The E3Â Ubiquitin Ligase Siah2 Contributes to Castratic Regulation of Androgen Receptor Transcriptional Activ

Cancer Cell 23, 332-346 DOI: 10.1016/j.ccr.2013.02.016

Citation Report

#	Article	IF	CITATIONS
1	Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor. Molecular Cell, 2013, 52, 769-782.	4.5	208
2	Genome-wide Map of Nuclear Protein Degradation Shows NCoR1 Turnover as a Key to Mitochondrial Gene Regulation. Cell, 2013, 155, 1380-1395.	13.5	45
3	Ubiquitin-Proteasome Pathway and Prostate Cancer. Onkologie, 2013, 36, 592-596.	1.1	15
4	Investigating the Molecular Basis of Siah1 and Siah2 E3 Ubiquitin Ligase Substrate Specificity. PLoS ONE, 2014, 9, e106547.	1.1	17
5	Copy number alteration burden predicts prostate cancer relapse. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11139-11144.	3.3	299
6	Crosstalk Between Nuclear MET and SOX9/β-Catenin Correlates with Castration-Resistant Prostate Cancer. Molecular Endocrinology, 2014, 28, 1629-1639.	3.7	37
7	Skp2 regulates androgen receptor through ubiquitinâ€mediated degradation independent of Akt/mTOR pathways in prostate cancer. Prostate, 2014, 74, 421-432.	1.2	40
8	The Von Hippel-Lindau Protein Suppresses Androgen Receptor Activity. Molecular Endocrinology, 2014, 28, 239-248.	3.7	30
9	USP22 Regulates Oncogenic Signaling Pathways to Drive Lethal Cancer Progression. Cancer Research, 2014, 74, 272-286.	0.4	98
10	Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nature Reviews Cancer, 2014, 14, 26-38.	12.8	123
11	Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis. Biomaterials, 2014, 35, 8175-8185.	5.7	93
12	Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer, 2014, 14, 244.	1.1	42
13	Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nature Reviews Cancer, 2014, 14, 187-198.	12.8	152
14	Destruction of Full-Length Androgen Receptor by Wild-Type SPOP, but Not Prostate-Cancer-Associated Mutants. Cell Reports, 2014, 6, 657-669.	2.9	217
15	Seven In Absentia Homolog 2 (SIAH2) downregulation is associated with tamoxifen resistance in MCF-7 breast cancer cells. Journal of Surgical Research, 2014, 190, 203-209.	0.8	12
16	Targeting <scp>ASCT2</scp> â€mediated glutamine uptake blocks prostate cancer growth and tumour development. Journal of Pathology, 2015, 236, 278-289.	2.1	275
17	Implications of ubiquitin ligases in castration-resistant prostate cancer. Current Opinion in Oncology, 2015, 27, 172-176.	1.1	17
18	The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2) Is Increased in Human Lung Cancer. PLoS ONE, 2015, 10, e0143376.	1.1	17

#	Article	IF	CITATIONS
19	The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine and Growth Factor Reviews, 2015, 26, 405-413.	3.2	23
20	Splicing Factor Prp8 Interacts With NESAR and Regulates Androgen Receptor in Prostate Cancer Cells. Molecular Endocrinology, 2015, 29, 1731-1742.	3.7	15
21	The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells. Journal of Biological Chemistry, 2015, 290, 20865-20879.	1.6	28
22	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	2.9	55
23	The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. International Journal of Cancer, 2015, 136, E27-38.	2.3	87
24	Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. Journal of Molecular Endocrinology, 2015, 54, R151-R167.	1.1	34
25	Roles of Ubiquitination and SUMOylation on Prostate Cancer: Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 2015, 16, 4560-4580.	1.8	42
26	The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. Journal of Biological Chemistry, 2015, 290, 21713-21723.	1.6	50
27	Dysregulation of ubiquitin ligases in cancer. Drug Resistance Updates, 2015, 23, 1-11.	6.5	42
28	Therapy escape mechanisms in the malignant prostate. Seminars in Cancer Biology, 2015, 35, 133-144.	4.3	59
29	MDC1 functionally identified as an androgen receptor co-activator participates in suppression of prostate cancer. Nucleic Acids Research, 2015, 43, 4893-4908.	6.5	47
30	Androgen suppresses testicular cancer cell growth <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 35224-35232.	0.8	12
31	Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Design, Development and Therapy, 2016, Volume 10, 2289-2297.	2.0	43
32	The andean anticancer herbal product BIRM causes destabilization of androgen receptor and induces caspase-8 mediated-apoptosis in prostate cancer. Oncotarget, 2016, 7, 84201-84213.	0.8	11
33	Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Frontiers in Genetics, 2016, 7, 42.	1.1	10
34	Overexpression of Siah2 Is Associated With Poor Prognosis in Patients With Epithelial Ovarian Carcinoma. International Journal of Gynecological Cancer, 2016, 26, 114-119.	1.2	8
35	Touch and go: nuclear proteolysis in the regulation of metabolic genes and cancer. FEBS Letters, 2016, 590, 908-923.	1.3	18
36	BAP18 coactivates androgen receptor action and promotes prostate cancer progression. Nucleic Acids Research, 2016, 44, 8112-8128.	6.5	28

#	Article	IF	CITATIONS
37	Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. Progress in Molecular Biology and Translational Science, 2016, 141, 339-369.	0.9	18
38	Equol inhibits prostate cancer growth through degradation of androgen receptor by Sâ€phase kinaseâ€associated protein 2. Cancer Science, 2016, 107, 1022-1028.	1.7	31
39	Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocrine-Related Cancer, 2016, 23, T179-T197.	1.6	132
40	The expression and function of E3 ligase SIAH2 in acute T lymphoblastic leukemia. Leukemia Research, 2016, 42, 28-36.	0.4	12
41	Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clinical Cancer Research, 2016, 22, 3937-3949.	3.2	24
42	Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene, 2017, 36, 3417-3427.	2.6	68
43	JS-K, a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells. BMC Cancer, 2017, 17, 376.	1.1	27
44	Rationale for the development of alternative forms of androgen deprivation therapy. Endocrine-Related Cancer, 2017, 24, R275-R295.	1.6	17
45	The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3095-3105.	1.1	18
46	SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene, 2017, 36, 1364-1373.	2.6	46
47	Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity. Nucleic Acids Research, 2017, 45, 1793-1804.	6.5	28
48	Aldo–Keto Reductase AKR1C1–AKR1C4: Functions, Regulation, and Intervention for Anti-cancer Therapy. Frontiers in Pharmacology, 2017, 8, 119.	1.6	88
49	RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 529.	1.8	19
50	Identification of novel genetic etiology and key molecular pathways for seminoma via network-based studies. International Journal of Oncology, 2017, 51, 1280-1290.	1.4	13
51	BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nature Communications, 2018, 9, 500.	5.8	65
52	Growth arrest and apoptosis induction in androgen receptor-positive human breast cancer cells by inhibition of USP14-mediated androgen receptor deubiquitination. Oncogene, 2018, 37, 1896-1910.	2.6	90
53	Novel Insights Into E3 Ubiquitin Ligase in Cancer Chemoresistance. American Journal of the Medical Sciences, 2018, 355, 368-376.	0.4	20
54	DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene, 2018, 37, 638-650.	2.6	46

#	Article	IF	CITATIONS
55	Ubiquitin ligases in oncogenic transformation and cancer therapy. Nature Reviews Cancer, 2018, 18, 69-88.	12.8	340
56	miR-1306–3p targets FBXL5 to promote metastasis of hepatocellular carcinoma through suppressing snail degradation. Biochemical and Biophysical Research Communications, 2018, 504, 820-826.	1.0	24
57	Targeting the turnover of oncoproteins as a new avenue for therapeutics development in castration-resistant prostate cancer. Cancer Letters, 2018, 438, 86-96.	3.2	1
58	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	2.7	434
59	AKR1C1 Activates STAT3 to Promote the Metastasis of Non-Small Cell Lung Cancer. Theranostics, 2018, 8, 676-692.	4.6	69
60	FOXM1 contributes to taxane resistance by regulating UHRF1-controlled cancer cell stemness. Cell Death and Disease, 2018, 9, 562.	2.7	38
61	Interference with the androgen receptor protein stability in therapyâ€resistant prostate cancer. International Journal of Cancer, 2019, 144, 1775-1779.	2.3	22
62	Identification of diagnostic utility and molecular mechanisms of circulating miR-551b-5p in gastric cancer. Pathology Research and Practice, 2019, 215, 900-904.	1.0	11
63	USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2. Cancer Letters, 2019, 449, 114-124.	3.2	37
64	Identification and characterization of small molecule inhibitors of the ubiquitin ligases Siah1/2 in melanoma and prostate cancer cells. Cancer Letters, 2019, 449, 145-162.	3.2	16
65	DeSUMOylase SENP7-Mediated Epithelial Signaling Triggers Intestinal Inflammation via Expansion of Gamma-Delta T Cells. Cell Reports, 2019, 29, 3522-3538.e7.	2.9	43
66	A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene, 2019, 38, 913-934.	2.6	76
67	Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene, 2019, 38, 716-730.	2.6	64
68	Activated Wnt/β-Catenin signaling contributes to E3 ubiquitin ligase EDD-conferred docetaxel resistance in prostate cancer. Life Sciences, 2020, 254, 116816.	2.0	10
69	Lipogenic effects of androgen signaling in normal and malignant prostate. Asian Journal of Urology, 2020, 7, 258-270.	0.5	27
70	Inhibition of Siah2 ubiquitin ligase ameliorates monocrotaline-induced pulmonary arterial remodeling through inactivation of YAP. Life Sciences, 2020, 242, 117159.	2.0	12
71	PEDL: extracting protein–protein associations using deep language models and distant supervision. Bioinformatics, 2020, 36, i490-i498.	1.8	8
72	NCOR1 may be a potential biomarker of a novel molecular subtype of prostate cancer. FEBS Open Bio, 2020, 10, 2678-2686.	1.0	1

#	Article	IF	CITATIONS
73	Androgen receptor modulates metastatic routes of VHL wild-type clear cell renal cell carcinoma in an oxygen-dependent manner. Oncogene, 2020, 39, 6677-6691.	2.6	4
74	Overview of AKR1C3: Inhibitor Achievements and Disease Insights. Journal of Medicinal Chemistry, 2020, 63, 11305-11329.	2.9	47
75	Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics, 2020, 10, 3366-3381.	4.6	50
76	Cancer epithelia-derived mitochondrial DNA is a targetable initiator of a paracrine signaling loop that confers taxane resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8515-8523.	3.3	12
77	Targeting the KIF4A/AR Axis to Reverse Endocrine Therapy Resistance in Castration-resistant Prostate Cancer. Clinical Cancer Research, 2020, 26, 1516-1528.	3.2	34
78	Emerging roles of DYRK2 in cancer. Journal of Biological Chemistry, 2021, 296, 100233.	1.6	34
79	Intraoperative assessment and postsurgical treatment of prostate cancer tumors using tumor-targeted nanoprobes. Nanotheranostics, 2021, 5, 57-72.	2.7	1
80	Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules, 2021, 11, 247.	1.8	21
81	Targeting ADT-Induced Activation of the E3 Ubiquitin Ligase Siah2 to Delay the Occurrence of Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2021, 11, 637040.	1.3	3
82	The function of BAP18 on modulation of androgen receptor action in luteinized granulosa cells from normal weight women with and without PCOS. Molecular and Cellular Endocrinology, 2021, 527, 111228.	1.6	5
83	A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Research and Reports in Urology, 2021, Volume 13, 457-472.	0.6	21
84	MAP3K7-IKK Inflammatory Signaling Modulates AR Protein Degradation and Prostate Cancer Progression. Cancer Research, 2021, 81, 4471-4484.	0.4	5
85	Identification and Functional Characterization of a Novel Androgen Receptor Coregulator, EAP1. Journal of the Endocrine Society, 2021, 5, bvab150.	0.1	4
86	Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers, 2021, 13, 125.	1.7	17
87	Divergent Modulation of Proteostasis in Prostate Cancer. Advances in Experimental Medicine and Biology, 2020, 1233, 117-151.	0.8	13
88	The ubiquitin ligase Siah2 is revealed as an accomplice of the androgen receptor in castration resistant prostate cancer. Asian Journal of Andrology, 2013, 15, 447-448.	0.8	4
89	Abstract P5-08-51: SIAH2 protein expression is inversely correlated with the ER status and outcome to tamoxifen therapy in metastatic breast cancer patients. , 2016, , .		7
90	Regulation of Androgen Receptor by E3 Ubiquitin Ligases: for More or Less. Receptors & Clinical Investigation, 2014, 1, .	0.9	16

#	Article	IF	CITATIONS
91	KLF14 potentiates oxidative adaptation via modulating HO-1 signaling in castrate-resistant prostate cancer. Endocrine-Related Cancer, 2019, 26, 181-195.	1.6	16
92	Roles of the HOXA10 gene during castrate-resistant prostate cancer progression. Endocrine-Related Cancer, 2019, 26, 279-292.	1.6	8
93	PC-1 works in conjunction with E3 ligase CHIP to regulate androgen receptor stability and activity. Oncotarget, 2016, 7, 81377-81388.	0.8	14
94	Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget, 2018, 9, 3922-3935.	0.8	11
95	Molecular pathways and targets in prostate cancer. Oncotarget, 2014, 5, 7217-7259.	0.8	84
96	SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget, 2015, 6, 771-788.	0.8	44
97	Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells. Oncotarget, 2016, 7, 29245-29254.	0.8	7
98	Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. , 2020, 3, 742-761.		13
99	A molecule inducing androgen receptor degradation and selectively targeting prostate cancer cells. Life Science Alliance, 2019, 2, e201800213.	1.3	12
100	The role of Siah2 in tumorigenesis and cancer therapy. Gene, 2022, 809, 146028.	1.0	12
103	Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer. International Journal of Clinical and Experimental Pathology, 2015, 8, 4427-43.	0.5	7
104	SIAH2 protein expression in breast cancer is inversely related with ER status and outcome to tamoxifen therapy. American Journal of Cancer Research, 2016, 6, 270-84.	1.4	5
106	Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer, 2022, 22, 300.	1.1	2
107	m6A-induced repression of SIAH1 facilitates alternative splicing of androgen receptor variant 7 by regulating CPSF1. Molecular Therapy - Nucleic Acids, 2022, 28, 219-230.	2.3	7
108	BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics, 2022, 22, e2100172.	1.3	2
109	PDZRN4 suppresses tumorigenesis and androgen therapy-resistance in prostate cancer. Journal of Cancer, 2022, 13, 2293-2300.	1.2	2
110	"The ubiquitin ligase SIAH2 is a female-specific regulator of circadian rhythms and metabolism― PLoS Genetics, 2022, 18, e1010305.	1.5	6
111	Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner. Cancers, 2022, 14, 3449.	1.7	2

ARTICLE IF CITATIONS # Functional roles of E3 ubiquitin ligases in prostate cancer. Journal of Molecular Medicine, 2022, 100, 112 1.7 6 1125-1144. Antagonizing CD105 and androgen receptor to target stromal-epithelial interactions for clinical 3.7 benefit. Molecular Therapy, 2023, 31, 78-89. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. 114 6.5 3 Nucleic Acids Research, 2022, 50, 10469-10486. TGF-Î² controls stromal telomere length through epigenetic modifications. 3 Biotech, 2022, 12, . 1.1 The role of ubiquitination in spinal and bulbar muscular atrophy. Frontiers in Molecular 116 1.4 7 Neuroscience, 0, 15, . Gene dosage changes in <i>KCTD13</i> result in penile and testicular anomalies via diminished androgen receptor function. FASEB Journal, 2022, 36, . 0.2 Proteasome Inhibitors Silence Oncogenes in Multiple Myeloma through Localized Histone Deacetylase 118 0.7 2 3 Stabilization and Chromatin Condensation. Cancer Research Communications, 2022, 2, 1693-1710. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is 1.7 Expected for the Near Future?. Cancers, 2022, 14, 6071. CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger 120 6.5 4 protein 19 A (RNF19A) in prostate cancer. Drug Resistance Updates, 2023, 67, 100912. SMAD3 promotes expression and activity of the androgen receptor in prostate cancer. Nucleic Acids 6.5 Research, 2023, 51, 2655-2670. Analysis of the mechanism of aldo-keto reductase dependent cis-platin resistance in HepG2 cells based 122 0 0.4 on transcriptomic and NADH metabolic state. Biocell, 2023, 47, 879-889. A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance. Science Advances, 2023, 9, . Ubiquitin Ligases Siah1a/2 Control Alveolar Macrophage Functions to Limit Carcinogen-Induced Lung 124 0.4 1 Adenocarcinoma. Cancer Research, 2023, 83, 2016-2033.