Haematopoietic stem cells and early lymphoid progenit niches

Nature 495, 231-235 DOI: 10.1038/nature11885

Citation Report

#	Article	IF	CITATIONS
1	AUTHORS AND AFFILIATIONS. American Journal of Epidemiology, 1979, 110, 528-528.	1.6	1
2	Interactions Between B Lymphocytes and the Osteoblast Lineage in Bone Marrow. Calcified Tissue International, 2013, 93, 261-268.	1.5	39
3	SLAM Family Markers Resolve Functionally Distinct Subpopulations of Hematopoietic Stem Cells and Multipotent Progenitors. Cell Stem Cell, 2013, 13, 102-116.	5.2	521
4	Cytokines and the Pathogenesis of Osteoporosis. , 2013, , 915-937.		1
5	Hormonal Control of Stem Cell Systems. Annual Review of Cell and Developmental Biology, 2013, 29, 137-162.	4.0	31
6	Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell, 2013, 26, 204-219.	3.1	548
7	CXC Chemokine Receptor 4 Expression, CXC Chemokine Receptor 4 Activation, and Wild-Type Nucleophosmin Are Independently Associated With Unfavorable Prognosis in Patients With Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 686-692.	0.2	16
8	Spatial organization within a niche as a determinant of stem-cell fate. Nature, 2013, 502, 513-518.	13.7	353
9	Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.	13.7	1,002
10	FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro. Biochemical and Biophysical Research Communications, 2013, 440, 125-131.	1.0	11
11	Hematopoiesis. Development (Cambridge), 2013, 140, 2463-2467.	1.2	270
12	Osteolineage cells and regulation of the hematopoietic stem cell. Best Practice and Research in Clinical Haematology, 2013, 26, 249-252.	0.7	11
13	Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533.	5.2	148
14	Concise Review: Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem and Progenitor Cells: Basic Principles, Experimental Approaches, and Impact in Regenerative Medicine. Stem Cells Translational Medicine, 2013, 2, 830-838.	1.6	65
16	Haematopoietic stem cell niches: new insights inspire new questions. EMBO Journal, 2013, 32, 2535-2547.	3.5	59
17	Deficiency of GRP94 in the Hematopoietic System Alters Proliferation Regulators in Hematopoietic Stem Cells. Stem Cells and Development, 2013, 22, 3062-3073.	1.1	11
18	Immune cells and bone: coupling goes both ways. Immunological Investigations, 2013, 42, 532-543.	1.0	5
19	The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. British Medical Bulletin, 2013, 108, 25-53.	2.7	227

TION REI

#	Article	IF	CITATIONS
20	Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis. Cell Reports, 2013, 4, 1022-1034.	2.9	224
21	Painkillers caught in blood-cell trafficking. Nature, 2013, 495, 317-318.	13.7	2
22	CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature, 2013, 495, 227-230.	13.7	1,119
23	This Niche Is a Maze; An Amazing Niche. Cell Stem Cell, 2013, 12, 391-392.	5.2	47
24	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	13.5	555
25	Dysfunctional Brain-bone Marrow Communication: A Paradigm Shift in the Pathophysiology of Hypertension. Current Hypertension Reports, 2013, 15, 377-389.	1.5	24
26	The Skeletal Stem Cell. , 2013, , 127-147.		3
27	Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia. EMBO Molecular Medicine, 2013, 5, 1154-1164.	3.3	15
28	Targeting hypoxia in the leukemia microenvironment. International Journal of Hematologic Oncology, 2013, 2, 279-288.	0.7	45
30	Regulation of Bone Marrow Angiogenesis by Osteoblasts during Bone Development and Homeostasis. Frontiers in Endocrinology, 2013, 4, 85.	1.5	25
31	Regulation of Hematopoietic Stem Cell Activity by Inflammation. Frontiers in Immunology, 2013, 4, 204.	2.2	124
32	Aging of the hematopoietic system. Current Opinion in Hematology, 2013, 20, 355-361.	1.2	64
33	The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes and Development, 2013, 27, 1868-1885.	2.7	61
35	ATF4 and HIF-1α in bone: An intriguing relationship. Journal of Bone and Mineral Research, 2013, 28, 1866-1869.	3.1	1
36	Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells. PLoS ONE, 2013, 8, e67861.	1.1	3
37	Osterix-Cre Labeled Progenitor Cells Contribute to the Formation and Maintenance of the Bone Marrow Stroma. PLoS ONE, 2013, 8, e71318.	1.1	118
38	Stem cells supporting other stem cells. Frontiers in Genetics, 2013, 4, 257.	1.1	41
39	CXCR4 in Central and Peripheral Lymphoid Niches – Physiology, Pathology and Therapeutic Perspectives in Immune Deficiencies and Malignancies. , 2014, , .		1

#	Article	IF	CITATIONS
40	CXCR4-Related Increase of Circulating Human Lymphoid Progenitors after Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE, 2014, 9, e91492.	1.1	5
41	Dasatinib Targets B-Lineage Cells but Does Not Provide an Effective Therapy for Myeloproliferative Disease in c-Cbl RING Finger Mutant Mice. PLoS ONE, 2014, 9, e94717.	1.1	11
42	The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. ELife, 2014, 3, e03696.	2.8	240
43	Cigarette Smoke Alters the Hematopoietic Stem Cell Niche. Medical Sciences (Basel, Switzerland), 2014, 2, 37-50.	1.3	21
44	Can SHED or DPSCs be used to repair/regenerate non-dental tissues? A systematic review of in vivo studies. Brazilian Oral Research, 2014, 28, 1-7.	0.6	25
45	Mesenchymal Stem Cells: Pivotal Players in Hematopoietic Stem Cell Microenvironment. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	5
46	Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget, 2014, 5, 11501-11512.	0.8	37
47	The Adult Hematopoietic Niches — Cellular Composition, Histological Organization and Physiological Regulation. , 0, , .		2
48	Biology of BM failure syndromes: role of microenvironment and niches. Hematology American Society of Hematology Education Program, 2014, 2014, 71-76.	0.9	29
49	Cell-Intrinsic In Vivo Requirement for the E47–p21 Pathway in Long-Term Hematopoietic Stem Cells. Journal of Immunology, 2014, 192, 160-168.	0.4	19
50	Roles of osteoclasts in the control of medullary hematopoietic niches. Archives of Biochemistry and Biophysics, 2014, 561, 29-37.	1.4	22
51	The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhesion and Migration, 2014, 8, 563-577.	1.1	72
52	The science behind the hypoxic niche of hematopoietic stem and progenitors. Hematology American Society of Hematology Education Program, 2014, 2014, 542-547.	0.9	37
53	Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis. Haematologica, 2014, 99, 1149-1156.	1.7	18
54	The Notch Delta-4 ligand helps to maintain the quiescence and the short-term reconstitutive potential of haematopoietic progenitor cells through activation of a key gene network. Stem Cell Research, 2014, 13, 431-441.	0.3	10
55	Multipotent Hematopoietic Progenitors Divide Asymmetrically to Create Progenitors of the Lymphomyeloid and Erythromyeloid Lineages. Stem Cell Reports, 2014, 3, 1058-1072.	2.3	39
56	Inhibition of Bone Remodeling in Young Mice by Bisphosphonate Displaces the Plasma Cell Niche into the Spleen. Journal of Immunology, 2014, 193, 223-233.	0.4	16
57	SMAD Signaling Regulates CXCL12 Expression in the Bone Marrow Niche, Affecting Homing and Mobilization of Hematopoietic Progenitors. Stem Cells, 2014, 32, 3012-3022.	1.4	36

	Сітатіс	on Report	
#	Article	IF	CITATIONS
58	Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow. Experimental Cell Research, 2014, 329, 239-247.	1.2	13
59	Functional Assessment of Hematopoietic Niche Cells Derived from Human Embryonic Stem Cells. Stem Cells and Development, 2014, 23, 1355-1363.	1.1	6
60	<i>sdf1</i> Expression Reveals a Source of Perivascular-Derived Mesenchymal Stem Cells in Zebrafish. Stem Cells, 2014, 32, 2767-2779.	1.4	13
61	Concise Review: Genetic Dissection of Hypoxia Signaling Pathways in Normal and Leukemic Stem Cells. Stem Cells, 2014, 32, 1390-1397.	1.4	27
62	Advances in Intravital Microscopy. , 2014, , .		4
63	Biophysical regulation of hematopoietic stem cells. Biomaterials Science, 2014, 2, 1548-1561.	2.6	37
64	Kit and Scl regulation of hematopoietic stem cells. Current Opinion in Hematology, 2014, 21, 256-264.	1.2	21
65	Bone marrow localization and functional properties of human hematopoietic stem cells. Current Opinion in Hematology, 2014, 21, 249-255.	1.2	8
66	p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-κB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche. Cell Reports, 2014, 9, 2084-2097.	2.9	56
68	Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. Journal of Experimental Medicine, 2014, 211, 487-497.	4.2	41
69	In Vivo Imaging of Bone Marrow Stem Cells. , 2014, , 143-162.		1
70	The Adult Stem Cell Niche. Pancreatic Islet Biology, 2014, , 15-30.	0.1	0
71	Plasma Elevation of Vascular Endothelial Growth Factor Leads to the Reduction of Mouse Hematopoietic and Mesenchymal Stem/Progenitor Cells in the Bone Marrow. Stem Cells and Development, 2014, 23, 2202-2210.	1.1	8
72	From proliferation to proliferation: monocyte lineage comes full circle. Seminars in Immunopathology, 2014, 36, 137-148.	2.8	48
73	Sphingosine-1-Phosphate: a Master Regulator of Lymphocyte Egress and Immunity. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 103-115.	1.0	17
74	Tracking plasma cell differentiation and survival. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 15-24.	1.1	41
75	Mesenchymal Progenitors and the Osteoblast Lineage in Bone Marrow Hematopoietic Niches. Current Osteoporosis Reports, 2014, 12, 22-32.	1.5	49
76	The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell and Tissue Research, 2014, 355, 239-253.	1.5	51

#	Article	IF	CITATIONS
77	Targeting the Molecular and Cellular Interactions of the Bone Marrow Niche in Immunologic Disease. Current Allergy and Asthma Reports, 2014, 14, 402.	2.4	7
78	Stem cell dynamics in the hair follicle niche. Seminars in Cell and Developmental Biology, 2014, 25-26, 34-42.	2.3	135
79	Nice Neighborhood: Emerging Concepts of the Stem Cell Niche. Cell, 2014, 157, 41-50.	13.5	307
80	Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 2014, 3, 481.	2.7	536
81	Regulation of hematopoiesis in endosteal microenvironments. International Journal of Hematology, 2014, 99, 679-684.	0.7	35
82	Influences of vascular niches on hematopoietic stem cell fate. International Journal of Hematology, 2014, 99, 699-705.	0.7	32
83	Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nature Methods, 2014, 11, 663-669.	9.0	369
84	CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. Journal of Molecular Medicine, 2014, 92, 433-439.	1.7	136
85	Transcriptional Control of Early T and B Cell Developmental Choices. Annual Review of Immunology, 2014, 32, 283-321.	9.5	176
86	Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment. Antioxidants and Redox Signaling, 2014, 21, 1605-1619.	2.5	241
87	Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. Cell, 2014, 157, 935-949.	13.5	306
88	Loss of Gsα Early in the Osteoblast Lineage Favors Adipogenic Differentiation of Mesenchymal Progenitors and Committed Osteoblast Precursors. Journal of Bone and Mineral Research, 2014, 29, 2414-2426.	3.1	33
89	Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunology, 2014, 35, 32-37.	2.9	231
90	Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcified Tissue International, 2014, 94, 112-124.	1.5	42
91	Infection-Induced Changes in Hematopoiesis. Journal of Immunology, 2014, 192, 27-33.	0.4	96
92	The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505, 327-334.	13.7	1,910
93	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
94	Megakaryocytes in the hematopoietic stem cell niche. Nature Medicine, 2014, 20, 1233-1234.	15.2	10

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
95	Regulation and consequences of monocytosis. Immunological Reviews, 2014, 262, 167	-178.	2.8	51
96	CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bon Journal of Experimental Medicine, 2014, 211, 2567-2581.	e marrow.	4.2	114
97	Endothelial cells translate pathogen signals into G-CSF–driven emergency granulopoi 2014, 124, 1393-1403.	esis. Blood,	0.6	221
98	Metabolic regulation of stem cell function. Journal of Internal Medicine, 2014, 276, 12-	24.	2.7	61
99	Fabrication of Biofunctionalized, Cell-Laden Macroporous 3D PEG Hydrogels as Bone M for the Cultivation of Human Hematopoietic Stem and Progenitor Cells. Methods in Mc Biology, 2014, 1202, 121-130.	arrow Analogs ·lecular	0.4	10
100	Chemokine signaling in development and disease. Development (Cambridge), 2014, 14	1, 4199-4205.	1.2	102
101	Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends in Endocrinology and Metabolism, 2014, 25, 567-575.	ı	3.1	101
102	Activation of the vascular niche supports leukemic progression and resistance to cheme Experimental Hematology, 2014, 42, 976-986.e3.	otherapy.	0.2	47
103	Obesity-driven disruption of haematopoiesis and the bone marrow niche. Nature Reviev Endocrinology, 2014, 10, 737-748.	vs	4.3	104
104	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32	2, 795-803.	9.4	492
105	Regenerative Cell Therapy for Corneal Endothelium. Current Ophthalmology Reports, 2	014, 2, 81-90.	0.5	27
106	Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nation 2014, 20, 833-846.	ure Medicine,	15.2	628
107	Aging of the hematopoietic stem cells niche. International Journal of Hematology, 2014	, 100, 317-325.	0.7	28
108	Haematopoietic stem cell induction by somite-derived endothelial cells controlled by m 2014, 512, 314-318.	eox1. Nature,	13.7	122
109	Identification and Characterization of Circulating Variants of CXCL12 from Human Plas Chemotaxis and Mobilization of Hematopoietic Stem and Progenitor Cells. Stem Cells a Development, 2014, 23, 1959-1974.	ma: Effects on and	1.1	32
110	The neurotrophic factor receptor RET drives haematopoietic stem cell survival and func 2014, 514, 98-101.	tion. Nature,	13.7	91
111	"Mesenchymal―Stem Cells. Annual Review of Cell and Developmental Biology, 201	14, 30, 677-704.	4.0	345
112	Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Na 508, 536-540.	ture, 2014,	13.7	192

#	Article	IF	CITATIONS
113	Leptin-Receptor-Expressing Mesenchymal Stromal Cells Represent the Main Source of Bone Formed by Adult Bone Marrow. Cell Stem Cell, 2014, 15, 154-168.	5.2	1,034
114	Neutrophils at work. Nature Immunology, 2014, 15, 602-611.	7.0	726
115	Chronic variable stress activates hematopoietic stem cells. Nature Medicine, 2014, 20, 754-758.	15.2	565
116	Innate immune cells as homeostatic regulators of the hematopoietic niche. International Journal of Hematology, 2014, 99, 685-694.	0.7	18
117	Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone, 2014, 63, 87-94.	1.4	100
118	Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development. Developmental Cell, 2014, 29, 340-349.	3.1	365
119	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	3.1	160
120	Bone Marrow Endosteal Mesenchymal Progenitors Depend on HIF Factors for Maintenance and Regulation of Hematopoiesis. Stem Cell Reports, 2014, 2, 794-809.	2.3	23
121	Infection Mobilizes Hematopoietic Stem Cells through Cooperative NOD-like Receptor and Toll-like Receptor Signaling. Cell Host and Microbe, 2014, 15, 779-791.	5.1	149
122	Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal. Cell Reports, 2014, 7, 1956-1967.	2.9	45
123	Early B lymphocyte development: Similarities and differences in human and mouse. World Journal of Stem Cells, 2014, 6, 421.	1.3	34
125	SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood, 2014, 124, 277-286.	0.6	64
126	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.	0.6	39
127	CATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells. Haematologica, 2014, 99, 1686-1696.	1.7	33
128	Are there any new insights for G-CSF and/or AMD3100 in chemotherapy of haematological malignants?. Medical Oncology, 2015, 32, 262.	1.2	5
129	Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood, 2015, 125, 793-802.	0.6	31
130	MRTF-SRF signaling is required for seeding of HSC/Ps in bone marrow during development. Blood, 2015, 125, 1244-1255.	0.6	26
131	Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood, 2015, 125, 3114-3117.	0.6	54

#	Article	IF	CITATIONS
132	The hematopoietic stem cell niche in homeostasis and disease. Blood, 2015, 126, 2443-2451.	0.6	182
133	â€ ⁻ Emergency exit' of bone-marrow-resident CD34+DNAM-1brightCXCR4+-committed lymphoid precursors during chronic infection and inflammation. Nature Communications, 2015, 6, 8109.	5.8	22
134	An immunophenotypic preâ€ŧreatment predictor for poor response to induction chemotherapy in older acute myeloid leukaemia patients: blood frequency of CD34 ⁺ ÂCD38 ^{low} blasts. British Journal of Haematology, 2015, 170, 80-84.	1.2	12
135	PTH Signaling in Osteoprogenitors Is Essential for B-Lymphocyte Differentiation and Mobilization. Journal of Bone and Mineral Research, 2015, 30, 2273-2286.	3.1	55
136	Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnology Journal, 2015, 10, 1529-1545.	1.8	81
137	EphB4 Expressing Stromal Cells Exhibit an Enhanced Capacity for Hematopoietic Stem Cell Maintenance. Stem Cells, 2015, 33, 2838-2849.	1.4	29
138	Ablation of <i>Wntless</i> in endosteal niches impairs lymphopoiesis rather than HSCs maintenance. European Journal of Immunology, 2015, 45, 2650-2660.	1.6	17
139	The critical and specific transcriptional regulator of the microenvironmental niche for hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2015, 22, 330-336.	1.2	16
140	Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators of Inflammation, 2015, 2015, 1-16.	1.4	54
141	Generation and characterization of mice harboring a conditional CXCL12 allele. International Journal of Developmental Biology, 2015, 59, 205-209.	0.3	5
142	Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia. PLoS ONE, 2015, 10, e0140506.	1.1	85
143	Nestin Positive Bone Marrow Derived Cells Responded to Injury Mobilize into Peripheral Circulation and Participate in Skin Defect Healing. PLoS ONE, 2015, 10, e0143368.	1.1	5
144	Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Frontiers in Physiology, 2015, 6, 289.	1.3	79
145	Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. ELife, 2015, 4, e05521.	2.8	140
146	The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	21
148	Tissue engineered humanized bone supports human hematopoiesisÂinÂvivo. Biomaterials, 2015, 61, 103-114.	5.7	62
149	Perivascular deletion of murine Rac reverses the ratio of marrow arterioles and sinusoid vessels and alters hematopoiesis in vivo. Blood, 2015, 125, 3105-3113.	0.6	7
150	CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. Cancer Cell, 2015, 27, 755-768.	7.7	216

ARTICLE IF CITATIONS # HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 2015, 523, 151 13.7 192 342-346. CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. Cancer 147 Cell, 2015, 27, 769-779. The targeting of human and mouse B lymphocytes by dasatinib. Experimental Hematology, 2015, 43, 153 0.2 8 352-363.e4. Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 2015, 16, 154 358 254-267. Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal 155 1.8 11 ontogeny. Cardiovascular Research, 2015, 107, 352-363. Influence of Bone Marrow Microenvironment on Leukemic Stem Cells. Advances in Cancer Research, 37 2015, 127, 227-252. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesisâ€"Lessons From Pharmacological 157 1.4 81 and Genetic Models. Stem Cells, 2015, 33, 2391-2399. Exit Strategies: S1P Signaling and T Cell Migration. Trends in Immunology, 2015, 36, 778-787. 2.9 158 130 Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are 159 7.7 245 Supported by a Perivascular Stem Cell Niche. Cancer Cell, 2015, 28, 800-814. Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche. 0.2 Experimental Hematology, 2015, 43, 963-973.e4. Characterisation of lymphocyte subpopulations in infantile haemangioma. Journal of Clinical 161 1.0 20 Pathology, 2015, 68, 812-818. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature, 2015, 527, 466-471. 207 Visualization of integrin Mac-1 in vivo. Journal of Immunological Methods, 2015, 426, 120-127. 163 0.6 12 Skeletal stem cells for bone development, homeostasis and repair: one or many?. BoneKEy Reports, 164 2.7 2015, 4, 769. 165 Modeling Normal and Disordered Human Hematopoiesis. Trends in Cancer, 2015, 1, 199-210. 10 3.8 ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell 49 Trafficking. Stem Cell Reports, 2015, 4, 255-268. Transcriptional Regulation of Innate and Adaptive Lymphocyte Lineages. Annual Review of Immunology, 167 9.5 155 2015, 33, 607-642. C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients. Experimental Hematology, 2015, 43, 100-109.e1.

		EPORT	
#	Article	IF	Citations
169	Notch signaling in the malignant bone marrow microenvironment: implications for a nicheâ€based model of oncogenesis. Annals of the New York Academy of Sciences, 2015, 1335, 63-77.	1.8	24
170	Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 2015, 17, 123-136.	4.6	120
171	B Cell Localization and Migration in Health and Disease. , 2015, , 187-214.		1
172	The unbearable lightness of bone marrow homeostasis. Cytokine and Growth Factor Reviews, 2015, 26, 347-359.	3.2	26
173	Mesenchymal stromal cells for sphincter regeneration. Advanced Drug Delivery Reviews, 2015, 82-83, 123-136.	6.6	21
174	Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging. FASEB Journal, 2015, 29, 455-463.	0.2	51
175	Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche. Cell, 2015, 160, 241-252.	13.5	291
176	Effects of Combined Treatment with Complex S. typhimurium Antigens and Factors Stimulating Osteogenesis (Curettage, BMP-2) on Multipotent Bone Marrow Stromal Cells and Serum Concentration of Cytokines in CBA Mice. Bulletin of Experimental Biology and Medicine, 2015, 158, 465-470.	0.3	10
177	Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs. Blood Cells, Molecules, and Diseases, 2015, 55, 220-227.	0.6	39
179	Adipose Tissue-Residing Progenitors (Adipocyte Lineage Progenitors and Adipose-Derived Stem Cells) Tj ETQq1	1 0.784314 0.8	4 rggT /Overlo
180	BMSCs and hematopoiesis. Immunology Letters, 2015, 168, 129-135.	1.1	46
181	Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Experimental Biology and Medicine, 2015, 240, 1099-1106.	1.1	66
182	Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. Journal of Experimental Medicine, 2015, 212, 759-774.	4.2	122
183	Regional and Stage-Specific Effects of Prospectively Purified Vascular Cells on the Adult V-SVZ Neural Stem Cell Lineage. Journal of Neuroscience, 2015, 35, 4528-4539.	1.7	70
184	Neural Regulation of Hematopoiesis, Inflammation, and Cancer. Neuron, 2015, 86, 360-373.	3.8	184
185	Androgens Regulate Bone Marrow B Lymphopoiesis in Male Mice by Targeting Osteoblast-Lineage Cells. Endocrinology, 2015, 156, 1228-1236.	1.4	16
186	Mesenchymal Cell Contributions to the Stem Cell Niche. Cell Stem Cell, 2015, 16, 239-253.	5.2	444
187	Cyclin A1 regulates the interactions between mouse haematopoietic stem and progenitor cells and their niches. Cell Cycle, 2015, 14, 1948-1960.	1.3	5

		CITATION REPORT		
#	Article		IF	CITATIONS
188	Metastasis prevention by targeting the dormant niche. Nature Reviews Cancer, 2015,	15, 238-247.	12.8	279
189	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. Journal of Exp Medicine, 2015, 212, 497-512.	erimental	4.2	143
190	Making sense of hematopoietic stem cell niches. Blood, 2015, 125, 2621-2629.		0.6	342
191	Switching roles: the functional plasticity of adult tissue stem cells. EMBO Journal, 201	5, 34, 1164-1179.	3.5	77
192	Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence a Retention. Stem Cells, 2015, 33, 2280-2293.	nd Niche	1.4	34
193	CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and Ewing sarcoma patients. European Journal of Cancer, 2015, 51, 2624-2633.	metastases in	1.3	30
194	Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. 526, 126-130.	Nature, 2015,	13.7	564
195	A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematolo 1376-1387.	gica, 2015, 100,	1.7	90
196	Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia. Leukemia Re 1437-1442.	25 earch, 2015, 39,	0.4	11
197	A map of the distribution of sphingosine 1-phosphate in the spleen. Nature Immunolog 1245-1252.	gy, 2015, 16,	7.0	52
198	Sample preparation for high-resolution 3D confocal imaging of mouse skeletal tissue. I Protocols, 2015, 10, 1904-1914.	Nature	5.5	120
199	CXCR 2 modulates bone marrow vascular repair and haematopoietic recovery postâ€t Journal of Haematology, 2015, 169, 552-564.	ransplant. British	1.2	8
200	Bone marrow stem cells: current and emerging concepts. Annals of the New York Acac Sciences, 2015, 1335, 32-44.	lemy of	1.8	75
201	Phenotypic and Morphological Properties of Germinal Center Dark Zone <i>Cxcl12</i> Reticular Cells. Journal of Immunology, 2015, 195, 4781-4791.	-Expressing	0.4	109
202	Tissue-Specific Stem Cell Niche. Pancreatic Islet Biology, 2015, , .		0.1	4
203	Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerativ Hematopoiesis. Stem Cell Reports, 2015, 5, 881-894.	ve	2.3	43
204	Skeletal Stem Cell Niche of the Bone Marrow. Pancreatic Islet Biology, 2015, , 245-279).	0.1	1
205	Vascular Niche in HSC Development, Maintenance and Regulation. Pancreatic Islet Bio 191-219.	logy, 2015, ,	0.1	1

#	Article	IF	CITATIONS
206	The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends in Immunology, 2015, 36, 578-604.	2.9	140
207	Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. Journal of Experimental Medicine, 2015, 212, 1931-1946.	4.2	51
208	Bone metastasis and the metastatic niche. Journal of Molecular Medicine, 2015, 93, 1203-1212.	1.7	124
209	The vasculature: a vessel for bone metastasis. BoneKEy Reports, 2015, 4, 742.	2.7	34
210	CXCL12 catches T-ALL at the entrance of the bone marrow. Trends in Immunology, 2015, 36, 504-506.	2.9	1
211	Neutrophil trails guide influenza-specific CD8 ⁺ T cells in the airways. Science, 2015, 349, aaa4352.	6.0	328
212	Insulin–InsR signaling drives multipotent progenitor differentiation toward lymphoid lineages. Journal of Experimental Medicine, 2015, 212, 2305-2321.	4.2	17
213	Connexins. International Review of Cell and Molecular Biology, 2015, 318, 27-62.	1.6	7
214	Regulation of hematopoietic stem cells in the niche. Science China Life Sciences, 2015, 58, 1209-1215.	2.3	25
215	Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death and Differentiation, 2015, 22, 187-198.	5.0	195
216	ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Experimental Hematology, 2015, 43, 44-52.e3.	0.2	11
217	Biological Differences Between Native and Cultured Mesenchymal Stem Cells: Implications for Therapies. Methods in Molecular Biology, 2015, 1235, 105-120.	0.4	21
218	Interleukin-1 beta enhances human multipotent mesenchymal stromal cell proliferative potential and their ability to maintain hematopoietic precursor cells. Cytokine, 2015, 71, 246-254.	1.4	22
219	Endogenous Mesenchymal Stromal Cells in Bone Marrow Are Required to Preserve Muscle Function in mdx Mice. Stem Cells, 2015, 33, 962-975.	1.4	22
220	Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells. Stem Cells Translational Medicine, 2015, 4, 56-65.	1.6	44
221	Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region. Bone, 2015, 71, 76-88.	1.4	14
222	Stem cell programs are retained in human leukemic lymphoblasts. Oncogene, 2015, 34, 2083-2093.	2.6	7
223	Stem cells and bone diseases: New tools, new perspective. Bone, 2015, 70, 55-61.	1.4	17

#	Article	IF	CITATIONS
224	Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral circulation associated with OPN expression in circulating blood cells. Journal of Bone and Mineral Metabolism, 2015, 33, 48-54.	1.3	3
225	Structure and Function of the Bone Marrow Hematopoietic Niche. , 2016, , 400-406.		1
226	Pluripotent Stem Cells and Their Dynamic Niche. , 2016, , .		4
227	Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biology and Medicine, 2016, 13, 248-259.	1.4	101
228	Bone marrow blood vessels: normal and neoplastic niche. Oncology Reviews, 2016, 10, 306.	0.8	9
229	Trafficking of Osteoclast Precursors. , 2016, , 25-40.		1
230	Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis. Endocrinology and Metabolism, 2016, 31, 206.	1.3	37
231	The Effects of Immune Cell Products (Cytokines and Hematopoietic Cell Growth Factors) on Bone Cells. , 2016, , 143-167.		9
232	Maintenance of hematopoietic stem cell dormancy: yet another role for the macrophage. Stem Cell Investigation, 2016, 3, 46-46.	1.3	1
233	B-Lymphopoiesis in Fetal Liver, Guided by Chemokines. Advances in Immunology, 2016, 132, 71-89.	1.1	12
234	Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. International Journal of Molecular Sciences, 2016, 17, 553.	1.8	12
235	Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?. International Journal of Molecular Sciences, 2016, 17, 1009.	1.8	39
236	Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation. PLoS ONE, 2016, 11, e0166040.	1.1	14
237	Bone Marrow Hematopoietic Niches. , 2016, , 103-119.		1
238	Blood vessel crosstalk during organogenesis—focus on pancreas and endothelial cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 598-617.	5.9	19
239	Two Niches in the Bone Marrow: A Hypothesis on Life-long T Cell Memory. Trends in Immunology, 2016, 37, 503-512.	2.9	52
240	CXCR4 signaling in health and disease. Immunology Letters, 2016, 177, 6-15.	1.1	197
241	Microenvironmental cues for T ell acute lymphoblastic leukemia development. Immunological Reviews, 2016, 271, 156-172.	2.8	32

#	ARTICLE The ability of multipotent mesenchymal stromal cells from the bone marrow of patients with leukemia	IF	CITATIONS
242	to maintain normal hematopoietic progenitor cells. European Journal of Haematology, 2016, 97, 245-252.	1.1	8
243	Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. International Journal of Cancer, 2016, 138, 417-427.	2.3	59
244	Stem Cell Niche. , 2016, , 57-85.		3
245	Targeting of Mesenchymal Stromal Cells by <i>Cre</i> -Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells. Journal of Bone and Mineral Research, 2016, 31, 2001-2007.	3.1	88
246	Sensing and translation of pathogen signals into demand-adapted myelopoiesis. Current Opinion in Hematology, 2016, 23, 5-10.	1.2	50
247	Impaired Mobilization of Vascular Reparative Bone Marrow Cells in Streptozotocin-Induced Diabetes but not in Leptin Receptor-Deficient db/db Mice. Scientific Reports, 2016, 6, 26131.	1.6	10
248	VEGF-sdf1 recruitment of CXCR7 ⁺ bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration. American Journal of Physiology - Renal Physiology, 2016, 310, G739-G746.	1.6	55
251	Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 2016, 45, 1219-1231.	6.6	199
252	Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (Review). Molecular Medicine Reports, 2016, 13, 587-591.	1.1	75
253	CXCL12/SDF-1 and Hematopoiesis. , 2016, , 624-631.		4
254	Identification of a CD133â^'CD55â^' population functions as a fetal common skeletal progenitor. Scientific Reports, 2016, 6, 38632.	1.6	3
255	Endothelial-specific inhibition of NF- $\hat{I}^{e}B$ enhances functional haematopoiesis. Nature Communications, 2016, 7, 13829.	5.8	40
256	Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow. Scientific Reports, 2016, 6, 36411.	1.6	22
257	One Niche to Rule Both Maintenance and Loss of Stemness in HSCs. Immunity, 2016, 45, 1177-1179.	6.6	3
258	The many faces of hematopoietic stem cell heterogeneity. Development (Cambridge), 2016, 143, 4571-4581.	1.2	72
259	Axin2-expressing cells execute regeneration after skeletal injury. Scientific Reports, 2016, 6, 36524.	1.6	29
260	New approaches to targeting the bone marrow microenvironment in multiple myeloma. Current Opinion in Pharmacology, 2016, 28, 43-49.	1.7	25
261	Hematopoietic Stem Cell Niche in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 555-581.	9.6	129

		CITATION REPORT		
#	ARTICLE	16 272 206	IF	CITATIONS
262	Bone metastasis: the importance of the neighbourhood. Nature Reviews Cancer, 2016	, 16, 373-386.	12.8	369
263	Smad4 in osteoblasts exerts a differential impact on HSC fate depending on osteoblas stage. Leukemia, 2016, 30, 2039-2046.	t maturation	3.3	12
264	Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and prog Journal of Materials Chemistry B, 2016, 4, 3490-3503.	enitor cells.	2.9	31
265	Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. Journal of Immunolc 4760-4770.	gy, 2016, 196,	0.4	19
266	Hematopoietic Stem Cell and Its Bone Marrow Niche. Current Topics in Developmenta 118, 21-44.	l Biology, 2016,	1.0	109
267	Regenerative Medicine - from Protocol to Patient. , 2016, , .			2
268	Heterogeneity of the bone marrow niche. Current Opinion in Hematology, 2016, 23, 3	31-338.	1.2	83
269	Adult hematopoietic stem cells lacking Hif-11± self-renew normally. Blood, 2016, 127, 2	2841-2846.	0.6	67
270	Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Marrow. Stem Cell Reports, 2016, 7, 220-235.	? Bone	2.3	43
271	Computational methods for trajectory inference from single ell transcriptomics. Eur of Immunology, 2016, 46, 2496-2506.	ropean Journal	1.6	169
272	Isolation and characterization of primary bone marrow mesenchymal stromal cells. An New York Academy of Sciences, 2016, 1370, 109-118.	nals of the	1.8	119
273	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenit Regulators. Cell Stem Cell, 2016, 19, 530-543.	or Cell	5.2	136
274	The effects of proliferation and DNA damage on hematopoietic stem cell function dete Developmental Dynamics, 2016, 245, 739-750.	ermine aging.	0.8	8
275	Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx hor splenic mesenchyme. Journal of Anatomy, 2016, 229, 153-169.	neoproteins in	0.9	8
276	Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adu Immunity, 2016, 45, 597-609.	t Animals.	6.6	317
277	A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation. Radiation Re 186, 141.	esearch, 2016,	0.7	31
278	Insights into the human mesenchymal stromal/stem cell identity through integrative to profiling. BMC Genomics, 2016, 17, 944.	anscriptomic	1.2	55
279	CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selectiv against oxidative stress. Scientific Reports, 2016, 6, 37827.	e protection	1.6	69

#	Article	IF	Citations
280	Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature, 2016, 539, 304-308.	13.7	210
281	Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nature Communications, 2016, 7, 13095.	5.8	60
282	Stem Cells in Bone Regeneration. Stem Cell Reviews and Reports, 2016, 12, 524-529.	5.6	110
283	Dental Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	2
284	Noncanonical Wnt signaling in stromal cells regulates B-lymphogenesis through interleukin-7 expression. Biochemistry and Biophysics Reports, 2016, 6, 179-184.	0.7	3
285	Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity, 2016, 44, 1434-1443.	6.6	99
286	Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration. Pancreatic Islet Biology, 2016, , 143-165.	0.1	4
287	The human and murine hematopoietic stem cell niches: are they comparable?. Annals of the New York Academy of Sciences, 2016, 1370, 55-64.	1.8	15
288	Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 2016, 1370, 82-96.	1.8	235
289	Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function. Cancer Research, 2016, 76, 1641-1652.	0.4	45
290	A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nature Cell Biology, 2016, 18, 157-167.	4.6	57
291	Angiocrine functions of organ-specific endothelial cells. Nature, 2016, 529, 316-325.	13.7	717
292	Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells. Cell Cycle, 2016, 15, 540-545.	1.3	23
293	Mechanisms of self-renewal in hematopoietic stem cells. International Journal of Hematology, 2016, 103, 498-509.	0.7	27
294	Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. Cell Stem Cell, 2016, 18, 782-796.	5.2	346
295	SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells, Molecules, and Diseases, 2016, 58, 13-18.	0.6	15
296	Cell intrinsic and extrinsic regulation of leukemia cell metabolism. International Journal of Hematology, 2016, 103, 607-616.	0.7	23
297	Mobilization of hematopoietic stem cells with highest self-renewal by G-CSF precedes clonogenic cell mobilization peak. Experimental Hematology, 2016, 44, 303-314.e1.	0.2	18

#	Article	IF	CITATIONS
298	Targeting the leukemia–stroma interaction in acute myeloid leukemia: rationale and latest evidence. Therapeutic Advances in Hematology, 2016, 7, 40-51.	1.1	52
299	Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nature Communications, 2016, 7, 10222.	5.8	16
300	Hematopoietic niches, erythropoiesis and anemia of chronic infection. Experimental Hematology, 2016, 44, 85-91.	0.2	32
301	Molecular Mechanisms of CML Stem Cell Maintenance. , 2016, , 11-28.		0
302	Exosome-mediated microenvironment dysregulation in leukemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 464-470.	1.9	63
303	Inflammatory Cell Migration in Rheumatoid Arthritis: A Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 51, 59-78.	2.9	70
304	The role of Eph/ephrin molecules in stromal–hematopoietic interactions. International Journal of Hematology, 2016, 103, 145-154.	0.7	20
305	Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Advanced Drug Delivery Reviews, 2016, 99, 212-220.	6.6	19
306	Hypoxia regulates the hematopoietic stem cell niche. Pflugers Archiv European Journal of Physiology, 2016, 468, 13-22.	1.3	42
307	Acute myeloid leukemia in the vascular niche. Cancer Letters, 2016, 380, 552-560.	3.2	53
308	Niche Extracellular Matrix Components and Their Influence on HSC. Journal of Cellular Biochemistry, 2017, 118, 1984-1993.	1.2	38
309	IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica, 2017, 102, 445-453.	1.7	35
310	TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
311	Circulating and disseminated tumor cells: harbingers or initiators of metastasis?. Molecular Oncology, 2017, 11, 40-61.	2.1	182
312	GM-CSF and IL-4 Fusion Cytokine Induces B Cell-Dependent Hematopoietic Regeneration. Molecular Therapy, 2017, 25, 416-426.	3.7	4
313	Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature Cell Biology, 2017, 19, 214-223.	4.6	332
314	Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood, 2017, 129, 2124-2131.	0.6	71
315	Glucose-Dependent Insulinotropic Polypeptide Receptor Deficiency Leads to Impaired Bone Marrow Hematopoiesis. Journal of Immunology, 2017, 198, 3089-3098.	0.4	17

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
316	The evolving view of the hematopoietic stem cell niche. Experimental Hematology, 201	7, 50, 22-26.	0.2	60
317	The role of vasculature in bone development, regeneration and proper systemic functio Angiogenesis, 2017, 20, 291-302.	ning.	3.7	341
318	Neoplasms in the bone marrow niches: disturbance of the microecosystem. Internation Hematology, 2017, 105, 558-565.	al Journal of	0.7	1
319	Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Current Op Hematology, 2017, 24, 289-299.	pinion in	1.2	33
320	Paracrine regulation of normal and malignant hematopoiesis. Current Opinion in Hema 24, 329-335.	tology, 2017,	1.2	2
321	Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, whic mesengenic differentiation. Stem Cell Research and Therapy, 2017, 8, 106.	h is lost after	2.4	11
322	Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary my Nature Cell Biology, 2017, 19, 677-688.	elofibrosis.	4.6	125
323	A Chemoattractant-Guided Walk Through Lymphopoiesis. Advances in Immunology, 20)17, 134, 47-88.	1.1	32
324	GMP-ing to Spatial Conclusions about Emergency and Leukemic Myelopoiesis. Cell Ster 579-581.	n Cell, 2017, 20,	5.2	4
325	The Osteoblastic Niche in Hematopoiesis and Hematological Myeloid Malignancies. Cur Biology Reports, 2017, 3, 53-62.	rrent Molecular	0.8	36
326	Pericytes, integral components of adult hematopoietic stem cell niches. , 2017, 171, 10)4-113.		44
327	Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mecha Medicine, 2017, 23, 91-99.	nisms. Nature	15.2	61
328	CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve regeneration. Scientific Reports, 2017, 7, 3305.	ve muscle	1.6	47
329	Complexity of bone marrow hematopoietic stem cell niche. International Journal of Hen 106, 45-54.	natology, 2017,	0.7	109
330	Ephrin ligands and Eph receptors contribution to hematopoiesis. Cellular and Molecula Sciences, 2017, 74, 3377-3394.	r Life	2.4	14
331	Using Zebrafish to Study Pathways that Regulate Hematopoietic Stem Cell Self-Renewa Stem Cell Reports, 2017, 8, 1465-1471.	al and Migration.	2.3	15
332	Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitiz of Experimental Medicine, 2017, 214, 2023-2040.	zation. Journal	4.2	36
333	Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchyr Cell Reports, 2017, 19, 1902-1916.	moangioblasts.	2.9	187

#	Article	IF	CITATIONS
334	Extrinsic regulation of hematopoietic stem cells in development, homeostasis and diseases. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e279.	5.9	14
335	Impact of inflammation on early hematopoiesis and the microenvironment. International Journal of Hematology, 2017, 106, 27-33.	0.7	35
336	IP6K1 Reduces Mesenchymal Stem/Stromal Cell Fitness and Potentiates High Fat Diet-Induced Skeletal Involution. Stem Cells, 2017, 35, 1973-1983.	1.4	21
337	Adult haematopoietic stem cell niches. Nature Reviews Immunology, 2017, 17, 573-590.	10.6	528
338	Hematopoietic stem cells under pressure. Current Opinion in Hematology, 2017, 24, 314-321.	1.2	25
339	CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. Journal of Experimental Medicine, 2017, 214, 1011-1027.	4.2	43
340	Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis. Scientific Reports, 2017, 7, 44644.	1.6	15
341	The bone marrow microenvironment – Home of the leukemic blasts. Blood Reviews, 2017, 31, 277-286.	2.8	119
342	<i>Hox</i> genes in the adult skeleton: Novel functions beyond embryonic development. Developmental Dynamics, 2017, 246, 310-317.	0.8	76
343	Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. International Journal of Hematology, 2017, 105, 129-140.	0.7	78
344	Mouse Genetic Analysis of Bone Marrow Stem Cell Niches: Technological Pitfalls, Challenges, and Translational Considerations. Stem Cell Reports, 2017, 9, 1343-1358.	2.3	24
345	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
346	Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture. Frontiers in Biology, 2017, 12, 271-279.	0.7	8
347	Mapping bone marrow niches of disseminated tumor cells. Science China Life Sciences, 2017, 60, 1125-1132.	2.3	2
348	Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 2017, 19, 1336-1347.	4.6	150
349	Targeting primary acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143). Scientific Reports, 2017, 7, 7305.	1.6	25
350	Skeletal Stem Cells: Origins, Functions, and Uncertainties. Current Molecular Biology Reports, 2017, 3, 236-246.	0.8	7
351	Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. Journal of Experimental Medicine, 2017, 214, 2817-2827.	4.2	31

#	Article	IF	CITATIONS
352	CXCL12–CXCR4 Axis Is Required for Contact-Mediated Human B Lymphoid and Plasmacytoid Dendritic Cell Differentiation but Not T Lymphoid Generation. Journal of Immunology, 2017, 199, 2343-2355.	0.4	14
353	The microenvironment in myelodysplastic syndromes: Niche-mediated disease initiation and progression. Experimental Hematology, 2017, 55, 3-18.	0.2	47
354	Notch Ligands for Lymphocyte Development. , 2017, , 3-20.		0
355	Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine, 2017, 100, 11-15.	1.4	28
356	Integrating Enhancer Mechanisms to Establish a Hierarchical Blood Development Program. Cell Reports, 2017, 20, 2966-2979.	2.9	46
357	Effects of in vivo deletion of GATA2 in bone marrow stromal cells. Experimental Hematology, 2017, 56, 31-45.e2.	0.2	2
358	Current Developments in Mobilization of Hematopoietic Stem and Progenitor Cells and Their Interaction with Niches in Bone Marrow. Transfusion Medicine and Hemotherapy, 2017, 44, 151-164.	0.7	20
359	Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. Nature Communications, 2017, 8, 221.	5.8	34
360	Role of PTH in Bone Marrow Niche and HSC Regulation. Current Stem Cell Reports, 2017, 3, 210-217.	0.7	5
361	Here, There, and Anywhere? Arguments for and against the Physical Plasma Cell Survival Niche. Journal of Immunology, 2017, 199, 839-845.	0.4	50
362	In Vivo Rescue of the Hematopoietic Niche By Pluripotent Stem Cell Complementation of Defective Osteoblast Compartments. Stem Cells, 2017, 35, 2150-2159.	1.4	8
363	Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nature Cell Biology, 2017, 19, 891-903.	4.6	359
364	Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell, 2017, 21, 241-255.e6.	5.2	105
365	Bioengineering of Humanized Bone Marrow Microenvironments in Mouse and Their Visualization by Live Imaging. Journal of Visualized Experiments, 2017, , .	0.2	16
366	Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 2017, 97, 1295-1349.	13.1	347
367	HSC Niche Biology and HSC Expansion Ex Vivo. Trends in Molecular Medicine, 2017, 23, 799-819.	3.5	120
368	Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop. Cell Stem Cell, 2017, 21, 747-760.e7.	5.2	68
369	Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF ^{high} neutrophils. Science, 2017, 358, .	6.0	270

#	Article	IF	CITATIONS
370	Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. Nature Communications, 2017, 8, 1518.	5.8	27
371	Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. Journal of Materials Chemistry B, 2017, 5, 9429-9451.	2.9	49
372	Thermoneutrality but Not UCP1 Deficiency Suppresses Monocyte Mobilization Into Blood. Circulation Research, 2017, 121, 662-676.	2.0	37
373	Progressive Changes in CXCR4 Expression That Define Thymocyte Positive Selection Are Dispensable For Both Innate and Conventional αβT-cell Development. Scientific Reports, 2017, 7, 5068.	1.6	21
374	Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy. Scientific Reports, 2017, 7, 4928.	1.6	38
375	Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. Journal of Molecular Medicine, 2017, 95, 809-819.	1.7	36
376	Identity of Gli1+ cells in the bone marrow. Experimental Hematology, 2017, 54, 12-16.	0.2	30
377	Fibroblast growth factor 2 supports osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow suppression. Cell Communication and Signaling, 2017, 15, 25.	2.7	10
378	Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 2017, 97, 135-187.	13.1	541
379	Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates. Stem Cells Translational Medicine, 2017, 6, 864-876.	1.6	28
380	The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Seminars in Hematology, 2017, 54, 25-32.	1.8	50
381	ILâ€7 and immobilized Kitâ€ligand stimulate serum―and stromal cellâ€free cultures of precursor Bâ€cell lines and clones. European Journal of Immunology, 2017, 47, 206-212.	1.6	6
382	Survival and Proliferation of Neural Progenitor–Derived Glioblastomas Under Hypoxic Stress is Controlled by a CXCL12/CXCR4 Autocrine-Positive Feedback Mechanism. Clinical Cancer Research, 2017, 23, 1250-1262.	3.2	41
383	Enhanced Hematopoietic Stem Cell Self-Renewal-Promoting Ability of Clonal Primary Mesenchymal Stromal/Stem cells Versus Their Osteogenic Progeny. Stem Cells, 2017, 35, 473-484.	1.4	20
384	Bone Density Loss Is Associated With Blood Cell Counts. Journal of Bone and Mineral Research, 2017, 32, 212-220.	3.1	43
385	Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis. Stem Cells, 2017, 35, 80-88.	1.4	23
386	The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct. Journal of Bone and Mineral Research, 2017, 32, 560-574.	3.1	91
387	The hematopoietic stem-cell niche in health and leukemia. Cellular and Molecular Life Sciences, 2017, 74, 579-590.	2.4	81

#	Article	IF	CITATIONS
388	Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Translational Medicine, 2017, 6, 482-489.	1.6	23
389	Donor Age Affects Behavior and Sensibility of Bone Marrow Cells to Copper Ions in Primary Culture. Advances in Gerontology, 2017, 7, 336-344.	0.1	3
390	CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner. Oncotarget, 2017, 8, 54082-54095.	0.8	25
391	Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Advances, 2017, 1, 407-416.	2.5	84
392	The Sca1+ mesenchymal stromal subpopulation promotesdendritic cell commitment in the niche. Turkish Journal of Biology, 2017, 41, 58-65.	2.1	3
393	Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia. International Journal of Molecular Sciences, 2017, 18, 1824.	1.8	27
394	Regulation of Hematopoietic Stem Cell Dynamics by Molecular Niche Signaling. , 2017, , 51-61.		0
395	Use of Imaging Techniques to Illuminate Dynamics of Hematopoietic Stem Cells and Their Niches. Frontiers in Cell and Developmental Biology, 2017, 5, 62.	1.8	8
396	Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. International Journal of Molecular Sciences, 2017, 18, 199.	1.8	12
397	Pro-inflammatory-Related Loss of CXCL12 Niche Promotes Acute Lymphoblastic Leukemic Progression at the Expense of Normal Lymphopoiesis. Frontiers in Immunology, 2016, 7, 666.	2.2	34
398	The Role of the Bone Marrow Stromal Compartment in the Hematopoietic Response to Microbial Infections. Frontiers in Immunology, 2016, 7, 689.	2.2	22
399	Natural Killer Cell Development and Maturation Revisited: Possible Implications of a Novel Distinct Linâ~'CD34+DNAM-1brightCXCR4+ Cell Progenitor. Frontiers in Immunology, 2017, 8, 268.	2.2	16
400	Serum Cytokine Profiles Differentiating Hemorrhagic Fever with Renal Syndrome and Hantavirus Pulmonary Syndrome. Frontiers in Immunology, 2017, 8, 567.	2.2	45
401	Structure and Functions of Blood Vessels and Vascular Niches in Bone. Stem Cells International, 2017, 2017, 1-10.	1.2	66
402	What Are Mesenchymal Stromal Cells? Origin and Discovery of Mesenchymal Stromal Cells. , 2017, , 1-37.		2
403	Stroma Cell Niche Regulation During HSC Development. Advances in Stem Cells and Their Niches, 2017, 1, 1-16.	0.1	2
404	The Evolvement of Hematopoietic Stem Cell Niches. Advances in Stem Cells and Their Niches, 2017, , 17-34.	0.1	0
405	Imaging the Hematopoietic Stem Cell Niche. Advances in Stem Cells and Their Niches, 2017, , 59-83.	0.1	0

#	Article	IF	CITATIONS
406	The Importance of Altered Hematopoietic Microenvironmental Regulation in Chronic Myeloproliferative Disorders. Journal of Hematology & Thromboembolic Diseases, 2017, 05, .	0.1	0
407	Harnessing the Biology of Stem Cells' Niche. , 2017, , 15-31.		4
408	Genetic rescue of lineage-balanced blood cell production reveals a crucial role for STAT3 antiinflammatory activity in hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2311-E2319.	3.3	9
409	MiR221 promotes precursor Bâ€cell retention in the bone marrow by amplifying the PI3Kâ€signaling pathway in mice. European Journal of Immunology, 2018, 48, 975-989.	1.6	12
410	The bone marrow microenvironment in health and disease at a glance. Journal of Cell Science, 2018, 131, .	1.2	51
411	Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nature Reviews Genetics, 2018, 19, 311-325.	7.7	129
412	The interplay of leukemia cells and the bone marrow microenvironment. Blood, 2018, 131, 1507-1511.	0.6	87
413	Neural Regulation of Bone and Bone Marrow. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031344.	2.9	63
414	Multifaceted Roles of Connexin 43 in Stem Cell Niches. Current Stem Cell Reports, 2018, 4, 1-12.	0.7	23
415	Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to G _{Alert} . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4463-E4472.	3.3	89
416	Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 579-589.	1.1	24
417	Endosteal and Perivascular Subniches in a 3D Bone Marrow Model for Multiple Myeloma. Tissue Engineering - Part C: Methods, 2018, 24, 300-312.	1.1	29
418	Niches for Hematopoietic Stem Cells and Their Progeny. Immunity, 2018, 48, 632-648.	6.6	290
419	Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science, 2018, 360, 106-110.	6.0	83
420	JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica, 2018, 103, 1160-1168.	1.7	26
421	TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Reports, 2018, 22, 1250-1262.	2.9	62
422	Targeting the bone marrow microenvironment in acute leukemia. Leukemia and Lymphoma, 2018, 59, 2535-2545.	0.6	25
423	CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell Stem Cell, 2018, 22, 445-453.e5.	5.2	188

# 424	ARTICLE Bone Marrow Microâ€Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies. BioEssays, 2018, 40, 1700190.	IF 1.2	CITATIONS
425	The hematopoietic stem cell niche: from embryo to adult. Development (Cambridge), 2018, 145, .	1.2	155
426	Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1. Journal of Immunology, 2018, 200, 1078-1087.	0.4	10
427	Obesity alters the long-term fitness of the hematopoietic stem cell compartment through modulation of <i>Gfi1</i> expression. Journal of Experimental Medicine, 2018, 215, 627-644.	4.2	62
428	The good and bad faces of the CXCR4 chemokine receptor. International Journal of Biochemistry and Cell Biology, 2018, 95, 121-131.	1.2	62
429	Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nature Reviews Rheumatology, 2018, 14, 146-156.	3.5	167
430	Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell, 2018, 22, 627-638.	5.2	233
431	Hematopoietic insults damage bone marrow niche by activating p53 in vascular endothelial cells. Experimental Hematology, 2018, 63, 41-51.e1.	0.2	14
432	Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cellular and Molecular Life Sciences, 2018, 75, 2177-2195.	2.4	251
433	Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. Journal of Pathology, 2018, 245, 138-146.	2.1	16
434	A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes and Development, 2018, 32, 324-326.	2.7	11
435	Overview of Osteoimmunology. Calcified Tissue International, 2018, 102, 503-511.	1.5	52
436	Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes and Development, 2018, 32, 359-372.	2.7	110
437	Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomaterialia, 2018, 72, 1-15.	4.1	48
438	CXCL12â€mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus. Glia, 2018, 66, 1566-1576.	2.5	18
439	Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxidants and Redox Signaling, 2018, 29, 149-168.	2.5	109
440	The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031328.	2.9	32
441	Concise Review: Conceptualizing Paralogous Stem-Cell Niches and Unfolding Bone Marrow Progenitor Cell Identities. Stem Cells, 2018, 36, 11-21.	1.4	23

#	Article	IF	CITATIONS
442	Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031559.	2.9	87
443	Epidermal Growth Factor and Granulocyte Colony Stimulating Factor Signaling Are Synergistic for Hematopoietic Regeneration. Stem Cells, 2018, 36, 252-264.	1.4	10
444	Role of the microenvironment in myeloid malignancies. Cellular and Molecular Life Sciences, 2018, 75, 1377-1391.	2.4	32
445	Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cellular and Molecular Life Sciences, 2018, 75, 1363-1376.	2.4	68
446	Hematopoietic Stem Cell Biology. , 2018, , 95-110.e13.		0
447	The Biology of Bone Metastasis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031252.	2.9	123
448	Where Hematopoietic Stem Cells Live: The Bone Marrow Niche. Antioxidants and Redox Signaling, 2018, 29, 191-204.	2.5	92
449	Imbalanced Osteogenesis and Adipogenesis in Mice Deficient in the Chemokine Cxcl12/Sdf1 in the Bone Mesenchymal Stem/Progenitor Cells. Journal of Bone and Mineral Research, 2018, 33, 679-690.	3.1	30
450	The chemokine receptor type 4 antagonist, AMD3100, interrupts experimental tooth movement in rats. Archives of Oral Biology, 2018, 86, 35-39.	0.8	9
451	The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia, 2018, 32, 462-469.	3.3	38
452	T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Reviews, 2018, 32, 36-51.	2.8	120
453	Acute myeloid leukemia remodels endosteal vascular niche into a leukemic niche. Stem Cell Investigation, 2018, 5, 34-34.	1.3	6
454	Mesenchymal Stromal Cells: Role in the BM Niche and in the Support of Hematopoietic Stem Cell Transplantation. HemaSphere, 2018, 2, e151.	1.2	53
455	Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	0
456	Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment. Advances in Experimental Medicine and Biology, 2018, 1100, 97-110.	0.8	20
457	Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. Current Stem Cell Reports, 2018, 4, 282-290.	0.7	1
458	Depletion of Collagen IX Alpha1 Impairs Myeloid Cell Function. Stem Cells, 2018, 36, 1752-1763.	1.4	10
459	Neutrophils instruct homeostatic and pathological states in naive tissues. Journal of Experimental Medicine, 2018, 215, 2778-2795.	4.2	200

		CITATION REPORT		
#	Article	IF	CITATIONS	
460	The Cellular and Molecular Mechanisms of Hematopoiesis. Pediatric Oncology, 2018, , 1-23.	0.5	1	
461	Recreating stem-cell niches using self-assembling biomaterials. , 2018, , 421-454.		1	
462	Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BioMed Research International, 2018, 2018, 1-32.	0.9	34	
463	B-Cell Development. , 2018, , 202-228.		0	
464	Monocyte and Macrophage Dynamics in the Cardiovascular System. Journal of the American College of Cardiology, 2018, 72, 2198-2212.	1.2	47	
465	The Instructive Role of the Bone Marrow Niche in Aging and Leukemia. Current Stem Cell Reports, 2018, 4, 291-298.	0.7	18	
467	Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica, 2018, 103, 1945-1955.	1.7	50	
468	Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 916-928.	1.1	6	
469	Fra-2 Expression in Osteoblasts Regulates Systemic Inflammation and Lung Injury through Osteopontin. Molecular and Cellular Biology, 2018, 38, .	1.1	10	
470	Murine Bone Marrow Niches from Hematopoietic Stem Cells to B Cells. International Journal of Molecular Sciences, 2018, 19, 2353.	1.8	31	
471	Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. Journal of Experimental Medicine, 2018, 215, 2586-2599.	4.2	80	
472	Chemotherapy-induced niche perturbs hematopoietic reconstitution in B-cell acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research, 2018, 37, 204.	3.5	16	
473	Sipa1 deficiency–induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Advances, 2018, 2, 534-548.	2.5	32	
474	Impaired bone marrow B-cell development in mice with a bronchiolitis obliterans model of cGVHD. Blood Advances, 2018, 2, 2307-2319.	2.5	15	
475	Neural Crossroads in the Hematopoietic Stem Cell Niche. Trends in Cell Biology, 2018, 28, 987-998.	3.6	32	
476	Presence of <scp>SCF</scp> / <scp>CXCL</scp> 12 doubleâ€positive large blastâ€like cells at the site of cutaneous extramedullary haematopoiesis. Journal of the European Academy of Dermatology and Venereology, 2018, 32, e465-e466.	1.3	4	
477	Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nature Communications, 2018, 9, 2532.	5.8	109	
478	Osteoimmunology. , 2018, , 261-282.		1	

#	Article	IF	CITATIONS
479	Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nature Communications, 2018, 9, 2449.	5.8	145
480	The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis. Stem Cells International, 2018, 2018, 1-13.	1.2	44
481	JAK2V617F Megakaryocytes Promote Hematopoietic Stem/Progenitor Cell Expansion in Mice Through Thrombopoietin/MPL Signaling. Stem Cells, 2018, 36, 1676-1684.	1.4	28
482	Dynamic Regulation of Hematopoietic Stem Cells by Bone Marrow Niches. Current Stem Cell Reports, 2018, 4, 201-208.	0.7	17
483	Mesenchymal stromal cells induce a permissive state in the bone marrow that enhances G-CSF-induced hematopoietic stem cell mobilization in mice. Experimental Hematology, 2018, 64, 59-70.e2.	0.2	10
484	Luteinizing hormone signaling restricts hematopoietic stem cell expansion during puberty. EMBO Journal, 2018, 37, .	3.5	16
485	Retinoic Acid Receptor Î ³ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis. Journal of Bone and Mineral Research, 2018, 33, 2202-2213.	3.1	20
486	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	1.6	15
487	Chemotactic Cues for NOTCH1-Dependent Leukemia. Frontiers in Immunology, 2018, 9, 633.	2.2	13
488	Regulation of Malignant Hematopoiesis by Bone Marrow Microenvironment. Frontiers in Oncology, 2018, 8, 119.	1.3	10
489	Therapeutic Antibodies for Myeloid Neoplasms—Current Developments and Future Directions. Frontiers in Oncology, 2018, 8, 152.	1.3	30
490	Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Research and Therapy, 2018, 9, 190.	2.4	54
491	Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nature Medicine, 2018, 24, 782-791.	15.2	253
492	Conditional Deletion of <i>Sost</i> in MSC-Derived Lineages Identifies Specific Cell-Type Contributions to Bone Mass and B-Cell Development. Journal of Bone and Mineral Research, 2018, 33, 1748-1759.	3.1	39
493	The Adaptive Remodeling of Stem Cell Niche in Stimulated Bone Marrow Counteracts the Leukemic Niche. Stem Cells, 2018, 36, 1617-1629.	1.4	16
494	Distinct Bone Marrow Sources of Pleiotrophin Control Hematopoietic Stem Cell Maintenance and Regeneration. Cell Stem Cell, 2018, 23, 370-381.e5.	5.2	88
495	Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 2018, 155, 92-103.	1.3	28
496	Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature, 2018, 558, 445-448.	13.7	59

#	Article	IF	CITATIONS
497	Is related the hematopoietic stem cells differentiation in the Nile tilapia with GABA exposure?. Fish and Shellfish Immunology, 2019, 93, 801-814.	1.6	6
498	Cutaneous extramedullary haematopoiesis: Implications in human disease and treatment. Experimental Dermatology, 2019, 28, 1201-1209.	1.4	7
499	Prospective isolation of nonhematopoietic cells of the niche and their differential molecular interactions with HSCs. Blood, 2019, 134, 1214-1226.	0.6	27
500	Desperately seeking a home marrow niche for T-cell acute lymphoblastic leukaemia. Advances in Biological Regulation, 2019, 74, 100640.	1.4	10
501	Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Reports, 2019, 28, 302-311.e5.	2.9	167
502	Bmi1 Suppresses Adipogenesis in the Hematopoietic Stem Cell Niche. Stem Cell Reports, 2019, 13, 545-558.	2.3	28
503	Microphysiological systems in the evaluation of hematotoxicities during drug development. Current Opinion in Toxicology, 2019, 17, 18-22.	2.6	4
504	THE ROLE OF OSTEOMACS IN REGULATING STEM CELL FUNCTION AND THE HEMATOPOIETIC NICHE. Experimental Hematology, 2019, 76, S79.	0.2	0
505	What is the role of the microenvironment in MDS?. Best Practice and Research in Clinical Haematology, 2019, 32, 101113.	0.7	7
506	Metalloproteases: On the Watch in the Hematopoietic Niche. Trends in Immunology, 2019, 40, 1053-1070.	2.9	30
507	Bmi1 restricts the adipogenic differentiation of bone marrow stromal cells to maintain the integrity of the hematopoietic stem cell niche. Experimental Hematology, 2019, 76, 24-37.	0.2	8
508	Hematopoietic-Extrinsic Cues Dictate Circadian Redistribution of Mature and Immature Hematopoietic Cells in Blood and Spleen. Cells, 2019, 8, 1033.	1.8	11
509	Human multipotent hematopoietic progenitor cell expansion is neither supported in endothelial and endothelial/mesenchymal co-cultures nor in NSG mice. Scientific Reports, 2019, 9, 12914.	1.6	4
510	NK Cell Precursors in Human Bone Marrow in Health and Inflammation. Frontiers in Immunology, 2019, 10, 2045.	2.2	8
511	Chemokines in Physiological and Pathological Bone Remodeling. Frontiers in Immunology, 2019, 10, 2182.	2.2	99
512	The role of bone cells in immune regulation during the course of infection. Seminars in Immunopathology, 2019, 41, 619-626.	2.8	15
513	All- <i>trans</i> retinoic acid protects mesenchymal stem cells from immune thrombocytopenia by regulating the complement–interleukin-1β loop. Haematologica, 2019, 104, 1661-1675.	1.7	25
514	Inhibition of mesenchymal stromal cells' chemotactic effect to ameliorate paraquat-induced pulmonary fibrosis. Toxicology Letters, 2019, 307, 1-10.	0.4	8

#	Article	IF	CITATIONS
515	Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell International, 2019, 19, 139.	1.8	12
516	TGF-β Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow. Stem Cell Reports, 2019, 13, 48-60.	2.3	26
517	One cell one niche: hematopoietic microenvironments constructed by bone marrow stromal cells with fibroblastic and histiocytic features. Ultrastructural Pathology, 2019, 43, 117-125.	0.4	3
518	Parathyroid Hormone Shifts Cell Fate of a Leptin Receptor-Marked Stromal Population from Adipogenic to Osteoblastic Lineage. Journal of Bone and Mineral Research, 2019, 34, 1952-1963.	3.1	35
519	Chemokines in COPD: From Implication to Therapeutic Use. International Journal of Molecular Sciences, 2019, 20, 2785.	1.8	68
520	Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nature Reviews Immunology, 2019, 19, 626-642.	10.6	402
521	CCR5 Signaling Promotes Murine and Human Hematopoietic Regeneration following Ionizing Radiation. Stem Cell Reports, 2019, 13, 76-90.	2.3	17
522	E-protein–regulated expression of CXCR4 adheres preselection thymocytes to the thymic cortex. Journal of Experimental Medicine, 2019, 216, 1749-1761.	4.2	23
523	Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. Journal of Clinical Medicine, 2019, 8, 707.	1.0	39
524	A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 2019, 177, 1915-1932.e16.	13.5	640
525	Phage-Based Artificial Niche: The Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-14.	1.2	15
526	Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends in Molecular Medicine, 2019, 25, 494-515.	3.5	84
527	Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. International Immunology, 2019, 31, 729-742.	1.8	33
528	Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis. Blood, 2019, 134, 227-238.	0.6	23
529	Metastasis Organotropism: Redefining the Congenial Soil. Developmental Cell, 2019, 49, 375-391.	3.1	202
530	Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nature Cell Biology, 2019, 21, 700-709.	4.6	172
531	Leukocyte Trafficking and Regulation of Murine Hematopoietic Stem Cells and Their Niches. Frontiers in Immunology, 2019, 10, 387.	2.2	13
532	Neutrophils as regulators of the hematopoietic niche. Blood, 2019, 133, 2140-2148.	0.6	40

ARTICLE IF CITATIONS # Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant 533 5.2 141 Leukemia Stem Cells. Cell Stem Cell, 2019, 24, 769-784.e6. Development of the hematopoietic system: Role of inflammatory factors. Wiley Interdisciplinary 534 Review's: Developmental Biology, 2019, 8, e341. Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the 535 2.9 46 Peri-sinusoidal Hematopoietic Stem Cell Niche. Cell Reports, 2019, 26, 3257-3271.e8. Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation. Cancers, 2019, 11, 136 345. Endothelial Cell-Derived Extracellular Vesicles Mitigate Radiation-Induced Hematopoietic Injury. 537 0.4 16 International Journal of Radiation Oncology Biology Physics, 2019, 104, 291-301. Dynamic Changes in the Niche with N-Cadherin Revisited: The HSC "Niche Herein― Cell Stem Cell, 2019, 5.2 24, 355-356. 539 The bone marrow microenvironment at single-cell resolution. Nature, 2019, 569, 222-228. 13.7 624 Cell circuits and niches controlling B cell development. Immunological Reviews, 2019, 289, 142-157. 540 2.8 Secrets and lyase: Control of sphingosine 1â€phosphate distribution. Immunological Reviews, 2019, 289, 541 2.8 21 173-185. A Human Hematopoietic Niche Model Supporting Hematopoietic Stem and Progenitor Cells In Vitro. 543 29 Advanced Healthcare Materials, 2019, 8, e1801444. 544 Pericytes in Bone Marrow. Advances in Experimental Medicine and Biology, 2019, 1122, 101-114. 0.8 12 Multiscale engineering of immune cells and lymphoid organs. Nature Reviews Materials, 2019, 4, 23.3 355-378. Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for 546 2.5 23 Hematopoietic Stem Cell Expansion. Tissue Engineering - Part B: Reviews, 2019, 25, 312-329. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica, 2019, 104, 1731-1743. 547 1.7 Development, repair, and regeneration of the limb musculoskeletal system. Current Topics in 548 1.0 4 Developmental Biology, 2019, 132, 451-486. Haematopoietic stem cell activity and Âinteractions with the niche. Nature Reviews Molecular Cell 549 16.1 588 Biology, 2019, 20, 303-320. Bone Marrow and the Stem Cell Niche., 2019, , 27-35. 550 0 Cancer-associated fibroblasts in gastrointestinal cancer. Nature Reviews Gastroenterology and 8.2 371 Hepatology, 2019, 16, 282-295.

#	Article	IF	CITATIONS
552	Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metabolism, 2019, 29, 966-978.e4.	7.2	170
553	Transcriptional profiles and stromal changes reveal bone marrow adaptation to early breast cancer in association with deregulated circulating microRNAs. Cancer Research, 2019, 80, canres.1425.2019.	0.4	13
554	Dysregulated megakaryocyte distribution associated with nestin+ mesenchymal stem cells in immune thrombocytopenia. Blood Advances, 2019, 3, 1416-1428.	2.5	18
555	Hypoxia Regulates Lymphoid Development of Human Hematopoietic Progenitors. Cell Reports, 2019, 29, 2307-2320.e6.	2.9	27
556	Niches of Hematopoietic Stem Cells in Bone Marrow. Molecular Biology, 2019, 53, 889-895.	0.4	2
557	Metcalf Lecture Award: Applying niche biology to engineer T-cell regenerative therapies. Experimental Hematology, 2019, 80, 1-10.	0.2	1
558	A 3D Tissue-wide Digital Imaging Pipeline for Quantitation of Secreted Molecules Shows Absence of CXCL12 Gradients in Bone Marrow. Cell Stem Cell, 2019, 25, 846-854.e4.	5.2	26
559	Induced Liver Fibrosis Is Accompanied in Young and Old Animals by Age-Dependent Changes in Bone Marrow Cells. Advances in Gerontology, 2019, 9, 289-297.	0.1	2
560	Prx1-Expressing Progenitor Primary Cilia Mediate Bone Formation in response to Mechanical Loading in Mice. Stem Cells International, 2019, 2019, 1-9.	1.2	24
561	Stem cell homeostasis by integral feedback through the niche. Journal of Theoretical Biology, 2019, 481, 100-109.	0.8	14
562	Adaptive Immunodeficiency in WHIM Syndrome. International Journal of Molecular Sciences, 2019, 20, 3.	1.8	47
563	CD150high CD4 T cells and CD150high regulatory T cells regulate hematopoietic stem cell quiescence via CD73. Haematologica, 2019, 104, 1136-1142.	1.7	19
564	Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell, 2019, 24, 477-486.e6.	5.2	129
565	Bone Metastasis: Find Your Niche and Fit in. Trends in Cancer, 2019, 5, 95-110.	3.8	65
566	N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. Cell Reports, 2019, 26, 652-669.e6.	2.9	106
567	Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds. Translational Research, 2019, 205, 51-63.	2.2	20
568	Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance. Experimental Hematology, 2019, 69, 43-53.	0.2	14
569	Niches for hematopoietic stem cells and immune cell progenitors. International Immunology, 2019, 31, 5-11.	1.8	35

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
570	Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone, 2019, 119, 42-56.	1.4	13
571	Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031245.	2.9	64
572	Osteocyte regulation of bone and blood. Bone, 2019, 119, 13-18.	1.4	44
573	Parallels between hematopoietic stem cell and prostate cancer disseminated tumor cell regulation. Bone, 2019, 119, 82-86.	1.4	18
574	Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone, 2019, 119, 19-35.	1.4	27
575	<i>Ex vivo</i> HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Annals of the New York Academy of Sciences, 2020, 1466, 39-50.	1.8	38
576	Cytokineâ€induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Annals of the New York Academy of Sciences, 2020, 1466, 24-38.	1.8	25
577	Skeletal stem cells. , 2020, , 45-71.		5
578	Bone marrow and the hematopoietic stem cell niche. , 2020, , 73-87.		2
579	Stem Cell Composition of Umbilical Cord Blood Following Milking Compared with Delayed Clamping of the Cord Appears Better Suited for Promoting Hematopoiesis. Journal of Pediatrics, 2020, 216, 222-226.	0.9	8
580	Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 2020, 22, 38-48.	4.6	521
581	Unraveling bone marrow architecture. Nature Cell Biology, 2020, 22, 5-6.	4.6	7
582	Microenvironmental contributions to hematopoietic stem cell aging. Haematologica, 2020, 105, 38-46.	1.7	94
583	Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nature Cell Biology, 2020, 22, 7-17.	4.6	86
584	Role of growth factors in hematopoietic stem cell niche. Cell Biology and Toxicology, 2020, 36, 131-144.	2.4	29
585	Single-cell and spatial transcriptomics approaches of the bone marrow microenvironment. Current Opinion in Oncology, 2020, 32, 146-153.	1.1	18
586	Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discovery Today, 2020, 25, 380-391.	3.2	7
587	The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annual Review of Cell and Developmental Biology, 2020, 36, 469-509.	4.0	4

#	Article	IF	CITATIONS
588	Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments?. Cells, 2020, 9, 2310.	1.8	37
589	Targeting CXCR4 in AML and ALL. Frontiers in Oncology, 2020, 10, 1672.	1.3	57
590	Markers for Identification of Postnatal Skeletal Stem Cells In Vivo. Current Osteoporosis Reports, 2020, 18, 655-665.	1.5	14
591	Identification of Fibroblast Activation Protein as an Osteogenic Suppressor and Anti-osteoporosis Drug Target. Cell Reports, 2020, 33, 108252.	2.9	30
592	Ablation of Fat Cells in Adult Mice Induces Massive Bone Gain. Cell Metabolism, 2020, 32, 801-813.e6.	7.2	51
593	Hematopoietic Stem Cells in Health and Disease—Insights from Single-Cell Multi-omic Approaches. Current Stem Cell Reports, 2020, 6, 67-76.	0.7	8
594	Development and function of human dendritic cells in humanized mice models. Molecular Immunology, 2020, 125, 151-161.	1.0	10
595	Regulation of Hematopoietic Stem Cell Fate and Malignancy. International Journal of Molecular Sciences, 2020, 21, 4780.	1.8	9
596	CXCR4 Signaling Has a CXCL12-Independent Essential Role in Murine MLL-AF9-Driven Acute Myeloid Leukemia. Cell Reports, 2020, 31, 107684.	2.9	28
597	The Role of the Bone Marrow Microenvironment in the Response to Infection. Frontiers in Immunology, 2020, 11, 585402.	2.2	14
598	Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. Journal of Hematology and Oncology, 2020, 13, 157.	6.9	41
599	Blood Vessels and Vascular Niches in Bone Development and Physiological Remodeling. Frontiers in Cell and Developmental Biology, 2020, 8, 602278.	1.8	38
600	Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Frontiers in Immunology, 2020, 11, 600127.	2.2	21
601	Hematopoietic Stem Cell Stress and Regeneration. Current Stem Cell Reports, 2020, 6, 134-143.	0.7	2
602	Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood, 2020, 136, 2296-2307.	0.6	63
603	"Caught in the net†the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Experimental Hematology, 2020, 89, 13-25.	0.2	22
604	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
605	Regulation of the Bone Marrow Niche by Inflammation. Frontiers in Immunology, 2020, 11, 1540.	2.2	70

#	Article	IF	CITATIONS
606	An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. International Journal of Molecular Sciences, 2020, 21, 5263.	1.8	8
607	The Periostin/Integrin-αv Axis Regulates the Size of Hematopoietic Stem Cell Pool in the Fetal Liver. Stem Cell Reports, 2020, 15, 340-357.	2.3	17
608	Human Aging Alters the Spatial Organization between CD34+ Hematopoietic Cells and Adipocytes in Bone Marrow. Stem Cell Reports, 2020, 15, 317-325.	2.3	30
609	MarrowQuant Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections. Frontiers in Endocrinology, 2020, 11, 480.	1.5	22
611	The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). Advances in Experimental Medicine and Biology, 2020, 1273, 135-145.	0.8	4
612	Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. Science Advances, 2020, 6, .	4.7	44
613	Mapping and targeting of the leukemic microenvironment. Journal of Experimental Medicine, 2020, 217,	4.2	29
614	Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. Journal of Bone and Mineral Research, 2020, 35, 2103-2120.	3.1	80
615	VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Blood, 2020, 136, 1871-1883.	0.6	38
616	Loss of Adenylyl Cyclase 6 in Leptin Receptorâ€Expressing Stromal Cells Attenuates Loadingâ€Induced Endosteal Bone Formation. JBMR Plus, 2020, 4, e10408.	1.3	3
617	Considering Cause and Effect of Immune Cell Aging on Cardiac Repair after Myocardial Infarction. Cells, 2020, 9, 1894.	1.8	13
618	Fibronectin and Its Receptors in Hematopoiesis. Cells, 2020, 9, 2717.	1.8	22
619	Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 602269.	1.8	31
620	Cells Involved in Mechanotransduction Including Mesenchymal Stem Cells. , 2020, , 311-332.		2
621	Temporal modulation of calcium sensing in hematopoietic stem cells is crucial for proper stem cell expansion and engraftment. Journal of Cellular Physiology, 2020, 235, 9644-9666.	2.0	22
622	Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders?. Leukemia, 2020, 34, 2305-2316.	3.3	30
623	Snai2 Maintains Bone Marrow Niche Cells by Repressing Osteopontin Expression. Developmental Cell, 2020, 53, 503-513.e5.	3.1	14
624	Canonical signaling by TGF family members in mesenchymal stromal cells is dispensable for hematopoietic niche maintenance under basal and stress conditions. PLoS ONE, 2020, 15, e0233751.	1.1	4

#	Article	IF	CITATIONS
625	MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood, 2020, 136, 553-571.	0.6	13
626	Leptin in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1259, 89-112.	0.8	9
627	Plasma cell targeting to prevent antibody-mediated rejection. American Journal of Transplantation, 2020, 20, 33-41.	2.6	16
628	Interactions of Hematopoietic Stem Cells with Bone Marrow Niche. Methods in Molecular Biology, 2020, 2346, 21-34.	0.4	5
629	Generation of Myeloid Cells in Cancer: The Spleen Matters. Frontiers in Immunology, 2020, 11, 1126.	2.2	41
630	Five Decades Later, Are Mesenchymal Stem Cells Still Relevant?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 148.	2.0	109
631	<i>Cxcl12</i> Deletion in Mesenchymal Cells Increases Bone Turnover and Attenuates the Loss of Cortical Bone Caused by Estrogen Deficiency in Mice. Journal of Bone and Mineral Research, 2020, 35, 1441-1451.	3.1	16
632	CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells, 2020, 38, 849-859.	1.4	39
633	The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases. Cellular and Molecular Immunology, 2020, 17, 335-346.	4.8	23
634	Cell-by-Cell Deconstruction of Stem Cell Niches. Cell Stem Cell, 2020, 27, 19-34.	5.2	19
635	Identification of Unique mRNA and miRNA Expression Patterns in Bone Marrow Hematopoietic Stem and Progenitor Cells After Trauma in Older Adults. Frontiers in Immunology, 2020, 11, 1289.	2.2	7
636	The Bone's Role in Myeloid Neoplasia. International Journal of Molecular Sciences, 2020, 21, 4712.	1.8	2
638	Intravital Imaging Reveals Motility of Adult Hematopoietic Stem Cells in the Bone Marrow Niche. Cell Stem Cell, 2020, 27, 336-345.e4.	5.2	49
639	Inferring Gene Networks in Bone Marrow Hematopoietic Stem Cell-Supporting Stromal Niche Populations. IScience, 2020, 23, 101222.	1.9	11
640	Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nature Communications, 2020, 11, 666.	5.8	44
641	Mechanotransduction in T Cell Development, Differentiation and Function. Cells, 2020, 9, 364.	1.8	19
642	Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Frontiers in Cellular and Infection Microbiology, 2020, 10, 60.	1.8	21
643	Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 2020, 20, 285-298.	12.8	270

#	Article	IF	Citations
644	EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nature Immunology, 2020, 21, 261-273.	7.0	30
645	Dissecting the spatial bone marrow microenvironment of hematopoietic stem cells. Current Opinion in Oncology, 2020, 32, 154-161.	1.1	11
646	Heme oxygenaseâ€1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO Reports, 2020, 21, e47895.	2.0	19
647	The Effects of Sclerostin on the Immune System. Current Osteoporosis Reports, 2020, 18, 32-37.	1.5	10
648	Non-invasive Optical Biomarkers Distinguish and Track the Metabolic Status of Single Hematopoietic Stem Cells. IScience, 2020, 23, 100831.	1.9	9
649	Mesenchymal stromal cellâ€derived extracellular vesicles as cellâ€free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biology International, 2020, 44, 1078-1102.	1.4	23
650	Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nature Communications, 2020, 11, 2042.	5.8	99
651	Hematopoietic stem cells. , 2020, , 757-764.		0
652	Investigating global gene expression changes in a murine model of cherubism. Bone, 2020, 135, 115315.	1.4	0
653	Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation, 2020, 142, 244-258.	1.6	42
654	Identification and local manipulation of bone marrow vasculature during intravital imaging. Scientific Reports, 2020, 10, 6422.	1.6	11
655	Hematopoiesis and Cardiovascular Disease. Circulation Research, 2020, 126, 1061-1085.	2.0	96
656	Granulocyte colony-stimulating factor directly acts on mouse lymphoid-biased but not myeloid-biased hematopoietic stem cells. Haematologica, 2021, 106, 1647-1658.	1.7	8
657	The bone marrow hematopoietic niche and its adaptation to infection. Seminars in Cell and Developmental Biology, 2021, 112, 37-48.	2.3	12
658	New insights on the reparative cells in bone regeneration and repair. Biological Reviews, 2021, 96, 357-375.	4.7	11
659	New Insights on the Role of the Mesenchymal–Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells and Development, 2021, 30, 2-16.	1.1	3
660	Impact of prostate cancer stem cell niches on prostate cancer tumorigenesis and progression. Advances in Stem Cells and Their Niches, 2021, 5, 177-204.	0.1	0
661	Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells and Development, 2021, 30, 59-78.	1.1	25

#	Article	IF	CITATIONS
662	Structural organization of the bone marrow and its role in hematopoiesis. Current Opinion in Hematology, 2021, 28, 36-42.	1.2	28
663	CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. Journal of Cell Communication and Signaling, 2021, 15, 25-56.	1.8	10
664	Flow Cytometry-Based Analysis of the Mouse Bone Marrow Stromal and Perivascular Compartment. Methods in Molecular Biology, 2021, 2308, 83-94.	0.4	9
665	The skeletal stem cell. , 2021, , 75-98.		0
666	Biomechanical Regulation of Stem Cell Fate. Current Stem Cell Reports, 2021, 7, 30-38.	0.7	0
667	Gene-Editing Technologies and Applications for Molecular Imaging. , 2021, , 953-965.		0
668	Archetypal autophagic players through new lenses for bone marrow stem/mature cells regulation. Journal of Cellular Physiology, 2021, 236, 6101-6114.	2.0	5
669	Endothelial Cxcl12 Regulates Neovascularization During Tissue Repair and Tumor Progression. SSRN Electronic Journal, 0, , .	0.4	1
670	Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. Hemato, 2021, 2, 43-63.	0.2	3
671	3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. Materials, 2021, 14, 569.	1.3	23
672	Osteoblasts derived from mouse mandible enhance tumor growth of prostate cancer more than osteoblasts derived from long bone. Journal of Bone Oncology, 2021, 26, 100346.	1.0	2
673	A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591, 438-444.	13.7	158
674	Obesity-induced inflammation: The impact of the hematopoietic stem cell niche. JCI Insight, 2021, 6, .	2.3	41
675	The Roles of Sclerostin in Immune System and the Applications of Aptamers in Immune-Related Research. Frontiers in Immunology, 2021, 12, 602330.	2.2	6
676	In situ mapping identifies distinct vascular niches for myelopoiesis. Nature, 2021, 590, 457-462.	13.7	74
677	Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells International, 2021, 2021, 1-15.	1.2	2
678	Plasma cell dynamics in the bone marrow niche. Cell Reports, 2021, 34, 108733.	2.9	32
679	Connecting the Dots: Resolving the Bone Marrow Niche Heterogeneity. Frontiers in Cell and Developmental Biology, 2021, 9, 622519.	1.8	51

#	Article	IF	CITATIONS
680	Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Frontiers in Immunology, 2021, 12, 631279.	2.2	6
681	The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis. Blood, 2021, 138, 304-317.	0.6	20
682	Cannabinoid receptor 1 signalling modulates stress susceptibility and microglial responses to chronic social defeat stress. Translational Psychiatry, 2021, 11, 164.	2.4	15
683	A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
684	A multi-niche microvascularized human bone marrow (hBM) on-a-chip elucidates key roles of the endosteal niche in hBM physiology. Biomaterials, 2021, 270, 120683.	5.7	30
685	CXCL12-Abundant Reticular (CAR) Cells Direct Megakaryocyte Protrusions across the Bone Marrow Sinusoid Wall. Cells, 2021, 10, 722.	1.8	6
686	Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Frontiers in Cell and Developmental Biology, 2021, 9, 611842.	1.8	6
687	The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Frontiers in Cell and Developmental Biology, 2021, 9, 635189.	1.8	13
688	Bone marrow niches in the regulation of bone metastasis. British Journal of Cancer, 2021, 124, 1912-1920.	2.9	35
690	Methodological considerations for the enrichment of bone marrow endothelial and mesenchymal stromal cells. Molecular Immunology, 2021, 131, 127-136.	1.0	2
691	Novel Lineage-Tracing System to Identify Site-Specific Ectopic Bone Precursor Cells. Stem Cell Reports, 2021, 16, 626-640.	2.3	20
692	Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice. Communications Biology, 2021, 4, 406.	2.0	9
693	Intercellular Interactions of an Adipogenic CXCL12-Expressing Stromal Cell Subset in Murine Bone Marrow. Journal of Bone and Mineral Research, 2020, 36, 1145-1158.	3.1	14
694	The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia. International Journal of Molecular Sciences, 2021, 22, 4426.	1.8	31
695	Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem?. Frontiers in Immunology, 2021, 12, 658535.	2.2	13
696	Overexpression of COMP-Angiopoietin-1 in K14-Expressing Cells Impairs Hematopoiesis and Disturbs Erythrocyte Maturation. Molecules and Cells, 2021, 44, 254-266.	1.0	3
697	Human hematopoietic microenvironments. PLoS ONE, 2021, 16, e0250081.	1.1	6
698	GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24

#	Article	IF	CITATIONS
699	An Evolutionary Approach to Clonally Complex Hematologic Disorders. Blood Cancer Discovery, 2021, 2, 201-215.	2.6	6
700	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2021, , .	2.5	4
701	Resistance of bone marrow stroma to genotoxic preconditioning is determined by p53. Cell Death and Disease, 2021, 12, 545.	2.7	0
702	Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Reviews, 2021, 50, 100850.	2.8	40
703	Bioprinting of Human Cord Blood-Derived CD34+ Cells and Exploration of the Multilineage Differentiation Ability in Vitro. ACS Biomaterials Science and Engineering, 2021, 7, 2592-2604.	2.6	1
704	Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Frontiers in Cell and Developmental Biology, 2021, 9, 663316.	1.8	15
705	Regulation of murine B lymphopoiesis by stromal cells. Immunological Reviews, 2021, 302, 47-67.	2.8	2
706	Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 104-123.	4.3	17
708	Cellular components of the hematopoietic niche and their regulation of hematopoietic stem cell function. Current Opinion in Hematology, 2021, 28, 243-250.	1.2	8
709	Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. Children, 2021, 8, 371.	0.6	4
710	JAK-STAT in Early Hematopoiesis and Leukemia. Frontiers in Cell and Developmental Biology, 2021, 9, 669363.	1.8	29
711	The effect of parathyroid hormone on osteogenesis is mediated partly by osteolectin. Proceedings of the United States of America, 2021, 118, .	3.3	17
712	3D Multicellular Spheroid for the Study of Human Hematopoietic Stem Cells: Synergistic Effect Between Oxygen Levels, Mesenchymal Stromal Cells and Endothelial Cells. Journal of Blood Medicine, 2021, Volume 12, 517-528.	0.7	6
713	Diversity, localization, and (patho)physiology of mature lymphocyte populations in the bone marrow. Blood, 2021, 137, 3015-3026.	0.6	10
714	From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus, 2021, 5, e10516.	1.3	9
715	Therapeutic Targeting of the Leukaemia Microenvironment. International Journal of Molecular Sciences, 2021, 22, 6888.	1.8	16
716	Prostate Cancer Dormancy and Reactivation in Bone Marrow. Journal of Clinical Medicine, 2021, 10, 2648.	1.0	11
717	Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discovery, 2021, 7, 47.	3.1	31

#	Article	IF	Citations
718	The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. HemaSphere, 2021, 5, e615.	1.2	5
719	Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Experimental Hematology and Oncology, 2021, 10, 39.	2.0	35
720	The Hematopoietic Bone Marrow Niche Ecosystem. Frontiers in Cell and Developmental Biology, 2021, 9, 705410.	1.8	34
721	NLRP1 in Bone Marrow Microenvironment Controls Hematopoietic Reconstitution After Transplantation. Transplantation and Cellular Therapy, 2021, 27, 908.e1-908.e11.	0.6	5
722	Role of the Bone Marrow Niche in Supporting the Pathogenesis of Lymphoid Malignancies. Frontiers in Cell and Developmental Biology, 2021, 9, 692320.	1.8	3
723	Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101564.	2.2	23
724	Notch Signaling in the Bone Marrow Lymphopoietic Niche. Frontiers in Immunology, 2021, 12, 723055.	2.2	12
725	Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Molecular Medicine Reports, 2021, 24, .	1.1	7
726	Cellular Heterogeneity of Mesenchymal Stem/Stromal Cells in the Bone Marrow. Frontiers in Cell and Developmental Biology, 2021, 9, 689366.	1.8	31
727	Niches that regulate stem cells and hematopoiesis in adult bone marrow. Developmental Cell, 2021, 56, 1848-1860.	3.1	116
728	Human, mouse, and dog bone marrow show similar mesenchymal stromal cells within a distinctive microenvironment. Experimental Hematology, 2021, 100, 41-51.	0.2	4
729	Hematopoiesis during Ontogenesis, Adult Life, and Aging. International Journal of Molecular Sciences, 2021, 22, 9231.	1.8	15
730	Fetal hematopoietic stem cell homing is controlled by VEGF regulating the integrity and oxidative status of the stromal-vascular bone marrow niches. Cell Reports, 2021, 36, 109618.	2.9	6
731	Bone marrow remodeling supports hematopoiesis in response to immune thrombocytopenia progression in mice. Blood Advances, 2021, 5, 4877-4889.	2.5	4
732	CXCR4 hyperactivation cooperates with TCL1 in CLL development and aggressiveness. Leukemia, 2021, 35, 2895-2905.	3.3	7
733	Osteoimmunology as an intrinsic part of immunology. International Immunology, 2021, 33, 673-678.	1.8	7
735	Dynamic Changes of the Bone Marrow Niche: Mesenchymal Stromal Cells and Their Progeny During Aging and Leukemia. Frontiers in Cell and Developmental Biology, 2021, 9, 714716.	1.8	20
736	Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Experimental Hematology, 2021, 100, 12-31.e1.	0.2	8

#	Article	IF	CITATIONS
737	Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell, 2021, 28, 1982-1999.e8.	5.2	38
738	New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Current Medicinal Chemistry, 2021, 28, .	1.2	0
739	CXCL12-abundant reticular cells are the major source of IL-6 upon LPS stimulation and thereby regulate hematopoiesis. Blood Advances, 2021, 5, 5002-5015.	2.5	9
740	Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. Current Stem Cell Reports, 2021, 7, 194-203.	0.7	9
741	Clinical features, pathophysiology, and therapy of poor graft function post–allogeneic stem cell transplantation. Blood Advances, 2022, 6, 1947-1959.	2.5	21
742	Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization. Leukemia, 2022, 36, 333-347.	3.3	10
743	The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Blood, 2022, 139, 483-491.	0.6	14
744	Hematopoietic Stem Cells in Wound Healing Response. Advances in Wound Care, 2022, 11, 598-621.	2.6	5
745	Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Experimental and Molecular Medicine, 2021, 53, 1319-1331.	3.2	21
747	Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Frontiers in Cell and Developmental Biology, 2021, 9, 621214.	1.8	34
748	Cytokines and the pathogenesis of osteoporosis. , 2021, , 799-831.		1
749	Intravital Imaging of Bone Marrow Niches. Methods in Molecular Biology, 2021, 2308, 203-222.	0.4	5
750	Inactivation of mTORC1 Signaling in Osterix-Expressing Cells Impairs B-cell Differentiation. Journal of Bone and Mineral Research, 2018, 33, 732-742.	3.1	13
751	Ubiquitous overexpression of CXCL12 confers radiation protection and enhances mobilization of hematopoietic stem and progenitor cells. Stem Cells, 2020, 38, 1159-1174.	1.4	14
752	The Bone Marrow Niche– The Tumor Microenvironment That Ensures Leukemia Progression. Advances in Experimental Medicine and Biology, 2020, 1219, 259-293.	0.8	2
753	The Bone Marrow Microenvironment for Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2017, 1041, 5-18.	0.8	33
754	Interferon Gamma Mediates Hematopoietic Stem Cell Activation and Niche Relocalization through BST2. Cell Reports, 2020, 33, 108530.	2.9	29
755	Role of Vitamins A and D in BCR-ABL Arfâ^'/â^' Acute Lymphoblastic Leukemia. Scientific Reports, 2020, 10, 2359.	1.6	8

#	ARTICLE	IF	CITATIONS
756	Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver. Journal of Experimental Medicine, 2021, 218, .	4.2	26
762	Tumor microenvironment in gastric cancers. Cancer Science, 2020, 111, 2696-2707.	1.7	160
763	Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight, 2017, 2, .	2.3	87
764	Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 3038-3050.	3.9	48
765	Pleiotrophin mediates hematopoietic regeneration via activation of RAS. Journal of Clinical Investigation, 2014, 124, 4753-4758.	3.9	45
766	FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. Journal of Clinical Investigation, 2017, 127, 1241-1253.	3.9	128
767	Endothelial transplantation rejuvenates aged hematopoietic stem cell function. Journal of Clinical Investigation, 2017, 127, 4163-4178.	3.9	109
768	Young endothelial cells revive aging blood. Journal of Clinical Investigation, 2017, 127, 3921-3922.	3.9	5
769	Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion. Blood, 2020, 135, 2071-2084.	0.6	44
770	Hematopoietic stem cell function in \hat{l}^2 -thalassemia is impaired and is rescued by targeting the bone marrow niche. Blood, 2020, 136, 610-622.	0.6	23
771	ARAP3 Functions in Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e116107.	1.1	5
772	Oncostatin M Maintains the Hematopoietic Microenvironment in the Bone Marrow by Modulating Adipogenesis and Osteogenesis. PLoS ONE, 2014, 9, e116209.	1.1	28
773	GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS ONE, 2015, 10, e0133854.	1.1	25
774	Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS ONE, 2017, 12, e0172430.	1.1	35
775	Generation of Organotypic Multicellular Spheres by Magnetic Levitation: Model for the Study of Human Hematopoietic Stem Cells Microenvironment. International Journal of Stem Cells, 2019, 12, 51-62.	0.8	10
776	Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress, 2019, 3, 221-235.	1.4	23
777	CXCR4-expressing <i>Mist1</i> + progenitors in the gastric antrum contribute to gastric cancer development. Oncotarget, 2017, 8, 111012-111025.	0.8	30
778	Central nervous system and peripheral cell labeling by vascular endothelial cadherin-driven lineage tracing in adult mice. Neural Regeneration Research, 2020, 15, 1856.	1.6	3

#	Article	IF	CITATIONS
779	The Adaptability of Somatic Stem Cells: A Review. Journal of Stem Cells and Regenerative Medicine, 2017, 13, 3-13.	2.2	18
780	Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. ELife, 2016, 5, .	2.8	87
781	Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. ELife, 2019, 8, .	2.8	66
782	Multipotent stromal cells: One name, multiple identities. Cell Stem Cell, 2021, 28, 1690-1707.	5.2	73
783	Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 2021, 28, 1708-1725.	5.2	114
784	Identification of microenvironmental niches for hematopoietic stem cells and lymphoid progenitors—bone marrow fibroblastic reticular cells with salient features. International Immunology, 2021, 33, 821-826.	1.8	4
785	Mechanically-regulated bone repair. Bone, 2022, 154, 116223.	1.4	15
786	Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Frontiers in Immunology, 2021, 12, 775128.	2.2	36
787	Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies. Journal of Stem Cell Research & Therapy, 2013, 2013, .	0.3	7
788	Biology of Human Hematopoietic Stem Cell Xenotransplantation in Mice. , 2014, , 53-60.		Ο
789	Gene Expression Profiling of Hematopoietic Stem Cells (HSCs). Methods in Molecular Biology, 2014, 1185, 91-119.	0.4	0
790	Mouse Genetic Background and Human Hematopoietic Stem Cells Biology; Tips for Humanization. , 2014, , 33-51.		0
791	Uncovering the origins of a niche. ELife, 2014, 3, .	2.8	3
792	Chemokine receptors on the defensive – the surprising role of CXCR4 in brown adipose tissue. Receptors & Clinical Investigation, 0, , .	0.9	2
793	The Hematopoietic Stem Cell Niche: Cell-Cell Interactions and Quiescence. Pancreatic Islet Biology, 2015, , 1-22.	0.1	1
794	Aging of the Hematopoietic Stem Cell Niches. , 2015, , 245-256.		0
795	Tissue Engineering of Normal and Abnormal Bone Marrow. , 2016, , 225-235.		0
796	The Role of Cbx Proteins in Human Benign and Malignant Hematopoiesis. Blood, 2016, 128, 2651-2651.	0.6	0

#	Article	IF	CITATIONS
797	Artificial Hematopoietic Stem Cell Niches-Dimensionality Matters. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	1
802	Bone Nature and Blood Nurture. , 2020, , 1-8.		0
804	Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. Journal of Experimental Medicine, 2021, 218, .	4.2	27
805	The vasculature niches required for hematopoiesis. Journal of Molecular Medicine, 2022, 100, 53-61.	1.7	0
806	Significance of Bone Vasculature in Health and Disease. , 2020, , 178-187.		0
807	Mesenchymal Stem Cell Aging in the Bone Marrow. , 2020, , 35-42.		0
809	B Cells in The Regulation of Bone Metabolism. , 2020, , 20-32.		0
810	Single-Cell Analysis of Nonhematopoietic Cells in Bone Marrow. , 2020, , 43-49.		0
811	Osteoblast Lineage Stem and Progenitor Cells. , 2020, , 383-396.		0
814	Patient-Derived Bone Marrow Spheroids Reveal Leukemia-Initiating Cells Supported by Mesenchymal Hypoxic Niches in Pediatric B-ALL. Frontiers in Immunology, 2021, 12, 746492.	2.2	12
816	Types and Origin of Stem Cells. , 2021, , 33-68.		1
817	Characterization of epithelial cells, connective tissue cells and immune cells in human upper airway mucosa by immunofluorescence multichannel image cytometry: a pilot study. Histochemistry and Cell Biology, 2021, 155, 405-421.	0.8	7
818	The Roles of IL-7 and IL-15 in Niches for Lymphocyte Progenitors and Immune Cells in Lymphoid Organs. Current Topics in Microbiology and Immunology, 2021, 434, 83-101.	0.7	3
819	Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Frontiers in Immunology, 2021, 12, 738204.	2.2	20
820	Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where to?. Frontiers in Immunology, 2021, 12, 768439.	2.2	6
821	Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nature Communications, 2021, 12, 6990.	5.8	11
822	Bone marrow microenvironment of MPN cells. International Review of Cell and Molecular Biology, 2021, 365, 71-96.	1.6	1
823	Remodeling of the Bone Marrow Stromal Microenvironment During Pathogenic Infections. Current Topics in Microbiology and Immunology, 2021, 434, 55-81.	0.7	3

		CITATION REP	ORT	
# 824	ARTICLE Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem Progenitor Cells. Current Topics in Microbiology and Immunology, 2021, 434, 1-31.	and	IF 0.7	Citations
826	Cellular Niches for Hematopoietic Stem Cells and Lympho-Hematopoiesis in Bone Marrow I Homeostasis and Blood Cancers. Current Topics in Microbiology and Immunology, 2021, 4	During 34, 33-54.	0.7	1
827	Prostacyclin is an Endosteal Bone Marrow Niche Component and its Clinical Analog Ilopros Hematopoietic Stem Cell Potential During Stress. Stem Cells, 2021, 39, 1532-1545.	t Protects	1.4	4
828	Hypoxia and Hematopoiesis. Current Stem Cell Reports, 2022, 8, 24-34.		0.7	1
829	CXCL12/Stromal Cell-Derived Factor-1 and Hematopoiesis. , 2022, , .			0
830	Closer to Nature: The Role of MSCs in Recreating the Microenvironment of the Hematopoie Cell Niche in vitro. Transfusion Medicine and Hemotherapy, 2022, 49, 258-267.	etic Stem	0.7	1
831	G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Research a 2022, 13, 37.	nd Therapy,	2.4	1
832	Insights Into Bone Marrow Niche Stability: An Adhesion and Metabolism Route. Frontiers in Developmental Biology, 2021, 9, 798604.	Cell and	1.8	6
833	The Fetal Hematopoietic Niche: Components and Mechanisms for Hematopoietic Stem Cel and Expansion. Current Stem Cell Reports, 2022, 8, 14.	l Emergence	0.7	0
834	Response of the Bone Marrow Stem Cells and the Microenvironment to Stress. , 2022, , 1-5	51.		1
835	Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation. Nature Communications, 2022, 13, 648.		5.8	7
836	The Origin and Contribution of Cancer-Associated Fibroblasts in Colorectal Carcinogenesis. Gastroenterology, 2022, 162, 890-906.		0.6	63
837	Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. 2022, 12, 2894-2907.	lheranostics,	4.6	2
838	Single-Cell Transcriptomics Profiling the Compatibility Mechanism of Realgar-Indigo Natura Formula (RIF) Based on Steady-State Bone Marrow Stroma Cells. SSRN Electronic Journal, C		0.4	0
839	Deletion of Vhl in Dmp1-Expressing Cells Causes Microenvironmental Impairment of B Cell Lymphopoiesis. Frontiers in Immunology, 2022, 13, 780945.		2.2	5
840	Erk5 in Bone Marrow Mesenchymal Stem Cells Regulates Bone Homeostasis by Preventing in Adulthood. Stem Cells, 2022, 40, 411-422.	Osteogenesis	1.4	8
841	Generation of a BAC transgenic mouse strain that expresses CreERT and a fluorescent prot the transcriptional control of the Fzd5 locus. Inflammation and Regeneration, 2022, 42, 6.	ein under	1.5	0
842	Biology and Treatment of Richter Transformation. Frontiers in Oncology, 2022, 12, 829983		1.3	22

#	Article	IF	CITATIONS
843	B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis. Nature Immunology, 2022, 23, 605-618.	7.0	33
844	Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches. Blood, 2022, 139, 1529-1540.	0.6	16
845	Leukemia's Next Top Model? Syngeneic Models to Advance Adoptive Cellular Therapy. Frontiers in Immunology, 2022, 13, 867103.	2.2	9
846	Differentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia. Acta Biomaterialia, 2022, 142, 332-344.	4.1	4
847	Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nature Communications, 2021, 12, 7199.	5.8	46
848	Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Frontiers in Immunology, 2021, 12, 798211.	2.2	7
849	Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Frontiers in Immunology, 2021, 12, 766620.	2.2	17
850	Interactions of B-lymphocytes and bone cells in health and disease. Bone, 2023, 168, 116296.	1.4	6
852	Fluorescent Visualization of the Distribution of GFP+ Donor Cells in Mouse Organs after Transplantation of Native or Cryopreserved Bone Marrow. Cell and Tissue Biology, 2022, 16, 167-177.	0.2	0
853	TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. Journal of Clinical Investigation, 2022, 132, .	3.9	10
854	Niche Regulation of Hematopoiesis: The Environment Is "Micro,―but the Influence Is Large. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 691-699.	1.1	3
855	Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 4462.	1.8	19
862	Clinical applications of dental stem cells in modern regenerative medicine: A systematic review with updates. Nigerian Journal of Clinical Practice, 2021, 24, 457.	0.2	4
863	Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Current Topics in Developmental Biology, 2022, , 203-261.	1.0	3
864	Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Frontiers in Endocrinology, 2022, 13, 882297.	1.5	4
865	Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. Journal of Personalized Medicine, 2022, 12, 716.	1.1	8
866	The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers, 2022, 14, 2089.	1.7	10
867	BAP1 shapes the bone marrow niche for lymphopoiesis by fine-tuning epigenetic profiles in endosteal mesenchymal stromal cells. Cell Death and Differentiation, 2022, 29, 2151-2162.	5.0	4

#	Article	IF	Citations
868	Colony stimulating factor-1 producing endothelial cells and mesenchymal stromal cells maintain monocytes within a perivascular bone marrow niche. Immunity, 2022, 55, 862-878.e8.	6.6	24
869	Targeting the Hematopoietic Stem Cell Niche in Î ² -Thalassemia and Sickle Cell Disease. Pharmaceuticals, 2022, 15, 592.	1.7	5
870	Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. Journal of Bone and Mineral Research, 2020, 37, 1321-1334.	3.1	3
871	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	5.7	16
873	ILC Differentiation from Progenitors in the Bone Marrow. Advances in Experimental Medicine and Biology, 2022, 1365, 7-24.	0.8	3
874	Osteoblast Derived Exosomes Alleviate Radiation- Induced Hematopoietic Injury. Frontiers in Bioengineering and Biotechnology, 2022, 10, 850303.	2.0	3
875	The bone marrow niche regulates redox and energy balance in MLL::AF9 leukemia stem cells. Leukemia, 2022, 36, 1969-1979.	3.3	5
876	Single-cell transcriptomics profiling the compatibility mechanism of As2O3-indigo naturalis formula based on bone marrow stroma cells. Biomedicine and Pharmacotherapy, 2022, 151, 113182.	2.5	2
878	Hypoxia Induces Autophagy in Human Dendritic Cells: Involvement of Class III PI3K/Vps34. Cells, 2022, 11, 1695.	1.8	4
879	Therapeutics to harness the immune microenvironment in multiple myeloma. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 647-61.	0.9	6
880	100 plus years of stem cell research—20 years of ISSCR. Stem Cell Reports, 2022, 17, 1248-1267.	2.3	1
881	Hematopoietic stem cell regeneration through paracrine regulation of the Wnt5a/Prox1 signaling axis. Journal of Clinical Investigation, 2022, 132, .	3.9	5
882	Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. International Journal of Molecular Sciences, 2022, 23, 7285.	1.8	2
883	IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function. Blood, 2022, 140, 1607-1620.	0.6	4
884	The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 2022, 57, 1357-1364.	1.3	8
885	Microâ€environment alterations through time leading to myeloid malignancies. British Journal of Pharmacology, 2024, 181, 283-294.	2.7	2
886	Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports, 2022, 17, 1509-1535.	2.3	8
887	Monocytic myeloid-derived suppressive cells mitigate over-adipogenesis of bone marrow microenvironment in aplastic anemia by inhibiting CD8+ T cells. Cell Death and Disease, 2022, 13, .	2.7	2

#	Article	IF	CITATIONS
888	Beyond the horizon: the newly found sinner disturbing mesenchymal stromal niche. Blood Science, 2022, 4, 179-180.	0.4	1
890	Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. British Journal of Haematology, 2022, 199, 647-664.	1.2	7
891	Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers, 2022, 14, 3303.	1.7	11
892	The emergence of the calvarial hematopoietic niche in health and disease. Immunological Reviews, 2022, 311, 26-38.	2.8	6
895	Osteoblast Lineage Support of Hematopoiesis in Health and Disease. Journal of Bone and Mineral Research, 2020, 37, 1823-1842.	3.1	6
896	Mechanisms involved in hematopoietic stem cell aging. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
897	Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nature Communications, 2022, 13, .	5.8	9
898	Targeting Metastatic Disease: Challenges and New Opportunities. , 2022, , 51-68.		0
899	Skeletal Stem Cells: A Game Changer of Skeletal Biology and Regenerative Medicine?. , 0, , .		2
900	Dysregulated stem cell niches and altered lymphocyte recirculation cause B and T cell lymphopenia in WHIM syndrome. Science Immunology, 2022, 7, .	5.6	9
902	Inhibition of SRC-mediated integrin signaling in bone marrow niche enhances hematopoietic stem cell function. IScience, 2022, 25, 105171.	1.9	1
903	Unravelling genetic causality of haematopoiesis on bone metabolism in human. European Journal of Endocrinology, 2022, 187, 765-775.	1.9	3
904	Immune System Acts on Orthodontic Tooth Movement: Cellular and Molecular Mechanisms. BioMed Research International, 2022, 2022, 1-17.	0.9	2
905	Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. International Journal of Molecular Sciences, 2022, 23, 11928.	1.8	9
906	Intravital Microscopy for Hematopoietic Studies. Methods in Molecular Biology, 2023, , 143-162.	0.4	1
907	Leptin's Immune Action: A Review Beyond Satiety. Immunological Investigations, 2023, 52, 117-133.	1.0	2
908	Dysregulated transforming growth factor-beta mediates early bone marrow dysfunction in diabetes. Communications Biology, 2022, 5, .	2.0	3
909	Spotlighting adult stem cells: advances, pitfalls, and challenges. Trends in Cell Biology, 2023, 33, 477-494.	3.6	4

#	Article	IF	CITATIONS
910	CXCL12 defines lung endothelial heterogeneity and promotes distal vascular growth. Development (Cambridge), 2022, 149, .	1.2	2
911	Insights into skeletal stem cells. Bone Research, 2022, 10, .	5.4	17
912	Neuronal regulation of B-cell immunity: Anticipatory immune posturing?. Neuron, 2022, 110, 3582-3596.	3.8	6
913	Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell, 2022, 29, 1547-1561.e6.	5.2	43
914	Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell, 2022, 29, 1562-1579.e7.	5.2	14
915	Biomedical polymer scaffolds mimicking bone marrow niches to advance <i>in vitro</i> expansion of hematopoietic stem cells. Journal of Materials Chemistry B, 2022, 10, 9755-9769.	2.9	3
916	Response of the Bone Marrow Stem Cells and the Microenvironment to Stress. , 2022, , 1179-1228.		0
917	Purification of Bone Marrow Precursors to T Cells and ILCs. Methods in Molecular Biology, 2023, , 211-232.	0.4	0
918	Early Development of Innate Lymphoid Cells. Methods in Molecular Biology, 2023, , 51-69.	0.4	1
919	Osteoblastic <i>Wls</i> Ablation Protects Mice from Total Body Irradiation-Induced Impairments in Hematopoiesis and Bone Marrow Microenvironment. , 2022, .		0
920	Simulated microgravity affects stroma-dependent ex vivo myelopoiesis. Tissue and Cell, 2023, 80, 101987.	1.0	2
921	Identification of the niche and mobilization mechanism for tissue-protective multipotential bone marrow ILC progenitors. Science Advances, 2022, 8, .	4.7	1
923	Skeletal stem cells: origins, definitions, and functions in bone development and disease. , 2022, 1, 276-293.		4
924	Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Current Oncology, 2022, 29, 9535-9549.	0.9	2
925	Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells, 2022, 11, 4129.	1.8	2
926	Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling. Leukemia, 2023, 37, 560-570.	3.3	7
927	Bone marrow mesenchymal stromal cell-derived small extracellular vesicles: A novel therapeutic agent in ischemic heart diseases. Frontiers in Pharmacology, 0, 13, .	1.6	5
928	Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunological Reviews, 2023, 315, 197-215.	2.8	3

#	Article	IF	CITATIONS
930	Diversity in Cortical Thymic Epithelial Cells Occurs through Loss of a Foxn1-Dependent Gene Signature Driven by Stage-Specific Thymocyte Cross-Talk. Journal of Immunology, 2023, 210, 40-49.	0.4	1
931	Breast-Tumor-Derived Bone Pre-Metastatic Disease: Interplay between Immune and Bone Cells within Bone Marrow Microenvironment. , 0, , .		0
932	Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
933	Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	0
934	Dynamic crosstalk between hematopoietic stem cells and their niche from emergence to aging. BioEssays, 2023, 45, .	1.2	0
935	The role of the microbiota in myelopoiesis during homeostasis and inflammation. International Immunology, 2023, 35, 267-274.	1.8	1
936	Resource: A Cellular Developmental Taxonomy of the Bone Marrow Mesenchymal Stem Cell Population in Mice. HemaSphere, 2023, 7, e823.	1.2	1
937	A radiomics approach for predicting acute hematologic toxicity in patients with cervical or endometrial cancer undergoing external-beam radiotherapy. Radiotherapy and Oncology, 2023, 182, 109489.	0.3	1
938	Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Reports, 2023, 18, 101669.	0.2	5
939	Enzymeâ€Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus, 2023, 7, .	1.3	0
940	A mysterious triangle of blood, bones, and nerves. Journal of Bone and Mineral Metabolism, 2023, 41, 404-414.	1.3	2
941	An expression and function analysis of the CXCR4/SDF-1 signalling axis during pituitary gland development. PLoS ONE, 2023, 18, e0280001.	1.1	0
942	Extracellular Vesicles and MicroRNA in Myelodysplastic Syndromes. Cells, 2023, 12, 658.	1.8	1
943	Co-Transplantation of Barcoded Lymphoid-Primed Multipotent (LMPP) and Common Lymphocyte (CLP) Progenitors Reveals a Major Contribution of LMPP to the Lymphoid Lineage. International Journal of Molecular Sciences, 2023, 24, 4368.	1.8	0
944	T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control. Nature Immunology, 2023, 24, 664-675.	7.0	26
945	Endothelial and Leptin Receptor+ cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Developmental Cell, 2023, 58, 348-360.e6.	3.1	11
946	Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. ELife, 0, 12, .	2.8	3
947	The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Research, 2023, 11, .	5.4	3

#	Article	IF	CITATIONS
948	Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell, 2023, 30, 378-395.e8.	5.2	15
950	WHIM Syndrome-linked CXCR4 mutations drive osteoporosis. Nature Communications, 2023, 14, .	5.8	3
951	Mesenchymal loss of p53 alters stem cell capacity and models human soft tissue sarcoma traits. Stem Cell Reports, 2023, 18, 1211-1226.	2.3	0
952	New insights into the properties, functions, and aging of skeletal stem cells. Osteoporosis International, 0, , .	1.3	0
970	Primary Immunodeficiency Diseases. , 2023, , 133-156.		0
972	Mesenchymal-hĤnatopoetische Stammzellachse: Anwendungen für die Induktion von hĤnatopoetischem ChimĤsmus und Therapien für bösartige Erkrankungen. , 2023, , 41-65.		0
987	Bone Marrow–Resident Stem Cells. , 2024, , 357-379.		0
994	B Cells and Antibody Production in Cancer. , 2024, , 1-20.		0
1002	Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nature Cell Biology, 2023, 25, 1736-1745.	4.6	3
1009	Hematopoietic Stem Cells and Their Bone Marrow Niches. Advances in Experimental Medicine and Biology, 2023, , 17-28.	0.8	0

1012 The Haematopoietic System. , 2024, , 304-322.

0

CITATION REPORT