Some misconceptions concerning the electronic spectra cerium

Chemical Society Reviews 42, 5090

DOI: 10.1039/c3cs60033e

Citation Report

#	Article	IF	Citations
1	Luminescence, cathodoluminescence and Ce3+ â†' Eu2+ energy transfer and emission enhancement in the Sr5(PO4)3Cl:Ce3+,Eu2+ phosphor. Journal of Materials Chemistry C, 2013, 1, 7155.	2.7	46
2	Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Materials Science in Semiconductor Processing, 2013, 16, 2044-2050.	1.9	36
3	Near-Infrared-to-Near-Infrared Downshifting and Near-Infrared-to-Visible Upconverting Luminescence of Er ³⁺ -Doped In ₂ O ₃ Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 10834-10841.	1.5	48
4	Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection. Nanoscale, 2013, 5, 6430.	2.8	74
6	Energy transfer in Eu^3+ doped scheelites: use as thermographic phosphor. Optics Express, 2014, 22, A961.	1.7	84
7	Crystal Structure and Luminescent Properties of R _{2â€"<i>x</i>} Eu _{<i>x</i>} (MoO ₄) ₃ (R = Gd, Sm) Red Phosphors. Chemistry of Materials, 2014, 26, 7124-7136.	3.2	28
8	A Theoretical Study on Trivalent Europium: From the Free Ion to the Water Complex. Journal of Physical Chemistry A, 2014, 118, 11499-11511.	1.1	7
9	Influence of high magnetic field on the luminescence of Eu3+-doped glass ceramics. Journal of Applied Physics, 2014, 116, .	1.1	14
10	Eu@COK-16, a host sensitized, hybrid luminescent metal–organic framework. Dalton Transactions, 2014, 43, 13480-13484.	1.6	18
11	Synthesis and luminescence of uniform europium-doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies. CrystEngComm, 2014, 16, 3274.	1.3	41
12	Comparative structural and photoluminescent study of Eu3+-doped La2O3 and La(OH)3 nanocrystalline powders. Journal of Physics and Chemistry of Solids, 2014, 75, 276-282.	1.9	21
13	Spectroscopic properties of Eu-doped Y-stabilized ZrO2 microtubes. Journal of Luminescence, 2014, 152, 125-128.	1.5	10
14	Displacement damage from particle radiation in yttrium borate phosphor doped with cerium(III) or europium(III). Journal of Luminescence, 2014, 148, 267-273.	1.5	4
15	Heterometallic Europium Disiloxanediolates: Synthesis, Structural Diversity, and Photoluminescence Properties. Inorganic Chemistry, 2014, 53, 11662-11674.	1.9	21
16	Visible-emitting hybrid sol–gel materials comprising lanthanide ions: thin film behaviour and potential use as phosphors for solid-state lighting. New Journal of Chemistry, 2014, 38, 5793-5800.	1.4	17
17	Synthesis of hollow rare-earth compound nanoparticles by a universal sacrificial template method. CrystEngComm, 2014, 16, 6141-6148.	1.3	29
18	Synthesis, structure and properties of 2D lanthanide coordination polymers based on N-heterocyclic arylpolycarboxylate ligands. Dalton Transactions, 2014, 43, 17385-17394.	1.6	32
19	Synthesis and luminescent properties of rare earth (Sm3+ and Eu3+) Doped Gd2Ti2O7 pyrochlore nanopowders. Optical Materials, 2014, 37, 598-606.	1.7	35

#	Article	IF	CITATIONS
20	Bifunctional, Monodisperse BiPO4-Based Nanostars: Photocatalytic Activity and Luminescent Applications. Crystal Growth and Design, 2014, 14, 3319-3326.	1.4	45
21	A Eu ^{III} Tetrakis(β-diketonate) Dimeric Complex: Photophysical Properties, Structural Elucidation by Sparkle/AM1 Calculations, and Doping into PMMA Films and Nanowires. Inorganic Chemistry, 2014, 53, 8407-8417.	1.9	67
22	Lanthanide-doped Sr ₂ YF ₇ nanoparticles: controlled synthesis, optical spectroscopy and biodetection. Nanoscale, 2014, 6, 11098-11105.	2.8	35
23	Eu ³⁺ and Tb ³⁺ doped LaPO ₄ nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. RSC Advances, 2014, 4, 46305-46312.	1.7	50
24	Europium-doped nanocrystalline Y2O3â^'La2O3 solid solutions with bixbyite structure. Journal of Physics and Chemistry of Solids, 2014, 75, 1152-1159.	1.9	12
25	Synthesis and Spectroscopic Properties of Monoclinic α-Eu ₂ (MoO ₄) ₃ . Journal of Physical Chemistry C, 2014, 118, 15404-15411.	1.5	218
26	Tridentate Benzimidazole-Pyridine-Tetrazolates as Sensitizers of Europium Luminescence. Inorganic Chemistry, 2014, 53, 5171-5178.	1.9	40
27	<pre>²_{â^ž}[Bi₂Cl₆(pyz)₄]: A 2D-Pyrazine Coordination Polymer As Soft Host Lattice for the Luminescence of the Lanthanide Ions Sm³⁺, Eu³⁺, Tb³⁺, and Dy³⁺. Inorganic Chemistry, 2014, 53, 7197-7203.</pre>	1.9	36
28	Lanthanide-Doped Luminescent Nanomaterials. Nanomedicine and Nanotoxicology, 2014, , .	0.1	52
29	Controllable Synthesis of NaLu(WO ₄) ₂ :Eu ³⁺ Microcrystal and Luminescence Properties for LEDs. Crystal Growth and Design, 2014, 14, 3767-3773.	1.4	49
30	Photofunctional Lanthanoid Complexes, Coordination Polymers, and Nanocrystals for Future Photonic Applications. Bulletin of the Chemical Society of Japan, 2014, 87, 1029-1057.	2.0	48
31	A Highly Triflated Rareâ€Earth Ion in [Eu(O ₃ SCF ₃) ₈] ^{5â^'} . Chemistry - A European Journal, 2015, 21, 12389-12395.	1.7	5
32	Two-step ion-exchange synthetic strategy for obtaining monodisperse NaYF ₄ :Ln ³⁺ nanostructures with multicolor luminescence properties. Journal of Materials Chemistry C, 2015, 3, 1091-1098.	2.7	13
33	Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter. Physical Chemistry Chemical Physics, 2015, 17, 16959-16969.	1.3	226
34	Novel Twoâ€Step Topotactic Transformation Synthetic Route Towards Monodisperse LnOF:Re, < sup > 3+ < /sup > (Ln = Y, Prâ€"Lu) Nanocrystals with Down/Upconversion Luminescence Properties. Advanced Optical Materials, 2015, 3, 583-592.	3.6	32
35	Dispersible crystalline nanobundles of YPO4 and Ln (Eu, Tb)-doped YPO4: rapid synthesis, optical properties and bio-probe applications. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	22
36	Structure, properties and luminescence mechanism of Sr1.93B2O5:0.07Eu3+ red phosphors. Journal of Alloys and Compounds, 2015, 628, 298-302.	2.8	25
37	Ionothermal Synthesis of Tetranuclear Borate Clusters Containing <i>f</i> - and <i>p</i> -Block Metals. Inorganic Chemistry, 2015, 54, 570-575.	1.9	13

#	Article	IF	Citations
38	Synthesis and spectroscopy of anionic tridentate benzimidazole-pyridine carboxylate and tetrazolate chromophore ligands. Inorganica Chimica Acta, 2015, 427, 81-86.	1.2	3
39	The reported anomalous emission intensity of the ⁵ D ₀ â†' ⁷ F ₄ transition of Eu ³⁺ in a molybdate double perovskite. Journal of Materials Chemistry C, 2015, 3, 960-963.	2.7	12
40	Reactions of Rare Earth Hydrated Nitrates and Oxides with Formamide: Relevant to Recycling Rare Earth Metals. Crystal Growth and Design, 2015, 15, 1119-1128.	1.4	11
41	Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Science China Materials, 2015, 58, 156-177.	3.5	50
42	Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 2015, 295, 1-45.	9.5	2,104
43	Sol-Gel Derived Eu ³⁺ -Doped Gd ₂ Ti ₂ O ₇ Pyrochlore Nanopowders. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1,125
44	New solid-state Eu(<scp>iii</scp>)-containing metallo-supramolecular polymers: morphology control and optical wave-guiding properties. Journal of Materials Chemistry C, 2015, 3, 8992-9002.	2.7	13
45	BaGa ₄ O ₇ , a new A ₃ BC ₁₀ O ₂₀ crystalline phase: synthesis, structural determination and luminescence properties. CrystEngComm, 2015, 17, 6127-6135.	1.3	8
46	Towards multifunctional lanthanide-based metal–organic frameworks. Chemical Communications, 2015, 51, 13313-13316.	2.2	38
47	Yttrium hydroxide fluoride based monodisperse mesocrystals: additive-free synthesis, enhanced fluorescence properties, and potential applications in temperature sensing. CrystEngComm, 2015, 17, 621-627.	1.3	11
48	Highly emissive, solution-processable and dynamic Eu(<scp>iii</scp>)-containing coordination polymers. Chemical Communications, 2015, 51, 8656-8659.	2.2	19
49	Site Occupancy Preference, Enhancement Mechanism, and Thermal Resistance of Mn ⁴⁺ Red Luminescence in Sr ₄ Al ₁₄ O ₂₅ : Mn ⁴⁺ for Warm WLEDs. Chemistry of Materials, 2015, 27, 2938-2945.	3.2	309
50	Uniform, luminescent Eu:LuF3 nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	11
51	The effects of the increasing number of the same chromophore on photosensitization of water-soluble cyclen-based europium complexes with potential for biological applications. RSC Advances, 2015, 5, 13347-13356.	1.7	11
52	Quick synthesis, functionalization and properties of uniform, luminescent LuPO4-based nanoparticles. RSC Advances, 2015, 5, 34517-34524.	1.7	12
53	Synthesis and Luminescent Properties of REVO ₄ â€"REPO ₄ (RE = Y, Eu, Gd, Er, Tm,) Tj E ⁻ Journal of Physical Chemistry C, 2015, 119, 24062-24074.	ГQq1 1 0. 1.5	.784314 rgB 40
54	Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. Journal of Nanoparticle Research, 2015, 17, 399.	0.8	38
55	Novel La ₃ GaGe ₅ O ₁₆ : Mn ⁴⁺ based deep red phosph potential color converter for warm white light. RSC Advances, 2015, 5, 90499-90507.	or:-a	52

#	Article	IF	CITATIONS
56	KEu(MoO ₄) ₂ : Polymorphism, Structures, and Luminescent Properties. Chemistry of Materials, 2015, 27, 5519-5530.	3.2	29
57	Influence of Symmetry on the Luminescence and Radiative Lifetime of Nine-Coordinate Europium Complexes. Inorganic Chemistry, 2015, 54, 9166-9173.	1.9	91
58	A series of homonuclear lanthanide coordination polymers based on a fluorescent conjugated ligand: syntheses, luminescence and sensor for pollutant chromate anion. CrystEngComm, 2015, 17, 7878-7887.	1.3	178
59	Synthesis, growth and photoluminescence behaviour of Gd ₂ O ₂ SO ₄ :Eu ³⁺ nanophosphors: the effect of temperature on the structural, morphological and optical properties. RSC Advances, 2015, 5, 7515-7521.	1.7	22
60	On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews, 2015, 293-294, 19-47.	9.5	975
61	Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chemical Society Reviews, 2015, 44, 1379-1415.	18.7	748
62	Ligand-Free Synthesis of Tunable Size Ln:BaGdF5 (Ln = Eu3+ and Nd3+) Nanoparticles: Luminescence, Magnetic Properties, and Biocompatibility. Langmuir, 2016, 32, 411-420.	1.6	36
63	Direct Formation of Luminescent Fine Crystals Based on (Y,Eu)TiNbO ₆ Complete Solid Solution with High Crystallinity. Journal of the American Ceramic Society, 2016, 99, 2607-2614.	1.9	8
64	Dynamically tuning the optical properties of Europium-doped sodium niobate nano-crystals through magnetic field. Materials Research Express, 2016, 3, 115014.	0.8	3
65	Comparing the 2,2′â€Biphenylenedithiophosphinate Binding of Americium with Neodymium and Europium. Angewandte Chemie, 2016, 128, 12947-12951.	1.6	15
66	Spectral Properties and Energy Transfer of a Potential Solar Energy Converter. Chemistry of Materials, 2016, 28, 2834-2843.	3.2	50
67	Revealing the spin-polarized optical properties of monoclinic α-Eu2(MoO4)3: a DFT + U approach. RSC Advances, 2016, 6, 51675-51682.	1.7	2
68	Y2O3:Eu nanocrystals as biomarkers prepared by a microwave hydrothermal method. Optical Materials, 2016, 59, 157-164.	1.7	20
69	Photoluminescence spectroscopies and temperature-dependent luminescence of Mn 4+ in BaGe 4 O 9 phosphor. Journal of Luminescence, 2016, 177, 394-401.	1.5	45
70	Spectroscopy of tetragonal Eu:NaGd(WO4)2 crystal. Optical Materials, 2016, 57, 1-7.	1.7	16
71	Exploration of the Electronic Structure of Monoclinic f±-Eu ₂ (MoO ₄) ₃ : DFT-Based Study and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 10559-10568.	1.5	80
72	Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er ₂ O ₃ . Physical Chemistry Chemical Physics, 2016, 18, 13564-13582.	1.3	29
73	Why host to dopant energy transfer is absent in the MgAl ₂ O ₄ :Eu ³⁺ spinel? And exploring Eu ³⁺ site distribution and local symmetry through its photoluminescence: interplay of experiment and theory. RSC Advances, 2016, 6, 42923-42932.	1.7	46

#	ARTICLE	IF	CITATIONS
74	Experimental and theoretical approach to account for green luminescence from Gd ₂ Zr ₂ O ₇ pyrochlore: exploring the site occupancy and origin of host-dopant energy transfer in Gd ₂ Zr ₂ O ₇ :Eu ³⁺ . RSC Advances, 2016, 6, 44908-44920.	1.7	64
7 5	Investigations on luminescence of CaLa4Si3O13-based phosphors for multifunctional applications. Journal of Alloys and Compounds, 2016, 682, 618-626.	2.8	15
76	Significant enhancement in photoluminescent properties via flux assisted Eu3+ doped BaNb2O6 phosphor for white LEDs. Journal of Alloys and Compounds, 2016, 683, 379-386.	2.8	31
77	A family of acetato-diphenoxo triply bridged dimetallic Zn ^{ll} Ln ^{lll} complexes: SMM behavior and luminescent properties. Dalton Transactions, 2016, 45, 9712-9726.	1.6	51
78	Nephelauxetic effect in the lanthanide complexes with methyl acetoacetate. Spectroscopy Letters, 2016, 49, 619-625.	0.5	1
79	The first example of ab initio calculations of f–f transitions for the case of [Eu(DOTP)]5â~' complex—experiment versus theory. Physical Chemistry Chemical Physics, 2016, 18, 27808-27817.	1.3	19
80	Lanthanide Luminescence: From a Mystery to Rationalization, Understanding, and Applications. Fundamental Theories of Physics, 2016, 50, 141-176.	0.1	67
81	Laser site-selective spectroscopy of Eu3+ ions doped Y4Al2O9. Optical Materials, 2016, 58, 412-417.	1.7	20
82	Site spectroscopy of Eu3+ doped- ZnS nanocrystals embedded in sodium carboxymethyl cellulose matrix. Optical Materials, 2016, 61, 82-91.	1.7	8
83	Optical properties of silica sol-gel materials singly- and doubly-doped with Eu3+and Gd3+ ions. Journal of Rare Earths, 2016, 34, 786-795.	2.5	19
84	Synthesis, structure and tuneable white-light emission of dinuclear Eu(III),Tb(III)-mixed Schiff base complexes. ChemistrySelect, 2016, 1, 1393-1399.	0.7	11
85	Advanced red phosphors for white light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 8611-8623.	2.7	382
86	pH-Controlled Luminescence Turn-On Behaviour of a Water-Soluble Europium-Based Molecular Complex. European Journal of Inorganic Chemistry, 2016, 2016, 4631-4636.	1.0	13
87	On Doping Eu ³⁺ in Sr _{0.99} La _{1.01} Zn _{0.99} O _{3.495} : The Photoluminescence, Population Pathway, De-Excitation Mechanism, and Decay Dynamics. Journal of Physical Chemistry C, 2016, 120, 19365-19374.	1.5	18
88	Eu ₂ (CN ₂) ₃ and KEu[Si(CN ₂) ₄]: Missing Members of the Rare Earth Metal Carbodiimide and Tetracyanamidosilicate Series. European Journal of Inorganic Chemistry, 2016, 2016, 4011-4016.	1.0	9
89	Synthesis and photophysical properties of a highly luminescent Eu III -containing hybrid thin film. Polyhedron, 2016, 118, 25-29.	1.0	8
90	New Class of Bright and Highly Stable Chiral Cyclen Europium Complexes for Circularly Polarized Luminescence Applications. Inorganic Chemistry, 2016, 55, 9065-9070.	1.9	42
91	Comparing the 2,2′â€Biphenylenedithiophosphinate Binding of Americium with Neodymium and Europium. Angewandte Chemie - International Edition, 2016, 55, 12755-12759.	7.2	38

#	Article	IF	Citations
92	Strength and weakness of rare earths based phosphors: Strategies to replace critical raw materials. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 989-997.	0.8	12
93	Consequences of ET and MMCT on Luminescence of Ce ³⁺ -, Eu ³⁺ -, and Tb ³⁺ -doped LiYSiO ₄ . Inorganic Chemistry, 2016, 55, 7777-7786.	1.9	50
94	Lanthanide-Doped Upconversion Nanoprobes. , 2016, , 237-287.		0
95	Investigation of the quenching mechanisms of Tb3+ doped scheelites. Journal of Luminescence, 2016, 173, 263-273.	1.5	12
96	Syntheses and topological structures of four luminescent lanthanide phosphonates based on 2-(pyridyl-N-oxide)methylphosphonic acid and oxalic acid. Polyhedron, 2016, 117, 259-264.	1.0	9
97	Crystal structure and spectroscopic properties of garnet-type Li 7 La 3 Hf 2 O 12 :Eu 3+. Journal of Alloys and Compounds, 2016, 686, 204-215.	2.8	24
98	Luminescent and magnetic materials with a high content of Eu ³⁺ -EDTA complexes. Dalton Transactions, 2016, 45, 10960-10968.	1.6	11
99	Poly-Î ² -hydroxybutyrate sensitizing effect on the photophysical properties of environment friendly fluorescent films containing europium complex. Journal of Luminescence, 2016, 178, 172-177.	1.5	5
100	Synthesis, structure and sensitized luminescence of Eu(III) and Tb(III) complexes with Schiff bases. Polyhedron, 2016, 117, 552-560.	1.0	10
101	Sensitized luminescence from water-soluble LaF ₃ :Eu nanocrystals via partially-capped 1,10-phenanthroline: time-gated emission and multiple lifetimes. Dalton Transactions, 2016, 45, 12483-12495.	1.6	13
102	Sub-5 nm lanthanide-doped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen. Chemical Science, 2016, 7, 2572-2578.	3.7	71
103	Luminescence enhancement in nanocrystalline Eu2O3 nanorods – Microwave hydrothermal crystallization and thermal degradation of cubic phase. Optical Materials, 2016, 59, 76-82.	1.7	11
104	A high color purity deep red emitting phosphor SrGe4O9:Mn4+ for warm white LEDs. Powder Technology, 2016, 292, 74-79.	2.1	41
105	Synthesis of lanthanide doped CeF 3 :Gd 3+ , Sm 3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. Journal of Alloys and Compounds, 2016, 661, 182-189.	2.8	40
106	A two-step synthetic route to GdOF:Ln ³⁺ nanocrystals with multicolor luminescence properties. Dalton Transactions, 2016, 45, 2485-2491.	1.6	21
107	Nano-structured NaLa(MoO4)2 and Eu3+-doped NaLa(MoO4)2: Synthesis, characterizations, photoluminescence and superhydrophobic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 207, 39-46.	1.7	7
108	Gas-Phase Photoluminescence Characterization of Stoichiometrically Pure Nonanuclear Lanthanoid Hydroxo Complexes Comprising Europium or Gadolinium. Inorganic Chemistry, 2016, 55, 3316-3323.	1.9	10
109	Transparent polycrystalline SrREGa ₃ O ₇ melilite ceramics: potential phosphors for tuneable solid state lighting. Journal of Materials Chemistry C, 2016, 4, 3238-3247.	2.7	24

#	Article	IF	CITATIONS
110	Energy transfer properties and temperature-dependent luminescence of Ca14Al10Zn6O35: Dy3+, Mn4+ phosphors. Journal of Materials Science, 2016, 51, 4201-4212.	1.7	32
111	Lanthanide-based luminescence biolabelling. Chemical Communications, 2016, 52, 5080-5095.	2.2	178
112	Electromagnetic susceptibility anisotropy and its importance for paramagnetic NMR and optical spectroscopy in lanthanide coordination chemistry. Dalton Transactions, 2016, 45, 6782-6800.	1.6	55
113	Effect of annealing conditions on structural and luminescencent properties of Eu3+-doped Gd2Ti2O7 thin films. Applied Surface Science, 2016, 364, 273-279.	3.1	9
114	Luminescent coordination polymers for the VIS and NIR range constituting LnCl ₃ and 1,2-bis(4-pyridyl)ethane. Dalton Transactions, 2016, 45, 6529-6540.	1.6	18
115	Combustion synthesis and photoluminescence in novel red emitting yttrium gadolinium pyrosilicate nanocrystalline phosphor. Journal of Alloys and Compounds, 2016, 672, 653-659.	2.8	11
116	An investigation of the interactions of Eu ³⁺ and Am ³⁺ with uranyl minerals: implications for the storage of spent nuclear fuel. Dalton Transactions, 2016, 45, 6383-6393.	1.6	18
117	Efficient red emission from poly(vinyl butyral) films doped with a novel europium complex based on a terpyridyl ancillary ligand: synthesis, structural elucidation by Sparkle/RM1 calculation, and photophysical properties. Polymer Chemistry, 2016, 7, 1147-1157.	1.9	21
118	Effect of host structure on the photoluminescence properties of Ln3TaO7:Eu3+ red phosphors. Optical Materials, 2016, 52, 134-143.	1.7	35
119	Photoluminescence of europium(III)-doped (Y Sc1â^')2O3 nanoparticles: Linear relationship between structural and emission properties. Ceramics International, 2016, 42, 3899-3906.	2.3	5
120	Photon up-conversion production in Tb3+–Yb3+ co-doped CaF2 phosphors prepared by combustion synthesis. Materials Research Bulletin, 2016, 74, 103-108.	2.7	13
121	Highly luminescent metal organic framework Eu(TMA)(H 2 O) 4 materials prepared by laser ablation technique in liquid. Journal of Luminescence, 2016, 170, 648-653.	1.5	14
122	Non-contact thermometry with Dy3+ doped Gd2Ti2O7 nano-powders. Journal of Luminescence, 2016, 170, 395-400.	1.5	73
123	Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3). Journal of Luminescence, 2016, 170, 484-490.	1.5	31
124	Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles. Journal of Luminescence, 2016, 169, 534-538.	1.5	55
125	Bright orange and red light-emitting diodes of new visible light excitable tetrakis-Ln- \hat{l}^2 -diketonate (Ln =) Tj ETQq1	1 0,7843 1.4	14 ₂ ggBT /Ove
126	Fuel-oxidizer ratio tuned luminescence properties of combustion synthesized Europium doped cerium oxide nanoparticles and its effect on antioxidant properties. Ceramics International, 2017, 43, 5457-5466.	2.3	29
127	Bright Green Frequency Upconversion in Catechin Based Yb ³⁺ /Er ³⁺ Codoped LaVO ₄ Nanorods upon 980 nm Excitation. Journal of Physical Chemistry C, 2017, 121, 4505-4516.	1.5	33

#	Article	IF	CITATIONS
128	Synthesis, structure, and luminescence properties of a novel double-perovskite Sr 2 LaNbO 6:Mn 4+ phosphor. Materials Research Bulletin, 2017, 88, 258-265.	2.7	62
129	Dependence of Eu3+ photoluminescence properties on structural transformations in diopside-based glass-ceramics. Journal of Alloys and Compounds, 2017, 699, 856-865.	2.8	7
130	Correlation of the structural information obtained for europium-chelate ensembles from gas-phase photoluminescence and ion-mobility spectroscopy with density-functional computations and ligand-field theory. Physical Chemistry Chemical Physics, 2017, 19, 6105-6112.	1.3	7
131	Laser-synthesized Y 2 O 3 :Eu 3+ nanophosphors and their stabilization in water suspensions. Optical Materials, 2017, 74, 67-75.	1.7	16
132	Effect of cation vacancies on the crystal structure and luminescent properties of Ca $0.85\hat{a}^{-1}.5x$ Gd x Eu $0.1\hat{a}_{-1}0.05+0.5x$ WO 4 (0 \hat{a} % x $\hat{A}\hat{a}$ % $\hat{A}0.567$) scheelite-based red phosphors. Journal of Alloys and Compounds, 2017, 706, 358-369.	2.8	5
133	A full-color emitting phosphor Ca 9 Ce(PO 4) 7: Mn 2+, Tb 3+: Efficient energy transfer, stable thermal stability and high quantum efficiency. Chemical Engineering Journal, 2017, 322, 314-327.	6.6	82
134	Investigation on the site occupation of rare-earth ions in Caln2O4 with the fluorescence probe of Eu3+. Physical Chemistry Chemical Physics, 2017, 19, 12473-12479.	1.3	10
135	Spectral management and energyâ€transfer mechanism of Eu ³⁺ â€doped βâ€NaGdF ₄ :Yb ³⁺ ,Er ³⁺ microcrystals. Journal of the American Ceramic Society, 2017, 100, 4602-4610.	1.9	5
136	Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots. Chemical Communications, 2017, 53, 7341-7344.	2.2	19
137	Luminescent Eu3+-doped transparent alumina ceramics with high hardness. Journal of the European Ceramic Society, 2017, 37, 4271-4277.	2.8	22
138	Circularly Polarized Luminescence of Silica-Grafted Europium Chiral Derivatives Prepared through a Sequential Functionalization. Inorganic Chemistry, 2017, 56, 7010-7018.	1.9	28
139	Easy but not straightforward: base and solvent effect on the synthesis of luminescent europium 1,3-di(thien-2-yl)propane-1,3-dionate coordination complexes. Canadian Journal of Chemistry, 2017, 95, 1183-1190.	0.6	5
140	Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl 2 O 4: Eu 2+, Dy 3+ phosphors. Journal of Luminescence, 2017, 187, 492-498.	1.5	33
141	Mechanistic Investigation of Inducing Triboluminescence in Lanthanide(III) \hat{l}^2 -Diketonate Complexes. Inorganic Chemistry, 2017, 56, 5135-5140.	1.9	48
142	Influence of chemical composition on the photoluminescent and photocatalytic properties of novel molten salt synthesized Sr1-xCaxBi2Ta2O9:Eu3+ nanosheets. Journal of Alloys and Compounds, 2017, 710, 234-243.	2.8	7
143	Influence of Eu substitution for Gd on the structure and photoluminescent properties of (Gd $1\hat{a}$ ° x Eu) Tj ETQq $1\ 1$	0.784314 2.0	l gBT /Ove
144	Antiferroelectric properties and site occupations of R $^3+$ cations in Ca 8 Mg R (PO 4) 7 luminescent host materials. Journal of Alloys and Compounds, 2017, 699, 928-937.	2.8	40
145	Lanthanoid-Doped Phosphate/Vanadate Mixed Hollow Particles as Ratiometric Luminescent Sensors. ACS Applied Materials & Discrete Sensors (2017, 9, 1635-1644).	4.0	26

#	Article	IF	CITATIONS
146	Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 843-852.	1.7	34
147	Novel Gd 2 Mo 4 O 15 : Eu 3+ red-emitting phosphor for UV, NUV and blue LED applications. Journal of Luminescence, 2017, 184, 1-6.	1.5	27
148	Modified Pechini method for the synthesis of weakly-agglomerated nanocrystalline yttrium aluminum garnet (YAG) powders. Materials Chemistry and Physics, 2017, 189, 245-251.	2.0	19
149	Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence. Nature Communications, 2017, 8, 1128.	5.8	128
150	Oneâ€Step Reaction for Screening of Chromophores to Improve the Luminescence of Lanthanide Complexes. Asian Journal of Organic Chemistry, 2017, 6, 1845-1850.	1.3	8
151	Luminescence Property Upgrading via the Structure and Cation Changing in Ag _{<i>x</i>} Eu _{(2â€"<i>x</i>)/3} WO ₄ and Ag _{<i>x</i>} Gd _{(2â€"<i>x</i>)/3â€"0.3} Eu _{0.3} WO ₄ . Chemistry of Materials, 2017, 29, 8811-8823.	3.2	17
152	Metastable scheelite CdWO4:Eu3+ nanophosphors: Solvothermal synthesis, phase transitions and their polymorph-dependent luminescence properties. Dyes and Pigments, 2017, 147, 283-290.	2.0	25
153	Electronic structure and optical properties of ALa9-Eu (GeO4)6O2 (AÂ=ÂLi, Na, K, Rb, Cs, La1/3; xÂ=Â0, 0.07). Journal of Alloys and Compounds, 2017, 727, 390-397.	2.8	4
154	The influence of charge compensation defects on the spectroscopic properties of europium doped Ca ₉ Y(PO ₄) ₇ . RSC Advances, 2017, 7, 40549-40557.	1.7	9
155	Nanoscale insights into doping behavior, particle size and surface effects in trivalent metal doped SnO2. Scientific Reports, 2017, 7, 9598.	1.6	64
156	Lifetime nanomanometry – high-pressure luminescence of up-converting lanthanide nanocrystals – SrF ₂ :Yb ³⁺ ,Er ³⁺ . Nanoscale, 2017, 9, 16030-16037.	2.8	114
157	Enhanced Luminescence of Asymmetrical Sevenâ€Coordinate Eu ^{III} Complexes Including LMCT Perturbation. European Journal of Inorganic Chemistry, 2017, 2017, 3843-3848.	1.0	53
158	The Inductive Effect of Neighboring Cations in Tuning Luminescence Properties of the Solid Solution Phosphors. Inorganic Chemistry, 2017, 56, 9938-9945.	1.9	20
159	Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO ₄ Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 19373-19382.	1.5	51
160	Effect of 2,4,6-tri(2-pyridyl)-1,3,5-triazine on visible and NIR luminescence of lanthanide tris(trifluoroacetylacetonates). Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 116-129.	2.0	33
161	Improved photoluminescence, thermal stability and temperature sensing performances of K+ incorporated perovskite BaTiO3:Eu3+ red emitting phosphors. Ceramics International, 2017, 43, 13602-13611.	2.3	63
162	Contribution of Energy Transfer from the Singlet State to the Sensitization of Eu ³⁺ and Tb ³⁺ Luminescence by Sulfonylamidophosphates. Chemistry - A European Journal, 2017, 23, 1318-1330.	1.7	67
163	Structural Dynamics and Barrier Crossing Observed for a Fluorescent Oâ€Doped Polycyclic Aromatic Hydrocarbon. ChemPhotoChem, 2017, 1, 198-205.	1.5	16

#	Article	IF	CITATIONS
164	Structure and optical properties of KLa9(GeO4)6O2 and KLa8.37Eu0.63(GeO4)6O2. Chemical Physics Letters, 2017, 667, 9-14.	1.2	6
165	A family of one-dimensional lanthanide complexes bridged by two distinct carboxylate ligands with the Dy analogue displaying magnetic relaxation behaviour. Dalton Transactions, 2017, 46, 14114-14121.	1.6	34
166	Origin of the temperature-induced redshift of the charge transfer band of GdVO_4. Optics Letters, 2017, 42, 4703.	1.7	48
167	Rare Earthâ€Doped Anatase TiO2 Nanoparticles. , 0, , .		7
168	Theoretical Determination of Energy Transfer Processes and Influence of Symmetry in Lanthanide(III) Complexes: Methodological Considerations. Inorganic Chemistry, 2018, 57, 5120-5132.	1.9	27
169	Asymmetry ratio as a parameter of Eu 3+ local environment in phosphors. Journal of Rare Earths, 2018, 36, 474-481.	2.5	87
170	Peculiarly Structured Janus Nanofibers Display Synchronous and Tuned Trifunctionality of Enhanced Luminescence, Electrical Conduction, and Superparamagnetism. ChemPlusChem, 2018, 83, 108-116.	1.3	10
171	Eu(iii) and Cm(iii) tetracarbonates – in the quest for the limiting species in solution. Dalton Transactions, 2018, 47, 2393-2405.	1.6	10
172	Environment of the Eu ³⁺ Ion within Nanocrystalline Eu-Doped BaAl ₂ O ₄ : Correlation of X-ray Diffraction, M¶ssbauer Spectroscopy, X-ray Absorption Spectroscopy, and Photoluminescence Investigations. Inorganic Chemistry, 2018, 57, 1744-1756.	1.9	15
173	2D and 3D lanthanide metal–organic frameworks constructed from three benzenedicarboxylate ligands: synthesis, structure and luminescent properties. CrystEngComm, 2018, 20, 615-623.	1.3	32
174	Cool white light emission from the yellow and blue emission bands of the Dy(III) complex under UV-excitation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 502-511.	2.0	22
175	Efficient redâ \in emitting phosphor of Eu ³⁺ â \in activated (Na _{0.5} Gd _{1.5})(TiSb)O ₇ derived via cationâ \in substitutions in Gdâ \in Pyrochlore. Journal of the American Ceramic Society, 2018, 101, 3065-3075.	1.9	4
176	Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphatesâ€"LaPO ₄ /YPO ₄ :Yb ³⁺ â€"Tm ³⁺ 3+ ACS Applied Materials & Amp; Interfaces, 2018, 10, 17269-17279.	4.0	236
177	Phase transition and luminescence properties of GdTiNbO6:Eu3+ formed by hydrothermal route. Materials Research Bulletin, 2018, 105, 13-20.	2.7	12
178	Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine. Optical Materials, 2018, 80, 77-86.	1.7	17
179	Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+ - optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. Journal of Luminescence, 2018, 201, 104-109.	1.5	91
180	Phase stability and oxygen-sensitive photoluminescence of ZrO2:Eu,Nb nanopowders. Materials Chemistry and Physics, 2018, 214, 135-142.	2.0	24
181	Luminescence, structure and antiferroelectric-type phase transition in Ca8ZnEu(PO4)7. Materials Research Bulletin, 2018, 104, 20-26.	2.7	25

#	Article	IF	CITATIONS
182	Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coordination Chemistry Reviews, 2018, 363, 57-70.	9.5	226
183	Luminescence properties and quantum efficiency of the Eu-doped borate glasses. Optical Materials, 2018, 77, 93-103.	1.7	53
184	Preparation, structural and optical characteristics of a deep red-emitting Mg 2 Al 4 Si 5 O 18: Mn 4+ phosphor for warm w-LEDs. Dyes and Pigments, 2018, 148, 9-15.	2.0	91
185	Spectroscopic properties and Judd–Ofelt analysis of Eu3+ in Y4Al2O9 crystals. Journal of Luminescence, 2018, 196, 111-115.	1.5	27
186	Judd-Ofelt characterization and energy transfer mechanism of highly luminescent europium(III) complexes with 1-(5-chloro-2-hydroxyphenyl)-1,3-butanedione. Inorganica Chimica Acta, 2018, 471, 364-371.	1.2	20
187	Surfactant-free aqueous synthesis of novel Ba ₃ Gd ₂ F ₁₂ :Ln ³⁺ nanocrystals with luminescence properties. CrystEngComm, 2018, 20, 7301-7307.	1.3	4
188	Massive Stokes shift in 12-coordinate Ce(NO2)63â^: crystal structure, vibrational and electronic spectra. Scientific Reports, 2018, 8, 16557.	1.6	5
189	Luminescence tuning and single-phase white light emitters based on rare earth ions doped into a bismuth coordination network. Journal of Materials Chemistry C, 2018, 6, 12668-12678.	2.7	17
190	Luminescence and Cationic-Size-Driven Site Selection of Eu ³⁺ and Ce ³⁺ lons in Ca ₈ Mg(SiO ₄) ₄ Cl ₂ . Inorganic Chemistry, 2018, 57, 14872-14881.	1.9	28
191	Two Lanthanide Borate Chlorides LnB ₄ O ₆ (OH) ₂ Cl (Ln = La, Ce) with Wide Ultraviolet Transmission Windows and Large Second-Harmonic Generation Responses. Inorganic Chemistry, 2018, 57, 14953-14960.	1.9	14
192	Eu $3+$ As a Luminescent Probe for Studying the Structure of R2O3 Materials (R = Y, Eu, and Gd). Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 188-194.	0.2	12
193	Polyanionic Polydentate Europium Complexes as Ultrabright One―or Twoâ€photon Bioprobes. ChemPhysChem, 2018, 19, 3318-3324.	1.0	11
194	Organic Soluble LaPO ₄ :Eu ³⁺ Nanorods: Sensitization of Surface Eu ³⁺ lons and Phase Transfer in Water. ChemistrySelect, 2018, 3, 4930-4938.	0.7	7
195	Synthesis and photoluminescence study of two new complexes [Sm(hfaa)3(impy)2] and [Eu(hfaa)3(impy)2] and their PMMA based hybrid films. Journal of Luminescence, 2018, 202, 438-449.	1.5	55
196	Luminescent-plasmonic, lanthanide-doped core/shell nanomaterials modified with Au nanorods – Up-conversion luminescence tuning and morphology transformation after NIR laser irradiation. Journal of Alloys and Compounds, 2018, 762, 621-630.	2.8	25
197	High resolution luminescence spectroscopy and thermoluminescence of different size LaPO4:Eu3+ nanoparticles. Optical Materials, 2018, 82, 39-46.	1.7	5
198	Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chemical Society Reviews, 2018, 47, 5234-5265.	18.7	126
199	Optical pressure nano-sensor based on lanthanide doped SrB2O4:Sm2+ luminescence – Novel high-pressure nanomanometer. Sensors and Actuators B: Chemical, 2018, 273, 585-591.	4.0	48

#	Article	IF	CITATIONS
200	Polarized Luminescence of Anisotropic LaPO ₄ :Eu Nanocrystal Polymorphs. Journal of the American Chemical Society, 2018, 140, 9512-9517.	6.6	48
201	Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors and Actuators B: Chemical, 2018, 273, 1346-1370.	4.0	85
202	Intense hypersensitive luminescence of Eu3+-doped YSiO2N oxynitride with near-UV excitation. Optical Materials, 2018, 83, 111-117.	1.7	10
203	A novel high-strength photoluminescent hydrogel for tissue engineering. Biomaterials Science, 2018, 6, 2320-2326.	2.6	9
204	Spectroscopic reflects of structural disorder in Eu3+/Pr3+-doped La0.4Gd1.6Zr2O7 transparent ceramics. Journal of Alloys and Compounds, 2018, 769, 18-26.	2.8	13
205	Exploration of structural, thermal and spectroscopic properties of self-activated sulfate Eu2(SO4)3 with isolated SO4 groups. Journal of Industrial and Engineering Chemistry, 2018, 68, 109-116.	2.9	37
206	Color-tunable Al6Si2O13:Eu2+,Mn2+ phosphor with high color rendering index based on energy transfer for warm white LEDs. New Journal of Chemistry, 2018, 42, 15207-15214.	1.4	14
207	A novel topotactic transformation route towards monodispersed YOF:Ln ³⁺ (Ln = Eu, Tb,) Tj ETQq1 1 9208-9215.	0.784314 2.7	4 rgBT /Over 11
208	A novel reddish-orange fluorapatite phosphor, La6-Ba4(SiO4)6F2: xSm3+ - Structure, luminescence and energy transfer properties. Journal of Alloys and Compounds, 2018, 757, 79-86.	2.8	35
209	Highly luminescent lanthanide complex as bifunctional sensor for Et2O and Fe2+. Journal of Luminescence, 2018, 204, 560-567.	1.5	11
210	Exploitation of Eu ³⁺ red luminescence through order–disorder structural transitions in lanthanide stannate pyrochlores for warm white LED applications. Physical Chemistry Chemical Physics, 2018, 20, 24287-24299.	1.3	19
211	Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods. Journal of Luminescence, 2018, 204, 284-288.	1.5	12
212	Effect of H2O and D2O Thermal Anomalies on the Luminescence of Eu3+ Aqueous Complexes. Journal of Physical Chemistry C, 2018, 122, 14838-14845.	1.5	13
213	Structure variation and luminescence of 3D, 2D and 1D lanthanide coordination polymers with 1,3-adamantanediacetic acid. Inorganica Chimica Acta, 2018, 482, 340-346.	1.2	9
214	Influence of boric acid/Sr2+ ratio on the structure and luminescence properties (colour tuning) of nano-sized, complex strontium borates doped with Sm2+ and Sm3+ ions. Optical Materials, 2018, 83, 245-251.	1.7	14
215	Imaging dopant distribution across complete phase transformation by TEM and upconversion emission. Nanoscale, 2019, 11, 16743-16754.	2.8	9
216	Structure and luminescent properties of oxyfluoride glass-ceramics with YF3:Eu3+ nanocrystals derived by sol-gel method. Journal of the European Ceramic Society, 2019, 39, 5010-5017.	2.8	16
217	Application of spectroscopic properties of Eu3+ ion to predict the site symmetry of active ions in AgLaP2O7: Eu3+ phosphors. Inorganic Chemistry Communication, 2019, 107, 107475.	1.8	5

#	Article	IF	CITATIONS
218	Structure and luminescent properties of new Dy3+/Eu3+/Sm3+-activated InNbTiO6 phosphors for white UV-LEDs. Optical Materials, 2019, 98, 109403.	1.7	20
219	Enhanced single-band red upconversion luminescence of α-NaErF4:Mn nanoparticles by a novel hollow-shell structure underÂmultiple wavelength excitation. Journal of Alloys and Compounds, 2019, 810, 151761.	2.8	14
220	Photoluminescence and energy transfer in transparent glass-ceramics based on GdF3:RE3+ (REÂ=ÂTb, Eu) nanocrystals. Journal of Rare Earths, 2019, 37, 1137-1144.	2.5	14
221	Complexation of Light Trivalent Lanthanides with $\langle i \rangle N \langle i \rangle \hat{a} \in \mathbb{C}^2$, $\langle i \rangle N \langle i \rangle \hat{a} \in \mathbb{C}^2$. Triacetic Acid in Aqueous Solutions: Thermodynamic Analysis and Coordination Modes. Inorganic Chemistry, 2019, 58, 15618-15628.	1.9	6
222	Luminescent calcium carbonate micro †bow ties'. Materials Today Communications, 2019, 20, 100590.	0.9	5
223	Enhancement of luminescent properties in Eu3+ doped BaNb2O6 nanophosphor synthesized by facile metal citrate gel method. Optical Materials, 2019, 96, 109301.	1.7	6
224	Hypersensitive 5D0–7F2 Transition of Trivalent Europium in Double Molybdates. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 321-323.	0.1	3
225	Multicolour emission from thermally stable Tb3+/Eu3+ co-doped CaLa4Si3O13 phosphors for single-component w-LEDs application. Journal of Alloys and Compounds, 2019, 809, 151836.	2.8	38
226	Direct observation of a highly forbidden optical transition in Sm:SrF2. Physical Review A, 2019, 100, .	1.0	2
227	An extension of the Judd-Ofelt theory to the field of lanthanide thermometry. Journal of Luminescence, 2019, 216, 116749.	1.5	59
228	Experimental and <i>Ab Initio</i> Study on the Intensities of fâ€"f Transitions for the Molecular Eu(III)â€DOTP System. ChemistrySelect, 2019, 4, 1394-1402.	0.7	3
229	Structure and photoluminescence properties of Ca _{0.99â^'< sub><scp>_{<i>x</i>}<3< sub>:0.01Ce^{solid solutions. Journal of the American Ceramic Society, 2019, 102, 4648-4658.}</scp>}	3 .⊬x/sup>	18
230	Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – Studies in visible and NIR range. Journal of Luminescence, 2019, 214, 116571.	1.5	65
231	Origins of the odd optical observables in plutonium and americium tungstates. Chemical Science, 2019, 10, 6508-6518.	3.7	4
232	Influence of europium doping on the structural phase-transition temperature of $\hat{l}^2\hat{a}^2$ and \hat{l}^2	2.7	15
233	Reduced Local Symmetry in Lithium Compound Li ₂ SrSiO ₄ Distinguished by an Eu ³⁺ Spectroscopy Probe. Advanced Science, 2019, 6, 1802126.	5.6	20
234	Structure and luminescence properties of multicolor phosphors with excellent thermal stability based on a new phosphate Ba3In4(PO4)6. Journal of Alloys and Compounds, 2019, 797, 775-785.	2.8	29
235	A remarkably tunable emission from red to yellow to green in Mn4+-activated CaAl12O19 phosphor via co-doping Bi3+. Journal of Materials Science: Materials in Electronics, 2019, 30, 11419-11428.	1.1	5

#	ARTICLE	IF	CITATIONS
236	Luminescent-plasmonic core–shell microspheres, doped with Nd3+ and modified with gold nanoparticles, exhibiting whispering gallery modes and SERS activity. Journal of Rare Earths, 2019, 37, 1152-1156.	2.5	14
237	On the structures of dinuclear symmetric lanthanide complexes and the selectivity towards heterodinuclear complexes based on molecular modeling. Inorganica Chimica Acta, 2019, 494, 65-73.	1.2	13
238	Effect of doped trinuclear europium complexes on the photoluminescence of biodegradable Polybutylene succinate films. Synthetic Metals, 2019, 251, 57-64.	2.1	8
239	Relationship of Stokes shift with composition and structure in Ce3+/Eu2+-doped inorganic compounds. Journal of Luminescence, 2019, 212, 250-263.	1.5	46
240	The effect of silica additive on the structural and luminescence properties of Eu3+/Tb3+ co-doped metaphosphate glasses. Journal of Molecular Structure, 2019, 1192, 42-48.	1.8	22
241	Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: β-NaYF ₄ :Yb ³⁺ â€" Er ³⁺ @SiO ₂ Temperature Sensor. ACS Applied Materials & Diterfaces, 2019, 11, 13389-13396.	4.0	178
242	Effects of europium spectral probe interchange in Ln-dyads with cyclen and phen moieties. Dalton Transactions, 2019, 48, 4314-4323.	1.6	11
243	Absorption intensity analysis and emission properties KEu(PO3)4 and KEuxY1-x(PO3)4 crystals. Journal of Luminescence, 2019, 211, 138-143.	1.5	5
244	Multi-site occupancies of Eu2+ in Ca6BaP4O17 and their potential optical thermometric applications. Chemical Engineering Journal, 2019, 369, 376-385.	6.6	92
245	Unraveling the Electronic Structures of Neodymium in LiLuF ₄ Nanocrystals for Ratiometric Temperature Sensing. Advanced Science, 2019, 6, 1802282.	5.6	111
246	Breaking the 1,2-HOPO barrier with a cyclen backbone for more efficient sensitization of Eu(<scp>iii</scp>) luminescence and unprecedented two-photon excitation properties. Chemical Science, 2019, 10, 4550-4559.	3.7	20
247	Study of energy transfer mechanism in the Eulll and Gdlll homobimetallic complexes containing the anti-inflammatory drug naproxen and N,N-donors ligands. Journal of Luminescence, 2019, 210, 104-118.	1.5	14
248	Rare earth ion– and transition metal ion–doped inorganic luminescent nanocrystals: from fundamentals to biodetection. Materials Today Nano, 2019, 5, 100031.	2.3	48
249	The role of ligand to metal charge-transfer states on the luminescence of Europium complexes with 18-membered macrocyclic ligands. Dalton Transactions, 2019, 48, 4035-4045.	1.6	26
250	Substantial Intensification of the Quantum Yield of Samarium(III) Complexes by Mixing Ligands: Microwave-Assisted Synthesis and Luminescence Properties. Inorganic Chemistry, 2019, 58, 3265-3270.	1.9	22
251	A red phosphor Mg3Y2Ge3O12: Bi3+, Eu3+ with high brightness and excellent thermal stability of luminescence for white light-emitting diodes. Journal of Luminescence, 2019, 210, 202-209.	1.5	83
252	Luminescence behaviour of Eu3+ in hot-compressed silicate glasses. Journal of Non-Crystalline Solids: X, 2019, 4, 100041.	0.5	3
253	Influence of annealing conditions on the structure and luminescence properties of KGd _{1â^x} Eu _x (MoO ₄) ₂ (0 ≠ <i>x</i> ≠1). CrystEngComr 2019, 21, 6460-6471.	n,1.3	7

#	Article	IF	CITATIONS
254	Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. Carbohydrate Polymers, 2019, 206, 742-748.	5.1	36
255	Exploration of structural, vibrational and spectroscopic properties of self-activated orthorhombic double molybdate RbEu(MoO4)2 with isolated MoO4 units. Journal of Alloys and Compounds, 2019, 785, 692-697.	2.8	64
256	Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence Shift of Ce ³⁺ -Doped Fluorapatite—High-Pressure Sensing. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 4131-4138.	4.0	88
257	Luminescent properties of new red emitting fluoborate based phosphors, Na3Ba2-B6O12F:xEu3+. Optik, 2019, 179, 427-433.	1.4	2
258	Tri-chromatic Emission from a Single-phase Na5Y4(SiO4)4F:Eu2+,Tb3+,Eu3+ Phosphor for White-light-emitting Diodes. Journal of Luminescence, 2019, 207, 34-40.	1.5	12
259	JOES: An application software for Judd-Ofelt analysis from Eu3+ emission spectra. Journal of Luminescence, 2019, 205, 351-356.	1.5	126
260	Synthesis, structure and photoluminescence of 3D lanthanide coordination polymers based on 2-(3,5-dicarboxybenzyloxy) benzoic acid. Inorganica Chimica Acta, 2019, 485, 49-53.	1.2	7
261	Europium-activated luminescent nanoprobes: From fundamentals to bioapplications. Coordination Chemistry Reviews, 2019, 378, 104-120.	9.5	64
262	Structure–luminescence relationship in Eu3+-doped Sr3La2(Ge3O9)2 phosphors. Optical Materials, 2019, 87, 145-150.	1.7	4
263	Blue-light excitable La2Ce2O7:Eu3+ red phosphors for white light-emitting diodes. Journal of Alloys and Compounds, 2020, 814, 152226.	2.8	42
264	Structural and photoluminescence properties of Y2O3 and Y2O3:Ln3+ (Ln = Eu, Er, Ho) films synthesized by plasma electrolytic oxidation of yttrium substrate. Journal of Luminescence, 2020, 217, 116762.	1.5	19
265	Insight into a concentration-sensitive red-emitting phosphor Li2Ca4Si4O13:Eu3+ for multifunctional applications: Crystal structure, electronic structure and luminescent properties. Ceramics International, 2020, 46, 2845-2852.	2.3	14
266	Luminescence thermal quenching of M2SiO4:Eu2+ (MÂ=ÂSr, Ba) phosphors. Journal of Rare Earths, 2020, 38, 113-123.	2.5	17
267	Temperature and concentration dependent Judd-Ofelt analysis of Y2O3:Eu3+ and YVO4:Eu3+. Physica B: Condensed Matter, 2020, 579, 411891.	1.3	8
268	Including and Declaring Structural Fluctuations in the Study of Lanthanide(III) Coordination Chemistry in Solution. Inorganic Chemistry, 2020, 59, 94-105.	1.9	38
269	Pressure and temperature optical sensors: luminescence of lanthanide-doped nanomaterials for contactless nanomanometry and nanothermometry. , 2020, , 227-273.		20
270	Insights into the complexity of the excited states of Eu-doped luminescent materials. Inorganic Chemistry Frontiers, 2020, 7, 871-888.	3.0	49
271	Influence of high pressure on Eu3+ luminescence in epitaxial RAIO3 (R = Gd, Tb, Lu, Gd0,6Lu0,4, or Y) single crystalline films. Journal of Luminescence, 2020, 220, 116991.	1.5	2

#	ARTICLE	IF	CITATIONS
272	Substituent effects on novel lanthanide(III) hydrazides complexes. Journal of Rare Earths, 2020, 38, 642-648.	2.5	2
273	Ln3+ (LnÂ=ÂEu, Dy) - doped Sr2CeO4 fine phosphor particles: Wet chemical preparation, energy transfer and tunable luminescence. Journal of Rare Earths, 2020, 38, 1273-1280.	2.5	13
274	Size-dependent photoluminescence of europium in alumina nanoparticles synthesized by cw CO2 laser vaporization. Journal of Alloys and Compounds, 2020, 815, 152476.	2.8	14
275	Preparation and characterization of luminescent YPO4: Eu3+ thin films using sol gel spin coating method. Thin Solid Films, 2020, 694, 137738.	0.8	8
276	A new blue-light pumped red-emitting NaYSnMoO7: Eu3+ pyrochlore phosphor for solid-state lighting. Journal of Molecular Structure, 2020, 1203, 127404.	1.8	4
277	Self-luminescence and color-tunable emission in KYb3F10 matrix under different excited sources. Journal of Rare Earths, 2020, 38, 689-696.	2.5	1
278	Alkyl ammonium ion-induced drastic emission enhancement of Eu($\langle i \rangle D \langle i \rangle$ -facam) $\langle sub \rangle 3 \langle sub \rangle$ in 1-butanol. Chemical Communications, 2020, 56, 13532-13535.	2.2	4
279	High-pressure X-ray diffraction study, optical properties, and applications of CaMoO4:Eu3+nanosheets in white LEDs. Journal of Alloys and Compounds, 2020, 846, 156473.	2.8	7
280	Photophysical studies on lanthanide(iii) chelates conjugated to Pittsburgh compound B as luminescent probes targeted to $A\hat{l}^2$ amyloid aggregates. Photochemical and Photobiological Sciences, 2020, 19, 1522-1537.	1.6	6
281	Luminescent Nd ³⁺ â€Based Microresonators Working as Optical Vacuum Sensors. Advanced Optical Materials, 2020, 8, 2000678.	3.6	25
282	Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. Crystals, 2020, 10, 1038.	1.0	4
283	Surface Plasmon Enhancement of Eu3+ Emission Intensity in LaPO4/Ag Nanoparticles. Materials, 2020, 13, 3071.	1.3	4
284	Symmetry Inhomogeneity of Ca _{9–<i>>x</i>} Zn _{<i>x</i>} Eu(PO ₄) ₇ Phosphor Determined by Second-Harmonic Generation and Dielectric and Photoluminescence Spectroscopy. Crystal Growth and Design, 2020, 20, 6461-6468.	1.4	9
285	Dependence on charge transfer band and emission properties by the crystal chemistry of A- and B-site cations in Eu3+-doped quaternary pyrochlore-type red phosphors Ca(RE)1â^'x(M)NbO7 (RE = Y, Gd; M	± â€%	ъті ;) Тј ЕТQ(1
286	Controlling the symmetry of inorganic ionic nanofilms with optical chirality. Nature Communications, 2020, 11, 5169.	5.8	10
287	Crystal structure, luminescence properties and thermal stability of BaY2â^'xEuxGe3O10 phosphors with high colour purity for blue-excited pc-LEDs. New Journal of Chemistry, 2020, 44, 16400-16411.	1.4	9
288	Self-assembled Tetranuclear Eu ^{III} Complexes with <i>D</i> ₂ - and <i>C</i> _{2h} -Symmetrical Square Scaffold. Inorganic Chemistry, 2020, 59, 12867-12875.	1.9	14
289	Chiroptical property enhancement of chiral Eu(III) complex upon association with DNA-CTMA. Scientific Reports, 2020, 10, 18917.	1.6	9

#	Article	IF	CITATIONS
290	Photoluminescence detection of symmetry transformations in low-dimensional ferroelectric ABO ₃ perovskites. Journal of Materials Chemistry C, 2020, 8, 10767-10773.	2.7	7
291	Mirror-image magnetic circularly polarized luminescence (MCPL) from optically inactive Eu ^{III} and Tb ^{III} tris(β-diketonate). Dalton Transactions, 2020, 49, 9588-9594.	1.6	27
292	The effect of weighted averages when determining the speciation and structure–property relationships of europium(iii) dipicolinate complexes. Physical Chemistry Chemical Physics, 2020, 22, 12794-12805.	1.3	29
293	Transition intensity analysis and emission properties of Eu3+: Bi2ZnOB2O6 acentric biaxial single crystal. Optical Materials, 2020, 107, 110045.	1.7	7
294	Microstructural comparison between PMMA-SiO2 and PMMA-TiO2 hybrid systems using Eu3+ as ion-probe luminescence. Journal of Non-Crystalline Solids, 2020, 544, 120167.	1.5	7
295	The microbial threat: Can rare earths help?. Journal of Biophotonics, 2020, 13, e202000068.	1.1	1
296	Sr ₂ LuF ₇ :Yb ³⁺ â€"Ho ³⁺ â€"Er ³⁺ Upconverting Nanoparticles as Luminescent Thermometers in the First, Second, and Third Biological Windows. ACS Applied Nano Materials, 2020, 3, 6406-6415.	2.4	80
297	Synthesis of novel Eu2+ activated K3Ca2(SO4)3F down-conversion phosphor for near UV excited white light emitting diode. Journal of Molecular Structure, 2020, 1212, 127957.	1.8	32
298	Cationic Biphotonic Lanthanide Luminescent Bioprobes Based on Functionalized Crossâ€Bridged Cyclam Macrocycles. ChemPhysChem, 2020, 21, 1036-1043.	1.0	13
299	Acceptor state anchoring in gallium nitride. Applied Physics Letters, 2020, 116, .	1.5	2
300	Chirogenesis and Pfeiffer Effect in Optically Inactive EuIII and TbIII Tris(β-diketonate) Upon Intermolecular Chirality Transfer From Poly- and Monosaccharide Alkyl Esters and α-Pinene: Emerging Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). Frontiers in Chemistry, 2020, 8, 685.	1.8	15
301	Beyond Chiral Organic (p-Block) Chromophores for Circularly Polarized Luminescence: The Success of d-Block and f-Block Chiral Complexes. Frontiers in Chemistry, 2020, 8, 555.	1.8	73
302	Lanthanide complexes with <i>N</i> -phosphorylated carboxamide as UV converters with excellent emission quantum yield and single-ion magnet behavior. Journal of Materials Chemistry C, 2020, 8, 9993-10009.	2.7	33
303	Solution Structure, Electronic Energy Levels, and Photophysical Properties of [Eu(MeOH) _{<i>n</i>â^²2<i>m</i>} (NO ₃) _{<i>m</i>}] ^{3–<i>m</i>+Complexes. Inorganic Chemistry, 2020, 59, 10409-10421.}	ıbrə	20
304	Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation. Nanoscale, 2020, 12, 8768-8774.	2.8	27
305	Comprehensive study of photoluminescence and cathodoluminescence of Eu and Tb doped Mg2SiO4 prepared via a solid-state reaction technique. Optical Materials, 2020, 100, 109698.	1.7	3
306	Strong Narrow Red Emission in a Perturbed Fergusonite System: Y3Mg2Nb3O14:Eu3+ for White LED Applications. Journal of Electronic Materials, 2020, 49, 2332-2342.	1.0	7
307	A high color purity red-emission phosphor based on Sm3+ and Eu3+ co-doped Ba3Bi(PO4)3. Materials Research Bulletin, 2020, 126, 110836.	2.7	40

#	Article	IF	CITATIONS
308	Efficient and stable Sr ₃ Eu ₂ B ₄ O ₁₂ red phosphor benefiting from low symmetry and distorted local environment. Dalton Transactions, 2020, 49, 3260-3271.	1.6	36
309	UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Transactions, 2020, 49, 2129-2137.	1.6	39
310	Optical Vacuum Sensor Based on Lanthanide Upconversionâ€"Luminescence Thermometry as a Tool for Ultralow Pressure Sensing. Advanced Materials Technologies, 2020, 5, 1901091.	3.0	102
311	Eu3+ luminescent ions detect water density anomaly. Journal of Luminescence, 2020, 223, 117263.	1.5	2
312	Characterization of the ALSEP Process at Equilibrium: Speciation and Stoichiometry of the Extracted Complex. ACS Omega, 2020, 5, 8076-8089.	1.6	16
313	Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coordination Chemistry Reviews, 2021, 429, 213620.	9.5	117
314	CsBaB3O6:Eu3+ red-emitting phosphors for white LED and FED: Crystal structure, electronic structure and luminescent properties. Journal of Rare Earths, 2021, 39, 1040-1048.	2.5	25
315	Unusual Magnetic Field Responsive Circularly Polarized Luminescence Probes with Highly Emissive Chiral Europium(III) Complexes. Angewandte Chemie, 2021, 133, 1017-1023.	1.6	9
316	Lanthanide doped TiO2: Coexistence of discrete and continuous dopant distribution in anatase phase. Journal of Alloys and Compounds, 2021, 851, 156849.	2.8	14
317	Synthesis of europium-doped calcium silicate hydrate via hydrothermal and coprecipitation method. Ceramics International, 2021, 47, 4803-4812.	2.3	12
318	First evidence from luminescence of lanthanide substitution in rutile TiO2. Materials Research Bulletin, 2021, 134, 111091.	2.7	5
319	Enhancement of green emission from Ca14Al10Zn6O35: Tb3+ phosphors via cross-relaxation energy transfer by Li+ ions. Journal of Luminescence, 2021, 231, 117791.	1.5	9
320	Multireference <i>Ab Initio</i> Investigation on Ground and Low-Lying Excited States: Systematic Evaluation of <i>J</i> – <i>J</i> Mixing in a Eu ³⁺ Luminescent Complex. Inorganic Chemistry, 2021, 60, 315-324.	1.9	11
321	Spectroscopic evidence of preferential excitation of interfacial EullI by interfacial energy transfer process on core@shell nanoparticles. Journal of Luminescence, 2021, 232, 117848.	1.5	9
322	Unusual Magnetic Field Responsive Circularly Polarized Luminescence Probes with Highly Emissive Chiral Europium(III) Complexes. Angewandte Chemie - International Edition, 2021, 60, 1004-1010.	7.2	49
323	Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. Comments on Inorganic Chemistry, 2021, 41, 1-66.	3.0	33
324	One high-nuclearity Eu $<$ sub $>$ 18 $<$ /sub $>$ nanoring with rapid ratiometric fluorescence response to dipicolinic acid (an anthrax biomarker). Chemical Communications, 2021, 57, 7316-7319.	2.2	8
325	Multi-stimuli-responsive luminescent MCM48 hybrid for advanced anti-counterfeiting applications. Journal of Materials Chemistry $C,0,$	2.7	7

#	ARTICLE	IF	Citations
326	Luminescent Nanomaterials (I). Advances in Experimental Medicine and Biology, 2021, 1309, 67-96.	0.8	1
327	Enhancement of photoluminescence/phosphorescence properties of Eu3 +-doped Gd2Zr2O7 phosphor. , 2021, , 259-266.		1
328	NMR and luminescence experiments reveal the structure and symmetry adaptation of a europium ionic liquid to solvent polarity. Dalton Transactions, 2021, 50, 10193-10205.	1.6	3
329	Luminescence Intensity Ratio Thermometry with Er3+: Performance Overview. Crystals, 2021, 11, 189.	1.0	34
330	Eu ²⁺ Stabilized at Octahedrally Coordinated Ln ³⁺ Site Enabling Red Emission in Sr ₃ LnAl ₂ O _{7.5} (Ln = Y or Lu) Phosphors. Advanced Optical Materials, 2021, 9, 2100077.	3.6	39
331	Isostructural Single- And Dual-Lanthanide Metal–Organic Frameworks Based On Substituent-Group-Modifying Tetracarboxylate Ligands for Ratiometric Temperature Sensing. Inorganic Chemistry, 2021, 60, 4133-4143.	1.9	38
332	Role of the Eu ³⁺ Distribution on the Properties of β-Ca ₃ (PO ₄) ₂ Phosphors: Structural, Luminescent, and ¹⁵¹ Eu Mössbauer Spectroscopy Study of Ca _{5â€"1.5<i>x</i>} MgEu _{<i>x</i>} (PO ₄) ₇ . Inorganic	1.9	18
333	Chemistry, 2021, 60, 3961-3971. Supersensitive Sm ²⁺ â€Activated Al ₂ O ₃ Thermometric Coatings for Highâ€Resolution Multiple Temperature Readâ€Outs from Luminescence. Advanced Materials Technologies, 2021, 6, 2001201.	3.0	24
334	Molecular Engineering toward an Enlarged Optical Band Gap in a Bismuth Sulfate via Homovalent Cation Substitution. Inorganic Chemistry, 2021, 60, 5851-5859.	1.9	12
335	Rare earth complexes of chiral unsymmetrical hexaazamacrocycles. Polyhedron, 2021, 198, 115057. The influence of nd0 transition metal cations on the Eu3+ asymmetry ratio < mml:math	1.0	3
336	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:mi mathvariant="bold-italic">R<mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">=</mml:mo><mml:mfrac><mml:mrow><mml:mi mathvariant="bold-italic">I<mml:mrow><mml:mo< td=""><td></td><td></td></mml:mo<></mml:mrow></mml:mi </mml:mrow></mml:mfrac></mml:mi </mml:mrow>		

#	Article	IF	CITATIONS
344	Exploration of photophysical behavior of lanthanide complex and its hybrids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119629.	2.0	3
345	Triple molybdates and tungstates scheelite structures: Effect of cations on structure, band-gap and photoluminescence properties. Journal of Alloys and Compounds, 2021, 865, 158818.	2.8	10
346	Investigating the thermographical effect on optical properties of Eu doped Y2O3:TiO2 nanocomposite synthesized via sol-gel method. Solid State Sciences, 2021, 116, 106617.	1.5	19
347	Solvothermal Synthesis and Conformation Probe of Novel Europium Complex of Brønsted Acidic Ionic Liquid: 1,3―Bis (1 arboxylatoethyl)imidazolium Bromide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
348	Europium ions as a spectroscopic probe in the study of PMMA-SiO2 hybrid microstructure with variable coupling agent. Journal of Sol-Gel Science and Technology, 0, , 1.	1.1	2
349	Photoluminescence of ZnO:Eu3+ and ZnO:Tb3+ coatings formed by plasma electrolytic oxidation of pure zinc substrate. Journal of Luminescence, 2021, 235, 118022.	1.5	8
350	Synthesis, structure and photoluminescent properties of Eu:Gd2O3 nanophosphor synthesized by cw CO2 laser vaporization. Journal of Luminescence, 2021, 235, 118050.	1.5	13
351	Polarized upconversion luminescence from a single LiLuF4:Yb3+/Er3+ microcrystal for orientation tracking. Science China Materials, 2022, 65, 220-228.	3.5	16
352	lonic Liquids [M ³⁺][A ^{â^'}] ₃ with Threeâ€Valent Cations and Their Possible Use to Easily Separate Rare Earth Metals. Chemistry - A European Journal, 2021, 27, 13052-13058.	1.7	3
353	Photoluminescence and optical properties of Eu3+/Eu2+-doped transparent Al2O3 ceramics. Journal of the European Ceramic Society, 2021, 41, 4896-4906.	2.8	29
354	Enhancing the Photoluminescence Property of Pr ³⁺ lons by Understanding the Polymorphous Influence of the K ₃ Lu(PO ₄) ₂ Host. Inorganic Chemistry, 2021, 60, 14978-14987.	1.9	5
355	Recent prospects on phosphor-converted LEDs for lighting, displays, phototherapy, and indoor farming. Journal of Luminescence, 2021, 237, 118167.	1.5	50
356	Transition intensities of trivalent lanthanide ions in solids: Extending the Judd-Ofelt theory. Journal of Luminescence, 2022, 241, 118456.	1.5	4
357	Molten-salt synthesis of luminescent zirconia nanocrystals. Ceramics International, 2022, 48, 1423-1428.	2.3	3
358	Temperature Dependence of Fundamental Photophysical Properties of [Eu(MeOH- <i>d</i> c(meOH- <i>d</i> c(meOH- <i)< cd=""> [Eu·DOTA(MeOH-<i>d</i>c(meoH-<i)< td=""> [Eu·DOTA(MeOH-<i)< td=""> [Euâ·DOTA(MeOH-<i)< td=""></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<></i)<>	1.1	11
359	Structural insights into new luminescent 2D lanthanide coordination polymers using an N, N′-disubstituted benzimidazole zwitterion. Influence of the ligand. Inorganica Chimica Acta, 2021, 525, 120441.	1.2	8
360	A naked-eye-detection alcohol dipstick: Electrospun hierarchical structured fluorine-rich nanofibrous membranes. Composites Communications, 2021, 27, 100818.	3.3	2
361	Non-symmetric porphyrins encapsulated in liposomes: Tumor cell destruction via non-photodynamic activity. Dyes and Pigments, 2021, 195, 109746.	2.0	0

#	Article	IF	CITATIONS
362	Structural, photoluminescence and Judd-Ofelt analysis of red-emitting Eu3+ doped strontium hexa-aluminate nanophosphors for lighting application. Optical Materials, 2021, 121, 111542.	1.7	33
363	A relation between the structural diversity and photoluminescent properties in three new classes of Eu3+ hydrocinnamate complexes containing N,N-bidentate and N,N,N-tridentate ancillary ligands. Journal of Luminescence, 2021, 239, 118398.	1.5	5
364	Effects of the Pechini's modified synthetic route on structural and photophysical properties of Eu3+ or Tb3+-doped LaAlO3. Materials Research Bulletin, 2021, 143, 111462.	2.7	13
365	Shaping the photoluminescence spectrum of ZrO2:Eu3+ phosphor in dependence on the Eu concentration. Optical Materials, 2021, 121, 111620.	1.7	8
366	Luminescent and structural properties of ScxY1-xVO4:Eu3+ solid solutions. Journal of Luminescence, 2021, 240, 118448.	1.5	6
367	Sr8MSm1-Eu (PO4)7 phosphors derived by different synthesis routes: Solid state, sol-gel and hydrothermal, the comparison of properties. Journal of Alloys and Compounds, 2021, 887, 161340.	2.8	9
368	Structural and spectroscopic characterization of a new series of Ba ₂ RE ₂ Ge ₄ O ₁₃ (RE = Pr, Nd, Gd, and Dy) and Ba ₂ Gd _{2â°'x} Eu _x Ge ₄ O ₁₃ tetragermanates. Dalton Transactions, 2021, 50, 10935-10946.	1.6	4
369	Vacancies Substitution Tuning Photoluminescence and Distortion Triggered Eu Migration in NASICON-Type Phosphors. ACS Sustainable Chemistry and Engineering, 2021, 9, 785-793.	3.2	8
370	A General Introduction to Lanthanide Ions. Nanomedicine and Nanotoxicology, 2014, , 1-16.	0.1	4
371	Judd-Ofelt modelling of the dual-excited single band ratiometric luminescence thermometry. Journal of Luminescence, 2020, 225, 117369.	1.5	30
372	The role of structural disorder on luminescence of Eu-doped Na0.5Bi0.5TiO3. Journal of Applied Physics, 2020, 128, 244104.	1.1	4
373	Charge-transfer excited states of π- and 4f-orbitals for development of luminescent Eu(<scp>iii</scp>) complexes. Dalton Transactions, 2021, 50, 14978-14984.	1.6	18
374	Tuning Excited-State Properties of [2.2]Paracyclophane-Based Antennas to Ensure Efficient Sensitization of Lanthanide Ions or Singlet Oxygen Generation. Inorganic Chemistry, 2021, 60, 16194-16203.	1.9	1
375	Suppression of Eu ²⁺ Luminescence Loss. Advanced Optical Materials, 2022, 10, .	3.6	7
376	A correlation of piezoelectricity and photoluminescence of europium doped (Na0.41K0.09Bi0.5)TiO3 with ferroelectric and structural ordering. Ceramics International, 2021, , .	2.3	6
377	Concentration and thermal quenching of SrGdLiTeO ₆ : Eu ³⁺ red-emitting phosphor for white light-emitting diode. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 247801.	0.2	3
378	Synthesis and coordination chemistry of boron-functionalized poly(pyrazolylpyridyl)borate with Ln(III) metals. Maǧallatí^ǧÄmiÊ¿atl^Al-Sulá¹Än QÄbÅ«s Li-l-buḥūṯAl-Ê¿ilmiyyatí^Al-Ê¿ulÅ«m Wa-al-handasa	atì^0. <mark>1</mark> 018,	22,73.
379	Site-Selective Eu ³⁺ Luminescence in the Monoclinic Phase of YSiO ₂ N. Chemistry of Materials, 2021, 33, 8873-8885.	3.2	20

#	Article	IF	CITATIONS
380	Centrosymmetric and non-centrosymmetric structural and optical study of Eu3+ ions in (Ba,Ca,Na)9(Al,Y)2Si6O24 orthosilicate phosphors. Optical Materials, 2022, 123, 111863.	1.7	2
381	Interfacial Stressâ€Modulated Mechanosensitive Upconversion Luminescence of NaErF∢sub>4∢/sub> Based Heteroepitaxial Core–Shell Nanoparticles. Advanced Optical Materials, 2022, 10, 2101702.	3.6	8
382	Hexagonal-phase NaREF ₄ upconversion nanocrystals: the matter of crystal structure. Nanoscale, 2021, 13, 19771-19782.	2.8	10
383	Red-emitting BaAl2O4:Eu3+Âsynthesized via Pechini and sol–gel routes: a comparison of luminescence and structure. Journal of Materials Science, 2022, 57, 170-184.	1.7	1
384	Stoichiometrically controlled synthesis and comparative study of photoluminescence of seven and eight coordinate complexes of Sm3+, Eu3+ and Tb3+ based on 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione (Hfod) and imidazole. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113715.	2.0	5
385	Recent advances on metal oxide-based luminescence thermometry. Journal of Materials Chemistry C, 2021, 9, 16410-16439.	2.7	54
386	Tumorâ€Microenvironmentâ€Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Selfâ€Assemblies toward Precise Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	1
387	Raman and Photoluminescence Spectroscopic Studies on Structural Disorder in Oxygen Deficient Gd ₂ Ti ₂ O _{7â€Î} Single Crystals. Crystal Research and Technology, 2022, 57, .	0.6	3
388	Tumorâ€Microenvironmentâ€Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Selfâ€Assemblies toward Precise Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
389	Luminescence properties of neodymium, samarium, and europium niobate and tantalate thin films. Luminescence, 2022, 37, 642-655.	1.5	1
390	Competitive Site Occupation toward Improved Quantum Efficiency of SrLaScO ₄ :Eu Red Phosphors for Warm White LEDs. Advanced Optical Materials, 2022, 10, .	3.6	55
391	<i>A</i> _{rel} : Investigating [Eu(H ₂ O) ₉] ³⁺ Photophysics and Creating a Method to Bypass Luminescence Quantum Yield Determinations. Journal of Physical Chemistry Letters, 2022, 13, 3096-3104.	2.1	15
392	Photoluminescence of the Eu3+-Activated YxLu1 \hat{a} xNbO4 (x = 0, 0.25, 0.5, 0.75, 1) Solid-Solution Phosphors. Crystals, 2022, 12, 427.	1.0	7
393	Upconversion in some fluoride crystal system –A review. Infrared Physics and Technology, 2022, 123, 104148.	1.3	10
394	The Charge Transfer Band as a Key to Study the Site Selection Preference of Eu ³⁺ in Inorganic Crystals. Inorganic Chemistry, 2021, 60, 19440-19447.	1.9	15
395	Programmable Polarization of 2D Anisotropic Rare Earth Material for Images Transmission and Encryption. Advanced Optical Materials, 2022, 10, .	3.6	10
396	Urbach and Judd-Ofelt analysis of crystalline samarium (III) complexes with \hat{l}^2 -ketocarboxylate and nitrogen donor secondary ligands. Polyhedron, 2022, 221, 115847.	1.0	17
397	Characterization and luminescence properties of Eu3+ doped BaCO3 nanoparticles synthesized by autocombustion method. Journal of Molecular Structure, 2022, 1263, 133122.	1.8	6

#	Article	IF	CITATIONS
399	Key role of Tb3+ doping on structural and photoluminescence properties of Gd2Ti2O7 pyrochlore oxide. Ceramics International, 2022, 48, 22266-22275.	2.3	9
400	A novel highly thermal-stable red-emitting CaGdSbWO8:Eu3+ phosphor with scheelite structure for high CRI w-LEDs,security ink, and latent fingerprint. Journal of Alloys and Compounds, 2022, 914, 165134.	2.8	27
401	Photoluminescent complexes of Eu(III), Tb(III) and Gd(III) with 3-thiopheneacetate and 4,4′-dimethyl-2,2′-bipyridine: Synthesis, characterization and photophysical properties. Journal of Luminescence, 2022, , 118990.	1.5	1
402	Understanding the conduction mechanism of acceptor-doped ceria oxygen ion conductors by photoluminescence analysis. Ceramics International, 2022, , .	2.3	1
403	Influence of coordinating environment on photophysical properties of UV excited sharp red emitting material: Judd Ofelt analysis. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113999.	2.0	21
406	We are never ever getting (back to) ideal symmetry: structure and luminescence in a ten-coordinated europium(<scp>iii</scp>) sulfate crystal. Dalton Transactions, 2022, 51, 8960-8963.	1.6	6
407	Delicate, a study of the structural changes in ten-coordinated La(<scp>iii</scp>), Ce(<scp>iii</scp>), Pr(<scp>iii</scp>), Nd(<scp>iii</scp>), Sm(<scp>iii</scp>) and Eu(<scp>iii</scp>) sulfates. Dalton Transactions, 2022, 51, 8964-8974.	1.6	6
408	Modeling Polyhedron Distortion for Mechanoluminescence in Mixed-Anion Compounds RE ₂ O ₂ S:Ln ³⁺ . Chemistry of Materials, 2022, 34, 5311-5319.	3.2	21
409	Co-crystallization of red emitting (NH ₄) ₃ 3+ microfibers: structure–luminescence relationship for promising application in optical thermometry. CrystEngComm, 2022, 24, 4819-4830.	1.3	4
410	A new ternary Eu(III) $\hat{l}^2 \hat{a} \in d$ iketonate complex with diimine ligand and its application as fluorescent probe for highly sensitive and selective ammonia sensor. Applied Organometallic Chemistry, 2022, 36, .	1.7	8
411	Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chemical Reviews, 2022, 122, 11474-11513.	23.0	167
412	altimg="si1.svg"> <mml:mi mathvariant="normal">E</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> <mml:msub><mml:mrow><mml:mo stretchy="true">(</mml:mo><mml:mrow><mml:mi mathvariant="normal">H</mml:mi><mml:mi) 0.7<="" 1="" etqq1="" td="" tj=""><td>84314 rgt</td><td>3T Øverlock</td></mml:mi)></mml:mrow></mml:mrow></mml:msub>	84314 rgt	3T Øverlock
413	Luminescence of doublet molecular systems. Coordination Chemistry Reviews, 2022, 467, 214616.	9.5	21
415	Photoluminescence of rareâ€earth/transition metalâ€doped transparent/translucent polycrystalline Al _{0₃ ceramics: A review. Journal of the American Ceramic Society, 2023, 106, 172-185.}	1.9	5
416	Photoluminescence properties and energy transfer in the Sm3+ and Eu3+ co-doped Ca3Bi(PO4)3 red phosphor. Inorganic Chemistry Communication, 2022, 142, 109668.	1.8	6
417	NASICON-type Na _{3.6} Lu _{1.8â^'<i>x</i>} (PO ₄) ₃ : <i>x</i> Eu ³⁺ phosphors: structure and luminescence. Dalton Transactions, 2022, 51, 11840-11850.	1.6	4
418	Non-resonant energy transfer from Eu3+ to Yb3+ in C-type and B-type (Eu1-Yb)2O3 nanocrystals. Journal of Alloys and Compounds, 2022, 921, 166043.	2.8	1
419	Seven Europium(III) Complexes in Solution – The Importance of Reporting Data When Investigating Luminescence Spectra and Electronic Structure. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6

#	Article	IF	CITATIONS
420	Highly sensitive and selective gas sensing of methylamine and aniline with a new ternary europium complex material. Materials Today Communications, 2022, 32, 104054.	0.9	3
421	Revealing Eu ³⁺ -doped yttrium pyrogermanate as a soft UV excitable phosphor: retaining the pros of the commercial phosphor and compensating for the cons. New Journal of Chemistry, 2022, 46, 17755-17766.	1.4	4
422	Luminescence Enhancement of Redâ€Emitting Sr ₉ MnK(PO ₄) ₇ Phosphor via Energy Transfer and Charge Compensation. Physica Status Solidi (B): Basic Research, 0, , 2200259.	0.7	1
423	Heterometallic Europium(III)–Lutetium(III) Terephthalates as Bright Luminescent Antenna MOFs. Molecules, 2022, 27, 5763.	1.7	5
424	Photoluminescence and Judd-Ofelt analysis of Eu3+ doped akermanite silicate phosphors for solid state lighting. Optical Materials, 2022, 133, 112945.	1.7	14
425	Review of condensed matter laser cooling using electric-dipole-allowed transitions. Journal of Luminescence, 2022, 252, 119270.	1.5	2
426	Impact of varying the phenylboronic acid position in macrocyclic Eu(<scp>iii</scp>) complexes on the recognition of adenosine monophosphate. Organic Chemistry Frontiers, 2022, 9, 5494-5504.	2.3	5
427	Invisible strings. The first single crystal of the cTSAP form of [Eu(DOTA)(H ₂ O)] ^{â°'} has an electronic structure similar to one of the reported cSAP forms. Dalton Transactions, 2022, 51, 15725-15733.	1.6	3
428	Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. Materials Horizons, 2022, 9, 2450-2459.	6.4	20
429	Microstructural origin of peculiar spectra and excellent luminescence properties of Y ₁₀ Ta ₄ O ₂₅ :Eu ³⁺ with a fluorite-related structure. Inorganic Chemistry Frontiers, 2022, 9, 6167-6181.	3.0	7
430	Excitation-Dependent Photoluminescence of BaZrO3:Eu3+ Crystals. Nanomaterials, 2022, 12, 3028.	1.9	6
431	Trisâ€dipicolinate lanthanide complexes: influence of the second hydration sphere on the solidâ€state luminescence properties European Journal of Inorganic Chemistry, 0, , .	1.0	4
432	Enhancement of sensitized photoluminescence of erbium chloride silicate through regulating annealing. Journal of Rare Earths, 2022, , .	2.5	0
433	Designing Ln3+-doped BiF3 particles for luminescent primary thermometry and molecular logic. Frontiers in Photonics, 0, 3, .	1.1	7
434	Phonon-Mediated Nonradiative Relaxation in Ln ³⁺ -Doped Luminescent Nanocrystals., 2022, 4, 1882-1903.		6
435	Recent progress in Ce ³⁺ /Eu ²⁺ -activated LEDs and persistent phosphors: focusing on the local structure and the electronic structure. Journal of Materials Chemistry C, 2022, 11, 48-96.	2.7	37
436	Effect of Eu3+, Bi3+, and Li+ doping on luminescent property of GdNbO4. Journal of Rare Earths, 2024, 42, 66-75.	2.5	3
437	Thermally induced structural transitions and temperature memory effect in a luminescent vitrified film of an anisometric europium(III) \hat{l}^2 -diketonate complex. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114333.	2.0	0

#	Article	IF	CITATIONS
438	Dual-Emitting Ratiometric Luminescent Thermometers Based on Lanthanide Metal–Organic Complexes with Brønsted Acidic Ionic Liquids. Inorganic Chemistry, 2022, 61, 18998-19009.	1.9	3
439	Preparation of Eu(III) Complexes Containing Maleopimaric Acid Anhydride with Ultra-narrow and Efficient Fluorescence Emission for High Determination on Gallic Acid in Acetonitrile Solution. Journal of Fluorescence, 0, , .	1.3	0
440	4f → 3d sensitization: a luminescent Eu ^{II} –Mn ^{II} heteronuclear complex with a near-unity quantum yield. Materials Horizons, 0, , .	6.4	2
441	Photoluminescent and Photocatalytic Properties of Eu3+-Doped MgAl Oxide Coatings Formed by Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy. Coatings, 2022, 12, 1830.	1.2	8
442	Structure and properties of cerium phosphate and silicophosphate glasses. Journal of the American Ceramic Society, 2023, 106, 2808-2819.	1.9	2
443	To Luminesce or to Change Valence? Insight into the Wavelength Dependency of the Reversible Valence Switching of Europium in Sr ₃ SiO ₅ . Journal of Physical Chemistry C, 2022, 126, 21396-21404.	1.5	3
444	Strong fâ€f Excitation in Hafnium Germanate: nearâ€UV LED and Cathode Beam Pumped Red Phosphor with Thermal Robustness. International Journal of Applied Ceramic Technology, 0, , .	1.1	0
445	Structure and optical properties of Eu3+, Gd3+ ions co-doped TiO2 phosphor thin films from anatase to pyrochlore. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	0
446	Recent development in color tunable phosphors: A review. Progress in Materials Science, 2023, 133, 101067.	16.0	37
447	X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature. Materials, 2023, 16, 830.	1.3	3
448	K ₅ Eu(MoO ₄) ₄ red phosphor for solid state lighting applications, prepared by different techniques. CrystEngComm, 2023, 25, 835-847.	1.3	3
449	A highly efficient luminescent cerium(III) coordination complex with pure-blue emission. Dyes and Pigments, 2023, 211, 111067.	2.0	0
450	Synthesis of fluorescent chalcones, photophysical properties, quantitative structure-activity relationship and their biological application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 291, 122332.	2.0	4
451	Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds. Journal of Luminescence, 2023, 257, 119709.	1.5	3
452	Lanthanide-doped aluminosilicate materials and their applications. , 2023, , 179-200.		0
453	Practical guidance for easily interpreting the emission and physicochemical parameters of Eu3+ in solid-state hosts. Ceramics International, 2023, 49, 41078-41089.	2.3	3
454	Design and Mechanism of Rare-Earth Singlet Oxygen Sensing: An Experimental and Quantum Chemical Approach. Journal of Physical Chemistry A, 2023, 127, 1130-1140.	1.1	0
455	Preparation, spectral and Judd Ofelt analyses of luminous Octa-coordinated Europium (III) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 440, 114646.	2.0	4

#	Article	IF	CITATIONS
456	Luminescent Lanthanide Complexes for Effective Oxygenâ€Sensing and Singlet Oxygen Generation. ChemPlusChem, 2023, 88, .	1.3	4
457	Circularly polarized activity from two photon excitable europium and samarium chiral bioprobes. Journal of Materials Chemistry C, 2023, 11, 4188-4202.	2.7	4
458	Luminescent Properties of Yttrium–Scandium Phosphate Solid Solutions Doped with Europium Ions. Physics of the Solid State, 2022, 64, 567-575.	0.2	2
459	On the Crystal Chemistry of RE ₂ Si ₂ O ₇ : Revisited Structures, Group–Subgroup Relationship, and Insights of Ce ³⁺ -Activated Radioluminescence. Chemistry of Materials, 2023, 35, 2635-2646.	3.2	3
460	Insight into the Structural and Emissive Behavior of a Threeâ€Dimensional Americium(III) Formate Coordination Polymer. Chemistry - A European Journal, 2023, 29, .	1.7	1
461	A site-selective fluorescence spectroscopy study of the crystal phases of KY3F10: Leveraging the optical response of Eu3+ ions. Journal of Alloys and Compounds, 2023, 953, 170020.	2.8	2
462	Electronic Structure of Neodymium(III) and Europium(III) Resolved in Solution Using High-Resolution Optical Spectroscopy and Population Analysis. Journal of Physical Chemistry A, 2023, 127, 3577-3590.	1.1	2
463	Luminescent aerogels of Gd2O3:Eu3+ and Gd2O3:(Eu3+, Tb3+). Bulletin of Materials Science, 2023, 46, .	0.8	0
478	Optical spectroscopy as a tool for studying the solution chemistry of neodymium(<scp>iii</scp>). Physical Chemistry Chemical Physics, 2023, 25, 19300-19336.	1.3	1