Insights into the Interplay of Lewis and BrÃ, nsted Acid Conversion to 5-(Hydroxymethyl)furfural and Levulinio

Journal of the American Chemical Society 135, 3997-4006 DOI: 10.1021/ja3122763

Citation Report

#	Article	IF	CITATIONS
2	Toward Functional Polyester Building Blocks from Renewable Glycolaldehyde with Sn Cascade Catalysis. ACS Catalysis, 2013, 3, 1786-1800.	5.5	97
3	Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chemistry, 2013, 15, 2619.	4.6	256
4	Catalytic conversion of fructose and sucrose to 5-hydroxymethylfurfural using simple ionic liquid/DMF binary reaction media. Catalysis Communications, 2013, 42, 89-92.	1.6	18
5	Advanced glycoxidation and lipoxidation end products (ACEs and ALEs): an overview of their mechanisms of formation. Free Radical Research, 2013, 47, 3-27.	1.5	602
6	Selectivity enhancement in the aqueous acid-catalyzed conversion of glucose to 5-hydroxymethylfurfural induced by choline chloride. Green Chemistry, 2013, 15, 3205.	4.6	74
7	Synergy of Lewis and BrÃ,nsted Acids on Catalytic Hydrothermal Decomposition of Hexose to Levulinic Acid. Energy & Fuels, 2013, 27, 6973-6978.	2.5	66
8	Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. Journal of Catalysis, 2013, 308, 176-188.	3.1	150
9	Comparison of Homogeneous and Heterogeneous Catalysts for Glucoseâ€ŧoâ€Fructose Isomerization in Aqueous Media. ChemSusChem, 2013, 6, 2369-2376.	3.6	128
10	The Mechanism of Glucose Isomerization to Fructose over Snâ€BEA Zeolite: A Periodic Density Functional Theory Study. ChemSusChem, 2013, 6, 1688-1696.	3.6	122
11	Catalytic Decomposition of Glucose to Levulinic Acid by Synergy of Organic Lewis Acid and BrÃ,nsted Acid in Water. BioResources, 2014, 10, .	0.5	7
12	InCl 3 -catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system. Bioresource Technology, 2014, 172, 457-460.	4.8	42
13	Theoretical Insight into the Coordination of Cyclic β- <scp>d</scp> -Glucose to [Al(OH)(aq)] ²⁺ and [Al(OH) ₂ (aq)] ¹⁺ Ions. Journal of Physical Chemistry B, 2014, 118, 13890-13902.	1.2	23
14	Distinctive Aldose Isomerization Characteristics and the Coordination Chemistry of Metal Chlorides in 1-Butyl-3-methylimidazolium Chloride. ACS Catalysis, 2014, 4, 4446-4454.	5.5	34
15	Aerobic Oxidation of Hydroxymethylfurfural and Furfural by Using Heterogeneous Co _{<i>x</i>} O _{<i>y</i>} –N@C Catalysts. ChemSusChem, 2014, 7, 3334-3340.	3.6	104
16	Some insight into the role of different copper species as acids in cellulose deconstruction. Catalysis Communications, 2014, 44, 19-23.	1.6	17
17	Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis, 2014, 35, 644-655.	6.9	34
18	A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid. Journal of Molecular Catalysis A, 2014, 388-389, 74-80.	4.8	56
19	Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chemical Engineering Journal, 2014, 244, 137-144.	6.6	144

ARTICLE IF CITATIONS # Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent. 20 2.2 70 Microporous and Mesoporous Materials, 2014, 191, 10-17. Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Topics in Current Chemistry, 2014, 353, 1-40. Enhanced Conversion of Carbohydrates to the Platform Chemical 5â€Hydroxymethylfurfural Using 22 3.6 65 Designer Ionic Liquids. ChemSusChem, 2014, 7, 1647-1654. Threeâ€Phase Catalytic System of H₂0, Ionic Liquid, and VOPO₄â€"SiO₂ Solid Acid for Conversion of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2014, 7, 1703-1709. Kinetics of Homogeneous BrAnsted Acid Catalyzed Fructose Dehydration and 5-Hydroxymethyl Furfural Rehydration: A Combined Experimental and Computational Study. ACS Catalysis, 2014, 4, 24 5.5 122 259-267. Catalytic dehydration of C₆carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chemistry, 2014, 16, 548-572. 4.6 Bifunctional SO₄/ZrO₂catalysts for 5-hydroxymethylfufural (5-HMF) 26 2.1 153 production from glucose. Catalysis Science and Technology, 2014, 4, 333-342. Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 4.6 2014, 16, 2015. Aqueous-phase fructose dehydration using BrÃ, nsted acid zeolites: Catalytic activity of dissolved 28 2.2 48 aluminosilicate species. Applied Catalysis A: General, 2014, 469, 116-123. Recent advancements in the production of hydroxymethylfurfural. RSC Advances, 2014, 4, 2037-2050. 1.7 101 NMR Insights on the Properties of ZnCl₂ Molten Salt Hydrate Medium through Its Interaction with SnCl₄ and Fructose. ACS Sustainable Chemistry and Engineering, 2014, 2, 30 3.2 24 2576-2581. Selective Base-Catalyzed Isomerization of Glucose to Fructose. ACS Catalysis, 2014, 4, 4295-4298. 5.5 150 Direct Synthesis of 1,6â€Hexanediol from HMF over a Heterogeneous Pd/ZrP Catalyst using Formic Acid 32 3.6 196 as Hydrogen Source. ChemSusChem, 2014, 7, 96-100. Aqueous-phase hydrodeoxygenation of highly oxygenated aromatics on platinum. Green Chemistry, 4.6 2014, 16, 675-682. One-pot transformation of polysaccharides via multi-catalytic processes. Catalysis Science and 34 2.1 68 Technology, 2014, 4, 4138-4168. Effect of Water on Hydrolytic Cleavage of Non-Terminal α-Glycosidic Bonds in Cyclodextrins To Generate Monosaccharides and Their Derivatives in a Dimethyl Sulfoxide–Water Mixture. Journal of Physical Chemistry A, 2014, 118, 1309-1319. Creation of BrAnsted acid sites on Sn-based solid catalysts for the conversion of biomass. Journal of 36 5.248 Materials Chemistry A, 2014, 2, 3725. Insights into the Cr(<scp>iii</scp>) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 1.3 <u>19564-19572</u>.

#	Article	IF	CITATIONS
38	Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry, 2014, 16, 3819-3829.	4.6	164
39	Insights into the Primary Decomposition Mechanism of Cellobiose under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 14607-14616.	1.8	22
40	Reactivity of Metal Catalysts in Glucose–Fructose Conversion. Chemistry - A European Journal, 2014, 20, 12298-12309.	1.7	25
41	Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium. Industrial & Engineering Chemistry Research, 2014, 53, 3056-3064.	1.8	137
42	Challenges of and Insights into Acid-Catalyzed Transformations of Sugars. Journal of Physical Chemistry C, 2014, 118, 22815-22833.	1.5	88
43	Comparison of the influence of a Lewis acid AlCl3 and a BrÃ,nsted acid HCl on the organosolv pulping of beech wood. Green Chemistry, 2014, 16, 1569.	4.6	47
44	Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective. Catalysis Science and Technology, 2014, 4, 2241-2250.	2.1	117
45	Group Additivity for Estimating Thermochemical Properties of Furanic Compounds on Pd(111). Industrial & Engineering Chemistry Research, 2014, 53, 11929-11938.	1.8	27
46	Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 2014, 53, 9969-9978.	1.8	128
47	5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl 3 in aqueous medium. Journal of Molecular Catalysis A, 2014, 394, 114-120.	4.8	31
48	Salicylato Titanocene Complexes as Cooperative Organometallic Lewis Acid and BrÃ,nsted Acid Catalysts for Three omponent Mannich Reactions. Chemistry - A European Journal, 2014, 20, 8530-8535.	1.7	27
49	Thermally Induced Oxidative Decarboxylation of Copper Complexes of Amino Acids and Formation of Strecker Aldehyde. Journal of Agricultural and Food Chemistry, 2014, 62, 8518-8523.	2.4	37
50	High-yield production of levulinic acid from cellulose and its upgrading to Î ³ -valerolactone. Green Chemistry, 2014, 16, 3846.	4.6	149
51	Reaction media dominated product selectivity in the isomerization of glucose by chromium trichloride: From aqueous to non-aqueous systems. Catalysis Today, 2014, 234, 83-90.	2.2	37
52	Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresource Technology, 2014, 158, 313-320.	4.8	101
53	Catalytic conversion of glucose in dimethylsulfoxide/water binary mix with chromium trichloride: Role of water on the product distribution. Chemical Engineering Journal, 2014, 254, 333-339.	6.6	71
54	A modified biphasic system for the dehydration of d-xylose into furfural using SO42â^'/TiO2-ZrO2/La3+ as a solid catalyst. Catalysis Today, 2014, 234, 251-256.	2.2	76
55	Straightforward Synthesis of Levulinic Acid Ester from Lignocellulosic Biomass Resources. Chemistry Letters, 2014, 43, 1327-1329.	0.7	21

#	Article	IF	CITATIONS
56	Facile and Efficient Transformation of Lignocellulose into Levulinic Acid Using an AlCl3·6H2O/H3PO4 Hybrid Acid Catalyst. Bulletin of the Chemical Society of Japan, 2015, 88, 1752-1754.	2.0	9
57	Effect of Different Ionic Liquids on 5â€Hydroxymethylfurfural Preparation from Glucose in DMA over AlCl ₃ : Experimental and Theoretical Study. Chinese Journal of Chemistry, 2015, 33, 583-588.	2.6	11
59	OSDAâ€Free Zeolite Beta with High Aluminum Content Efficiently Catalyzes a Tandem Reaction for Conversion of Glucose to 5â€Hydroxymethylfurfural. ChemCatChem, 2015, 7, 4180-4187.	1.8	45
60	Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water. Catalysts, 2015, 5, 2287-2308.	1.6	13
61	Catalytic Conversion of Glucose to Levulinate Ester Derivative in Ethylene Glycol. BioResources, 2015, 10, .	0.5	3
62	Production of 5-hydroxymethylfurfural from fructose by a thermo-regulated and recyclable BrÃ,nsted acidic ionic liquid catalyst. RSC Advances, 2015, 5, 47377-47383.	1.7	38
63	Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate Polymers, 2015, 130, 420-428.	5.1	118
64	Introduction to Lignocellulose-based Products. Biofuel and Biorefinery Technologies, 2015, , 1-36.	0.1	10
65	Facile synthesis of 5-hydroxymethylfurfural: a sustainable raw material for the synthesis of key intermediates toward 21,23-dioxaporphyrins. RSC Advances, 2015, 5, 100401-100407.	1.7	18
66	Versatile Nickel–Lanthanum(III) Catalyst for Direct Conversion of Cellulose to Glycols. ACS Catalysis, 2015, 5, 874-883.	5.5	92
67	One-pot synthesis of 5-hydroxymethylfurfural from carbohydrates using an inexpensive FePO ₄ catalyst. RSC Advances, 2015, 5, 19900-19906.	1.7	59
68	Environmentally Friendly Synthesis of γ-Valerolactone by Direct Catalytic Conversion of Renewable Sources. ACS Catalysis, 2015, 5, 1882-1894.	5.5	182
69	Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catalysis Science and Technology, 2015, 5, 3035-3060.	2.1	47
70	Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite. Catalysis Communications, 2015, 62, 67-70.	1.6	39
71	From Lignocellulosic Biomass to Furans via 5â€Acetoxymethylfurfural as an Alternative to 5â€Hydroxymethylfurfural. ChemSusChem, 2015, 8, 1179-1188.	3.6	45
72	Mechanism of BrÃ,nsted Acidâ€Catalyzed Glucose Dehydration. ChemSusChem, 2015, 8, 1334-1341.	3.6	135
73	Governing Chemistry of Cellulose Hydrolysis in Supercritical Water. ChemSusChem, 2015, 8, 1026-1033.	3.6	72
74	Conversion of chitin and N-acetyl- <scp>d</scp> -glucosamine into a N-containing furan derivative in ionic liquids. RSC Advances, 2015, 5, 20073-20080.	1.7	100

ARTICLE IF CITATIONS # Effect of organic solvent and BrAnsted acid on 5-hydroxymethylfurfural preparation from glucose 75 1.7 20 over CrCl₃. RSC Advances, 2015, 5, 27805-27813. Tandem Lewis/BrÃ, nsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(<scp>iii</scp>) chloride and hydrochloric acid 4.6 114 solution. Green Chemistry, 2015, 17, 4725-4735. Mechanistic Study of Glucose-to-Fructose Isomerization in Water Catalyzed by 77 5.5 161 [Al(OH)₂(aq)]⁺. ACS Catalysis, 2015, 5, 5097-5103. Effect of WO_{<i>x</i>} on Bifunctional Pd–WO_{<i>x</i>/sub>/Al₂3} Catalysts for the Selective Hydrogenolysis of Glucose to 1,2-Propanediol. ACS Catalysis, 2015, 5, 4612-4623. Conversion of glucose into 5-hydroxymethylfurfural catalyzed by chromium(<scp>iii</scp>) Schiff 79 base complexes and acidic ionic liquids immobilized on mesoporous silica. RSC Advances, 2015, 5, 1.7 40 60736-60744. Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts. Green Chemistry, 2015, 17, 4183-4188. 4.6 169 A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and 81 4.8 63 levulinic acid. Journal of Molecular Catalysis A, 2015, 407, 113-121. Formation of 5-(Hydroxymethyl)furfural by Stepwise Dehydration over TiO₂ with 1.5 Water-Tolerant Lewis Acid Sites. Journal of Physical Chemistry C, 2015, 119, 17117-17125. Cellulose Hydrolysis in Acidified LiBr Molten Salt Hydrate Media. Industrial & amp; Engineering 83 1.8 63 Chemistry Ŕesearch, 2015, 54, 5226-5236. SnCl₄-catalyzed isomerization/dehydration of xylose and glucose to furanics in water. 84 2.1 Catalysis Science and Technology, 2015, 5, 2839-2847. Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied 2.2 85 73 Catalysis A: General, 2015, 498, 214-221. Polyanilineâ€Grafted VO(acac)₂: An Effective Catalyst for the Synthesis of 2,5â€Diformylfuran 1.8 86 from 5â€Hydroxymethylfurfural and Fructose. ChemCatChem, 2015, 7, 1470-1477. Effect of Alkali and Alkaline Earth Metal Chlorides on Cellobiose Decomposition in Hot-Compressed 87 1.8 11 Water. Industrial & amp; Engineering Chemistry Research, 2015, 54, 5450-5459. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose. Energy & amp; Fuels, 2015, 29, 2387-2393. 2.5 74 Direct conversion of carbohydrates to Î³-valerolactone facilitated by a solvent effect. Green 89 49 4.6 Chemistry, 2015, 17, 3084-3089. BrÃ,nsted acidity of bio-protic ionic liquids: the acidic scale of [AA]X amino acid ionic liquids. Green 49 Chemistry, 2015, 17, 5154-5163. Theoretical Elucidation of Glucose Dehydration to 5-Hydroxymethylfurfural Catalyzed by a 91 1.2 48 SO₃H-Functionalized Ionić Liquid. Journal of Physical Chemistry B, 2015, 119, 13398-13406. Boronâ€Catalyzed Nâ€Alkylation of Amines using Carboxylic Acids. Angewandte Chemie - International 158 Edition, 2015, 54, 9042-9046.

		15	0
#	ARTICLE	IF	CITATIONS
93	Reaction Pathway Analysis of Ethyl Levulinate and 5-Ethoxymethylfurfural from <scp>d</scp> -Fructose Acid Hydrolysis in Ethanol. Energy & Fuels, 2015, 29, 7554-7565.	2.5	76
94	Conversion of carbohydrates into 5-hydroxymethylfurfural in an advanced single-phase reaction system consisting of water and 1,2-dimethoxyethane. RSC Advances, 2015, 5, 84014-84021.	1.7	42
95	Speciation and kinetic study of iron promoted sugar conversion to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Organic Chemistry Frontiers, 2015, 2, 1388-1396.	2.3	46
96	Kinetic study of levulinic acid production from corn stalk at relatively high temperature using FeCl3 as catalyst: A simplified model evaluated. Industrial Crops and Products, 2015, 76, 672-680.	2.5	57
97	Magnetically separable base catalysts for isomerization of glucose to fructose. Journal of Catalysis, 2015, 330, 474-484.	3.1	60
98	Interlayer expansion of the layered zeolite precursor COK-5 with Sn(acac) 2 Cl 2. Journal of Energy Chemistry, 2015, 24, 642-645.	7.1	7
99	Catalytic behaviour of TiO2–ZrO2 binary oxide synthesized by sol–gel process for glucose conversion to 5-hydroxymethylfurfural. RSC Advances, 2015, 5, 80346-80352.	1.7	46
100	Catalytic Dehydration of Carbohydrates Suspended in Organic Solvents Promoted by AlCl ₃ /SiO ₂ Coated with Choline Chloride. ChemSusChem, 2015, 8, 269-274.	3.6	31
101	Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C. Bioresource Technology, 2015, 179, 84-90.	4.8	120
102	The Role of Salts and BrÃ,nsted Acids in Lewis Acidâ€Catalyzed Aqueousâ€Phase Glucose Dehydration to 5â€Hydroxymethylfurfural. ChemCatChem, 2015, 7, 501-507.	1.8	62
103	Depolymerization of cellulose to glucose by oxidation–hydrolysis. Green Chemistry, 2015, 17, 1519-1524.	4.6	74
104	Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy, 2015, 72, 143-183.	2.9	430
105	Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chemical Engineering Journal, 2015, 263, 299-308.	6.6	140
106	In situ NMR spectroscopy: Inulin biomass conversion in ZnCl 2 molten salt hydrate medium—SnCl 4 addition controls product distribution. Carbohydrate Polymers, 2015, 115, 439-443.	5.1	23
107	Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: A perspective. Chemical Engineering Science, 2015, 121, 217-235.	1.9	38
108	Chemical conversion pathways for carbohydrates. Green Chemistry, 2015, 17, 40-71.	4.6	291
109	Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products. Beilstein Journal of Organic Chemistry, 2016, 12, 2125-2135.	1.3	22
110	Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf)4 Lewis Acid in Water. Catalysts, 2016, 6, 1.	1.6	140

#	Article	IF	CITATIONS
111	Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts. Catalysts, 2016, 6, 143.	1.6	17
112	New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.	1.6	180
113	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	1.8	104
114	Critical Influence of 5â€Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis. Angewandte Chemie, 2016, 128, 8478-8482.	1.6	49
115	Critical Influence of 5â€Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis. Angewandte Chemie - International Edition, 2016, 55, 8338-8342.	7.2	160
116	High yield synthesis of 5-hydroxymethylfurfural from cellulose using FePO 4 as the catalyst. Fuel Processing Technology, 2016, 152, 140-146.	3.7	61
117	In Situ Carbonic Acid from CO ₂ : A Green Acid for Highly Effective Conversion of Cellulose in the Presence of Lewis acid. ACS Sustainable Chemistry and Engineering, 2016, 4, 4146-4155.	3.2	35
118	Isolation of fructose from highâ€fructose corn syrup with calcium immobilized strong acid cation exchanger: Isotherms, kinetics, and fixedâ€bed chromatography study. Canadian Journal of Chemical Engineering, 2016, 94, 537-546.	0.9	9
119	Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores. Journal of Fuel Chemistry and Technology, 2016, 44, 1341-1348.	0.9	18
120	Catalytic Isomerization of Biomassâ€Derived Aldoses: A Review. ChemSusChem, 2016, 9, 547-561.	3.6	227
121	Catalytic conversion of cellulose to C ₂ –C ₃ glycols by dual association of a homogeneous metallic salt and a perovskite-supported platinum catalyst. Catalysis Science and Technology, 2016, 6, 5534-5542.	2.1	23
122	Basic Amino Acids as Green Catalysts for Isomerization of Glucose to Fructose in Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 3526-3534.	3.2	67
123	A Periodic DFT Study of Glucose to Fructose Isomerization on Tungstite (WO ₃ A·H ₂ O): Influence of Group IV–VI Dopants and Cooperativity with Hydroxyl Groups. ACS Catalysis, 2016, 6, 4162-4169.	5.5	45
124	Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 2016, 55, 98-194.	15.8	234
125	Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. Journal of Molecular Catalysis A, 2016, 422, 18-22.	4.8	57
126	Niobium oxides: Correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural. Journal of Catalysis, 2016, 338, 329-339.	3.1	92
127	Microwave Assisted Synthesis of 5-Hydroxymethylfurfural from Starch in AlCl ₃ A·6H ₂ O/DMSO/[BMIM]Cl System. Industrial & Engineering Chemistry Research, 2016, 55, 4473-4481.	1.8	42
128	NMR Study of the Hydrolysis and Dehydration of Inulin in Water: Comparison of the Catalytic Effect of Lewis Acid SnCl ₄ and BrĀˌnsted Acid HCl. ACS Sustainable Chemistry and Engineering, 2016, 4, 3327-3333.	3.2	20

#	Article	IF	CITATIONS
129	One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catalysis Science and Technology, 2016, 6, 3694-3712.	2.1	172
130	Bifunctional BrĄ̃nsted–Lewis solid acid as a recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect. RSC Advances, 2016, 6, 43152-43158.	1.7	26
131	Experimental and modeling studies on the acid-catalyzed conversion of inulin to 5-hydroxymethylfurfural in water. Chemical Engineering Research and Design, 2016, 109, 65-75.	2.7	14
132	Hydrogenolysis process for lignosulfonate depolymerization using synergistic catalysts of noble metal and metal chloride. RSC Advances, 2016, 6, 88788-88796.	1.7	22
133	Heterogeneously Catalyzed Hydrothermal Processing of C ₅ –C ₆ Sugars. Chemical Reviews, 2016, 116, 12328-12368.	23.0	253
134	Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 2016, 18, 5701-5735.	4.6	142
135	Shell Biorefinery: Dream or Reality?. Chemistry - A European Journal, 2016, 22, 13402-13421.	1.7	203
136	Salt-Promoted Glucose Aqueous Isomerization Catalyzed by Heterogeneous Organic Base. ACS Sustainable Chemistry and Engineering, 2016, 4, 4850-4858.	3.2	34
137	Catalytic synthesis of levulinic acid and formic acid from glucose in choline chloride aqueous solution. ChemistrySelect, 2016, 1, 180-188.	0.7	12
138	Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catalysis Science and Technology, 2016, 6, 7364-7385.	2.1	111
139	Fe/MMT as an Effective Catalyst for Furan Production from Eucalyptus Enzymatic Hydrolysate in Biphasic Systems. Catalysis Letters, 2016, 146, 2032-2040.	1.4	7
140	Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Physical Chemistry Chemical Physics, 2016, 18, 28274-28280.	1.3	143
141	Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. New Journal of Chemistry, 2016, 40, 7958-7967.	1.4	100
142	Formylâ€Modified Polyaniline for the Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2016, 9, 2174-2181.	3.6	26
143	Sustainable one-pot integration of ZnO nanoparticles into carbon spheres: manipulation of the morphological, optical and electrochemical properties. Physical Chemistry Chemical Physics, 2016, 18, 30794-30807.	1.3	17
144	Further Theoretical Studies of the Aquation of Chromium(III) Chloride Nutritional Supplement: Effect of pH and Solvation. ChemistrySelect, 2016, 1, 5236-5249.	0.7	4
145	Ga Modified Zeolite Based Solid Acid Catalyst for Levulinic Acid Production. ChemistrySelect, 2016, 1, 5952-5960.	0.7	13
146	Polyethylenimines as Homogeneous and Heterogeneous Catalysts for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 6951-6961.	3.2	31

#	Article	IF	CITATIONS
147	Efficient dual acidic carbo-catalyst for one-pot conversion of carbohydrates to levulinic acid. RSC Advances, 2016, 6, 100417-100426.	1.7	11
148	Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media. Green Chemistry, 2016, 18, 5219-5229.	4.6	110
149	An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chemical Engineering Journal, 2016, 300, 177-184.	6.6	80
150	High yield 5-(hydroxymethyl)furfural production from biomass sugars under facile reaction conditions: a hybrid enzyme- and chemo-catalytic technology. Green Chemistry, 2016, 18, 4990-4998.	4.6	34
151	Water-soluble sulfonated hyperbranched poly(arylene oxindole) catalysts as functional biomimics of cellulases. Chemical Communications, 2016, 52, 2756-2759.	2.2	9
152	Catalyst design for biorefining. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150081.	1.6	35
153	Tandem Lewis acid/BrÃ,nsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. Journal of Catalysis, 2016, 333, 149-161.	3.1	132
154	Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate. Carbohydrate Polymers, 2016, 143, 212-222.	5.1	21
155	Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions. Catalysis Science and Technology, 2016, 6, 3302-3316.	2.1	254
156	Mechanistic Insights into Lewis Acid Metal Salt-Catalyzed Glucose Chemistry in Aqueous Solution. ACS Catalysis, 2016, 6, 1497-1504.	5.5	74
157	Microwave-enhanced aqueous biphasic dehydration of carbohydrates to 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 18973-18979.	1.7	61
158	Glucose formate conversion in gamma-valerolactone. Catalysis Today, 2016, 269, 88-92.	2.2	10
159	Nickel-Catalyzed Regio- and Stereoselective Hydrocarboxylation of Alkynes with Formic Acid through Catalytic CO Recycling. ACS Catalysis, 2016, 6, 2501-2505.	5.5	63
160	Highly efficient conversion of microcrystalline cellulose to 5-hydroxymethyl furfural in a homogeneous reaction system. RSC Advances, 2016, 6, 21347-21351.	1.7	19
161	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	2.5	29
162	Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO ₂ + Ir–ReO _x /SiO ₂ in a fixed-bed reactor. Green Chemistry, 2016, 18, 2175-2184.	4.6	127
163	Highly efficient conversion of carbohydrates into 5-hydroxymethylfurfural using the bi-functional CrPO ₄ catalyst. RSC Advances, 2016, 6, 8048-8052.	1.7	44
164	Catalysts based on TiO ₂ anchored with MoO ₃ or SO ₄ ^{2â^'} for conversion of cellulose into chemicals. Catalysis Science and Technology, 2016, 6, 3137-3142.	2.1	10

ARTICLE IF CITATIONS WO modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 2.2 54 166 1,2-propanediol. Catalysis Today, 2016, 261, 116-127. Computational Chemistry of Catalytic Biomass Conversion. Green Chemistry and Sustainable 0.4 Technology, 2016, , 63-104. Conversion of Suspected Food Carcinogen 5-Hydroxymethylfurfural by Sulfotransferases and 168 Aldehyde Dehydrogenases in Postmitochondrial Tissue Preparations of Humans, Mice, and Rats. 7 1.4 Toxicólogical Ściences, 2016, 149, 192-201. Differentiation of the Coordination Chemistry of Metal Chlorides in Catalytic Conversion of Glucose in Ionic Liquids. Green Chemistry and Sustainable Technology, 2016, , 57-86. Conversion of d-glucose to 5-hydroxymethylfurfural using Al 2 O 3 -promoted sulphated tin oxide as 170 2.2 43 catalyst. Catalysis Today, 2017, 279, 233-243. ATR-FTIR spectrokinetic analysis of the CO adsorption and oxidation at water/platinum interface. Catalysis Today, 2017, 283, 127-133. 171 2.2 Enhancement of enzymatic saccharification of bagasse by ethanol-based organosolv auto-catalyzed 172 1.6 24 pretreatment. Journal of Chemical Technology and Biotechnology, 2017, 92, 580-587. Conversion of rice husks to polyhydroxyalkanoates (<scp>PHA</scp>) via a threeâ€step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by <i>Burkholderia 1.6 cepacia</i><scp>USM</scp> (<scp>JCM</scp> 15050). Journal of Chemical Technology and Biotechnology. 2017. 92. 100-108. 174 MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid. RSC Advances, 2017, 7, 5621-5627. 1.7 79 Cellulose: To depolymerize $\hat{a} \in$ or not to?. Biotechnology Advances, 2017, 35, 251-266. 6.0 Synergy of Lewis and BrAnsted acids on catalytic hydrothermal decomposition of carbohydrates and 176 1.6 42 corncob acid hydrolysis residues to 5-hydroxymethylfurfural. Scientific Reports, 2017, 7, 40908. Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the 8.2 308 innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257. Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cuâ€"Al₂O₃ and Coâ€"Al₂O₃ catalysts in water. Green 178 4.6 72 Chemistry, 2017, 19, 1701-1713. Performance of Dimethyl Sulfoxide and BrÃ,nsted Acid Catalysts in Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catalysis, 2017, 7, 2199-2212. 179 5.5 High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and 180 1.7 64 sodium chloride as a promoter in a water \hat{l}^3 -valerolactone system. RSC Advances, 2017, 7, 14330-14336. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying 400 mechanisms. Bioresource Téchnology, 2017, 238, 716-732. Porous Tin-Organic Frameworks as Selective Epimerization Catalysts in Aqueous Solutions. ACS 182 5.5 18 Catalysis, 2017, 7, 3792-3798. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via 4.2 green routes. Science China Chemistry, 2017, 60, 870-886.

#	Article	IF	CITATIONS
184	Acid mediated chemical treatment to remove sugar from waste acid stream from nano-crystalline cellulose manufacturing process. Carbohydrate Polymers, 2017, 169, 458-466.	5.1	1
185	Aqueous Phase Conversion of Hexoses into 5-Hydroxymethylfurfural and Levulinic Acid in the Presence of Hydrochloric Acid: Mechanism and Kinetics. Industrial & Engineering Chemistry Research, 2017, 56, 5221-5230.	1.8	58
186	Attapulgite as natural catalyst for glucose isomerization to fructose in water. Catalysis Communications, 2017, 99, 20-24.	1.6	49
187	Hydrothermal Processing in Biorefineries. , 2017, , .		41
189	Levulinic Acid from Biomass: Synthesis and Applications. Biofuels and Biorefineries, 2017, , 143-169.	0.5	22
190	Conversion of Eucalyptus Cellulose into 5-Hydroxymethylfurfural Using Lewis Acid Catalyst in Biphasic Solvent System. Waste and Biomass Valorization, 2017, 8, 1303-1311.	1.8	10
191	p-Hydroxybenzenesulfonic acid–formaldehyde solid acid resin for the conversion of fructose and glucose to 5-hydroxymethylfurfural. RSC Advances, 2017, 7, 27682-27688.	1.7	31
192	Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Applied Catalysis B: Environmental, 2017, 217, 115-124.	10.8	182
193	Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries, 2017, , .	0.5	30
194	Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst. Green Chemistry, 2017, 19, 2482-2490.	4.6	97
195	A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates. Green Chemistry, 2017, 19, 2101-2106.	4.6	61
196	Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural. Green Chemistry, 2017, 19, 1932-1939.	4.6	64
197	The catalytic effect of Al-KIT-5 and KIT-5-SO3H on the conversion of fructose to 5-hydroxymethylfurfural. Research on Chemical Intermediates, 2017, 43, 5507-5521.	1.3	15
198	Dimethylsulfoxide/Water Mixed Solvent Mediated Synthesis of 5â€Hydroxymethylfurfural from Galactose with Aluminum Salt Catalyst. ChemistrySelect, 2017, 2, 2356-2362.	0.7	14
199	A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 115-137.	3.3	24
200	Efficient green catalysis for the conversion of fructose to levulinic acid. Applied Catalysis A: General, 2017, 539, 70-79.	2.2	77
201	Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid. Scientific Reports, 2017, 7, 13596.	1.6	47
202	Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and BrÄ,nsted acid. RSC Advances, 2017, 7, 41546-41551.	1.7	59

#	Article	IF	CITATIONS
203	Insight into Aluminum Sulfateâ€Catalyzed Xylan Conversion into Furfural in a γâ€Valerolactone/Water Biphasic Solvent under Microwave Conditions. ChemSusChem, 2017, 10, 4066-4079.	3.6	72
204	Role of Lewis and BrÃ,nsted Acidity in Metal Chloride Catalysis in Organic Media: Reductive Etherification of Furanics. ACS Catalysis, 2017, 7, 7363-7370.	5.5	48
205	Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxymethylfurfural. Journal of Fuel Chemistry and Technology, 2017, 45, 651-659.	0.9	18
206	Effect of BrÃ,nsted/Lewis Acid Ratio on Conversion of Sugars to 5â€Hydroxymethylfurfural over Mesoporous Nb and Nbâ€W Oxides. Chinese Journal of Chemistry, 2017, 35, 1529-1539.	2.6	26
207	Production of 5-(hydroxymethyl)-furfural from water-soluble carbohydrates and sugarcane molasses. Applied Catalysis A: General, 2017, 545, 127-133.	2.2	17
208	Isomerization of glucose to fructose catalyzed by lithium bromide in water. Green Chemistry, 2017, 19, 4402-4411.	4.6	51
209	Valorization of an underused sugar derived from hemicellulose: efficient synthesis of 5-hydroxymethylfurfural from mannose with aluminum salt catalyst in dimethyl sulfoxide/water mixed solvent. RSC Advances, 2017, 7, 39221-39227.	1.7	17
210	Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 2017, 139, 12670-12680.	6.6	125
211	Effect of Cp*lridium(III) Complex and acid co-catalyst on conversion of furfural compounds to cyclopentanones or straight chain ketones. Applied Catalysis A: General, 2017, 543, 266-273.	2.2	36
212	Aluminium oxide-silica/carbon composites from rice husk as a bi-functional heterogeneous catalyst for the one-pot sequential reaction in the conversion of glucose. Surfaces and Interfaces, 2017, 9, 1-8.	1.5	22
213	Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 2017, 328, 246-273.	6.6	196
214	A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 2017, 246, 254-270.	4.8	398
215	Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chemistry, 2017, 19, 153-163.	4.6	53
216	Kinetics of Levoglucosenone Isomerization. ChemSusChem, 2017, 10, 129-138.	3.6	37
217	Fructose dehydration to 5â€HMF over three sulfonated carbons: effect of different pore structures. Journal of Chemical Technology and Biotechnology, 2017, 92, 1454-1463.	1.6	23
218	Ordered mesoporous Nb–W oxides for the conversion of glucose to fructose, mannose and 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2017, 200, 611-619.	10.8	93
219	Oneâ€Pot Conversion of Carbohydrates into 5â€(Hydroxymethyl)furfural using Heterogeneous Lewisâ€Acid and BrÃ,nstedâ€Acid Catalysts. Energy Technology, 2017, 5, 747-755.	1.8	41
220	Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and BrÃ,nsted acids. Chemical Engineering Journal, 2017, 307, 389-398.	6.6	119

		15	0
#	ARTICLE	IF	CITATIONS
221	Process flowsheet optimization of chemicals production from biomass derived glucose solutions. Computers and Chemical Engineering, 2017, 102, 258-267.	2.0	18
222	Microwave assisted conversion of microcrystalline cellulose into value added chemicals using dilute acid catalyst. Carbohydrate Polymers, 2017, 157, 1794-1800.	5.1	32
223	Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl–H ₂ O/THF Biphasic System. ACS Catalysis, 2017, 7, 256-266.	5.5	133
224	Comparative analysis of nonvolatile and volatile metabolites in <i>Lichtheimia ramosa</i> cultivated in different growth media. Bioscience, Biotechnology and Biochemistry, 2017, 81, 565-572.	0.6	12
225	Platform Chemicals via Zeoliteâ€Catalyzed Fast Pyrolysis of Glucose. ChemCatChem, 2017, 9, 1579-1582.	1.8	12
226	Fundamentals of Bifunctional Catalysis for Transforming Biomass-Related Compounds into Chemicals and Biofuels. Biofuels and Biorefineries, 2017, , 3-30.	0.5	3
227	BrÃ,nsted-Lewis Acids for Efficient Conversion of Renewables. Biofuels and Biorefineries, 2017, , 99-135.	0.5	5
228	Synthesis of different structured FePO ₄ for the enhanced conversion of methyl cellulose to 5-hydroxymethylfurfural. RSC Advances, 2017, 7, 51281-51289.	1.7	22
229	Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid–base bifunctional heteropolyacid-based ionic hybrids. Green Chemistry, 2018, 20, 1551-1559.	4.6	84
230	Recycling Spent Cr Adsorbents as Catalyst for Eliminating Methylmercaptan. Environmental Science & Technology, 2018, 52, 3669-3675.	4.6	53
231	Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst. Fuel, 2018, 221, 407-416.	3.4	82
232	Acid-Free Conversion of Cellulose to 5-(Hydroxymethyl)furfural Catalyzed by Hot Seawater. Industrial & Engineering Chemistry Research, 2018, 57, 3545-3553.	1.8	61
233	Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 2018, 8, 2959-2980.	5.5	210
234	Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catalysis Today, 2018, 314, 52-61.	2.2	92
235	Catalytic activity of an economically sustainable fly-ash-metal-organic- framework composite towards biomass valorization. Catalysis Today, 2018, 314, 137-146.	2.2	25
236	Influence of a Lewis acid and a BrÃ,nsted acid on the conversion of microcrystalline cellulose into 5-hydroxymethylfurfural in a single-phase reaction system of water and 1,2-dimethoxyethane. RSC Advances, 2018, 8, 7235-7242.	1.7	40
237	Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy and Environmental Science, 2018, 11, 617-628.	15.6	122
238	One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Fructose in Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 1851-1858.	1.8	46

#	Article	IF	CITATIONS
239	Dihydroxyacetone conversion into lactic acid in an aqueous medium in the presence of metal salts: influence of the ionic thermodynamic equilibrium on the reaction performance. Catalysis Science and Technology, 2018, 8, 1349-1356.	2.1	24
240	Aqueous Phase Synthesis of 5-Hydroxymethylfurfural from Glucose over Large Pore Mesoporous Zirconium Phosphates: Effect of Calcination Temperature. ACS Omega, 2018, 3, 808-820.	1.6	54
241	Rapid and sensitive liquid chromatography–tandem mass spectrometric method for the quantitative determination of potentially harmful substance 5,5′-oxydimethylenebis (2-furfural) in traditional Chinese medicine injections. Acta Pharmaceutica Sinica B, 2018, 8, 235-241.	5.7	8
242	Direct catalytic conversion of glucose and cellulose. Green Chemistry, 2018, 20, 863-872.	4.6	65
243	Catalytic Transformation of Cellulose and Its Derivatives into Functionalized Organic Acids. ChemSusChem, 2018, 11, 1995-2028.	3.6	71
244	Crucial role of support in glucose selective conversion into 1,2-propanediol and ethylene glycol over Ni-based catalysts: A combined experimental and computational study. Applied Catalysis A: General, 2018, 560, 28-36.	2.2	29
245	Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel, 2018, 225, 311-321.	3.4	62
246	Kinetic analysis of hexose conversion to methyl lactate by Sn-Beta: effects of substrate masking and of water. Catalysis Science and Technology, 2018, 8, 2137-2145.	2.1	33
247	Production of levulinic acid from glucose by dual solidâ€acid catalysts. Environmental Progress and Sustainable Energy, 2018, 37, 471-480.	1.3	31
248	Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydrate Polymers, 2018, 181, 208-214.	5.1	119
249	Dicationic ionic liquids as sustainable approach for direct conversion of cellulose to levulinic acid. Journal of Cleaner Production, 2018, 170, 591-600.	4.6	82
250	Acidâ€Catalyzed Conversion of Carbohydrates into Valueâ€Added Small Molecules in Aqueous Media and Ionic Liquids. ChemSusChem, 2018, 11, 642-660.	3.6	67
251	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
252	Facile Formation of Lactic Acid from a Triose Sugar in Water over Niobium Oxide with a Deformed Orthorhombic Phase. ACS Catalysis, 2018, 8, 283-290.	5.5	76
253	Glucose Isomerization into Fructose Catalyzed by MgO/NaY Catalyst. Chinese Journal of Chemical Physics, 2018, 31, 203-210.	0.6	9
254	Biosynthesized Quantum Dot Size Cu Nanocatalyst: Peroxidase Mimetic and Aqueous Phase Conversion of Fructose. ChemistrySelect, 2018, 3, 12183-12191.	0.7	2
255	Selective Dehydration of Glucose into 5-Hydroxymethylfurfural by Ionic Liquid-ZrOCl2 in Isopropanol. Catalysts, 2018, 8, 467.	1.6	8
256	Intensified 5â€Ethoxymethylfurfural Production from Biomass Components over Aluminumâ€Based Mixedâ€Acid Catalyst in Coâ€5olvent Medium. ChemistrySelect, 2018, 3, 13391-13399.	0.7	14

# 257	ARTICLE Carbonate-Catalyzed Room-Temperature Selective Reduction of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Bis(hydroxymethyl)furan. Catalysts, 2018, 8, 633.	IF 1.6	Citations
258	Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone. ACS Omega, 2018, 3, 16839-16849.	1.6	44
259	Effect of Acidâ€Basic Sites Ratio on the Catalytic Activity to Obtain 5â€HMF from Glucose Using Al2O3â€TiO2â€W Catalysts. ChemistrySelect, 2018, 3, 12854-12864.	0.7	14
260	Chemocatalytic Production of Lactates from Biomass-Derived Sugars. International Journal of Chemical Engineering, 2018, 2018, 1-18.	1.4	8
261	Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural using an efficient and inexpensive manganese phosphate catalyst. Fuel Processing Technology, 2018, 181, 199-206.	3.7	46
262	Reductive <i>N</i> -alkylation of primary and secondary amines using carboxylic acids and borazane under mild conditions. Organic Chemistry Frontiers, 2018, 5, 3510-3514.	2.3	24
263	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14264-14274.	3.2	28
264	Metal–Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 13628-13643.	3.2	267
265	Facile synthesis of hierarchical porous solid catalysts with acid–base bifunctional active sites for the conversion of cellulose to 5-hydroxymethylfurfural. New Journal of Chemistry, 2018, 42, 18084-18095.	1.4	14
266	Selective Glucose Isomerization to Fructose via a Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 16113-16120.	3.2	86
267	Synergetic Effect of BrÃ,nsted/Lewis Acid Sites and Water on the Catalytic Dehydration of Glucose to 5â€Hydroxymethylfurfural by Heteropolyacidâ€Based Ionic Hybrids. ChemistryOpen, 2018, 7, 824-832.	0.9	22
268	Efficient synthesis of 5-hydroxymethylfurfural from mannose with a reusable MCM-41-supported tin catalyst. Catalysis Science and Technology, 2018, 8, 5526-5534.	2.1	16
269	Metal-Catalyzed Degradation of Cellulose in Ionic Liquid Media. Inorganics, 2018, 6, 78.	1.2	9
270	Lewis acid-catalyzed biphasic 2-methyltetrahydrofuran/H2O pretreatment of lignocelluloses to enhance cellulose enzymatic hydrolysis and lignin valorization. Bioresource Technology, 2018, 270, 55-61.	4.8	42
271	Direct speciation methods to quantify catalytically active species of AlCl ₃ in glucose isomerization. RSC Advances, 2018, 8, 17101-17109.	1.7	26
272	A Density Functional Theory Study of the Mechanism of Direct Glucose Dehydration to 5â€Hydroxymethylfurfural on Anatase Titania. ChemCatChem, 2018, 10, 4084-4089.	1.8	27
273	One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 2018, 268, 315-322.	4.8	37
274	Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in Î ³ -valerolactone. Research on Chemical Intermediates, 2018, 44, 5439-5453.	1.3	18

#	Article	IF	CITATIONS
275	Efficient Hydroxymethylfurfural Production over Phosphoric Carbon Solid Acids. Catalysis Letters, 2018, 148, 1848-1855.	1.4	17
276	Production of Glucose from the Acid Hydrolysis of Anhydrosugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 12872-12883.	3.2	8
277	Molecular Dynamics Simulations of Furfural and 5-Hydroxymethylfurfural at Ambient and Hydrothermal Conditions. Journal of Physical Chemistry B, 2018, 122, 8416-8428.	1.2	7
278	Early Transition Metal Doped Tungstite as an Effective Catalyst for Glucose Upgrading to 5-Hydroxymethylfurfural. Catalysis Letters, 2018, 148, 3093-3101.	1.4	16
279	Microwave-assisted one-pot conversion of agro-industrial wastes into levulinic acid: An alternate approach. Bioresource Technology, 2018, 265, 471-479.	4.8	26
280	From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 2018, 94, 340-362.	8.2	407
281	Mechanistic Studies of the Cu(OH)+â€Catalyzed Isomerization of Glucose into Fructose in Water. ChemSusChem, 2018, 11, 2579-2586.	3.6	17
282	Experimental design and economic analysis of 5-hydroxymethylfurfural synthesis from fructose in acetone-water system using niobium phosphate as catalyst. Biomass Conversion and Biorefinery, 2018, 8, 635-646.	2.9	22
283	Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. Advances in Bioenergy, 2018, 3, 161-213.	0.5	51
284	Homogeneous Metal Salt Solutions for Biomass Upgrading and Other Select Organic Reactions. ACS Catalysis, 2019, 9, 9923-9952.	5.5	65
285	Enhanced photocatalytic performance for oxidation of glucose to value-added organic acids in water using iron thioporphyrazine modified SnO ₂ . Green Chemistry, 2019, 21, 5019-5029.	4.6	36
286	Mechanism of Glucose–Fructose Isomerization over Aluminum-Based Catalysts in Methanol Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 14962-14972.	3.2	18
287	Simultaneous Conversion of C ₅ and C ₆ Sugars into Methyl Levulinate with the Addition of 1,3,5â€Trioxane. ChemSusChem, 2019, 12, 4400-4404.	3.6	13
288	Reaction pathways and selectivity in chemo-catalytic conversion of biomass-derived carbohydrates to high-value chemicals: A review. Fuel Processing Technology, 2019, 196, 106162.	3.7	64
289	How to Valorize Peanut Shells by a Simple Thermal-Catalytic Method. Topics in Catalysis, 2019, 62, 918-930.	1.3	7
290	Mesoporous ZrO ₂ Nanopowder Catalysts for the Synthesis of 5-Hydroxymethylfurfural. ACS Applied Nano Materials, 2019, 2, 5125-5131.	2.4	18
291	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	1.8	67
292	Mechanistic Insights into the BrÃ,nsted Acid-Catalyzed Dehydration of β-‹scp>d‹/scp>-Glucose to 5-Hydroxymethylfurfural under Ambient and Subcritical Conditions. ACS Catalysis, 2019, 9, 7250-7263.	5.5	32

#	Article	IF	CITATIONS
293	A Facile Direct Route to <i>N</i> â€(Un)substituted Lactams by Cycloamination of Oxocarboxylic Acids without External Hydrogen. ChemSusChem, 2019, 12, 3778-3784.	3.6	26
294	Understanding the Localization of Berylliosis: Interaction of Be 2+ with Carbohydrates and Related Biomimetic Ligands. Chemistry - A European Journal, 2019, 25, 16257-16269.	1.7	23
295	Energy Flows and Carbon Footprint in the Forestry-Pulp and Paper Industry. Forests, 2019, 10, 725.	0.9	19
296	Microwave-Assisted One-Step Conversion of Wood Wastes into Levulinic Acid. Catalysts, 2019, 9, 753.	1.6	8
297	A hydrothermally stable ytterbium metal–organic framework as a bifunctional solid-acid catalyst for glucose conversion. Chemical Communications, 2019, 55, 11446-11449.	2.2	32
298	Room temperature, near-quantitative conversion of glucose into formic acid. Green Chemistry, 2019, 21, 6089-6096.	4.6	68
299	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	9.5	45
300	Comparative Study on the Dehydration of Biomass-Derived Disaccharides and Polysaccharides to 5-Hydroxymethylfurfural. Energy & amp; Fuels, 2019, 33, 9985-9995.	2.5	27
301	Effect of metal chlorides on glucose mutarotation and possible implications on humin formation. Reaction Chemistry and Engineering, 2019, 4, 273-277.	1.9	15
302	An Excellent Solid Acid Catalyst Derived from Microalgae Residue for Fructose Dehydration into 5â€Hydroxymethylfurural. ChemistrySelect, 2019, 4, 1259-1265.	0.7	7
303	Leatherâ€Promoted Transformation of Glucose into 5â€Hydroxymethylfurfural and Levoglucosenone. ChemSusChem, 2019, 12, 1437-1442.	3.6	8
304	Enhanced Levulinic Acid Production from Cellulose by Combined BrÃ,nsted Hydrothermal Carbon and Lewis Acid Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 2697-2703.	1.8	30
305	A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2,5-dimethylfuran from 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 1108-1113.	4.6	66
306	Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. Reaction Chemistry and Engineering, 2019, 4, 165-206.	1.9	108
307	Hydrogenolysis of Biomassâ€Derived 5â€Hydroxymethylfurfural to Produce 2,5â€Dimethylfuran Over Ruâ€ZrO ₂ â€MCMâ€41 Catalyst. ChemistrySelect, 2019, 4, 6080-6089.	0.7	12
308	Synthesis of Î ³ -valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems. Renewable and Sustainable Energy Reviews, 2019, 112, 140-157.	8.2	94
309	Synthesized hierarchical mordenite zeolites for the biomass conversion to levulinic acid and the mechanistic insights into humins formation. Microporous and Mesoporous Materials, 2019, 287, 18-28.	2.2	41
310	Replacement of Chromium by Non-Toxic Metals in Lewis-Acid MOFs: Assessment of Stability as Glucose Conversion Catalysts. Catalysts, 2019, 9, 437.	1.6	35

#	Article	IF	CITATIONS
311	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	4.6	80
312	Al ₂ O ₃ â€TiO ₂ Modified Sulfonated Carbon with Hierarchically Ordered Pores for Glucose Conversion to 5â€HMF. ChemistrySelect, 2019, 4, 5724-5731.	0.7	19
313	Thermal stability and decomposition behaviors of some hydrous transition metal chlorides. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1633-1640.	2.0	4
314	Synthesis of hydroxymethylfurfural and furfural from hardwood and softwood pulp using ferric sulphate as catalyst. Frontiers of Chemical Science and Engineering, 2019, 13, 531-542.	2.3	17
315	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal–Support Interactions. ACS Catalysis, 2019, 9, 5223-5230.	5.5	87
316	Mesoporous Doped Tungsten Oxide for Glucose Dehydration to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 7552-7562.	3.2	32
317	Turning Point toward the Sustainable Production of 5-Hydroxymethyl-2-furaldehyde in Water: Metal Salts for Its Synthesis from Fructose and Inulin. ACS Sustainable Chemistry and Engineering, 2019, 7, 6830-6838.	3.2	22
318	Highly efficient Cr/l² zeolite catalyst for conversion of carbohydrates into 5‑hydroxymethylfurfural: Characterization and performance. Fuel Processing Technology, 2019, 190, 38-46.	3.7	45
319	Uncharted Pathways for CrCl3 Catalyzed Glucose Conversion in Aqueous Solution. Topics in Catalysis, 2019, 62, 669-677.	1.3	7
320	Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system. Bioresource Technology, 2019, 279, 84-91.	4.8	74
321	Cooperative Catalytic Performance of Lewis and BrÃ,nsted Acids from AlCl ₃ Salt in Aqueous Solution toward Glucose-to-Fructose Isomerization. Journal of Physical Chemistry C, 2019, 123, 4879-4891.	1.5	28
322	One Step Conversion of Glucose into 5-Hydroxymethylfurfural (HMF) via a Basic Catalyst in Mixed Solvent Systems of Ionic Liquid-Dimethyl Sulfoxide. Journal of Oleo Science, 2019, 68, 261-271.	0.6	8
323	Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustainable Chemistry and Engineering, 2019, 7, 5176-5183.	3.2	40
324	Corncob Biorefinery for Platform Chemicals and Lignin Coproduction: Metal Chlorides as Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5309-5317.	3.2	18
325	From waste biomass to chemicals and energy <i>via</i> microwave-assisted processes. Green Chemistry, 2019, 21, 1202-1235.	4.6	103
326	Enhanced HMF yield from glucose with H-ZSM-5 catalyst in water-tetrahydrofuran/2-butanol/2-methyltetrahydrofuran biphasic systems. Journal of Central South University, 2019, 26, 2974-2986.	1.2	6
327	Boosting the utilization efficiency of glucose <i>via</i> a favored C–C coupling reaction. Green Chemistry, 2019, 21, 6236-6240.	4.6	7
328	5-Hydroxymethylfurfural production from hexose sugars using adjustable acid- and base-functionalized mesoporous SBA-15 catalysts in aqueous media. Biomass Conversion and Biorefinery, 2021, 11, 1733-1747.	2.9	14

#	Article	IF	CITATIONS
329	Seed-assisted and OSDA-free synthesis of H-mordenite zeolites for efficient production of 5-hydroxymethylfurfural from glucose. Microporous and Mesoporous Materials, 2019, 279, 211-219.	2.2	28
330	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	3.2	28
331	Microporous Humins Prepared from Sugars and Bio-Based Polymers in Concentrated Sulfuric Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 1018-1027.	3.2	17
332	Response Factors Enable Rapid Quantitative 2D NMR Analysis in Catalytic Biomass Conversion to Renewable Chemicals. Topics in Catalysis, 2019, 62, 590-598.	1.3	8
333	Direct conversion of furfural to levulinic acid/ester in dimethoxymethane: Understanding the mechanism for polymerization. Green Energy and Environment, 2019, 4, 400-413.	4.7	73
334	Dehydration of fructose into 5-hydroxymethylfurfural in a biphasic system using EDTA as a temperature-responsive catalyst. Applied Catalysis A: General, 2019, 569, 93-100.	2.2	23
335	Acid–base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water. Cellulose, 2019, 26, 751-762.	2.4	22
336	Pd-catalysed formation of ester products from cascade reaction of 5-hydroxymethylfurfural with 1-hexene. Applied Catalysis A: General, 2019, 569, 170-174.	2.2	9
337	Insights into HMF catalysis. Journal of Industrial and Engineering Chemistry, 2019, 70, 1-34.	2.9	90
338	Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe ³⁺ modified Amberlyst-15 catalyst. Sustainable Energy and Fuels, 2019, 3, 390-395.	2.5	31
339	Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate. ACS Catalysis, 2019, 9, 1923-1930.	5.5	39
340	Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using Î ³ -valerolactone as solvent. Industrial Crops and Products, 2019, 127, 88-93.	2.5	47
341	Preparation of carboxyethyltin group-functionalized highly ordered mesoporous organosilica composite material with double acid sites. Journal of Materials Science, 2019, 54, 4601-4618.	1.7	3
342	Catalytic Performances of Various Solid Catalysts and Metal Halides for Microwave-Assisted Hydrothermal Conversion of Xylose, Xylan, and Straw to Furfural. Waste and Biomass Valorization, 2019, 10, 1343-1353.	1.8	26
343	Clucose conversion to 5-hydroxymethylfurfural on zirconia: Tuning surface sites by calcination temperatures. Catalysis Today, 2020, 351, 133-140.	2.2	20
344	Structural Features of Two Pyridyl Compounds of 1,5-Bis-(2′-pyridyl)pentane-1,3,5-trione and a New Salt of Doubly Protonated Hydroxyterpyridinium. Journal of Chemical Crystallography, 2020, 50, 77-87.	0.5	2
345	Biomass Conversion to Selected Value-Added Chemicals Using Zeolites: A Review. , 2020, , 23-28.		0
346	Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose. Reviews in Chemical Engineering, 2020, 36, 215-235	2.3	24

#	Article	IF	CITATIONS
347	Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar. Biomass Conversion and Biorefinery, 2020, 10, 1357-1380.	2.9	38
348	Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chemical Engineering Journal, 2020, 381, 122754.	6.6	121
349	N-Doped Carbon Materials as Heterogeneous Catalysts for High Efficiency Isomerization Glucose to Fructose in Aqueous Media. Catalysis Letters, 2020, 150, 493-504.	1.4	17
350	Sustainable catalytic protocols for the solvent free epoxidation and <i>anti</i> -dihydroxylation of the alkene bonds of biorenewable terpene feedstocks using H ₂ O ₂ as oxidant. Green Chemistry, 2020, 22, 513-524.	4.6	43
351	Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid. Green Chemistry, 2020, 22, 688-698.	4.6	14
352	Kinetic variations in acid-catalyzed monosaccharide conversion. Catalysis Communications, 2020, 135, 105894.	1.6	7
354	A review about GVL production from lignocellulose: Focusing on the full components utilization. Industrial Crops and Products, 2020, 144, 112031.	2.5	57
355	Direct Production of Levulinic Acid in One Pot from Hemp Hurd by Dilute Acid in Ionic Liquids. Energy & Fuels, 2020, 34, 1764-1772.	2.5	23
356	Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kinetic study in microreactors. Chemical Engineering Journal, 2020, 391, 123580.	6.6	46
357	The challenge of converting biomass polysaccharides into levulinic acid through heterogeneous catalytic processes. Biofuels, Bioproducts and Biorefining, 2020, 14, 417-445.	1.9	19
358	Sustainable production of formic acid from biomass and carbon dioxide. Molecular Catalysis, 2020, 483, 110716.	1.0	62
359	Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts, 2020, 10, 1006.	1.6	33
360	Selective production of ethyl levulinate from levulinic acid by lipase-immobilized mesoporous silica nanoflowers composite. Fuel Processing Technology, 2020, 210, 106578.	3.7	17
361	Pore Size Engineering Enabled Selectivity Control in Tandem Catalytic Upgrading of Cyclopentanone on Zeolite-Encapsulated Pt Nanoparticles. ACS Catalysis, 2020, 10, 8850-8859.	5.5	24
362	1-Butyl-3-methylimidazolium bromide functionalized zeolites: nature of interactions and catalytic activity for carbohydrate conversion to platform chemicals. Reaction Chemistry and Engineering, 2020, 5, 1738-1750.	1.9	9
363	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
364	Furfural and 5-(hydroxymethyl)furfural: Two pivotal intermediates for bio-based chemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100384.	3.2	37
365	Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catalysis, 2020, 10, 14707-14721.	5.5	41

#	Article	IF	CITATIONS
366	Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst. Renewable Energy, 2020, 162, 1576-1586.	4.3	16
367	One-Pot Synthesis of the Biofuel 5-Ethoxymethylfurfural from Carbohydrates Using a Bifunctional Catalyst Prepared through a Pickering HIPE Template and Pore-Filled Strategy. Energy & Fuels, 2020, 34, 14264-14274.	2.5	9
368	Conversion of Glucose into 5-Hydroxymethylfurfural and Levulinic Acid Catalyzed by SO ₄ ^{2–} /ZrO ₂ in a Biphasic Solvent System. Energy & Fuels, 2020, 34, 11041-11049.	2.5	48
369	Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Processing Technology, 2020, 209, 106528.	3.7	86
370	Catalytic Activity of Mixed Al2O3-ZrO2 Oxides for Glucose Conversion into 5-Hydroxymethylfurfural. Catalysts, 2020, 10, 878.	1.6	6
371	Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 2020, 134, 110317.	8.2	69
372	Dehydration of glucose/fructose to 5-hydroxymethylfurfural (5-HMF) over an easily recyclable sulfated titania (SO ₄ ^{2â^'} /TiO ₂) catalyst. New Journal of Chemistry, 2020, 44, 20734-20750.	1.4	30
373	Impact of Thermal Treatment of Nb2O5 on Its Performance in Glucose Dehydration to 5-Hydroxymethylfurfural in Water. Nanomaterials, 2020, 10, 1685.	1.9	16
374	Coking Prediction in Catalytic Glucose Conversion to Levulinic Acid Using Improved Lattice Boltzmann Model. Industrial & Engineering Chemistry Research, 2020, 59, 17462-17475.	1.8	4
375	Structure–properties relationship in the hydronium-containing pyrochlores (H3O)1+pSb1+pTe1â"pO6 with catalytic activity in the fructose dehydration reaction. Dalton Transactions, 2020, 49, 11657-11667.	1.6	3
376	Bioâ€Based Cycloalkanes: The Missing Link to Highâ€Performance Sustainable Jet Fuels. ChemSusChem, 2020, 13, 5777-5807.	3.6	58
377	Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. Molecular Catalysis, 2020, 498, 111254.	1.0	15
378	The Future is Garbage: Repurposing of Food Waste to an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8124-8136.	3.2	42
379	Coupled acid and base UiO-66-type MOFs supported on g-C3N4 as a bi-functional catalyst for one-pot production of 5-HMF from glucose. Microporous and Mesoporous Materials, 2020, 305, 110328.	2.2	40
380	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. Journal of Cleaner Production, 2020, 268, 122378.	4.6	14
381	Lignocellulosic Biomass Upgrading into Valuable Nitrogen-Containing Compounds by Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 17008-17025.	1.8	31
382	Metal-organic frameworks as solid BrÃnsted acid catalysts for advanced organic transformations. Coordination Chemistry Reviews, 2020, 420, 213400.	9.5	59
383	Facile Molecular Catalysis for Isomerization of Glucose to Fructose Using KMnO4in Water. ChemistrySelect, 2020, 5, 2913-2917.	0.7	4

#	Article	IF	CITATIONS
384	Lactic acid/lactates production from biomass over chemocatalytic strategies. , 2020, , 227-257.		3
385	Nickel-catalyzed carboxylation of aryl iodides with lithium formate through catalytic CO recycling. Chemical Communications, 2020, 56, 4067-4069.	2.2	13
386	Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chemistry, 2020, 22, 4747-4800.	4.6	136
387	Qualitative Analysis of Liquid Products Generated from Lignocellulosic Biomass Using Post-Target and Nontarget Analysis Methods and Liquefaction Mechanism Research. ACS Sustainable Chemistry and Engineering, 2020, 8, 11099-11113.	3.2	6
388	Catalytic conversion of fructose to 1,3-dihydroxyacetone under mild conditions. Catalysis Communications, 2020, 145, 106098.	1.6	3
389	Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) and Furfural. Energy & Fuels, 2020, 34, 3284-3293.	2.5	62
390	Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 4358-4366.	1.8	15
391	Mechanism and malleability of glucose dehydration to HMF: entry points and water-induced diversions. Catalysis Science and Technology, 2020, 10, 1724-1730.	2.1	15
392	Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts. Frontiers in Chemistry, 2019, 7, 948.	1.8	33
393	One-pot synthesis of HMF from carbohydrates over acid-base bi-functional carbonaceous catalyst supported on halloysite nanotubes. Cellulose, 2020, 27, 3037-3054.	2.4	45
394	Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose, 2020, 27, 3013-3023.	2.4	35
395	2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. Journal of Cleaner Production, 2020, 256, 120292.	4.6	38
396	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie, 2020, 132, 11800-11812.	1.6	19
397	Dehydration of sugars to 5-hydroxymethylfurfural and non-stoichiometric formic and levulinic acids over mesoporous Ta and Ta-W oxide solid acid catalysts. Chinese Journal of Catalysis, 2020, 41, 1248-1260.	6.9	20
398	Sulfonated graphene oxide from petrochemical waste oil for efficient conversion of fructose into levulinic acid. Catalysis Today, 2021, 375, 197-203.	2.2	7
399	Sustainable production of fuels and chemicals from biomass over niobium based catalysts: A review. Catalysis Today, 2021, 374, 61-76.	2.2	30
400	Investigation of factors that inhibit furfural production using metal chloride catalysts. Chemical Engineering Journal, 2021, 403, 126271.	6.6	26
401	Aqueous-Phase Cellulose Hydrolysis over Zeolite HY Nanocrystals Grafted on Anatase Titania Nanofibers. Catalysis Letters, 2021, 151, 1467-1476.	1.4	2

#	Article	IF	CITATIONS
402	2,5-Dimethylfuran (DMF) as a promising biofuel for the spark ignition engine application: A comparative analysis and review. Fuel, 2021, 285, 119140.	3.4	39
403	Catalytic conversion of corncob to furfuryl alcohol in tandem reaction with tin-loaded sulfonated zeolite and NADPH-dependent reductase biocatalyst. Bioresource Technology, 2021, 320, 124267.	4.8	38
404	Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021, 23, 119-231.	4.6	223
405	Combustion and emission characteristics of spark and compression ignition engine fueled with 2,5-dimethylfuran (DMF): A comprehensive review. Fuel, 2021, 288, 119757.	3.4	22
406	Selective 5-hydroxymethylfurfural production from cellulose formate in DMSO-H2O media. Applied Catalysis B: Environmental, 2021, 285, 119799.	10.8	30
407	Hydrogen production from additive-free formic acid over highly active metal organic frameworks-supported palladium-based catalysts. International Journal of Hydrogen Energy, 2021, 46, 5259-5269.	3.8	13
408	State of the Art and Perspectives in Catalytic Conversion Mechanism of Biomass to Bio-aromatics. Energy & Fuels, 2021, 35, 45-62.	2.5	33
409	Green Process for 5â€(Chloromethyl)furfural Production from Biomass in Threeâ€Constituent Deep Eutectic Solvent. ChemSusChem, 2021, 14, 847-851.	3.6	14
410	Fast microflow kinetics and acid catalyst deactivation in glucose conversion to 5-hydroxymethylfurfural. Reaction Chemistry and Engineering, 2021, 6, 152-164.	1.9	13
411	Modified Metal–Organic Frameworks as Efficient Catalysts for Lignocellulosic Biomass Conversion. Bulletin of the Korean Chemical Society, 2021, 42, 346-358.	1.0	5
412	Conversion of glucose to levulinic acid and upgradation to γ-valerolactone on Ru/TiO ₂ catalysts. New Journal of Chemistry, 2021, 45, 14406-14413.	1.4	5
413	Highly efficient and tunable visible-light-catalytic synthesis of 2,5-diformylfuran using HBr and molecular oxygen. RSC Advances, 2021, 11, 23365-23373.	1.7	7
414	Catalytic valorization of lignocellulosics: from bulk biofuels to valueâ€added chemicals. Biofuels, Bioproducts and Biorefining, 2021, 15, 592-608.	1.9	7
415	A review of thermal and thermocatalytic valorization of food waste. Green Chemistry, 2021, 23, 2806-2833.	4.6	28
416	Isomerization of glucose to fructose catalyzed by metal–organic frameworks. Sustainable Energy and Fuels, 2021, 5, 3847-3857.	2.5	17
417	Catalytic Conversion of Glucose into Levulinic Acid Using 2-Phenyl-2-Imidazoline Based Ionic Liquid Catalyst. Molecules, 2021, 26, 348.	1.7	13
418	Insight into Fructose Dehydration over Lewis Acid α u ₂ P ₂ O ₇ Catalyst. ChemNanoMat, 2021, 7, 292-298.	1.5	6
419	Application of vanadyl hydrogen phosphate/KIT-6 composites as a catalyst for dehydration of sucrose. Journal of the Iranian Chemical Society, 2021, 18, 2291-2302.	1.2	2

# 420	ARTICLE Hierarchical Porous Nitrogen-Doped Carbon Catalyst by the Pickering HIPE Technique: Synthesis and	IF 2.5	Citations
420	Application in HMF Production. Energy & amp; Fuels, 2021, 35, 4191-4202. Mechanistic studies on the formation of 5-hydroxymethylfurfural from the sugars fructose and glucose. Pure and Applied Chemistry, 2021, 93, 463-478.	0.9	10
422	Production of 5-Hydroxymethylfurfural Derived Cassava Peels Using Deep Eutectic Solvent Based Choline Chloride. International Journal of Engineering Research in Africa, 0, 53, 190-199.	0.7	2
423	Intensified wheat husk conversion employing energy-efficient hybrid electromagnetic radiations for production of fermentable sugar: process optimization and life cycle assessment. Environmental Science and Pollution Research, 2021, 28, 58902-58914.	2.7	4
424	Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnology Advances, 2021, 47, 107706.	6.0	29
425	Al-modified heteropolyacid facilitates alkyl levulinate production from cellulose and lignocellulosic biomass: Kinetics and mechanism studies. Fuel Processing Technology, 2021, 213, 106709.	3.7	26
426	Acid-Catalyzed Conversion of Cellulose Into Levulinic Acid With Biphasic Solvent System. Frontiers in Plant Science, 2021, 12, 630807.	1.7	7
427	A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renewable and Sustainable Energy Reviews, 2021, 139, 110706.	8.2	162
428	Electrodeposited Ni-Rich Ni–Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. Langmuir, 2021, 37, 4666-4677.	1.6	11
429	Efficient Conversion of Glucose to 5-Hydroxymethylfurfural over a Sn-Modified SAPO-34 Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 5838-5851.	1.8	24
430	Thermal Catalytic Conversion of Biomass-Derived Glucose to Fine Chemicals. Energy & Fuels, 2021, 35, 8602-8616.	2.5	27
432	Catalytic Conversion of Starch to 5-Hydroxymethylfurfural by Tin Phosphotungstate. Frontiers in Energy Research, 2021, 9, .	1.2	7
433	Synthesis of 5-hydroxymethylfurfural from dehydration of biomass-derived glucose and fructose using supported metal catalysts. Green Synthesis and Catalysis, 2021, 2, 187-197.	3.7	37
435	Multiple-SO3H functionalized ionic liquid as efficient catalyst for direct conversion of carbohydrate biomass into levulinic acid. Molecular Catalysis, 2021, 509, 111659.	1.0	13
436	Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural Over Poly(4-Styrenesulfonic Acid) Catalyst. Catalysis Letters, 0, , 1.	1.4	3
437	BrÃ,nsted acid-driven conversion of glucose to xylose, arabinose and formic acid via selective C–C cleavage. Applied Catalysis B: Environmental, 2021, 286, 119862.	10.8	15
438	Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 2021, 27, 434-449.	3.3	18
439	Pressure Reduction Enhancing the Production of 5-Hydroxymethylfurfural from Glucose in Aqueous Phase Catalysis System. Polymers, 2021, 13, 2096.	2.0	4

#	Article	IF	CITATIONS
440	Effect of molecular structure of cation and anions of ionic liquids and co-solvents on selectivity of 5-hydroxymethylfurfural from sugars, cellulose and real biomass. Journal of Molecular Liquids, 2021, 334, 116523.	2.3	19
441	Natural mineral bentonite as catalyst for efficient isomerization of biomass-derived glucose to fructose in water. Science of the Total Environment, 2021, 778, 146276.	3.9	24
442	Developing a Catalysis Applied Research Community at a University of Applied Sciences: From Educational Setting to High-Quality Research Output. Journal of Chemical Education, 2021, 98, 2559-2565.	1.1	3
443	Optimizing the surface distribution of acid sites for cooperative catalysis in condensation reactions promoted by water. Chem Catalysis, 2021, 1, 1065-1087.	2.9	14
444	Heterometallic Pd ^{II} –Cl–Cu ^I Catalyst for Efficient Hydrolysis of β-1,4-Glycosidic Bonds in 1-Butyl-3-methylimidazolium Chloride. ACS Catalysis, 2021, 11, 11774-11785.	5.5	9
445	Sulfated ordinary clay for acid-catalyzed conversion of biomass derivatives: Impacts of abundance and types of acidic sites on catalytic performance. Journal of Solid State Chemistry, 2021, 301, 122302.	1.4	1
446	Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces. Surface Science Reports, 2021, 76, 100541.	3.8	31
447	Influence of Lewis and BrÃ,nsted acidic sites on graphitic carbon nitride catalyst for aqueous phase conversion of biomass derived monosaccharides to 5-hydroxymethylfurfural. Carbon, 2021, 183, 984-998.	5.4	32
448	Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions. Journal of Molecular Liquids, 2021, 339, 117278.	2.3	13
449	Plasmonic silver nanoparticles promoted sugar conversion to 5-hydroxymethylfurfural over catalysts of immobilised metal ions. Applied Catalysis B: Environmental, 2021, 296, 120340.	10.8	7
450	Ethylene glycol co-solvent enhances alkyl levulinate production from concentrated feeds of sugars in monohydric alcohols. Fuel, 2021, 304, 121471.	3.4	10
451	Honeycombed activated carbon with greatly increased specific surface by direct activation of glucose for supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160907.	2.8	9
452	Intensified reactive extraction for the acid-catalyzed conversion of fructose to 5-hydroxymethyl furfural. Chemical Engineering Journal, 2022, 428, 132556.	6.6	18
453	Pt-WO3 oxydehydrates fructose to furans in the gas phase. Chemical Engineering Journal, 2022, 429, 132337.	6.6	2
454	Influence of solvent structure and hydrogen bonding on catalysis at solid–liquid interfaces. Chemical Society Reviews, 2021, 50, 12308-12337.	18.7	53
455	<i>t</i> -Butyl 3-azido- and 3-amino-2,3-dideoxy-α- <scp>d</scp> - <i>arabino</i> -hexopyranosides: a concise protocol of structural and chemical profiles to identify metal ion binding modes. Journal of Coordination Chemistry, 2021, 74, 402-423.	0.8	0
456	Tuning BrÃ,nsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural. RSC Advances, 2021, 11, 29196-29206.	1.7	6
457	Preliminary Optimization and Kinetics of SnCl2-HCl Catalyzed Hydrothermal Conversion of Microcrystalline Cellulose to Levulinic Acid. Journal of Renewable Materials, 2021, 9, 145-162.	1.1	5

#	Article	IF	Citations
458	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie - International	7.2	82
	Edition, 2020, 59, 11704-11716.		
459	Transition-Metal-Catalyzed Transformation of Monosaccharides and Polysaccharides. , 2014, , 1-45.		1
460	Transition-Metal-Catalyzed Transformation of Monosaccharides and Polysaccharides. , 2015, , 1319-1371.		1
461	Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using Hydrothermal Pretreatment. , 2017, , 285-315.		5
462	Suppression of oligomer formation in glucose dehydration by CO ₂ and tetrahydrofuran. Green Chemistry, 2017, 19, 3334-3343.	4.6	55
463	Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews, 2017, 86, 357-387.	2.5	85
464	A Review on the Performance, Combustion, and Emission Characteristics of Spark-Ignition Engine Fueled With 2,5-Dimethylfuran Compared to Ethanol and Gasoline. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	29
466	Contribution to the production and use of biomass-derived solvents – a review. Acta Innovations, 2020, , 29-56.	0.4	21
467	Catalytic conversion of glucose to 5-hydroxymethylfurfural productions over sulphated Ti-Al2O3 catalysts. Biomass and Bioenergy, 2021, 154, 106261.	2.9	10
468	Feasibility of the Conversion of Sugarcane Molasses to Levulinic Acid: Reaction Optimization and Techno-Economic Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 15646-15657.	1.8	6
469	The Proton Dissociation of Bio-Protic Ionic Liquids: [AAE]X Amino Acid Ionic Liquids. Molecules, 2021, 26, 62.	1.7	0
470	Selective tandem catalysis for the synthesis of 5-hydroxymethylfurfural from glucose over in-situ phosphated titania catalysts: Insights into structure, bi-functionality and performance in flow microreactors. Applied Catalysis B: Environmental, 2022, 301, 120800.	10.8	41
471	Glucose to Levulinic acid, a versatile building block chemical. AIP Conference Proceedings, 2020, , .	0.3	6
472	Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Applied Catalysis B: Environmental, 2022, 303, 120895.	10.8	45
473	Aqueousâ€Natural Deep Eutectic Solventâ€Enhanced 5â€Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. ChemSusChem, 2022, 15, .	3.6	30
474	Production of 5-Hydroxymethylfurfural from glucose using Al2O3-TiO2-ZrO2 ternary catalysts. Catalysis Today, 2022, 392-393, 116-130.	2.2	4
475	Cooperative BrÃ,nsted-Lewis acid sites created by phosphotungstic acid encapsulated metal–organic frameworks for selective glucose conversion to 5-hydroxymethylfurfural. Fuel, 2022, 310, 122459.	3.4	28
476	The Hydrothermally Stable NbW-SBA-15 as Highly Efficient Catalysts for the Conversion of Glucose into 5-Hydroxymethylfurfural. Catalysis Letters, 2022, 152, 3427-3436.	1.4	5

#	Article	IF	CITATIONS
477	Kinetic study of the conversion of glucose to 5-hydroxymethylfurfural using niobium phosphate. Molecular Catalysis, 2022, 518, 112079.	1.0	4
479	Production of crude 5-hydroxymethylfurfural from glucose by dual catalysts with functional promoters in low-boiling hybrid solvent. Catalysis Today, 2022, 402, 10-16.	2.2	5
480	Bifunctional heterogeneous catalysts derived from the coordination of adenosine monophosphate to Sn(<scp>iv</scp>) for effective conversion of sucrose to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2022, 12, 630-640.	2.1	3
481	Efficient formation of 5-hydroxymethylfurfural from glucose through H-β zeolite catalyst in the recyclable water-tetrahydrofuran biphasic system. Catalysis Today, 2022, 404, 229-236.	2.2	10
482	Production of levulinic acid and alkyl levulinates: a process insight. Green Chemistry, 2022, 24, 614-646.	4.6	84
483	Accelerating manufacturing for biomass conversion <i>via</i> integrated process and bench digitalization: a perspective. Reaction Chemistry and Engineering, 2022, 7, 813-832.	1.9	9
484	Aqueous Isomerization of Glucose to Fructose Catalyzed by Guanidinium Ionic Liquids. ChemistrySelect, 2022, 7, .	0.7	5
485	Direct conversion of fructose to levulinic acid in water medium catalyzed by a reusable perfluorosulfonic acid Aquivion® resin. Molecular Catalysis, 2022, 520, 112159.	1.0	4
486	Facile one-pot synthesis of functional hydrochar catalyst for biomass valorization. Fuel, 2022, 315, 123172.	3.4	7
487	Regulating the Alkalinity of Carbon Nitride by Magnesium Doping to Boost the Selective Isomerization of Glucose to Fructose. ACS Sustainable Chemistry and Engineering, 2022, 10, 1986-1993.	3.2	16
488	Synergistic catalysis of species in molten salt hydrate for conversion of cellulose to 5-hydroxymethylfurfural. Biomass and Bioenergy, 2022, 158, 106363.	2.9	14
489	Conversion of Cellulose into Levulinic Acid Under the Catalysis of BrÃ,nsted Acidic Ionic Liquid and Erbium Chloride in Water. SSRN Electronic Journal, 0, , .	0.4	Ο
490	Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green Chemistry, 2022, 24, 2680-2721.	4.6	18
491	Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein–Ponndorf–Verley reductions. Chemical Communications, 2022, 58, 4067-4070.	2.2	9
492	One-pot levulinic acid production from rice straw by acid hydrolysis in deep eutectic solvent. Chemical Engineering Communications, 2024, 211, 366-378.	1.5	5
493	Synthesis of Boron-Doped Phenolic Porous Carbon As Efficient Catalyst for the Dehydration of Fructose into 5-Hydroxymethylfurfural. Industrial & Engineering Chemistry Research, 2022, 61, 4222-4234.	1.8	2
494	Catalytic wet air oxidation of d-glucose by perovskite type oxides (Fe, Co, Mn) for the synthesis of value-added chemicals. Carbohydrate Research, 2022, 514, 108529.	1.1	8
495	Recent advances in the conversion of lignocellulosic biomass and its degraded products to levulinic acid: A synergy of BrÃ,nsted-Lowry acid and Lewis acid. Industrial Crops and Products, 2022, 181, 114778.	2.5	14

#	Article	IF	CITATIONS
496	Recent Advances in Reductive Upgrading of 5â€Hydroxymethylfurfural via Heterogeneous Thermocatalysis. ChemSusChem, 2022, 15, .	3.6	11
497	Efficient One-Pot Production of 5-Hydroxymethylfurfural from Glucose in an Acetone–Water Solvent. Industrial & Engineering Chemistry Research, 2022, 61, 5661-5671.	1.8	2
498	An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 2022, 442, 136313.	6.6	14
499	Efficient Synthesis of 5-(Hydroxymethyl)furfural Esters from Polymeric Carbohydrates Using 5-(Chloromethyl)furfural as a Reactive Intermediate. ACS Sustainable Chemistry and Engineering, 2022, 10, 5803-5809.	3.2	13
500	Metal-Free Sulfonate/Sulfate-Functionalized Carbon Nitride for Direct Conversion of Glucose to Levulinic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 6230-6243.	3.2	10
501	The Effect of Transformational Leadership, Servant Leadership, and Organizational Learning on Manufacturing Industry Performance. Frontiers in Psychology, 2022, 13, .	1.1	4
502	SOME RECENT DEVELOPMENTS IN VALORIZATION OF CHITOSAN TO A VALUABLE PLATFORM CHEMICAL 5-HYDROXYMETHYLFURFURAL (5-HMF): A SHORT REVIEW. Catalysis in Green Chemistry and Engineering, 2022, 5, 1-18.	0.2	1
503	Conversion of Glucose to 5-Hydroxymethylfurfural Using Consortium Catalyst in a Biphasic System and Mechanistic Insights. SSRN Electronic Journal, 0, , .	0.4	0
504	Conversion of Glucose to 5-Hydroxymethylfurfural in Deep Eutectic Solvent of Choline Chloride–Chromium Chloride. Industrial & Engineering Chemistry Research, 2022, 61, 7216-7224.	1.8	9
505	Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catalysis Communications, 2022, 168, 106467.	1.6	26
506	Levulinic acid: a potent green chemical in sustainable agriculture. , 2022, , 179-218.		1
507	Critical Assessment of Reaction Pathways for Next-Generation Biofuels from Renewable Resources: 5-Ethoxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 9002-9021.	3.2	13
508	Insights into the Play of Novel BrÃ,nsted Acid-Based Deep Eutectic Solvents for the Conversion of Glucose into 5-Hydroxymethylfurfural without Additional Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 11645-11654.	1.8	3
509	Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment, 2023, 8, 10-114.	4.7	151
510	Titanium Phosphate Grafted on Mesoporous SBA-15 Silica as a Solid Acid Catalyst for the Synthesis of 5-Hydroxymethylfurfural from Glucose. ACS Sustainable Chemistry and Engineering, 2022, 10, 10157-10168.	3.2	12
511	Study on spectral properties and active sites of glucose and fructose based on density functional theory. Inorganic Chemistry Communication, 2022, 143, 109775.	1.8	0
512	Enhancing the Sugar Yield of Sugarcane Bagasse Via Cucl2-Catalyzed Organosolv Pretreatment and Additives. SSRN Electronic Journal, 0, , .	0.4	0
513	Realizing direct conversion of glucose to furfurals with tunable selectivity utilizing a carbon dot catalyst with dual acids controlled by a biphasic medium. Biomass Conversion and Biorefinery, 0, , .	2.9	5

#	Article	IF	Citations
514	Synergistic catalytic effect of zirconium chloride and BrÃ,nsted acid salt for conversion of agarose to 5-hydroxymethylfurfural in aqueous media. Renewable Energy, 2022, 198, 123-130.	4.3	2
515	Highly selective catalytic conversion of raw sugar and sugarcane bagasse to lactic acid over YbCl3, ErCl3, and CeCl3 Lewis acid catalysts without alkaline in a hot-compressed water reaction system. Chemical Engineering Research and Design, 2022, 187, 549-569.	2.7	4
516	Conversion of cellulose into levulinic acid under the catalysis of BrÃ,nsted acidic ionic liquid and erbium chloride in water. Carbohydrate Research, 2022, 522, 108675.	1.1	2
517	Microflow chemistry and its electrification for sustainable chemical manufacturing. Chemical Science, 2022, 13, 10644-10685.	3.7	11
518	Micro–mesoporous kaolin-based zeolites as catalysts for glucose transformation into 5-hydroxymethylfurfural. Applied Nanoscience (Switzerland), 2023, 13, 4795-4808.	1.6	3
519	Advances in Biomass-Based Levulinic Acid Production. Waste and Biomass Valorization, 2023, 14, 1-22.	1.8	7
520	Tunable Solid Acid Catalyst Thin Films Prepared by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2022, 14, 43171-43179.	4.0	1
521	Role of Anions in 5â€Hydroxymethylfurfural Solvation in Ionic Liquids from Molecular Dynamics Simulations. Advanced Theory and Simulations, 2022, 5, .	1.3	2
522	Highly Efficient and Selective Preparation of 5-Hydroxymethylfurfural from Concentrated Carbohydrates Using Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2022, 10, 14579-14587.	3.2	4
523	Hydrogenation of levulinic acid to gamma-valerolactone over nickel supported organoclay catalyst. Catalysis Today, 2023, 408, 36-49.	2.2	6
524	Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals. Industrial Crops and Products, 2022, 189, 115766.	2.5	5
525	Conversion of glucose into 5-hydroxymethylfurfural on granular zeolite catalysts. Catalysis and Petrochemistry, 2022, , 38-45.	0.2	0
526	Two carriages for efficient furfural production from biomass: Rational design of porous biochar catalyst and clever utilization of butyrolactone-water medium. Fuel, 2023, 333, 126389.	3.4	5
527	Sulfonated graphene nanomaterials for membrane antifouling, pollutant removal, and production of chemicals from biomass: a review. Environmental Chemistry Letters, 2023, 21, 1093-1116.	8.3	6
528	Carbohydrate-based biorefineries for the production of 5-hydroxymethylfurfural and 2,5-furandicarboxylic acid and their separation and purification methods. Biomass Conversion and Biorefinery, 0, , .	2.9	1
529	Green synthesis of cellulose formate and its efficient conversion into 5-hydroxymethylfurfural. Industrial Crops and Products, 2023, 192, 115985.	2.5	6
530	Waste apple biomass conversion to 5-HMF over tin doped sulfonated activated carbon as a catalyst. Biomass and Bioenergy, 2023, 168, 106661.	2.9	6
531	Insights into the different catalytic behavior between Ce and Cr modified MCM-41 catalysts: Cr2S3 as new active species for CH3SH decomposition. Separation and Purification Technology, 2023, 307, 122742.	3.9	1

#	Article	IF	CITATIONS
532	Enhancing the co-production of sugars from sugarcane bagasse via CuCl2-catalyzed organosolv pretreatment and additives. Fuel Processing Technology, 2023, 241, 107629.	3.7	1
534	One Pot Synthesis of Cubic Mesoporous Silica KITâ€6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemistrySelect, 2022, 7, .	0.7	1
535	Probing the Role of Individual OH Sites in Carbohydrate Conversion Suggests Strategies for Increasing Product Selectivity and Avoiding Humins. ACS Sustainable Chemistry and Engineering, 2023, 11, 1027-1036.	3.2	2
536	Efficient oneâ€pot tandem conversion of saccharides to 2,5â€dimethylfuran by adjusting the wettability of <scp>2DMOF</scp> catalysts. AICHE Journal, 0, , .	1.8	0
537	Facile synthesis of SAPO-34 nanocrystallites with excellent performance for the dehydration of carbohydrates to 5-hydroxymethylfurfural. Green Chemistry, 2023, 25, 1395-1405.	4.6	5
538	Influence of Lewis and BrÃ,nsted acid catalysts in the transformation of hexoses into 5-ethoxymethylfurfural. Renewable Energy, 2023, 207, 588-600.	4.3	5
539	Catalytic conversion of sugars and polysaccharides to glycols: A review. Applied Catalysis B: Environmental, 2023, 330, 122650.	10.8	7
540	Construction of a stable biochar-supported amorphous aluminum solid acid catalyst with BrÃ,nsted–Lewis dual acid sites for efficient conversion of cellulose. International Journal of Biological Macromolecules, 2023, 237, 124196.	3.6	4
541	Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars. Renewable and Sustainable Energy Reviews, 2023, 176, 113194.	8.2	9
542	Thermodynamic Insights into MgBr ₂ -Mediated Glucose Interconversion to Fructose Undertaking Multiple Reaction Pathways by Applying the Macro- and Micro-Kinetic Principles. ACS Sustainable Chemistry and Engineering, 2023, 11, 3284-3296.	3.2	2
543	Conversion of Glucose to 5-Hydroxymethylfurfural Using Consortium Catalyst in a Biphasic System and Mechanistic Insights. Catalysts, 2023, 13, 574.	1.6	0
544	High production of furfural by flash pyrolysis of C6 sugars and lignocellulose by Pd-PdO/ZnSO4 catalyst. Nature Communications, 2023, 14, .	5.8	4
546	Quantification of the Microwave Effect in the Synthesis of 5-Hydroxymethylfurfural over Sulfonated MIL-101(Cr). Catalysts, 2023, 13, 622.	1.6	1
547	Molecular Views on Mechanisms of BrÃ,nsted Acid-Catalyzed Reactions in Zeolites. Chemical Reviews, 2023, 123, 6107-6196.	23.0	22
548	Efficient Conversion of Biomass-Derived Saccharides to Levulinic Acid Using Silicotungstic Acid. Energy & Fuels, 2023, 37, 6642-6650.	2.5	2