Fungal systematics: is a new age of enlightenment at ha

Nature Reviews Microbiology 11, 129-133 DOI: 10.1038/nrmicro2963

Citation Report

#	Article	IF	CITATIONS
1	The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Diversity, 2013, 61, 117-138.	4.7	103
2	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	2.0	2,997
3	Against the naming of fungi. Fungal Biology, 2013, 117, 463-465.	1.1	19
4	Oh, to Be New. New England Journal of Medicine, 2013, 369, 1464-1466.	13.9	3
5	Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA Journal, 2013, 11, 3449.	0.9	182
6	Toward Sequence-Based Classification of Fungal Species. IMA Fungus, 2013, 4, A33-A34.	1.7	7
7	Temperate Pine Barrens and Tropical Rain Forests Are Both Rich in Undescribed Fungi. PLoS ONE, 2014, 9, e103753.	1.1	18
8	Appropriately Sized Genera and Appropriately Ranked Higher Taxa. IMA Fungus, 2014, 5, A1-A2.	1.7	3
9	Fungal Diagnostics. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019299-a019299.	2.9	128
10	<i>Acidomelania panicicola</i> gen. et sp. nov. from switchgrass roots in acidic New Jersey pine barrens. Mycologia, 2014, 106, 856-864.	0.8	25
11	A Brief Chronicle of the Genus <i>Cordyceps</i> Fr., the Oldest Valid Genus in Cordycipitaceae (Hypocreales, Ascomycota). Mycobiology, 2014, 42, 93-99.	0.6	21
12	Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biology, 2014, 118, 943-955.	1.1	48
13	2 Genomics to Study Basal Lineage Fungal Biology: Phylogenomics Suggests a Common Origin. , 2014, , 31-60.		7
14	Violaceous Necrotic Plaques on the Leg of an Immunosuppressed Patient. JAMA Dermatology, 2014, 150, 674.	2.0	0
15	DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany, 2014, 92, 135-147.	0.5	170
16	Biology, systematics, and clinical manifestations of Zygomycota infections. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1273-1287.	1.3	35
17	Metaâ€analysis of deepâ€sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytologist, 2014, 201, 623-635.	3.5	106
18	Ecological Genomics. Advances in Experimental Medicine and Biology, 2014, , .	0.8	30

#	Article	IF	CITATIONS
19	Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Diversity, 2014, 67, 203-229.	4.7	221
20	Rapid identification of the genus Dekkera/Brettanomyces, the Dekkera subgroup and all individual species. International Journal of Food Microbiology, 2014, 187, 7-14.	2.1	6
21	Genomic insights into the evolution of industrial yeast speciesBrettanomyces bruxellensis. FEMS Yeast Research, 2014, 14, n/a-n/a.	1.1	38
22	Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnology Advances, 2014, 32, 1336-1360.	6.0	361
23	Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek, 2014, 106, 57-65.	0.7	160
24	Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evolutionary Biology, 2014, 14, 38.	3.2	78
25	Yeasts vectored by migratory birds collected in the Mediterranean island of Ustica and description of <i>Phaffomyces usticensis</i> f.a. sp. nov., a new species related to the cactus ecoclade. FEMS Yeast Research, 2014, 14, 910-921.	1.1	22
26	Speciation in Fungal and Oomycete Plant Pathogens. Annual Review of Phytopathology, 2014, 52, 289-316.	3.5	36
27	<i>Verticillium</i> Systematics and Evolution: How Confusion Impedes Verticillium Wilt Management and How to Resolve It. Phytopathology, 2014, 104, 564-574.	1.1	173
28	Confronting the constraints of morphological taxonomy in the <i>Botryosphaeriales</i> . Persoonia: Molecular Phylogeny and Evolution of Fungi, 2014, 33, 155-168.	1.6	73
29	Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus, 2014, 5, 121-134.	1.7	154
30	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	1.4	272
31	A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based Chimera Control in Environmental Sequencing Efforts. Microbes and Environments, 2015, 30, 145-150.	0.7	231
32	Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of <scp>S</scp> cots pine forests along elevation gradients in <scp>F</scp> rance and <scp>S</scp> pain. Environmental Microbiology, 2015, 17, 3009-3024.	1.8	53
34	Multiâ€gene phylogeny of the genus <i>Lobaria</i> : Evidence of speciesâ€pair and allopatric cryptic speciation in East Asia. American Journal of Botany, 2015, 102, 2058-2073.	0.8	24
36	Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order – Phaeomoniellales. Molecular Phylogenetics and Evolution, 2015, 85, 117-130.	1.2	66
37	Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genetics and Biology, 2015, 78, 16-48.	0.9	590
38	Overview of Stachybotrys (Memnoniella) and current species status. Fungal Diversity, 2015, 71, 17-83.	4.7	43

#	Article	IF	CITATIONS
39	High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae). Microbial Ecology, 2015, 70, 904-911.	1.4	34
40	Fungi: An Overview. , 2015, , 197-215.		2
41	Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiology Ecology, 2015, 91, .	1.3	56
43	The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity, 2015, 74, 3-18.	4.7	471
44	Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages. BMC Genomics, 2015, 16, 400.	1.2	12
45	Towards the unification of sequenceâ€based classification and sequenceâ€based identification of hostâ€associated microorganisms. New Phytologist, 2015, 205, 27-31.	3.5	21
46	Names matter. Progress in Physical Geography, 2015, 39, 640-660.	1.4	13
47	The population biology of fungal invasions. Molecular Ecology, 2015, 24, 1969-1986.	2.0	173
48	Resolving the Colletotrichum siamense species complex using ApMat marker. Fungal Diversity, 2015, 71, 247-264.	4.7	80
49	Thermophilic fungi in the new age of fungal taxonomy. Extremophiles, 2015, 19, 31-37.	0.9	53
50	Redefining <1>Microascus, Scopulariopsis 1 and allied genera. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2016, 36, 1-36.	1.6	62
51	Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons. Frontiers in Plant Science, 2016, 7, 1023.	1.7	4
52	Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands. New Phytologist, 2016, 209, 1196-1207.	3.5	28
53	Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of <i>Rhizophagus irregularis</i> and <i>Gigaspora margarita</i> is high and isolateâ€dependent. Molecular Ecology, 2016, 25, 2816-2832.	2.0	64
54	Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. Bodenkultur, 2016, 67, 145-163.	0.1	28
55	Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of <i>Rinodina</i> . Lichenologist, 2016, 48, 469-488.	0.5	22
56	The complete mitochondrial genome of the acid-tolerant fungus Penicillium ShG4C. Genomics Data, 2016, 10, 141-143.	1.3	3
57	Advances in Arbuscular Mycorrhizal Taxonomy. Fungal Biology, 2016, , 15-21.	0.3	10

#	Article	IF	CITATIONS
58	A Return to Linnaeus's Focus on Diagnosis, Not Description: The Use of DNA Characters in the Formal Naming of Species. Systematic Biology, 2016, 65, 1085-1095.	2.7	99
59	Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150336.	1.8	84
60	Hawksworthiomyces gen. nov. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biology, 2016, 120, 1323-1340.	1.1	44
62	Global food and fibre security threatened by current inefficiencies in fungal identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160024.	1.8	74
63	Future Perspectives and Challenges of Fungal Systematics in the Age of Big Data. Fungal Biology, 2016, , 25-46.	0.3	16
64	Small genome of the fungus <i>Escovopsis weberi</i> , a specialized disease agent of ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3567-3572.	3.3	71
65	Taxonomy of Allergenic Fungi. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 375-385.e1.	2.0	80
66	A fast and robust protocol for metataxonomic analysis using RNAseq data. Microbiome, 2017, 5, 7.	4.9	25
67	Statistical test for tolerability of effects of an antifungal biocontrol strain on fungal communities in three arable soils. Microbial Biotechnology, 2017, 10, 434-449.	2.0	13
68	Evaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity. Fungal Ecology, 2017, 26, 74-84.	0.7	17
69	Root endophytic fungal communities associated with pitch pine, switchgrass, and rosette grass in the pine barrens ecosystem. Fungal Biology, 2017, 121, 478-487.	1.1	18
70	Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of Natural Products, 2017, 80, 756-770.	1.5	555
71	The next generation fungal diversity researcher. Fungal Biology Reviews, 2017, 31, 124-130.	1.9	10
72	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	13.6	590
73	Systematics of Pochonia. , 2017, , 21-43.		5
76	Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. Advances in Genetics, 2017, 100, 1-47.	0.8	28
77	Mining the oral mycobiome: Methods, components, and meaning. Virulence, 2017, 8, 313-323.	1.8	83
78	DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification?. Food Chemistry, 2017, 214, 383-392.	4.2	68

#	ARTICLE	IF	CITATIONS
79	<i>Aspergillus</i> subgenus <i>Polypaecilum</i> from the built environment. Studies in Mycology, 2017, 88, 237-267.	4.5	23
80	New species of Tulasnella associated with terrestrial orchids in Australia. IMA Fungus, 2017, 8, 28-47.	1.7	36
81	Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Frontiers in Microbiology, 2017, 8, 1792.	1.5	129
82	Early gut mycobiota and mother-offspring transfer. Microbiome, 2017, 5, 107.	4.9	138
83	Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus <i>Magnaporthe oryzae</i> . MBio, 2018, 9, .	1.8	163
84	Fungal species and their boundaries matter –ÂDefinitions, mechanisms and practical implications. Fungal Biology Reviews, 2018, 32, 104-116.	1.9	51
85	8. Isolation, characterization, and identification of mycotoxin-producing fungi. , 2018, , 202-245.		2
86	Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus, 2018, 9, 143-165.	1.7	42
88	Phylogeny and morphology reveal two new species of Diaporthe from Traditional Chinese Medicine in Northeast China. Phytotaxa, 2018, 336, 159.	0.1	19
89	Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi. MSphere, 2018, 3, .	1.3	8
90	Biocontrol Potential of Forest Tree Endophytes. Forestry Sciences, 2018, , 283-318.	0.4	9
91	Toxigenic Foliar Endophytes from the Acadian Forest. Forestry Sciences, 2018, , 343-381.	0.4	12
93	An emended description of Neofusicoccum brasiliense and characterization of Neoscytalidium and Pseudofusicoccum species associated with tropical fruit plants in northeastern Brazil. Phytotaxa, 2018, 358, 251.	0.1	8
94	Updates in the Language of <i>Histoplasma</i> Biodiversity. MBio, 2018, 9, .	1.8	1
95	A worldwide nomenclature revision of sequestrate Russula species. Fungal Systematics and Evolution, 2018, 1, 229-242.	0.9	14
96	Biodiversity of the human oral mycobiome in health and disease. Oral Diseases, 2019, 25, 363-371.	1.5	57
97	Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. Journal of Neurology, 2019, 266, 27-36.	1.8	30
98	Thermophilic Fungal Diversity in Sustainable Development. , 2019, , 187-224.		0

#	ARTICLE Variability and Geographical Origin of Five Years Airborne Fungal Spore Concentrations Measured at	IF	CITATIONS
99	Saclay, France from 2014 to 2018. Remote Sensing, 2019, 11, 1671.	1.8	16
100	A survey of fungal microbiota in airways of healthy volunteer subjects from Puglia (Apulia), Italy. BMC Infectious Diseases, 2019, 19, 78.	1.3	12
101	A Universally Primed-Polymerase Chain Reaction (UP-PCR) Marker to Discriminate Clonostachys rosea ACM941 from Related Strains. Journal of Fungi (Basel, Switzerland), 2019, 5, 39.	1.5	4
102	Endolichenic Fungi: Present and Future Trends. , 2019, , .		9
103	Introduction to Endophytic Fungi Associated with Lichens i.e. Endolichenic Fungi. , 2019, , 27-47.		0
104	Cultured Microfungal Communities in Biological Soil Crusts and Bare Soils at the Tabernas Desert, Spain. Soil Systems, 2019, 3, 36.	1.0	9
105	Recent Progress in Research on the Pharmacological Potential of Mushrooms and Prospects for Their Clinical Application. , 2019, , 1-70.		24
106	Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecology, 2019, 41, 23-33.	0.7	165
107	Soil lead pollution modifies the structure of arbuscular mycorrhizal fungal communities. Mycorrhiza, 2019, 29, 363-373.	1.3	30
108	<i>Coccidioides</i> ecology and genomics. Medical Mycology, 2019, 57, S21-S29.	0.3	18
109	Internal transcribed spacer (ITS) sequence-based characterization of fungal isolates from multiple yogurt facilities—A case study. Journal of Dairy Science, 2019, 102, 3646-3653.	1.4	3
110	Fungal Community Ecology Using MALDI-TOF MS Demands Curated Mass Spectral Databases. Frontiers in Microbiology, 2019, 10, 315.	1.5	10
111	Important Extracellular Interactions between Plasmodium Sporozoites and Host Cells Required for Infection. Trends in Parasitology, 2019, 35, 129-139.	1.5	30
112	Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evolutionary Applications, 2020, 13, 95-115.	1.5	61
113	Toward a Fully Resolved Fungal Tree of Life. Annual Review of Microbiology, 2020, 74, 291-313.	2.9	156
114	A new species concept for the clinically relevant <i>Mucor circinelloides</i> complex. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2020, 44, 67-97.	1.6	53
115	Structural, physical characteristics and biological activities assessment of scleroglucan from a local strain Athelia rolfsii TEMG. International Journal of Biological Macromolecules, 2020, 163, 1196-1207.	3.6	14
116	The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms, 2020, 8, 308.	1.6	231

#	Article	IF	Citations
117	Vertical Divergence of Cultivable Microfungal Communities Through Biocrusted and Bare Soil Profiles at the Tabernas Desert, Spain. Geomicrobiology Journal, 2020, 37, 534-549.	1.0	5
118	Diversity of Colletotrichum species causing onion anthracnose in Brazil. European Journal of Plant Pathology, 2021, 159, 339-357.	0.8	12
119	The History of <i>Botrytis</i> Taxonomy, the Rise of Phylogenetics, and Implications for Species Recognition. Phytopathology, 2021, 111, 437-454.	1.1	18
120	Weak effect of plant canopy but strong impact of depth on variation of cultivable microfungal communities through soil profiles in semiarid Spain. Pedobiologia, 2021, 85-86, 150710.	0.5	2
121	Microclimatic Gradient as a Source of Variations in Cultivable soil Microfungal Communities at the Negev Desert, Israel. Geomicrobiology Journal, 2021, 38, 829-841.	1.0	5
122	Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. Journal of Fungi (Basel, Switzerland), 2021, 7, 703.	1.5	12
123	The Neurotrophic and Neuroprotective Potential of Macrofungi. , 2021, , 37-77.		4
125	Role of Fungal Enzymes for Bioremediation of Hazardous Chemicals. Fungal Biology, 2019, , 237-256.	0.3	8
126	Fungi as Biological Control Agents of Plant-Parasitic Nematodes. Progress in Biological Control, 2020, , 333-384.	0.5	12
127	7 The Shifting Sands of Fungal Naming Under the ICN and the One Name Era for Fungi. , 2015, , 179-203.		5
128	Ecological Genomics of Adaptation and Speciation in Fungi. Advances in Experimental Medicine and Biology, 2014, 781, 49-72.	0.8	8
129	Species Identification in Plant-Associated Prokaryotes and Fungi Using DNA. Phytobiomes Journal, 2020, 4, 103-114.	1.4	7
130	A clash of ideas – the varying uses of the â€̃species' term in virology and their utility for classifying viruses in metagenomic datasets. Journal of General Virology, 2018, 99, 277-287.	1.3	11
133	Internal Transcribed Spacer 1 Secondary Structure Analysis Reveals a Common Core throughout the Anaerobic Fungi (Neocallimastigomycota). PLoS ONE, 2014, 9, e91928.	1.1	88
134	New Neotropical Sebacinales Species from a Pakaraimaea dipterocarpacea Forest in the Guayana Region, Southern Venezuela: Structural Diversity and Phylogeography. PLoS ONE, 2014, 9, e103076.	1.1	10
135	Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical Journal, 2014, 37, 345.	1.4	246
136	The Production of 1,8-Cineole, a Potential Biofuel, from an Endophytic Strain of <i>Annulohypoxylon</i> sp. FPYF3050 When Grown on Agricultural Residues. Journal of Sustainable Bioenergy Systems, 2017, 07, 65-84.	0.2	13
137	Molecular characterization of the pathogen responsible for Choanephora fruit rot disease in Momordica charantia (L.) and establishment of its ecofriendly control measures. GSC Biological and Pharmaceutical Sciences, 2020, 11, 022-033.	0.1	0

#	Article	IF	CITATIONS
139	How good are we at describing a new fungal species? A case study based on the family Botryosphaeriaceae (Dothideomycetes). Mycological Progress, 2022, 21, 1.	0.5	0
140	DNA Sequence-Based Identification of <i>Fusarium</i> : A Work in Progress. Plant Disease, 2022, 106, 1597-1609.	0.7	48
143	Fungal exposome, human health, and unmet needs: A 2022 update with special focus on allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3199-3216.	2.7	16
144	Da Vinci's yeast: <i>Blastobotrys davincii</i> f.a., sp. nov. Yeast, 2023, 40, 7-31.	0.8	4
145	Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. International Journal of Food Microbiology, 2022, 383, 109951.	2.1	9
146	Opportunistic Pathogens of the Genus <i>Cryptococcus</i> in Louis Pasteur Days and in 200th Anniversary of his Birth. Postepy Mikrobiologii, 2022, 61, 247-259.	0.1	0
147	New records and barcode sequence data of wood-inhabiting polypores in Benin with notes on their phylogenetic placements and distribution. Fungal Systematics and Evolution, 2023, , .	0.9	0
148	Mushrooms as Promising Therapeutic Resources: Review and Future Perspectives. , 2023, , 1-54.		0