Investigation of Zr(<scp>iv</scp>) and ⁸⁹Z hydroxamates: progress towards designing a better che immuno-PET imaging

Chemical Communications 49, 1002-1004 DOI: 10.1039/c2cc37549d

Citation Report

#	Article	IF	CITATIONS
1	89Zr, a Radiometal Nuclide with High Potential for Molecular Imaging with PET: Chemistry, Applications and Remaining Challenges. Molecules, 2013, 18, 6469-6490.	3.8	92
2	Zirconium-89 Labeled Antibodies: A New Tool for Molecular Imaging in Cancer Patients. BioMed Research International, 2014, 2014, 1-13.	1.9	103
3	Rational Design, Synthesis, and Evaluation of Tetrahydroxamic Acid Chelators for Stable Complexation of Zirconium(IV). Chemistry - A European Journal, 2014, 20, 5584-5591.	3.3	63
4	Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Applied Geochemistry, 2014, 43, 13-21.	3.0	38
5	Charting the mechanism and reactivity of zirconium oxalate with hydroxamate ligands using density functional theory: implications in new chelate design. Dalton Transactions, 2014, 43, 9872-9884.	3.3	44
6	Density functional theory study of bis(imino) N-heterocyclic carbene iron(II) complexes. Canadian Journal of Chemistry, 2014, 92, 925-931.	1.1	3
7	Synthesis and characterisation of zirconium complexes for cell tracking with Zr-89 by positron emission tomography. Dalton Transactions, 2014, 43, 14851-14857.	3.3	31
8	An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chemical Communications, 2014, 50, 11523-11525.	4.1	120
9	Structural and electrochemical characterization of a cerium(<scp>iv</scp>) hydroxamate complex: implications for the beneficiation of light rare earth ores. Chemical Communications, 2014, 50, 5361-5363.	4.1	30
10	A 4-tert-butylcalix[4]arene tetrahydroxamate podand based on the 1-oxypiperidine-2-one (1,2-PIPO ^{â°'}) chelate. Self-assembly into a supramolecular ionophore driven by coordination of tetravalent zirconium or hafnium(<scp>iv</scp>). RSC Advances, 2014, 4, 22743-22754.	3.6	7
11	Alternative Chelator for ⁸⁹ Zr Radiopharmaceuticals: Radiolabeling and Evaluation of 3,4,3-(LI-1,2-HOPO). Journal of Medicinal Chemistry, 2014, 57, 4849-4860.	6.4	143
12	Synthesis and Structural Study of Tetravalent (Zr ⁴⁺ , Hf ⁴⁺ , Ce ⁴⁺ ,) Tj ETQe of Inorganic Chemistry, 2015, 2015, 1529-1541.	q1 1 0.784 2.0	1314 rgBT /0 18
13	The impact of weakly bound 89Zr on preclinical studies: Non-specific accumulation in solid tumors and aspergillus infection. Nuclear Medicine and Biology, 2015, 42, 360-368.	0.6	32
14	[89Zr]Oxinate4 for long-term in vivo cell tracking by positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 278-287.	6.4	90
15	Evaluation of cetuximab as a candidate for targeted $\hat{l}\pm$ -particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs, 2015, 7, 255-264.	5.2	31
16	Forward and Reverse (Retro) Iron(III) or Gallium(III) Desferrioxamine E and Ring-Expanded Analogues Prepared Using Metal-Templated Synthesis from <i>endo</i> -Hydroxamic Acid Monomers. Inorganic Chemistry, 2015, 54, 3573-3583.	4.0	15
17	In vivo imaging with antibodies and engineered fragments. Molecular Immunology, 2015, 67, 142-152.	2.2	173
18	Novel Bifunctional Cyclic Chelator for 89Zr Labeling–Radiolabeling and Targeting Properties of RGD Conjugates. Molecular Pharmaceutics, 2015, 12, 2142- <u>2150.</u>	4.6	70

ATION REDO

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
19	Conformational and structural studies of N-methylacetohydroxamic acid and of its mono- and bis-chelated uranium(VI) complexes. Journal of Inorganic Biochemistry, 2015, 151, 164-175.	3.5	8
20	Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. British Journal of Radiology, 2015, 88, 20150185.	2.2	27
21	<i>p</i> -SCN-Bn-HOPO: A Superior Bifunctional Chelator for ⁸⁹ Zr ImmunoPET. Bioconjugate Chemistry, 2015, 26, 2579-2591.	3.6	104
22	Radiometals: towards a new success story in nuclear imaging?. Dalton Transactions, 2015, 44, 4845-4858.	3.3	50
23	Tripodal tris(hydroxypyridinone) ligands for immunoconjugate PET imaging with ⁸⁹ Zr ⁴⁺ : comparison with desferrioxamine-B. Dalton Transactions, 2015, 44, 4884-4900.	3.3	72
24	Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chemical Communications, 2015, 51, 2301-2303.	4.1	41
25	A nuclear chocolate box: the periodic table of nuclear medicine. Dalton Transactions, 2015, 44, 4819-4844.	3.3	115
26	Evaluation of a 3-hydroxypyridin-2-one (2,3-HOPO) Based Macrocyclic Chelator for 89Zr4+ and Its Use for ImmunoPET Imaging of HER2 Positive Model of Ovarian Carcinoma in Mice. Theranostics, 2016, 6, 511-521.	10.0	49
27	Macrocycleâ€Based Hydroxamate Ligands for Complexation and Immunoconjugation of ⁸⁹ Zirconium for Positron Emission Tomography (PET) Imaging. ChemPlusChem, 2016, 81, 274-281.	2.8	55
28	In Vitro and In Vivo Comparison of Selected Ga-68 and Zr-89 Labelled Siderophores. Molecular Imaging and Biology, 2016, 18, 344-352.	2.6	41
29	A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies. Chemical Communications, 2016, 52, 11889-11892.	4.1	77
30	Current advances in ligand design for inorganic positron emission tomography tracers ⁶⁸ Ga, ⁶⁴ Cu, ⁸⁹ Zr and ⁴⁴ Sc. Dalton Transactions, 2016, 45, 15702-15724.	3.3	81
31	Synthesis and Evaluation of a Zr-89-Labeled Monoclonal Antibody for Immuno-PET Imaging of Amyloid-β Deposition in the Brain. Molecular Imaging and Biology, 2016, 18, 598-605.	2.6	23
32	Advanced Chelator Design for Metal Complexes in Imaging Applications. Advances in Inorganic Chemistry, 2016, 68, 301-339.	1.0	7
33	Semi-automated production of 89 Zr-oxalate/ 89 Zr-chloride and the potential of 89 Zr-chloride in radiopharmaceutical compounding. Applied Radiation and Isotopes, 2016, 107, 317-322.	1.5	22
34	Octadentate Zirconium(IV)-Loaded Macrocycles with Varied Stoichiometry Assembled From Hydroxamic Acid Monomers using Metal-Templated Synthesis. Inorganic Chemistry, 2017, 56, 3719-3728.	4.0	24
35	Investigation of the complexation of ^{nat} Zr(<scp>iv</scp>) and ⁸⁹ Zr(<scp>iv</scp>) by hydroxypyridinones for the development of chelators for PET imaging applications. Dalton Transactions, 2017, 46, 4749-4758.	3.3	26
36	Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(<scp>iv</scp>) chelator. Organic and Biomolecular Chemistry, 2017, 15, 5719-5730.	2.8	33

#	Article	IF	CITATIONS
37	Copper, gallium and zirconium positron emission tomography imaging agents: The importance of metal ion speciation. Coordination Chemistry Reviews, 2017, 352, 499-516.	18.8	49
38	Zirconium tetraazamacrocycle complexes display extraordinary stability and provide a new strategy for zirconium-89-based radiopharmaceutical development. Chemical Science, 2017, 8, 2309-2314.	7.4	87
39	Production, applications and status of zirconium-89 immunoPET agents. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 7-21.	1.5	13
40	Rational Design, Development, and Stability Assessment of a Macrocyclic Fourâ€Hydroxamateâ€Bearing Bifunctional Chelating Agent for ⁸⁹ Zr. ChemMedChem, 2017, 12, 1555-1571.	3.2	23
41	⁸⁹ Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art ⁸⁹ Zr Radiochemistry. Bioconjugate Chemistry, 2017, 28, 2211-2223.	3.6	146
42	A new tetrapodal 3-hydroxy-4-pyridinone ligand for complexation of 89zirconium for positron emission tomography (PET) imaging. Dalton Transactions, 2017, 46, 9654-9663.	3.3	27
43	Multifunctional Desferrichrome Analogues as Versatile89Zr(IV) Chelators for ImmunoPET Probe Development. Molecular Pharmaceutics, 2017, 14, 2831-2842.	4.6	41
44	Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 286-295.	6.4	111
45	The chemistry of PET imaging with zirconium-89. Chemical Society Reviews, 2018, 47, 2554-2571.	38.1	60
46	Advances in the Chemical Biology of Desferrioxamine B. ACS Chemical Biology, 2018, 13, 11-25.	3.4	62
47	A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant89Zr-immuno-PET agents. Dalton Transactions, 2018, 47, 13214-13221.	3.3	11
48	Evaluation of a chloride-based 89Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin. Nuclear Medicine and Biology, 2018, 64-65, 1-7.	0.6	17
49	The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin. Journal of Biological Inorganic Chemistry, 2018, 23, 969-982.	2.6	16
50	Recent Advances in Zirconium-89 Chelator Development. Molecules, 2018, 23, 638.	3.8	84
51	Improved synthesis of the bifunctional chelator <i>p</i> -SCN-Bn-HOPO. Organic and Biomolecular Chemistry, 2019, 17, 6866-6871.	2.8	12
52	Progress of Coordination and Utilization of Zirconium-89 for Positron Emission Tomography (PET) Studies. Nuclear Medicine and Molecular Imaging, 2019, 53, 115-124.	1.0	16
53	The solution thermodynamic stability of desferrioxamine B (DFO) with Zr(IV). Journal of Inorganic Biochemistry, 2019, 198, 110753.	3.5	30
54	Tales of the Unexpected: The Case of Zirconium(IV) Complexes with Desferrioxamine. Molecules, 2019, 24, 2098.	3.8	24

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
55	The Radiopharmaceutical Chemistry of Zirconium-89. , 2019, , 371-390.			4
56	Rational Design, Synthesis and Preliminary Evaluation of Novel Fusarinine C-Based Chel Radiolabeling with Zirconium-89. Biomolecules, 2019, 9, 91.	ators for	4.0	11
57	Analogues of desferrioxamine B (DFOB) with new properties and new functions genera precursor-directed biosynthesis. BioMetals, 2019, 32, 395-408.	ted using	4.1	8
58	Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine Coordination Sphere Completed by Hydroxides. Inorganic Chemistry, 2020, 59, 17443-	:: A 17452.	4.0	13
59	Metallo-Fluorocarbon Nanoemulsion for Inflammatory Macrophage Detection via PET a Journal of Nuclear Medicine, 2020, 62, jnumed.120.255273.	nd MRI.	5.0	14
60	A High-Denticity Chelator Based on Desferrioxamine for Enhanced Coordination of Zirco Inorganic Chemistry, 2020, 59, 11715-11727.	onium-89.	4.0	20
61	Reply to the â€ [~] Comment on "Investigation of Zr(iv) and 89Zr(iv) complexation with progress towards designing a better chelator than desferrioxamine B for immuno-PET ir Bianchi and M. Savastano, Chem. Commun., 2020, 56, DOCC01189D. Chemical Comm 12667-12668	n hydroxamates: nagingâ€â€™ by A. unications, 2020, 56,	4.1	2
62	Comment on "Investigation of Zr(<scp>iv</scp>) and ⁸⁹ Zr(<scp>ivwith hydroxamates: progress towards designing a better chelator than desferrioxamine immuno-PET imaging―by F. Guérard, YS. Lee, R. Tripier, L. P. Szajek, J. R. Deschamp <i>Chem. Commun.</i></scp>	cp>) complexation B for s and M. W. Brechbiel, 5. 12664-12666.	4.1	5
63	Promising Performance of 4HMS, a New Zirconium-89 Octadendate Chelator. ACS Ome 10731-10739.	2ga, 2020, 5,	3.5	13
64	ImmunoPET: Concept, Design, and Applications. Chemical Reviews, 2020, 120, 3787-3	851.	47.7	263
65	Predicting the Thermodynamic Stability of Zirconium Radiotracers. Inorganic Chemistry 2070-2082.	, 2020, 59,	4.0	44
66	Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability Zr(<scp>iv</scp>) chelation mediated nanostructures. Polymer Chemistry, 2020, 11, 2	/ to form 799-2810.	3.9	7
67	Directing macrocyclic architecture using iron(III)-, gallium(III)-, or zirconium(IV)-assisted of linear dimeric endo-hydroxamic acid ligands. Journal of Inorganic Biochemistry, 2021	ring closure , 216, 111337.	3.5	3
68	Head-to-head comparison of DFO* and DFO chelators: selection of the best candidate f 89Zr-immuno-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2021,	or clinical 48, 694-707.	6.4	43
69	Radioactive Metals in Imaging and Therapy. , 2021, , 706-740.			6
70	Revealing the Structure of Transition Metal Complexes of Formaldoxime. Inorganic Che 60, 5523-5537.	mistry, 2021,	4.0	5
71	State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiomer Preclinical and Clinical Immuno-PET. Bioconjugate Chemistry, 2021, 32, 1315-1330.	als for	3.6	37
72	Preparation of 89Zr Solutions for Radiopharmaceuticals Synthesis. Radiochemistry, 202	21, 63, 369-383.	0.7	4

ARTICLE IF CITATIONS # Squaric Acid-Based Radiopharmaceuticals for Tumor Imaging and Therapy. Bioconjugate Chemistry, 73 3.6 17 2021, 32, 1223-1231. 89Zr as a promising radionuclide and it's applications for effective cancer imaging. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 15-28. 74 1.5 75 The Race for Hydroxamate-Based Zirconium-89 Chelators. Cancers, 2021, 13, 4466. 3.7 23 A Semi Rigid Novel Hydroxamate AMPED-Based Ligand for 89Zr PET Imaging. Molecules, 2021, 26, 5819. 3.8 Development and in vitro evaluation of new bifunctional 89Zr-chelators based on the 6-amino-1,4-diazepane scaffold for immuno-PET applications. Nuclear Medicine and Biology, 2021, 77 0.6 6 102-103, 12-23. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89. PLoS ONE, 2017, 12, e0178767. 2.5 The Bioconjugation and Radiosynthesis of <sup>89</sup>Zr-DFO-labeled Antibodies. Journal 79 0.3 60 of Visualized Experiments, 2015, , . Chelators for Diagnostic Molecular Imaging with Radioisotopes of Copper, Gallium and Zirconium. 0.8 2-Oxoglutarate-Dependent Oxygenases, 2016, , 260-312. [nat/89Zr][Zr(pypa)]: Thermodynamically Stable and Kinetically Inert Binary Nonadentate Complex for 82 4.0 7 Radiopharmaceutical Applications. Inorganic Chemistry, 2021, 60, 18082-18093. Siderophores and iron transport., 2021,,. Two-dimensional Zr/Hf-hydroxamate metal–organic frameworks. Chemical Communications, 2022, 58, 4.1 12 84 3601-3604. Poly(Hydroxamic Acid) Resins and Their Applications. SSRN Electronic Journal, 0, , . 0.4 Metal Coordination Properties of a Chromophoric Desferrioxamine (DFO) Derivative: Insight on the 86 3.8 5 Coordination Stoichiometry and Thermodynamic Stability of Zr4+ Complexes. Molecules, 2022, 27, 184. CHAPTER 4. The Role of Fundamental Coordination Chemistry in the Development of Radioimaging 87 0.2 Agents. Monographs in Supramolecular Chemistry, 2022, , 89-148. Heptadentate chelates for ⁸⁹Zr-radiolabelling of monoclonal antibodies. Inorganic 88 6.0 3 Chemistry Frontiers, 2022, 9, 3071-3081. Poly(hydroxamic acid) resins and their applications. Coordination Chemistry Reviews, 2022, 471, 214727. 89 18.8 Design, Synthesis, and Evaluation of DFO-Em: A Modular Chelator with Octadentate Chelation for 90 4.0 7 Optimal Zirconium-89 Radiochemistry. Inorganic Chemistry, 2022, 61, 20964-20976. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coordination 18.8 Chemistry Reviews, 2023, 479, 215005.

CITATION REPORT

IF ARTICLE CITATIONS # Radiochemical, Computational, and Spectroscopic Evaluation of High-Denticity Desferrioxamine 92 4.0 1 Derivatives DFO2 and DFO2p toward an Ideal Zirconium-89 Chelate Platform. Inorganic Chemistry, 0, , . Evaluation of coumarin-tagged deferoxamine as a Zr(IV)-based PET/fluorescence dual imaging probe. Journal of Inorganic Biochemistry, 2023, 245, 112259. 3.5 Sonoporation-assisted micelle delivery in subcutaneous glioma-bearing mice evaluated by 94 5.6 1 PET/fluorescent bi-modal imaging. Nanoscale, 2023, 15, 12574-12585. Investigation of Two Zrâ€pâ€NO₂Bnâ€DOTA Isomers via NMR and Quantum Chemical Studies. European Journal of Inorganic Chemistry, 2023, 26, . DFO-Km: A Modular Chelator as a New Chemical Tool for the Construction of Zirconium-89-Based 97 4.0 0 Radiopharmaceuticals. Inorganic Chemistry, 0, , . Biosynthesis of novel desferrioxamine derivatives requires unprecedented crosstalk between separate NRPS-independent siderophore pathways. Applied and Environmental Microbiology, 0, , . 3.1 Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Accounts of Chemical Research, 2024, 57, 933-944. 99 15.6 0

CITATION REPORT