The influence of Pluronics® on dark cytotoxicity, pho uptake of curcumin in cancer cells: studies of curcumin

Photochemical and Photobiological Sciences 12, 559-575 DOI: 10.1039/c2pp25249j

Citation Report

#	Article	IF	CITATIONS
1	Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice. Cancer Research and Treatment, 2014, 46, 2-18.	1.3	780
2	Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 1937-1952.	0.5	74
3	Complexes of Chlorin e6 with Pluronics and Polyvinylpyrrolidone: Structure and Photodynamic Activity in Cell Culture. Photochemistry and Photobiology, 2014, 90, 171-182.	1.3	31
4	Perfluorodecalin nanocapsule as an oxygen carrier and contrast agent for ultrasound imaging. RSC Advances, 2014, 4, 13052.	1.7	23
5	Curcumin as a potential non-steroidal contraceptive with spermicidal and microbicidal properties. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2014, 176, 142-148.	0.5	22
6	The influence of Pluronics nanovehicles on dark cytotoxicity, photocytotoxicity and localization of four model photosensitizers in cancer cells. Photochemical and Photobiological Sciences, 2013, 13, 8-22.	1.6	37
7	Validation of Photodynamic Action via Photobleaching of a New Curcumin-Based Composite with Enhanced Water Solubility. Journal of Fluorescence, 2014, 24, 1407-1413.	1.3	21
8	Syntheses and photophysical properties of BF ₂ complexes of curcumin analogues. Organic and Biomolecular Chemistry, 2014, 12, 1618-1626.	1.5	65
9	Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone. Molecules, 2014, 19, 13282-13304.	1.7	11
10	Cobalt(III) Chaperone Complexes of Curcumin: Photoreduction, Cellular Accumulation and Lightâ€Selective Toxicity towards Tumour Cells. Chemistry - A European Journal, 2015, 21, 15224-15234.	1.7	79
11	Interaction between curcumin and human serum albumin in the presence of excipients and the effect of binding on curcumin photostability. Pharmaceutical Development and Technology, 2015, 21, 1-9.	1.1	6
12	Poloxamer-based curcumin solid dispersions for <i>ex tempore</i> preparation of supersaturated solutions intended for antimicrobial photodynamic therapy. Pharmaceutical Development and Technology, 2015, 20, 863-871.	1.1	10
13	Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromolecules, 2016, 17, 2120-2127.	2.6	42
14	Mucusâ€Penetrating Nanosuspensions for Enhanced Delivery of Poorly Soluble Drugs to Mucosal Surfaces. Advanced Healthcare Materials, 2016, 5, 2745-2750.	3.9	31
15	O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocolloids, 2016, 53, 261-269.	5.6	110
16	Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sciences, 2016, 148, 313-328.	2.0	94
17	Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and Surfaces B: Biointerfaces, 2017, 152, 176-182.	2.5	40
19	Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and In Vitro Evaluation Against DU145 Prostate Cancer Cell Line. AAPS PharmSciTech, 2017, 18, 2814-2823.	1.5	61

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
22	Nanocarriers for Photosensitizers for Use in Antimicrobial Photodynamic Therapy. , 2017, , 481-502.		6	
23	Excited state dynamics of bis-dehydroxycurcumin tert-butyl ester, a diketo-shifted derivative of the photosensitizer curcumin. PLoS ONE, 2017, 12, e0175225.	1.1	4	
24	Micellar structural transitions and therapeutic properties in tea tree oil solubilized pluronic P123 solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 478-484.	2.3	12	
25	Phototoxicity of traditional chinese medicine (TCM). Toxicology Research, 2018, 7, 1012-1019.	0.9	4	
26	Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of <i>Candida</i> species. Future Microbiology, 2019, 14, 519-531.	1.0	25	
27	Electrospun curcumin/polycaprolactone/copolymer Fâ€108 fibers as a new therapy for wound healing. Journal of Applied Polymer Science, 2020, 137, 48415.	1.3	7	
28	<p>Neuroprotective Effects of Curcumin-Loaded Emulsomes in a Laser Axotomy-Induced CNS Injury Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 9211-9229.	3.3	14	
29	Photoinduced Antimicrobial Activity of Curcumin-Containing Coatings: Molecular Interaction, Stability and Potential Application in Food Decontamination. ACS Omega, 2020, 5, 31044-31054.	1.6	26	
30	Tautomeric and Aggregational Dynamics of Curcumin-Supersaturated Pluronic Nanocarriers. ACS Applied Polymer Materials, 2020, 2, 4493-4511.	2.0	17	
31	Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels. Journal of Molecular Liquids, 2020, 314, 113591.	2.3	50	
32	Colloidal systems composed of poloxamer 407, different acrylic acid derivatives and curcuminoids: Optimization of preparation method, type of bioadhesive polymer and storage conditions. Journal of Drug Delivery Science and Technology, 2020, 57, 101686.	1.4	6	
33	Hypericin-mediated photoinactivation of polymeric nanoparticles against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101737.	1.3	11	
34	Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119173.	2.0	12	
35	pH interferes in photoinhibitory activity of curcumin nanoencapsulated with pluronic® P123 against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102085.	1.3	5	
36	Photodynamic inactivation of Pseudomonas fluorescens in Minas Frescal cheese using curcumin as a photosensitizer. LWT - Food Science and Technology, 2021, 151, 112143.	2.5	13	
37	Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag ₂ O/SiO ₂ and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film. RSC Advances, 2021, 11, 32775-32791.	1.7	25	
38	The application of photodynamic inactivation to microorganisms in food. Food Chemistry: X, 2021, 12, 100150.	1.8	24	
39	Uptake and timeâ€dependent subcellular localization of native and micellar curcumin in intestinal cells. BioFactors, 2022, , .	2.6	4	

#	Article	IF	CITATIONS
40	Concentration Control of Chemosensitizing, Cell Protectiveness, and Cytotoxic Properties of Pluronics. ACS Applied Polymer Materials, 2022, 4, 8764-8773.	2.0	3
41	Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers, 2023, 15, 355.	2.0	10
42	Dual-targeted poly(amino acid) nanoparticles deliver drug combinations on-site: an intracellular synergistic strategy to eliminate intracellular bacteria. Journal of Materials Chemistry B, 2023, 11, 2958-2971.	2.9	1