Substrate modifications and alcohol treatment on thin to osmotic power

Chemical Engineering Science 87, 40-50 DOI: 10.1016/j.ces.2012.09.014

Citation Report

#	Article	IF	CITATIONS
1	POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation. Journal of Membrane Science, 2013, 443, 144-155.	8.2	97
2	Modification of polyamide thin-film composite membranes with amino-cyclodextrins and diethylamino-cyclodextrins for water desalination. Separation and Purification Technology, 2013, 120, 328-340.	7.9	27
3	Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. Journal of Membrane Science, 2013, 442, 225-237.	8.2	400
4	Effects of free volume in thinâ€film composite membranes on osmotic power generation. AICHE Journal, 2013, 59, 4749-4761.	3.6	45
5	Outer-Selective Pressure-Retarded Osmosis Hollow Fiber Membranes from Vacuum-Assisted Interfacial Polymerization for Osmotic Power Generation. Environmental Science & Technology, 2013, 47, 13167-13174.	10.0	98
6	High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation. Journal of Membrane Science, 2013, 440, 108-121.	8.2	189
7	Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods. Polymers, 2013, 5, 303-327.	4.5	193
8	Minimizing the Instant and Accumulative Effects of Salt Permeability to Sustain Ultrahigh Osmotic Power Density. Environmental Science & Technology, 2013, 47, 10085-10092.	10.0	105
9	Highly Robust Thin-Film Composite Pressure Retarded Osmosis (PRO) Hollow Fiber Membranes with High Power Densities for Renewable Salinity-Gradient Energy Generation. Environmental Science & Technology, 2013, 47, 8070-8077.	10.0	124
10	Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation. Applied Energy, 2014, 114, 600-610.	10.1	80
11	Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation. AICHE Journal, 2014, 60, 1107-1119.	3.6	65
12	Conceptual demonstration of novel closed-loop pressure retarded osmosis process for sustainable osmotic energy generation. Applied Energy, 2014, 132, 383-393.	10.1	45
13	Hydrophilic nylon 6,6 nanofibers supported thin film composite membranes for engineered osmosis. Journal of Membrane Science, 2014, 457, 162-169.	8.2	138
14	Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes. Chemical Engineering Journal, 2014, 242, 195-203.	12.7	122
15	A new commercial thin film composite membrane for forward osmosis. Desalination, 2014, 343, 187-193.	8.2	229
16	Design of robust hollow fiber membranes with high power density for osmotic energy production. Chemical Engineering Journal, 2014, 241, 457-465.	12.7	123
17	Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 2014, 114, 5057-5115.	47.7	3,865
18	Novel forward osmosis process to effectively remove heavy metal ions. Journal of Membrane Science, 2014, 467, 188-194.	8.2	192

#	Article	IF	CITATIONS
19	Engineering design of outerâ€selective tribore hollow fiber membranes for forward osmosis and oilâ€water separation. AICHE Journal, 2015, 61, 4491-4501.	3.6	17
20	Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review. Energies, 2015, 8, 11821-11845.	3.1	63
21	Novel and emerging membranes for water treatment by electric potential and concentration gradient membrane processes. , 2015, , 287-325.		1
22	A photo-bactericidal thin film composite membrane for forward osmosis. Journal of Materials Chemistry A, 2015, 3, 6781-6786.	10.3	31
23	Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation. Progress in Polymer Science, 2015, 51, 1-27.	24.7	171
24	Fabrication and characterization of a novel nanofiltration membrane by the interfacial polymerization of 1,4-diaminocyclohexane (DCH) and trimesoyl chloride (TMC). RSC Advances, 2015, 5, 40742-40752.	3.6	49
25	Structural stability and mass transfer properties of pressure retarded osmosis (PRO) membrane under high operating pressures. Journal of Membrane Science, 2015, 488, 143-153.	8.2	50
26	Forward Osmosis Membranes: Synthesis and Characterization. , 2015, , 151-180.		1
27	Membrane Development for Pressure-Retarded Osmosis. , 2015, , 465-490.		0
28	Novel crossflow membrane cell with asymmetric channels: Design and pressure-retarded osmosis performance test. Journal of Membrane Science, 2015, 476, 76-86.	8.2	24
29	Closed circuit PRO series No 4: CC-PRO hydroelectric power generation prospects from the Red Sea brine and Dead Sea salinity gradient. Desalination and Water Treatment, 2015, 55, 1983-1997.	1.0	1
30	Pressure retarded osmosis. , 2016, , 19-53.		8
31	Closed circuit PRO series no 3: status and prospects for PRO hydroelectric power generation from sea–river water like salinity gradients. Desalination and Water Treatment, 2016, 57, 7131-7148.	1.0	4
32	Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes. Journal of Membrane Science, 2016, 511, 54-64.	8.2	30
33	CCD series no-22: Recent advances in RO, FO and PRO and their hybrid applications for high recovery desalination of treated sewage effluents. Desalination, 2016, 389, 18-38.	8.2	12
34	Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Progress in Polymer Science, 2016, 61, 104-155.	24.7	345
35	Organic fouling behaviour of structurally and chemically different forward osmosis membranes – A study of cellulose triacetate and thin film composite membranes. Journal of Membrane Science, 2016, 520, 247-261.	8.2	79
36	A high-performance and fouling resistant thin-film composite membrane prepared via coating TiO2 nanoparticles by sol-gel-derived spray method for PRO applications. Desalination, 2016, 397, 157-164.	8.2	38

ARTICLE IF CITATIONS Tailored multi-zoned nylon 6,6 supported thin film composite membranes for pressure retarded 37 8.2 8 osmosis. Desalination, 2016, 399, 96-104. Polyamide/polyacrylonitrile thin film composites as forward osmosis membranes. Journal of Applied 2.6 Polymer Science, 2016, 133, . 39 Materials for Water Remediation (Membranes)., 2016, , 37-74. 0 Evolution of micro-deformation in inner-selective thin film composite hollow fiber membranes and its implications for osmotic power generation. Journal of Membrane Science, 2016, 516, 104-112. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation. 41 8.2 43 Journal of Membrane Science, 2016, 505, 157-166. Smart composite reverse-osmosis membranes for energy generation and water desalination processes. , 2016, , 32<u></u>9-350. Study of the Reverse Salt Diffusion in pressure retarded osmosis: Influence on concentration 43 8.2 49 polarization and effect of the operating conditions. Desalination, 2016, 389, 171-186. Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for 44 8.2 osmotic power harvesting. Journal of Membrane Science, 2016, 504, 75-88. Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. 45 3.8 227 Chemical Engineering Science, 2016, 143, 194-205. Recent trends in membranes and membrane processes for desalination. Desalination, 2016, 391, 43-60. 8.2 Closed circuit PRO series no 2: performance projections for PRO membranes based on actual/ideal 47 1.0 5 flux ratio of forward osmosis. Desalination and Water Treatment, 2016, 57, 6633-6643. Pressure-retarded osmosis for power generation from salinity gradients: is it viable?. Energy and 30.8 289 Environmental Science, 2016, 9, 31-48. Closed Circuit PRO Series No 5: clean energy generation from seawater and its concentrates by CC-PRO without need of energy recovery. Desalination and Water Treatment, 2016, 57, 8035-8049. 49 1.0 2 Performance enhancement of TFC FO membranes with polyethyleneimine modification and 8.2 post-treatment. Journal of Membrane Science, 2017, 534, 46-58. Tris(2-aminoethyl)amine in-situ modified thin-film composite membranes for forward osmosis 51 8.2 71 applications. Journal of Membrane Science, 2017, 537, 186-201. Mechanical Characterization of Membranes., 2017, , 259-306. Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO 53 8.2 176 processes. Desalination, 2017, 419, 101-116. Pressure retarded osmosis from hypersaline sources $\hat{a} \in \mathbb{C}$ A review. Desalination, 2017, 413, 65-85. 54 8.2

CITATION REPORT

#	Article	IF	CITATIONS
55	Recent Developments in Forward Osmosis Processes. Water Intelligence Online, 2017, 16, 9781780408125.	0.3	9
56	Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties. Environmental Science & Technology, 2017, 51, 4396-4406.	10.0	136
57	Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment. Industrial & Engineering Chemistry Research, 2017, 56, 513-523.	3.7	63
58	Sustainable Water Reclamation from Different Feed Streams by Forward Osmosis Process Using Deep Eutectic Solvents as Reusable Draw Solution. Industrial & Engineering Chemistry Research, 2017, 56, 14623-14632.	3.7	32
59	Experimental study of a hollow fiber membrane module in pressure-retarded osmosis: Module performance comparison with volumetric-based power outputs. Desalination, 2017, 420, 45-53.	8.2	21
60	Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review. International Journal of Green Energy, 2017, 14, 337-360.	3.8	39
61	OberflÄ e henmodifizierung von Wasseraufbereitungsmembranen. Angewandte Chemie, 2017, 129, 4734-4788.	2.0	58
62	Surface Modification of Water Purification Membranes. Angewandte Chemie - International Edition, 2017, 56, 4662-4711.	13.8	564
63	Mechanical properties of water desalination and wastewater treatment membranes. Desalination, 2017, 401, 190-205.	8.2	146
64	Pressure Retarded Osmosis as Renewable Energy Source. , 2017, , 1-54.		3
64 65			3
	Pressure Retarded Osmosis as Renewable Energy Source. , 2017, , 1-54. 3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded	10.3	
65	 Pressure Retarded Osmosis as Renewable Energy Source. , 2017, , 1-54. 3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX). , 2017, , 206-248. Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via</i> the design of novel freestanding robust nanofiber substrates. Journal of Materials Chemistry A, 2018, 6, 	10.3	17
65 66	 Pressure Retarded Osmosis as Renewable Energy Source. , 2017, , 1-54. 3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX). , 2017, , 206-248. Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via</i> the design of novel freestanding robust nanofiber substrates. Journal of Materials Chemistry A, 2018, 6, 11700-11713. Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for 		17 36
65 66 67	Pressure Retarded Osmosis as Renewable Energy Source. , 2017, , 1-54. 3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX). , 2017, , 206-248. Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes fabrication of highly permeable thin-film composite membranes fabrication of thin-film composite membranes with self-catalyzed tris(2-aminoethyl)amine for forward osmosis separation. Chemical Engineering Science, 2018, 178,</i></i></i></i></i></i></i>	8.2	17 36 61
65 66 67 68	Pressure Retarded Osmosis as Renewable Energy Source., 2017,, 1-54. 3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX)., 2017,, 206-248. Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>via</i> the design of novel freestanding robust nanofiber substrates. Journal of Materials Chemistry A, 2018, 6, 11700-11713. Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. Journal of Membrane Science, 2018, 551, 94-102. Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl)amine for forward osmosis separation. Chemical Engineering Science, 2018, 178, 82-92. Polydopamine surface modification with UV-shielding effect using KMnO4 as an efficient oxidizing	8.2 3.8	17 36 61 34
 65 66 67 68 69 	Pressure Retarded Osmosis as Renewable Energy Source., 2017,, 1-54. 3.8 Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX)., 2017,, 206-248. Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>>via fabrication of highly permeable thin-film nanocomposite forward osmosis membranes <i>>via fabrication of highly permeable thin-film composite forward osmosis membranes <i>>via Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. Journal of Membrane Science, 2018, 551, 94-102. Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl)amine for forward osmosis separation. Chemical Engineering Science, 2018, 178, 82-92. Polydopamine surface modification with UV-shielding effect using KMnO4 as an efficient oxidizing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 68-73. Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Through Polymer</i></i></i></i>	8.2 3.8	17 36 61 34 28

#	Article	IF	CITATIONS
73	Flat-Sheet Membrane for Power Generation and Desalination Based on Salinity Gradient. , 2018, , 155-174.		3
74	Hollow-Fiber Membranes for Salinity Gradient Processes. , 2018, , 175-200.		1
75	Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module. Membranes, 2018, 8, 22.	3.0	8
76	Antimicrobial Thin-Film Composite Membranes with Chemically Decorated Ultrasmall Silver Nanoclusters. ACS Sustainable Chemistry and Engineering, 2019, 7, 14848-14855.	6.7	17
77	Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes. Membranes, 2019, 9, 92.	3.0	7
78	Emerging R&D on membranes and systems for water reuse and desalination. Chinese Journal of Chemical Engineering, 2019, 27, 1578-1585.	3.5	27
79	Tailoring the porous structure of hollow fiber membranes for osmotic power generation applications via thermally assisted nonsolvent induced phase separation. Journal of Membrane Science, 2019, 579, 329-341.	8.2	20
80	Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol. Journal of Membrane Science, 2019, 578, 220-229.	8.2	85
81	Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination. Advanced Composites and Hybrid Materials, 2019, 2, 51-69.	21.1	37
82	High performance polyacrylonitrile-supported forward osmosis membranes prepared via aromatic solvent-based interfacial polymerization. Separation and Purification Technology, 2019, 212, 449-457.	7.9	49
83	Synthesis of Silver Nanoparticles Embedded Electrospun PAN Nanofiber Thin-Film Composite Forward Osmosis Membrane to Enhance Performance and Antimicrobial Activity. Industrial & Engineering Chemistry Research, 2019, 58, 984-993.	3.7	67
84	Superhydrophilic Sub-1-nm Porous Membrane with Electroneutral Surface for Nonselective Transport of Small Organic Molecules. ACS Applied Materials & Interfaces, 2020, 12, 38778-38787.	8.0	8
85	Environmental Microbiology and Biotechnology. , 2020, , .		2
86	Graphene Oxide Incorporated Polysulfone Substrate for Flat Sheet Thin Film Nanocomposite Pressure Retarded Osmosis Membrane. Membranes, 2020, 10, 416.	3.0	16
87	A comprehensive review of the feasibility of pressure retarded osmosis: Recent technological advances and industrial efforts towards commercialization. Desalination, 2020, 491, 114501.	8.2	43
88	Graphene Oxide Incorporated Forward Osmosis Membranes With Enhanced Desalination Performance and Chlorine Resistance. Frontiers in Chemistry, 2019, 7, 877.	3.6	22
89	Simultaneous phase-inversion and crosslinking in organic coagulation bath to prepare organic solvent forward osmosis membranes. Journal of Membrane Science, 2021, 620, 118829.	8.2	22
90	Overcoming the permeability-selectivity trade-off of desalination membranes via controlled solvent activation. Journal of Membrane Science, 2021, 620, 118870.	8.2	37

#	Article	IF	CITATIONS
91	Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination, 2021, 500, 114841.	8.2	52
92	Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. Water Research, 2021, 189, 116666.	11.3	40
94	A chemical-induced crystallization strategy to fabricate poly(ether ether ketone) asymmetric membranes for organic solvent nanofiltration. Journal of Membrane Science, 2021, 620, 118899.	8.2	23
95	Application of PRO process for seawater and wastewater treatment: assessment of membrane performance. , 2021, , 203-244.		0
96	Comparison of Pressure-Retarded Osmosis Performance between Pilot-Scale Cellulose Triacetate Hollow-Fiber and Polyamide Spiral-Wound Membrane Modules. Membranes, 2021, 11, 177.	3.0	6
97	Pressure retarded osmosis: Advancement, challenges and potential. Journal of Water Process Engineering, 2021, 40, 101950.	5.6	23
98	Thin-ï¬lm nanocomposite membrane comprised of a novel phosphonic acid derivative of titanium dioxide for efficient boron removal. Journal of Environmental Chemical Engineering, 2021, 9, 105722.	6.7	8
99	Fabrication and characterization of dual layer <scp>PEBAXâ€6iO₂</scp> /polyethersulfone nanocomposite membranes for separation of <scp>CO₂</scp> / <scp>CH₄</scp> gases. Journal of Applied Polymer Science, 2022. 139. 51624.	2.6	7
100	Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. Journal of Membrane Science, 2021, 636, 119586.	8.2	32
101	Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry. Desalination, 2021, 516, 115219.	8.2	5
102	Regulating solvent activation by the mechanical force for the fabrication of reverse osmosis membranes with high permeability and selectivity. Journal of Membrane Science, 2021, 638, 119732.	8.2	11
103	Reconstruction of the polyamide film in nanofiltration membranes via the post-treatment with a ternary mixture of ethanol-water-NaOH: Mechanism and effect. Desalination, 2021, 519, 115317.	8.2	20
104	Assessing the potential of integrally skinned asymmetric hollow fiber membranes for addressing membrane fouling in pressure retarded osmosis process. Desalination, 2021, 520, 115347.	8.2	10
106	Pressure Retarded Osmosis Process: Current Status and Future. Daehan Hwan'gyeong Gonghag Hoeji, 2014, 36, 791-802.	1.1	9
107	Positively charged membranes with fine-tuned nanopores for ultrafast and high-precision cation separation. Journal of Materials Chemistry A, 2021, 9, 24355-24364.	10.3	17
108	3D printing for membrane desalination: Challenges and future prospects. Desalination, 2021, 520, 115366.	8.2	34
109	Efficiency of Graphene-Based Forward Osmosis Membranes. , 2020, , 309-334.		0
110	Mechanism insights into the role of the support mineralization layer toward ultrathin polyamide nanofilms for ultrafast molecular separation. Journal of Materials Chemistry A, 2021, 9, 26159-26171.	10.3	34

#	Article	IF	CITATIONS
111	An In Situ Incorporation of Acrylic Acid and ZnO Nanoparticles into Polyamide Thin Film Composite Membranes for Their Effect on Membrane pH Responsive Behavior. Membranes, 2021, 11, 910.	3.0	3
112	Treatment of reverse osmosis membrane by sodium hypochlorite and alcohols for enhanced performance using the swelling-fastening effect. Chemosphere, 2022, 292, 133444.	8.2	9
113	Ultrapermeable polyamide nanofiltration membrane formed on a self-constructed cellulose nanofibers interlayer. Chemical Engineering Research and Design, 2022, 179, 249-256.	5.6	7
114	Polymer-based forward osmosis membranes. , 2022, , 419-470.		0
115	Polyamide Nanofiltration Membrane from Surfactant-assembly Regulated Interfacial Polymerization of 2-Methylpiperazine for Divalent Cations Removal. Chemical Research in Chinese Universities, 2022, 38, 782-789.	2.6	3
116	A zwitterionic copolymer-interlayered ultrathin nanofilm with ridge-shaped structure for ultrapermeable nanofiltration. Journal of Membrane Science, 2022, 657, 120679.	8.2	19
117	Trends and errors in reverse osmosis membrane performance calculations stemming from test pressure and simplifying assumptions about concentration polarization and solute rejection. Journal of Membrane Science, 2022, 660, 120856.	8.2	5
118	Tannic acid-assisted in-situ interfacial formation of Prussian blue-assembled adsorptive membranes for radioactive cesium removal. Journal of Hazardous Materials, 2023, 442, 129967.	12.4	8
119	Conductive nanofiltration membrane with a hydrogel coated stainless steel mesh support for electrically enhanced fouling mitigation potential. Environmental Science: Water Research and Technology, 2022, 8, 2652-2662.	2.4	1
120	Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment. Journal of Membrane Science, 2023, 668, 121251.	8.2	10
121	High-performance polyethyleneimine based reverse osmosis membrane fabricated via spin-coating technology. Journal of Membrane Science, 2023, 668, 121248.	8.2	6
122	Polyamide Thin-Film Composite Janus Membranes Avoiding Direct Contact between Feed Liquid and Hydrophobic Pores for Excellent Wetting Resistance in Membrane Distillation. ACS ES&T Water, 2023, 3, 176-184.	4.6	8
123	Fluidics for energy harvesting: from nano to milli scales. Lab on A Chip, 2023, 23, 1034-1065.	6.0	5
124	Highly permeable nanofilms with asymmetric multilayered structure engineered via amine-decorated interfacial polymerization. Journal of Membrane Science, 2023, 670, 121377.	8.2	14
125	Progress in membranes for pressure retarded osmosis application. Desalination, 2023, 549, 116347.	8.2	9
126	Evolution of surface damage of thin film composite (TFC) reverse osmosis (RO) membranes under controlled hygro-mechanical conditions. Surfaces and Interfaces, 2023, 39, 102911.	3.0	1
127	Harnessing the power of metal-organic frameworks to develop microplastic fouling resistant forward osmosis membranes. Journal of Membrane Science, 2023, 682, 121766.	8.2	8
128	Polyethyleneimine-cured epoxy-based solvent tolerant nanofiltration membranes. Journal of Membrane Science, 2023, 685, 121862.	8.2	2

#	Article	IF	CITATIONS
129	"Clickable―Interfacial Polymerization of Polythioether Ultrathin Membranes for Ion Separation. Macromolecules, 2023, 56, 7132-7141.	4.8	1
130	Facile Preparation of Dense Polysulfone UF Membranes with Enhanced Salt Rejection by Post-Heating. Membranes, 2023, 13, 759.	3.0	1
131	Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chemical Reviews, 2023, 123, 10156-10205.	47.7	9
132	In situ modification of ultrafiltration membranes with eco-friendly pyrogallol/taurine to enhance antifouling performance. Journal of Membrane Science, 2023, 688, 122114.	8.2	1
133	Anhydrous interfacial polymerization of sub-1 Ã sieving polyamide membrane. Nature Communications, 2023, 14, .	12.8	4
134	Precise Regulation of Monomer Reactive Sites Enhances the Water Permeance and Membrane Selectivity of Polyamide Nanofiltration Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 19813-19821.	3.7	0
135	Novel polyamide-hydrazide based reverse osmosis membrane with enhanced antifouling properties. Desalination, 2024, 574, 117233.	8.2	0