Clusters of Actinides with Oxide, Peroxide, or Hydroxid

Chemical Reviews 113, 1097-1120 DOI: 10.1021/cr300159x

Citation Report

#	Article	IF	CITATIONS
1	Synthesis and Structural Characterization of Hydrolysis Products within the Uranyl Iminodiacetate and Malate Systems. Inorganic Chemistry, 2013, 52, 10191-10198.	1.9	21
2	Syntheses and Structures of a Series of Uranyl Phosphonates and Sulfonates: An Insight into Their Correlations and Discrepancies. Inorganic Chemistry, 2013, 52, 2736-2743.	1.9	72
3	Chemical equilibria in the UO22+–H2O2–Fâ^'/OHâ^' systems and possible solution precursors for the formation of [Na6(OH2)8]@[UO2(O2)F]2418â^' and [Na6(OH2)8]@[UO2(O2)OH]2418â^' clusters. Dalton Transactions, 2013, 42, 10129.	1.6	12
4	Recent developments in actinide–ligand multiple bonding. Chemical Communications, 2013, 49, 2956.	2.2	277
5	Two Systems of [DabcoH2]2+/[PipH2]2+–Uranyl–Oxalate Showing Reversible Crystal-to-Crystal Transformations Controlled by the Diammonium/Uranyl/Oxalate Ratios in Aqueous Solutions ([DabcoH2]2+= 1,4-Diazabicyclo-[2.2.2]-octaneH2and [PipH2]2+= PiperazineH2). Crystal Growth and Design, 2013, 13, 2597-2606.	1.4	19
6	Hybrid Uranyl Arsonate Coordination Nanocages. Inorganic Chemistry, 2013, 52, 6245-6247.	1.9	14
7	Mixed Formate-Dicarboxylate Coordination Polymers with Tetravalent Uranium: Occurrence of Tetranuclear {U ₄ O ₄ } and Hexanuclear {U ₆ O ₄ (OH) ₄ } Motifs. Crystal Growth and Design, 2013, 13, 3225-3231.	1.4	58
10	The Energy Landscape of Uranyl–Peroxide Species. Chemistry - A European Journal, 2014, 20, 3646-3651.	1.7	22
11	Expanding the Crystal Chemistry of Uranyl Peroxides: Four Hybrid Uranyl-Peroxide Structures Containing EDTA. Inorganic Chemistry, 2014, 53, 12084-12091.	1.9	22
12	Hybrid Uranium–Transition-Metal Oxide Cage Clusters. Inorganic Chemistry, 2014, 53, 12877-12884.	1.9	28
13	The First Family of Actinide Carboxyphosphinates: Two―and Threeâ€Dimensional Uranyl Coordination Polymers. European Journal of Inorganic Chemistry, 2014, 2014, 5378-5384.	1.0	24
14	How Counterions Affect the Solution Structure of Polyoxoaurates: Insights from UV/Vis Spectral Simulations and Electrospray Mass Spectrometry. European Journal of Inorganic Chemistry, 2014, 2014, 3771-3778.	1.0	12
15	Solidâ€State Dynamics of Uranyl Polyoxometalates. Chemistry - A European Journal, 2014, 20, 8302-8307.	1.7	23
16	Photocatalytic Application of 4f–5f Inorganic–Organic Frameworks: Influence of Lanthanide Contraction on the Structure and Functional Properties of a Series of Uranyl–Lanthanide Complexes. ChemPlusChem, 2014, 79, 1304-1315.	1.3	32
17	A Rare Tetranuclear Thorium(IV) μ ₄ â€Oxo Cluster and Dinuclear Thorium(IV) Complex Assembled by Carbon–Oxygen Bond Activation of 1,2â€Dimethoxyethane (DME). Chemistry - A European Journal, 2014, 20, 16846-16852.	1.7	16
18	Extraction of uranyl peroxo clusters from aqueous solution by mesoporous silica SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2014, 303, 2257.	0.7	2
19	Actinide oxalates, solid state structures and applications. Coordination Chemistry Reviews, 2014, 266-267, 28-68.	9.5	112
20	The crystal chemistry of uranium carboxylates. Coordination Chemistry Reviews, 2014, 266-267, 69-109.	9.5	336

#	Article	IF	Citations
21	Uranyl–water-containing complexes: solid-state UV-MALDI mass spectrometric and IR spectroscopic approach for selective quantitation. Environmental Science and Pollution Research, 2014, 21, 1548-1563.	2.7	6
22	Redox and environmentally relevant aspects of actinide(IV) coordination chemistry. Coordination Chemistry Reviews, 2014, 266-267, 171-193.	9.5	81
23	Raman Spectroscopic and ESI-MS Characterization of Uranyl Peroxide Cage Clusters. Inorganic Chemistry, 2014, 53, 1562-1569.	1.9	52
24	Uranium minerals and their relevance to long term storage of nuclear fuels. Coordination Chemistry Reviews, 2014, 266-267, 123-136.	9.5	81
25	Which Inorganic Structures are the Most Complex?. Angewandte Chemie - International Edition, 2014, 53, 654-661.	7.2	172
26	Syntheses, Structures, Luminescence, and Photocatalytic Properties of a Series of Uranyl Coordination Polymers. Crystal Growth and Design, 2014, 14, 5904-5911.	1.4	44
27	Novel [(UO 2)O 6 (NO 3) n] (n = 1, 2) based units in organically templated uranyl compounds. Inorganic Chemistry Communication, 2014, 50, 4-7.	1.8	9
28	Uranyl–Peroxide Nanocapsules in Aqueous Solution: Force Field Development and First Applications. Journal of Physical Chemistry C, 2014, 118, 24730-24740.	1.5	22
29	Water-soluble multi-cage super tetrahedral uranyl peroxide phosphate clusters. Chemical Science, 2014, 5, 303-310.	3.7	48
30	Structure of a uranyl peroxo complex in aqueous solution from first-principles molecular dynamics simulations. Dalton Transactions, 2014, 43, 11129-11137.	1.6	6
31	Photochemical Water Oxidation and Origin of Nonaqueous Uranyl Peroxide Complexes. Journal of the American Chemical Society, 2014, 136, 4797-4800.	6.6	43
32	Uranyl Ion Complexes with all- <i>cis</i> -1,3,5-Cyclohexanetricarboxylate: Unexpected Framework and Nanotubular Assemblies. Crystal Growth and Design, 2014, 14, 4214-4225.	1.4	52
33	Increasing Complexity in the Uranyl Ion–Kemp's Triacid System: From One- and Two-Dimensional Polymers to Uranyl–Copper(II) Dodeca- and Hexadecanuclear Species. Crystal Growth and Design, 2014, 14, 2665-2676.	1.4	47
34	Ultrafiltration of Uranyl Peroxide Nanoclusters for the Separation of Uranium from Aqueous Solution. ACS Applied Materials & Interfaces, 2014, 6, 473-479.	4.0	49
36	Organothorium complexes containing terminal metal-ligand multiple bonds. Science China Chemistry, 2014, 57, 1064-1072.	4.2	43
37	Elucidating Self-Assembly Mechanisms of Uranyl–Peroxide Capsules from Monomers. Inorganic Chemistry, 2014, 53, 10506-10513.	1.9	30
38	A Highly Adjustable Coordination System: Nanotubular and Molecular Cage Species in Uranyl Ion Complexes with Kemp's Triacid. Crystal Growth and Design, 2014, 14, 901-904.	1.4	48
39	Isolation of a series of uranium organophosphinates. CrystEngComm, 2014, 16, 8073-8080.	1.3	9

#	ARTICLE	IF	CITATIONS
40	Evolution of Actinyl Peroxide Clusters U ₂₈ in Dilute Electrolyte Solution: Exploring the Transition from Simple Ions to Macroionic Assemblies. Chemistry - A European Journal, 2014, 20, 1683-1690.	1.7	18
42	Synthesis, Structure, and Reactivity of a Tetranuclear Cerium(IV) Oxo Cluster Supported by the KlÃ u i Tripodal Ligand [Co(η5-C5H5){P(O)(OEt)2}3]â^'. Chemistry - A European Journal, 2015, 21, 16126-16135.	1.7	30
44	The Renaissance of Nonâ€Aqueous Uranium Chemistry. Angewandte Chemie - International Edition, 2015, 54, 8604-8641.	7.2	380
45	Structural chemistry of uranium phosphonates. Coordination Chemistry Reviews, 2015, 303, 86-109.	9.5	121
46	Alkali–metal ion coordination in uranyl(<scp>vi</scp>) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li ⁺ -, Na ⁺ - and K ⁺ -uranyl(<scp>vi</scp>)–peroxide–carbonate systems. Dalton Transactions, 2015, 44, 16565-16572.	1.6	8
47	Thorium Terephthalates Coordination Polymers Synthesized in Solvothermal DMF/H ₂ O System. Inorganic Chemistry, 2015, 54, 2235-2242.	1.9	123
48	Alkali-metal ion coordination in uranyl(<scp>vi</scp>) poly-peroxide complexes in solution. Part 1: the Li ⁺ , Na ⁺ and K ⁺ – peroxide–hydroxide systems. Dalton Transactions, 2015, 44, 1549-1556.	1.6	13
49	Theoretical Studies on Hexanuclear Oxometalates [M ₆ L ₁₉] ^{<i>q</i>â^³} (M = Cr, Mo, W, Sg, Nd, U). Electronic Structures, Oxidation States, Aromaticity, and Stability. Inorganic Chemistry, 2015, 54, 7171-7180.	1.9	24
50	Adsorption of uranyl on hydroxylated α-SiO ₂ (001): a first-principle study. Dalton Transactions, 2015, 44, 1646-1654.	1.6	23
51	New thorium(<scp>iv</scp>)–arsonates with a [Th ₈ O ₁₃] ⁶⁺ octanuclear core. Dalton Transactions, 2015, 44, 13573-13580.	1.6	11
52	Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands. Chinese Chemical Letters, 2015, 26, 641-645.	4.8	3
53	Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes. Inorganic Chemistry, 2015, 54, 4192-4199.	1.9	14
54	Uranyl peroxide clusters stabilized by dicarboxylate ligands: A pentagonal ring and a dimer with extensive uranyl–cation interactions. Polyhedron, 2015, 92, 99-104.	1.0	9
55	Cation Templating and Electronic Structure Effects in Uranyl Cage Clusters Probed by the Isolation of Peroxide-Bridged Uranyl Dimers. Inorganic Chemistry, 2015, 54, 4445-4455.	1.9	44
56	Uranyl-Promoted Peroxide Generation: Synthesis and Characterization of Three Uranyl Peroxo [(UO ₂) ₂ (O ₂)] Complexes. Inorganic Chemistry, 2015, 54, 4208-4221.	1.9	36
57	Hybrid uranyl–vanadium nano-wheels. Chemical Communications, 2015, 51, 10134-10137.	2.2	31
58	Inducing magnetic communication in caged dinuclear Co(<scp>ii</scp>) systems. Dalton Transactions, 2015, 44, 8649-8659.	1.6	15
59	The [U ₂ (μ-S ₂) ₂ Cl ₈] ^{4–} Anion: Synthesis and Characterization of the Uranium Double Salt Cs ₅ [U ₂ (μ-S ₂) ₂ Cl ₈]I. Inorganic Chemistry,	1.9	4

#	Article	IF	CITATIONS
60	Umbellate Distortions of the Uranyl Coordination Environment Result in a Stable and Porous Polycatenated Framework That Can Effectively Remove Cesium from Aqueous Solutions. Journal of the American Chemical Society, 2015, 137, 6144-6147.	6.6	392
61	Gas-Phase Reactions of Molecular Oxygen with Uranyl(V) Anionic Complexes—Synthesis and Characterization of New Superoxides of Uranyl(VI). Journal of Physical Chemistry A, 2015, 119, 3628-3635.	1.1	23
62	Design and synthesis of a chiral uranium-based microporous metal organic framework with high SHG efficiency and sequestration potential for low-valent actinides. Dalton Transactions, 2015, 44, 18810-18814.	1.6	49
63	Uranyl Carboxyphosphonates Derived from Hydrothermal in Situ Ligand Reaction: Syntheses, Structures, and Computational Investigations. Inorganic Chemistry, 2015, 54, 8617-8624.	1.9	24
64	Multifunctional Uranyl Hybrid Materials: Structural Diversities as a Function of pH, Luminescence with Potential Nitrobenzene Sensing, and Photoelectric Behavior as <i>p</i> -type Semiconductors. Inorganic Chemistry, 2015, 54, 9046-9059.	1.9	54
65	A New Form of Triple-Stranded Helicate Found in Uranyl Complexes of Aliphatic α,ï‰-Dicarboxylates. Inorganic Chemistry, 2015, 54, 10539-10541.	1.9	31
66	Selfâ€Assembly of Uranyl–Peroxide Nanocapsules in Basic Peroxidic Environments. Chemistry - A European Journal, 2016, 22, 8571-8578.	1.7	32
67	Dynamic Phosphonic Bridges in Aqueous Uranyl Clusters. European Journal of Inorganic Chemistry, 2016, 2016, 797-801.	1.0	8
68	Cation-Dependent Hierarchical Assembly of U60 Nanoclusters into Blackberries Imaged via Cryogenic Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 1468-1469.	0.2	1
69	Experimental measurements of U24Py nanocluster behavior in aqueous solution. Radiochimica Acta, 2016, 104, 853-864.	0.5	2
70	A Revised and Expanded Structure Hierarchy of Natural and Synthetic Hexavalent Uranium Compounds. Canadian Mineralogist, 2016, 54, 177-283.	0.3	136
71	Extraction behaviors of uranyl peroxo cage clusters by mesoporous silica SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 453-462.	0.7	4
72	Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration. Journal of Nuclear Materials, 2016, 473, 125-130.	1.3	30
73	Anchoring flexible uranyl dicarboxylate chains through stacking interactions of ancillary ligands on chiral U(<scp>vi</scp>) centres. CrystEngComm, 2016, 18, 3905-3918.	1.3	36
74	Binding of oxime group to uranyl ion. Dalton Transactions, 2016, 45, 9307-9319.	1.6	29
75	First Evidence of a Water-Soluble Plutonium(IV) Hexanuclear Cluster. European Journal of Inorganic Chemistry, 2016, 2016, 3536-3540.	1.0	26
76	Isolation of a Star‣haped Uranium(V/VI) Cluster from the Anaerobic Photochemical Reduction of Uranyl(VI). Angewandte Chemie, 2016, 128, 14537-14541.	1.6	8
77	Isolation of a Starâ€Shaped Uranium(V/VI) Cluster from the Anaerobic Photochemical Reduction of Uranyl(VI). Angewandte Chemie - International Edition, 2016, 55, 14325-14329.	7.2	25

#	Article	IF	CITATIONS
78	Closing Uranyl Polyoxometalate Capsules with Bismuth and Lead Polyoxocations. Angewandte Chemie - International Edition, 2016, 55, 13480-13484.	7.2	30
79	Copper/Zinc-Directed Heterometallic Uranyl-Organic Polycatenating Frameworks: Synthesis, Characterization, and Anion-Dependent Structural Regulation. Inorganic Chemistry, 2016, 55, 10125-10134.	1.9	23
80	Series of Hydrated Heterometallic Uranyl-Cobalt(II) Coordination Polymers with Aromatic Polycarboxylate Ligands: Formation of Uâ•O—Co Bonding upon Dehydration Process. Inorganic Chemistry, 2016, 55, 10453-10466.	1.9	23
81	Polyoxometalates and Other Metal-Oxo Clusters in Nature. Encyclopedia of Earth Sciences Series, 2016, , 1-5.	0.1	0
82	Oxyhydroxy Silicate Colloids: A New Type of Waterborne Actinide(IV) Colloids. ChemistryOpen, 2016, 5, 174-182.	0.9	14
83	The Key Role of U ₂₈ in the Aqueous Selfâ€Assembly of Uranyl Peroxide Nanocages. Chemistry - A European Journal, 2016, 22, 14678-14687.	1.7	46
84	Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite {(UO2)O2(OH)3}4n and hexanuclear {Th6O4(OH)4} motifs. Journal of Solid State Chemistry, 2016, 243, 50-56.	1.4	10
85	Time-Resolved X-ray Scattering and Raman Spectroscopic Studies of Formation of a Uranium-Vanadium-Phosphorus-Peroxide Cage Cluster. Inorganic Chemistry, 2016, 55, 7061-7067.	1.9	22
86	Oxo Clusters of 5f Elements. Structure and Bonding, 2016, , 121-153.	1.0	20
87	Hydrolysis of thorium(<scp>iv</scp>) at variable temperatures. Dalton Transactions, 2016, 45, 12763-12771.	1.6	12
88	Insight into the Uranyl Oxyfluoride Topologies through the Synthesis, Crystal Structure, and Evidence of a New Oxyfluoride Layer in [(UO2)4F13][Sr3(H2O)8](NO3)A·H2O. Inorganic Chemistry, 2016, 55, 12185-12192.	1.9	4
89	Closing Uranyl Polyoxometalate Capsules with Bismuth and Lead Polyoxocations. Angewandte Chemie, 2016, 128, 13678-13682.	1.6	10
90	A Highly Stable 3D Luminescent Indium–Polycarboxylic Framework for the Turn-off Detection of UO ₂ ²⁺ , Ru ³⁺ , and Biomolecule Thiamines. ACS Applied Materials & Interfaces, 2016, 8, 28718-28726.	4.0	50
91	Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II). Inorganic Chemistry, 2016, 55, 6799-6816.	1.9	42
92	Solution ³¹ P NMR Study of the Acid-Catalyzed Formation of a Highly Charged {U ₂₄ Pp _{12[(UO₂)₂₄(O₂)₂₄(P₂O₇)_{12 and Its Structural Characterization in the Solid State Using Single-Crystal Neutron Diffraction.}}	<b sub>] <s< td=""><td>upæ548–</td></s<>	upæ548–
93	Journal of the American Chemical Society, 2016, 138, 8547-8553. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U ₂ O ₇ . Inorganic Chemistry, 2016, 55, 3541-3546.	1.9	50
94	Hybrid Lanthanide–Actinide Peroxide Cage Clusters. Inorganic Chemistry, 2016, 55, 2682-2684.	1.9	15
95	Structural Variations of the First Family of Heterometallic Uranyl Carboxyphosphinate Assemblies by Synergy between Carboxyphosphinate and Imidazole Ligands. Crystal Growth and Design, 2016, 16, 2011-2018.	1.4	19

#	Article	IF	CITATIONS
96	Neodymium uranyl peroxide synthesis by ion exchange on ammonium uranyl peroxide nanoclusters. Chemical Communications, 2016, 52, 3947-3950.	2.2	19
97	Structure and Solution Speciation of U ^{IV} Linked Phosphomolybdate (Mo ^V) Clusters. Inorganic Chemistry, 2016, 55, 755-761.	1.9	14
98	Cation-Dependent Hierarchical Assembly of U60 Nanoclusters into Macro-Ion Assemblies Imaged via Cryogenic Transmission Electron Microscopy. Journal of the American Chemical Society, 2016, 138, 191-198.	6.6	35
99	Role of Ammonium Ions in the Formation of Ammonium Uranyl Peroxides and Uranyl Peroxo-oxalates. Crystal Growth and Design, 2016, 16, 200-209.	1.4	16
100	Environmental modeling of uranium interstitial compositions of non-stoichiometric oxides: experimental and theoretical analysis. Environmental Geochemistry and Health, 2016, 38, 1051-1066.	1.8	3
102	Coordination Polymers and Cage-Containing Frameworks in Uranyl Ion Complexes with <i>rac</i> and (1 <i>R</i> ,2 <i>R</i>)- <i>trans</i> -1,2-Cyclohexanedicarboxylates: Consequences of Chirality. Inorganic Chemistry, 2017, 56, 1455-1469.	1.9	37
103	Sulfate-Centered Sodium-Icosahedron-Templated Uranyl Peroxide Phosphate Cages with Uranyl Bridged by μ–η ¹ :η ² Peroxide. Inorganic Chemistry, 2017, 56, 1874-1880.	1.9	16
104	Insights into the structure and thermal stability of uranyl aluminate nanoparticles. New Journal of Chemistry, 2017, 41, 1160-1167.	1.4	1
105	Computationally-Guided Assignment of Unexpected Signals in the Raman Spectra of Uranyl Triperoxide Complexes. Inorganic Chemistry, 2017, 56, 1574-1580.	1.9	35
106	Construction of Uranyl Organic Hybrids by Phosphonate and in Situ Generated Carboxyphosphonate Ligands. Inorganic Chemistry, 2017, 56, 1669-1678.	1.9	34
107	Two uranyl heterocyclic carboxyl compounds with fluorescent properties as high sensitivity and selectivity optical detectors for nitroaromatics. New Journal of Chemistry, 2017, 41, 3073-3081.	1.4	11
108	Synthesis, Structures, and Proton Self-Exchange Reaction of μ ₃ -Oxido/Hydroxido Bridged Trinuclear Uranyl(VI) Complexes with Tridentate Schiff-Base Ligands. Inorganic Chemistry, 2017, 56, 4057-4064.	1.9	14
109	Coordination of Tetravalent Actinides (An=Th ^{IV} , U ^{IV} , Np ^{IV} ,) Tj ETQq0 0 0 r 6864-6875.	gBT /Ovei 1.7	lock 10 Tf 50 52
110	Uranyl Peroxide Cage Cluster Solubility in Water and the Role of the Electrical Double Layer. Inorganic Chemistry, 2017, 56, 1333-1339.	1.9	27
111	Tetrahedral and Cuboidal Clusters in Complexes of Uranyl and Alkali or Alkaline-Earth Metal Ions with <i>rac</i> - and (1 <i>R</i> ,2 <i>R</i>)- <i>trans</i> -1,2-Cyclohexanedicarboxylate. Crystal Growth and Design, 2017, 17, 2881-2892.	1.4	28
112	Hierarchy of Pyrophosphate-Functionalized Uranyl Peroxide Nanocluster Synthesis. Inorganic Chemistry, 2017, 56, 5478-5487.	1.9	22
113	Morphotropy in alkaline uranyl methacrylate complexes. Polyhedron, 2017, 133, 40-47.	1.0	7
114	Dicyanoaurate-based heterobimetallic uranyl coordination polymers. Dalton Transactions, 2017, 46, 7169-7180.	1.6	12

#	Article	IF	CITATIONS
115	Small-angle X-ray scattering to determine solution speciation of metal-oxo clusters. Coordination Chemistry Reviews, 2017, 352, 461-472.	9.5	61
116	Supramolecular Structures Formation of Polyoxometalates in Solution Driven by Counterion–Macroion Interaction. Advances in Inorganic Chemistry, 2017, , 29-65.	0.4	6
117	Synthesis, structure and bonding of actinide disulphide dications in the gas phase. Physical Chemistry Chemical Physics, 2017, 19, 10685-10694.	1.3	7
118	Aqueous tantalum polyoxometalate reactivity with peroxide. Dalton Transactions, 2017, 46, 8486-8493.	1.6	16
119	Uranyl-Peroxide Clusters Incorporating Iron Trimers and Bridging by Bisphosphonate- and Carboxylate-Containing Ligands. Inorganic Chemistry, 2017, 56, 3738-3741.	1.9	16
120	A Uranyl Peroxide Dimer in the Gas Phase. Inorganic Chemistry, 2017, 56, 4186-4196.	1.9	9
121	Understanding the Scarcity of Thorium Peroxide Clusters. Inorganic Chemistry, 2017, 56, 12692-12694.	1.9	6
122	Molecular and Crystal Structures of Uranyl Nitrate Coordination Polymers with Double-Headed 2-Pyrrolidone Derivatives. Inorganic Chemistry, 2017, 56, 13530-13534.	1.9	14
123	Porous Uranium Diphosphonate Frameworks with Trinuclear Units Templated by Organic Ammonium Hydrolyzed from Amine Solvents. Inorganic Chemistry, 2017, 56, 13249-13256.	1.9	20
124	Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Transactions, 2017, 46, 13660-13667.	1.6	84
125	Cationâ€Directed Isomerization of the U 28 Uranylâ€Peroxide Cluster. European Journal of Inorganic Chemistry, 2017, 2017, 5429-5433.	1.0	1
126	Network Dimensionality of Selected Uranyl(VI) Coordination Polymers and Octopus-like Uranium(IV) Clusters. Crystal Growth and Design, 2017, 17, 5568-5582.	1.4	16
127	The Propensity of Uranium-Peroxide Systems to Preserve Nanosized Assemblies. Inorganic Chemistry, 2017, 56, 9602-9608.	1.9	19
128	From aqueous speciation to supramolecular assembly in alkaline earth-uranyl polyoxometalates. Chemical Communications, 2017, 53, 9550-9553.	2.2	8
129	Uranyl peroxide nanoclusters at high-pressure. Journal of Materials Research, 2017, 32, 3679-3688.	1.2	7
130	[UO ₂ Cl ₂ (phen) ₂], a Simple Uranium(VI) Compound with a Significantly Bent Uranyl Unit (phen=1,10â€phenanthroline). Chemistry - A European Journal, 2017, 23, 13574-13578.	1.7	17
131	Single-Crystal Time-of-Flight Neutron Diffraction and Magic-Angle-Spinning NMR Spectroscopy Resolve the Structure and ¹ H and ⁷ Li Dynamics of the Uranyl Peroxide Nanocluster U ₆₀ . Inorganic Chemistry, 2017, 56, 9676-9683.	1.9	22
132	Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data. Inorganic Chemistry, 2017, 56, 15231-15240.	1.9	5

#	Article	IF	CITATIONS
133	Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials. Structure and Bonding, 2017, , .	1.0	22
134	Benchmarking Uranyl Peroxide Capsule Chemistry in Organic Media. European Journal of Inorganic Chemistry, 2017, 2017, 39-46.	1.0	17
135	Behaviour of complexes of f–elements in the environment – An experimental and theoretical analysis. Journal of Molecular Structure, 2017, 1127, 199-211.	1.8	3
136	Real-time molecular scale observation of crystal formation. Nature Chemistry, 2017, 9, 369-373.	6.6	69
137	Inorganic Synthesis of Actinides. , 2017, , 355-387.		2
138	Ewingite: Earth's most complex mineral. Geology, 2017, 45, 1007-1010.	2.0	28
139	High Spin Ground States in Matryoshka Actinide Nanoclusters: A Computational Study. Chemistry - A European Journal, 2018, 24, 347-350.	1.7	5
140	Resolving Confined ⁷ Li Dynamics of Uranyl Peroxide Capsule U ₂₄ . Inorganic Chemistry, 2018, 57, 5514-5525.	1.9	10
141	Enzymatic reduction of U60 nanoclusters by Shewanella oneidensis MR-1. Radiochimica Acta, 2018, 106, 21-30.	0.5	1
142	Synthetic Strategies for the Synthesis of Ternary Uranium(IV) and Thorium(IV) Fluorides. Inorganic Chemistry, 2018, 57, 5597-5606.	1.9	22
143	Dehydration of the Uranyl Peroxide Studtite, [UO ₂ (Î- ² -O ₂)(H ₂ O) ₂]Â-2H ₂ O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis. Inorganic Chemistry, 2018, 57, 1735-1743.	1.9	31
144	Actinide-based MOFs: a middle ground in solution and solid-state structural motifs. Chemical Communications, 2018, 54, 6472-6483.	2.2	91
145	Uranyl Peroxide Nanocluster (U ₆₀) Persistence and Sorption in the Presence of Hematite. Environmental Science & Technology, 2018, 52, 3304-3311.	4.6	15
146	Protactinium and the intersection of actinide and transition metal chemistry. Nature Communications, 2018, 9, 622.	5.8	27
147	Ordered Entanglement in Actinide-Organic Coordination Polymers. Bulletin of the Chemical Society of Japan, 2018, 91, 554-562.	2.0	38
148	Measurement of the effective capacitance of solutions containing nanoscale uranyl peroxide cage clusters (U60) reveals cluster effects. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315, 341-346.	0.7	2
149	Synthesis, structural analysis, and supramolecular assembly of a series of <i>in situ</i> generated uranyl–peroxide complexes with functionalized 2,2′-bipyridine and varied carboxylic acid ligands. New Journal of Chemistry, 2018, 42, 1816-1831.	1.4	12
150	An Anionic Uranium-Based Metal–Organic Framework with Ultralarge Nanocages for Selective Dye Adsorption. Crystal Growth and Design, 2018, 18, 576-580.	1.4	58

#	Article	IF	CITATIONS
151	Actinide Speciation in Environment and Their Separation Using Functionalized Nanomaterials and Nanocomposites. , 2018, , 1-47.		3
152	Captivation with encapsulation: a dozen years of exploring uranyl peroxide capsules. Dalton Transactions, 2018, 47, 5916-5927.	1.6	76
154	One-dimensional chain structures of hexanuclear uranium(<scp>iv</scp>) clusters bridged by formate ligands. RSC Advances, 2018, 8, 34947-34953.	1.7	6
156	Synthesis and structural characterization of tube-type tetradecavanadates. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1295-1299.	0.2	8
157	Pyrophosphate and Methylenediphosphonate Incorporated Uranyl Peroxide Cage Clusters. Crystal Growth and Design, 2018, 18, 7720-7729.	1.4	8
159	Charge Density Influence on Enthalpy of Formation of Uranyl Peroxide Cage Cluster Salts. Inorganic Chemistry, 2018, 57, 11456-11462.	1.9	19
160	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews, 2018, 118, 5755-5870.	23.0	426
161	Synthesis and crystal structures of two new uranyl coordination compounds obtained in aqueous solutions of 1-butyl-2,3-dimethylimidazolium chloride. Journal of Coordination Chemistry, 2018, 71, 2415-2425.	0.8	4
162	Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorganic Chemistry, 2018, 57, 7129-7141.	1.9	10
163	Counterion-Controlled Formation of an Octanuclear Uranyl Cage with <i>cis</i> -1,2-Cyclohexanedicarboxylate Ligands. Inorganic Chemistry, 2018, 57, 6283-6288.	1.9	28
164	Large-Pore Layered Networks, Polycatenated Frameworks, and Three-Dimensional Frameworks of Uranyl Tri(biphenyl)amine/Tri(phenyl)amine Tricarboxylate: Solvent-/Ligand-Dependent Dual Regulation. Crystal Growth and Design, 2018, 18, 4347-4356.	1.4	23
165	17 O NMR as a Tool in Discrete Metal Oxide Cluster Chemistry. Annual Reports on NMR Spectroscopy, 2018, 94, 187-248.	0.7	7
166	Solid State Chemistry of Ten-Fold Coordinate Thorium(IV) Complexes with Oxalates in the Presence of Ammonium and Hydrazinium Ions. Crystal Growth and Design, 2018, 18, 4593-4601.	1.4	7
167	Complexity of Uranyl Peroxide Cluster Speciation from Alkali-Directed Oxidative Dissolution of Uranium Dioxide. Inorganic Chemistry, 2018, 57, 9296-9305.	1.9	29
168	Paleoclimatology. Encyclopedia of Earth Sciences Series, 2018, , 1147-1160.	0.1	0
169	Kinetics of Uranyl Peroxide Nanocluster (U ₆₀) Sorption to Goethite. Environmental Science & Technology, 2018, 52, 9818-9826.	4.6	8
170	{Np ₃₈ } clusters: the missing link in the largest poly-oxo cluster series of tetravalent actinides. Chemical Communications, 2018, 54, 10060-10063.	2.2	30
171	Solution and Solid State Structural Chemistry of Th(IV) and U(IV) 4-Hydroxybenzoates. Inorganic Chemistry, 2018, 57, 7259-7269.	1.9	30

#	Article	IF	CITATIONS
172	Closed Uranyl–Dicarboxylate Oligomers: A Tetranuclear Metallatricycle with Uranyl Bridgeheads and 1,3-Adamantanediacetate Linkers. Inorganic Chemistry, 2018, 57, 7932-7939.	1.9	21
173	In Situ Formation of Unprecedented Neptunium-Oxide Wheel Clusters Stabilized in a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 11842-11846.	6.6	36
174	Supramolecular Assembly of Geometrically Unstable Hybrid Organic–Inorganic Uranyl Peroxide Cage Clusters and Their Transformations. Journal of the American Chemical Society, 2019, 141, 12780-12788.	6.6	13
175	Small-angle scattering model analysis of cage-like uranyl peroxide nanoparticles. Journal of Molecular Liquids, 2019, 296, 111794.	2.3	5
176	High Nuclearity Uranyl Cages Using Rigid Aryl Phosphonate Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 5052-5058.	1.0	0
177	Crystal structure and supramolecular architectures of uranyl organic hybrid material with 3-chloro thiophene-2-carboxylic acid. AIP Conference Proceedings, 2019, , .	0.3	0
178	Neptunyl Peroxide Chemistry: Synthesis and Spectroscopic Characterization of a Neptunyl Triperoxide Compound, Ca ₂ [NpO ₂ (O ₂) ₃]·9H ₂ O. Inorganic Chemistry, 2019, 58, 12264-12271.	1.9	6
179	Tetranuclear oxido-bridged thorium(<scp>iv</scp>) clusters obtained using tridentate Schiff bases. Dalton Transactions, 2019, 48, 15668-15678.	1.6	9
180	Hybrid Uranyl–Phosphonate Coordination Nanocage. Inorganic Chemistry, 2019, 58, 12662-12668.	1.9	5
181	Effect of annealing temperature on the structural, morphological and optical properties of ThO2 thin films grown by photochemical metal–organic deposition. Polyhedron, 2019, 171, 374-381.	1.0	5
182	Syntheses and crystal structures of two uranyl peroxide nanoclusters with a diphosphonate linker ligand. Polyhedron, 2019, 174, 114161.	1.0	2
183	Stability of Solid Uranyl Peroxides under Irradiation. Inorganic Chemistry, 2019, 58, 14112-14119.	1.9	18
184	Assembly of porphyrin-based uranium organic frameworks with (3,4)-connected <i>pto</i> and <i>tbo</i> topologies. Dalton Transactions, 2019, 48, 1595-1598.	1.6	13
185	The lithium–water configuration encapsulated by uranyl peroxide cage cluster U ₂₄ . CrystEngComm, 2019, 21, 390-393.	1.3	7
186	Utilizing Autoxidation of Solvents To Promote the Formation of Uranyl Peroxide Materials. Crystal Growth and Design, 2019, 19, 1756-1766.	1.4	10
187	[Ln 6 O 8] Clusterâ€Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anionâ€Exchange Materials for ReO 4 â^' Sequestration. Advanced Science, 2019, 6, 1900381.	5.6	16
188	Element 92 – Uranium. Australian Journal of Chemistry, 2019, 72, 329.	0.5	2
189	Evidence for non-electrostatic interactions between a pyrophosphate-functionalized uranyl peroxide nanocluster and iron (hydr)oxide minerals. Environmental Sciences: Processes and Impacts, 2019, 21, 1174-1183.	1.7	0

#	Article	IF	CITATIONS
190	Deciphering the Crystal Structure of a Scarce 1D Polymeric Thorium Peroxo Sulfate. Chemistry - A European Journal, 2019, 25, 9580-9585.	1.7	7
191	Transformation of Uranyl Peroxide Studtite, [(UO ₂)(O ₂)(H ₂ O) ₂](H ₂ O) ₂](H ₂ O) ₂ , to Soluble Nanoscale Cage Clusters. Inorganic Chemistry, 2019, 58, 6781-6789.	1.9	13
192	<i>In situ</i> Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions. Dalton Transactions, 2019, 48, 7755-7765.	1.6	10
193	Mixed-valent neptunium oligomer complexes based on cation–cation interactions. Dalton Transactions, 2019, 48, 6700-6703.	1.6	2
194	Uranyl–Peroxide Capsule Selfâ€Assembly in Slow Motion. Chemistry - A European Journal, 2019, 25, 6087-6091.	1.7	17
195	Calcium-Facilitated Aggregation and Precipitation of the Uranyl Peroxide Nanocluster U ₆₀ in the Presence of Na-Montmorillonite. Environmental Science & Technology, 2019, 53, 4922-4930.	4.6	8
196	Synthetic Control of Thorium Polyoxo-Clusters in Metal–Organic Frameworks toward New Thorium-Based Materials. ACS Applied Nano Materials, 2019, 2, 2260-2265.	2.4	34
197	Effects of H ₂ O ₂ Concentration on Formation of Uranyl Peroxide Species Probed by Dissolution of Uranium Nitride and Uranium Dioxide. Inorganic Chemistry, 2019, 58, 5858-5864.	1.9	10
198	Chemistry of Actinide Centers in Heterogeneous Catalytic Transformations of Small Molecules. ACS Catalysis, 2019, 9, 4719-4741.	5.5	43
199	En Route Activity of Hydration Water Allied with Uranyl (UO ₂ ²⁺) Salts Amid Complexation Reactions with an Organothio-Based (O, N, S) Donor Base. Inorganic Chemistry, 2019, 58, 4972-4978.	1.9	3
200	Stabilization of an Unprecedented Hexanuclear Secondary Building Unit in a Thorium-Based Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 3586-3590.	1.9	38
201	High Nuclearity Uranyl Cages Using Rigid Aryl Phosphonate Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 5040-5040.	1.0	0
202	Energetic Trends in Monomer Building Blocks for Uranyl Peroxide Clusters. Inorganic Chemistry, 2019, 58, 439-445.	1.9	10
203	Structural Snapshots of Cluster Growth from {U 6 } to {U 38 } During the Hydrolysis of UCl 4. Angewandte Chemie - International Edition, 2019, 58, 3021-3026.	7.2	29
204	Extension of the Plutonium Oxide Nanocluster Family to Include {Pu ₁₆ } and {Pu ₂₂ }. Chemistry - A European Journal, 2019, 25, 2463-2466.	1.7	28
205	Structural Snapshots of Cluster Growth from {U6} to {U38} During the Hydrolysis of UCl4. Angewandte Chemie, 2019, 131, 3053-3058.	1.6	5
206	Beyond Charge Balance: Counter ations in Polyoxometalate Chemistry. Angewandte Chemie - International Edition, 2020, 59, 596-612.	7.2	289
207	Jenseits von Ladungsausgleich: Gegenkationen in der Polyoxometallatâ€Chemie. Angewandte Chemie, 2020, 132, 606-623.	1.6	37

#	Article	IF	CITATIONS
208	A series of uranium-organic frameworks: Crucial role of the protonation ability of auxiliary ligands. Inorganic Chemistry Communication, 2020, 111, 107628.	1.8	11
209	The role of cations in uranyl nanocluster association: a molecular dynamics study. Physical Chemistry Chemical Physics, 2020, 22, 1847-1854.	1.3	0
210	Organic Functionalization of Uranyl Peroxide Clusters to Impact Solubility. Inorganic Chemistry, 2020, 59, 9881-9888.	1.9	4
211	Reactivity, Formation, and Solubility of Polyoxometalates Probed by Calorimetry. Journal of the American Chemical Society, 2020, 142, 20463-20469.	6.6	21
212	Peroxouranyl-Containing W ₄₈ Wheel: Synthesis, Structure, and Detailed Infrared and Raman Spectroscopy Study. Inorganic Chemistry, 2020, 59, 16789-16794.	1.9	14
213	Co-ion Effects in the Self-Assembly of Macroions: From Co-ions to Co-macroions and to the Unique Feature of Self-Recognition. Langmuir, 2020, 36, 10519-10527.	1.6	11
214	Oxygen and peroxide bridged uranyl(<scp>vi</scp>) dimers bearing tetradentate hybrid ligands: supramolecular self-assembly and generation pathway. Inorganic Chemistry Frontiers, 2020, 7, 3412-3423.	3.0	8
215	Unraveling the structural stability and the electronic structure of ThO ₂ clusters. Physical Chemistry Chemical Physics, 2020, 22, 18614-18621.	1.3	0
216	Actinide Separation Inspired by Self-Assembled Metal–Polyphenolic Nanocages. Journal of the American Chemical Society, 2020, 142, 16538-16545.	6.6	56
217	Polyoxometalate clusters in minerals: review and complexity analysis. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 618-629.	0.5	23
218	A Sodaliteâ€īype Silver Orthophosphate Cluster in a Globular Silver Nanocluster. Angewandte Chemie, 2020, 132, 12759-12763.	1.6	16
219	Unveiling a Photoinduced Hydrogen Evolution Reaction Mechanism via the Concerted Formation of Uranyl Peroxide. Inorganic Chemistry, 2020, 59, 8353-8360.	1.9	6
220	From Isolated Molecular Complexes to Extended Networks: Synthesis and Characterization of Thorium Furanmono―and Dicarboxylates. European Journal of Inorganic Chemistry, 2020, 2020, 3287-3295.	1.0	2
221	Dissolution of poorly soluble uranyl phosphate phases in the Metaautunite Subgroup under uranyl peroxide cage cluster forming conditions. American Mineralogist, 2020, 105, 182-193.	0.9	4
222	Dynamics of Cation-Induced Conformational Changes in Nanometer-Sized Uranyl Peroxide Clusters. Inorganic Chemistry, 2020, 59, 2495-2502.	1.9	7
223	Photodissociation and Theory to Investigate Uranium Oxide Cluster Cations. Journal of Physical Chemistry A, 2020, 124, 1940-1953.	1.1	8
224	Uranyl Ion Complexes of Polycarboxylates: Steps towards Isolated Photoactive Cavities. Chemistry, 2020, 2, 63-79.	0.9	10
225	Performance of group additivity methods for predicting the stability of uranyl complexes. Journal of Computational Chemistry, 2020, 41, 1124-1129.	1.5	2

#	Article	IF	CITATIONS
226	On the Aqueous Chemistry of the U ^{IV} –DOTA Complex. Chemistry - A European Journal, 2020, 26, 3390-3403.	1.7	12
227	Oligonuclear Actinoid Complexes with Schiff Bases as Ligands—Older Achievements and Recent Progress. International Journal of Molecular Sciences, 2020, 21, 555.	1.8	31
228	Structural properties of ultra-small thorium and uranium dioxide nanoparticles embedded in a covalent organic framework. Chemical Science, 2020, 11, 4648-4668.	3.7	22
229	A Sodaliteâ€Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster. Angewandte Chemie - International Edition, 2020, 59, 12659-12663.	7.2	36
230	Aerobic oxidation of toluene and benzyl alcohol to benzaldehyde using a visible light-responsive titanium-oxide cluster. Chemical Engineering Journal, 2021, 404, 126433.	6.6	21
231	Uranyl Phosphonates with Multiple Uranyl Coordination Geometries and Low Temperature Phase Transition. Chinese Journal of Chemistry, 2021, 39, 597-604.	2.6	8
232	Sandwiched Kagomé Lattices in a Coordination Polymer Based on Mixed-Valent Uranium. Crystal Growth and Design, 2021, 21, 1727-1733.	1.4	2
233	Constructing a robust gigantic drum-like hydrophobic [Co24U6] nanocage in a metal–organic framework for high-performance SO2 removal in humid conditions. Journal of Materials Chemistry A, 2021, 9, 4075-4081.	5.2	9
234	Quo Vadis, Polyoxometalate Chemistry?. , 2021, , 4-28.		1
235	Cavity Formation in Uranyl Ion Complexes with Kemp's Tricarboxylate: Grooved Diperiodic Nets and Polynuclear Cages. Inorganic Chemistry, 2021, 60, 1683-1697.	1.9	14
236	Controlling the secondary assembly of porous anionic uranyl–organic polyhedra through organic cationic templates. Dalton Transactions, 2021, 50, 4499-4503.	1.6	3
237	Ionothermal Synthesis of Uranyl Vanadate Nanoshell Heteropolyoxometalates. Inorganic Chemistry, 2021, 60, 3355-3364.	1.9	5
238	Uranyl Peroxide Nanocage Assemblies for Solid-State Electrolytes. ACS Applied Nano Materials, 2021, 4, 3597-3603.	2.4	7
239	Structural Evolution from Noninterpenetrated to Interpenetrated Thorium–Organic Frameworks Exhibiting High Propyne Storage. Inorganic Chemistry, 2021, 60, 6472-6479.	1.9	16
240	Prediction of Solution Behavior via Calorimetric Measurements Allows for Detailed Elucidation of Polyoxometalate Transformation. Inorganic Chemistry, 2021, 60, 6753-6763.	1.9	6
241	Sandwich-Type Uranyl Phosphate–Polyoxometalate Cluster Exhibiting Strong Luminescence. Inorganic Chemistry, 2021, 60, 6790-6795.	1.9	23
242	Peroxides in metal complex catalysis. Coordination Chemistry Reviews, 2021, 437, 213859.	9.5	41
243	Calorimetric Study of Functionalized Uranyl Peroxide Nanoclusters and Their Monomeric Building Block. European Journal of Inorganic Chemistry, 2021, 2021, 2840-2845.	1.0	4

#	Article	IF	CITATIONS
244	Structure of the {U ₁₃ } polyoxo cluster U ₁₃ O ₈ Cl _{<i>x</i>} (MeO) _{38–<i>x</i>} (<i>x</i> = 2.3, MeO = methoxide). Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 847-852.	0.2	2
245	Photodissociation and Infrared Spectroscopy of Uranium–Nitrogen Cation Complexes. Journal of Physical Chemistry A, 2021, 125, 7278-7288.	1.1	2
246	Pentanuclear Thorium(IV) Coordination Cluster from the Use of Di(2-pyridyl) Ketone. Inorganic Chemistry, 2021, 60, 11888-11892.	1.9	3
247	UCN@ <i>C</i> _{<i>s</i>} (6)-C ₈₂ : An Encapsulated Triangular UCN Cluster with Ambiguous U Oxidation State [U(III) versus U(I)]. Journal of the American Chemical Society, 2021, 143, 16226-16234.	6.6	18
248	Heterometallic uranyl-organic frameworks incorporating manganese and copper: Structures, ammonia sorption and magnetic properties. Polyhedron, 2021, 205, 115327.	1.0	7
249	High-Temperature Synthesis of a Uranyl Peroxo Complex Facilitated by Hydrothermally In Situ Formed Organic Peroxide. Inorganic Chemistry, 2021, 60, 2133-2137.	1.9	5
250	[(UO 2)(C 10 H 8 N 2 O 2) 2][HPW 12 O 40]: The First Case of a Uranyl Coordination Network Containing a Kegginâ€Type Polyoxometalate. European Journal of Inorganic Chemistry, 2020, 2020, 4577-4580.	1.0	3
251	Actinide Speciation in Environment and Their Separation Using Functionalized Nanomaterials and Nanocomposites. , 2019, , 771-817.		1
252	Hybrid Materials of the f-Elements Part II. Fundamental Theories of Physics, 2015, , 163-285.	0.1	1
253	Synthesis and Study in Solution of a New Dansyl-Modified Azacryptand. International Journal of Inorganic Chemistry, 2016, 2016, 1-10.	0.6	1
254	Persistent Superprotonic Conductivity in the Order of 10â^'1 S·cmâ^'1 Achieved Through Thermally Induced Structural Transformation of a Uranyl Coordination Polymer. CCS Chemistry, 2019, 1, 197-206.	4.6	63
255	Polyoxometalates and Other Metal-Oxo Clusters in Nature. Encyclopedia of Earth Sciences Series, 2018, , 1242-1247.	0.1	1
256	Structural Chemistry of Giant Metal Based Supramolecules. Chemical Reviews, 2021, 121, 14485-14554.	23.0	53
257	Probing the Local Coordination of Hexavalent Uranium and the Splitting of 5f Orbitals Induced by Chemical Bonding. Inorganic Chemistry, 2021, 60, 16286-16293.	1.9	12
259	Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. Chinese Chemical Letters, 2023, 34, 107209.	4.8	7
260	Characterization of a Hexanuclear Plutonium(IV) Nanostructure in an Acetate Solution via Visible–Near Infrared Absorption Spectroscopy, Extended X-ray Absorption Fine Structure Spectroscopy, and Density Functional Theory. Inorganic Chemistry, 2022, 61, 4806-4817.	1.9	5
261	Two tetravalent uranium silicate and germanate crystals with three membered single-ring by molten salt method: K2USi3O9 and Cs2UGe3O9. Chinese Chemical Letters, 2022, 33, 3527-3530.	4.8	16
262	Design and Synthesis of Pentadentate N3O2-Type Donor Schiff Bases and their Interactive Behavior with UO2(VI) Ion: An Instance of Strange Behavior of Pyridine in a Uranyl (UO22+) Complex. Journal of Chemical Crystallography, 0, , 1.	0.5	0

#	Article	IF	CITATIONS
263	Crystal Structure and Stability in Aqueous Solutions of Na _{0.5} [NpO ₂ (OH) _{1.5}]·0.5H ₂ O and Na[NpO ₂ (OH) _{2./sub>]. Journal of the American Chemical Society, 2022, 144, 9217-9221.}	6.6	1
264	Theoretical Prediction of Graphene-like 2D Uranyl Material with p-Orbital Antiferromagnetism. Chemical Science, 0, , .	3.7	3
265	Molecular simulations to investigate the guest-induced flexibility of Pu-UiO-66 MOF. Materials Today: Proceedings, 2022, , .	0.9	0
266	Stability of Eu(III)-silicate colloids: Effect of Eu content, pH, electrolyte and fulvic acid. Journal of Hazardous Materials, 2022, 438, 129363.	6.5	4
267	Th(IV) Bromide Complexes: A Homoleptic Aqua Ion and a Novel Th(H ₂ O) ₄ Br ₄ Structural Unit. Crystal Growth and Design, 2022, 22, 4375-4381.	1.4	2
268	Gamma-Ray-Induced Formation of Uranyl Peroxide Cage Clusters. Inorganic Chemistry, 2022, 61, 11916-11922.	1.9	4
269	Recent advances in uranium-containing polyoxometalates. Inorganic Chemistry Frontiers, 2022, 9, 5408-5433.	3.0	27
270	A Semiconducting Uranium Organic Framework based on Tetrathiafulvalene Derivative. Dalton Transactions, 0, , .	1.6	2
271	Electronic Structures and Unusual Chemical Bonding in Actinyl Peroxide Dimers [An ₂ O ₆] ²⁺ and [(An ₂ O ₆)(12-crown-4) Tj ETQc	10 1 090 rgBT	Øverlock
272	Platonic and Archimedean solids in discrete metal-containing clusters. Chemical Society Reviews, 2023, 52, 383-444.	18.7	25

273	Crystallization of a Neptunyl Oxalate Hydrate from Solutions Containing Np ^V and the Uranyl Peroxide Nanocluster U ₆₀ Ox ₃₀ . Chemistry - A European Journal, 2023, 29, .	1.7	0
274	ON THE EXISTENCE OF FULLERENES WITH A GIVEN SYMMETRY GROUP. Journal of Structural Chemistry, 2022, 63, 2083-2094.	0.3	1
275	Electrochemistry of Uranyl Peroxide Solutions during Electrospray Ionization. Inorganic Chemistry, 2023, 62, 4456-4466.	1.9	4
276	Ferroceneâ€Based Actinide Clusters: Synthesis, Crystal Structures, and Characterization. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	0
284	A lens-shaped supramolecule based on the bulky pentaphosphaferrocene [Cp ^{BIG} Fe(Î ⁵ -P ₅)] and CuBr ₂ . Chemical Communications, 0, , .	2.2	0