heat-resistant oxygen-free coatings in the Nb‒Cr‒Mo‒Si‒B system from compositions modifi with chalcogenide compounds of refractory metals of groups IV‒VIa. Novye Ogneupory (new) Tj ETQq0 0 0 rgB	ed T (D verloc	k d 0 Tf 50 7
1677	The Synergetic Effect of MoSO ₂ /Graphite Nanosheets as Highly Efficient for Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021, 13, 1574-1583.	0.7	0
1678	Enhanced effect of H2O monolayer on metal doped nitrogen-containing graphene for hydrogen evolution reactions. Chemical Engineering Journal, 2022, 431, 133283.	12.7	2
1679	Construction of amorphous Fe0.95S1.05 nanorods with high electrocatalytic activity for enhanced hydrogen evolution reaction. Electrochimica Acta, 2022, 402, 139554.	5.2	6
1680	Solutionâ€Processed Graphene Thinâ€Film Enables Binderâ€Free, Efficient Loading of Nanocatalysts for Electrochemical Water Splitting. Advanced Materials Interfaces, 2021, 8, 2101576.	3.7	7
1681	Synthesis of highly dense MoO2/MoS2 core–shell nanoparticles via chemical vapor deposition. Nanotechnology, 2021, 32, 055605.	2.6	3
1682	Theoretical prediction of structural, mechanical, and electronic properties of Janus GeSnX ₂ (X = S, Se, Te) single-layers. RSC Advances, 2021, 11, 36682-36688.	3.6	2
1683	Atmospheric pressure chemical vapor deposition growth of vertically aligned SnS ₂ and SnSe ₂ nanosheets. RSC Advances, 2021, 11, 36483-36493.	3.6	13
1684	Progress in additive manufacturing of MoS2-based structures for energy storage applications – A review. Materials Science in Semiconductor Processing, 2022, 139, 106331.	4.0	24
1685	Critical Review, Recent Updates on Zeolitic Imidazolate Frameworkâ€67 (ZIFâ€67) and Its Derivatives for Electrochemical Water Splitting. Advanced Materials, 2022, 34, e2107072.	21.0	183
1686	Synergy between in-situ immobilized MoS2 nanosheets and TiO2 nanotubes for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 2366-2377.	7.1	8
1687	MoSe2 nanosheets as an efficient electrode material for supercapacitors. Materials Today: Proceedings, 2022, 54, 728-732.	1.8	8
1688	Atomic-scale intercalation of N-doped carbon into monolayered MoSe2-Mo2C heterojunction as a highly efficiency hydrogen evolution reaction catalyst. Journal of Electroanalytical Chemistry, 2022, 906, 115897.	3.8	4
1689	Synthesis of vertically-aligned large-area MoS ₂ nanofilm and its application in MoS ₂ /Si heterostructure photodetector. Nanotechnology, 2022, 33, 105709.	2.6	6
1690	Ultrasensitive biochemical sensors based on controllably grown films of high-density edge-rich multilayer WS2 islands. Sensors and Actuators B: Chemical, 2022, 353, 131081.	7.8	5
1691	Controllable growth of two-dimensional materials on noble metal substrates. IScience, 2021, 24, 103432.	4.1	5
1692	Colloidal Synthesis of MoSe2/WSe2 Heterostructure Nanoflowers via Two-Step Growth. Materials, 2021, 14, 7294.	2.9	2
1693	Electrochemical energy storage applications of carbon nanotube supported heterogeneous metal sulfide electrodes. Ceramics International, 2022, 48, 6157-6165.	4.8	24

#	Article	IF	CITATIONS
1694	Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 431, 133923.	12.7	36
1695	Controllable Synthesis of Defect-Rich CoMoS Catalysts with Different Morphologies for the Ultradeep Hydrodesulfurization of 4,6-Dimethydibenzothiophene. Langmuir, 2021, 37, 14254-14264.	3.5	5
1696	Enhanced photocatalytic hydrogen production of MoS2 sheet/carbon nanofiber using rapid electron transport of Mo6+ and carbon nanofiber. RSC Advances, 2021, 11, 38523-38527.	3.6	2
1697	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	5.4	17
1698	A newly synthesized bipyridineâ€containing manganese(<scp>II</scp>) complex immobilized on graphene oxide as active electrocatalyst for hydrogen gas production from alkaline solutions: Experimental and theoretical studies. International Journal of Energy Research, 2022, 46, 6577-6593.	4.5	2
1699	Preparation of MoS2 spheres from Mo plate and elemental sulfur and the effect of sphericalization on electrochemical hydrogen evolution catalysis. Materials Chemistry and Physics, 2022, 278, 125639.	4.0	2
1700	First-principles investigations of electronic, optical, and photocatalytic properties of Au-adsorbed MoSi2N4 monolayer. Journal of Physics and Chemistry of Solids, 2022, 162, 110494.	4.0	8
1701	P and Se-codopants triggered basal plane active sites in NbS2 3D nanosheets toward electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 581, 152419.	6.1	7
1702	Facile Synthesis of Vertically Aligned MoS ₂ Nanosheets at Ambient Pressure. Crystal Research and Technology, 2021, 56, 2000085.	1.3	2
1703	Application of Transition Metal Phosphides to Electrocatalysis: An Overview. Jom, 2022, 74, 381-395.	1.9	9
1704	Effect of radical on defect and molecular structure of monolayer MoS ₂ by low temperature plasma treatment. Japanese Journal of Applied Physics, 2022, 61, SI1006.	1.5	3
1705	Rapid In-Situ Synthesis and Patterning of Edge-Unsaturated MoS ₂ by Femtosecond Laser-Induced Photo-Chemical Reaction. ACS Applied Materials & Interfaces, 2022, 14, 5558-5566.	8.0	6
1706	A concise discussion on MoS ₂ basal plane activation toward the ennoblement of electrocatalytic HER output. Sustainable Energy and Fuels, 2022, 6, 937-953.	4.9	10
1707	Modulation of Water Dissociation Kinetics with a "Breathable―Wooden Electrode for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6818-6827.	8.0	11
1708	Structural and electrochemical performance of carbon coated molybdenum selenide nanocomposite for supercapacitor applications. Journal of Energy Storage, 2022, 45, 103797.	8.1	48
1709	Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 9579-9592.	7.1	21
1710	Janus monolayer HfSO with improved optical properties as a novel material for photovoltaic and photocatalyst applications. New Journal of Chemistry, 2022, 46, 1557-1568.	2.8	4
1711	Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization. Nanomaterials, 2022, 12, 182.	4.1	15

#	Article	IF	CITATIONS
1712	Regulation of hydrogen evolution performance of titanium oxide–carbon composites at high current density with a Ti–O hybrid orbital. , 2022, 4, 480-490.		11
1713	In Situ Investigation on Lifeâ€Time Dynamic Structure–Performance Correlation Toward	14.9	21
1710	Electrocatalyst Service Behavior in Water Splitting. Advanced Functional Materials, 2022, 32, .	17.9	21
1714	Self-Assembled TMD Nanoparticles on N-Doped Carbon Nanostructures for Oxygen Reduction Reaction and Electrochemical Oxygen Sensing Thereof. ACS Applied Materials & Interfaces, 2022, 14, 5134-5148.	8.0	12
1715	Vertically Aligned Grapheneâ€Analogous Lowâ€Dimensional Materials: A Review on Emerging Trends, Recent Developments, and Future Perspectives. Advanced Materials Interfaces, 2022, 9, .	3.7	8
1716	Morphology-Controlled Electrocatalytic Performance of Two-Dimensional VSe ₂ Nanoflakes for Hydrogen Evolution Reactions. ACS Applied Nano Materials, 2022, 5, 2087-2093.	5.0	4
1717	Nanoporous Graphite-like Membranes Decorated with MoSe ₂ Nanosheets for Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 2769-2778.	5.0	13
1718	Microwaveâ€Driven Construction of MoS ₂ /Graphene Heterostructure for Enhanced Photodegradation under Natural Light. Physica Status Solidi (A) Applications and Materials Science, 2022, 219,	1.8	3
1719	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Ga</mml:mi> <mml:mi>2mathvariant="normal">S</mml:mi> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msub> (</mml:msub>		

#	Article	IF	CITATIONS
1730	Transition metal dichalcogenide thin films for solar hydrogen production. Current Opinion in Electrochemistry, 2022, 34, 100995.	4.8	6
1731	The influence of Zn on MoS2 thin films by jet nebulizer spray coating method for P-N diode application. Journal of Materials Science: Materials in Electronics, 2022, 33, 7853-7868.	2.2	4
1732	Recent Progress on Revealing 3D Structure of Electrocatalysts Using Advanced 3D Electron Tomography: A Mini Review. Frontiers in Chemistry, 2022, 10, 872117.	3.6	5
1733	Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochemical Science Advances, 2023, 3, .	2.8	8
1734	The Effect of the 3D Nanoarchitecture and Niâ€Promotion on the Hydrogen Evolution Reaction in MoS ₂ /Reduced GO Aerogel Hybrid Microspheres Produced by a Simple Oneâ€Pot Electrospraying Procedure. Small, 2022, 18, e2105694.	10.0	5
1735	Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 5151-5158.	3.1	32
1736	Recent advances in solid–liquid–gas threeâ€phase interfaces in electrocatalysis for energy conversion and storage. EcoMat, 2022, 4, .	11.9	25
1737	Functional polymeric passivation-led improvement of bias stress with long-term durability of edge-rich nanoporous MoS2 thin-film transistors. Npj 2D Materials and Applications, 2022, 6, .	7.9	5
1738	Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Metals, 2022, 41, 1851-1858.	7.1	10
1739	Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction. International Journal of Energy Research, 2022, 46, 11479-11491.	4.5	8
1740	Natural ore molybdenite as a high-capacity and cheap anode material for advanced lithium-ion capacitors. Nanotechnology, 2022, 33, 255401.	2.6	1
1741	Progress and perspectives on two-dimensional silicon anodes for lithium-ion batteries. ChemPhysMater, 2023, 2, 1-19.	2.8	5
1742	Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nanoflakes. Electrochimica Acta, 2022, 412, 140109.	5.2	25
1743	Thermal rectification in nozzle-like graphene/boron nitride nanoribbons: A molecular dynamics simulation. Computational Materials Science, 2022, 207, 111320.	3.0	10
1744	Synthesis of Cu-MOF/CeO2 nanocomposite and their evaluation of hydrogen production and cytotoxic activity. Journal of Materials Research and Technology, 2022, 18, 1732-1745.	5.8	16
1745	The adsorption properties and stable configurations of hydroxyl groups at Mo edge of MoS2 (100) surface. Materials Chemistry and Physics, 2022, 283, 126051.	4.0	4
1746	Facile fabrication of carbon fiber skeleton structure of MoS2 supported on 2D MXene composite with highly efficient and stable hydrogen evolution reaction. Composites Science and Technology, 2022, 222, 109380.	7.8	14
1747	Parametric study to optimize proton exchange membrane electrolyzer cells. Applied Energy, 2022, 314, 118928.	10.1	13

#	Article	IF	CITATIONS
1748	In-situ construction of ultrathin MoP-MoS2 heterostructure on N, P and S co-doped hollow carbon spheres as nanoreactor for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 438, 135544.	12.7	23
1749	Tetragonal transition metal selenide for hydrogen evolution. Applied Surface Science, 2022, 591, 153249.	6.1	19
1750	Improving intrinsic electrocatalytic activity of layered transition metal chalcogenides as electrocatalysts for water splitting. Current Opinion in Electrochemistry, 2022, 34, 100982.	4.8	7
1751	Characterization of Vertically Aligned MoS ₂ Thin Film on Mo Electrode for Hydrogen Evolution Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 283-287.	0.2	2
1752	Atomically thin transition metal dichalcogenides for the hydrogen evolution reaction. ChemPhysMater, 2022, 1, 102-111.	2.8	11
1753	Microstructural and Electronic Properties of Rapid Thermally Grown MoS2 Silicon Hetero-Junctions with Various Process Parameters. Semiconductors, 2021, 55, 948-959.	0.5	0
1754	A Strategy for Waferâ€5cale Crystalline MoS ₂ Thin Films with Controlled Morphology Using Pulsed Metal–Organic Chemical Vapor Deposition at Low Temperature. Advanced Materials Interfaces, 2022, 9, .	3.7	8
1755	A Synthetic Route to MoS ₂ Catalysts Supported on a Metal–Organic Framework for Electrochemical Hydrogen Evolution Reaction Utilizing Chemical Vapor Deposition. Energy & Fuels, 2022, 36, 548-553.	5.1	4
1756	Lowâ€Operatingâ€Voltage Resistive Switching Memory Based on the Interlayerâ€Spacing Regulation of MoSe ₂ . Advanced Electronic Materials, 2022, 8, .	5.1	8
1757	A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials, 2021, 14, 7590.	2.9	23
1758	Influence of Oxygen Dopants on the HER Catalytic Activity of Electrodeposited MoO _{<i>x</i>} S _{<i>y</i>} Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 13676-13683.	5.1	4
1759	Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS Applied Materials & Interfaces, 2021, 13, 59593-59617.	8.0	58
1760	S-doped multilayer niobium carbide (Nb4C3Tx) electrocatalyst for efficient hydrogen evolution in alkaline solutions. International Journal of Hydrogen Energy, 2022, 47, 17233-17240.	7.1	20
1761	Engineering multiphasic MoSe2/NiSe heterostructure interfaces for superior hydrogen production electrocatalysis. Applied Catalysis B: Environmental, 2022, 312, 121434.	20.2	50
1762	Phase-Tuned MoS ₂ and Its Hybridization with Perovskite Oxide as Bifunctional Catalyst: A Rationale for Highly Stable and Efficient Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 18248-18260.	8.0	16
1763	Impact of Atomic Rearrangement and Single Atom Stabilization on MoSe ₂ @NiCo ₂ Se ₄ Heterostructure Catalyst for Efficient Overall Water Splitting. Small, 2022, 18, e2200622.	10.0	42
1765	Theoretical prediction of Janus PdXO (X = S, Se, Te) monolayers: structural, electronic, and transport properties. RSC Advances, 2022, 12, 12971-12977.	3.6	2
1766	A mini-review focusing on ambient-pressure chemical vapor deposition (AP-CVD) based synthesis of layered transition metal selenides for energy storage applications. Materials Advances, 2022, 3, 4471-4488.	5.4	14

#	Article	IF	CITATIONS
1767	Incorporating Au ₁₁ nanoclusters on MoS ₂ nanosheet edges for promoting the hydrogen evolution reaction at the interface. Nanoscale, 2022, 14, 7919-7926.	5.6	9
1768	The effects of the fluence of electron irradiation on the structure and hydrogen evolution reaction performance of molybdenum disulfide. Journal of Materials Chemistry C, 2022, 10, 7839-7848.	5.5	3
1769	Horizontal and Vertical Stacked Storage Ag/Mos2 Nanostructure Enabled Excellent Carrier Mobility and Optoelectronic Properties. SSRN Electronic Journal, 0, , .	0.4	0
1770	Molybdenum disulfide composite materials with encapsulated copper nanoparticles as hydrogen evolution catalysts. RSC Advances, 2022, 12, 13393-13400.	3.6	2
1771	Anti-Oriented-Attachment Growth of Layered Co0.85se Nanoarray with Highly Exposed Edges on Graphene Towards Superior Li-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
1772	Activating the Basal Planes in 2Hâ€MoTe ₂ Monolayers by Incorporating Singleâ€Atom Dispersed N or P for Enhanced Electrocatalytic Overall Water Splitting. Advanced Sustainable Systems, 2022, 6, .	5.3	4
1773	Electrochemical catalysis and corrosion of defective MoS2: Microscopic behaviors and density-functional-theory calculations. Current Opinion in Electrochemistry, 2022, 34, 101008.	4.8	2
1774	Edge engineering in chemically active two-dimensional materials. Nano Research, 2022, 15, 9890-9905.	10.4	7
1775	Activating the Electrocatalysis of MoS ₂ Basal Plane for Hydrogen Evolution via Atomic Defect Configurations. Small, 2022, 18, .	10.0	26
1776	A review on recent advances in metal chalcogenide-based photocatalysts for CO2 reduction. Journal of Environmental Chemical Engineering, 2022, 10, 107763.	6.7	19
1777	Taking Advantage of Teamwork: Unsupported Cobalt Molybdenum Sulfide as an Active HER Electrocatalyst in Alkaline Media. Journal of the Electrochemical Society, 2022, 169, 054524.	2.9	6
1778	Multiple structural defects in poor crystalline nickelâ€doped tungsten disulfide nanorods remarkably enhance supercapacitive performance. International Journal of Energy Research, 2022, 46, 14227-14239.	4.5	23
1779	Nanostructured molybdenum dichalcogenides: a review. Materials Advances, 2022, 3, 5672-5697.	5.4	16
1780	Understanding the electrocatalysis OER and ORR activity of ultrathin spinel Mn3O4. Journal of Industrial and Engineering Chemistry, 2022, 113, 153-160.	5.8	13
1781	Review—Recent Developments in the Applications of 2D Transition Metal Dichalcogenides as Electrocatalysts in the Generation of Hydrogen for Renewable Energy Conversion. Journal of the Electrochemical Society, 2022, 169, 064504.	2.9	19
1782	Intrinsic Catalytic Activity for the Alkaline Hydrogen Evolution of Layer-Expanded MoS ₂ Functionalized with Nanoscale Ni and Co Sulfides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7117-7133.	6.7	6
1783	Moâ€O Between MoS ₂ and Graphene Toward Accelerated Polysulfide Catalytic Conversion for Advanced Lithiumâ€Sulfur Batteries. Advanced Science, 2022, 9, .	11.2	40
1784	Beyond T-graphene: Two-dimensional tetragonal allotropes and their potential applications. Applied Physics Reviews, 2022, 9, .	11.3	23

#	Article	IF	CITATIONS
1785	In-situ polymerization confining synthesis of ultrasmall MoTe2 nanoparticles for electrochemical detection of dopamine. Inorganic Chemistry Frontiers, 0, , .	6.0	2
1786	Rashba-type spin splitting and transport properties of novel Janus XWGeN ₂ (X = O, S, Se,) Tj ETQq1	1 0.78431 2.8	4 ₁ ggBT /Ove
1787	Single-step <i>in situ</i> synthesis of MoO ₂ -faceted structures as highly efficient HER electrocatalysts and electrode materials for pseudocapacitors. Energy Advances, 2022, 1, 438-448.	3.3	19
1788	1D ZnO@C@MoS2 nanoarrays as counter electrodes for dye-sensitized solar cells. Materials Letters, 2022, , 132716.	2.6	1
1789	Transition Metal Nonâ \in Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	10.0	47
1792	Horizontal and vertical stacked Ag/MoS2 nanostructure enabled excellent carrier mobility and optoelectronic properties. Optics and Laser Technology, 2022, 155, 108408.	4.6	1
1793	The effect of morphology on electrochemical hydrogen evolution reaction of ReSe ₂ nano-structures. New Journal of Chemistry, 2022, 46, 14894-14902.	2.8	3
1794	Atomic-scale mechanisms on stepwise growth of MoxW1-xS2 into hexagonal flakes. Chemical Communications, 0, , .	4.1	1
1795	Monolayer GaOCI: a novel wide-bandgap 2D material with hole-doping-induced ferromagnetism and multidirectional piezoelectricity. Nanoscale, 2022, 14, 11369-11377.	5.6	3
1796	Control of the Irradiation-Resistant Structure Inside Most Films by Heat Effect. SSRN Electronic Journal, 0, , .	0.4	0
1797	Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS ₂ . Nano Letters, 2022, 22, 5742-5750.	9.1	27
1798	Al ₂ O ₃ and phosphorus effect on the active phase and catalytic performance of Ni–Mo catalysts prepared by coprecipitation in hydrodesulfurization of benzothiophene. Petroleum Science and Technology, 0, , 1-16.	1.5	0
1799	Atomic‣evel Design of Active Site on Twoâ€Dimensional MoS ₂ toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials, 2022, 32, .	14.9	53
1800	Anti-Oriented-Attachment Growth of Layered Co0.85Se Nanoarray with Highly Exposed Edges on Graphene towards Superior Li-Ion Storage. Journal of Alloys and Compounds, 2022, , 166294.	5.5	1
1801	Probing into crystallography and morphology properties of MoS ₂ nanoflowers synthesized via temperature dependent hydrothermal method. Nano Express, 2022, 3, 035001.	2.4	8
1802	Quasitrapped modes in metasurfaces of anisotropic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2nanoparticles for absorption and polarization control in the telecom wavelength range. Physical Review B. 2022. 106</mml:mn></mml:msub></mml:math 	mŋ>9.2	::msub>
1803	Solution processed edge activated Ni-MoS2 nanosheets for highly sensitive room temperature NO2 gas sensor applications. Applied Surface Science, 2022, 600, 154086.	6.1	26
1804	One-pot synthesis of uniform MoSe2 nanoparticles as high performance anode materials for lithium/sodium ion batteries. Journal of Alloys and Compounds, 2022, 922, 166306.	5.5	15

#	Article	IF	Citations
1805	Strategic orchestration of MoSe2 microspheres on β-cd functionalized rGO: A sustainable electrocatalyst for detection of rifampicin in real samples. Chemosphere, 2022, 307, 135373.	8.2	10
1806	Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. International Journal of Hydrogen Energy, 2022, 47, 29255-29283.	7.1	68
1807	Role of H ₂ in the Substrate-Directed Synthesis of Size-tunable MoSe ₂ Nanoribbons for Exciton Engineering. ACS Applied Nano Materials, 2022, 5, 11423-11428.	5.0	3
1808	Controllable Synthesis of Large-Scale Monolayer MoS ₂ Dendritic Flakes with Serrated Edges and Their Multimodal Microscopy and AFM Characterizations. Journal of Physical Chemistry C, 2022, 126, 13449-13457.	3.1	1
1809	Transition Metal Dichalcogenides (TMDs) for Photo/Electro Chemical Energy Based Applications. Energy Technology, 0, , .	3.8	1
1810	Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers. Sustainability, 2022, 14, 9511.	3.2	4
1811	Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance. Polymers, 2022, 14, 3230.	4.5	5
1812	Designing High-Performance Se-Decorated Edges of MoSe ₂ Nanostripes for the Hydrogen Oxidation Reaction: Effect of Transition Metal Doping. Journal of Physical Chemistry C, 2022, 126, 13617-13628.	3.1	2
1813	Large-area vertically aligned 2D MoS ₂ layers on TEMPO-cellulose nanofibers for biodegradable transient gas sensors. Nanotechnology, 2022, 33, 475502.	2.6	5
1814	The nature of K-induced 2H and 1T'-MoS2 species and their phase transition behavior for the synthesis of methanethiol (CH3SH). IScience, 2022, 25, 104999.	4.1	5
1815	<scp> MoS ₂ </scp> nanosheets as bifunctional electrode for oxygen evolution reaction and electrochemical supercapacitor. International Journal of Energy Research, 2022, 46, 18312-18327.	4.5	6
1816	Tailoring the Vertical and Planar Growth of 2D WS ₂ Thin Films Using Pulsed Laser Deposition for Enhanced Gas Sensing Properties. ACS Applied Materials & Interfaces, 2022, 14, 36789-36800.	8.0	8
1817	Magnetic Field Alignment and Optical Anisotropy of MoS ₂ Nanosheets Dispersed in a Liquid Crystal Polymer. Journal of Physical Chemistry Letters, 2022, 13, 7994-8001.	4.6	2
1818	High current CO2 reduction realized by edge/defect-rich bismuth nanosheets. Nano Research, 2023, 16, 53-61.	10.4	7
1819	Anisotropic monolayer of ReX2 on Au foils for exploring abnormal growth behavior and electronic properties. Nano Research, 2023, 16, 4197-4210.	10.4	0
1820	Structural, Morphological and Optical Properties of MoS2-Based Materials for Photocatalytic Degradation of Organic Dye. Photochem, 2022, 2, 628-650.	2.2	6
1821	Chemical-vapor-deposition-grown 2D transition metal dichalcogenides: A generalist model for engineering electrocatalytic hydrogen evolution. Nano Research, 2023, 16, 101-116.	10.4	4
1822	Impact of temperature on the properties of MoS2 nanoflakes synthesized by facile hydrothermal method for electrochemical supercapacitor applications. Inorganic Chemistry Communication, 2022, 145, 109928.	3.9	5

#	Article	IF	Citations
1823	Realization of transition metal selenide active facets via synergistic sulfur doping for bifunctional alkaline water splitting applications: A comparative study. Applied Surface Science, 2022, 605, 154804.	6.1	9
1824	One-dimensional van der Waals material InSeI with large band-gap for optoelectronic applications. Journal of Alloys and Compounds, 2022, 927, 166995.	5.5	3
1825	Control of the irradiation-resistant structure inside MOST films by heat effect. Applied Surface Science, 2022, 605, 154622.	6.1	2
1826	Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization. Opto-Electronic Advances, 2022, 5, 210105-210105.	13.3	4
1827	MOF-derived nanoarrays as advanced electrocatalysts for water splitting. Nanoscale, 2022, 14, 12196-12218.	5.6	23
1828	Large Interlayers Spacing and Active Basal Planes Enabled Mos2/Mwcnt Composites for High-Performance Microwave Absorption. SSRN Electronic Journal, 0, , .	0.4	1
1829	Sulfonic Acid (So3h) Functionalized Two-Dimensional Mos2 Nanosheets for Electrocatalytic Hydrogen Generation. SSRN Electronic Journal, 0, , .	0.4	0
1830	Molybdenum(<scp>iv</scp>) dithiocarboxylates as single-source precursors for AACVD of MoS ₂ thin films. Dalton Transactions, 2022, 51, 12540-12548.	3.3	4
1831	Free-standing vertically aligned tin disulfide nanosheets for ultrasensitive aptasensor design toward Alzheimer's diagnosis applications. Chemical Engineering Journal, 2023, 452, 139394.	12.7	10
1832	A Step Forward: Hydrogen Production on Cobalt Molybdenum Sulfide Electrocatalyst in Anion Exchange Membrane Water Electrolyzer. ACS Applied Energy Materials, 2022, 5, 10396-10401.	5.1	3
1833	Impact of histidine amino acid on 2D molybdenum disulfide catalytic properties for hydrogen evolution reaction. Journal of Applied Electrochemistry, 2023, 53, 85-94.	2.9	1
1834	Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science, 2023, 132, 101024.	32.8	18
1835	Discovery of Hydrogen Spillover-Based Binary Electrocatalysts for Hydrogen Evolution: From Theory to Experiment. ACS Catalysis, 2022, 12, 11821-11829.	11.2	14
1836	Thermal rectification in ultra-narrow hydrogen functionalized graphene: a non-equilibrium molecular dynamics study. Journal of Molecular Modeling, 2022, 28, .	1.8	3
1837	Molecular Engineering Strategies toward Molybdenum Diselenide Design for Energy Storage and Conversion. Advanced Energy Materials, 2022, 12, .	19.5	12
1838	Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. Advanced Materials, 2023, 35, .	21.0	27
1839	Modulation of MoSe2 & amp; MnFe2O4@MnO2 nano-architectures for microwave absorption properties via single- and bilayer method. Ceramics International, 2023, 49, 4713-4721.	4.8	13
1840	Insights into the multifunctional applications of strategically Co doped MoS ₂ nanoflakes. Materials Advances, 2022, 3, 8740-8759.	5.4	1

#	Article	IF	CITATIONS
1841	Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 39771-39795.	7.1	23
1842	Two-dimensional halide perovskites: A review on their orientations. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	4
1843	Chemical Vapor Deposition of Oriented Vertical MoO ₂ Nanofins in a Confined Space for Conductive Electrodes. ACS Applied Nano Materials, 2022, 5, 16633-16641.	5.0	4
1844	Bifunctional Monolayer WSe ₂ /Graphene Self-Stitching Heterojunction Microreactors for Efficient Overall Water Splitting in Neutral Medium. ACS Nano, 2022, 16, 18274-18283.	14.6	20
1845	Advances in 2D Molybdenum Disulfideâ€Based Functional Materials for Supercapacitor Applications. ChemistrySelect, 2022, 7, .	1.5	3
1846	Engineered MoS2 nanostructures for improved photocatalytic applications in water treatment. Materials Today Sustainability, 2023, 21, 100264.	4.1	9
1847	HER activity of nickel molybdenum sulfide electrocatalyst as function of the ionomer in the ink formulation. International Journal of Hydrogen Energy, 2023, 48, 26446-26460.	7.1	2
1848	Sulfonic acid (SO3H) functionalized two-dimensional MoS2 nanosheets for electrocatalytic hydrogen generation. Applied Surface Science, 2023, 609, 155354.	6.1	5
1849	Oxygen vacancy mediated α-MoO3 bactericidal nanocatalyst in the dark: Surface structure dependent superoxide generation and antibacterial mechanisms. Journal of Hazardous Materials, 2023, 443, 130275.	12.4	9
1850	Surface ligand functionalized Few-layered MoSe2 nanosheets decorated CdS nanorods for spectacular rate of H2 production. Fuel, 2023, 334, 126551.	6.4	9
1851	Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces. Applied Surface Science, 2023, 611, 155707.	6.1	12
1852	Nanoscale Defect Engineering to Tune Electronic Structure and Surface Property of Two-Dimensional MoS ₂ Film for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 17142-17151.	5.0	1
1853	Strategic review on chemical vapor deposition technology-derived 2D material nanostructures for room-temperature gas sensors. Journal of Materials Chemistry C, 2023, 11, 774-801.	5.5	9
1854	Effects of CVD growth parameters on global and local optical properties of MoS2 monolayers. Materials Chemistry and Physics, 2023, 296, 127185.	4.0	4
1855	An investigation of halogen induced improvement of β12 borophene for Na/Li storage by density functional theory. Journal of Molecular Graphics and Modelling, 2023, 119, 108373.	2.4	7
1856	A facile approach to enhance the hydrogen evolution reaction of electrodeposited MoS ₂ in acidic solutions. New Journal of Chemistry, 2022, 46, 23344-23350.	2.8	1
1857	Free standing MoSe growth on porous Graphite-Like membranes for water splitting. Materials Today: Proceedings, 2023, 72, 3934-3939.	1.8	0
1858	Modified Spatially Confined Strategy Enabled Mild Growth Kinetics for Facile Growth Management of Atomicallyâ€Thin Tungsten Disulfides. Advanced Science, 2023, 10, .	11.2	2

#	Article	IF	CITATIONS
1859	Nanostructured Transition Metal Dichalcogenide Multilayers for Advanced Nanophotonics. Laser and Photonics Reviews, 2023, 17, .	8.7	21
1860	Epitaxial Synthesis of a Vertically Aligned Two-Dimensional van der Waals Crystal: (110)-Oriented SnO. Crystal Growth and Design, 2022, 22, 7248-7254.	3.0	0
1861	Rational Design of Dynamic Bimetallic NiCoSe ₂ /2D Ti ₃ C ₂ T <i>_x</i> MXene Hybrids for a High-Performance Flexible Supercapacitor and Hydrogen Evolution Reaction. Energy & Fuels, 2022, 36, 15066-15079.	5.1	8
1863	Mo-Based Heterogeneous Interface and Sulfur Vacancy Synergistic Effect Enhances the Fenton-like Catalytic Performance for Organic Pollutant Degradation. ACS Applied Materials & Interfaces, 2023, 15, 1326-1338.	8.0	11
1864	Noble Metal-Free Electrocatalysts: Materials for Energy Applications. ACS Symposium Series, 0, , 73-94.	0.5	0
1865	Biomass-derived N/P-doped molybdenum oxy-sulfides grown on Ni foam as low-cost electrocatalysts for hydrogen evolution reaction. Biomass Conversion and Biorefinery, 0, , .	4.6	1
1866	3D nanosheet networks like mesoporous structure of NiO/CoSe ₂ nanohybrid directly grown on nickel foam for oxygen evolution process. Journal of Taibah University for Science, 2022, 16, 1171-1180.	2.5	3
1867	Application of HTS in Green Hydrogen and Fuel Cells. Nanostructure Science and Technology, 2023, , 13-54.	0.1	0
1868	Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS ₂ for the Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 342-354.	11.2	11
1869	In Situ Synthesis of Two-Dimensional Lateral Semiconducting-Mo:Se//Metallic-Mo Junctions Using Controlled Diffusion of Se for High-Performance Large-Scaled Memristor. ACS Nano, 2023, 17, 4296-4305.	14.6	16
1870	A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Materials Chemistry and Physics, 2023, 297, 127332.	4.0	29
1871	Humidity Sensors, Major Types and Applications. , 0, , .		0
1872	Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers, 2023, 15, 375.	4.5	2
1873	Co―and Nd odopingâ€Induced High Magnetization in Layered MoS ₂ Crystals. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	2.4	2
1874	Sulfurization engineering of single-zone CVD vertical and horizontal MoS ₂ on p-GaN heterostructures for self-powered UV photodetectors. Nanoscale Advances, 2023, 5, 879-892.	4.6	4
1875	Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections. ACS Omega, 2023, 8, 1851-1863.	3.5	6
1876	Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2023, 156, 107273.	4.0	13
1877	Fe/Ni bi-metallic organic framework supported 1T/2H MoS2 heterostructures as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Fuel, 2023, 339, 127395.	6.4	18

#	Article	IF	CITATIONS
1878	Rational Design on Polymorphous Phase Switching in Molybdenum Diselenide-Based Memristor Assisted by All-Solid-State Reversible Intercalation toward Neuromorphic Application. ACS Nano, 2023, 17, 84-93.	14.6	2
1879	Scalable synthesis of 2D materials. , 2023, , 1-54.		0
1880	Engineering the interfacial orientation of MoS ₂ /Co ₉ S ₈ bidirectional catalysts with highly exposed active sites for reversible Li-CO ₂ batteries. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	15
1881	Defectâ€engineered twoâ€dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction. , 2023, 5, .		26
1882	Free-Standing Multilayer MoS2-BP Heterostructures for High Performance Self-Powered Photodetector. Journal of Physics: Conference Series, 2023, 2440, 012011.	0.4	0
1883	Functionalized MoS2: circular economy SERS substrate for label-free detection of bilirubin in clinical diagnosis. Mikrochimica Acta, 2023, 190, .	5.0	2
1884	Micrometer-size crystalline monolayer MoS2 domains obtained by sulfurization of molybdenum oxide ultrathin films. Microelectronic Engineering, 2023, 274, 111967.	2.4	1
1885	Radio-frequency controlled crystalline phase transformation of MoS2 thin film fabricated by unique vapour-plasma mixing technique. Physica B: Condensed Matter, 2023, 660, 414896.	2.7	3
1886	Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials. Journal of Alloys and Compounds, 2023, 945, 169293.	5.5	0
1887	2D Mg2M2X5 (MÂ=ÂB, Al, Ga, In, Tl; XÂ=ÂS, Se, Te) monolayers: Novel stable semiconductors for water splitting photocatalysts. Applied Surface Science, 2023, 621, 156892.	6.1	6
1888	Robust high-performance self-lubrication of nanostructured Mo-S-Cu-B film. Applied Surface Science, 2023, 623, 157076.	6.1	2
1889	Multi-Interface polarization engineering constructed 1T-2H MoS2 QDs/Y-NaBi(MoO4)2 multiple heterostructure for high-efficient piezoelectric-photoelectrocatalysis PDE-5i degradation. Applied Catalysis B: Environmental, 2023, 327, 122460.	20.2	6
1890	Interfacial engineering strategy and controlled growth of MoSe2@ZnO composite material and its light-matter coupling. Materials Chemistry and Physics, 2023, 301, 127714.	4.0	1
1891	Synthesis of two-dimensional van der waals superlattices, heterostructures, and alloys from conversion of sequentially layered sub-nanometer metal films. Materials Today Nano, 2023, 22, 100319.	4.6	2
1892	Rational design of 2D heterostructured photo- & amp; electro-catalysts for hydrogen evolution reaction: A review. Applied Surface Science Advances, 2023, 15, 100402.	6.8	5
1893	Active sites rich manganese doped MoS2 nanostructures with enhanced photodegradation of methylene blue dye. Journal of Alloys and Compounds, 2023, 951, 169856.	5.5	3
1894	Wafer-scale controlled growth of MoS ₂ by magnetron sputtering: from in-plane to inter-connected vertically-aligned flakes. Journal of Physics Condensed Matter, 2023, 35, 124002.	1.8	4
1895	Metal-organic framework derived core-shell nanoparticles as high performance bifunctional electrocatalysts for HER and OER. Applied Surface Science, 2023, 616, 156499.	6.1	26

#	Article	IF	CITATIONS
1896	Screening of single-atom catalysts of transition metal supported on MoSe2 for high-efficiency nitrogen reduction reaction. Molecular Catalysis, 2023, 537, 112967.	2.0	4
1897	A Mini Review on Transition Metal Chalcogenides for Electrocatalytic Water Splitting: Bridging Material Design and Practical Application. Energy & Fuels, 2023, 37, 2608-2630.	5.1	39
1898	Co/N Co-Doped MoS ₂ with High Pseudocapacitive Performance for Solid-State Flexible Supercapacitors. ACS Applied Energy Materials, 2023, 6, 2570-2581.	5.1	13
1899	Dense MoS ₂ /CoS ₂ Heterointerfaces with Optimized Electronic Structure for Efficient Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 2479-2488.	5.1	8
1900	Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 2023, 16, 1669.	3.1	3
1901	Sandwiched cathodes kinetically boosted by fewâ€layered catalytic <scp>1Tâ€MoSe₂</scp> nanosheets for highâ€rate and longâ€cycling lithiumâ€sulfur batteries. EcoMat, 2023, 5, .	11.9	8
1902	Natural Molybdenite as a Highâ€Capacity Anode Material for Fastâ€Charging Lithiumâ€Ion Capacitors. Energy Technology, 0, , 2201458.	3.8	0
1903	MOCVD of Hierarchical Câ€MoS ₂ Nanobranches for pptâ€Level NO ₂ Detection. Small Structures, 2023, 4, .	12.0	1
1904	Hexagonal Co ₉ S ₈ : Experimental and Mechanistic Study of Enhanced Electrocatalytic Hydrogen Evolution of a New Crystallographic Phase. Advanced Functional Materials, 2023, 33, .	14.9	10
1905	An ultrasensitive FET biosensor based on vertically aligned MoS2 nanolayers with abundant surface active sites. Analytica Chimica Acta, 2023, 1252, 341036.	5.4	3
1906	Unlocking the Ultrahighâ€Currentâ€Density Hydrogen Evolution on 2Hâ€MoS ₂ via Simultaneous Structural Control across Seven Orders of Magnitude. Advanced Energy Materials, 2023, 13, .	19.5	14
1907	Three-Dimensional MoS2 Nanosheet Structures: CVD Synthesis, Characterization, and Electrical Properties. Crystals, 2023, 13, 448.	2.2	1
1908	Substrate Effects on Growth Dynamics of WTe ₂ Thin films. Advanced Materials Interfaces, 2023, 10, .	3.7	2
1909	Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. , 2023, 18, .		1
1910	Exploration on the growth of Bi2O2Se films and nanosheet by an ALD-assisted CVD method. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
1911	High-Pressure Diffusion Control: Na Extraction from NaAlB ₁₄ . Chemistry of Materials, 2023, 35, 3008-3014.	6.7	3
1912	First-Principles Study of Two-Dimensional Layered MoSi2N4 and WSi2N4 for Photocatalytic Water Splitting. Russian Journal of Physical Chemistry A, 2022, 96, 3283-3289.	0.6	0
1913	Combining Highly Dispersed Amorphous MoS ₃ with Pt Nanodendrites as Robust Electrocatalysts for Hydrogen Evolution Reaction. Small, 2023, 19, .	10.0	4

#	Article	IF	CITATIONS
1914	Electronegativity principle for hydrogen evolution activity using first-principles calculations. Physical Chemistry Chemical Physics, 2023, 25, 13289-13296.	2.8	1
1915	A post synthetically modified metal–organic framework as an efficient hydrogen evolution reaction catalyst in all pH conditions. New Journal of Chemistry, 0, , .	2.8	0
1916	Electrodeposited Heterostructures of Cobalt Sulfide/Molybdenum Sulfide Trigger both Acidic and Alkaline HER. Journal of the Electrochemical Society, 2023, 170, 042501.	2.9	1
1917	First-Principles Insights into the Relative Stability, Physical Properties, and Chemical Properties of MoSe ₂ . ACS Omega, 2023, 8, 13799-13812.	3.5	3
1918	Surface-Modified MoS ₂ Nanoparticles as Tribological Additives in a Glycerol Solution. ACS Applied Nano Materials, 2023, 6, 6662-6669.	5.0	2
1919	Controlling basal plane sulfur vacancy in water splitting MoSx/NiF electrocatalysts through electric-field-assisted pulsed laser ablation. IScience, 2023, 26, 106797.	4.1	0
1920	Is the doped MoS ₂ basal plane an efficient hydrogen evolution catalyst? Calculations of voltage-dependent activation energy. Physical Chemistry Chemical Physics, 2023, 25, 15162-15172.	2.8	2
1921	The electronic and optical properties, gas sensor and NO removal application investigations of noble metal-adsorbed MoSi2N4. Results in Physics, 2023, 49, 106481.	4.1	1
1922	CNTs Bridged Basalâ€Planeâ€Active 2Hâ€MoS ₂ Nanosheets for Efficient Robust Electrocatalysis. Small, 2023, 19, .	10.0	8
1923	MOCVD Growth of Hierarchical Nanostructured MoS ₂ : Implications for Reactive States as the Large-Area Film. ACS Applied Nano Materials, 2023, 6, 8981-8989.	5.0	0
1924	Single step growth of vertical MoS2 thin films by chemical vapor deposition for hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
1925	Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions. Nano Today, 2023, 50, 101883.	11.9	4
1926	Combination strategy of large interlayer spacing and active basal planes for regulating the microwave absorption performance of MoS2/MWCNT composites at thin absorber level. Journal of Colloid and Interface Science, 2023, 648, 12-24.	9.4	7
1927	Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development. Materials, 2023, 16, 4471.	2.9	4
1928	MoSe2-NiSe dual co-catalysts modified g-C3N4 for enhanced photocatalytic H2 generation. Journal of Colloid and Interface Science, 2023, 649, 426-434.	9.4	8
1929	Template-free scalable growth of vertically-aligned MoS ₂ nanowire array <i>meta</i> -structural films towards robust superlubricity. Materials Horizons, 2023, 10, 4148-4162.	12.2	1
1930	Complex roughening dynamics and wettability mechanism in MoS2 thin films — A system theoretic approach. Physica A: Statistical Mechanics and Its Applications, 2023, 624, 128989.	2.6	0
1931	Modulating the crystallinity of 1D MoO3 and its conversion to 2D MoS2 nanosheets for efficient hydrogen evolution reaction catalysts. Inorganic Chemistry Communication, 2023, 154, 110901.	3.9	0

#	Article	IF	CITATIONS
1932	Tunable Electron Transport in Defect-Engineered PdSe ₂ . Chemistry of Materials, 2023, 35, 5212-5221.	6.7	1
1933	Selective room-temperature dimethylformamide vapor sensing using MoSe2-rGO composite synthesized via facile hydrothermal method. Materials Today Communications, 2023, 35, 106106.	1.9	1
1934	Self-supported transition metal chalcogenides for oxygen evolution. Nano Research, 2023, 16, 8684-8711.	10.4	19
1935	Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review. Materials Horizons, 2023, 10, 2764-2799.	12.2	5
1936	Improved Supercapacitor Performance with Enhanced Interlayer Spacing of Nanoflower MoS ₂ in Long Discharge Time in LEDâ€Glowing Application. Energy Technology, 2023, 11, .	3.8	4
1937	Large-area multilayer molybdenum disulfide for 2D memristors. Materials Today Nano, 2023, 23, 100353.	4.6	1
1938	Engineering the Local Atomic Configuration in 2H TMDs for Efficient Electrocatalytic Hydrogen Evolution. ACS Nano, 2023, 17, 10817-10826.	14.6	10
1939	Solar-driven efficient heterogeneous subminute water disinfection nanosystem assembled with fingerprint MoS2. , 2023, 1, 462-470.		9
1941	Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Research, 2023, 16, 8712-8728.	10.4	13
1942	Holey MoS ₂ -based electrochemical sensors for simultaneous dopamine and uric acid detection. Analytical Methods, 2023, 15, 2989-2996.	2.7	5
1943	Vertically molybdenum disulfide nanosheets on carbon cloth using CVD by controlling growth atmosphere for electrocatalysis. Nanotechnology, 2023, 34, 375601.	2.6	3
1944	Magneticâ€Electric Metamirror and Polarizing Beam Splitter Composed of Anisotropic Nanoparticles. Annalen Der Physik, 0, , .	2.4	0
1945	Ultrahigh breakdown current density of van der Waals one dimensional PdBr2. Applied Physics Letters, 2023, 122, .	3.3	2
1947	CVD synthesis of monolayer MoS ₂ using Na compounds as additives to enhance two-dimensional growth. Japanese Journal of Applied Physics, 2023, 62, 075503.	1.5	0
1948	Activating and optimizing MoS2 basal-plane via spontaneous oxidation for enhanced photocatalytic hydrogen generation. Materials Today Communications, 2023, 36, 106609.	1.9	0
1949	Two-dimensional materials (2DMs): classification, preparations, functionalization and fabrication of 2DMs-oriented electrochemical sensors. , 2023, , 45-132.		Ο
1950	Ultrasonicationâ€Assisted Seed Screening Enables Oriented and Efficient Lowâ€Dimensional Crystalâ€Structural Thinâ€Film Photovoltaics. Advanced Functional Materials, 0, , .	14.9	0
1951	Field electron emission performance of Janus MoSSe and MoSSe-MWCNTs composite: Corroboration by Hall measurement and DFT simulation. Journal of Alloys and Compounds, 2023, 965, 171356.	5.5	1

#	Article	IF	CITATIONS
1952	Studies of temperature-dependent Raman spectra of thin PtSe2 layers on Al2O3 substrate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 297, 116728.	3.5	3
1953	Three-dimensional reduced graphene oxide anchored MoS2@C core-shell nanoparticles as high performance materials in supercapacitor application. Journal of Energy Storage, 2023, 72, 108436.	8.1	0
1954	Density Functional Theory Study of the Electronic and Optical Properties of SnSe ₂ /MoSe ₂ Heterostructures under Strain and Electric Field: Implications for Optoelectronic Devices. ACS Applied Nano Materials, 0, , .	5.0	1
1955	Lithium-Induced Reorientation of Few-Layer MoS ₂ Films. Chemistry of Materials, 2023, 35, 6246-6257.	6.7	1
1956	First-principles study of metals, metalloids and halogens doped monolayer MoSe ₂ to tune its electronic properties. Physica Scripta, 2023, 98, 105917.	2.5	1
1957	A bimetallic Fe–Mg MOF with a dual role as an electrode in asymmetric supercapacitors and an efficient electrocatalyst for hydrogen evolution reaction (HER). RSC Advances, 2023, 13, 26528-26543.	3.6	1
1958	An unexpected interfacial Mo-rich phase in 2D molybdenum disulfide and 3D gold heterojunctions. Nanoscale, 2023, 15, 14906-14911.	5.6	1
1959	Microscopic investigation of intrinsic defects in CVD grown MoS ₂ monolayers. Nanotechnology, 2023, 34, 475705.	2.6	1
1960	Atomic structure and HER performance of doped MoS2: A mini-review. Electrochemistry Communications, 2023, 155, 107563.	4.7	0
1961	Molybdenum disulfide as hydrogen evolution catalyst: From atomistic to materials structure and electrocatalytic performance. Journal of Energy Chemistry, 2023, 87, 256-285.	12.9	5
1962	Synthesis, thermoelectric and energy storage performance of transition metal oxides composites. Coordination Chemistry Reviews, 2024, 498, 215470.	18.8	3
1963	MoS2 blended MWCNT hybrid nanocomposites and its enhanced super capacitive features. Solid State Communications, 2023, 375, 115345.	1.9	0
1964	Substantial impact of surface charges on electrochemical reaction kinetics on S vacancies of MoS2 using grand-canonical iteration method. Journal of Chemical Physics, 2023, 159, .	3.0	0
1965	Probing Functional Structures, Defects, and Interfaces of 2D Transition Metal Dichalcogenides by Electron Microscopy. Advanced Functional Materials, 2024, 34, .	14.9	1
1966	One-step synthesis of Bi2O2Se microstructures for trace oxygen gas sensor application. Sensors and Actuators B: Chemical, 2023, 394, 134398.	7.8	0
1967	Genetic descriptor search algorithm for predicting hydrogen adsorption free energy of 2D material. Scientific Reports, 2023, 13, .	3.3	0
1968	Heterophase junction engineering: Enhanced photo-thermal synergistic catalytic performance of CO2 reduction over 1T/2H-MoS2. Journal of Colloid and Interface Science, 2023, 652, 936-944.	9.4	3
1969	Recent Advances in Engineering of 2D Materialsâ€Based Heterostructures for Electrochemical Energy Conversion. Advanced Science, 2023, 10, .	11.2	4

#	Article	IF	CITATIONS
1970	Efficient and stable CO2 to formate conversion enabled by edge-site-enriched SnS2 nanoplates. Applied Catalysis B: Environmental, 2024, 341, 123274.	20.2	0
1971	Rational design of MoS2 nanosheet/ MoS2 nanowire homostructures and their enhanced hydrogen evolution reaction. , 2023, 20, 639-648.		0
1973	Hierarchical nanoarchitecture with NiFe-LDH on MoS2 for enhanced electrocatalysis of hydrogen evolution in alkaline media. Electrochimica Acta, 2023, 467, 143079.	5.2	2
1974	Optimization of photoactive components of photoelectrochemical biosensors. , 2023, , 225-243.		Ο
1976	A novel 1T-2H MoS2/NaBi(MoO4)2 alternating-phase piezoelectric composites for high-efficient ultrasound-drived piezoelectric catalytic removal of Sildenafil. Chemical Engineering Research and Design, 2023, 179, 314-328.	5.6	0
1977	S-doped copper selenide thin films synthesized by chemical bath deposition for photoelectrochemical water splitting. Applied Surface Science, 2023, 641, 158505.	6.1	2
1978	Establishing stability of the novel layered ternary tri-chalogenide materials: Emergence of a new generation of earth abundant HER catalysts. Computational Materials Science, 2023, 230, 112501.	3.0	1
1979	MoS2 Loaded on SbVO4@Co to Improve Its (Photo)electrocatalytic Performance. Journal of Electronic Materials, 0, , .	2.2	Ο
1981	Wettability and heterojunction synergistic interface optimization guided Co doped MoS2/Ni3S2-GO/NF catalytic electrode to boost overall water splitting. International Journal of Hydrogen Energy, 2024, 51, 207-221.	7.1	1
1982	From Well-Defined Clusters to Functional Materials: Molecular Engineering of Amorphous Molybdenum Sulfides for Hydrogen Evolution Electrocatalysis. Chemistry of Materials, 2023, 35, 8483-8493.	6.7	1
1983	Silicon Solar Cell with Tunneling Oxide on Sulfurâ€Deficient Intrinsic MoS ₂ Thin Film. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	0
1984	Strain-Enabled Local Phase Control in Layered MoTe ₂ for Enhanced Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 0, , 4716-4725.	17.4	Ο
1985	Efficient N-P type charge compensatory synergistic effect for hydrogen production from water splitting: Theoretical design of V/Nb-Re co-doping MoX(X=S or Se)2 photocatalyst. Molecular Catalysis, 2023, 551, 113662.	2.0	0
1986	Vertical two-dimensional WS2 flakes grown on flexible CNT film for excellent electrochemical performance. Rare Metals, 2024, 43, 164-174.	7.1	0
1987	The effects of growth environments on WS2 in electrocatalytic hydrogen evolution reaction. Journal of Physics and Chemistry of Solids, 2024, 185, 111736.	4.0	1
1988	Fabrication of MoS2 with Dual Defects of O-Doping and S-Vacancies for High-Efficiency Hydrogen Production. Electrocatalysis, 0, , .	3.0	0
1989	Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability. Frontiers in Nanotechnology, 0, 5, .	4.8	0
1990	Synthesis of defect-engineered molybdenum sulfides on reduced graphene oxide for enhanced hydrogen evolution reaction kinetics. International Journal of Hydrogen Energy, 2024, 51, 1387-1396.	7.1	Ο

#	Article	IF	CITATIONS
1991	Hydrogen-bonded linear chain assemblies of palladium(<scp>ii</scp>)-selenoether complexes: solid state aggregates as templates for nano-structural Pd ₁₇ Se ₁₅ leading to efficient electrocatalytic activity. Dalton Transactions, 2023, 52, 18302-18314.	3.3	0
1992	Hydrothermally obtained MoSe2/Reduced graphene oxide based composite with superior electrocatalytic performance. International Journal of Hydrogen Energy, 2024, 55, 78-87.	7.1	2
1993	Modulating the electronic structure of MoS2 nanosheets by Mn doping for improving hydrogen evolution reaction: an experimental and theoretical DFT-QTAIM study. Materials Today Communications, 2024, 38, 107786.	1.9	0
1994	2D nanocomposite materials for HER electrocatalysts - a review. Heliyon, 2024, 10, e23450.	3.2	Ο
1995	Palladium phosphoselenide (PdPSe) – Reduced graphene oxide composite: A tri-functional electrocatalyst and a cathode catalyst for alkaline fuel cells. Materials Today Sustainability, 2024, 25, 100651.	4.1	0
1996	The enhancement of hydrogen evolution reaction on nanoplatelet-shaped MoS2 via anodic pretreatment. Electrochimica Acta, 2024, 475, 143696.	5.2	0
1997	Surface modulation of transition-metal-doped MoS2@graphite felt for bifunctional catalysis in Zn-air batteries. Electrochimica Acta, 2024, 475, 143670.	5.2	1
1998	Single-Source Precursors for the Chemical Vapor Deposition of Group 4–6 Transition Metal Dichalcogenides. Crystal Growth and Design, 2024, 24, 1-16.	3.0	1
1999	Coagulation/co-catalytic membrane integrated system for fouling-resistant and efficient water purification. Water Research, 2024, 250, 121055.	11.3	0
2000	Efficient hydrogen evolution and high energy density solid state supercapacitors using rGO/MoS2 heterostructure electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 300, 117129.	3.5	0
2002	Self‣upported Earthâ€Abundant Carbonâ€Based Substrates in Electrocatalysis Landscape: Unleashing the Potentials Toward Paving the Way for Water Splitting and Alcohol Oxidation. Advanced Energy Materials, 2024, 14, .	19.5	1
2003	Ultraclean Interface of Metal Chalcogenides with Metal through Confined Interfacial Chalcogenization. Advanced Materials, 2024, 36, .	21.0	0
2004	Selective oxidation of metallic contacts for localized chemical vapor deposition growth of 2D-transition metal dichalcogenides. Materials Research Express, 2024, 11, 015901.	1.6	0
2005	Manipulable ferromagnetic properties and half-metallic behavior in hole-doped PbClI monolayer: A DFT study. Computational Materials Science, 2024, 234, 112771.	3.0	1
2006	Atomic interfacial charge and energy transfer paths at MoS2/Pd bonded defect-rich BiOCl interfaces for efficient photocatalysis. Applied Catalysis B: Environmental, 2024, 345, 123720.	20.2	0
2007	Efficient Hydrogen Evolution Reaction in 2H-MoS2 Basal Planes Enhanced by Surface Electron Accumulation. Catalysts, 2024, 14, 50.	3.5	0
2008	Recent strategies for improving the catalytic activity of ultrathin transition metal sulfide nanosheets toward the oxygen evolution reaction. Materials Today Energy, 2024, 40, 101492.	4.7	1
2009	Building the confined CoS2/MoS2 nanoreactor via interface electronic reconfiguration to synchronously enhance activity and stability of heterogeneous Fenton-like reactions. Applied Catalysis B: Environmental, 2024, 346, 123769.	20.2	Ο

#	Article	IF	CITATIONS
2010	Two-dimensional materials as catalysts, interfaces, and electrodes for an efficient hydrogen evolution reaction. Nanoscale, 2024, 16, 3936-3950.	5.6	0
2011	A Review on the Chemical Vapor Deposition Synthesis of 2D Materials and Their Applications. Advances in Chemical and Materials Engineering Book Series, 2024, , 270-294.	0.3	0
2012	Effect of selenation temperature on the structure and electrocatalytic properties of MoSe2. International Journal of Hydrogen Energy, 2024, 58, 829-838.	7.1	0
2013	Tailoring Phase Engineering of 1T/2Hâ€MoSe ₂ /CdZnS Heterostructures for Improved Solarâ€Driven H ₂ Production. Solar Rrl, 2024, 8, .	5.8	0
2014	Atomic layer deposition of SnS ₂ film on a precursor pre-treated substrate. Nanotechnology, 2024, 35, 205705.	2.6	0
2015	Interfacial engineering of ZnS–ZnO decorated MoS2 supported on 2D Ti3C2Tx MXene sheets for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 59, 63-73.	7.1	1
2016	Rational design and application of electrocatalysts based on transition metal selenides for water splitting. Materials Chemistry Frontiers, 2024, 8, 1888-1926.	5.9	0
2017	Hydrogen evolution mediated by sulfur vacancies and substitutional Mn in few-layered molybdenum disulfide. Materials Today Energy, 2024, 41, 101524.	4.7	0
2018	Amorphous MoWS _{<i>x</i>} Alloy Nanosheets via Room-Temperature Precipitation Method for Enhanced Electrocatalytic Hydrogen Evolution Reactions. ACS Applied Energy Materials, 2024, 7, 1949-1960.	5.1	0
2019	Simultaneous electrochemical detection of dopamine and uric acid based on tri-composite of poly-pyrrole and α-Fe2O3 embedded MoS2 sheets modified electrode. Microchemical Journal, 2024, 198, 110189.	4.5	0
2020	Constructing 2D Phthalocyanine Covalent Organic Framework with Enhanced Stability and Conductivity via Interlayer Hydrogen Bonding as Electrocatalyst for CO ₂ Reduction. Small, 0, , .	10.0	0
2021	Tunneling optoresistance effect in two-dimensional modulated quantum structures. Physical Review B, 2024, 109, .	3.2	0
2022	Electrostatic shielding effects and binding energy shifts and topological phases of bilayer molybdenum chalcogenides. ChemistrySelect, 2024, 9, .	1.5	0
2023	The dependence of electrocatalytic HER activity of decorated MoS2 with Cu nanoclusters. Surfaces and Interfaces, 2024, 46, 104095.	3.0	0
2024	Sulfur-tuned MoS2 quantum dot decorated Ti3C2Tx (MXene) electrode materials for high performance supercapacitor applications. Journal of Alloys and Compounds, 2024, 985, 174010.	5.5	0
2025	Progress in Electronic, Energy, Biomedical and Environmental Applications of Boron Nitride and MoS2 Nanostructures. Micromachines, 2024, 15, 349.	2.9	0
2026	Top-down nanostructured multilayer MoS2 with atomically sharp edges for electrochemical hydrogen evolution reaction. Materials Today Nano, 2024, 25, 100467.	4.6	0
2027	One Dimensional MoS2/MoP Heterostructures for Efficient Electrocatalytic Hydrogen Evolution Reaction. Catalysis Letters, 0, , .	2.6	0

#	Article	IF	CITATIONS
2028	Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chemical Society Reviews, 2024, 53, 3774-3828.	38.1	0
2029	Physicochemical properties of MoS2 nanosheets under different conditions in SCCO2 exfoliation processing. Journal of Supercritical Fluids, 2024, 209, 106232.	3.2	0
2031	New approach to produce cubic-WC at low temperature for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 62, 1018-1029.	7.1	0
2032	Temperature and Pressure Dependence of Hydrothermal Electrodeposition of Molybdenum Sulfide. ACS Applied Energy Materials, 2024, 7, 2593-2599.	5.1	0
2033	Rashba spin-splitting and spin Hall effect in Janus monolayers Sb2XSX' (X, X'= S, Se, or Te; X ≠X'). Journal of Applied Physics, 2024, 135, .	2.5	0
2034	Progress on the Design of Electrocatalysts for Largeâ€Current Hydrogen Production by Tuning Thermodynamic and Kinetic Factors. Advanced Functional Materials, 0, , .	14.9	0
2035	Tuning the Optoelectronic Properties of Pulsed Laser Deposited "3Dâ€â€MoS ₂ Films via the Degree of Vertical Alignment of Their Constituting Layers. Advanced Optical Materials, 0, , .	7.3	0
2036	Robust Low-Friction and Low-Wear TiNbMoTaCr High-Entropy Film Enabled by Periodically Inserting Curved MoS ₂ Sheets. ACS Applied Materials & Interfaces, 2024, 16, 16936-16949.	8.0	0