CITATION REPORT List of articles citing

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries

DOI: 10.1038/ncomms2513 Nature Communications, 2013, 4, 1481.

Source: https://exaly.com/paper-pdf/55771056/citation-report.pdf

Version: 2024-04-25

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
1791	Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. 2013 , 4, 3673	366
1790	Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. 2013 , 6, 2280	982
1789	A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. 2013 , 15, 11661-72	225
1788	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. 2013 , 6, 2338	2419
1787	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013 , 4, 2365	468
1786	Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. 2013 , 6, 365-372	67
1785	Why PEO as a binder or polymer coating increases capacity in the Li-S system. 2013 , 49, 8531-3	92
1784	Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. 2013 , 5, 7671-5	81
1783	Surface-driven sodium ion energy storage in nanocellular carbon foams. 2013 , 13, 3909-14	202
1782	A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. 2013 , 13, 5891-9	373
1781	In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. 2013 , 7, 10995-1003	187
1780	Lithium-sulfur batteries: electrochemistry, materials, and prospects. 2013 , 52, 13186-200	1989
1779	Sulfur/graphitic hollow carbon sphere nano-composite as a cathode material for high-power lithium-sulfur battery. 2013 , 8, 343	25
1778	Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. 2013 , 25, 4573-9	284
1777	Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. 2013 , 7,8003-10	335
1776	A new catalyst-embedded hierarchical air electrode for high-performance LiD2 batteries. 2013, 6, 3570	134
1775	Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable LithiumBulfur Batteries. 2013 , 117, 20509-20516	145

(2014-2013)

1774	2013, 1, 10362	122
1773	Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries. 2013 , 49, 4905-7	99
1772	Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries. 2013 , 3, 1186-1194	401
1771	The Role of Charge Reactions in Cyclability of Lithium Dxygen Batteries. 2013, 3, 1413-1416	37
1770	A strategic approach to recharging lithium-sulphur batteries for long cycle life. <i>Nature Communications</i> , 2013 , 4, 2985	330
1769	Encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries. 2013, 25, 6547-53	295
1768	How to Obtain Reproducible Results for Lithium Sulfur Batteries?. 2013 , 160, A2288-A2292	136
1767	An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. 2013 , 52, 8363-7	330
1766	An Advanced Selenium Larbon Cathode for Rechargeable Lithium Belenium Batteries. 2013, 125, 8521-8525	47
1765	Lithium-Schwefel-Batterien: Elektrochemie, Materialien und Perspektiven. 2013 , 125, 13426-13441	163
1764	The effect of V2O5/C additive on the suppression of polysulfide dissolution in Li-sulfur batteries. 2014 , 33, 142-148	14
1763	Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries. 2014 , 57, 1564-1569	44
1762	Lithium-sulfur batteries. 2014 , 39, 436-442	249
1761	Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. 2014 , 57, 42-58	68
1760	Ambient lithium-SO2 batteries with ionic liquids as electrolytes. 2014 , 53, 2099-103	57
1759	Ambient Lithium BO2 Batteries with Ionic Liquids as Electrolytes. 2014 , 126, 2131-2135	18
1758	Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries. 2014 , 7, 2000-6	66
1757	New Desolvated Gel Electrolyte for Rechargeable Lithium Metal Sulfurized Polyacrylonitrile (S-PAN) Battery. 2014 , 118, 28369-28376	26

1756	Fabrication of Fully Fluorinated Graphene Nanosheets Towards High-Performance Lithium Storage. 2014 , 1, 1300149	40
1755	Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. 2014 , 26, 2273-9, 2284	395
1754	Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries. 2014 , 7, 3341-6	24
1753	Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithium-Ion Battery Applications. 2014 , 4, 1301368	37
1752	Cereus-Shaped Mesoporous Rutile TiO2 Formed in Ionic Liquid: Synthesis and Li-Storage Properties. 2014 , 1, 549-553	12
1751	Ionic shield for polysulfides towards highly-stable lithiumBulfur batteries. 2014 , 7, 347-353	547
1750	Lithium dendrite and solid electrolyte interphase investigation using OsO4. 2014 , 266, 198-207	52
1749	All fluorine-free lithium battery electrolytes. 2014 , 251, 451-458	24
1748	A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells. 2014 , 7, 1655-61	111
1747	A review of electrolytes for lithium allphur batteries. 2014 , 255, 204-218	338
1746	Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. 2014 , 253, 55-63	68
1746 1745		68
	Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. 2014 , 252, 150-155 Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of	
1745	Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. 2014 , 252, 150-155 Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of	93
1745 1744	Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. 2014, 252, 150-155 Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of High-Performance Cathodes for Lithium-Sulfur and Lithium-Ion Batteries. 2014, 4, 1400196 Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode	93
1745 1744 1743	Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. 2014, 252, 150-155 Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of High-Performance Cathodes for Lithium-Sulfur and Lithium-Ion Batteries. 2014, 4, 1400196 Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. 2014, 53, 3926-31 Mesoporous carbon/sulfur composite with polyaniline coating for lithium sulfur batteries. 2014,	93 122 360
1745 1744 1743 1742	Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. 2014, 252, 150-155 Harnessing Steric Separation of Freshly Nucleated Li2S Nanoparticles for Bottom-Up Assembly of High-Performance Cathodes for Lithium-Sulfur and Lithium-Ion Batteries. 2014, 4, 1400196 Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. 2014, 53, 3926-31 Mesoporous carbon/sulfur composite with polyaniline coating for lithium sulfur batteries. 2014, 262, 170-173 Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for	93 122 360 32

1738	Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries. 2014 , 24, 2772-2781	452
1737	A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. 2014 , 26, 625-31, 664	842
1736	Nano-Copper-Assisted Immobilization of Sulfur in High-Surface-Area Mesoporous Carbon Cathodes for Room Temperature Na-S Batteries. 2014 , 4, 1400226	105
1735	Unique behaviour of nonsolvents for polysulphides in lithium Bulphur batteries. 2014, 7, 2697-2705	280
1734	Effective Separation of Lithium Anode and Sulfur Cathode in Lithium Bulfur Batteries. 2014, 1, 1040-1045	61
1733	An aqueous electrolyte rechargeable Li-ion/polysulfide battery. 2014 , 2, 9025-9029	32
1732	A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries. 2014 , 6, 1653-60	79
1731	In situ sulfur deposition route to obtain sulfurdarbon composite cathodes for lithiumBulfur batteries. 2014 , 2, 4316-4323	81
1730	Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. 2014 , 8, 5208-15	334
1729	Sulfur-Impregnated, Sandwich-Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for High-Performance Lithium-Sulfur Batteries. 2014 , 4, 1301988	117
1728	Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries. 2014 , 24, 1243-1250	820
1727	Functionalized N-Doped Porous Carbon Nanofiber Webs for a LithiumBulfur Battery with High Capacity and Rate Performance. 2014 , 118, 1800-1807	164
1726	Facile synthesis of Li2Spolypyrrole composite structures for high-performance Li2S cathodes. 2014 , 7, 672	237
1725	Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. 2014 , 253, 263-268	113
1724	Lithium metal anodes for rechargeable batteries. 2014 , 7, 513-537	2793
1723	Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. <i>Nature Communications</i> , 2014 , 5, 3015	267
1722	Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. 2014 , 43, 7746-86	1073
1721	Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries. 2014 , 5, 3986-91	86

1720	High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. 2014 , 14, 7138-44	220
1719	Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries. 2014 , 20, 17523-9	39
1718	Solution-Based Processing of Graphenelli2S Composite Cathodes for Lithium-Ion and LithiumBulfur Batteries. 2014 , 31, 639-644	89
1717	A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. 2014 , 50, 14647-50	83
1716	Electrolytes and interphases in Li-ion batteries and beyond. 2014, 114, 11503-618	2847
1715	Copper-Stabilized Sulfur-Microporous Carbon Cathodes for LiB Batteries. 2014 , 24, 4156-4163	183
1714	Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes. 2014 , 2, 17649-17654	51
1713	Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries. 2014 , 2, 6064-6070	114
1712	High performance lithiumBulfur batteries: advances and challenges. 2014 , 2, 12662-12676	235
1711	Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. <i>Nature Communications</i> , 2014 , 5, 5017	461
1710	Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries. 2014 , 7, 2167-75	101
1709	A novel ionic liquid for Li ion batteries limiting the advantages of guanidinium and piperidinium cations. 2014 , 4, 1996-2003	14
1708	Performance-improved LiD2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. 2014 , 7, 1648-1652	140
1707	Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. 2014 , 2, 2306	63
1706	A selenium-confined microporous carbon cathode for ultrastable lithiumBelenium batteries. 2014 , 2, 17735-17739	97
1705	Confined selenium within porous carbon nanospheres as cathode for advanced LiBe batteries. 2014 , 9, 229-236	183
1704	A lithium/polysulfide semi-solid rechargeable flow battery with high output performance. 2014 , 4, 47517-475	201
1703	The effects of counterion composition on the rheological and conductive properties of mono- and diphosphonium ionic liquids. 2014 , 16, 20608-17	13

(2014-2014)

1702	Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithiumBulfur batteries. 2014 , 2, 8623-8627	82
1701	Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithiumBulfur batteries. 2014 , 2, 10350-10354	101
1700	A stable high performance LiB battery with a polysulfide ion blocking layer. 2014 , 2, 5602	16
1699	Tailoring interactions of carbon and sulfur in LiB battery cathodes: significant effects of carbonBeteroatom bonds. 2014 , 2, 12866	65
1698	A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries. 2014 , 6, 6151-7	161
1697	Scalable synthesis of a sulfur nanosponge cathode for a lithium fulfur battery with improved cyclability. 2014 , 2, 19788-19796	10
1696	Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries. 2014 , 5, 2522-7	135
1695	Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. 2014 , 271, 291-297	260
1694	LithiumBulfur batteriesEhe solution is in the electrolyte, but is the electrolyte a solution?. 2014 , 7, 3902-3920	250
1693	High performance batteries based on hybrid magnesium and lithium chemistry. 2014 , 50, 9644-6	132
1692	The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy. 2014 , 138, 430-436	51
1691	Nickel and nitrogen co-doped tin dioxide nano-composite as a potential anode material for lithium-ion batteries. 2014 , 143, 257-264	26
1690	Improved lithiumBulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathodeBeparator interface. 2014 , 7, 3381-3390	425
1689	Enhancement of long stability of LiB battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. 2014 , 4, 21612-21618	45
1688	Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. 2014 , 8, 5249-56	273
1687	Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte. 2014 , 2, 4652-4659	85
1686	Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for LithiumBulfur Batteries. 2014 , 24, 6105-6112	432
1685	Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO Electrodes During Charge/Discharge Cycling of Lithium Batteries. 2014 , 118, 6548-6557	34

1684	Prussian blue-derived Fe2O3/sulfur composite cathode for lithium ulfur batteries. 2014, 137, 52-55	57
1683	Novel approach for a high-energy-density Li∃ir battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. 2014 , 2, 9020	37
1682	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS II Understanding the Li Storage Mechanism. 2014 , 24, 5557-5566	45
1681	Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur-Containing Guest for Highly Stable Lithium-Sulfur Batteries: Mechanistic Insight into Capacity Degradation. 2014 , 1, 1400227	311
1680	An aqueous dissolved polysulfide cathode for lithiumBulfur batteries. 2014 , 7, 3307-3312	113
1679	Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. 2014 , 14, 2345-52	529
1678	High-capacity Li2Sgraphene oxide composite cathodes with stable cycling performance. 2014 , 5, 1396	99
1677	A Nanocomposite Polymer Electrolyte with High-Temperature Stability for Rechargeable Lithium Batteries. 2014 , 39, 6651-6657	5
1676	Superior Rechargeability and Efficiency of Lithium Dxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. 2014 , 126, 4007-4012	80
1675	Molecular structure and stability of dissolved lithium polysulfide species. 2014 , 16, 10923-32	177
1674	Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge. 2014 , 2,	89
1673	In Situ Sulfur Reduction and Intercalation of Graphite Oxides for Li-S Battery Cathodes. 2014 , 4, 1400482	110
1672	Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte. 2014 , 118, 14091-14097	141
1671	Rechargeable lithium-sulfur batteries. 2014 , 114, 11751-87	3074
1670	An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. 2014 , 6, 15542-9	143
1669	Toward a Molecular Understanding of Energetics in Liß Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study. 2014 , 118, 11545-11558	120
1668	Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: The combined effects of pore size distribution and electrolyte molarity. 2014 , 248, 752-761	69
1667	Lithium insertion/desertion properties of LiFePO4 cathode in a low temperature electrolyte modified with sodium chloride additive. 2014 , 260, 8-14	10

(2015-2014)

1666	Favorable binding effect for improving the electrochemical performance of cobalt oxide anode for lithium ion batteries. 2014 , 288, 742-746	8
1665	Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. 2014 , 118, 5144-53	162
1664	A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. 2014 , 7, 2220-2226	257
1663	"Ionic liquids-in-salt"a promising electrolyte concept for high-temperature lithium batteries?. 2014 , 16, 12341-9	59
1662	Rational design of a metal®rganic framework host for sulfur storage in fast, long-cycle Li® batteries. 2014 , 7, 2715	376
1661	Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium Bulfur batteries. 2014 , 608, 220-228	107
1660	Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries. 2014 , 23, 269-273	18
1659	Self-assembled organic nanowires for high power density lithium ion batteries. 2014 , 14, 1596-602	163
1658	The enhanced performance of LiB battery with P14YRTFSI-modified electrolyte. 2014 , 262, 174-178	34
1657	CoreBhell-Structured CNT@RuO2 Composite as a High-Performance Cathode Catalyst for Rechargeable Lit B2 Batteries. 2014 , 126, 452-456	49
1656	Air-Stable Copper-Based P2-NaCuFeMnO as a New Positive Electrode Material for Sodium-Ion Batteries. 2015 , 2, 1500031	218
1655	Leaf-Like Graphene-Oxide-Wrapped Sulfur for High-Performance Lithium-Sulfur Battery. 2015 , 2, 1500071	93
1654	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. 2015 , 5, 13340	96
1653	Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes. 2015 , 5, 14458	67
1652	Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. 2015 , 8, 2892-901	59
1651	Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. 2015 , 5, 1500408	321
1650	Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. 2015 , 5, 1500865	92
1649	Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. 2015 , 5, 1501082	391

1648	An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance LithiumBulfur Batteries. 2015 , 127, 10685-10690	32
1647	A Solvate Ionic Liquid as the Anolyte for Aqueous Rechargeable LiD2 Batteries. 2015 , 2, 1144-1151	23
1646	Alkali-Ion Storage Behaviour in Spinel Lithium Titanate Electrodes. 2015 , 2, 1678-1681	3
1645	Confined Sulfur in Microporous Carbon Renders Superior Cycling Stability in Li/S Batteries. 2015 , 25, 4312-4320	232
1644	A Hierarchical Particle-Shell Architecture for Long-Term Cycle Stability of Li2S Cathodes. 2015 , 27, 5579-86	101
1643	An Advanced Lithium-Ion Sulfur Battery for High Energy Storage. 2015 , 5, 1500481	84
1642	Poreless Separator and Electrolyte Additive for LithiumBulfur Batteries with High Areal Energy Densities. 2015 , 1, 240-245	39
1641	A Novel High Capacity Positive Electrode Material with Tunnel-Type Structure for Aqueous Sodium-Ion Batteries. 2015 , 5, 1501005	127
1640	Fe-Based Tunnel-Type Na0.61[Mn0.27Fe0.34Ti0.39]O2 Designed by a New Strategy as a Cathode Material for Sodium-Ion Batteries. 2015 , 5, 1501156	100
1639	An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries. 2015 , 54, 10539-44	83
1638	From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. 2015 , 6, 1016-55	307
1637	Improved rate ability of low cost sulfur cathodes by using ultrathin graphite sheets with self-wrapped function as cheap conductive agent. 2015 , 3, 8015-8021	16
1636	Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. 2015 , 3, 7207-7209	132
1635	Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries. 2015 , 9, 6373-82	261
1634	A graphene-oxide-based thin coating on the separator: an efficient barrier towards high-stable lithiumBulfur batteries. 2015 , 2, 024013	37
1633	Characterization of the Mass-Transport Phenomena in a Superconcentrated LiTFSI:Acetonitrile Electrolyte. 2015 , 162, A1334-A1340	28
1632	Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. 2015 , 17, 8706-13	100
1631	High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. 2015 , 51, 10244-7	96

1630	Lithium salts for advanced lithium batteries: Lithetal, Lith 2, and Lib. 2015, 8, 1905-1922	353
1629	Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in LiB batteries. 2015 , 93, 161-168	19
1628	Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations. 2015 , 351, 492-503	47
1627	Dendrite-Free Polygonal Sodium Deposition with Excellent Interfacial Stability in a NaAlClESOI Inorganic Electrolyte. 2015 , 7, 27206-14	57
1626	Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for LiB batteries. 2015 , 5, 100089-100096	29
1625	Nanoscale Polysulfides Reactors Achieved by Chemical Au-S Interaction: Improving the Performance of Li-S Batteries on the Electrode Level. 2015 , 7, 27959-67	55
1624	Elemental Selenium for Electrochemical Energy Storage. 2015 , 6, 256-66	187
1623	Ambient temperature sodium-sulfur batteries. 2015 , 11, 2108-14	233
1622	Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. 2014 , 4, 6467	113
1621	Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. 2015 , 119, 3957-3970	101
1620	Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy LithiumBulfur Batteries. 2015 , 119, 4580-4587	110
1619	Surface modification of sulfur electrodes by chemically anchored cross-linked polymer coating for lithium-sulfur batteries. 2015 , 7, 1401-5	41
1618	Synthesis of a ternary polyaniline@acetylene black-sulfur material by continuous two-step liquid phase for lithium sulfur batteries. 2015 , 158, 143-151	47
1617	A novel sulfur/carbon hollow microsphere yolkEhell composite as a high-performance cathode for lithium sulfur batteries. 2015 , 19, 1143-1149	27
1616	Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. 2015 , 9, 3002-11	605
1615	Synergetic role of Li(+) during Mg electrodeposition/dissolution in borohydride diglyme electrolyte solution: voltammetric stripping behaviors on a Pt microelectrode indicative of Mg-Li alloying and facilitated dissolution. 2015 , 7, 2494-502	41
1614	A novel three-dimensional sulfur/graphene/carbon nanotube composite prepared by a hydrothermal co-assembling route as binder-free cathode for lithiumBulfur batteries. 2015 , 17, 1	23
1613	Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. 2014 , 4, 3935	173

1612	Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in LiB batteries. 2015 , 3, 4799-4802	114
1611	Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. 2015 , 5, 13709-13714	49
1610	Control of emergent properties at a correlated oxide interface with graphene. 2015 , 15, 1627-34	38
1609	Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries. 2015 , 162, A474-A478	155
1608	Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithiumBulphur battery. 2015 , 12, 538-546	85
1607	Tellurium@Ordered Macroporous Carbon Composite and Free-Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable LithiumIIellurium Batteries. 2015 , 5, 1401999	65
1606	High rate and stable cycling of lithium metal anode. <i>Nature Communications</i> , 2015 , 6, 6362	1485
1605	Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithiumBulfur batteries. 2015 , 3, 7406-7412	115
1604	Expandable-graphite-derived graphene for next-generation battery chemistries. 2015, 284, 60-67	21
1603	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance LiB batteries. 2015 , 13, 467-473	67
1602	A novel non-aqueous aluminum sulfur battery. 2015 , 283, 416-422	153
1601	The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries. 2015 , 2, 014011	83
1600	A scalable hybrid separator for a high performance lithium-sulfur battery. 2015 , 51, 6996-9	43
1599	Novel Large-Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for LiB Batteries. 2015 , 5, 1500046	92
1598	Polyphenylene Wrapped Sulfur/Multi-Walled Carbon Nano-Tubes via Spontaneous Grafting of Diazonium Salt for Improved Electrochemical Performance of Lithium-Sulfur Battery. 2015 , 165, 136-141	27
1597	Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. 2015 , 3, 6787-6791	214
1596	A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. 2015 , 8, 1551-1558	197
1595	An in situ self-developed graphite as high capacity anode of lithium-ion batteries. 2015 , 51, 12118-21	16

(2015-2015)

1594	Analytical Detection of Polysulfides in the Presence of Adsorption Additives by Operando X-ray Absorption Spectroscopy. 2015 , 119, 19001-19010	58
1593	Orange Peels Derived Activated Carbon as Sulfur Cathode Supporter for Lithium/Sulfur Batteries. 2015 , 1120-1121, 493-497	
1592	Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. 2015 , 17, 22321-35	57
1591	One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior lithium ion storage performance. 2015 , 5, 12382	60
1590	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithiumBulfur batteries with long cycle life. 2015 , 16, 268-280	124
1589	Long-Life, High-Efficiency LithiumBulfur Battery from a Nanoassembled Cathode. 2015 , 27, 5080-5087	54
1588	Perspectives in Lithium Batteries. 2015 , 191-232	3
1587	Improving the Anode Performance of WS2 through a Self-Assembled Double Carbon Coating. 2015 , 119, 15874-15881	80
1586	Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries. 2015 , 9, 8504-13	215
1585	Ionic liquid-based electrolyte with binary lithium salts for high performance lithiumBulfur batteries. 2015 , 296, 10-17	49
1584	One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithiumBulfur batteries. 2015 , 295, 182-189	115
1583	High performance Li-ion sulfur batteries enabled by intercalation chemistry. 2015 , 51, 13454-7	45
1582	Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles. 2015 , 50, 1445-1461	16
1581	Effects of electrolyte concentration and synthesis methods of sulfur/carbon composites on the electrochemical performance in lithiumBulfur batteries. 2015 , 5, 54293-54300	8
1580	Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium ulfur batteries. 2015 , 294, 386-392	58
1579	In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. 2015 , 7, 9573-80	55
1578	Electrolytes for Li-ion transport [Review. 2015 , 276, 107-126	159
1577	On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Liß Redox Flow Batteries. 2015 , 5, 1500113	103

1576	Recent Advances in Electrolytes for LithiumBulfur Batteries. 2015, 5, 1500117	426
1575	Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery. 2015 , 162, A982-A990	181
1574	Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. 2015 , 169, 61-72	37
1573	Progress Towards Commercially Viable Liß Battery Cells. 2015 , 5, 1500118	300
1572	High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode. 2015 , 2, 1500018	126
1571	Preparation and lithium storage properties of active carbon@NT/sulfur composite. 2015, 21, 1241-1246	10
1570	Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithiumBulfur batteries. 2015 , 3, 10910-10918	124
1569	Highly Conductive Electrolytes Derived from Nitrile Solvents. 2015 , 162, A1276-A1281	6
1568	Ti-substituted tunnel-type Nal MnOlbxide as a negative electrode for aqueous sodium-ion batteries. <i>Nature Communications</i> , 2015 , 6, 6401	265
1567	Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. 2015 , 15, 3309-16	88
1566	Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. 2015 , 1, e1400035	130
1565	Superior Performance of a LiD2 Battery with Metallic RuO2 Hollow Spheres as the Carbon-Free Cathode. 2015 , 5, 1500294	122
1564	A Sulfur Cathode with Pomegranate-Like Cluster Structure. 2015 , 5, 1500211	108
1563	Trapping Polysulfides Catholyte in Carbon Nanofiber Sponges for Improving the Performances of Sulfur Batteries. 2015 , 162, A1396-A1400	19
1562	Direct Observation of the Redistribution of Sulfur and Polysufides in LiB Batteries During the First Cycle by In Situ X-Ray Fluorescence Microscopy. 2015 , 5, 1500072	74
1561	High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. 2015 , 7, 7001-7	103
1560	Status and prospects in sulfurBarbon composites as cathode materials for rechargeable lithiumBulfur batteries. 2015 , 92, 41-63	328
1559	Dual protection of sulfur by interconnected porous carbon nanorods and graphene sheets for lithiumBulfur batteries. 2015 , 747, 59-67	18

(2015-2015)

1558	Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. 2015 , 3, 10127-10133	50
1557	Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries. 2015 , 5, 1500110	194
1556	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. 2015 , 15, 3398-402	104
1555	Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode. 2015 , 15, 2863-8	102
1554	Anodes for Rechargeable Lithium-Sulfur Batteries. 2015 , 5, 1402273	362
1553	Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries. 2015 , 51, 7749-52	17
1552	Materials and technologies for rechargeable lithiumBulfur batteries. 2015 , 117-147	6
1551	Structural Design of Cathodes for Li-S Batteries. 2015 , 5, 1500124	342
1550	All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. 2015, 300, 24-28	161
1549	Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. 2015 , 299, 460-464	33
1548	A Highly Reversible Room-Temperature Sodium Metal Anode. 2015 , 1, 449-55	516
1547	Modeling of nano-structured cathodes for improved lithium-sulfur batteries. 2015 , 184, 124-133	37
1546	A polypyrrole-supported carbon paper acting as a polysulfide trap for lithiumBulfur batteries. 2015 , 5, 94479-94485	18
1545	Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. 2015 , 6, 4653-72	623
1544	ReviewBuperconcentrated Electrolytes for Lithium Batteries. 2015 , 162, A2406-A2423	430
1543	A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. 2015 , 51, 14397-400	108
1542	Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithiumBulfur batteries. 2015 , 24, 448-455	63
1541	Novel Slurry Electrolyte Containing Lithium Metasilicate for High Electrochemical Performance of a 5 V Cathode. 2015 , 7, 22898-906	6

1540	A stable graphite negative electrode for the lithium-sulfur battery. 2015 , 51, 17100-3	37
1539	Review D evelopment of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions. 2015 , 162, A2424-A2438	114
1538	2D Electrides as Promising Anode Materials for Na-Ion Batteries from First-Principles Study. 2015 , 7, 24016-22	126
1537	Complexation dynamics of CH3SCN and Li(+) in acetonitrile studied by two-dimensional infrared spectroscopy. 2015 , 17, 24193-200	7
1536	Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. 2015 , 137, 12143-52	376
1535	Pie-like electrode design for high-energy density lithium-sulfur batteries. <i>Nature Communications</i> , 2015 , 6, 8850	391
1534	"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. 2015 , 350, 938-43	1717
1533	In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries. 2015 , 11, 579-586	76
1532	Role of organic solvent addition to ionic liquid electrolytes for lithium ulphur batteries. 2015 , 5, 2122-2128	19
1531	A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. 2015 , 11, 1488-511	261
1530	In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes. 2015 , 5, 1401792	165
1529	A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes. 2015 , 5, 6588-6594	19
1528	Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries. 2015 , 8, 353-60	24
1527	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. 2014 , 4, 6272	108
1526	Dendrite-separator interactions in lithium-based batteries. 2015 , 275, 912-921	103
1525	Sulfur/bamboo charcoal composites cathode for lithiumBulfur batteries. 2015 , 5, 68-74	24
1524	Manganese modified zeolite silicalite-1 as polysulphide sorbent in lithium sulphur batteries. 2015 , 274, 1239-1248	33
1523	Li-ion battery materials: present and future. 2015 , 18, 252-264	3812

1522	From a historic review to horizons beyond: lithium-sulphur batteries run on the wheels. 2015 , 51, 18-33	147
1521	A highly reversible lithium metal anode. 2014 , 4, 3815	209
1520	Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in LiB batteries. 2015 , 6, 973-982	45
1519	LithiumBulfur batteries: from liquid to solid cells. 2015 , 3, 936-958	300
1518	Direct Measurement of Polysulfide Shuttle Current: A Window into Understanding the Performance of Lithium-Sulfur Cells. 2015 , 162, A1-A7	184
1517	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. 2015 , 3, 71-77	347
1516	Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer. 2015 , 51, 322-5	34
1515	Micro-nano structure composite cathode material with high sulfur loading for advanced lithiumBulfur batteries. 2015 , 152, 53-60	36
1514	Comparison of the growth of lithium filaments and dendrites under different conditions. 2015 , 50, 11-14	83
1513	High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery. 2014 , 4, 4842	79
1512	In situ formed carbon bonded and encapsulated selenium composites for LiBe and NaBe batteries. 2015 , 3, 555-561	98
1511	Micro- and Mesoporous Carbide-Derived CarbonBelenium Cathodes for High-Performance Lithium Selenium Batteries. 2015 , 5, 1400981	118
1510	Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. 2015 , 27, 569-75	247
1509	Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. 2015 , 273, 511-516	139
1508	Recent Development of Carbonaceous Materials for LithiumBulphur Batteries. 2016, 2, 33	15
1507	High performance Liß battery based on amorphous NiS2 as the host material for the S cathode. 2016 , 4, 13395-13399	60
1506	Restricting the Solubility of Polysulfides in Li-S Batteries Via Electrolyte Salt Selection. 2016 , 6, 1600160	57
1505	Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by Water-in-Bisalt/Electrolyte. 2016 , 128, 7252-7257	80

1504	Sulfur Confined in Sub-Nanometer-Sized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium-Sulfur Batteries. 2016 , 11, 2690-2694	21
1503	Improved Cycling Stability of Lithium-Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. 2016 , 3, 531-536	60
1502	Atomic Layer Deposition of LixAlyS Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes. 2016 , 3, 858-863	82
1501	Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions. 2016 , 22, 7324-51	274
1500	Layer-by-Layer Na3V2(PO4)3 Embedded in Reduced Graphene Oxide as Superior Rate and Ultralong-Life Sodium-Ion Battery Cathode. 2016 , 6, 1600389	225
1499	Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. 2016 , 12, 3283-91	515
1498	Built-in Carbon Nanotube Network inside a Biomass-Derived Hierarchically Porous Carbon to Enhance the Performance of the Sulfur Cathode in a Li-S Battery. 2016 , 2, 712-718	47
1497	Enhanced Cycling Stability of Rechargeable LiD2 Batteries Using High-Concentration Electrolytes. 2016 , 26, 605-613	91
1496	Graphene-Supported Nitrogen and Boron Rich Carbon Layer for Improved Performance of LithiumBulfur Batteries Due to Enhanced Chemisorption of Lithium Polysulfides. 2016 , 6, 1501733	140
1495	Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer. 2016 , 6, 1502151	165
1494	Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. 2016 , 55, 3982-6	447
1493	First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries. 2016 , 11, 1288-92	22
1492	Enhancing the Stability of Sulfur Cathodes in LiB Cells via in Situ Formation of a Solid Electrolyte Layer. 2016 , 1, 373-379	51
1491	Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. 2016 , 28, 2888-95	699
1490	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries. 2016 , 55, 4231-5	132
1489	Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries. 2016 , 26, 3059-306	6 89
1488	Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries. 2016 , 6, 1501933	61
1487	A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery. 2016 , 6, 1502183	75

(2016-2016)

1486	Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes. 2016 , 84, 210-218	101
1485	Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next-Generation High-Energy Density Li-S Batteries. 2016 , 22, 1198-1221	10
1484	Rechargeable MgIli hybrid batteries: status and challenges. 2016 , 31, 3125-3141	75
1483	A brief review: Past, present and future of lithium ion batteries. 2016 , 52, 1095-1121	97
1482	High performance lithium-sulfur batteries with a facile and effective dual functional separator. 2016 , 200, 197-203	63
1481	Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping. 2016 , 202, 131-139	43
1480	Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-vis Spectroscopic Study. 2016 , 7, 1518-25	210
1479	A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithiumBulfur batteries. 2016 , 6, 37443-37451	39
1478	Understanding the Redox Obstacles in High Sulfur-Loading Li-S Batteries and Design of an Advanced Gel Cathode. 2016 , 7, 1392-9	21
1477	Progress in electrolytes for rechargeable Li-based batteries and beyond. 2016 , 1, 18-42	265
1476	High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer. 2016 , 209, 691-699	59
1475	Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries. 2016 , 209, 219-224	56
1474	Nanostructured lithium sulfide materials for lithium-sulfur batteries. 2016 , 323, 174-188	64
1473	Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte. 2016 , 6, 51738-51746	18
1472	Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes. 2016 , 202, 216-223	14
1471	Pitfalls in LiB Rate-Capability Evaluation. 2016 , 163, A1139-A1145	19
1470	Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. 2016 , 318, 170-177	156
1469	Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. 2016 , 206, 99-107	43

1468	In-situ activated polycation as a multifunctional additive for Li-S batteries. 2016 , 26, 43-49	28
1467	An in situ confinement strategy to porous poly(3,4-ethylenedioxythiophene)/sulfur composites for lithiumBulfur batteries. 2016 , 6, 47858-47863	8
1466	Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. 2016 , 55, 5795-5804	74
1465	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. 2016 , 9, 3725-3734	37
1464	Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries. 2016 , 8, 27803-27813	16
1463	Excellent Performance of Lithium-Sulfur batteries with Carbonized Porous Aromatic Framework Nanobeads as Support. 2016 , 219, 143-151	17
1462	Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries. 2016 , 332, 51-59	58
1461	High Concentration Lithium Nitrate/Dimethylacetamide Electrolytes for Lithium/Oxygen Cells. 2016 , 163, A2673-A2678	13
1460	Novel Li[(CFSO)(n-CFSO)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. 2016 , 8, 29705-29712	67
1459	Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium-Sulfur Batteries. 2016 , 16, 5488-94	88
1458	Structural and Electrochemical Properties of Li Ion Solvation Complexes in the Salt-Concentrated Electrolytes Using an Aprotic Donor Solvent, N,N-Dimethylformamide. 2016 , 120, 17196-17204	51
1457	Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. 2016 , 28, 1-11	85
1456	Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries. 2016 , 16, 5365-72	55
1455	LiBF4-Based Concentrated Electrolyte Solutions for Suppression of Electrolyte Decomposition and Rapid Lithium-Ion Transfer at LiNi0.5Mn1.5O4/Electrolyte Interface. 2016 , 163, A2211-A2215	39
1454	Graphene-Based Sulfur Composites for Energy Storage and Conversion in Li-S Batteries. 2016 , 34, 13-31	25
1453	Facile Synthesis of Ni Zn Fe O (x=0, 0.25, 0.5, 0.75, 1) as Anode Materials for Lithium Storage. 2016 , 81, 1174-1181	10
1452	Performance of P olymer-in-Salt [E lectrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler. 2016 , 163, A2248-A2252	37
1451	Cellulose-Based Porous Membrane for Suppressing Li Dendrite Formation in LithiumBulfur Battery. 2016 , 1, 633-637	136

1450	Transition of lithium growth mechanisms in liquid electrolytes. 2016 , 9, 3221-3229	704
1449	Challenges and current development of sulfur cathode in lithiumBulfur battery. 2016 , 13, 53-62	21
1448	A review of recent developments in rechargeable lithium-sulfur batteries. 2016 , 8, 16541-16588	269
1447	Water in Ionic Liquid for Electrochemical Li Cycling. 2016 , 1, 542-547	23
1446	Electrochemical Double Layers in Ionic Liquids Investigated by Broadband Impedance Spectroscopy and Other Complementary Experimental Techniques. 2016 , 157-192	
1445	Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement. 2016 , 6, 35587	15
1444	Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li-S Battery. 2016 , 8, 34360-34371	40
1443	Nanostructured energy materials for electrochemical energy conversion and storage: A review. 2016 , 25, 967-984	316
1442	Cation-Deficient Spinel ZnMnO Cathode in Zn(CFSO) Electrolyte for Rechargeable Aqueous Zn-Ion Battery. 2016 , 138, 12894-12901	1011
1441	An Electrochemical and Photoelectron Spectroscopy Study of a Low Temperature Liquid Metal Battery Based on an Ionic Liquid Electrolyte. 2016 , 163, A2488-A2493	9
1440	A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries. 2016 , 28, 9551-9558	431
1439	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. 2016 , 8, 26091-26097	121
1438	Effective Polysulfide Rejection by Dipole-Aligned BaTiO3 Coated Separator in LithiumBulfur Batteries. 2016 , 26, 7817-7823	129
1437	Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability. 2016 , 54, 2442-2447	35
1436	Structural Evolution of Electrochemically Lithiated MoS Nanosheets and the Role of Carbon Additive in Li-Ion Batteries. 2016 , 28, 7304-7310	71
1435	Electrochemical Properties of Anthraquinone-based Polyimides as Cathodes for Lithium Secondary Batteries. 2016 , 45, 271-273	12
1434	Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries. 2016 , 6, 1600811	259
1433	Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. 2016 , 25, 078203	22

1432 Enhanced Performance of a Lithium Bulfur Battery Using a Carbonate-Based Electrolyte. 2016, 128, 10528-105327

1431	Enhanced Performance of a Lithium-Sulfur Battery Using a Carbonate-Based Electrolyte. 2016 , 55, 10372-5	94
1430	Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. 2016 , 327, 212-220	201
1429	Designing high-energy lithium-sulfur batteries. 2016 , 45, 5605-5634	1475
1428	Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery. 2016 , 65, 685-697	7
1427	A Review of Solid Electrolyte Interphases on Lithium Metal Anode. 2016 , 3, 1500213	962
1426	Recent Advances in Non-Aqueous Electrolyte for Rechargeable LiD2 Batteries. 2016 , 6, 1600751	116
1425	Nanostructured Li2Se cathodes for high performance lithium-selenium batteries. 2016 , 27, 238-246	39
1424	Sparingly Solvating Electrolytes for High Energy Density Lithium Bulfur Batteries. 2016, 1, 503-509	146
1423	LithiumIron Fluoride Battery with In Situ Surface Protection. 2016 , 26, 1507-1516	51
1422	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for High-Sulfur-Loading LithiumBulfur Batteries. 2016 , 26, 6351-6358	191
1421	Effective sulfur-salt composite cathode containing lithium bis(trifluoromethane) sulfonamide for lithium sulfur batteries. 2016 , 220, 130-136	5
1420	Ionic liquids and their solid-state analogues as materials for energy generation and storage. 2016 , 1,	391
1419	Unusual Li-Ion Transfer Mechanism in Liquid Electrolytes: A First-Principles Study. 2016 , 7, 4795-4801	27
1418	A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries. 2016 , 6, 25484	32
1417	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. 2016 , 1, 1247-1255	218
1416	Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. <i>Nature Communications</i> , 2016 , 7, 10992	641
1415	A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. 2016 , 6, 21771	131

(2016-2016)

1414	Superconcentrated electrolytes for a high-voltage lithium-ion battery. <i>Nature Communications</i> , 2016 , 7, 12032	17.4	501
1413	Advances in lithiumBulfur batteries based on multifunctional cathodes and electrolytes. 2016 , 1,		1317
1412	Promises and challenges of nanomaterials for lithium-based rechargeable batteries. 2016 , 1,		1080
1411	Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries. 2016 , 6, 32800		15
1410	A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. <i>Nature Communications</i> , 2016 , 7, 13065	17.4	511
1409	Dendrite Suppression by Shock Electrodeposition in Charged Porous Media. 2016 , 6, 28054		35
1408	Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation. 2016 , 336, 115-125		65
1407	Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. <i>Nature Communications</i> , 2016 , 7, 11203	17.4	866
1406	Revealing structure and dynamics in host@uest supramolecular crystalline polymer electrolytes by solid-state NMR: Applications to ECD-polyether/Li+ crystal. 2016 , 105, 310-317		17
1405	Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery. 2016 , 8, 31684-31694		65
1404	Activation of Oxygen-Stabilized Sulfur for Li and Na Batteries. 2016 , 26, 745-752		66
1403	Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Golden-Toad Eggs toward a Binder-Free, High-Rate, and Flexible Electrode. 2016 , 28, 7494-500		145
1402	Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium Bulfur Batteries. 2016 , 128, 4050-4054		51
1401	An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. 2016 , 28, 1853-8		1021
1400	Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte. 2016 , 55, 7136-41		435
1399	Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C. 2016 , 8, 15242-9		40
1398	High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. 2016 , 16, 4521-7		258
1397	Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries. 2016 , 163, A1776-A1783		31

1396	SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries. 2016 , 8, 13638-45	115
1395	Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery. 2016 , 325, 641-645	48
1394	Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes. 2016 , 120, 12385-12391	95
1393	A Graphite-Polysulfide Full Cell with DME-Based Electrolyte. 2016 , 163, A1543-A1549	17
1392	Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. 2016 , 16, 4431-7	481
1391	Nitrogen-doped graphene nanosheets/sulfur composite as lithiumBulfur batteries cathode. 2016 , 213, 83-89	18
1390	Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. 2016 , 12, 381-9	267
1389	Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. 2016 , 12, 3535-42	45
1388	Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. 2016 , 28, 2155-62	498
1387	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in LithiumBulfur Batteries. 2016 , 128, 4303-4307	33
1386	Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. 2016 , 128, 6516-6520	33
1385	Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. 2016 , 55, 6406-10	87
1384	Scientific and technological challenges toward application of lithium ulfur batteries. 2016, 25, 018801	9
1383	Performance Enhancement and Mechanistic Studies of Room-Temperature SodiumBulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode. 2016 , 28, 896-905	136
1382	Enhancement of electrochemical properties by polysulfide trapping in a graphene-coated sulfur cathode on patterned current collector. 2016 , 52, 3203-6	14
1381	Graphene-Li2S-Carbon Nanocomposite for Lithium-Sulfur Batteries. 2016 , 10, 1333-40	130
1380	Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery. 2016 , 8, 7783-9	109
1379	Effects of non-equimolar lithium salt glyme solvate ionic liquid on the control of interfacial degradation in lithium secondary batteries. 2016 , 6, 33043-33047	15

1378	FT-Raman spectroscopy study of solvent-in-salt electrolytes. 2016 , 25, 016101	34
1377	Solvate ionic liquid electrolyte with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether as a support solvent for advanced lithiumBulfur batteries. 2016 , 6, 18186-18190	24
1376	Novel gel polymer electrolyte for high-performance lithiumBulfur batteries. 2016 , 22, 278-289	289
1375	Li2S5-based ternary-salt electrolyte for robust lithium metal anode. 2016 , 3, 77-84	215
1374	A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithiumBulfur batteries. 2016 , 51, 5139-5145	17
1373	Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithiumBulfur batteries. 2016 , 9, 1495-1503	270
1372	A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. 2016 , 66, 46-48	122
1371	Electrochemical and Transport Properties of Ions in Mixtures of Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Salt for Lithium-Ion Batteries. 2016 , 120, 5315-5325	14
1370	Investigation of Electrolyte Concentration Effects on the Performance of Lithium Dxygen Batteries. 2016 , 120, 5949-5957	20
1369	Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. 2016 , 16, 519-27	1055
1368	The LiB battery: an investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes. 2016 , 6, 3632-3641	56
1367	Li+ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. 2016 , 120, 15792-15802	91
1366	Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. 2016 , 10, 1529-38	171
1365	In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process. 2016 , 304, 51-59	17
1364	MWCNT porous microspheres with an efficient 3D conductive network for high performance lithiumBulfur batteries. 2016 , 4, 775-780	74
1363	To mitigate self-discharge of lithiumBulfur batteries by optimizing ionic liquid electrolytes. 2016 , 9, 224-231	159
1362	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. 2016 , 4, 96-104	250
1361	Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles. 2016 , 54, 1250-1261	16

1360	Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. 2016 , 2, 139-145	203
1359	Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte. 2016 , 7, 29-36	6
1358	Novel Concentrated Li[(FSO)(n-CFSO)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. 2017 , 9, 4282-4289	49
1357	Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. 2017 , 8, 194-201	133
1356	Electrocatalytic activity of lithium polysulfides adsorbed into porous TiO coated MWCNTs hybrid structure for lithium-sulfur batteries. 2017 , 7, 40679	23
1355	Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. 2017 , 27, 1605989	878
1354	Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes. 2017 , 7, 1602367	95
1353	Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. 2017 , 9, 3723-3732	126
1352	High power rechargeable magnesium/iodine battery chemistry. <i>Nature Communications</i> , 2017 , 8, 14083 17.4	177
1351	Mixed Conduction Membranes Suppress the Polysulfide Shuttle in Lithium-Sulfur Batteries. 2017 , 164, A560-A566	28
1350	High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. 2017 , 5, 4940-4948	284
1349	Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery. 2017 , 229, 371-379	39
1348	Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. 2017 , 29, 1601759	911
1347	A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. 2017 , 9, 6959-6966	51
1346	Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. 2017 , 117, 7190-7239	858
1345	Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries. 2017 , 9, 4605-4613	58
1344	Liquid-Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution. 2017 , 29, 1606187	91
1343	Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis. 2017 , 199, 423-463	52

1342	Catalytic reduction of TFSI-containing ionic liquid in the presence of lithium cations. 2017 , 77, 128-132	33
1341	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. 2017 , 2, 258-270	411
1340	Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes. 2017 , 9, 7003-7008	56
1339	Improvement of photoluminescence properties of Eu3+ doped SrNb2O6 phosphor by charge compensation. 2017 , 66, 220-229	38
1338	Impedance Spectroscopy on Electrode Ionic Liquid Interfaces. 2017, 373-399	
1337	Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. 2017 , 1, 737-747	72
1336	Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries. 2017 , 233, 134-141	44
1335	Understanding mechanical behavior and reliability of organic electronic materials. 2017, 42, 115-123	31
1334	Ionic Liquids in Lithium-Ion Batteries. 2017 , 375, 20	69
1333	Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. 2017 , 17, 1602-1609	64
1332	Effective Suppression of Polysulfide Dissolution by Uniformly Transfer-Printed Conducting Polymer on Sulfur Cathode for Li-S Batteries. 2017 , 164, A6417-A6421	21
1331	Reviving the lithium metal anode for high-energy batteries. 2017 , 12, 194-206	3302
1330	Introduction. 2017 , 1-22	
1329	Graphene B ure Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries. 2017 , 75-94	1
1328	Oxygen solubility and transport in Lillir battery electrolytes: establishing criteria and strategies for electrolyte design. 2017 , 10, 1167-1179	84
1327	Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl Sulfoxide. 2017 , 121, 9162-9172	60
1326	Improved Rate Performance of Lithium Sulfur Batteries by In-Situ Anchoring of Lithium Iodide in Carbon/Sulfur Cathode. 2017 , 238, 257-262	19
1325	Carbon coated sodium-titanate nanotube as an advanced intercalation anode material for sodium-ion batteries. 2017 , 712, 365-372	32

1324	Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. 2017 , 9, 14801-14807	57
1323	In Situ Construction of Stable Tissue-Directed/Reinforced Bifunctional Separator/Protection Film on Lithium Anode for Lithium-Oxygen Batteries. 2017 , 29, 1606552	148
1322	Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. 2017 , 355, 18-22	79
1321	A first-principles study of NbSe2monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries. 2017 , 50, 235501	51
1320	Interface-modulated fabrication of hierarchical yolk@hell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. 2017 , 10, 2364-2376	91
1319	A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. 2017 , 17, 3182-3187	278
1318	Caterpillar-like graphene confining sulfur by restacking effect for high performance lithium sulfur batteries. 2017 , 322, 454-462	27
1317	Superconcentrated Electrolytes to Create New Interfacial Chemistry in Non-aqueous and Aqueous Rechargeable Batteries. 2017 , 46, 1056-1064	74
1316	Functional metal-organic framework boosting lithium metal anode performance chemical interactions. 2017 , 8, 4285-4291	130
1315	Review Article: Flow battery systems with solid electroactive materials. 2017 , 35, 040801	26
1314	Tuning the Adsorption of Polysulfides in LithiumBulfur Batteries with MetalDrganic Frameworks. 2017 , 29, 4932-4939	83
1313	Review on High-Loading and High-Energy LithiumBulfur Batteries. 2017 , 7, 1700260	1010
1312	Multi-electron redox phenazine for ready-to-charge organic batteries. 2017, 19, 2980-2985	84
1311	Reversible multi-electron redox chemistry of Etonjugated N-containing heteroaromatic molecule-based organic cathodes. 2017 , 2,	292
1310	Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal B ulfur batteries. 2017 , 10, 1568-1575	368
1309	Recent advances in cathode materials for LiB battery: structure and performance. 2017, 36, 365-380	19
1308	Permselective membranes in lithiumBulfur batteries. 2017, 16, 31-38	15
1307	Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent. 2017 , 56, 6192-6197	86

1306	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. 2017 , 56, 7764-7768	760
1305	High performance multi-functional trilayer membranes as permselective separators for lithiumBulfur batteries. 2017 , 4, 1013-1021	19
1304	Inhibiting Polysulfide Shuttle in LithiumBulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent. 2017 , 129, 6288-6293	19
1303	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. 2017 , 129, 7872-7876	127
1302	VO Nanoflakes as the Cathode Material of Hybrid Magnesium-Lithium-Ion Batteries with High Energy Density. 2017 , 9, 17060-17066	82
1301	A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries. 2017 , 355, 211-218	45
1300	Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery. 2017 , 9, 17085-17095	19
1299	A reversible dendrite-free high-areal-capacity lithium metal electrode. <i>Nature Communications</i> , 2017 , 8, 15106	121
1298	High-voltage positive electrode materials for lithium-ion batteries. 2017, 46, 3006-3059	700
1297	A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for LithiumBulfur Batteries. 2017 , 2, 1232-1239	35
1296	Effect of Current Collector on Performance of Li-S Batteries. 2017 , 4, 1600811	12
1295	High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. 2017 , 31, 418-423	70
1294	Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery. 2017 , 31, 568-574	124
1293	A Multifunction LithiumCarbon Battery System Using a Dual Electrolyte. 2017 , 2, 36-44	23
1292	Structure-Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. 2017 , 29, 1700449	67
1291	A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. 2017 , 38, 504-509	61
1290	Towards flexible lithium-sulfur battery from natural cotton textile. 2017 , 246, 507-516	113
1289	Hybrid Nanostructured Materials for Advanced Lithium Batteries. 2017 , 1-78	

1288 Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries. 2017, 21, 1925-1937 14

1287	A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries. 2017 , 10, 2758-2766	32
1286	Low-Viscosity Butyrolactone-Based Concentrated Electrolyte Solutions for LiNi0.5Mn1.5O4 Positive Electrodes in Lithium-Ion Batteries. 2017 , 4, 2398-2403	17
1285	How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study. 2017 , 19, 18208-18216	28
1284	The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Li-S Batteries. 2017 , 7, 1700074	75
1283	Directing the Lithium-Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries. 2017 , 3, 605-613	125
1282	Robust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. 2017 , 5, 13950-13956	24
1281	Nanosized Li2S-based cathodes derived from MoS2 for high-energy density LiB cells and SiIii2S full cells in carbonate-based electrolyte. 2017 , 8, 209-216	41
1280	A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery. 2017, 245, 752-759	100
1279	Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithiumBulfur batteries. 2017 , 38, 239-248	241
1278	Activated graphene with tailored pore structure parameters for long cycle-life lithium ulfur batteries. 2017 , 10, 4305-4317	45
1277	A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries. 2017 , 5, 13971-13975	37
1276	More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. 2017 , 29, 1606823	1054
1275	Sc C as a Promising Anode Material with High Mobility and Capacity: A First-Principles Study. 2017 , 18, 1627-1634	64
1274	Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy. 2017 , 121, 7761-7766	90
1273	Polysulfide-Breathing/Dual-Conductive, Heterolayered Battery Separator Membranes Based on 0D/1D Mingled Nanomaterial Composite Mats. 2017 , 17, 2220-2228	33
1272	Effect of fibrous separators on the performance of lithium-sulfur batteries. 2017 , 19, 11239-11248	17
1271	Enhanced Lithium Ion Storage Performance of Tannic Acid in LiTFSI Electrolyte. 2017 , 2, 1273-1278	24

(2017-2017)

1270	Rational Method for Improving the Performance of Lithium-Sulfur Batteries: Coating the Separator with Lithium Fluoride. 2017 , 4, 1535-1543	16
1269	Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. 2017 , 4, 1700032	245
1268	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium-Sulfur Batteries. 2017 , 9, 11626-11633	22
1267	A new energy storage system: Rechargeable potassium-selenium battery. 2017 , 35, 36-43	138
1266	MoS-Based Nanocomposites for Electrochemical Energy Storage. 2017 , 4, 1600289	278
1265	Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance. 2017 , 342, 335-341	32
1264	Metal Sulfide-Blended Sulfur Cathodes in High Energy Lithium-Sulfur Cells. 2017 , 164, A265-A276	35
1263	Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles. 2017 , 71, 645-651	30
1262	The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics. 2017 , 121, 180-188	30
1261	Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries. 2017 , 9, 4290-4295	51
1260	Electrolytes for electrochemical energy storage. 2017 , 1, 584-618	148
1259	Nanostructured cathode materials for lithiumBulfur batteries: progress, challenges and perspectives. 2017 , 5, 3014-3038	147
1258	A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium. <i>Nature Communications</i> , 2017 , 8, 13888	43
1257	Effects of High and Low Salt Concentration in Electrolytes at LithiumMetal Anode Surfaces. 2017 , 121, 182-194	99
1256	Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries. 2017 , 7, 1600922	80
1255	Improving the electrochemical behavior of lithium-sulfur batteries through silica-coated nickel-foam cathode collector. 2017 , 341, 366-372	18
1254	Space-confinement and chemisorption co-involved in encapsulation of sulfur for lithium ulfur batteries with exceptional cycling stability. 2017 , 5, 24602-24611	23
1253	Theoretical Studies of the Reduction of Cyclic Esters on the Anode Interface of Lithium Batteries. 2017 , 164, A3144-A3153	7

1252	A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. 2017, 1, 576-587	194
1251	Harvesting polysulfides by sealing the sulfur electrode in a composite ion-selective net. 2017 , 368, 38-45	4
1250	Role of Li Concentration and the SEI Layer in Enabling High Performance Li Metal Electrodes Using a Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid. 2017 , 121, 21087-21095	60
1249	PrecipitationMicrostructure Interactions in the Li-Sulfur Battery Electrode. 2017 , 121, 26256-26264	32
1248	Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. 2017 , 2, 2563-257	5 347
1247	Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. 2017 , 139, 15288-15291	203
1246	Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. 2017 , 11, 10462-10471	193
1245	Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. <i>Nature Communications</i> , 2017 , 8, 850	192
1244	A highly elastic and flexible solid-state polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium batteries. 2017 , 41, 13096-13103	16
1243	Favorable Carbon Conductive Additives in Li3PS4Composite Positive Electrode Prepared by Ball-Milling for All-Solid-State Lithium Batteries. 2017 , 164, A2804-A2811	17
1242	A Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects. 2017 , 9, 33735-33739	32
1241	Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. 2017 , 5, 22297-22304	64
1240	Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. 2017 , 256, 28-36	82
1239	The suppression of lithium dendrite growth in lithium sulfur batteries: A review. 2017 , 13, 387-400	40
1238	Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network. 2017 , 147, 154107	22
1237	Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li Solvation Structure and Li-S Battery Performance. 2017 , 9, 39357-39370	39
1236	Recent progress in solid-state electrolytes for alkali-ion batteries. 2017 , 62, 1473-1490	51
1235	High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes. 2017 , 29, 1700783	123

1234	Facile Fabrication of ZnFe2O4-MWCNTs Composite as an Anode Material for Rechargeable Lithium-Ion Batteries. 2017 , 2, 7194-7201	8
1233	Gas treatment protection of metallic lithium anode. 2017 , 26, 088202	3
1232	Electrochemical Cycling Behavior of Pyrrolidinium Ionic Liquid Tethered TiO2Nanoparticle-Hybrid Electrolytes: Influence of Grafting Density. 2017 , 164, H788-H797	7
1231	Efficient sulfur host based on NiCo 2 O 4 hollow microtubes for advanced Li-S batteries. 2017 , 256, 189-195	14
1230	Stabilizing the Garnet Solid-Electrolyte/Polysulfide Interface in LiB Batteries. 2017, 29, 8037-8041	67
1229	Rational design of self-supporting graphene - Polypyrrole/sulfur - Graphene sandwich as structural paper electrode for lithium sulfur batteries. 2017 , 728, 376-382	20
1228	Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF framework. 2017 , 3, e1701301	158
1227	Crystal Structure Modification Enhanced FeNb11O29 Anodes for Lithium-Ion Batteries. 2017 , 4, 3171-3180	130
1226	Electrolyte-cathode interactions in 5-V lithium-ion cells. 2017 , 21, 3389-3401	1
1225	The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithiumBulfur batteries. 2017 , 252, 147-153	24
1224	A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries. 2017 , 23, 15203-15209	82
1223	Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. <i>Nature Communications</i> , 2017 , 8, 462	38
1222	Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. 2017 , 10, 3490-3496	17
1221	Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. 2017 , 29, 1701169	452
1220	Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. 2017 , 248, 90-97	48
1219	Utilizing Co/Co Redox Couple in P2-Layered NaCoMnTiO Cathode for Sodium-Ion Batteries. 2017 , 4, 1700219	76
1218	A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery. 2017 , 95, 61-70	40
1217	TiO Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium-Sulfur Batteries. 2017 , 13, 1701013	126

1216	In-situ synthesized ZnFe 2 O 4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. 2017 , 425, 978-987	26
1215	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. 2017 , 117, 10403-10473	2918
1214	A sulfurHePO4D nanocomposite cathode for stable and anti-self-discharge lithiumBulfur batteries. 2017 , 5, 17926-17932	13
1213	Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. 2017 , 40, 9-19	52
1212	An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries. 2017 , 129, 12735-12739	27
1211	Surface graphited carbon scaffold enables simple and scalable fabrication of 3D composite lithium metal anode. 2017 , 5, 19168-19174	47
1210	Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. 2017 , 29, 1702714	374
1209	Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge. 2017 , 40, 170-179	42
1208	Role of Solvent Bulkiness on Lithium-Ion Solvation in Fluorinated Alkyl Phosphate-Based Electrolytes: Structural Study for Designing Nonflammable Lithium-Ion Batteries. 2017 , 121, 19112-19119	22
1207	In situ monitoring the viscosity change of an electrolyte in a Li-S battery. 2017 , 53, 10152-10155	20
1206	Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries. 2017 , 9, 33802-33809	62
1205	A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. 2017 , 46, 5237-5288	461
1204	An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries. 2017 , 56, 12561-12565	117
1203	Intrinsic Shuttle Suppression in Lithium-Sulfur Batteries for Pouch Cell Application. 2017 , 164, A3766-A3771	69
1202	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017 , 7, 17482	46
1201	Decomposition of Ionic Liquids at Lithium Interfaces. 1.Ab InitioMolecular Dynamics Simulations. 2017 , 121, 28214-28234	54
1200	Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced Lithium-Sulfur Batteries. 2017 , 9, 43696-43703	62
1199	Catholyte Formulations for High-Energy Li-S Batteries. 2017 , 8, 5907-5914	11

1198	Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes. 2017 , 7, 15925	8
1197	New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. 2017 , 9, 41837-41844	8o
1196	Improved performance through tight coupling of redox cycles of sulfur and 2,6-polyanthraquinone in lithiumBulfur batteries. 2017 , 5, 24103-24109	4
1195	The synthesis of 1 magnesium octahedral molecular sieve with controllable size and shape for aqueous magnesium ion battery cathode material. 2017 , 807, 37-44	13
1194	Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. 2017 , 50, 2653-2660	122
1193	Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CFSO)N at High Current Densities. 2017 , 33, 9398-9406	41
1192	Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. 2017 , 29, 1700007	641
1191	Communication E ffect of Lithium Polysulfide Solubility on Capacity of Lithium-Sulfur Cells. 2017 , 164, A1220-A1222	15
1190	A nickel-foam@carbon-shell with a pie-like architecture as an efficient polysulfide trap for high-energy LiB batteries. 2017 , 5, 15002-15007	37
1189	Phosphorus-based materials for high-performance rechargeable batteries. 2017 , 4, 1424-1444	28
1188	High-Performance Li-Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. 2017 , 9, 25232-25238	33
1187	Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory. 2017 , 7, 33373-333	77 18
1186	High-Capacity Retention of Si Anodes Using a Mixed Lithium/Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolyte. 2017 , 2, 1804-1809	26
1185	LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium. 2017 , 39, 262-272	73
1184	Review of nanostructured current collectors in lithium Bulfur batteries. 2017, 10, 4027-4054	74
1183	Clew-like N-doped multiwalled carbon nanotube aggregates derived from metal-organic complexes for lithium-sulfur batteries. 2017 , 122, 635-642	33
1182	In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS Flakes. 2017 , 139, 10133-10141	106
1181	Biomass-derived renewable carbon materials for electrochemical energy storage. 2017 , 5, 69-88	299

1180	LiB and LiD2 Batteries with High Specific Energy. 2017 , 1-48	3
1179	A Comprehensive Approach toward Stable LithiumBulfur Batteries with High Volumetric Energy Density. 2017 , 7, 1601630	240
1178	An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. 2017 , 10, 401-408	67
1177	Conversion cathodes for rechargeable lithium and lithium-ion batteries. 2017 , 10, 435-459	380
1176	Progress of rechargeable lithium metal batteries based on conversion reactions. 2017, 4, 54-70	102
1175	A Novel Lithiated Silicon-Sulfur Battery Exploiting an Optimized Solid-Like Electrolyte to Enhance Safety and Cycle Life. 2017 , 13, 1602015	25
1174	Long life anode material sodium titanate synthesized by a moderate method. 2017 , 186, 326-329	3
1173	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. 2017 , 4, 1600400	176
1172	Preparation of Mg1.1Mn6O12[4.5H2O with nanobelt structure and its application in aqueous magnesium-ion battery. 2017 , 338, 136-144	51
1171	Dielectric relaxation and ionic transport in poly(ethylene carbonate)-based electrolytes. 2017 , 28, 362-366	8
1170	A Design Approach to Lithium-Ion Battery Electrolyte Based on Diluted Solvate Ionic Liquids. 2017 , 164, A6088-A6094	32
1169	High Coulombic Efficiency of Lithium Plating/Stripping and Lithium Dendrite Prevention. 2017 , 45-152	2
1168	Application of Lithium Metal Anodes. 2017 , 153-188	1
1167	Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. 2017 , 4, 1600168	298
1166	The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. 2017 , 6, 18-25	240
1165	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. <i>Nature Communications</i> , 2017 , 8, 2277	100
1164	Developing New Functionalities of Superconcentrated Electrolytes for Lithium-ion Batteries. 2017 , 85, 559-565	28
1163	An alternative route to single ion conductivity using multi-ionic salts. 2018 , 5, 461-473	19

1162	Review of Electrolytes in Nonaqueous Lithium Dxygen Batteries. 2018, 2, 1700183	30
1161	High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction. 2018 , 269, 509-516	38
1160	Carbon nanomaterials for advanced lithium sulfur batteries. 2018 , 19, 84-107	267
1159	IIai Chilphilosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. 2018 , 47, 35-42	51
1158	The effect of SiO additives on solid hydroxide ion-conducting polymer electrolytes: a Raman microscopy study. 2018 , 20, 7148-7155	7
1157	Water-in-SaltIfor Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability. 2018 , 165, A657-A663	83
1156	Recent progress and perspective on lithium metal anode protection. 2018, 14, 199-221	140
1155	Effective strategies for long-cycle life lithiumBulfur batteries. 2018, 6, 6155-6182	125
1154	Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. 2018 , 18, 2067-2073	126
1153	Graphene-decorated sphere Li2S composite prepared by spray drying method as cathode for lithium-sulfur full cell. 2018 , 24, 3385-3392	8
1152	Lithium Sulfonate/Carboxylate-Anchored Polyvinyl Alcohol Separators for Lithium Sulfur Batteries. 2018 , 10, 18310-18315	25
1151	Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes. 2018 , 122, 9825-9834	93
1150	LithiumBulfur Batteries: State of the Art and Future Directions. 2018 , 1, 1783-1814	74
1149	The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte. 2018 , 11, 1787-1796	21
1148	A review on anode for lithium-sulfur batteries: Progress and prospects. 2018 , 347, 343-365	140
1147	Fluoroalkyl ether-diluted dimethyl carbonate-based electrolyte solutions for high-voltage operation of LiNi0.5Co0.2Mn0.3O2 electrodes in lithium ion batteries. 2018 , 2, 1197-1205	14
1146	Materials and Device Constructions for Aqueous LithiumBulfur Batteries. 2018 , 28, 1707593	24
1145	Toward High Performance LithiumBulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives. 2018 , 28, 1800154	81

1144	Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries. 2018 , 30, e1705590	291
1143	Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. 2018 , 15, 148-170	166
1142	Advancing Lithium Metal Batteries. 2018 , 2, 833-845	620
1141	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Communications, 2018 , 9, 1339	4 179
1140	Symmetric Lithium Sulfide B ulfur Cells: A Method to Study Degradation Mechanisms of Cathode, Separator and Electrolyte Concepts for Lithium-Sulfur Batteries. 2018 , 165, A1084-A1091	12
1139	Ferromagnetic NanoparticleAssisted Polysulfide Trapping for Enhanced LithiumBulfur Batteries. 2018 , 28, 1800563	70
1138	Construction of a stable lithium sulfide membrane to greatly confine polysulfides for high performance lithiumBulfur batteries. 2018 , 6, 8655-8661	8
1137	Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries. 2018 , 122, 2600-2609	46
1136	Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces. 2018 , 380, 115-125	22
1135	Mechanically Robust, Highly Ionic Conductive Gels Based on Random Copolymers for Bending Durable Electrochemical Devices. 2018 , 28, 1706948	53
1134	Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries. 2018 , 265, 430-436	30
1133	"Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research. 2018 , 47, 1250-1284	101
1132	Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. 2018 , 27, 1304-1325	127
1131	Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. 2018 , 8, 1702657	577
1130	Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate©lyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytes. 2018 , 122, 3201-3210	3
1129	Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries. 2018 , 12, 1500-1507	114
1128	Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes. 2018 , 10, 6719-6729	52
1127	Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading. 2018 , 10, 7043-7051	52

1126	Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. 2018 , 148, 193813	12
1125	Designing Safe Electrolyte Systems for a High-Stability LithiumBulfur Battery. 2018 , 8, 1702348	210
1124	Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery. 2018 , 130, 749-757	13
1123	High Lithium Ion Conductivity LiF/GO Solid Electrolyte Interphase Inhibiting the Shuttle of Lithium Polysulfides in Long-Life LiB Batteries. 2018 , 28, 1706513	83
1122	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. 2018, 4, 298-307	51
1121	Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS. 2018 , 90, 3341-3348	19
1120	Superhierarchical Cobalt-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Two-in-One Hosts for High-Performance Lithium-Sulfur Batteries. 2018 , 30, e1706895	235
1119	Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism. 2018 , 380, 135-141	17
1118	A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection. 2018 , 30, e1706643	85
1117	1,3-Dioxolane: A Strategy to Improve Electrode Interfaces in Lithium Ion and Lithium-Sulfur Batteries. 2018 , 5, 1272-1278	13
1116	High Li+ Ionic Flux Separator Enhancing Cycling Stability of Lithium Metal Anode. 2018 , 6, 2961-2968	33
1115	Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. 2018 , 115, 1156-1161	341
1114	Microscopic Formation Mechanism of Solid Electrolyte Interphase Film in Lithium-Ion Batteries with Highly Concentrated Electrolyte. 2018 , 122, 2564-2571	29
1113	Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries. 2018 , 10, 2185-2190	28
1112	Polysulfides Formation in Different Electrolytes from the Perspective of X-ray Absorption Spectroscopy. 2018 , 165, A5014-A5019	31
1111	Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable LithiumBulfur Batteries. 2018 , 8, 1702288	191
1110	High Conductivity Solvates with Unsymmetrical Glymes as New Electrolytes. 2018 , 30, 246-251	7
1109	Direct visualization of sulfur cathodes: new insights into Li-S batteries via X-ray based methods 2018 , 8, 202-210	67

1108	Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. 2018 , 13, 151-159	60
1107	Artificial Soft R igid Protective Layer for Dendrite-Free Lithium Metal Anode. 2018 , 28, 1705838	355
1106	Electrolyte Composition in Li/O2 Batteries with LiI Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling. 2018 , 122, 1522-1534	38
1105	Water-in-Salt Electrolyte for Potassium-Ion Batteries. 2018 , 3, 373-374	175
1104	Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes. 2018 , 3, 315-321	241
1103	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. 2018 , 3, 335-340	134
1102	Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes. 2018 , 277, 116-126	4
1101	Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. 2018 , 15, 266-273	52
1100	Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. 2018 , 10, 17985-17993	49
1099	Hybrid electrolytes incorporated with dandelion-like silaneAl2O3 nanoparticles for high-safety high-voltage lithium ion batteries. 2018 , 391, 113-119	9
1098	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. 2018 , 54, 5478-5481	31
1097	Effect of Salt Concentration on Properties of Lithium Ion Battery Electrolytes: A Molecular Dynamics Study. 2018 , 122, 8173-8181	47
1096	Progress and Perspective of Solid-State LithiumBulfur Batteries. 2018, 28, 1707570	138
1095	Catching TFSI: A Computational-Experimental Approach to ECyclodextrin-Based Host-Guest Systems as electrolytes for Li-Ion Batteries. 2018 , 11, 1942-1949	2
1094	High-performance of sodium carboxylate-derived materials for electrochemical energy storage. 2018 , 61, 707-718	18
1093	Effectiveness of dioxolane/dimethoxyethane mixed solvent for the fabrication of lithium-sulfur semiflow batteries. 2018 , 317, 170-174	5
1092	A Review on the Features and Progress of Dual-Ion Batteries. 2018 , 8, 1703320	204
1091	A symmetrical ionic liquid/Li salt system for rapid ion transport and stable lithium electrochemistry. 2018 , 54, 3660-3663	17

(2018-2018)

1090	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. 2018 , 115, 3770-3775	178
1089	High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes. 2018 , 30, e1706102	452
1088	Li2CO3-free LiD2/CO2 battery with peroxide discharge product. 2018 , 11, 1211-1217	84
1087	A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries. 2018 , 270, 62-69	20
1086	Advanced Na metal anodes. 2018 , 27, 1584-1596	67
1085	Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. 2018 , 47, 331-339	87
1084	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. 2018 , 2, 184-193	241
1083	Ab Initio Force Fields for Organic Anions: Properties of [BMIM][TFSI], [BMIM][FSI], and [BMIM][OTF] Ionic Liquids. 2018 , 122, 4101-4114	29
1082	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. 2018 , 10, 199-205	165
1081	Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes. 2018 , 10, 206-215	72
1080	Recent development of metal compound applications in lithium all phur batteries. 2018, 33, 16-31	33
1079	Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. 2018 , 22, 693-703	21
1078	Dielectric Investigation of NaLiS Nanoparticles Loaded on Alginate Polymer Matrix Synthesized by Single Pot Microwave Irradiation. 2018 , 28, 671-678	15
1077	TiCr0.5Nb10.5O29/CNTs nanocomposite as an advanced anode material for high-performance Li+-ion storage. 2018 , 732, 116-123	15
1076	Understanding the anchoring effect of Graphene, BN, C2N and C3N4 monolayers for lithiumpolysulfides in LiB batteries. 2018 , 434, 596-603	54
1075	Thermodynamics and Kinetics of Sulfur Cathode during Discharge in MgTFSI -DME Electrolyte. 2018 , 30, 1704313	90
1074	Advances in Interfaces between Li Metal Anode and Electrolyte. 2018 , 5, 1701097	144
1073	Molecular insights into ether-based electrolytes for Li-FeS2 batteries. 2018 , 12, 85-93	8

1072	Ion Speciation and Transport Properties of LiTFSI in 1,3-Dioxolane Solutions: A Case Study for Li-S Battery Applications. 2018 , 122, 267-274	20
1071	Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. 2018 , 6, 1612-1620	38
1070	Facile fabrication of polyether sulfone (PES) protecting layer on Cu foil for stable Li metal anode. 2018 , 260, 407-412	15
1069	Lithium dendrite suppression and cycling efficiency of lithium anode. 2018 , 87, 27-30	32
1068	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. 2018 , 10, 593-601	78
1067	Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithiumBulfur batteries. 2018 , 6, 1630-1638	63
1066	3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries. 2018 , 8, 1702434	343
1065	Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. 2018 , 12, 161-175	284
1064	Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries. 2018 , 259, 949-954	31
1063	New Separators in Lithium/Sulfur Cells with High-Capacity Cathodes. 2018 , 165, A6021-A6028	13
1062	Molecular simulations of electrolyte structure and dynamics in lithiumBulfur battery solvents. 2018 , 373, 70-78	43
1061	Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43Iwith Na3PO4. 2018 , 375, 1-10	71
1060	Bending-Tolerant Anodes for Lithium-Metal Batteries. 2018 , 30, 1703891	95
1059	Reviewli Metal Anode in Working Lithium-Sulfur Batteries. 2018 , 165, A6058-A6072	172
1058	The Salt Matters: Enhanced Reversibility of Li-O Batteries with a Li[(CF SO)(n-C F SO)N]-Based Electrolyte. 2018 , 30, 1704841	58
1057	Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. 2018 , 10, 16-23	124
1056	Organic materials for rechargeable sodium-ion batteries. 2018 , 21, 60-78	152
1055	Efficient Recovery of Silver from Crystalline Silicon Solar Cells by Controlling the Viscosity of Electrolyte Solvent in an Electrochemical Process. 2018 , 8, 2131	4

1054	Preparation of MoP2 nanoparticles as a novel anode material for sodium ion batteries. 2018 , 192, 88-93	2
1053	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. 2018 , 6, 23396-23407	28
1052	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. 2018 , 6, 24100-24106	9
1051	Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. 2018 , 3, 1076-1083	212
1050	Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. 2018, 4, 831-847	116
1049	Elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating. 2018 , 115, 12389-12394	32
1048	Dual-Function Electrochromic Supercapacitors Displaying Real-Time Capacity in Color. 2018 , 10, 43993-43999	52
1047	Strategic Design of Highly Concentrated Electrolyte Solutions for Mg2+/Li+ Dual-Salt Hybrid Batteries. 2018 , 122, 27866-27874	5
1046	Tuning the Hydrogen Evolution Reaction on Metals by Lithium Salt. 2018, 1, 7116-7122	7
1045	Recent Progress in Liquid Electrolyte-Based Liß Batteries: Shuttle Problem and Solutions. 2018 , 1, 599-624	33
1044	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Liß Batteries and beyond in Alß Batteries. 2018 , 3, 2899-2907	146
1043	Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes. 2018 , 122, 10736-10745	86
1042	Peering through the Stability Window. 2018 , 2, 2511-2512	4
1041	Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries. <i>Nature Communications</i> , 2018 , 9, 5320	48
1040	Incorporating Flexibility into Stiffness: Self-Grown Carbon Nanotubes in Melamine Sponges Enable A Lithium-Metal-Anode Capacity of 15 mA h cm Cyclable at 15 mA cm. 2019 , 31, e1805654	41
1039	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. 2018 , 140, 18051-18057	96
1038	Tuning the Electron Density of Aromatic Solvent for Stable Solid-Electrolyte-Interphase Layer in Carbonate-Based Lithium Metal Batteries. 2018 , 8, 1802365	36
1037	Understanding Electrochemical Stability and Lithium Ion-Dominant Transport in Concentrated Poly(ethylene carbonate) Electrolyte. 2018 , 5, 4008-4014	22

1036 Poor Man's Atomic Layer Deposition of LiF for Additive-Free Growth of Lithium Columns. 2018, 18, 7066-7074 22

1035	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. 2018 , 2, 2117-2132	153
1034	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. 2018 , 4, eaat5383	199
1033	A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nature Communications, 2018, 9, 3870	247
1032	Assessment on the Self-Discharge Behavior of Lithium-Sulfur Batteries with LiNO-Possessing Electrolytes. 2018 , 10, 35175-35183	32
1031	Approaches toward lithium metal stabilization. 2018 , 43, 752-758	10
1030	High Energy Density CNT/Nal Composite Cathodes for Sodium-Ion Batteries. 2018 , 5, 1801342	4
1029	Stabilization of Lithium-Metal Anode in Rechargeable LithiumAir Batteries. 2018, 11-40	1
1028	Highly Durable and Stable Sodium Superoxide in Concentrated Electrolytes for Sodium Dxygen Batteries. 2018 , 8, 1801760	8
1027	2D Materials for Lithium/Sodium Metal Anodes. 2018 , 8, 1802833	7 2
1026	Li3BO3IIi2CO3: Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries. 2018 , 30, 8190-8200	92
1025	Pseudocapacitance Induced Uniform Plating/Stripping of Li Metal Anode in Vertical Graphene Nanowalls. 2018 , 28, 1805638	46
1024	Pseudoconcentrated Electrolyte with High Ionic Conductivity and Stability Enables High-Voltage Lithium-Ion Battery Chemistry. 2018 ,	9
1023	Recent Advances in Aqueous Zinc-Ion Batteries. 2018 , 3, 2480-2501	959
1022	Activating Aromatic Rings as Na-Ion Storage Sites to Achieve High Capacity. 2018 , 4, 2463-2478	56
1021	Theory of the Double Layer in Water-in-Salt Electrolytes. 2018 , 9, 5840-5846	94
1020	Dendrite-free lithium electrode cycling via controlled nucleation in low LiPF6 concentration electrolytes. 2018 , 21, 1010-1018	36
1019	Concentrated electrolytes based on dual salts of LiFSI and LiODFB for lithium-metal battery. 2018 , 289, 422-427	26

(2018-2018)

1018	lithiumBulfur battery. 2018 , 6, 18627-18634	51
101	7 Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. 2018 , 3, 2259-2266	81
1010	A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. 2018 , 134, 1-21	95
101	New Class of 3.7 V Fe-Based Positive Electrode Materials for Na-Ion Battery Based on Cation-Disordered Polyanion Framework. 2018 , 30, 6346-6352	13
101	Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization. 2018 , 30, 4039-4047	70
101	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. 2018 , 2, 1548-1558	257
1012	Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries. 2018, 50, 431-440	84
101:	Hollow TiNb O @C Spheres with Superior Rate Capability and Excellent Cycle Performance as Anode Material for Lithium-Ion Batteries. 2018 , 24, 12932-12937	34
1010	Chemically polished lithium metal anode for high energy lithium metal batteries. 2018 , 14, 289-296	29
100	Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. 2018 , 37, 449-458	65
100	8 Electrolyte with Low Polysulfide Solubility for LiB Batteries. 2018 , 1, 2608-2618	21
100	Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. 2018 , 10, 20412-20421	15
100	Composition dependence of the short range order structures in 0.2Na2O + 0.8[xBO3/2 + (1-x)GeO2] mixed glass formers. 2018 , 500, 61-69	6
100	Insights into Cyclable Lithium Loss as a Key Factor in Accelerated Capacity Fade of Lithiated Silicon-Sulfur Full Cells. 2018 , 10, 18709-18716	8
100	High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. 2018 , 115, 5676-5680	144
100	3 Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. 2018 , 30, e1801745	119
100	The effects of lithium salt and solvent on lithium metal anode performance. 2018 , 324, 144-149	15
100	A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithium-Metal Anodes. 2018 , 14, e1801054	49

1000	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. 2018 , 3, 674-681	357
999	Safe and high-rate supercapacitors based on an <code>Bcetonitrile/water</code> in salt[hybrid electrolyte. 2018 , 11, 3212-3219	186
998	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. 2018 , 57, 9795-9798	98
997	Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries. 2018 , 283, 517-527	20
996	Structural Design of LithiumBulfur Batteries: From Fundamental Research to Practical Application. 2018 , 1, 239-293	197
995	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. 2018 , 130, 9943-9946	31
994	Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithium-Metal Anodes. 2018 , 30, e1801328	112
993	Enhanced Electrochemical Performance of High-Energy Lithium-Sulfur Batteries Using an Electrolyte with 1,1,2,2-Tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane. 2018 , 165, A1915-A1919	9
992	In Situ Polysulfide Detection in Lithium Sulfur Cells. 2018 , 9, 3751-3755	6
991	Promoting polysulfide redox reactions and improving electronic conductivity in lithiumBulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets. 2018 , 6, 16574-16582	40
990	Water-tolerant lithium metal cycling in high lithium concentration phosphonium-based ionic liquid electrolytes. 2018 , 2, 2276-2283	20
989	Aliphatic Polycarbonate-Based Solid-State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. 2018 , 14, e1800821	79
988	Predicting Calendar Aging in Lithium Metal Secondary Batteries: The Impacts of Solid Electrolyte Interphase Composition and Stability. 2018 , 8, 1801427	21
987	Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes. 2018 , 4, 2192-2200	90
986	Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries. 2018 , 15, 407-414	28
985	Tuning NaO2 Cube Sizes by Controlling Na+ and Solvent Activity in NaD2 Batteries. 2018 , 122, 18316-18328	22
984	Porous Hollow Superlattice NiMnO/NiCoO Mesocrystals as a Highly Reversible Anode Material for Lithium-Ion Batteries. 2018 , 6, 153	10
983	Realizing High-Performance Li-Polysulfide Full Cells by using a Lithium Bis(trifluoromethanesulfonyl)imide Salt Electrolyte for Stable Cyclability. 2018 , 11, 3402-3409	3

(2018-2018)

982	Developing a "Water-Defendable" and "Dendrite-Free" Lithium-Metal Anode Using a Simple and Promising GeCl Pretreatment Method. 2018 , 30, e1705711	142
981	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. 2018 , 30, 5655-5662	31
980	Toward Highly Reversible MagnesiumBulfur Batteries with Efficient and Practical Mg[B(hfip)4]2Electrolyte. 2018 , 3, 2005-2013	149
979	Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultra-Stable Anodes of Lithium-Metal Batteries. 2018 , 28, 1803023	102
978	Separator Modification and Functionalization for Inhibiting the Shuttle Effect in Lithium-Sulfur Batteries. 2018 , 12, 1800249	26
977	Soft template synthesis of acetylene black/manganese dioxide nanosheets composites as efficient sulfur hosts for lithiumBulfur batteries. 2018 , 53, 14608-14618	5
976	Theoretical and experimental analysis of precipitation and solubility effects in lithium-sulfur batteries. 2018 , 284, 469-484	27
975	Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. 2018, 285, 78-85	55
974	Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. 2018 , 140, 9921-9933	152
973	Al(TFSI)3 as a Conducting Salt for High-Voltage Electrochemical Double-Layer Capacitors. 2018 , 30, 4857-486	3 29
972	2.20 Batteries. 2018 , 629-662	2
971	Wheat Straw-Derived N-, O-, and S-Tri-doped Porous Carbon with Ultrahigh Specific Surface Area for Lithium-Sulfur Batteries. 2018 , 11,	21
970	Concentrated mixed cation acetate Water-in-salt colutions as green and low-cost high voltage electrolytes for aqueous batteries. 2018 , 11, 2876-2883	198
969	Porous carbon prepared from polyacrylonitrile for lithium-sulfur battery cathodes using phase inversion technique. 2018 , 151, 171-178	11
968	Ab Initio Calculations of the Redox Potentials of Additives for Lithium-Ion Batteries and Their Prediction through Machine Learning. 2018 , 3, 7868-7874	24
967	Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. 2018 , 6, 16003-16011	12
966	Development and Challenges of Functional Electrolytes for High-Performance LithiumBulfur Batteries. 2018 , 28, 1800919	98
965	Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. 2018 , 10, 26972-26981	66

964	Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives. 2018 , 3, 1700376	61
963	Rational Design of Hierarchical TiO2/Epitaxially Aligned MoS2tarbon Coupled Interface Nanosheets Core/Shell Architecture for Ultrastable Sodium-Ion and LithiumBulfur Batteries. 2018 , 2, 1800119	41
962	Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life. 2018 , 10, 17933-17941	40
961	Gel polymer electrolyte based on polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method. 2018 , 278, 1-12	37
960	Dynamic Hosts for High-Performance Liß Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction. 2018 , 3, 1325-1330	39
959	Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. 2018 , 349, 376-387	62
958	An Ultrahigh Capacity Graphite/LiS Battery with Holey-LiS Nanoarchitectures. 2018, 5, 1800139	19
957	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. 2018 , 4, 996-1006	92
956	XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. 2018 , 1, 4493-4504	141
955	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in LiB batteries. 2018 , 3, 783-791	282
954	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. 2018, 400, 449-456	20
953	Water-in-Acid Gel Polymer Electrolyte Realized through a Phosphoric Acid-Enriched Polyelectrolyte Matrix toward Solid-State Supercapacitors. 2018 , 6, 12630-12640	14
952	Evaluation and Refinement of the General AMBER Force Field for Nineteen Pure Organic Electrolyte Solvents. 2018 , 63, 3488-3502	13
951	(CH3)3Si-N[(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode. 2018, 400, 225-231	23
950	CoreBhell MoS2@graphene composite microspheres as stable anodes for Li-ion batteries. 2018 , 42, 15340-15345	10
949	Engineering Solid Electrolyte Interphase in Lithium Metal Batteries by Employing an Ionic Liquid Ether Double-Solvent Electrolyte with Li[(CF3SO2)(n-C4F9SO2)N] as the Salt. 2018 , 1, 4426-4431	18
948	Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages. 2018 , 140, 7504-7509	28
947	Recent research trends in LiB batteries. 2018 , 6, 11582-11605	130

946	Improved Li-Ion Transport by DME Chelation in a Novel Ionic Liquid-Based Hybrid Electrolyte for LiB Battery Application. 2018 , 122, 14373-14382	20
945	Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. 2018 , 30, e1706375	241
944	Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. 2018, 30, e1802156	90
943	Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. 2018 , 140, 8147-8155	91
942	Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. 2019 , 16, 364-373	22
941	CNTsI@TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries. 2019 , 54, 592-604	17
940	Influence of Salt Concentration on the Properties of Sodium-Based Electrolytes. 2019 , 3, 1800208	27
939	Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. 2019 , 30, 525-528	19
938	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. 2019 , 7, 20325-20334	21
937	Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. 2019 , 11, 33419-33427	15
936	Physicochemical compatibility of highly-concentrated solvate ionic liquids and a low-viscosity solvent 2019 , 9, 24922-24927	2
935	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. 2019 , 31, 7565-7573	45
934	Highly stable performance of lithium-sulfurized polyacrylonitrile batteries using a lean ether-based electrolyte. 2019 , 55, 11271-11274	7
933	Carbonized regenerated silk nanofiber as multifunctional interlayer for high-performance lithium-sulfur batteries. 2019 , 592, 117349	29
932	A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries. 2019 , 7, 19970-19976	22
931	Fluoro-Ether as a Bifunctional Interphase Electrolyte Additive with Graphite/LiNi0.5Co0.2Mn0.3O2 Full Cell. 2019 , 2, 6404-6416	14
930	Encapsulating Metallic Lithium into Carbon Nanocages Which Enables a Low-Volume Effect and a Dendrite-Free Lithium Metal Anode. 2019 , 11, 30902-30910	18
929	Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity. 2019 , 11, 34973-34988	36

928	Lithiophilic Ag/Li composite anodes via a spontaneous reaction for Li nucleation with a reduced barrier. 2019 , 7, 20911-20918	30
927	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. 2019 , 12, 2741-2750	49
926	Polysulfide Shuttle Suppression by Electrolytes with Low-Density for High-Energy LithiumBulfur Batteries. 2019 , 7, 1900625	34
925	Concentrated LiODFB Electrolyte for Lithium Metal Batteries. 2019 , 7, 494	9
924	Correlating Structure and Properties of Super-Concentrated Electrolyte Solutions: 170 NMR and Electrochemical Characterization. 2019 , 6, 4002-4009	6
923	3 V CuAl Rechargeable Battery Enabled by Highly Concentrated Aprotic Electrolyte. 2019 , 2, 4936-4942	7
922	Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer-Tunnel NaMnO with Mg Doping at Na/Mn Site. 2019 , 11, 26938-26945	17
921	Joint Theoretical and Experimental Study on the Effects of the Salts in the Graphite-Based Dual-Ion Batteries. 2019 , 123, 18132-18141	4
920	Superior coulombic efficiency of lithium anodes for rechargeable batteries utilizing high-concentration ether electrolytes. 2019 , 319, 625-633	11
919	Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries. 2019 , 13, 8337-8346	94
918	Safety Issues in Lithium Ion Batteries: Materials and Cell Design. 2019 , 7,	74
917	Double-layered hollow carbon spheres embedded in 3D conductive network as an efficient Se0.4S0.6 host for advanced lithium batteries. 2019 , 806, 146-152	9
916	Recent advances in cathode materials for rechargeable lithium-sulfur batteries. 2019, 11, 15418-15439	78
915	Patterned macroporous Fe3C/C membrane-induced high ionic conductivity for integrated LiBulfur battery cathodes. 2019 , 7, 20614-20623	31
914	Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal. 2019 , 28, 078202	О
913	A New Type of Electrolyte System To Suppress Polysulfide Dissolution for Lithium-Sulfur Battery. 2019 , 13, 9067-9073	45
912	Uniform lithium deposition driven by vertical magnetic field for stable lithium anodes. 2019 , 341, 115033	12
911	Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. 2019 , 65, 103902	30

(2019-2019)

910	In Situ Revealing the Electroactivity of P?O and P?C Bonds in Hard Carbon for High-Capacity and Long-Life Li/K-Ion Batteries. 2019 , 9, 1901676	114
909	Realizing an Applicable "Solid -fSolid" Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium-Sulfur Batteries. 2019 , 11, 29830-29837	14
908	Interfacial design for lithiumBulfur batteries: From liquid to solid. 2019 , 1, 100002	80
907	Electrode Materials and Electrolytes for High-Rate Electrochemical Energy Systems: A Review. 2019 , 55, 73-95	7
906	Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. 2019 , 3, 1689-1702	70
905	Synthesis and electrochemical characterization of MgAl co-doped Li-rich Mn-based cathode materials. 2019 , 43, 12004-12012	27
904	Chemistry of Soft Matter Battery Electrolytes. 2019 , 1-11	
903	Alkali-Metal Anodes: From Lab to Market. 2019 , 3, 2334-2363	140
902	A Coaxial-Interweaved Hybrid Lithium Metal Anode for Long-Lifespan Lithium Metal Batteries. 2019 , 9, 1901932	44
901	ZnS coating of cathode facilitates lean-electrolyte Li-S batteries. 2019 , 1, 165-172	66
900	High-rate aqueous/ionic liquid dual electrolyte supercapacitor using 3D graphene sponge with an ultrahigh pore volume. 2019 , 327, 135014	8
899	ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium - Sulfur batteries. 2019 , 442, 227232	18
898	Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) Cathode for Aqueous Al-Ion Battery. 2019 , 11, 41356-41362	51
897	Electrochemical activity of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. 2019 , 854, 113538	10
896	Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. 2019 , 11, 42680-42689	12
895	Formation of a Solid Electrolyte Interphase in Hydrate-Melt Electrolytes. 2019 , 11, 45554-45560	27
894	Transport Properties of Li-TFSI Water-in-Salt Electrolytes. 2019 , 123, 10514-10521	39
893	A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. 2019 , 7, 721	18

892	Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries. 2019 , 9, 16795	13
891	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. 2019 , 3, 2647-2661	214
890	Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping. 2019 , 9, 1902116	49
889	Artificial Solid-Electrolyte Interphase Enabled High-Capacity and Stable Cycling Potassium Metal Batteries. 2019 , 9, 1902697	42
888	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. 2019 , 166, A3570-A3574	4
887	An Ultrarobust Composite Gel Electrolyte Stabilizing Ion Deposition for Long-Life Lithium Metal Batteries. 2019 , 29, 1904547	48
886	In Situ Coupling of Colloidal Silica and Li Salt Anion toward Stable Li Anode for Long-Cycle-Life Li-O2 Batteries. 2019 , 1, 881-892	29
885	Bendable Network Built with Ultralong Silica Nanowires as a Stable Separator for High-Safety and High-Power Lithium-Metal Batteries. 2019 , 11, 34895-34903	20
884	A paradigm of storage batteries. 2019 , 12, 3203-3224	100
883	Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries. 2019 , 52, 7234-7243	34
882	Diffusion couples Cu-X (X=Sn, Zn, Al) derived 3D porous current collector for dendrite-free lithium metal battery. 2019 , 440, 227142	8
881	Salt-concentrated electrolytes for graphite anode in potassium ion battery. 2019 , 341, 115050	22
880	Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. 2019 , 326, 134989	26
879	Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. 2019 , 31, 8850-8863	6
878	A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. 2019 , 12, 273-280	58
877	Na3V2(PO4)2F3BWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. 2019 , 7, 248-256	78
876	A H-bond stabilized quinone electrode material for Li-organic batteries: the strength of weak bonds. 2019 , 10, 418-426	57
875	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. 2019 , 19, 1326-1335	136

874	Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. 2019 , 19, 1387-1394	42
873	Volumetric Discharge Capacity 1 A h cmB Realized by Sulfur in Carbon Nanotube Sponge Cathodes. 2019 , 123, 3951-3958	10
872	Solid Electrolyte Interphase Film on Lithium Metal Anode in Mixed-Salt System. 2019 , 166, A5421-A5429	22
871	Bio-Inspired Stable Lithium-Metal Anodes by Co-depositing Lithium with a 2D Vermiculite Shuttle. 2019 , 58, 6200-6206	65
870	Sustainable cycling enabled by a high-concentration electrolyte for lithium-organic batteries. 2019 , 55, 608-611	19
869	ZnCl2 Water-in-SaltiElectrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode. 2019 , 29, 1902653	124
868	Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO3-Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling. 2019 , 31, 4564-4574	43
867	Methylsulfonylmethane-Based Deep Eutectic Solvent as a New Type of Green Electrolyte for a High-Energy-Density Aqueous Lithium-Ion Battery. 2019 , 4, 1419-1426	49
866	Fluorine-Free Noble Salt Anion for High-Performance All-Solid-State LithiumBulfur Batteries. 2019 , 9, 1900763	45
865	Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Liß Battery Performance. 2019 , 123, 14229-14238	73
864	Concentrated Electrolytes for Enhanced Stability of Al-Alloy Negative Electrodes in Li-Ion Batteries. 2019 , 166, A1867-A1874	19
863	Cathode electrolyte interface enabling stable LiB batteries. 2019 , 21, 474-480	35
862	Water in Protic Ionic Liquids: Properties and Use of a New Class of Electrolytes for Energy-Storage Devices. 2019 , 12, 3827-3836	23
861	Critical Role of Anion Donicity in LiS Deposition and Sulfur Utilization in Li-S Batteries. 2019 , 11, 25940-25948	31
860	Specifically Designed Ionic Liquids Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. 2019 , 3, 58	
859	Incorporating Solvate and Solid Electrolytes for All-Solid-State Li2S Batteries with High Capacity and Long Cycle Life. 2019 , 9, 1900938	28
858	Safe Lithium-Metal Anodes for LiD2 Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. 2019 , 2, 638-658	48
857	Electrolyte for lithium protection: From liquid to solid. 2019 , 4, 360-374	67

856	Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. 2019 , 430, 157-168	28
855	Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review. 2019 , 58, 9758-9780	43
854	Oxygen Redox Reaction in Ionic Liquid and Ionic Liquid-like Based Electrolytes: A Scanning Electrochemical Microscopy Study. 2019 , 10, 3333-3338	4
853	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithium-Metal Batteries. 2019 , 31, e1901645	39
852	Challenges and opportunities towards fast-charging battery materials. 2019 , 4, 540-550	566
851	Improved Stability and Rate Capability of Ionic Liquid Electrolyte with High Concentration of LiFSI. 2019 , 166, A1860-A1866	22
850	A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. 2019 , 317, 333-340	6
849	Natural Vermiculite Enables High-Performance in LithiumBulfur Batteries via Electrical Double Layer Effects. 2019 , 29, 1902820	27
848	Glyme-based liquid⊠olid electrolytes for lithium metal batteries. 2019 , 7, 13331-13338	10
847	A LiA1Cl4IBSO2-NaAlCl4I2SO2 binary inorganic electrolyte with improved electrochemical performance for Li-metal batteries. 2019 , 25, 4751-4760	2
846	Nanostructures and Nanomaterials for Lithium Metal Batteries. 2019 , 159-214	
845	LiFSI to improve lithium deposition in carbonate electrolyte. 2019 , 23, 350-357	38
844	Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study. 2019 , 141, 8441-8449	65
843	LiAlCl4BSO2: a promising inorganic electrolyte for stable Li metal anode at room and low temperature. 2019 , 25, 4137-4147	4
842	Influence of Li-Salt Concentration on Redox Potential of Lithium Metal and Electrochemistry of Ferrocene in DMSO-Based Electrolytes. 2019 , 166, A1574-A1579	11
841	A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries. 2019 , 337, 140-146	20
840	Current Status and Future Prospects of Metal-Sulfur Batteries. 2019 , 31, e1901125	237
839	A linear molecule sulfur-rich organic cathode material for high performance lithiumBulfur batteries. 2019 , 430, 210-217	21

838	Recent Development of Aprotic NaD2 Batteries. 2019 , 2, 725-742	29
837	Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries. 2019 , 11, 17333-17340	16
836	Akin solidBolid biphasic conversion of a LiB battery achieved by coordinated carbonate electrolytes. 2019 , 7, 12498-12506	26
835	Strategies Toward Stable Nonaqueous Alkali Metal D2 Batteries. 2019 , 9, 1900464	23
834	Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. 2019 , 166, A1501-A1509	57
833	Evolution of Solid Electrolyte Interface on TiO2 Electrodes in an Aqueous Li-Ion Battery Studied Using Scanning Electrochemical Microscopy. 2019 ,	19
832	The Challenge of Lithium Metal Anodes for Practical Applications. 2019 , 3, 1800551	42
831	Eliminating Tip Dendrite Growth by Lorentz Force for Stable Lithium Metal Anodes. 2019 , 29, 1902630	51
830	Vertically-aligned nanostructures for electrochemical energy storage. 2019 , 12, 2002-2017	23
829	Synergistic suppression of the shuttle effect and absorption of electrolytes using a functional rich amine porous organic polymer/acetylene black-polypropylene separator in Li-S batteries. 2019 , 306, 229-237	18
828	A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode. 2019 , 306, 407-419	28
827	Key Issues Hindering a Practical Lithium-Metal Anode. 2019 , 1, 152-158	208
826	Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. <i>Nature Communications</i> , 2019 , 10, 1363	170
825	The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. 2019 , 369, 874-897	53
824	Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. 2019 , 60, 205-212	155
823	Sulfur-Based Composite Electrode with Interconnected Mesoporous Carbon for All-Solid-State LithiumBulfur Batteries. 2019 , 7, 1900077	18
822	High capacity conversion anodes in Li-ion batteries: A review. 2019 , 44, 10852-10905	62
821	Mesoscale Elucidation of Self-Discharge-Induced Performance Decay in Lithium-Sulfur Batteries. 2019 , 11, 13326-13333	5

820 Electrochemical Energy Storage. **2019**, 187-224

819	Ionic Liquids and their Polymers in Lithium-Sulfur Batteries. 2019 , 59, 832-842	10
818	Toward a low-cost high-voltage sodium aqueous rechargeable battery. 2019 , 29, 26-36	101
817	Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. 2019 , 229, 232-241	23
816	Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. 2019 , 23, 701-706	67
815	Comprehensive Understanding of Lithium-Sulfur Batteries: Current Status and Outlook. 2019 , 355-398	1
814	Disiloxane with nitrile end groups as Co-solvent for electrolytes in lithiumsulfur batteries [A feasible approach to replace LiNO3. 2019 , 307, 76-82	9
813	Fire-Retardant Phosphate-Based Electrolytes for High-Performance Lithium Metal Batteries. 2019 , 2, 2708-2716	32
812	A PEG-grafted carbon hybrid as sulfur host for high-performance lithium-sulfur batteries. 2019 , 21, 1	7
811	Porous scaffold of TiO2 for dendrite-free lithium metal anode. 2019 , 791, 364-370	15
810	Heat transfer analysis of a high-power and large-capacity thermal battery and investigation of effective thermal model. 2019 , 424, 35-41	20
809	Sodium Storage and Electrode Dynamics of Tintarbon Composite Electrodes from Bulk Precursors for Sodium-Ion Batteries. 2019 , 29, 1900790	76
808	Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. 2019 , 18, 384-389	367
807	Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium ulfur batteries. 2019 , 421, 23-31	70
806	A simple and practical hybrid ionic liquid/aqueous dual electrolyte configuration for safe and ion-exchange membrane-free high cell potential supercapacitor. 2019 , 305, 443-451	7
805	Lithium Metal Anode. 2019 , 1-21	2
804	Selenium Nanocomposite Cathode with Long Cycle Life for Rechargeable Lithium-Selenium Batteries. 2019 , 2, 784-791	20
803	CommunicationDirect Room-Temperature Electrodeposition of La from LaCl3 in an Organic Solvent Supported by LiNO3. 2019 , 166, D218-D220	11

802	Exploiting Pulping Waste as an Ecofriendly Multifunctional Binder for Lithium Sulfur Batteries. 2019 , 7, 8413-8418	13
801	Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. 2019 , 15, e1900687	134
800	LiXGe containing ion-conductive hybrid skin for high rate lithium metal anode. 2019 , 371, 294-300	28
799	Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. 2019 , 23, 587-593	40
798	Structural and Transport Properties of Li/S Battery Electrolytes: Role of the Polysulfide Species. 2019 , 123, 10167-10177	23
797	Mixed Ion and Electron-Conducting Scaffolds for High-Rate Lithium Metal Anodes. 2019 , 9, 1900193	56
796	Sulfur-Deficient TiS2-x for Promoted Polysulfide Redox Conversion in Lithium-Sulfur Batteries. 2019 , 6, 2231-2237	28
795	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. 2019 , 119, 5416-5460	309
794	On the Factors Affecting Aging and Self-Discharge of LithiumBulfur Cells. Effect of Positive Electrode Composition. 2019 , 7, 1900134	4
793	Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. 2019 , 60, 743-751	98
792	Preparation of activated carbon derived from biomass and its application in lithiumBulfur batteries. 2019 , 26, 1325-1333	13
791	High and intermediate temperature sodium-sulfur batteries for energy storage: development, challenges and perspectives 2019 , 9, 5649-5673	50
790	High-Cycle-Performance Aqueous Magnesium Ions Battery Capacitor Based on a Mg-OMS-1/Graphene as Cathode and a Carbon Molecular Sieves as Anode. 2019 , 7, 6113-6121	19
789	Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries. 2019 , 31, e1806532	109
788	Sustainable, Dendrite Free Lithium-Metal Electrode Cycling Achieved with Polymer Composite Electrolytes Based on a Poly(Ionic Liquid) Host. 2019 , 2, 229-239	26
787	Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries. 2019 , 15, e1804786	172
786	Bio-Inspired Stable Lithium-Metal Anodes by Co-depositing Lithium with a 2D Vermiculite Shuttle. 2019 , 131, 6266-6272	5
7 ⁸ 5	Zirconium-Based Materials for Electrochemical Energy Storage. 2019 , 6, 1949-1968	4

784	Na0.9Ni0.45Ti0.55O2 as novel bipolar material for sodium ion batteries. 2019 , 334, 14-20	11
783	Unraveling the Formation Mechanism of Solid-Liquid Electrolyte Interphases on LiPON Thin Films. 2019 , 11, 9539-9547	18
782	Progressively providing ionic inhibitor via functional nanofiber layer to stabilize lithium metal anode. 2019 , 302, 301-309	5
781	High Rate Li-Ion Batteries with Cation-Disordered Cathodes. 2019 , 3, 1064-1079	8
78o	Dual Lithiophilic Structure for Uniform Li Deposition. 2019 , 11, 10616-10623	29
779	High-Fluorinated Electrolytes for LiB Batteries. 2019 , 9, 1803774	144
778	Hierarchical Co3O4 Nanofibertarbon Sheet Skeleton with Superior Na/Li-Philic Property Enabling Highly Stable Alkali Metal Batteries. 2019 , 29, 1808847	107
777	Efficient Li-Ion-Conductive Layer for the Realization of Highly Stable High-Voltage and High-Capacity Lithium Metal Batteries. 2019 , 9, 1803722	37
776	Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode. 2019 , 368, 321-330	35
775	In situ observation of solid electrolyte interphase evolution in a lithium metal battery. 2019 , 2,	35
774	Lithiophilic Three-Dimensional Porous TiCT-rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes. 2019 , 13, 14319-14328	71
773	Computational Investigation of Mixed Anion Effect on Lithium Coordination and Transport in Salt Concentrated Ionic Liquid Electrolytes. 2019 , 10, 7414-7420	17
772	Probing the dynamic evolution of lithium dendrites: a review of in situ/operando characterization for lithium metallic batteries. 2019 , 11, 20429-20436	22
771	Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. 2019 , 7, 27535-27546	18
770	In situLi-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations. 2019 , 21, 26084-26094	25
769	Counterion Transport and Transference Number in Aqueous and Nonaqueous Short-Chain Polyelectrolyte Solutions. 2019 , 123, 10858-10867	4
768	Effects of a High-Concentration LiPF6-Based Carbonate Ester Electrolyte for the Electrochemical Performance of a High-Voltage Layered LiNi0.6Co0.2Mn0.2O2 Cathode. 2019 , 2, 8878-8884	12
767	Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. <i>Nature Communications</i> , 2019 , 10, 5374	268

766	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. 2019 , 4, 882-890	267
765	Stabilizing cathode structure the binder material with high resilience for lithium-sulfur batteries 2019 , 9, 40471-40477	5
764	Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance 2019 , 9, 41151-41160	10
763	A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals. 2019 , 7, 25389-25398	15
762	Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases. 2019 , 12, 559-565	21
761	First principles studies of self-diffusion processes on metallic lithium surfaces. 2019 , 150, 041723	24
760	Mechanically Excited Multicolor Luminescence in Lanthanide Ions. 2019 , 31, e1807062	70
759	An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes. 2019 , 9, 1802720	70
758	Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. 2019 , 31, e1804204	50
757	Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. 2019 , 141, 840-848	147
756	Improving Cell Resistance and Cycle Life with Solvate-Coated Thiophosphate Solid Electrolytes in Lithium Batteries. 2019 , 11, 2014-2021	17
755	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. 2019 , 18, 289-310	159
754	Honeycomb-Like Nitrogen-Doped Carbon 3D Nanoweb@Li S Cathode Material for Use in Lithium Sulfur Batteries. 2019 , 12, 824-829	22
753	Separator modified with Ketjenblack-In2O3 nanoparticles for long cycle-life lithium-sulfur batteries. 2019 , 23, 645-656	17
75 ²	Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. 2019 , 6, 247-256	32
751	The mechanism of effect of support salt concentration in electrolyte on performance of lithium-sulfur cells. 2019 , 296, 1102-1114	12
750	Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. 2019 , 162, 45-51	34
	Guiding Uniform Li Plating/Stripping through Lithium-Aluminum Alloying Medium for Long-Life Li	

748	Guiding Uniform Li Plating/Stripping through LithiumAluminum Alloying Medium for Long-Life Li Metal Batteries. 2019 , 131, 1106-1111	38
747	Solid-State Lithium/SeleniumBulfur Chemistry Enabled via a Robust Solid-Electrolyte Interphase. 2019 , 9, 1802235	42
746	Nanobead-reinforced outmost shell of solid-electrolyte interphase layers for suppressing dendritic growth of lithium metal. 2019 , 414, 218-224	2
745	Wettability in electrodes and its impact on the performance of lithium-ion batteries. 2019 , 18, 139-147	53
744	Electrolyte Concentration Effect on Sulfur Utilization of Li-S Batteries. 2019 , 166, A50-A58	17
743	Unusual Capacity Increases with Cycling for Ladder-Type Microporous Polymers. 2019 , 11, 1739-1747	23
742	Electrolyte for LithiumBulfur Batteries. 2019 , 71-119	1
741	Lithium Sulfide. 2019 , 147-183	
740	Degradation in LithiumBulfur Batteries. 2019 , 185-226	
739	Carbon/Sulfur Composites Stabilized with Nano-TiNi for High-Performance Liß Battery Cathodes. 2019 , 2, 1537-1543	6
738	UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries. 2019 , 414, 283-292	26
737	Moss-Derived Mesoporous Carbon as Bi-Functional Electrode Materials for Lithium?Sulfur Batteries and Supercapacitors. 2019 , 9,	20
736	Efficient Charging of LithiumBulfur Batteries by Triboelectric Nanogenerator Based on Pulse Current. 2019 , 4, 1800326	6
735	A top-down approach to build Li2S@rGO cathode composites for high-loading lithiumBulfur batteries in carbonate-based electrolyte. 2019 , 296, 243-250	20
734	Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry. 2019 , 18, 470-475	54
733	Hydroxylated sandwich-structure interlayer as a polysulfide reservoir for lithium-sulfur battery. 2019 , 776, 187-193	18
732	Porous insulating matrix for lithium metal anode with long cycling stability and high power. 2019 , 17, 31-37	22
731	Highly Solvating Electrolytes for Lithium-Sulfur Batteries. 2019 , 9, 1803096	116

(2020-2019)

730	Alkali Metal Anodes for Rechargeable Batteries. 2019, 5, 313-338	103
729	Nanocrevasse-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes. 2019 , 19, 1504-1511	88
728	Multi-walled carbon nanotube interlayers with controllable thicknesses for high-capacity and long-life lithium metal anodes. 2019 , 412, 170-179	31
727	Ab initio simulations of liquid electrolytes for energy conversion and storage. 2019 , 119, e25795	8
726	First-principles prediction of universal relation between exchange current density and adsorption energy of rare-earth elements in a molten salt. 2019 , 70, 94-98	2
725	An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. 2019 , 18, 68-91	81
724	An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. 2019 , 18, 92-99	28
723	Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. 2019 , 17, 366-373	59
722	One-pot solution coating of high quality LiF layer to stabilize Li metal anode. 2019 , 16, 85-90	150
721	Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. 2019 , 16, 6-23	164
720	Spatially uniform deposition of lithium metal in 3D Janus hosts. 2019 , 16, 259-266	84
719	Recent progress in fluorinated electrolytes for improving the performance of LiB batteries. 2020 , 41, 149-170	43
718	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. 2020 , 25, 644-678	111
717	Towards better Li metal anodes: Challenges and strategies. 2020 , 33, 56-74	216
716	Ion association tailoring SEI composition for Li metal anode protection. 2020 , 45, 1-6	33
715	An air-stable prelithiation technology for lithium ion-sulfurized polyacrylonitrile battery. 2020 , 13, 1950094	2
714	Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries. 2020 , 32, e1903891	79
713	Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. 2020 , 25, 334-341	44

712	Sodium storage property and mechanism of NaCr1/4Fe1/4Ni1/4Ti1/4O2 cathode at various cut-off voltages. 2020 , 24, 417-425	13
711	Electrolyte additive maintains high performance for dendrite-free lithium metal anode. 2020 , 31, 1217-1220	12
710	A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. 2020 , 76, 100788	100
709	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. 2020 , 59, 7306-7318	54
708	A Review of Composite Lithium Metal Anode for Practical Applications. 2020 , 5, 1900806	67
707	Self-Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahigh-Rate and Large-Capacity Lithium-Metal Anode. 2020 , 59, 2055-2060	113
706	How do organic polysulphides improve the performance of Li-S batteries?. 2020 , 330, 135253	4
705	Revisiting the Electroplating Process for Lithium-Metal Anodes for Lithium-Metal Batteries. 2020 , 132, 6730-6739	13
704	Revisiting the Electroplating Process for Lithium-Metal Anodes for Lithium-Metal Batteries. 2020 , 59, 6665-6674	62
703	Development and application of carbon fiber in batteries. 2020 , 384, 123294	55
702	Facile Synthesis of a "Two-in-One" Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries. 2020 , 12, 5968-5978	29
701	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. 2020 , 12, 8366-8375	10
700	Structure and mechanical properties of electroplated mossy lithium: Effects of current density and electrolyte. 2020 , 26, 276-282	6
699	Progress in electrolytes for beyond-lithium-ion batteries. 2020 , 44, 237-257	39
698	FSI-inspired solvent and full fluorosulfonylælectrolyte for 4 V class lithium-metal batteries. 2020 , 13, 212-220	97
697	Stable Nano-Encapsulation of Lithium Through Seed-Free Selective Deposition for High-Performance Li Battery Anodes. 2020 , 10, 1902956	38
696	Three-Dimensional Superlithiophilic Interphase for Dendrite-Free Lithium Metal Anodes. 2020 , 12, 5767-5774	20
695	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. 2020 , 8, 3459-3467	38

694	Effect of Dual-Salt Concentrated Electrolytes on the Electrochemical Performance of Silicon Nanoparticles. 2020 , 7, 1135-1141	6
693	Air-Stable and Dendrite-Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C60 and Mg. 2020 , 10, 1903292	36
692	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. 2020 , 132, 7374-7386	14
691	Nanomaterials application in LiBe and NaBe batteries. 2020 , 69-114	1
690	Self-Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahigh-Rate and Large-Capacity Lithium-Metal Anode. 2020 , 132, 2071-2076	19
689	Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. 2020 , 59, 10732-10745	56
688	3D lithiophilic[Ithiophobic[Ithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. 2020 , 8, 313-322	43
687	Tribute to Michel Armand: from Rocking Chair Li-ion to Solid-State Lithium Batteries. 2020 , 167, 070507	45
686	A metal-free battery working at B 0 °C. 2020 , 26, 585-592	23
685	Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. 2020 , 55, 56-72	29
684	Mechanism of lithium electrodeposition in a magnetic field. 2020 , 345, 115171	12
683	In situ formation of a LiF and LiAl alloy anode protected layer on a Li metal anode with enhanced cycle life. 2020 , 8, 1247-1253	31
682	In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries. 2020 , 507, 145059	24
681	Additives synergy for stable interface formation on rechargeable lithium metal anodes. 2020 , 29, 377-385	40
680	Dioxolanone-Anchored Poly(allyl ether)-Based Cross-Linked Dual-Salt Polymer Electrolytes for High-Voltage Lithium Metal Batteries. 2020 , 12, 567-579	19
679	Dendrite-free lithium metal and sodium metal batteries. 2020 , 27, 522-554	74
678	Mechanistics of Lithium-Metal Battery Performance by Separator Architecture Design. 2020 , 12, 556-566	16
677	Electrolyte Regulation towards Stable Lithium-Metal Anodes in LithiumBulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. 2020 , 132, 10821-10834	17

676	Fluorine-incorporated interface enhances cycling stability of lithium metal batteries with Ni-rich NCM cathodes. 2020 , 67, 104309	49
675	Graphitellithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. 2020 , 5, 1-7	24
674	Stable Li Metal Anode Enabled by Space Confinement and Uniform Curvature through Lithiophilic Nanotube Arrays. 2020 , 10, 1902819	30
673	Concentrated Battery Electrolytes: Developing New Functions by Manipulating the Coordination States. 2020 , 93, 109-118	23
672	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. 2020 , 12, 3681-3687	10
671	An ultra-stable lithium plating process enabled by the nanoscale interphase of a macromolecular additive. 2020 , 8, 23844-23850	4
670	Addition of Chloroform in a Solvent-in-Salt Electrolyte: Outcomes in the Microscopic Dynamics in Bulk and Confinement. 2020 , 124, 22366-22375	5
669	Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries. 2020 , 3, 1009-1030	12
668	Turning Soluble Polysulfide Intermediates Back into Solid State by a Molecule Binder in Li-S Batteries. 2020 , 14, 15884-15893	10
667	Polysulfide species in various electrolytes of Li-S batteries 🗈 chromatographic investigation. 2020 , 363, 137227	14
666	Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. 2020 , 117, 26672-26680	13
665	Thermal runaway of Lithium-ion batteries employing LiN(SOF)-based concentrated electrolytes. Nature Communications, 2020 , 11, 5100	58
664	CuOL modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. 2020 , 8, 21961-21967	5
663	3D Structural Transition of the Electrodeposited and Electrochemically Dissolved Li Metal onto an Ultramicroelectrode. 2020 , 124, 22019-22024	4
662	Role of Li-Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode. 2020 , 10, 2002390	53
661	Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. 2020 , 363, 137198	7
660	Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles. 2020 , 1, 100212	22
659	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. 2020 , 13, 4625-4665	176

65	8 Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. 2020 , 77, 105058	32
65	Rational Design of Sandwich-Like Gel liquid G ellElectrolytes for Dendrite-Free Lithium Metal Batteries. 2020 , 59, 14207-14216	4
65	High Voltage Stable Li Metal Batteries Enabled by Ether-Based Highly Concentrated Electrolytes at Elevated Temperatures. 2020 , 167, 110543	9
65	Ion interactions and dynamics in pseudohalide based ionic liquid electrolytes containing sodium solutes. 2020 , 303, 112597	1
65	4 Graphene film with folds for a stable lithium metal anode. 2020 , 26, 5357-5365	2
65	Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes. 2020 , 358, 136688	9
65	2 Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions. 2020 , 40, 63-71	30
65	1 The Dr Jekyll and Mr Hyde of lithium sulfur batteries. 2020 , 13, 4808-4833	42
65	O A review on recent approaches for designing the SEI layer on sodium metal anodes. 2020 , 1, 3143-3 ⁻⁷	166 10
64	3D Lithiophilic and Conductive [email[protected]2[email[protected] Framework for a Dendrite-Free Lithium Metal Battery. 2020 , 32, 9656-9663	8
64	8 The Mystery of Electrolyte Concentration: From Superhigh to Ultralow. 2020 , 5, 3633-3636	37
64	$_{7}$ Lithium $f D$ xygen Battery Exploiting Highly Concentrated Glyme-Based Electrolytes. 2020 , 3, 12263-17	2275 11
64	6 Potassium Hexafluorophosphate Additive Enables Stable Lithium-Sulfur Batteries. 2020 , 12, 56017-	56026 14
64	A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. 2020 , 18, 100520	8
64	4 Lithium Metal Anodes with Nonaqueous Electrolytes. 2020 , 120, 13312-13348	143
64	Water-free Localization of Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube. 2020 , 1, 100246	2
64	Integrated Composite Polymer Electrolyte Cross-Linked with SiO2-Reinforced Layer for Enhanced Li-Ion Conductivity and Lithium Dendrite Inhibition. 2020 , 3, 8552-8561	7
64	Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries. 2020, 8, 595	22

640	Sulfur-based redox chemistry for electrochemical energy storage. 2020 , 422, 213445	11
639	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. 2020 , 4, 1776-1789	62
638	Evaluation of chemical stability of conducting ceramics to protect metallic lithium in Li/S batteries. 2020 , 354, 115402	О
637	Strongly Correlated Ion Dynamics in Plastic Ionic Crystals and Polymerized Ionic Liquids. 2020 , 124, 17889-178	9 <u>6</u> 0
636	Anode-free rechargeable lithium metal batteries: Progress and prospects. 2020 , 32, 386-401	52
635	Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte. 2020 , 12, 37188-3719) 6 17
634	A high rate and long cycling life lithium metal anode with a self-repairing alloy coating. 2020 , 8, 17415-17419	15
633	Interface Concentrated-Confinement Suppressing Cathode Dissolution in Water-in-Salt Electrolyte. 2020 , 10, 2000665	34
632	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. 2020 , 120, 7795-7866	347
631	Evaluating Solid-Electrolyte Interphases for Lithium and Lithium-free Anodes from Nanoindentation Features. 2020 , 6, 2728-2745	15
630	Highly concentrated nitrile functionalized disiloxane - LiFSI based non-flammable electrolyte for high energy density Li metal battery. 2020 , 879, 114794	6
629	Solid-state lithiumBulfur batteries: Advances, challenges and perspectives. 2020 , 40, 114-131	33
628	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. 2020 , 59, 23180-23187	12
627	Reaction heterogeneity in practical high-energy lithiumBulfur pouch cells. 2020 , 13, 3620-3632	59
626	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. 2020 , 132, 23380-23387	6
625	A Review of Solid-State LithiumBulfur Battery: Ion Transport and Polysulfide Chemistry. 2020 , 34, 11942-1196	126
624	Li1.5Al0.5Ge1.5(PO4)3 Ceramic Based Lithium-Sulfur Batteries with High Cycling Stability Enabled by a Dual Confinement Effect for Polysulfides. 2020 , 7, 4093-4100	3
623	Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries. 2020 , 30, 2003055	18

622	Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity. 2020 , 33, 329-335	9
621	Hollow C@TiO2 array nanospheres as efficient sulfur hosts for lithiumBulfur batteries. 2020 , 4, 5493-5497	2
620	Lithiated carbon cloth as a dendrite-free anode for high-performance lithium batteries. 2020, 4, 5773-5782	2
619	Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO2/PEDOT:PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode. 2020 , 8, 19588-19602	27
618	Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. 2020 , 63, 1402-1415	20
617	Modeling the Interface between Lithium Metal and Its Native Oxide. 2020 , 12, 46015-46026	11
616	Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li-Metal Batteries. 2020 , 12, 46132-46145	13
615	Polymer electrolytes for rechargeable lithium metal batteries. 2020 , 4, 5469-5487	11
614	A Chronocoulometric Method to Measure the Corrosion Rate on Zinc Metal Electrodes. 2020 , 12, 42612-4262	19
613	Polymer-Inorganic Nanocomposite Coating with High Ionic Conductivity and Transference Number for a Stable Lithium Metal Anode. 2020 , 12, 41620-41626	10
612	Exploring the innovation efficiency of new energy vehicle enterprises in China. 2020, 22, 1671-1685	14
611	Pyr1,xTFSI Ionic Liquids (x = 18): A Computational Chemistry Study. 2020 , 10, 8552	3
610	An overview of the characteristics of advanced binders for high-performance LiB batteries. 2020,	4
609	Mechanistic Insight on the Formation of a Solid Electrolyte Interphase (SEI) by an Acetonitrile-Based Superconcentrated [Li][TFSI] Electrolyte near Lithium Metal. 2020 , 124, 27495-27502	5
608	Enhanced Electrochemical Kinetics and Polysulfide Traps of Bifunctional Perovskite Promoter for Highly Stable LithiumBulfur Batteries. 2020 , 8, 18636-18645	8
607	Dense Sandwich-like Na2Ti3O7@rGO Composite with Superior Performance for Sodium Storage. 2020 , 7, 2258-2264	5
606	A Highly Sensitive Electrochemical Sensor of Polysulfides in Polymer Lithium-Sulfur Batteries. 2020 , 167, 080520	1
605	Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide. 2020 , 7, 2000237	16

604	Functional Covalent Triazine Frameworks-Based Quasi-Solid-State Electrolyte Used to Enhance Lithium Metal Battery Safety. 2020 , 3, 936-945	8
603	In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes. 2020 , 12, 25818-25825	10
602	Regulating the Hidden Solvation-Ion-Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. 2020 , 10, 2000901	39
601	Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from -35 to +65 °C. 2020 , 12, 29181-29193	3
600	Conversion of Co Nanoparticles to CoS in Metal-Organic Framework-Derived Porous Carbon during Cycling Facilitates NaS Reactivity in a Na-S Battery. 2020 , 12, 29285-29295	1
599	Reliable liquid electrolytes for lithium metal batteries. 2020 , 30, 113-129	44
598	Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. 2020 , 39, 616-635	54
597	A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries. 2020 , 353, 136529	19
596	Recent Progress in High Donor Electrolytes for Lithium Bulfur Batteries. 2020, 10, 2001456	51
595	Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. 2020 , 16, e2000699	36
594	Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. 2020 , 30, 228-237	28
593	Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte. 2020 , 20, 5391-5399	49
592	Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. 2020 , 56, 8257-8260	7
591	Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives. 2020 , 98, 554-563	2
590	Effects of fluoroethylene carbonate addition to Li-glyme solvate ionic liquids on their ionic transport properties and Si composite electrode performance. 2020 , 353, 136559	3
589	Tuning Low Concentration Electrolytes for High Rate Performance in Lithium-Sulfur Batteries. 2020 , 167, 100512	10
588	Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. 2020 , 13,	16
587	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. 2020 , 12, 31411-31418	12

586	A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. 2020 , 117, 14712-14720	49
585	Effect of cation size on alkali acetate-based water-in-bisalt@lectrolyte and its application in aqueous rechargeable lithium battery. 2020 , 20, 100728	3
584	A Micelle Electrolyte Enabled by Fluorinated Ether Additives for Polysulfide Suppression and Li Metal Stabilization in Li-S Battery. 2020 , 8, 484	11
583	Computational Study of the Properties of Acetonitrile/Water-in-Salt Hybrid Electrolytes as Electrolytes for Supercapacitors. 2020 , 124, 5685-5695	7
582	Theory of ion aggregation and gelation in super-concentrated electrolytes. 2020, 152, 234506	24
581	Highly concentrated LiN(SOCF)/dinitrile electrolytes: Liquid structures, transport properties, and electrochemistry. 2020 , 152, 104502	15
580	Effects of Polysulfide Solubility and Li Ion Transport on Performance of LiB Batteries Using Sparingly Solvating Electrolytes. 2020 , 167, 070531	28
579	Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression and improved performance. 2020 , 453, 227911	21
578	Ultralow-Concentration Electrolyte for Na-Ion Batteries. 2020 , 5, 1156-1158	54
577	Grain growth and superconductivity of rhenium electrodeposited from water-in-salt electrolytes. 2020 , 127, 085301	3
576	Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry. 2020 , 29, 101379	8
575	Electrolytes for Lithium (Sodium) Batteries Based on Ionic Liquids: Highlighting the Key Role Played by the Anion. 2020 , 3, 793-827	23
574	Multiscale Lithium-Battery Modeling from Materials to Cells. 2020 , 11, 277-310	15
573	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. 2020 , 142, 7393-7403	89
572	Suppression of Fast Proton Conduction by Dilution of a Hydronium Solvate Ionic Liquid: Localization of Ligand Exchange. 2020 , 167, 046508	5
571	Non-flammable Inorganic Liquid Electrolyte Lithium-Ion Batteries. 2020 , 167, 070521	5
570	Functional Localized High-Concentration Ether-Based Electrolyte for Stabilizing High-Voltage Lithium-Metal Battery. 2020 , 12, 33710-33718	25
569	Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates. 2020 , 22, 15214-15221	27

568	Evaluation of the Properties of an Electrolyte Based on Formamide and LiTFSI for Electrochemical Capacitors. 2020 , 167, 110508	3
567	LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. 2020 , 12, 33719-33728	25
566	Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions. 2020 , 29, 087804	О
565	Ab initio study of P-doped borocarbonitride nanosheet as anode material for Li-ion and Na-ion batteries. 2020 , 25, 101409	3
564	Glycerol-plasticized agarose separator suppressing dendritic growth in Li metal battery. 2020 , 247, 116697	4
563	A thermo-stable poly(propylene carbonate)-based composite separator for lithium-sulfur batteries under elevated temperatures. 2020 , 44, 10295-10306	3
562	Designing an intrinsically safe organic electrolyte for rechargeable batteries. 2020, 31, 382-400	29
561	Molecular Structure, Chemical Exchange, and Conductivity Mechanism of High Concentration LiTFSI Electrolytes. 2020 , 124, 1965-1977	20
560	Revisiting the strategies for stabilizing lithium metal anodes. 2020 , 8, 13874-13895	24
559	Properties of Thin Lithium Metal Electrodes in Carbonate Electrolytes with Realistic Parameters. 2020 , 12, 32863-32870	4
558	Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. 2020 , 4, 1557-1574	177
557	Stable cycling of small molecular organic electrode materials enabled by high concentration electrolytes. 2020 , 31, 318-327	20
556	Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. 2020 , 472, 228449	21
555	Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. 2020 , 76, 105068	19
554	The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries. 2020 , 347, 115252	12
553	New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling. 2020 , 10, 1903937	35
552	Synergistic effect of organic plasticizer and lepidolite filler on polymer electrolytes for all-solid high-voltage Lifhetal batteries. 2020 , 8, 5968-5974	18
551	Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries. 2020 , 29, 048202	6

550	Additive. 2020 , 30, 2000455	32
549	Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. 2020 , 120, 6558-6625	183
548	ReviewEmerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries. 2020 , 167, 050508	52
547	Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode. 2020 , 48, 375-382	14
546	Electrolyte Design for Fast-Charging Li-Ion Batteries. 2020 , 2, 354-366	88
545	Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction. 2020 , 162, 431-437	12
544	Crystalline chromium electroplating with high current efficiency using chloride hydrate melt-based trivalent chromium baths. 2020 , 338, 135873	8
543	Controlling dendrite growth in lithium metal batteries through forced advection. 2020 , 452, 227760	11
542	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. <i>Nature Communications</i> , 2020 , 11, 829	125
541	Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode. 2020 , 32, e1905629	59
540	A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase. 2020 , 32, e1906427	87
539	A Novel Zwitterionic Ionic Liquid-Based Electrolyte for More Efficient and Safer Lithium-Sulfur Batteries. 2020 , 12, 11635-11642	10
538	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. 2020 , 49, 1569-161	4615
537	Uncharted Waters: Super-Concentrated Electrolytes. 2020 , 4, 69-100	153
536	Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. 2020 , 28, 17-26	21
535	Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. 2019 , 7, 952	7
534	Propelling polysulfide conversion for high-loading lithium ulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. 2020 , 27, 51-60	41
533	Versatile Strategy for Realizing Flexible Room-Temperature All-Solid-State Battery through a Synergistic Combination of Salt Affluent PEO and LiLaZrTaO Nanofibers. 2020 , 12, 7222-7231	29

532	In situ x-ray photoelectron spectroscopy study of lithium carbonate removal from garnet-type solid-state electrolyte using ultra high vacuum techniques. 2020 , 38, 023201	6
531	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm2/20 mAh cm2 Realized by Selective Nucleation within Microchannel Walls. 2020 , 10, 1903753	44
530	Enhancing the kinetics of lithium ulfur batteries under solid-state conversion by using tellurium as a eutectic accelerator. 2020 , 8, 3405-3412	12
529	A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. 2020 , 13, 2205-2219	32
528	An excellent anode renders protic ionic liquids sustainable in metal electrodeposition. 2020 , 22, 1821-1826	3
527	Redox-Driven Lithium Perfusion to Fabricate Li@Ni-Foam Composites for High Lithium-Loading 3D Anodes. 2020 , 12, 9355-9364	11
526	Efficient polysulfide trapping enabled by a polymer adsorbent in lithium-sulfur batteries. 2020 , 336, 135693	11
525	Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. 2020 , 32, e1905219	81
524	Exploring the origin of electrochemical performance of Cr-doped LiNiMnO. 2020 , 22, 3831-3838	8
523	Smoothing the Surface and Improving the Electrochemical Properties of NaMnO by a Wet Chemical Method. 2020 , 10,	
522	High-energy density LixSi-S full cell based on 3D current collector of few-wall carbon nanotube sponge. 2020 , 161, 612-621	6
521	Countersolvent Electrolytes for Lithium-Metal Batteries. 2020 , 10, 1903568	102
520	PerspectiveElectrochemical Stability of Water-in-Salt Electrolytes. 2020, 167, 070544	37
519	Electrochemically Stable, High Transference Number Lithium Bis(malonato)borate Polymer Solution Electrolytes. 2020 , 32, 3794-3804	13
518	PEDOT:PSS Dual-Function Film Initiated 1,3-Dioxolane Polymerization in Li/S Cells. 2020, 3, 3586-3595	4
517	Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. 2020 , 74, 104817	54
516	Ruthenium Electrodeposition from Water-in-Salt Electrolytes and the Influence of Tetrabutylammonium. 2020 , 167, 062509	4
515	Enhanced ionic conductivity and mechanical properties via dynamic-covalent boroxine bonds in solid polymer electrolytes. 2020 , 608, 118218	16

(2021-2020)

514	the Separator. 2020 , 7, 2159-2164	4
513	Water-in-salt electrolyte Zn/LiFePO4 batteries. 2020 , 867, 114193	21
512	A Safe Polyzwitterionic Hydrogel Electrolyte for Long-Life Quasi-Solid State Zinc Metal Batteries. 2020 , 30, 2001317	72
511	Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives. 2020 , 10, 2000093	107
510	A Critical Analysis about the Underestimated Role of the Electrolyte in Batteries Based on Organic Materials. 2020 , 7, 2364-2375	13
509	Critical Role of AnionBolvent Interactions for Dynamics of Solvent-in-Salt Solutions. 2020 , 124, 8457-8466	18
508	Brief History of Early Lithium-Battery Development. 2020 , 13,	93
507	A New Strategy of Constructing a Highly Fluorinated Solid-Electrolyte Interface towards High-Performance Lithium Anode. 2020 , 7, 2000154	12
506	Electrolyte design for Li metal-free Li batteries. 2020 , 39, 118-126	64
505	Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. 2020 , 19, 758-766	62
504	A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries. 2020 , 56, 6078-6081	11
503	Interactions and Transport in Highly Concentrated LiTFSI-based Electrolytes. 2020 , 21, 1166-1176	12
502	Towards practical lithium-metal anodes. 2020 , 49, 3040-3071	224
501	Long-lifespan lithiumfhetal batteries obtained using a perovskite intercalation layer to stabilize the lithium electrode. 2020 , 8, 9137-9145	4
500	Enhanced conductivity and structure stability of BiPO@void@C/CNT particles for high-performance bismuth-based batteries. 2020 , 49, 5636-5645	4
499	Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithiumBulfur batteries. 2020 , 51, 154-160	24
498	Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries. 2021 , 60, 598-616	94
497	WBsrige Hochleistungsbatterien: Herausforderungen und Strategien. 2021 , 133, 608-626	5

496	Solidifying Cathode Electrolyte Interface for Lithium Bulfur Batteries. 2021, 11, 2000791	38
495	Electrolyte solvation chemistry for lithiumBulfur batteries with electrolyte-lean conditions. 2021 , 55, 80-91	26
494	Structures of Solid-Electrolyte Interphases and Impacts on Initial-Stage Lithium Deposition in Pyrrolidinium-Based Ionic Liquids. 2021 , 8, 62-69	2
493	A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. 2021 , 34, 708-715	9
492	An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. 2021 , 60, 3661-3671	103
491	Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents. 2021 , 4, 347-358	5
490	Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes. 2021 , 55, 580-587	10
489	Organic liquid electrolytes in Li-S batteries: actualities and perspectives. 2021 , 34, 128-147	21
488	Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer. 2021 , 34, 241-249	25
487	Enabling High Capacity and Coulombic Efficiency for Li-NCM811 Cells Using a Highly Concentrated Electrolyte. 2021 , 4, 294-303	6
486	Fluorobenzene, A Low-Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries. 2021 , 31, 2005991	37
485	Recent Progress and Emerging Application Areas for Lithium-Sulfur Battery Technology. 2021 , 9, 2000694	23
484	Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools. 2021 , 11, 2003039	17
483	Ultrathin MgO coating on fabricated O3NaNi0.45Mn0.3Ti0.2Zr0.05O2 composite cathode via magnetron sputtering for enhanced kinetic and durable sodium-ion batteries. 2021 , 855, 157533	6
482	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. 2021 , 80, 105516	34
481	Atomic Layer Deposition of High-Capacity Anodes for Next-Generation Lithium-Ion Batteries and Beyond. 2021 , 4, 363-391	15
480	In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices. 2021 , 34, 629-639	24
479	A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li B batteries. 2021 , 56, 171-178	7

(2021-2021)

478	performance. 2021 , 34, 208-216	1
477	Surface electrochemistry approaches for understanding and creating smooth solid-electrolyte interphase and lithiophilic interfaces for lithium metal anodes. 2021 , 26, 100671	2
476	The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives. 2021 , 5, 332-350	10
475	An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. 2021 , 133, 3705-3715	17
474	Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. 2021 , 59, 666-687	21
473	A well-designed polymer as a three-in-one multifunctional binder for high-performance lithiumBulfur batteries. 2021 , 9, 2970-2979	4
472	Non-Flammable Liquid and Quasi-Solid Electrolytes toward Highly-Safe Alkali Metal-Based Batteries. 2021 , 31, 2008644	44
471	Insights into the Nanostructure, Solvation, and Dynamics of Liquid Electrolytes through Small-Angle X-Ray Scattering. 2021 , 11, 2002821	14
47°	An all-organic aqueous potassium dual-ion battery. 2021 , 57, 28-33	24
469	Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. 2021 , 409, 127943	16
468	The Applications of Water-in-Salt Electrolytes in Electrochemical Energy Storage Devices. 2021 , 31, 2006749	54
467	High Performance Li Metal Anode Enabled by Robust Covalent Triazine Framework-Based Protective Layer. 2021 , 31, 2006159	16
466	Lithium Metal Anode. 2021 , 311-321	
465	Concentrated Electrolytes for Lithium Metal Negative Electrodes. 2021, 37-45	
464	Advanced liquid electrolytes enable practical applications of high-voltage lithium-metal full batteries. 2021 , 57, 840-858	11
463	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. 2021 , 23, 21419-21436	8
462	High-voltage liquid electrolytes for Li batteries: progress and perspectives. 2021 , 50, 10486-10566	77
461	Recent advancements of functional gel polymer electrolytes for rechargeable lithiumlhetal batteries. 2021 , 5, 5211-5232	4

460	Recent advances in separator engineering for effective dendrite suppression of Li-metal anodes. 2021 , 2, 993-1010	5
459	Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery. 2021 , 11, 2003709	25
458	Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. 2021 , 50, 3178-3210	43
457	Insoluble small-molecule organic cathodes for highly efficient pure-organic Li-ion batteries. 2021 , 23, 6090-6100	Ο
456	The lithium metal anode in LiB batteries: challenges and recent progress. 2021, 9, 10012-10038	13
455	Fundamental Properties and Solubility Toward Cathode Active Materials. 2021, 277-286	
454	In situ coating of a lithiophilic interphase on a biporous Cu scaffold with vertical microchannels for dendrite-free Li metal batteries. 2021 , 9, 13642-13652	4
453	Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. 2021 , 6, 387-394	22
452	Electrospun Polymer Nanofibers with TiO@NiCo-LDH as Efficient Polysulfide Barriers for Wide-Temperature-Range Li-S Batteries. 2021 , 13, 2734-2744	21
451	Aprotic Alkali Metal D2 Batteries: Role of Cathode Surface-Mediated Processes and Heterogeneous Electrocatalysis. 2021 , 6, 665-674	2
450	POSS-based IPN nanocomposites. 2021 , 195-203	5
449	Strategies, design and synthesis of advanced nanostructured electrodes for rechargeable batteries. 2021 , 5, 5897-5931	4
448	Optimization of prismatic type layered electrode materials for high performance sodium battery. 2021 , 45, 8497-8507	
447	Manganese dioxide nanosheet coated carbon cloth as a multifunctional interlayer for advanced lithiumBulfur batteries. 2021 , 2, 688-691	1
446	Strategies towards enabling lithium metal in batteries: interphases and electrodes.	39
445	Elevated electrochemical performances enabled by a core-shell titanium hydride coated separator in lithium-sulphur batteries 2021 , 11, 30755-30762	O
444	Dendrite-Free Li-Metal Anode Enabled by Dendritic Structure. 2021 , 31, 2009712	14
443	Impact of Carbon Porosity on Sulfur Conversion in Liß Battery Cathodes in a Sparingly Polysulfide Solvating Electrolyte. 2021 , 4, 823-833	7

442	Synergistic Effects on Lithium Metal Batteries by Preferential Ionic Interactions in Concentrated Bisalt Electrolytes. 2021 , 11, 2003520	15
441	Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. 2021 , 3, 303-329	20
440	Understanding the Electrolytes of LithiumBulfur Batteries. 2021, 4, 1064-1095	7
439	Low-Cost Regulating Lithium Deposition Behaviors by Transition Metal Oxide Coating on Separator. 2021 , 31, 2007255	6
438	Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces. 2021 , 54, 1034-1042	7
437	Lithiophilic and Antioxidative Copper Current Collectors for Highly Stable Lithium Metal Batteries. 2021 , 31, 2009805	15
436	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. 2021 , 4, 1851-1859	9
435	On the local corrosion behavior of coupled welded zones of the 2098-T351 Al-Cu-Li alloy produced by Friction Stir Welding (FSW): An amperometric and potentiometric microelectrochemical investigation. 2021 , 373, 137910	6
434	Nucleation and Growth Mechanism of Anion-Derived Solid Electrolyte Interphase in Rechargeable Batteries. 2021 , 60, 8521-8525	28
433	Lithium-Sulfur Batteries Employing Hybrid-electrolyte Structure with Li7La3Zr2O12 at Middle Operating Temperature: Effect of Li Salts Concentration on Electrochemical Performance. 2021 , 89, 197-203	2
432	Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries. 2021 , 37, 189-199	2
431	Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents. 2021 , 125, 6005-6012	8
430	Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. 2021 , 2,	9
429	2021 roadmap on lithium sulfur batteries. 2021 , 3, 031501	32
428	Effects of High and Low Salt Concentrations in Electrolytes at Lithium-Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method. 2021 , 12, 2922-2929	12
427	In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. 2021 , 64, 2127-2138	5
426	Nucleation and Growth Mechanism of Anion-Derived Solid Electrolyte Interphase in Rechargeable Batteries. 2021 , 133, 8602-8606	6
425	Enhancing electrode wettability in lithium-ion battery via particle-size ratio control. 2021 , 22, 100976	4

424	An Emerging Energy Storage System: Advanced Na-Se Batteries. 2021 , 15, 5876-5903	15
423	Lithium-Ion Desolvation Induced by Nitrate Additives Reveals New Insights into High Performance Lithium Batteries. 2021 , 31, 2101593	27
422	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. 2021 , 6, 1839-1848	53
421	Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery. 2021 , 410, 128415	14
420	Molecular Simulation of Electrode-Solution Interfaces. 2021 , 72, 189-212	24
419	Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. 2021 , 121, 5986-6056	48
418	Can carbon sponge be used as separator in Li metal batteries?. 2021 , 36, 108-114	7
417	High-Performance Lithium Sulfur Batteries Based on Multidimensional Graphene-CNT-Nanosulfur Hybrid Cathodes. 2021 , 7, 26	4
416	Synergistic Effect of Temperature and Electrolyte Concentration on Solid-State Interphase for High-Performance Lithium Metal Batteries. 2021 , 2, 2100010	1
415	Poor Stability of Li CO in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy. 2021 , 33, e2100404	37
414	Material design and structure optimization for rechargeable lithium-sulfur batteries. 2021 , 4, 1142-1188	30
413	High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of 20 IIC. 2021 , 82, 105688	12
412	Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. 2021 , 17, e2100133	19
411	Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of LiCO2 batteries via in situ ambient pressure X-ray photoelectron spectroscopy. 2021 , 83, 105830	11
410	Design Parameters for Ionic LiquidMolecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within LiD2 Batteries. 2021 , 31, 2010627	6
409	Super-Assembled Hierarchical CoO Nanosheets-Cu Foam Composites as Multi-Level Hosts for High-Performance Lithium Metal Anodes. 2021 , 17, e2101301	15
408	Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries. 2021 , 267, 115067	6
407	Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium lufur batteries. 2021 , 45, 62-76	40

(2021-2021)

406	Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. <i>Nature Communications</i> , 2021 , 12, 3031	17.4	45
405	Ion Clusters and Networks in Water-in-Salt Electrolytes. 2021 , 168, 050514		6
404	Regulated Li Electrodeposition Behavior through Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries. 2021 , 4, 5132-5142		4
403	Supervised Machine Learning-Based Classification of Liß Battery Electrolytes. 2021 , 4, 1156-1162		1
402	An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries. 2021 , 37, 224-232		22
401	Safety challenges and safety measures of Li-ion batteries. 2021 , 9, 1647-1672		10
400	CoreBhell Structure S@PPy/CB with High Electroconductibility to Effective Confinement Polysulfide Shuttle Effect for Advanced LithiumBulfur Batteries. 2021 , 35, 10181-10189		О
399	Ion-Dipole Chemistry Drives Rapid Evolution of Li Ions Solvation Sheath in Low-Temperature Li Batteries. 2021 , 11, 2100935		38
398	Porous polymer thin film encapsulated sulfur nanoparticles on graphene via partial evaporation for high-performance lithiumBulfur batteries. 2021 , 547, 149199		6
397	Liquid electrolyte design for metal-sulfur batteries: Mechanistic understanding and perspective. 2021 , 3, e12115		8
396	Nitrate-based bversaturated gel electrolytelfor high-voltage and high-stability aqueous lithium batteries. 2021 , 37, 598-608		7
395	In Situ Monitoring of Lithium Metal Anodes and Their Solid Electrolyte Interphases by Transmission Electron Microscopy. 2021 , 2, 2100018		12
394	Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. 2021 , 60, 17547-17555		21
393	Hybrid polyion complex micelles enabling high-performance lithium-metal batteries with universal carbonates. 2021 , 38, 509-519		4
392	An Atomistic View of the Lithiation/Delithiation Behavior of Carbon Nanotube-Confined Sulfur Cathode for Lithium-Sulfur Batteries. 2021 , 168, 060531		О
391	Nonpolar Solvent-based Electrolytes with a Quasi-Solid-State Redox Reaction for Lithium-Sulfur Batteries. 2021 , 8, 2321-2328		
390	CHAMPION: Chalmers hierarchical atomic, molecular, polymeric and ionic analysis toolkit. 2021 , 42, 16.	32-1642	2 0
389	Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li-S Batteries. 2021 , 13, 28405-28414		4

388	Ultralight Electrolyte for High-Energy LithiumBulfur Pouch Cells. 2021 , 133, 17688-17696	6
387	Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical Lithium-Sulfur Batteries. 2021 , 60, 15503-15509	37
386	Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical LithiumBulfur Batteries. 2021 , 133, 15631-15637	1
385	Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. 2021 , 143, 10301-10308	21
384	Solid-Like Nano-Anion Cluster Constructs a Free Lithium-Ion-Conducting Superfluid Framework in a Water-in-Salt Electrolyte. 2021 , 125, 11838-11847	8
383	ReviewBecent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries. 2021 , 38, 542-570	18
382	Accelerated Polysulfide Redox in Binder-Free Li2S Cathodes Promises High-Energy-Density LithiumBulfur Batteries. 2021 , 11, 2100957	9
381	Predicted Operando Polymerization at Lithium Anode via Boron Insertion. 2021 , 6, 2320-2327	7
380	Hexafluoroisopropyl Trifluoromethanesulfonate-Driven Easily Li+ Desolvated Electrolyte to Afford Li NCM811 Cells with Efficient Anode/Cathode Electrolyte Interphases. 2021 , 31, 2104395	34
379	Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. 2021 , 60, 19183-19190	11
378	Effect of temperature on concentrated electrolytes for advanced lithium ion batteries. 2021, 154, 214503	2
377	Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium-Sulfur Batteries. 2021 , 13, 28252-28260	6
376	Electrolyte Issues in LithiumBulfur Batteries: Development, Prospect, and Challenges. 2021 , 35, 10405-10427	17
375	Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. 2021 , 133, 19332-19339	1
374	Effect of diffusion constant on the morphology of dendrite growth in lithium metal batteries. 2021 , 154, 234705	Ο
373	Quantitatively Designing Porous Copper Current Collectors for Lithium Metal Anodes. 2021 , 4, 6454-6465	6
372	Rational design of NiCo2S4@MoS2 ball-in-ball heterostructure nanospheres for advanced lithium-sulfur batteries. 2021 , 383, 138268	3
371	Fluorinated Poly-oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for All-Solid-State Li/NMC811 Batteries. 2021 , 60, 18335-18343	13

(2021-2021)

370	Superior potassium storage behavior of hard carbon facilitated by ether-based electrolyte. 2021 , 179, 60-67	2
369	Electrolyte Design for Lithium Metal Anode-Based Batteries Toward Extreme Temperature Application. 2021 , 8, e2101051	22
368	Sandwich-like N-doped carbon nanotube@Nb2C MXene composite for high performance alkali ion batteries. 2021 , 47, 20610-20616	8
367	Intermetallic interphases in lithium metal and lithium ion batteries. 2021 , 3, 1083	15
366	Fluorinated Poly-oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for All-Solid-State Li/NMC811 Batteries. 2021 , 133, 18483-18491	4
365	Molecular Dynamics Simulation of Solvation Nanostructure in Carbonate-Based Electrolyte of LithiumBulfur Battery. 2021 , 16, 2150092	
364	High Interfacial-Energy and Lithiophilic Janus Interphase Enables Stable Lithium Metal Anodes. 2021 , 17, e2102196	1
363	Isomeric Organodithiol Additives for Improving Interfacial Chemistry in Rechargeable Li-S Batteries. 2021 , 143, 11063-11071	22
362	Concentrated Electrolytes Widen the Operating Temperature Range of Lithium-Ion Batteries. 2021 , 8, e2101646	14
361	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. 2021 , 1, 2100058	31
360	Low-Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium-Sulfur Batteries' Lifetime. 2021 , 33, e2102034	9
359	Revisiting the degradation of solid/electrolyte interfaces of magnesium metal anodes: Decisive role of interfacial composition. 2021 , 86, 106087	11
358	Polyvinyl Pyrrolidone as Electrolyte Additive for Aqueous Zinc Batteries with MnO2 Cathode. 2021 , 168, 080514	О
357	Multiscale Understanding of Covalently Fixed Sulfur-Polyacrylonitrile Composite as Advanced Cathode for Metal-Sulfur Batteries. 2021 , 8, e2101123	9
356	Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism. 2021 , 33, e2100574	11
355	Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach. 2021 , 6, 3086-3095	11
354	Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li-S Batteries. 2021 , 13, 38296-38304	О
353	Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. 2021 , 133, 25828	8

352	Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects. 2105253	16
351	Dendrite-Free Reverse Lithium Deposition Induced by Ion Rectification Layer toward Superior Lithium Metal Batteries. 2021 , 31, 2104081	5
350	Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. 2021 , 60, 25624-25638	17
349	How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. 2021 , 86, 106142	23
348	Grafting and Depositing Lithium Polysulfides on Cathodes for Cycling Stability of Lithium-Sulfur Batteries. 2021 , 13, 40685-40694	3
347	Rational design and superfast production of biomimetic, calendering-compatible, catalytic, sulfur-rich secondary particles for advanced lithium-sulfur batteries. 2021 , 40, 415-425	9
346	Development of high performing polymer electrolytes based on superconcentrated solutions. 2021 , 506, 230220	2
345	Design Strategies and Research Progress for Water-in-Salt Electrolytes. 2021 ,	3
344	Lithium-based Loop for Ambient-Pressure Ammonia Synthesis in a Liquid Alloy-Salt Catalytic System. 2021 , 14, 4697-4707	2
343	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. 2021 , 3, 100058	10
342	Electrolyte solutions design for lithium-sulfur batteries. 2021 , 5, 2323-2364	38
341	EMIMBF4 in ternary liquid mixtures of water, dimethyl sulfoxide and acetonitrile as E ri-solvent-in-salt E electrolytes for high-performance supercapacitors operating at -70 °C. 2021 , 40, 368-385	10
340	Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries. 2021, 33, e2102134	30
339	Critical effects of electrolyte recipes for Li and Na metal batteries. 2021 , 7, 2312-2346	27
338	Highly-concentrated electrolyte incorporating Li-ion solvation sheath interphase for encapsulation-free organic electrochromic devices. 2021 , 390, 138870	1
337	Non-flammable super-concentrated polymer electrolyte with Bolvated ionic liquidIfor lithium-ion batteries. 2021 , 506, 230099	4
336	Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. 2021 , 17, e2103679	6
335	Potassium iodide as a low-cost cathode material for efficient potassium-ion storage. 2021 , 41, 798-804	1

334	Highly porous single ion conducting membrane via a facile combined Etructural self-assembly Land in-situ polymerization process for high performance lithium metal batteries. 2021 , 636, 119601	3
333	Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. 2021 , 61, 104-134	22
332	Lithium-copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries. 2021 , 100871	2
331	Breaking dendrites of lithium metal electrode by resonance: A theoretical calculation of lattice dynamics. 2021 , 780, 138921	
330	Acetate-based Bversaturated gel electrolytelenabling highly stable aqueous Zn-MnO2 battery. 2021 , 42, 240-251	10
329	Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. 2021 , 42, 645-678	5
328	Rational design of a carbonate-glyme hybrid electrolyte for practical anode-free lithium metal batteries. 2021 , 42, 295-306	3
327	Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2Tx composite anodes. 2022 , 65, 654-665	20
326	Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode. 2022 , 427, 131625	6
325	Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithiumBulfur batteries. 2022 , 101, 155-164	7
324	Rational design of an Allyl-rich Triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. 2022 , 429, 132254	8
323	Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte. 2022 , 427, 131889	6
322	Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries.	9
321	Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries. 2021 , 17, e2004369	27
320	A physico-chemical investigation of highly concentrated potassium acetate solutions towards applications in electrochemistry. 2021 , 23, 1139-1145	7
319	A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries. 2021 , 52, 75-83	10
318	Recent progress in Water-in-salt@nd Water-in-saltEhybrid-electrolyte-based high voltage rechargeable batteries. 2021 , 5, 1619-1654	7
317	High Performance of Sulfur/Carbon Cathode Synthesized via a Facile Green Microwave Approach. 2021 , 35, 2750-2757	1

316	Crucial Challenges and Recent Optimization Progress of Metal B ulfur Battery Electrolytes. 2021 , 35, 1966-1988	14
315	Early-stage decomposition of solid polymer electrolytes in Li-metal batteries.	2
314	A Water-/Fireproof Flexible Lithium-Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator. 2018 , 30, 1703791	53
313	High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte. 2020 , 32, e2001741	81
312	Aqueous Rechargeable Metal-Ion Batteries Working at Subzero Temperatures. 2020 , 8, 2002590	45
311	Next generation technologies. 2018 , 187-208	1
310	A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. 2017 , 258, 1201-1207	62
309	A multifunctional electrolyte with highly-coordinated solvation structure-in-nonsolvent for rechargeable lithium batteries. 2020 , 51, 362-371	8
308	The origin of the two-plateaued or one-plateaued open circuit voltage in Liß batteries. 2020, 75, 104915	10
307	New Concepts in Electrolytes. 2020 , 120, 6783-6819	267
306	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in LithiumBulfur Batteries. 2020 , 59, 20979-21000	4
306		4
	LithiumBulfur Batteries. 2020, 59, 20979-21000	
305	LithiumBulfur Batteries. 2020 , 59, 20979-21000 Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. 2021 , 13, 18-33	11
305 304	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. 2021, 13, 18-33 Fire-extinguishing organic electrolytes for safe batteries. 2018, 3, 22-29 Approaching the voltage and energy density limits of potassium-selenium battery chemistry in a	11 406
305 304 303	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. 2021, 13, 18-33 Fire-extinguishing organic electrolytes for safe batteries. 2018, 3, 22-29 Approaching the voltage and energy density limits of potassium-selenium battery chemistry in a concentrated ether-based electrolyte. 2020, 11, 6045-6052	11 406 23
305 304 303 302	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. 2021, 13, 18-33 Fire-extinguishing organic electrolytes for safe batteries. 2018, 3, 22-29 Approaching the voltage and energy density limits of potassium-selenium battery chemistry in a concentrated ether-based electrolyte. 2020, 11, 6045-6052 Spin-glass charge ordering in ionic liquids. 2019, 3, Plastic Crystals Utilising Small Ammonium Cations and Sulfonylimide Anions as Electrolytes for	11 406 23 8

298	Reducing Dendrite Growth in Lithium Metal Batteries by Creeping Poiseuille and Couette Flows. 2020 , 167, 160525	1
297	Lithium/Sulfur Secondary Batteries: A Review. 2016 , 7, 97-114	23
296	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. 2019 , 2019, 7481319	5
295	Progress of Non-Aqueous Electrolyte for Li-Air Batteries. 2015 , 03, 1-8	2
294	Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries. 2014 , 15, 338-343	6
293	Lithium/Sulfur Secondary Batteries: A Review. 2016 , 7, 97-114	10
292	Electrochemical Evaluation of Lithium-Metal Anode in Highly Concentrated Ethylene Carbonate Based Electrolytes. 2020 , 88, 540-547	5
291	Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery. 2014 , 63, 168201	5
290	Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. 2014 , 63, 200508	1
289	Formation sequence of solid electrolyte interphases and impacts on lithium deposition and dissolution on copper: an atomic force microscopic study. 2021 ,	3
288	Interwoven nickel(II)-dimethylglyoxime nanowires in 3D nickel foam for dendrite-free lithium deposition. 2021 ,	1
287	Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries. 2021 , 17, e2103375	7
286	Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. 2021 , 6, 951-960	51
285	Ce and F Dual-Doping Strategy for High Cycle Performance of Lithium-Rich Layered Oxide Materials.	O
284	Recent Advances and Perspectives in Lithium-Sulfur Pouch Cells. 2021 , 26,	1
283	Na-Ion Anode Based on Na(Li,Ti)O2 System: Effects of Mg Addition. 2016 , 53, 282-287	
282	Lithium Cluster (Li48) Realized by a Defined Cage as Anode in Lithium-Based Batteries.	
281	Nanocrevass-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes.	

280 Rechargeable Lithium Metal Batteries. **2019**, 147-203

279	Chapter 17:Applications of Solid-state NMR in Crystalline Solid Polymer Electrolytes. 2019 , 387-419	
278	7.?????????Na???????????????????????????	
277	1.????????. 2019 , 87, 195-199	
276	Preparation of a High-Performance Nanocrystalline Lithium/Graphene Composite Battery via High-Pressure Torsion Method. 2019 , 60, 2451-2455	1
275	Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. 2022 , 44, 48-56	4
274	Two-dimensional materials towards separator functionalization in advanced Li-S batteries. 2021 , 13, 18883-18911	1
273	A brief analysis of the microscopic physical image of ions transport in electrolyte. 2020 , 0-0	10
272	Nanomaterials for Batteries. 2020 , 107-193	
271	A Perspective of ZnCl2 Electrolytes: the Physical and Electrochemical Properties. 2021 ,	12
270	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. 2021 , e2105855	11
269	Challenges and development of lithium-ion batteries for low temperature environments. 2021 , 100145	14
268	Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces. 2021 , 7, 73	1
267	Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries. 2021 , 2, 041307	2
266	Solid Polymer Electrolytes Comprising Camphor-Derived Chiral Salts for Solid-State Batteries. 2020 , 167, 120541	
265	On the Relevance of Reporting Water Content in Highly Concentrated Electrolytes: The LiTFSI-Acetonitrile Case. 2020 , 167, 120536	3
264	Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithiumthetal batteries.	1
263	Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. 2022 , 45, 48-73	6

262	P2-Na0.55[Mg0.25Mn0.75]O2: An SEI-free anode for long-life and high-rate Na-ion batteries. 2022 , 45, 92-100	1
261	An overview of the key challenges and strategies for lithium metal anodes. 2021 , 47, 103641	2
260	New Insight into the Working Mechanism of Lithium-Sulfur Batteries under a Wide Temperature Range. 2021 , 13, 55007-55019	4
259	In Situ Formed Lithiophilic LiNbO in a Carbon Nanofiber Network for Dendrite-Free Li-Metal Anodes. 2021 , 13, 56498-56509	1
258	Designing spacial skeleton for lithium metal anode with Li+ concentration regulation and interfacial modification. 2021 , 898, 162802	
257	Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. 2021 , 47, 103534	1
256	Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite-Free Lithium-Metal Anodes. 2021 , 18, e2104735	1
255	Construction of hierarchical yolk-shell structured Mn3O4@NC as efficient sulfur hosts for LiB batteries. 2021 , 48, 6470-6470	О
254	Boosting the Energy Density of Li CF Primary Batteries Using a 1,3-Dimethyl-2-imidazolidinone-Based Electrolyte. 2021 , 13, 57470-57480	3
253	Alkali metal chlorides in DMSOEnethanol binary mixtures: insights into the structural properties through molecular dynamics simulations. 2021 , 140, 1	1
252	Enabling double-layer polymer electrolyte batteries: overcoming the Li-salt interdiffusion. 2021 , 45, 578-578	2
251	Thermal risk evaluation of concentrated electrolytes for Li-ion batteries. 2021 , 12, 100079	О
250	A Perspective on Li/S Battery Design: Modeling and Development Approaches. 2021 , 7, 82	2
249	Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries. 2022 , 579, 152147	3
248	A Facile Potential Hold Method for Fostering an Inorganic Solid-Electrolyte Interphase for Anode-Free Lithium-Metal Batteries.	1
247	A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries 2022 , e2106144	2
246	Beyond Simple Dilution: Superior Conductivities from Cosolvation of Acetonitrile/LiTFSI Concentrated Solution with Acetone. 2022 , 126, 2788-2796	2
245	Designing advanced liquid electrolytes for alkali metal batteries: principles, progress, and perspectives.	Ο

244	Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification. 2022 , 7, 675-682	1
243	An encapsulating lithium-polysulfide electrolyte for practical lithiumBulfur batteries. 2022,	13
242	Principles and Challenges of LithiumBulfur Batteries. 2022, 1-18	
241	In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study. 2022 , 10, 632-639	4
240	Tale of a "Non-interacting" Additive in a Lithium-Ion Electrolyte: Effect on Ionic Speciation and Electrochemical Properties 2022 , 126, 2141-2150	
239	Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies. 2022 , 3, 611-623	2
238	Lithium-Ion-Conducting Ceramics-Coated Separator for Stable Operation of Lithium Metal-Based Rechargeable Batteries 2022 , 15,	1
237	Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration.	4
236	Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery.	9
235	Lithium Metal and Other Anodes. 2022 , 225-246	
235	Lithium Metal and Other Anodes. 2022, 225-246 A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries 2022,	5
	A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free	5
234	A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries 2022, Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes 2022,	
² 34	A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries 2022, Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes 2022,	4
234 233 232	A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries 2022, Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes 2022, Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes. 2112399 Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries.	3
234233232231	A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries 2022, Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes 2022, Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes. 2112399 Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries. 2022, 3, 100722	3 2
234 233 232 231 230	A Facile Potential Hold Method for Fostering Inorganic Solid-electrolyte Interphase for Anode-free Lithium-metal Batteries 2022, Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes 2022, Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes. 2112399 Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries. 2022, 3, 100722 Challenges, Strategies, and Prospects of the Anode-Free Lithium Metal Batteries. 2100197 Hierarchical OFFich Co3O4 nanoarray anchored on Ni foam with superior lithiophilicity enabling	3 2

226	Solid state ionics (Selected topics and new directions. 2022, 126, 100921	2
225	Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries. 2022 , 68, 752-761	3
224	??????????. 2022,	O
223	Low Temperature Lithium-ion Batteries Electrolytes: Rational Design, Advancements, and Future Perspectives. 2022 , 164163	1
222	Perspectives of ionic covalent organic frameworks for rechargeable batteries. 2022, 458, 214431	3
221	Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent.	1
220	Controlling Li deposition below the interface. 2022 ,	15
219	Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. 2022 ,	10
218	The pathway toward practical application of lithium-metal anodes for nonaqueous secondary batteries.	2
217	Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents. 2022 , 5, 2768-2779	O
216	Importance of Mass Transport in High Energy Density Lithium-Sulfur Batteries Under Lean Electrolyte Conditions.	1
215	ElectrodeElectrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Batteries.	2
214	Superionicity in Ionic-Liquid-Based Electrolytes Induced by Positive Ion-Ion Correlations 2022,	5
213	From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries 2022 , 8, eabn5097	24
212	Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries 2022 , e2106004	14
211	Graphene-Based Conductive Networks to Enhance the Performance of Polyimide Anode Materials for Dual-Ion Batteries. 2022 , 7,	O
210	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries 2022 , e2200550	3
209	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. 2022 , 5, 3615-3625	Ο

208	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries 2022 ,	12
207	Electrode-Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Battery 2022 ,	3
206	Structural regulation chemistry of lithium ion solvation for lithium batteries.	7
205	Influence of Porosity of Sulfide-Based Artificial Solid Electrolyte Interphases on Their Performance with Liquid and Solid Electrolytes in Li and Na Metal Batteries 2022 ,	1
204	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries.	1
203	Sodiophilic Mg -Decorated Ti C MXene for Dendrite-Free Sodium Metal Batteries with Carbonate-Based Electrolytes 2022 , e2107637	5
202	Physicochemical properties of Pyr13TFSI-NaTFSI electrolyte for sodium batteries. 2022 , 412, 140123	O
201	A Better Choice to Achieve High Volumetric Energy Density: Anode-Free Lithium Metal Batteries 2022 , e2110323	6
200	Fast and Simple Ag/Cu Ion Exchange on Cu Foil for Anode-Free Lithium-Metal Batteries 2022,	2
199	Diffusion Limited Current Density: A Watershed in Electrodeposition of Lithium Metal Anode. 2200244	9
198	Density, speed of sound, and surface tension of binary aqueous solutions containing ammonium based protic ionic liquids. 2022 , 354, 118845	0
197	Mitigating irreversible capacity loss for higher-energy lithium batteries. 2022, 48, 44-73	1
196	Austen Angell's legacy in electrolyte research. 2022 , 14, 100088	1
195	Understanding the anchoring effect on Li plating with Indium Tin oxide layer functionalized hosts for Li metal anodes. 2022 , 440, 135827	1
194	Morphology Selection Kinetics of Li Sphere via Interface Regulation at High Current Density for Pragmatic Li Metal Batteries. 2022 , 12, 2103503	3
193	BiFeO3 Coupled Polysulfide Trapping in C/S Composite Cathode Material for Li-S Batteries as Large Efficiency and High Rate Performance. 2021 , 14, 8362	1
192	"First-Cycle Effect" of Trace LiS in a High-Performance Sulfur Cathode 2021 ,	2
191	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. 2022 , 10, 5	O

(2022-2022)

190	Silica Nanowires Reinforced with Poly(vinylidene fluoride-co-hexafluoropropylene): Separator for High-Performance Lithium Batteries. 2022 , 8,	О
189	Stable Li-Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. 2021 ,	1
188	Robust, Ultrasmooth Fluorinated Lithium Metal Interphase Feasible via Lithiophilic Graphene Quantum Dots for Dendrite-Less Batteries 2022 , e2200919	2
187	Constructing High-performance Quasi-solid-state Sulfur Cathode via the Cooperation of Solid Electrolyte Interface and Selenium-doping.	
186	Stable cycling of high nickel Li-metal batteries with limited Li anode in fluorine rich flame retardant electrolytes. 2022 , 593, 153434	О
185	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries 2022 , 621, 41-66	1
184	Data_Sheet_1.docx. 2020 ,	
183	Table_1.docx. 2018 ,	
182	Presentation_1.pdf. 2020 ,	
181	Image_1.pdf. 2019 ,	
181	Image_1.pdf. 2019, Advanced carbon-based nanostructure frameworks for lithium anodes. 2022, 499-520	
180	Advanced carbon-based nanostructure frameworks for lithium anodes. 2022 , 499-520 The generalized solubility limit approach for vanadium based cathode materials for lithium-ion	2
180 179	Advanced carbon-based nanostructure frameworks for lithium anodes. 2022, 499-520 The generalized solubility limit approach for vanadium based cathode materials for lithium-ion batteries.	2
180 179 178	Advanced carbon-based nanostructure frameworks for lithium anodes. 2022, 499-520 The generalized solubility limit approach for vanadium based cathode materials for lithium-ion batteries. Electrolyte and current collector designs for stable lithium metal anodes. 2022, 29, 953-964	
180 179 178	Advanced carbon-based nanostructure frameworks for lithium anodes. 2022, 499-520 The generalized solubility limit approach for vanadium based cathode materials for lithium-ion batteries. Electrolyte and current collector designs for stable lithium metal anodes. 2022, 29, 953-964 Electrolyte measures to prevent polysulfide shuttle in Li-S batteries. Drastic Effect of Salt Concentration in Ionic Liquid on Performance of Lithium Sulfur Battery. 2022,	4
180 179 178 177	Advanced carbon-based nanostructure frameworks for lithium anodes. 2022, 499-520 The generalized solubility limit approach for vanadium based cathode materials for lithium-ion batteries. Electrolyte and current collector designs for stable lithium metal anodes. 2022, 29, 953-964 Electrolyte measures to prevent polysulfide shuttle in Li-S batteries. Drastic Effect of Salt Concentration in Ionic Liquid on Performance of Lithium Sulfur Battery. 2022, 169, 050515 Implanting an ion-selective Ekinlin electrolyte towards high-energy and safe lithium-sulfur	3

172	Highly sulfur-rich polymeric cathode materials via inverse vulcanization of sulfur for lithiumBulfur batteries. 2022 , 285, 126168	О
171	How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. 2022 , 98, 107336	2
170	Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries. 2022 , 536, 231482	О
169	Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium-sulfur battery. 2022 , 71, 572-579	O
168	Track-etched polyimide separator decorated with polyvinylpyrrolidone for self-assembling a robust protective layer on lithium-metal anode. 2022 , 445, 136801	4
167	Mechanistic Insight on the Stability of Ether and Fluorinated Ether Solvent-Based Lithium Bis(fluoromethanesulfonyl) Electrolytes near Li Metal Surface.	1
166	Approaches to Combat the Polysulfide Shuttle Phenomenon in Liß Battery Technology. 2022, 8, 45	2
165	Electrochromic devices constructed with water-in-salt electrolyte enabling energy-saving and prolonged optical memory effect. 2022 , 446, 137122	2
164	Li+ Transference Number and Dynamic Ion Correlations in Gylme-Li Salt Solvate Ionic Liquids Diluted with Molecular Solvents.	1
163	??????????????. 2022,	
162	Anion Latacking for Improved Lithium Transport in Polymer Electrolytes.	4
162 161	Anion Latacking for Improved Lithium Transport in Polymer Electrolytes. In-Situ Construction of Ceramic Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. 1297-1305	4
	In-Situ Construction of Ceramic P olymer All-Solid-State Electrolytes for High-Performance	
161	In-Situ Construction of Ceramic Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. 1297-1305 Surface Roughness-Independent Homogeneous Lithium Plating in Synergetic Conditioned	0
161 160	In-Situ Construction of Ceramic Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. 1297-1305 Surface Roughness-Independent Homogeneous Lithium Plating in Synergetic Conditioned Electrolyte. 2219-2227 A review on recent advancements in solid state lithium-sulphur batteries: Fundamentals,	0
161 160 159	In-Situ Construction of Ceramic P olymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. 1297-1305 Surface Roughness-Independent Homogeneous Lithium Plating in Synergetic Conditioned Electrolyte. 2219-2227 A review on recent advancements in solid state lithium-sulphur batteries: Fundamentals, challenges, and perspectives.	0
161 160 159 158	In-Situ Construction of CeramicPolymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. 1297-1305 Surface Roughness-Independent Homogeneous Lithium Plating in Synergetic Conditioned Electrolyte. 2219-2227 A review on recent advancements in solid state lithium-sulphur batteries: Fundamentals, challenges, and perspectives. Enhancing Li-Ion Transport in Solid Electrolytes by Confined Water. 2201094	0 0 1

154	Advances in Carbon Materials for Sodium and Potassium Storage. 2203117	10
153	Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries. 2022 , 14, 27873-27881	1
152	Three-dimensional porous framework constructed by hybrid of carbon nanotubes and carbon nanocoils for stable lithium metal anode.	
151	A reaction-dissolution strategy for designing solid electrolyte interphases with stable energetics for lithium metal anodes. 2022 , 100948	3
150	Three-dimensional graphene with charge transfer doping for stable lithium metal anode. 2022 , 918, 116512	
149	Constructing a lithiophilic and mixed conductive interphase layer in electrolyte with dual-anion solvation sheath for stable lithium metal anode. 2022 , 50, 792-801	2
148	Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library. 2022 , 53, 104892	О
147	Prussian blue and its analogues for aqueous energy storage: From fundamentals to advanced devices. 2022 , 50, 618-640	3
146	Study on Fundamental Properties of Solvate Electrolytes and Their Application in Batteries. 2022,	2
145	Suppression of lithium dendrite growth in lithium-sulfur batteries. 2022 , 261-295	
144	Advances in Understanding and Regulation of Sulfur Conversion Processes in Metal-Sulfur Batteries.	О
143	The key role of concentrated Zn(OTF)2 electrolyte in the performance of aqueous ZnB batteries.	1
142	Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective. 2515-2530	9
141	Triggering Zn 2+ Unsaturated Hydration Structure via Hydrated Salt Electrolyte for High Voltage and Cycling Stable Rechargeable Aqueous Zn Battery. 2201599	1
140	Pathways towards High-Performance Aqueous Zinc-Organic Batteries.	2
139	The effects of electrolytes, electrolyte/electrode interphase, and binders on lithium-ion batteries at low temperature. 2022 , 100187	2
138	Toward unveiling structure and property relationships from ionic ordering in Li/S battery electrolytes: Neutron total scattering and Molecular dynamics simulations. 2022 ,	О
137	Oxygen Reduction Reaction Mechanism in Highly Concentrated Lithium Nitrate-Dimethyl Sulfoxide: Effect of Lithium Nitrate Concentration.	O

136	Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. 2022 , 51, 660-670	1
135	Customized design of electrolytes for high-safety and high-energy-density lithium batteries. 2022, 100082	
134	Water-in-salt electrolytes Imolecular insights to the high solubility of lithium-ion salts. 2022 , 58, 9528-9531	O
133	Advanced Non-Flammable Organic Electrolyte Promises Safer Li Metal Batteries: From Solvation Structure Perspectives. 2206228	1
132	Adjustable Mixed Conductive Interphase for Dendrite-Free Lithium Metal Batteries. 2022 , 16, 13101-13110	2
131	Polysulfide Speciation in Li-S Battery Electrolyte via In-Operando Optical Imaging and Ex-Situ UV-vis Spectra Analysis.	
130	Review on lithium metal anodes towards high energy density batteries. 2022,	1
129	Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions. 2022 , 13,	6
128	Low Concentration Electrolyte Enabling Cryogenic LithiumBulfur Batteries. 2205393	4
127	Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better?.	1
126	Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. 2022 , 13,	6
125	A High-Voltage Gel Electrolyte with a Low Salt Concentration for Quasi-Solid-State Flexible Supercapacitors. 2022 , 36, 9295-9302	
124	Interfacial engineering on metal anodes in rechargeable batteries. 2022, 4, 100089	
123	Electrochemical behaviors and electrochemical performances of lithium-selenium battery using selenium/carbon as cathode in different electrolytes. 2022 , 921, 116654	O
122	3D artificial electron and ion conductive pathway enabled by MgH2 nanoparticles supported on g-C3N4 towards dendrite-free Li metal anode. 2022 , 52, 220-229	0
121	Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. 2022 , 52, 355-364	2
120	Asbestos-functionalized solid polymer electrolyte for uniform Li deposition in lithium metal batteries. 2023 , 451, 138599	
119	Ion Transport Kinetics in Low-Temperature Lithium Metal Batteries. 2202432	2

118	Rational design of electrolyte solvation structure for stable cycling and fast charging lithium metal batteries. 2022 , 548, 232106	1
117	Constructing lithium oxysulfide-rich solid electrolyte interphase to shield polysulfides in practical lithium Bulfur batteries. 2022 , 550, 232144	O
116	Temperature-responsive solid-electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range. 2022 , 103, 107746	4
115	High Ionic Conductivity and Ion Conduction Mechanism in ZIF-8 Based Quasi-Solid-State Electrolytes: a Positron Annihilation and Broadband Dielectric Spectroscopy Study.	O
114	Electrochemical Evaluation of Lithium Metal Batteries Using Separators with Different Pore Sizes. 2022 ,	0
113	Unraveling the origin of reductive stability of super-concentrated electrolytes from first principles and unsupervised machine learning.	O
112	Ionic Association of Potassium and Tetrabutylammonium Thiocyanate Salts in Binary Mixtures of EButyrolactone and N,N-Dimethylacetamide at 298.15 K and 308.15 K. 2022 , 34, 2749-2756	Ο
111	An Overview of Polymer Based Electrolytes for Li-Ion Battery Applications. 2022 , 225-258	Ο
110	A Competitive Solvation of Ternary Eutectic Electrolytes Tailoring the Electrode/Electrolyte Interphase for Lithium Metal Batteries. 2022 , 16, 14558-14568	1
109	Hollow amorphous CoS to reversible storage sulfur as cathode of LiB battery. 2022 , 33, 20479-20486	Ο
108	Anionic Coordination Manipulation of Multilayer Solvation Structure Electrolyte for High-Rate and Low-Temperature Lithium Metal Battery. 2200621	4
107	Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries.	O
106	Tailoring Electrolyte Solvation for LiF-Rich Solid Electrolyte Interphase toward a Stable Li Anode.	4
105	Recent Progress on High-Voltage and Fast-Charge Electrolytes for Lithium-Ion Batteries.	О
104	Applications of magnetic field for electrochemical energy storage. 2022 , 9, 031307	2
103	Preparation and electrochemical properties of hollow carbon spheres/sulfur co-doped with N and O for high-performance lithium-sulfur batteries.	O
102	Organic batteries for a greener rechargeable world.	1
101	The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. 2022 , 13,	6

100	Ion slippage through Li + -centered G-quadruplex. 2022 , 8,	O
99	Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries. 10,	1
98	Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. 2022 , 14, 44470-44478	2
97	Ultralean Electrolyte Li-S Battery by Avoiding Gelation Catastrophe.	О
96	Weakening the Solvating Power of Solvents to Encapsulate Lithium Polysulfides Enables Long-Cycling LithiumBulfur Batteries. 2205284	2
95	Solvation Structure-Tunable Phase Change Electrolyte for Stable Lithium Metal Batteries. 3761-3769	2
94	Revealing the High Salt Concentration Manipulated Evolution Mechanism on the Lithium Anode in Quasi-Solid-State Lithium-Sulfur Batteries.	0
93	Lithiophilic Aromatic Sites and Porosity of COFs for a Stable Lithium Metal Anode.	O
92	Revealing the High Salt Concentration Manipulated Evolution Mechanism on the Lithium Anode in Quasi-Solid-State Lithium-Sulfur Batteries.	1
91	Electrolyte Solvation and Ionic Association: Part IX. Structures and Raman Spectroscopic Characterization of LiFSI Solvates.	O
90	Electrode potential influences the reversibility of lithium-metal anodes.	5
89	Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal battery with commercial mass loading high-nickel NMC and thin anodes.	1
88	Fluorinated Strategies Among All-Solid-State Lithium Metal Batteries from Microperspective. 2200122	2
87	Temperature Dependency of Ion Transport in Highly Concentrated Li Salt/Sulfolane Electrolyte Solutions.	2
86	From Lithium to Emerging Mono- and Multivalent- Cations Based Rechargeable Batteries: Non-aqueous Organic Electrolyte and Interphase Perspective.	1
85	Rubber-Derived Sulfur Composite as a High Capacity Anode for Li-ion Battery Using 5 V-Class LiNi_{0.5}Mn_{1.5}O₄ Cathode. 2022 ,	O
84	Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes. 2023 , 555, 232336	0
83	Porosity vs. Carbon Shell Number: Key Factor Actually Affecting the Performance of Multi-shelled Hollow Carbon Nanospheres in Li-S Batteries. 2022 , 116980	О

82	Prospects of LLZO type solid electrolyte: from material design to battery application. 2022, 140375	O
81	Molecular/ionic Designs in the Electrolyte and Interphases for Lithium Metal Anode.	O
80	Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li-Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions. 2204812	O
79	A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host.	O
78	Effects of the electrolyte concentration on the nature of the SEI of a lithium metal electrode.	O
77	A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc ī bdine batteries.	1
76	Modified lithium metal anode via anions-planting protection mechanisms for dendrite-free long-life lithium metal batteries.	0
75	From sparingly solvating to weakly solvating: Fine electrolyte regulation for lean-electrolyte Li-SeS2 batteries. 2023 , 55, 272-278	O
74	Localized high-concentration electrolyte enabled by a novel ester diluent for lithium metal batteries.	O
73	Stable Na-organosulfide batteries enabled by an in-situ constructed protective interphase. 2022 , 140562	1
72	An Inorganic-Dominate Molecular Diluent Enables Safe Localized High Concentration Electrolyte for High-Voltage Lithium-Metal Batteries. 2209725	1
71	Structurally Tailored Hierarchical Cu Current Collector with Selective Inward Growth of Lithium for High-Performance Lithium Metal Batteries. 2202321	O
70	Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte. 2022 , 121, 223903	O
69	Magnetoelectric Coupling for MetalAir Batteries. 2210127	O
68	Concentrated Electrolytes for Rechargeable Lithium Metal Batteries.	0
67	Progress and perspective on rechargeable magnesium-ion batteries.	O
66	LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes. 2022 ,	O
65	Defect-Rich Hierarchical Porous Mn-Doped CoP Hollow Microspheres Accelerate Polysulfide Conversion. 2211124	O

64	Recent Progress on the Performance of Zn-Ion Battery Using Various Electrolyte Salt and Solvent Concentrations.	0
63	The origin of anode-electrolyte interfacial passivation in rechargeable Mg-metal batteries.	О
62	Protecting lithium metal anodes in lithium ulfur batteries: A review. 2023, 4,	0
61	Facile Li + Transport in Interpenetrating O- and F-Containing Polymer Networks for Solid-State Lithium Batteries. 2213469	o
60	Ionic Conduction Mechanism in High Concentration Lithium Ion Electrolytes.	0
59	Does Li-ion transport occur rapidly in localized high-concentration electrolytes?.	o
58	Electrochemical Reactivation of Dead Li2S for Li-S Batteries in Non-Solvating Electrolytes.	0
57	Dual-Salt Localized High-Concentration Electrolyte for Long Cycle Life Silicon-Based Lithium-Ion Batteries. 2023 , 15, 3586-3598	O
56	High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries. 2023 , 55, 836-846	1
55	Electrochemical Reactivation of Dead Li2S for Li-S Batteries in Non-Solvating Electrolytes.	O
54	Suppressing the Shuttle Effects with FeCo/SPAN Cathodes and High-Concentration Electrolytes for High-Performance LithiumBulfur Batteries.	O
53	A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries.	O
52	N, P-co-doped three-dimensional porous carbon nanocomposites for lithium–sulfur batteries. 2023 ,	0
51	A review on lithium-sulfur batteries: Challenge, development, and perspective.	O
50	On enhancing the Li-ion conductivity of quasi-solid-state electrolytes by suppressing the flexibility of zeolitic imidazolate framework-8 via a mixed ligand strategy.	0
49	Long-cycling High-voltage Lithium Metal Batteries Enabled by Anion-concentrated Plastic Crystal Electrolytes. 2023 , 141382	O
48	Double sites doping local chemistry Adjustment: A Multiple-Layer oriented P2-Type cathode with Long-life and Water/Air stability for sodium ion batteries. 2023 , 458, 141384	0
47	Construct a porous carbon structure 3D-NOPC doped with N and O as the sulfur main body for durable lithium-sulfur batteries. 2023 , 441, 141857	O

46	Building Better Lithium-Sulfur Batteries A Reassessment of the Working Mechanism.	O
45	Structure D ynamics Interrelation Governing Charge Transport in Cosolvated Acetonitrile/LiTFSI Solutions. 2023 , 127, 308-320	O
44	Progress and Prospect of Practical Lithium-Sulfur Batteries Based on Solid-Phase Conversion. 2023 , 9, 27	O
43	Direct Correlation between Short-Range Vibrational Spectral Diffusion and Localized Ion-Cage Dynamics of Water-in-Salt Electrolytes. 2023 , 127, 236-248	O
42	A Comprehensive Formulation of Aqueous Electrolytes for Low-Temperature Supercapacitors.	0
41	Unveiling the dynamic Li+Bolvent interaction evolution in lithium metal batteries.	O
40	Localized Recrystallization of a Lithium-Metal Anode during Fast Stripping in High-Activity Liquid Electrolytes. 2023 , 15, 6639-6646	0
39	Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt. 2023 , 127, 1955-1964	O
38	On the concentration polarisation in molten Li salts and borate-based Li ionic liquids.	0
37	Quantitative Chemistry in Electrolyte Solvation Design for Aqueous Batteries. 2023 , 8, 1076-1095	1
36	A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. 2023, 6,	0
35	Ultrafast Charging of a 4.8 W Manganese-Rich Cathode-Based Lithium Metal Cell by Constructing Robust Solid Electrolyte Interphases.	O
34	Three-dimensional experimental-scale phase-field modeling of dendrite formation in rechargeable lithium-metal batteries. 2023 , 62, 106854	0
33	Utilizing the capacity below 0½ to maximize lithium storage of hard carbon anodes. 2023 , 83, 169-177	O
32	An Amphiphilic Molecule-Regulated Core-Shell-Solvation Electrolyte for Li-Metal Batteries at Ultra-Low Temperature. 2023 , 62,	0
31	An Amphiphilic Molecule-Regulated Core-Shell-Solvation Electrolyte for Li-Metal Batteries at Ultra-Low Temperature. 2023 , 135,	O
30	Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. 2023 , 56, 642-663	O
29	In situ formation of stable solid electrolyte interphase with high ionic conductivity for long lifespan all-solid-state lithium metal batteries. 2023 , 57, 1-13	O

28	Investigation of the Impact of High Concentration LiTFSI Electrolytes on Silicon Anodes with Reactive Force Field Simulations. 2023 , 3, 132-158	О
27	High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries. 2023 , 57, 277-288	O
26	Recent progress in electrolyte design for advanced lithium metal batteries.	О
25	All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation. 2023 , 57, 249-259	O
24	Ion Transport in Glyme- and Sulfolane-Based Highly Concentrated Electrolytes.	0
23	Poly(Ether-Ester)-Based Solid Polymer Electrolytes with High Li-Ion Transference Number for High Voltage All-Solid-State Lithium Metal Batteries. 2023 , 6, 3113-3125	O
22	(Localized) Highly Concentrated Electrolytes for Calcium Batteries.	О
21	Realizing a Bolid to solid[process via in situ cathode electrolyte interface (CEI) by solvent-in-salt electrolyte for Li-S batteries.	O
20	Electrochemical Impedance Spectroscopy for Electrode Process Evaluation: Lithium Titanium Phosphate in Concentrated Aqueous Electrolyte.	0
19	Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. 2023, 14,	O
18	Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. 2023 , 57, 508-539	О
17	Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte. 2023 , 17,	O
16	Beyond conventional aqueous electrolytes: Recent developments in Li-free Water-in-salt electrolytes for supercapacitors.	0
15	Design of Localized High-Concentration Electrolytes via Donor Number. 2023 , 8, 1723-1734	O
14	Lithium salt-regulated dual-stabilized elastomeric quasi-solid electrolyte for high-voltage lithium metal batteries. 2023 , 11, 8308-8319	0
13	Characterizing the Impact of Mg-Doped Li Metal Anode and Excess Electrons on High Concentration Electrolyte Interfacial Stability: A Theoretical Study. 2023 , 6, 3291-3300	О
12	Theory of Cation Solvation and Ionic Association in Nonaqueous Solvent Mixtures. 2023, 2,	О
11	Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. 2023 , 14,	O

CITATION REPORT

10	Ultrathin Lithiophilic 3D Arrayed Skeleton Enabling Spatial-Selection Deposition for Dendrite-Free Lithium Anodes.	О
9	Evaluation of Glyoxal-Based Electrolytes for Lithium-Sulfur Batteries. 2023 , 9, 210	O
8	Rapid Solution Synthesis of Argyrodite-Type Li6PS5X (X = Cl, Br, and I) Solid Electrolytes Using Excess Sulfur. 2023 , 62, 6076-6083	0
7	Discharge Behavior within LithiumBulfur Batteries Using Lillyme Solvate Ionic Liquids. 2023 , 127, 6645-6654	0
6	Optimized Pinecone-Squama-Structure MoS2-Coated CNT and Graphene Framework as Binder-Free Anode for Li-Ion Battery with High Capacity and Cycling Stability. 2023 , 16, 3218	0
5	Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. 2023 , 100135	O
4	Synergistic Effects of FeCo Bimetallic Single-Atom Catalysts: Accelerating the Redox Conversion of Polysulfides and Inhibiting the Growth of Lithium Dendrites in Lithium Bulfur Batteries. 2023 , 6, 4671-4682	0
3	Conversion reaction lithium metal batteries.	O
2	Structure B roperty Correlations in Aqueous Binary Na+/K+IIH3COOIHighly Concentrated Electrolytes.	O
1	Three-dimensional heterogeneity in liquid electrolyte structures promotes Na ion transport and storage performance in Na-ion batteries.	О