Encoding and Transducing the Synaptic or Extrasynapt to the Nucleus

Cell 152, 1119-1133 DOI: 10.1016/j.cell.2013.02.002

Citation Report

#	Article	IF	CITATIONS
1	Long-Distance Integration of Nuclear ERK Signaling Triggered by Activation of a Few Dendritic Spines. Science, 2013, 342, 1107-1111.	6.0	102
2	Neural Activity in Human Hippocampal Formation Reveals the Spatial Context of Retrieved Memories. Science, 2013, 342, 1111-1114.	6.0	269
4	Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK. PLoS ONE, 2014, 9, e85924.	1.1	12
5	Inhibition of the Polyamine System Counteracts β-Amyloid Peptide-Induced Memory Impairment in Mice: Involvement of Extrasynaptic NMDA Receptors. PLoS ONE, 2014, 9, e99184.	1.1	45
6	Molecular Dynamics of the Neuronal EF-Hand Ca2+-Sensor Caldendrin. PLoS ONE, 2014, 9, e103186.	1.1	14
7	Spatially selective photoconductive stimulation of live neurons. Frontiers in Cellular Neuroscience, 2014, 8, 142.	1.8	11
8	The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130504.	1.8	70
9	Trafficking of Glutamate Receptors and Associated Proteins in Synaptic Plasticity. , 2014, , 221-279.		1
10	When Synaptic Proteins Meet the Genome: Transcriptional Regulation in Cell Death and Plasticity by the Synapto–Nuclear Messenger Jacob. Neuropsychopharmacology, 2014, 39, 245-246.	2.8	1
11	Using Our Understanding of Stress-Related Effects on Glutamate Neurotransmission to Guide the Development of Novel Treatment Strategies. , 2014, , 313-341.		0
12	The roles of protein expression in synaptic plasticity and memory consolidation. Frontiers in Molecular Neuroscience, 2014, 7, 86.	1.4	125
13	Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: Implications for neuropsychiatric diseases. Neurobiology of Disease, 2014, 63, 129-140.	2.1	55
14	The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. Experimental Neurology, 2014, 253, 126-137.	2.0	59
15	Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Structure and Function, 2014, 219, 843-860.	1.2	23
16	Cocaine-Induced Changes in NMDA Receptor Signaling. Molecular Neurobiology, 2014, 50, 494-506.	1.9	32
17	Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 2014, 82, 279-293.	3.8	450
18	Axon–soma communication in neuronal injury. Nature Reviews Neuroscience, 2014, 15, 32-42.	4.9	230
19	Role of the ubiquitin–proteasome system in brain ischemia: Friend or foe?. Progress in Neurobiology, 2014. 112. 50-69.	2.8	108

#	Article	IF	CITATIONS
20	The Rac1 Inhibitor NSC23766 Suppresses CREB Signaling by Targeting NMDA Receptor Function. Journal of Neuroscience, 2014, 34, 14006-14012.	1.7	23
21	γCaMKII Shuttles Ca2+/CaM to the Nucleus to Trigger CREB Phosphorylation and Gene Expression. Cell, 2014, 159, 281-294.	13.5	221
22	Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. , 2014, , .		2
23	Protein trafficking from synapse to nucleus in control of activity-dependent gene expression. Neuroscience, 2014, 280, 340-350.	1.1	17
24	Analysis of Y-P30/Dermcidin expression and properties of the Y-P30 peptide. BMC Research Notes, 2014, 7, 400.	0.6	4
25	Co-activation of NR2A and NR2B subunits induces resistance to fear extinction. Neurobiology of Learning and Memory, 2014, 113, 35-40.	1.0	13
26	Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2288-2301.	1.5	106
27	Understanding intellectual disability through RASopathies. Journal of Physiology (Paris), 2014, 108, 232-239.	2.1	15
28	ER to synapse trafficking of NMDA receptors. Frontiers in Cellular Neuroscience, 2014, 8, 394.	1.8	70
29	Isolation of CA1 Nuclear Enriched Fractions from Hippocampal Slices to Study Activity-dependent Nuclear Import of Synapto-nuclear Messenger Proteins. Journal of Visualized Experiments, 2014, , e51310.	0.2	6
30	Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Frontiers in Molecular Neuroscience, 2015, 8, 48.	1.4	31
31	Synaptic Tagging and Capture. , 2015, , .		6
32	Long-term imipramine treatment increases N-methyl-d-aspartate receptor activity and expression via epigenetic mechanisms. European Journal of Pharmacology, 2015, 752, 69-77.	1.7	24
33	Emerging Therapies in Traumatic Brain Injury. Seminars in Neurology, 2015, 35, 083-100.	0.5	100
34	Alternative Splicing, Expression and Cellular Localization of Calneuron-1 in the Rat and Human Brain. Journal of Histochemistry and Cytochemistry, 2015, 63, 793-804.	1.3	12
35	Neurofilament dynamics and involvement in neurological disorders. Cell and Tissue Research, 2015, 360, 609-620.	1.5	77
36	Biochemical Computation for Spine Structural Plasticity. Neuron, 2015, 87, 63-75.	3.8	178
37	Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nature Communications, 2015, 6, 6319.	5.8	46

#	Article	IF	CITATIONS
38	Sex differences in fear extinction and involvements of extracellular signal-regulated kinase (ERK). Neurobiology of Learning and Memory, 2015, 123, 117-124.	1.0	52
39	NMDA receptor activity determines neuronal fate: location or number?. Reviews in the Neurosciences, 2015, 26, 39-47.	1.4	10
40	N-methyl d-aspartate receptor synaptonuclear signaling and neuronal migration factor (Nsmf) plays a novel role in myoblast proliferation. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 79-84.	0.7	2
41	From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases. Neuron, 2015, 85, 901-910.	3.8	96
42	Macromolecular transport in synapse to nucleus communication. Trends in Neurosciences, 2015, 38, 108-116.	4.2	69
43	Dual role of Src kinase in governing neuronal survival. Brain Research, 2015, 1594, 1-14.	1.1	15
44	Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plasticity, 2016, 2016, 1-20.	1.0	111
45	Neurotransmitter Regulation of Striatal Gene Expression. Handbook of Behavioral Neuroscience, 2016, , 609-637.	0.7	1
46	D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability. Frontiers in Cellular Neuroscience, 2016, 10, 34.	1.8	43
47	Synaptic GluN2B/CaMKII-α Signaling Induces Synapto-Nuclear Transport of ERK and Jacob. Frontiers in Molecular Neuroscience, 2016, 9, 66.	1.4	25
48	A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics, 2016, 12, e1005907.	1.5	36
49	The transcription factor calciumâ€response factor limits <scp>NMDA</scp> receptorâ€dependent transcription in the developing brain. Journal of Neurochemistry, 2016, 137, 164-176.	2.1	21
50	What do we learn from the murine Jacob/Nsmf gene knockout for human disease?. Rare Diseases (Austin, Tex), 2016, 4, e1241361.	1.8	8
51	Glutamate excitotoxicity and Ca 2+ -regulation of respiration: Role of the Ca 2+ activated mitochondrial transporters (CaMCs). Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1158-1166.	0.5	77
52	Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiology Reviews, 2016, 40, 610-624.	3.9	25
53	Synaptonuclear messenger <scp>PRR</scp> 7 inhibits câ€Jun ubiquitination and regulates <scp>NMDA</scp> â€mediated excitotoxicity. EMBO Journal, 2016, 35, 1923-1934.	3.5	33
54	Localising Receptors and Channels Across the Dendritic Arbour. , 2016, , 387-424.		1
55	Activity Dependent Protein Transport from the Synapse to the Nucleus. , 2016, , 111-124.		1

#	Article	IF	CITATIONS
56	α-Internexin and Peripherin. Methods in Enzymology, 2016, 568, 477-507.	0.4	26
57	A Dendritic Golgi Satellite between ERGIC and Retromer. Cell Reports, 2016, 14, 189-199.	2.9	99
58	A plasmid-based expression system to study protein–protein interactions at the Golgi inÂvivo. Analytical Biochemistry, 2016, 502, 50-52.	1.1	7
59	Dopamine agonists rescue Aβ–induced LTP impairment byÂSrc-family tyrosine kinases. Neurobiology of Aging, 2016, 40, 98-102.	1.5	26
60	Dysfunction of NMDA receptors in Alzheimer's disease. Neurological Sciences, 2016, 37, 1039-1047.	0.9	186
61	Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3072-3077.	3.3	24
62	Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiological Reviews, 2016, 96, 647-693.	13.1	96
63	Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193.	2.8	137
64	Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity. Neuron, 2017, 93, 1315-1324.e3.	3.8	90
65	Role of NMDA Receptors in Pancreatic Islets. , 2017, , 121-134.		3
66	Posttranslational modification impact on the mechanism by which amyloidâ $\in \hat{\mathbf{F}}^2$ induces synaptic dysfunction. EMBO Reports, 2017, 18, 962-981.	2.0	50
67	The malleable brain: plasticity of neural circuits and behavior – a review from students to students. Journal of Neurochemistry, 2017, 142, 790-811.	2.1	34
68	Regulated transport of signaling proteins from synapse to nucleus. Current Opinion in Neurobiology, 2017, 45, 78-84.	2.0	31
69	Predator odor evokes sexâ€independent stress responses in male and female Wistar rats and reduces phosphorylation of cyclicâ€adenosine monophosphate response element binding protein in the male, but not the female hippocampus. Hippocampus, 2017, 27, 1016-1029.	0.9	21
70	Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Scientific Reports, 2017, 7, 45101.	1.6	48
71	Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron, 2017, 96, 667-679.	3.8	107
72	Involvement of extracellular signal-regulated kinase (ERK) in the short and long-lasting antidepressant-like activity of NMDA receptor antagonists (zinc and Ro 25-6981) in the forced swim test in rats. Neuropharmacology, 2017, 125, 333-342.	2.0	32
73	NMDAR antagonists for the treatment of diabetes mellitus—Current status and future directions. Diabetes, Obesity and Metabolism, 2017, 19, 95-106.	2.2	22

#	Article	IF	CITATIONS
74	Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. Neurobiology of Learning and Memory, 2017, 138, 39-53.	1.0	24
75	Activity-dependent synapse to nucleus signaling. Neurobiology of Learning and Memory, 2017, 138, 78-84.	1.0	16
76	Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Molecular and Cellular Neurosciences, 2017, 81, 12-21.	1.0	32
77	Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron, 2018, 97, 1110-1125.e14.	3.8	68
78	The human GCOM1 complex gene interacts with the NMDA receptor and internexin-alpha. Gene, 2018, 648, 42-53.	1.0	7
79	TorsinA dysfunction causes persistent neuronal nuclear pore defects. Human Molecular Genetics, 2018, 27, 407-420.	1.4	51
80	Recording Synaptic Plasticity in Acute Hippocampal Slices Maintained in a Small-volume Recycling-, Perfusion-, and Submersion-type Chamber System. Journal of Visualized Experiments, 2018, , .	0.2	10
81	JAK/STAT signaling pathway gene expression is reduced following Nelf knockdown in GnRH neurons. Molecular and Cellular Endocrinology, 2018, 470, 151-159.	1.6	7
82	Importin α5 Regulates Anxiety through MeCP2 and Sphingosine Kinase 1. Cell Reports, 2018, 25, 3169-3179.e7.	2.9	25
83	Excitotoxicity. , 2018, , 70-100.		0
84	Cyto-nuclear shuttling of afadin is required for rapid estradiol-mediated modifications of histone H3. Neuropharmacology, 2018, 143, 153-162.	2.0	2
85	The C-terminus of NMDAR GluN1-1a Subunit Translocates to Nucleus and Regulates Synaptic Function. Frontiers in Cellular Neuroscience, 2018, 12, 334.	1.8	15
86	PSD-95-nNOS Coupling Regulates Contextual Fear Extinction in the Dorsal CA3. Scientific Reports, 2018, 8, 12775.	1.6	26
87	Dysregulated Neurotransmission induces Trans-synaptic degeneration in reconstructed Neuronal Networks. Scientific Reports, 2018, 8, 11596.	1.6	25
88	Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nature Communications, 2018, 9, 2451.	5.8	51
89	Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. Journal of Neuroinflammation, 2018, 15, 216.	3.1	62
90	A Novel Tetramethylpyrazine Derivative Prophylactically Protects against Glutamate-Induced Excitotoxicity in Primary Neurons through the Blockage of N-Methyl-D-aspartate Receptor. Frontiers in Pharmacology, 2018, 9, 73.	1.6	17
91	SAP97â€mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington's disease. Hippocampus, 2018, 28, 707-723.	0.9	5

			2
#		IF	CITATIONS
92	Effect of acute alarm odor exposure and biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of Wistar rats. Stress, 2018, 21, 292-303.	0.8	8
93	Senescent neurophysiology: Ca2+ signaling from the membrane to the nucleus. Neurobiology of Learning and Memory, 2019, 164, 107064.	1.0	13
94	Role of microtubules in late-associative plasticity of hippocampal Schaffer collateral-CA1 synapses in mice. Neurobiology of Learning and Memory, 2019, 163, 107038.	1.0	1
95	YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chemical and Pharmaceutical Bulletin, 2019, 67, 244-252.	0.6	13
96	Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biological Psychiatry, 2019, 86, 87-96.	0.7	24
97	How the epigenome integrates information and reshapes the synapse. Nature Reviews Neuroscience, 2019, 20, 133-147.	4.9	115
98	The neuronal stimulation–transcription coupling map. Current Opinion in Neurobiology, 2019, 59, 87-94.	2.0	28
99	The Synaptonuclear Messenger RNF10 Acts as an Architect of Neuronal Morphology. Molecular Neurobiology, 2019, 56, 7583-7593.	1.9	12
100	How can memories last for days, years, or a lifetime? Proposed mechanisms for maintaining synaptic potentiation and memory. Learning and Memory, 2019, 26, 133-150.	0.5	36
101	The Reactive Plasticity of Hippocampal Ionotropic Glutamate Receptors in Animal Epilepsies. International Journal of Molecular Sciences, 2019, 20, 1030.	1.8	16
102	Synapse-to-Nucleus Communication through NFAT Is Mediated by L-type Ca2+ Channel Ca2+ Spike Propagation to the Soma. Cell Reports, 2019, 26, 3537-3550.e4.	2.9	57
103	Activity-Dependent Transcription Collaborates with Local Dendritic Translation to Encode Stimulus-Specificity in the Genome Binding of NPAS4. Neuron, 2019, 104, 634-636.	3.8	3
104	SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nature Communications, 2019, 10, 5448.	5.8	64
105	Neuronal serine racemase associates with Disrupted-In-Schizophrenia-1 and DISC1 agglomerates: Implications for schizophrenia. Neuroscience Letters, 2019, 692, 107-114.	1.0	8
106	Cellular calcium signaling in the aging brain. Journal of Chemical Neuroanatomy, 2019, 95, 95-114.	1.0	40
107	RIP at the Synapse and the Role of Intracellular Domains in Neurons. NeuroMolecular Medicine, 2020, 22, 1-24.	1.8	5
108	Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory. Neurobiology of Learning and Memory, 2020, 168, 107139.	1.0	3
109	Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton, 2020, 77, 55-64.	1.0	33

#	ARTICLE	IF	Citations
110	Actomyosin Contractility in the Generation and Plasticity of Axons and Dendritic Spines. Cells, 2020, 9, 2006.	1.8	7
111	Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Frontiers in Neuroscience, 2020, 14, 579953.	1.4	117
112	Adaptor protein APPL1 links neuronal activity to chromatin remodeling in cultured hippocampal neurons. Journal of Molecular Cell Biology, 2021, 13, 335-346.	1.5	3
113	The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 9607.	1.8	57
114	Mechanisms that communicate features of neuronal activity to the genome. Current Opinion in Neurobiology, 2020, 63, 131-136.	2.0	12
115	Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons. Molecular Neurobiology, 2020, 57, 2539-2550.	1.9	14
116	Regulation of NMDA glutamate receptor functions by the GluN2 subunits. Journal of Neurochemistry, 2020, 154, 121-143.	2.1	90
117	DLG2 variants in patients with pubertal disorders. Genetics in Medicine, 2020, 22, 1329-1337.	1.1	7
118	<scp>nNOS APON</scp> blockers produce anxiolytic effects by promoting synaptogenesis in chronic stressâ€induced animal models of anxiety. British Journal of Pharmacology, 2020, 177, 3674-3690.	2.7	19
119	NMDARs in Cell Survival and Death: Implications in Stroke Pathogenesis and Treatment. Trends in Molecular Medicine, 2020, 26, 533-551.	3.5	61
120	Repressor element 1 silencing transcription factor /neuron-restrictive silencing factor (REST/NRSF) in social stress and depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110053.	2.5	10
121	Dorsal Hippocampus to Infralimbic Cortex Circuit is Essential for the Recall of Extinction Memory. Cerebral Cortex, 2021, 31, 1707-1718.	1.6	17
122	TRPing into excitotoxic neuronal death. Cell Calcium, 2021, 93, 102331.	1.1	1
123	N-methyl-d-aspartate receptor function in neuronal and synaptic development and signaling. Current Opinion in Pharmacology, 2021, 56, 93-101.	1.7	23
124	Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. Science Advances, 2021, 7, .	4.7	11
125	Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand. Molecular Psychiatry, 2021, 26, 6506-6519.	4.1	8
126	Dynein and muskelin control myosin VI delivery towards the neuronal nucleus. IScience, 2021, 24, 102416.	1.9	4
127	NSMF promotes the replication stress-induced DNA damage response for genome maintenance. Nucleic Acids Research, 2021, 49, 5605-5622.	6.5	6

#	Article	IF	CITATIONS
128	Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin. Neuroscience, 2021, 461, 180-193.	1.1	13
129	Synaptic NMDA receptor signalling controls Râ€ŧype calcium channel recruitment. European Journal of Neuroscience, 2021, 54, 4133-4140.	1.2	3
130	The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacological Research, 2021, 167, 105542.	3.1	39
131	Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers. Neuropharmacology, 2021, 190, 108551.	2.0	22
132	The Structural and Biochemical Characterization of UNC119B Cargo Binding and Release Mechanisms. Biochemistry, 2021, 60, 1952-1963.	1.2	4
133	Disrupting the Interaction of nNOS with CAPON Prevents the Reinstatement of Morphine Conditioned Place Preference. Cerebral Cortex, 2022, 32, 569-582.	1.6	3
134	Early Predictive Biomarkers for Hypertension Using Human Fetal Astrocytes. , 0, , .		0
135	Reduced Levels of miR-342-5p in Plasma Are Associated With Worse Cognitive Evolution in Patients With Mild Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 705989.	1.7	9
136	Mulberry fruit extract alleviates the intracellular amyloidâ€Î² oligomerâ€induced cognitive disturbance and oxidative stress in Alzheimer's disease model mice. Genes To Cells, 2021, 26, 861-873.	0.5	7
137	Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2021, 15, 685201.	1.8	16
138	NMDA and AMPA receptors dysregulation in Alzheimer's disease. European Journal of Pharmacology, 2021, 908, 174310.	1.7	55
139	The nuclear lamina is a hub for the nuclear function of Jacob. Molecular Brain, 2021, 14, 9.	1.3	6
140	From Where? Synaptic Tagging Allows the Nucleus Not to Care. , 2015, , 143-153.		2
142	Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage. Journal of Clinical Investigation, 2014, 124, 3645-3655.	3.9	98
143	Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. ELife, 2016, 5, e12430.	2.8	39
145	Synapses, networks, brain development – funding basic neuroscience research in Germany by the Schram Foundation. Neuroforum, 2020, 26, 195-207.	0.2	Ο
146	Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Frontiers in Synaptic Neuroscience, 2021, 13, 787494.	1.3	7
147	Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behavioural Brain Research, 2022, 420, 113724.	1.2	22

#	Article	IF	CITATIONS
148	Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease. Translational Neurodegeneration, 2022, 11, 2.	3.6	7
149	One-step purification of tag free and soluble lamin B1 from an E. coli bacterial expression system. Protein Expression and Purification, 2022, 193, 106057.	0.6	1
150	Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). International Journal of Molecular Medicine, 2021, 49, .	1.8	100
153	Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. Journal of Advanced Research, 2023, 45, 31-42.	4.4	6
154	The epilepsy-associated protein PCDH19 undergoes NMDA receptor-dependent proteolytic cleavage and regulates the expression of immediate-early genes. Cell Reports, 2022, 39, 110857.	2.9	10
156	A New Monoclonal Antibody Enables BAR Analysis of Subcellular Importin \hat{I}^21 Interactomes. Molecular and Cellular Proteomics, 2022, 21, 100418.	2.5	1
158	Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs. Fundamental and Clinical Pharmacology, 2023, 37, 397-427.	1.0	3
159	Jacobâ€induced transcriptional inactivation of <scp>CREB</scp> promotes Aβâ€induced synapse loss in Alzheimer's disease. EMBO Journal, 2023, 42, .	3.5	9
160	A Jacob/nsmf gene knockout does not protect against acute hypoxia- and NMDA-induced excitotoxic cell death. Molecular Brain, 2023, 16, .	1.3	0
161	Neurofilament Levels in Dendritic Spines Associate with Synaptic Status. Cells, 2023, 12, 909.	1.8	2
162	Novel therapeutic approaches to target neurodegeneration. British Journal of Pharmacology, 2023, 180, 1651-1673.	2.7	5
163	Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Molecular and Cellular Neurosciences, 2023, 125, 103854.	1.0	2
171	Excitation–transcription coupling, neuronal gene expression and synaptic plasticity. Nature Reviews Neuroscience, 2023, 24, 672-692.	4.9	5