

Proceedings of the National Academy of Sciences of the Unite 110, 2846-2851

DOI: 10.1073/pnas.1300741110

Citation Report

#	Article	IF	CITATIONS
1	Reply to letter from J. Finsterer and C. Stöllberger. Molecular Genetics and Metabolism, 2013, 109, 230.	0.5	0
2	Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. Journal of Applied Physiology, 2013, 115, 1562-1571.	1.2	113
3	From Structure to Function: Mitochondrial Morphology, Motion and Shaping in Vascular Smooth Muscle. Journal of Vascular Research, 2013, 50, 357-371.	0.6	103
4	ROS regulation of microdomain Ca2+ signalling at the dyads. Cardiovascular Research, 2013, 98, 248-258.	1.8	61
5	Impaired Mitochondrial Dynamics and Bioenergetics in Diabetic Skeletal Muscle. PLoS ONE, 2014, 9, e92810.	1.1	105
6	A Role for Peroxisome Proliferator-Activated Receptor Î ³ Coactivator-1 in the Control of Mitochondrial Dynamics During Postnatal Cardiac Growth. Circulation Research, 2014, 114, 626-636.	2.0	182
7	Mitochondrial fusion is frequent in skeletal muscle and supports excitation–contraction coupling. Journal of Cell Biology, 2014, 205, 179-195.	2.3	133
8	Imaging Ca ²⁺ Nanosparks in Heart With a New Targeted Biosensor. Circulation Research, 2014, 114, 412-420.	2.0	74
9	Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. British Journal of Pharmacology, 2014, 171, 1890-1906.	2.7	206
10	Parkinâ€independent mitophagy requires <scp>D</scp> rp1 and maintains the integrity of mammalian heart and brain. EMBO Journal, 2014, 33, 2798-2813.	3.5	361
11	A Simple, Cost-Effective but Highly Efficient System for Deriving Ventricular Cardiomyocytes from Human Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 1704-1716.	1.1	105
12	FRIENDLY Regulates Mitochondrial Distribution, Fusion, and Quality Control in Arabidopsis. Plant Physiology, 2014, 166, 808-828.	2.3	93
13	Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biology Open, 2015, 4, 622-626.	0.6	125
14	The Metabolic Effects of Traditional Chinese Medication Qiliqiangxin on H9C2 Cardiomyocytes. Cellular Physiology and Biochemistry, 2015, 37, 2246-2256.	1.1	22
15	Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. Journal of Molecular Medicine, 2015, 93, 1119-1130.	1.7	27
16	Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. European Journal of Pharmacology, 2015, 763, 104-114.	1.7	114
17	Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nature Communications, 2015, 6, 6259.	5.8	143
18	Maintaining Ancient Organelles. Circulation Research, 2015, 116, 1820-1834.	2.0	97

#	Article	IF	Citations
19	Dyad content is reduced in cardiac myocytes of mice with impaired calmodulin regulation of RyR2. Journal of Muscle Research and Cell Motility, 2015, 36, 205-214.	0.9	22
20	Mitochondrial synapses: intracellular communication and signal integration. Trends in Neurosciences, 2015, 38, 468-474.	4.2	44
21	Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochemical and Photobiological Sciences, 2015, 14, 1787-1806.	1.6	27
22	Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Research, 2015, 25, 1108-1120.	5.7	101
23	Dynamics of Mitochondrial DNA Nucleoids Regulated by Mitochondrial Fission Is Essential for Maintenance of Homogeneously Active Mitochondria during Neonatal Heart Development. Molecular and Cellular Biology, 2015, 35, 211-223.	1.1	165
24	Sarcoplasmic reticulum is an intermediary of mitochondrial and myofibrillar growth at the intercalated disc. Journal of Muscle Research and Cell Motility, 2016, 37, 55-69.	0.9	7
25	Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage. BioEssays, 2016, 38, 306-315.	1,2	22
26	Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells. Handbook of Experimental Pharmacology, 2016, 240, 403-422.	0.9	10
27	Mitochondrial fission/fusion and cardiomyopathy. Current Opinion in Genetics and Development, 2016, 38, 38-44.	1.5	40
28	Mitochondrial transplantation for therapeutic use. Clinical and Translational Medicine, 2016, 5, 16.	1.7	134
29	Mitochondrial health, the epigenome and healthspan. Clinical Science, 2016, 130, 1285-1305.	1.8	57
30	Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. Journal of Biological Chemistry, 2016, 291, 23343-23362.	1.6	49
31	The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy. Scientific Reports, 2016, 6, 30610.	1.6	165
32	Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Scientific Reports, 2016, 6, 23251.	1.6	22
33	A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environmental Science: Nano, 2016, 3, 311-322.	2.2	100
34	Shaping the multi-scale architecture of mitochondria. Current Opinion in Cell Biology, 2016, 38, 45-51.	2.6	19
35	Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2016, 91, 63-71.	0.9	29
36	Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circulation Research, 2016, 118, 834-841.	2.0	88

#	Article	IF	Citations
37	Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E859-E868.	3.3	120
38	Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E849-E858.	3.3	76
39	Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skeletal Muscle, 2017, 7, 6.	1.9	44
40	Power Grid Protection of the Muscle Mitochondrial Reticulum. Cell Reports, 2017, 19, 487-496.	2.9	155
41	Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochemistry International, 2017, 109, 141-161.	1.9	70
42	Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. Advances in Experimental Medicine and Biology, 2017, 982, 595-619.	0.8	61
43	Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion, 2017, 34, 127-134.	1.6	124
44	Mitochondrial networking in diabetic left ventricle cardiomyocytes. Mitochondrion, 2017, 34, 24-31.	1.6	7
45	Mitochondrial Nanotunnels. Trends in Cell Biology, 2017, 27, 787-799.	3.6	95
46	Cardiac mitochondrial dynamics: miR-mediated regulation during cardiac injury. Journal of Molecular and Cellular Cardiology, 2017, 110, 26-34.	0.9	11
47	Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology, 2017, 391, 42-53.	2.0	350
48	Cx43 Isoform GJA1-20k Promotes Microtubule Dependent Mitochondrial Transport. Frontiers in Physiology, 2017, 8, 905.	1.3	58
49	The Concerted Action of Mitochondrial Dynamics and Positioning: New Characters in Cancer Onset and Progression. Frontiers in Oncology, 2017, 7, 102.	1.3	29
50	Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovascular Research, 2018, 114 , $979-991$.	1.8	49
51	ROS as Regulators of Mitochondrial Dynamics in Neurons. Cellular and Molecular Neurobiology, 2018, 38, 995-1007.	1.7	74
52	UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction. Cellular Physiology and Biochemistry, 2018, 46, 1683-1692.	1.1	13
53	Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1991-2001.	1.8	37
54	Ultrastructure of Spermatozoa from Infertility Patients. , 2018, , .		1

#	Article	IF	CITATIONS
55	Mitochondria and cardiovascular diseasesâ€"from pathophysiology to treatment. Annals of Translational Medicine, 2018, 6, 256-256.	0.7	177
56	Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. American Journal of Physiology - Cell Physiology, 2018, 315, C744-C756.	2.1	76
57	Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nature Cell Biology, 2018, 20, 755-765.	4.6	401
58	Mitoflash lights single mitochondrial dynamics events in mature cardiomyocytes. Biochemical and Biophysical Research Communications, 2018, 503, 729-736.	1.0	9
59	Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants, 2018, 7, 7.	2.2	90
60	Cardiac microtubules in health and heart disease. Experimental Biology and Medicine, 2019, 244, 1255-1272.	1.1	72
61	Knowing When to Let Go: Lysosomes Regulate Inter-Mitochondrial Tethering. Developmental Cell, 2019, 50, 259-260.	3.1	3
62	Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2. Developmental Cell, 2019, 50, 339-354.e4.	3.1	59
63	Tracking intra―and interâ€organelle signaling of mitochondria. FEBS Journal, 2019, 286, 4378-4401.	2.2	23
64	Miro2 Regulates Inter-Mitochondrial Communication in the Heart and Protects Against TAC-Induced Cardiac Dysfunction. Circulation Research, 2019, 125, 728-743.	2.0	27
65	Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2019, 136, 72-84.	0.9	32
66	Mitochondrial dynamics and inter-mitochondrial communication in the heart. Archives of Biochemistry and Biophysics, 2019, 663, 214-219.	1.4	32
67	Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology, 2019, 71, 647-663.	0.7	53
68	Connect and Conquer: Collectivized Behavior of Mitochondria and Bacteria. Frontiers in Physiology, 2019, 10, 340.	1.3	21
69	Mitochondrial Deformation During the Cardiac Mechanical Cycle. Anatomical Record, 2019, 302, 146-152.	0.8	21
70	Brain activity regulates loose coupling between mitochondrial and cytosolic Ca2+ transients. Nature Communications, 2019, 10, 5277.	5.8	29
71	Phosphocreatine Improves Cardiac Dysfunction by Normalizing Mitochondrial Respiratory Function through JAK2/STAT3 Signaling Pathway <i>In Vivo</i> and <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-18.	1.9	20
72	Threeâ€dimensional electron microscopy techniques for unravelling mitochondrial dysfunction in heart failure and identification of new pharmacological targets. British Journal of Pharmacology, 2019, 176, 4340-4359.	2.7	16

#	Article	IF	Citations
73	Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell, 2019, 176, 73-84.e15.	13.5	235
74	Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiological Reviews, 2019, 99, 853-892.	13.1	145
75	Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends in Molecular Medicine, 2020, 26, 21-39.	3.5	134
76	Mitochondrial donation in translational medicine; from imagination to reality. Journal of Translational Medicine, 2020, 18, 367.	1.8	11
77	Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Frontiers in Physiology, 2020, 11, 1054.	1.3	5
78	Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning. Frontiers in Neuroscience, 2020, 14, 599.	1.4	35
79	Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 584800.	1.8	55
80	Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Frontiers in Cell and Developmental Biology, 2020, 8, 609241.	1.8	3
81	The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Frontiers in Physiology, 2020, 11, 541040.	1.3	120
82	ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nature Communications, 2020, 11, 4471.	5.8	58
83	Targeting mitochondrial fusion and fission proteins for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 6571-6585.	1.6	63
84	The structural basis for intermitochondrial communications is fundamentally different in cardiac and skeletal muscle. Experimental Physiology, 2020, 105, 606-612.	0.9	7
85	Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca ²⁺ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca ²⁺ Dynamics. Circulation Research, 2021, 128, 92-114.	2.0	45
86	Mitochondrial Transplantation for Ischemia Reperfusion Injury. Methods in Molecular Biology, 2021, 2277, 15-37.	0.4	11
87	Impaired mitochondrial dynamics in disease. , 2021, , 57-90.		0
88	mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Frontiers in Cell and Developmental Biology, 2021, 9, 625020.	1.8	26
90	Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Molecular Neurobiology, 2021, 58, 3270-3289.	1.9	20
91	Mitochondrial membrane tension governs fission. Cell Reports, 2021, 35, 108947.	2.9	43

#	Article	IF	Citations
93	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	48
94	Mitochondrial Arrest on the Microtubule Highwayâ€"A Feature of Heart Failure and Diabetic Cardiomyopathy?. Frontiers in Cardiovascular Medicine, 2021, 8, 689101.	1.1	9
95	Functional Calsequestrin-1 Is Expressed in the Heart and Its Deficiency Is Causally Related to Malignant Hyperthermia-Like Arrhythmia. Circulation, 2021, 144, 788-804.	1.6	16
96	Mitochondrial Transplantation: Is It a Feasible Therapy to Prevent the Cardiorenal Side Effects of Cisplatin?. Future Pharmacology, 2021, 1, 3-26.	0.6	5
97	Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. American Journal of Physiology - Cell Physiology, 2021, 321, C489-C503.	2.1	21
98	Energy metabolism design of the striated muscle cell. Physiological Reviews, 2021, 101, 1561-1607.	13.1	38
99	Stomatin-Like Protein-2: A Potential Target to Treat Mitochondrial Cardiomyopathy. Heart Lung and Circulation, 2021, 30, 1449-1455.	0.2	9
100	Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovascular Research, 2022, 118, 282-294.	1.8	31
101	Skeletal muscle excitation-metabolism coupling. Archives of Biochemistry and Biophysics, 2019, 664, 89-94.	1.4	15
103	Defective Mitochondrial Dynamics Is an Early Event in Skeletal Muscle of an Amyotrophic Lateral Sclerosis Mouse Model. PLoS ONE, 2013, 8, e82112.	1.1	94
104	Organelles Stress and their Crosstalk within Diabetic Myocardium. Athens Journal of Health, 2015, 2, 117-132.	0.1	1
105	Mitochondrial Superoxide Flashes – From Signaling to Disease. , 2014, , 243-263.		1
106	The peculiarities of intermitochondrial contacts during ontogenetic formation of mitochondria network in normal and under hypoxic damage of cardiogenesis. I P Pavlov Russian Medical Biological Herald, 2014, 22, 10.	0.2	2
108	In-cell structures of conserved supramolecular protein arrays at the mitochondria–cytoskeleton interface in mammalian sperm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
109	Mitochondrial dynamics and quantification of mitochondriaâ€derived vesicles in cardiomyoblasts using structured illumination microscopy. Journal of Biophotonics, 2022, 15, e202100305.	1.1	7
110	Mitochondrial Transfer in Cardiovascular Disease: From Mechanisms to Therapeutic Implications. Frontiers in Cardiovascular Medicine, 2021, 8, 771298.	1.1	16
111	Metabolic design in a mammalian model of extreme metabolism, the North American least shrew (<i>Cryptotis parva</i>). Journal of Physiology, 2022, 600, 547-567.	1.3	6
112	Ultrastructural Changes in Mitochondria in Patients with Dilated Cardiomyopathy and Parvovirus B19 Detected in Heart Tissue without Myocarditis. Journal of Personalized Medicine, 2022, 12, 177.	1.1	4

#	Article	IF	Citations
113	Inflammatory Glycoprotein 130 Signaling Links Changes in Microtubules and Junctophilin-2 to Altered Mitochondrial Metabolism and Right Ventricular Contractility. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008574.	1.6	14
114	Differential remodelling of mitochondrial subpopulations and mitochondrial dysfunction are a feature of early stage diabetes. Scientific Reports, 2022, 12, 978.	1.6	12
115	An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells, 2022, 11, 1165.	1.8	39
116	Electron microscopy of cardiac 3D nanodynamics: form, function, future. Nature Reviews Cardiology, 2022, 19, 607-619.	6.1	5
117	Structural Analysis of Mitochondrial Dynamicsâ€"From Cardiomyocytes to Osteoblasts: A Critical Review. International Journal of Molecular Sciences, 2022, 23, 4571.	1.8	3
118	Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chemico-Biological Interactions, 2022, 361, 109961.	1.7	30
120	Neurohormonal connections with mitochondria in cardiomyopathy and other diseases. American Journal of Physiology - Cell Physiology, 2022, 323, C461-C477.	2.1	3
122	Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Frontiers in Physiology, 0, 13 , .	1.3	4
123	Three-dimensional remodelling of the cellular energy distribution system during postnatal heart development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	3
124	Effects of altered cellular ultrastructure on energy metabolism in diabetic cardiomyopathy: an <i>in silico</i> study. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	2
125	Mitochondrial signal transduction. Cell Metabolism, 2022, 34, 1620-1653.	7.2	112
126	Identification of evolutionarily conserved regulators of muscle mitochondrial network organization. Nature Communications, 2022, 13, .	5.8	3
127	The Role of Mitochondrial Enzymes, Succinate-Coupled Signaling Pathways and Mitochondrial Ultrastructure in the Formation of Urgent Adaptation to Acute Hypoxia in the Myocardium. International Journal of Molecular Sciences, 2022, 23, 14248.	1.8	9
129	Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease. Endocrine Reviews, 2023, 44, 668-692.	8.9	9
130	Fractal dynamics of individual mitochondrial oscillators measure local inter-mitochondrial coupling. Biophysical Journal, 2023, 122, 1459-1469.	0.2	0
132	The multiple links between actin and mitochondria. Nature Reviews Molecular Cell Biology, 2023, 24, 651-667.	16.1	8
135	The heterocellular heart: identities, interactions, and implications for cardiology. Basic Research in Cardiology, 2023, 118, .	2.5	13
139	Giant mitochondria in cardiomyocytes: cellular architecture in health and disease. Basic Research in Cardiology, 2023, 118, .	2.5	0

Article IF Citations