Biosensors: sense and sensibility

Chemical Society Reviews 42, 3184 DOI: 10.1039/c3cs35528d

Citation Report

ΟΙΤΑΤΙΟΝ Β Ι		
	IF	CITATIONS

#	Article	IF	CITATION
1	Continuous Glucose Monitoring: 40 Years, What We′ve Learned and What's Next. ChemPhysChem, 2013, 14, 2032-2044.	1.0	79
2	Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials. Methods, 2013, 64, 305-314.	1.9	19
3	Conjugated Polyelectrolytes with Aggregationâ€Enhanced Emission Characteristics: Synthesis and their Biological Applications. Chemistry - an Asian Journal, 2013, 8, 2436-2445.	1.7	41
4	Unexpected Chirality of Nanoparticle Dimers and Ultrasensitive Chiroplasmonic Bioanalysis. Journal of the American Chemical Society, 2013, 135, 18629-18636.	6.6	274
5	Surface development of molecularly imprinted polymer films to enhance sensing signals. TrAC - Trends in Analytical Chemistry, 2013, 51, 146-157.	5.8	88
6	On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. Electrochemistry Communications, 2013, 36, 92-95.	2.3	49
7	Future of Biosensors: A Personal View. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 1-28.	0.6	11
8	Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles. Materials Science and Engineering C, 2013, 33, 3432-3439.	3.8	28
9	Biosensors. A quarter of a century of R&D experience. Biopolymers and Cell, 2013, 29, 188-206.	0.1	27
10	Biosensors a promising future in measurements. IOP Conference Series: Materials Science and Engineering, 2013, 51, 012012.	0.3	12
11	Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch. Scientific Reports, 2013, 3, 2452.	1.6	23
13	Next generation sensor systems. , 2013, , .		0
14	Biomolecule recognition using piezoresistive nanomechanical force probes. Applied Physics Letters, 2013, 102, 253701.	1.5	9
16	Graphene Oxide as a Pathogenâ€Revealing Agent: Sensing with a Digitalâ€Like Response. Angewandte Chemie - International Edition, 2013, 52, 13779-13783.	7.2	56
17	Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission. PLoS ONE, 2014, 9, e109104.	1.1	62
18	Comparison of Static and Microfluidic Protease Assays Using Modified Bioluminescence Resonance Energy Transfer Chemistry. PLoS ONE, 2014, 9, e88399.	1.1	11
19	Emerging Trends in Medical Diagnosis: A Thrust on Nanotechnology. , 2014, 4, .		2
20	A Stimulating Concept: Bioelectronic Medicine in Inflammatory Disease. Bioelectronic Medicine, 2014, 1, 30-33.	1.0	6

#	Article	IF	CITATIONS
21	Translating Bacterial Detection by DNAzymes into a Litmus Test. Angewandte Chemie, 2014, 126, 13013-13016.	1.6	45
22	Affinity biosensors for tumor-marker analysis. Bioanalysis, 2014, 6, 3417-3435.	0.6	27
23	Translating Bacterial Detection by DNAzymes into a Litmus Test. Angewandte Chemie - International Edition, 2014, 53, 12799-12802.	7.2	188
24	Recent Advances in Application of Biosensors in Tissue Engineering. BioMed Research International, 2014, 2014, 1-18.	0.9	130
25	Nanofluidic structures for coupled sensing and remediation of toxins. Proceedings of SPIE, 2014, , .	0.8	0
26	Biomimetic surface modification with bolaamphiphilic archaeal tetraether lipids via liposome spreading. Biointerphases, 2014, 9, 011002.	0.6	6
27	On/Offâ€Switchable Zipperâ€Like Bioelectronics on a Graphene Interface. Advanced Materials, 2014, 26, 482-486.	11.1	68
28	A portable optical human sweat sensor. Journal of Applied Physics, 2014, 116, .	1.1	29
29	Multiplexed label-free optical biosensor for medical diagnostics. Journal of Biomedical Optics, 2014, 19, 017006.	1.4	45
30	Electrochemical Devices for Monitoring Biomarkers in Embryo Development. Electrochimica Acta, 2014, 140, 42-48.	2.6	3
31	Recent advances in biosensor based endotoxin detection. Biosensors and Bioelectronics, 2014, 51, 62-75.	5.3	113
32	Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy and Environmental Science, 2014, 7, 1744-1749.	15.6	160
33	The transformation of common office supplies into a low-cost optical biosensing platform. Biosensors and Bioelectronics, 2014, 59, 259-268.	5.3	24
34	Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification. Biosensors and Bioelectronics, 2014, 56, 12-18.	5.3	47
35	Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 2014, 43, 3453.	18.7	262
36	Recent advances in cortisol sensing technologies for point-of-care application. Biosensors and Bioelectronics, 2014, 53, 499-512.	5.3	238
37	Biosensing with cell phones. Trends in Biotechnology, 2014, 32, 351-355.	4.9	80
38	Facile preparation of catalytically active, microstructured gold patterns on quartz and silicon substrates. Applied Surface Science, 2014, 307, 197-201.	3.1	5

#	Article	IF	CITATIONS
39	Bioelectronic Nose. , 2014, , .		6
40	Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosensors and Bioelectronics, 2014, 61, 28-37.	5.3	34
41	Novel trends in affinity biosensors: current challenges and perspectives. Measurement Science and Technology, 2014, 25, 032001.	1.4	73
42	Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 2014, 406, 123-137.	1.9	156
43	The potential legacy of cancer nanotechnology: cellular selection. Trends in Biotechnology, 2014, 32, 21-31.	4.9	34
44	Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, 2014, , ,	0.6	8
45	Hydrazone-based switches, metallo-assemblies and sensors. Chemical Society Reviews, 2014, 43, 1963.	18.7	499
46	Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification. Chemical Communications, 2014, 50, 1347-1349.	2.2	66
47	A Quantitative Look Inside the Body: Minimally Invasive Infrared Analysis in Vivo. Analytical Chemistry, 2014, 86, 10511-10514.	3.2	24
48	Reduced graphene oxide–titania based platform for label-free biosensor. RSC Advances, 2014, 4, 60386-60396.	1.7	24
49	Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst, The, 2014, 139, 2933.	1.7	76
50	A dual-mode fluorescence "turn-on―biosensor based on an aggregation-induced emission luminogen. Journal of Materials Chemistry B, 2014, 2, 1717-1723.	2.9	79
51	An Inkjetâ€Printed Fieldâ€Effect Transistor for Labelâ€Free Biosensing. Advanced Functional Materials, 2014, 24, 6291-6302.	7.8	63
53	Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors. Chemistry of Materials, 2014, 26, 6653-6673.	3.2	140
54	Exonuclease III-Aided Autocatalytic DNA Biosensing Platform for Immobilization-Free and Ultrasensitive Electrochemical Detection of Nucleic Acid and Protein. Analytical Chemistry, 2014, 86, 4008-4015.	3.2	155
55	Synthesis of Au-MWCNT–Graphene hybrid composite for the rapid detection of H ₂ O ₂ and glucose. RSC Advances, 2014, 4, 41670-41677.	1.7	23
56	Ultrashort Cationic Naphthalene-Derived Self-Assembled Peptides as Antimicrobial Nanomaterials. Biomacromolecules, 2014, 15, 3429-3439.	2.6	97
57	Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors. Colloids and Surfaces B: Biointerfaces, 2014, 122, 835-839.	2.5	19

#	Article	IF	CITATIONS
58	Intelligent food packaging: The next generation. Trends in Food Science and Technology, 2014, 39, 47-62.	7.8	421
59	The Heat-Transfer Method: A Versatile Low-Cost, Label-Free, Fast, and User-Friendly Readout Platform for Biosensor Applications. ACS Applied Materials & Interfaces, 2014, 6, 13309-13318.	4.0	59
60	Twoâ€Dimensional Goldâ€Tungsten Disulphide Bioâ€Interface for Highâ€Throughput Electrocatalytic Nanoâ€Bioreactors. Advanced Materials Interfaces, 2014, 1, 1400136.	1.9	18
61	The carbon nanotube-based nanobiosensor: a key component for ubiquitous real-time bioscreening system?. Nanomedicine, 2014, 9, 565-567.	1.7	5
62	Point-of-Care Platforms. Annual Review of Analytical Chemistry, 2014, 7, 297-315.	2.8	53
63	Cholesterol Self-Powered Biosensor. Analytical Chemistry, 2014, 86, 9540-9547.	3.2	149
64	Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosensors and Bioelectronics, 2014, 55, 99-105.	5.3	56
65	Self-Reporting Micellar Polymer Nanostructures for Optical Urea Biosensing. Industrial & Engineering Chemistry Research, 2014, 53, 8509-8514.	1.8	24
66	Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nature Chemical Biology, 2014, 10, 598-603.	3.9	161
67	Past, Present and Future of Sensors in Food Production. Foods, 2014, 3, 491-510.	1.9	100
69	Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin-25. Journal of Nanobiotechnology, 2015, 13, 51.	4.2	49
70	Nanophotonic detection of freely interacting molecules on a single influenza virus. Scientific Reports, 2015, 5, 12087.	1.6	37
71	Magnetic nanobeads present during enzymatic amplification and labeling for a simplified DNA detection protocol based on AC susceptometry. AIP Advances, 2015, 5, 127139.	0.6	0
72	A multiplexed label free plasmonic nano-device for near infrared applications. , 2015, , .		0
74	Autonomous Chemical Sensing Interface for Universal Cell Phone Readout. Angewandte Chemie - International Edition, 2015, 54, 8708-8712.	7.2	54
75	Hofmeister Phenomena in Bioelectrochemistry: The Supporting Electrolyte Affects the Response of Glucose Electrodes. ChemElectroChem, 2015, 2, 659-663.	1.7	20
76	Catalytic Hairpin Assemblyâ€Programmed DNA Threeâ€Way Junction for Enzymeâ€Free and Amplified Electrochemical Detection of Target DNA. Chemistry - an Asian Journal, 2015, 10, 1903-1908.	1.7	12
77	Carbon nanotube biosensors. Frontiers in Chemistry, 2015, 3, 59.	1.8	252

TION RE

#	Article	IF	CITATIONS
78	Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms. Biosensors, 2015, 5, 712-735.	2.3	99
79	DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules, 2015, 20, 20777-20804.	1.7	126
80	Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors, 2015, 15, 30011-30031.	2.1	385
81	Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy. PLoS ONE, 2015, 10, e0136720.	1.1	15
82	Polyaniline-based biosensors. Nanobiosensors in Disease Diagnosis, 0, , 25.	0.0	21
83	Molecular Dynamics Simulation Analysis of Anti-MUC1 Aptamer and Mucin 1 Peptide Binding. Journal of Physical Chemistry B, 2015, 119, 6571-6583.	1.2	44
84	Polymer Based Biosensors for Medical Applications. , 2015, , 513-537.		1
85	Colorimetric detection of clinical DNA samples using an intercalator-conjugated polydiacetylene sensor. Biosensors and Bioelectronics, 2015, 72, 127-132.	5.3	42
86	Electronic Biosensors Based on III-Nitride Semiconductors. Annual Review of Analytical Chemistry, 2015, 8, 149-169.	2.8	66
87	Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Science Translational Medicine, 2015, 7, 289ra83.	5.8	199
88	Biocompatibility tests on spray coated carbon nanotube and PEDOT:PSS thin films. , 2015, , .		1
89	Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors and Bioelectronics, 2015, 68, 49-54.	5.3	76
90	Analytical applications of affibodies. TrAC - Trends in Analytical Chemistry, 2015, 65, 73-82.	5.8	26
91	Determination of Total Protein Concentration in Solution Using Gold Electrode Modified with Silver Nanoparticles. Electroanalysis, 2015, 27, 253-257.	1.5	1
92	Concentration-Dependent Thermophoretic Accumulation for the Detection of DNA Using DNA-Functionalized Nanoparticles. Analytical Chemistry, 2015, 87, 2845-2851.	3.2	26
93	Spatioâ€Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D. Advanced Healthcare Materials, 2015, 4, 811-830.	3.9	69
94	Improving the sensitivity of the heatâ€transfer method (HTM) for cancer cell detection with optimized sensor chips. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1320-1326.	0.8	13
95	Surface plasmon resonance (SPR) sensors for detecting allergens in food. , 2015, , 229-244.		4

#	Article	IF	CITATIONS
96	ZnO nanostructures in enzyme biosensors. Science China Materials, 2015, 58, 60-76.	3.5	70
97	Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chemistry, 2015, 181, 277-283.	4.2	85
98	Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody–antigen interactions. RSC Advances, 2015, 5, 58478-58484.	1.7	23
99	Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing. ACS Applied Materials & Interfaces, 2015, 7, 18188-18194.	4.0	28
100	A digital microfluidic device with integrated nanostructured microelectrodes for electrochemical immunoassays. Lab on A Chip, 2015, 15, 3776-3784.	3.1	58
101	Interplay between the potential waveform and diffusion layer dynamics determines the time-response of voltammetric detection in microchannels. Electrochimica Acta, 2015, 166, 223-231.	2.6	0
102	Molecularly imprinted polymers as recognition materials for electronic tongues. Biosensors and Bioelectronics, 2015, 74, 856-864.	5.3	57
103	Organic and Hybrid Photonic Crystals. , 2015, , .		38
104	Fluorescent Nucleic Acid Analogues in Research and Clinical Diagnostics. RNA Technologies, 2015, , 161-181.	0.2	2
105	Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chemical Science, 2015, 6, 5114-5119.	3.7	58
106	Multi-spot, label-free immunoassay on reflectionless glass. Biosensors and Bioelectronics, 2015, 74, 539-545.	5.3	23
107	Interferometric-type optical biosensor based on exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2015, 221, 320-327.	4.0	47
108	DNA–bare gold affinity interactions: mechanism and applications in biosensing. Analytical Methods, 2015, 7, 7042-7054.	1.3	131
109	Nanostructured ZnO films: A study of molecular influence on transport properties by impedance spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 200, 124-131.	1.7	20
110	Enzymatic Biosensors. , 2015, , 133-204.		9
111	A chitosan modified nickel oxide platform for biosensing applications. Journal of Materials Chemistry B, 2015, 3, 6698-6708.	2.9	37
112	Non-enzymatic assay for glucose by using immobilized whole-cells of E. coli containing glucose binding protein fused to fluorescent proteins. Sensors and Actuators B: Chemical, 2015, 221, 236-241.	4.0	0
113	Biosensors for Blood Glucose and Diabetes Diagnosis: Evolution, Construction, and Current Status. Analytical Letters, 2015, 48, 2509-2532.	1.0	43

#	Article	IF	CITATIONS
114	Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning. ACS Nano, 2015, 9, 6262-6270.	7.3	19
115	Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosensors and Bioelectronics, 2015, 74, 243-262.	5.3	46
116	Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24, 43-63.	5.6	226
117	Solar cells for self-sustainable intelligent packaging. Journal of Materials Chemistry A, 2015, 3, 13226-13236.	5.2	27
118	An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosensors and Bioelectronics, 2015, 71, 359-364.	5.3	44
119	Electrochemical genosensor assay using lyophilized gold nanoparticles/latex microsphere label for detection of Vibrio cholerae. Talanta, 2015, 139, 167-173.	2.9	33
120	Biosensors for Monitoring Airborne Pathogens. Journal of the Association for Laboratory Automation, 2015, 20, 390-410.	2.8	64
121	Plasmonic optical trapping of soft nanomaterials such as polymer chains and DNA: micro-patterning formation. Optical Review, 2015, 22, 137-142.	1.2	16
122	Nanostructured and spiky gold in biomolecule detection: improving binding efficiencies and enhancing optical signals. RSC Advances, 2015, 5, 16461-16475.	1.7	12
123	Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Mikrochimica Acta, 2015, 182, 1819-1826.	2.5	82
124	Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3′-phosphatase using a cascade enzymatic cleavage strategy. Chemical Communications, 2015, 51, 176-179.	2.2	30
126	Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale, 2015, 7, 6420-6431.	2.8	329
127	A peptide nucleic acid label-free biosensor for Mycobacterium tuberculosis DNA detection via azimuthally controlled grating-coupled SPR. Analytical Methods, 2015, 7, 4173-4180.	1.3	18
128	Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. Journal of Materials Chemistry C, 2015, 3, 6445-6470.	2.7	79
129	Challenges of Biomolecular Detection at the Nanoscale: Nanopores and Microelectrodes. Analytical Chemistry, 2015, 87, 5470-5475.	3.2	27
130	Nanoparticle/Nanochannels-Based Electrochemical Biosensors. Nanoscience and Technology, 2015, , 205-223.	1.5	1
131	Biosensor Enhancement Using Grooved Micromixers: Part I, Numerical Studies. Analytical Chemistry, 2015, 87, 5516-5523.	3.2	16
132	Biosensor Enhancement Using Grooved Micromixers: Part II, Experimental Studies. Analytical Chemistry, 2015, 87, 5524-5530.	3.2	24

#	Article	IF	CITATIONS
133	Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosensors and Bioelectronics, 2015, 70, 498-503.	5.3	331
134	Programmable Mg ²⁺ -dependent DNAzyme switch by the catalytic hairpin DNA assembly for dual-signal amplification toward homogeneous analysis of protein and DNA. Chemical Communications, 2015, 51, 7364-7367.	2.2	64
135	Integrating dye-intercalated DNA dendrimers with electrospun nanofibers: a new fluorescent sensing platform for nucleic acids, proteins, and cells. Journal of Materials Chemistry B, 2015, 3, 3541-3547.	2.9	26
136	High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres. Physical Chemistry Chemical Physics, 2015, 17, 21343-21347.	1.3	48
137	Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chemical Communications, 2015, 51, 8540-8543.	2.2	42
138	Hydration detection through use of artificial sweat in doped- and partially-doped nanostructured CuO films. Ceramics International, 2015, 41, 8002-8007.	2.3	23
139	Biomedical applications of cationic clay minerals. RSC Advances, 2015, 5, 29467-29481.	1.7	179
140	Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups. Carbon, 2015, 95, 681-689.	5.4	76
141	Integrated electrically driven surface plasmon resonance device for biosensing applications. Optics Express, 2015, 23, 19763.	1.7	1
142	Development of a reusable protein G based SPR immunosensor for direct human growth hormone detection in real samples. Analytical Methods, 2015, 7, 9875-9884.	1.3	37
143	A zero-step functionalization on paper-based biosensing platform for covalent biomolecule immobilization. Sensing and Bio-Sensing Research, 2015, 6, 13-18.	2.2	18
144	Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. Lab on A Chip, 2015, 15, 3880-3890.	3.1	28
145	Printed Electrochemical Instruments for Biosensors. ECS Journal of Solid State Science and Technology, 2015, 4, S3001-S3005.	0.9	46
146	Emerging Technologies for Next-Generation Point-of-Care Testing. Trends in Biotechnology, 2015, 33, 692-705.	4.9	583
147	Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface. ACS Applied Materials & Interfaces, 2015, 7, 23837-23847.	4.0	32
148	Introduction to Organic Electronics. Springer Theses, 2015, , 5-31.	0.0	2
149	pH-induced on/off-switchable graphene bioelectronics. Journal of Materials Chemistry B, 2015, 3, 7434-7439.	2.9	33
150	Fabrication of nickel oxide nanostructures with high surface area and application for urease-based biosensor for urea detection. RSC Advances, 2015, 5, 78807-78814.	1.7	16

#	Article	IF	CITATIONS
151	One-Step Fabrication of Electrospun Photo-Cross-Linkable Polymer Nanofibers Incorporating Multiwall Carbon Nanotubes and Enzyme for Biosensing. Journal of the Electrochemical Society, 2015, 162, B275-B281.	1.3	27
152	Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Analytical Chemistry, 2015, 87, 11826-11831.	3.2	66
153	Flexible Organic Electrochemical Transistors for Highly Selective Enzyme Biosensors and Used for Saliva Testing. Advanced Materials, 2015, 27, 676-681.	11.1	278
154	Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymers. Chemical Communications, 2015, 51, 402-405.	2.2	27
155	Amperometric measurements of ethanol on paper with a glucometer. Talanta, 2015, 134, 194-199.	2.9	16
156	Advanced Polymers in Medicine. , 2015, , .		24
157	Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochemistry Communications, 2015, 50, 81-87.	2.3	83
158	Novel biosensing methodologies for improving the detection of single nucleotide polymorphism. Biosensors and Bioelectronics, 2015, 66, 297-307.	5.3	54
159	Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, 2015, 69, .	1.0	23
160	Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Critical Reviews in Analytical Chemistry, 2015, 45, 97-105.	1.8	262
161	Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review. Analytica Chimica Acta, 2015, 872, 7-25.	2.6	212
162	GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution. Sensors and Actuators B: Chemical, 2015, 207, 556-562.	4.0	48
163	Highly sensitive fluorescence detection of target DNA by coupling exonuclease-assisted cascade target recycling and DNAzyme amplification. Biosensors and Bioelectronics, 2015, 63, 99-104.	5.3	68
164	Electrochemical biosensor for carbofuran pesticide based on esterases from Eupenicillium shearii FREI-39 endophytic fungus. Biosensors and Bioelectronics, 2015, 63, 407-413.	5.3	28
165	Molecularly engineered graphene surfaces for sensing applications: A review. Analytica Chimica Acta, 2015, 859, 1-19.	2.6	192
166	Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors. Biosensors and Bioelectronics, 2015, 64, 605-610.	5.3	15
167	Photoelectrochemical bioanalysis: the state of the art. Chemical Society Reviews, 2015, 44, 729-741.	18.7	750
168	Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore. Biosensors and Bioelectronics, 2015, 67, 11-17.	5.3	24

#	Article	IF	Citations
169	Bioengineered Surfaces for Real-Time Label-Free Detection of Cancer Cells. , 0, , .		0
170	Electrochemical Biosensors based on Acetylcholinesterase and Butyrylcholinesterase. A Review. International Journal of Electrochemical Science, 2016, 11, 7440-7452.	0.5	16
171	Nanobiosensors: Next Generation Point-of-Care Biomedical Devices for Personalized Diagnosis. Journal of Analytical & Bioanalytical Techniques, 2016, 7, .	0.6	13
173	Surface Modification Chemistries of Materials Used in Diagnostic Platforms with Biomolecules. Journal of Chemistry, 2016, 2016, 1-19.	0.9	51
174	Applications of carbon dots in biosensing and cellular imaging. , 2016, , 339-364.		4
175	Graphene quantum dot-based on-chip electrochemical DNA hybridization sensor for pancreatic cancer. Reports in Electrochemistry, 0, Volume 6, 31-40.	0.3	8
176	A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. Beilstein Journal of Nanotechnology, 2016, 7, 2023-2036.	1.5	55
177	Recent Advances in Biosensor Technology for Potential Applications – An Overview. Frontiers in Bioengineering and Biotechnology, 2016, 4, 11.	2.0	401
178	Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend. Biosensors, 2016, 6, 51.	2.3	73
179	Biosensors Incorporating Bimetallic Nanoparticles. Nanomaterials, 2016, 6, 5.	1.9	58
180	Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol. Sensors, 2016, 16, 1015.	2.1	17
181	Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration. Sensors, 2016, 16, 1342.	2.1	8
182	Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application. Sensors, 2016, 16, 1761.	2.1	135
183	Integrating Deoxyribozymes into Colorimetric Sensing Platforms. Sensors, 2016, 16, 2061.	2.1	41
184	Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection. Sensors, 2016, 16, 422.	2.1	79
185	Nanostructured PMMA-coated Love wave device as a platform for protein adsorption studies. Sensors and Actuators B: Chemical, 2016, 236, 583-590.	4.0	8
186	H ₂ â€Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration. Angewandte Chemie - International Edition, 2016, 55, 6216-6220.	7.2	42
187	CDâ€59 Targeted Ultrasensitive Electrochemical Immunosensor for Fast and Noninvasive Diagnosis of Oral Cancer. Electroanalysis, 2016, 28, 2565-2574.	1.5	80

#	Article	IF	CITATIONS
188	Control of Electronâ€transfer in Immunonanosensors by Using Polyclonal and Monoclonal Antibodies. Electroanalysis, 2016, 28, 1795-1802.	1.5	4
189	Labelâ€free optical detection of Câ€reactive protein by nanoimprint lithographyâ€based 2Dâ€photonic crystal film. Biotechnology Journal, 2016, 11, 831-837.	1.8	23
190	H ₂ â€Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration. Angewandte Chemie, 2016, 128, 6324-6328.	1.6	10
191	Nanobiosensors in diagnostics. Nanobiomedicine, 2016, 3, 184954351666357.	4.4	63
192	Expanding molecular logic capabilities in DNA-scaffolded multiFRET triads. RSC Advances, 2016, 6, 97587-97598.	1.7	23
193	Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. Journal of Biophotonics, 2016, 9, 1362-1375.	1.1	22
194	Multi ion-sensor arrays: Towards an "electronic tongue― , 2016, , .		4
195	Micropatterned Flexible and Conformable Biofunctional Devices Using Silk Proteins. MRS Advances, 2016, 1, 3539-3544.	0.5	2
196	A Microwave Ring Resonator Based Glucose Sensor. Procedia Engineering, 2016, 168, 465-468.	1.2	28
197	Chemotaxis for enhanced immobilization ofEscherichia coliandLegionella pneumophilaon biofunctionalized surfaces of GaAs. Biointerphases, 2016, 11, 021004.	0.6	7
198	Biosensing made easy with PEG-targeted bi-specific antibodies. Chemical Communications, 2016, 52, 5730-5733.	2.2	11
199	Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus) Tj ETQq1	1 0.78431 1.1	4 rgBT /Ove
200	Design and functionalization of responsive hydrogels for photonic crystal biosensors. Molecular Systems Design and Engineering, 2016, 1, 225-241.	1.7	31
201	Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach. Journal of Colloid and Interface Science, 2016, 474, 151-158.	5.0	10
202	DNA based signal amplified molecularly imprinted polymer electrochemical sensor for multiplex detection. RSC Advances, 2016, 6, 49597-49603.	1.7	6
203	A New Wrinkle in Biosensors: Wrinkled electrodes could be a breakthrough for lab-on-a-chip devices. IEEE Nanotechnology Magazine, 2016, 10, 6-18.	0.9	8
204	Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Analytical Methods, 2016, 8, 3861-3877.	1.3	73
205	Programmable bioelectronics in a stimuli-encoded 3D graphene interface. Nanoscale, 2016, 8, 9976-9981.	2.8	21

#	Article	IF	CITATIONS
206	Exploiting plug-and-play electrochemistry for drug discovery. Future Medicinal Chemistry, 2016, 8, 567-577.	1.1	16
207	Critical overview on the application of sensors and biosensors for clinical analysis. TrAC - Trends in Analytical Chemistry, 2016, 85, 36-60.	5.8	113
208	Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Analytical Chemistry, 2016, 88, 5885-5891.	3.2	26
209	Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors. Biosensors and Bioelectronics, 2016, 84, 7-14.	5.3	33
210	Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry, 2016, 111, 7-14.	2.4	51
211	Quantification of the vascular endothelial growth factor with a bioluminescence resonance energy transfer (BRET) based single molecule biosensor. Biosensors and Bioelectronics, 2016, 86, 609-615.	5.3	17
212	Solid phase synthesis of a thrombin binding aptamer on macroporous silica for label free optical quantification of thrombin. RSC Advances, 2016, 6, 86762-86769.	1.7	39
215	Biosensor-Based Technologies for the Detection of Pathogens and Toxins. Comprehensive Analytical Chemistry, 2016, 74, 93-120.	0.7	13
216	A medical cloud. , 2016, , .		9
217	Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509.	3.2	50
217 218		3.2 2.6	50 47
	for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Analytica Chimica		
218	for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Analytica Chimica Acta, 2016, 940, 21-37. An enzyme biosensor based on beta-galactosidase inhibition for electrochemical detection of cadmium	2.6	47
218 219	 for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Analytica Chimica Acta, 2016, 940, 21-37. An enzyme biosensor based on beta-galactosidase inhibition for electrochemical detection of cadmium (II) and chromium (VI). International Journal of Environmental Analytical Chemistry, 0, , 1-14. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for 	2.6 1.8	47 9
218 219 220	 for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Analytica Chimica Acta, 2016, 940, 21-37. An enzyme biosensor based on beta-galactosidase inhibition for electrochemical detection of cadmium (II) and chromium (VI). International Journal of Environmental Analytical Chemistry, 0, , 1-14. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. Electroanalysis, 2016, 28, 13-26. Colorimetric sensor based on bubble wrap and camera phone for glucose determination. Journal of 	2.6 1.8 1.5	47 9 45
218 219 220 221	for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Analytica Chimica Acta, 2016, 940, 21-37. An enzyme biosensor based on beta-galactosidase inhibition for electrochemical detection of cadmium (II) and chromium (VI). International Journal of Environmental Analytical Chemistry, 0, , 1-14. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. Electroanalysis, 2016, 28, 13-26. Colorimetric sensor based on bubble wrap and camera phone for glucose determination. Journal of Applied Biomedicine, 2016, 14, 315-319. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy. ACS Applied Materials & amp; Interfaces, 2016, 8,	2.6 1.8 1.5 0.6	47 9 45 9
218 219 220 221 222	 for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 2016, 88, 8502-8509. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Analytica Chimica Acta, 2016, 940, 21-37. An enzyme biosensor based on beta-galactosidase inhibition for electrochemical detection of cadmium (II) and chromium (VI). International Journal of Environmental Analytical Chemistry, 0, , 1-14. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. Electroanalysis, 2016, 28, 13-26. Colorimetric sensor based on bubble wrap and camera phone for glucose determination. Journal of Applied Biomedicine, 2016, 14, 315-319. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy. ACS Applied Materials & amp; Interfaces, 2016, 8, 22032-22038. Specific Light-Up Probe with Aggregation-Induced Emission for Facile Detection of Chymase. Analytical 	 2.6 1.8 1.5 0.6 4.0 	47 9 45 9 50

#	Article	IF	CITATIONS
226	A Review on Synthetic Receptors for Bioparticle Detection Created by Surface-Imprinting Techniques—From Principles to Applications. ACS Sensors, 2016, 1, 1171-1187.	4.0	99
227	Towards DNA methylation detection using biosensors. Analyst, The, 2016, 141, 5922-5943.	1.7	40
228	Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews, 2016, 116, 9001-9090.	23.0	702
229	Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus, 2016, 6, 20160027.	1.5	142
230	Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Analytical and Bioanalytical Chemistry, 2016, 408, 8859-8868.	1.9	36
231	Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics. Analytical Methods, 2016, 8, 8380-8394.	1.3	42
232	Electrochemical Glucose Sensing: Is There Still Room for Improvement?. Analytical Chemistry, 2016, 88, 11271-11282.	3.2	213
233	Colorimetric Detection of Bacteria Using Litmus Test. Journal of Visualized Experiments, 2016, , .	0.2	3
234	Probing the Active Site of an Azurin Mutant Hot-Wired to Gold Electrodes. Journal of Physical Chemistry C, 2016, 120, 7639-7645.	1.5	9
235	Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes. Nucleic Acids Research, 2016, 44, 3739-3749.	6.5	13
236	Supramolecular Approach to Enzyme Sensing on Paper Discs Using Lanthanide Photoluminescence. ACS Sensors, 2016, 1, 934-940.	4.0	58
237	Electrochemical Glucose Biosensors for Diabetes Care. Bioanalytical Reviews, 2016, , 1-101.	0.1	4
238	Direct and Highly Selective Drug Optosensing in Real, Undiluted Biological Samples with Quantum-Dot-Labeled Hydrophilic Molecularly Imprinted Polymer Microparticles. ACS Applied Materials & Interfaces, 2016, 8, 15741-15749.	4.0	75
239	Antibody-based magneto-elastic biosensors: potential devices for detection of pathogens and associated toxins. Applied Microbiology and Biotechnology, 2016, 100, 6149-6163.	1.7	24
240	Polymer–Graphene Nanocomposite Materials for Electrochemical Biosensing. Macromolecular Bioscience, 2016, 16, 944-957.	2.1	25
241	Lightâ€Triggered Switchable Graphene–Polymer Hybrid Bioelectronics. Advanced Materials Interfaces, 2016, 3, 1500353.	1.9	15
242	Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta, 2016, 146, 801-814.	2.9	183
243	Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 841-844.	1.0	7

#	Article	IF	CITATIONS
244	Fully Enzymatic Membraneless Glucose Oxygen Fuel Cell That Provides 0.275 mA cm ^{–2} in 5 mM Glucose, Operates in Human Physiological Solutions, and Powers Transmission of Sensing Data. Analytical Chemistry, 2016, 88, 2156-2163.	3.2	59
245	The future point-of-care detection of disease and its data capture and handling. Analytical and Bioanalytical Chemistry, 2016, 408, 2827-2837.	1.9	37
246	Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 2016, 45, 377-411.	18.7	485
247	Using photo-initiated polymerization reactions to detect molecular recognition. Chemical Society Reviews, 2016, 45, 532-545.	18.7	49
248	Powering point-of-care diagnostic devices. Biotechnology Advances, 2016, 34, 321-330.	6.0	97
249	Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnology Advances, 2016, 34, 30-46.	6.0	100
250	Photochemical Synthesis of Shape-Controlled Nanostructured Gold on Zinc Oxide Nanorods as Photocatalytically Renewable Sensors. Analytical Chemistry, 2016, 88, 3789-3795.	3.2	27
251	Cross-calibrating interferon- \hat{I}^3 detection by using eletrochemical impedance spectroscopy and paraboloidal mirror enabled surface plasmon resonance interferometer. Proceedings of SPIE, 2016, , .	0.8	2
252	Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review. Electrochimica Acta, 2016, 193, 321-343.	2.6	156
253	Recent advances in biosensor based diagnosis of urinary tract infection. Biosensors and Bioelectronics, 2016, 80, 497-510.	5.3	44
254	Ultrasensitive Immunoassay of Proteins Based on Gold Label/Silver Staining, Galvanic Replacement Reaction Enlargement, and in Situ Microliter-Droplet Anodic Stripping Voltammetry. Journal of Physical Chemistry C, 2016, 120, 2855-2865.	1.5	20
255	Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups. Langmuir, 2016, 32, 1818-1827.	1.6	22
256	Current Optical Biosensors in Clinical Practice. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-12.	0.2	1
257	Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification. Biosensors and Bioelectronics, 2016, 80, 208-214.	5.3	19
258	Biocompatibility Tests on Spray Coated Carbon Nanotube and PEDOT:PSS Thin Films. IEEE Nanotechnology Magazine, 2016, 15, 373-379.	1.1	4
259	To the memory of Marco Mascini: His contribution in the field of biosensors. TrAC - Trends in Analytical Chemistry, 2016, 79, 2-8.	5.8	2
260	A review on electronic bio-sensing approaches based on non-antibody recognition elements. Analyst, The, 2016, 141, 2335-2346.	1.7	35
261	Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules. Nanoscale, 2016, 8, 1665-1675.	2.8	37

#	Article	IF	CITATIONS
262	Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Mikrochimica Acta, 2016, 183, 1055-1062.	2.5	29
263	Surface plasmon resonance immunosensor for ErbB2 breast cancer biomarker determination in human serum and raw cancer cell lysates. Analytica Chimica Acta, 2016, 905, 156-162.	2.6	73
264	Bioelectrocatalytic systems for health applications. Biotechnology Advances, 2016, 34, 177-197.	6.0	48
265	Lateral-flow technology: From visual to instrumental. TrAC - Trends in Analytical Chemistry, 2016, 79, 297-305.	5.8	202
266	Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC - Trends in Analytical Chemistry, 2016, 79, 344-362.	5.8	97
267	Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst, The, 2016, 141, 429-449.	1.7	68
268	Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification. Biosensors and Bioelectronics, 2016, 77, 818-823.	5.3	13
269	Electrochemical sensing platforms based on the different carbon derivative incorporated interface. Materials Science and Engineering C, 2016, 58, 790-798.	3.8	16
270	Development and characterization of carbon based electrodes from pyrolyzed paper for biosensing applications. Journal of Electroanalytical Chemistry, 2016, 765, 8-15.	1.9	53
271	Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronics, 2016, 75, 273-284.	5.3	514
272	Switchable bioelectronics. Biosensors and Bioelectronics, 2016, 76, 251-265.	5.3	34
273	Molecularly-imprinted polymer sensors: realising their potential. Biosensors and Bioelectronics, 2016, 76, 131-144.	5.3	408
274	Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosensors and Bioelectronics, 2017, 89, 107-122.	5.3	173
275	Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor. Biosensors and Bioelectronics, 2017, 91, 637-643.	5.3	55
276	Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today, 2017, 12, 98-115.	6.2	266
277	Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosensors and Bioelectronics, 2017, 91, 321-327.	5.3	19
278	Label-free, non-enzymatic and ultrasensitive electrochemical nucleic acid biosensing by tandem DNA-fueled target recycling and hybridization chain reaction. Sensors and Actuators B: Chemical, 2017, 244, 450-457.	4.0	13
279	Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 2017, 8, 14217.	5.8	122

	C	ITATION REPORT	
#	Article	IF	Citations
280	Emerging applications of label-free optical biosensors. Nanophotonics, 2017, 6, 627-645.	2.9	140
281	Communication—Accessing Stability of Oxidase-Based Biosensors via Stabilizing the Advanced H ₂ O ₂ Transducer. Journal of the Electrochemical Society, 2017, 164, B3056-B3058.	1.3	19
282	Modification of glassy carbon electrode with iron-terpyridine complex and iron-terpyridine complex covalently bonded to ordered mesoporous carbon substrate: Preparation, electrochemistry and application to H 2 O 2 determination. Journal of Electroanalytical Chemistry, 2017, 789, 92-99.	1.9	12
283	Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications. AC Applied Materials & Interfaces, 2017, 9, 5031-5049.	CS 4.0	100
284	Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Prote A for Immunoglobulin Detection. Nanoscale Research Letters, 2017, 12, 112.	in 3.1	10
285	Optimization and characterization of a flow cell for heat-transfer-based biosensing. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600758.	0.8	8
286	An electrochemical sensor device for measuring blood ammonia at the point of care. Talanta, 2017, 2296-301.	167, 2.9	34
287	Flexible Microgap Electrodes by Direct Inkjet Printing for Biosensing Application. Advanced Biology, 2017, 1, 1600016.	3.0	21
288	Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 2017, 27, 1605271.	d 7.8	247
289	Rational Design of Electrochemical DNA Biosensors for Pointâ€of are Applications. ChemElectroC 2017, 4, 795-805.	Chem, 1.7	47
290	Electrochemical Lateral Flow Devices: Towards Rapid Immunomagnetic Assays. ChemElectroChem, 2 4, 880-889.	2017, 1.7	46
291	L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvat oxidase. Electrochimica Acta, 2017, 231, 209-215.	e 2.6	36
292	Group III nitride nanomaterials for biosensing. Nanoscale, 2017, 9, 7320-7341.	2.8	51
293	Printed microfluidic filter for heparinized blood. Biomicrofluidics, 2017, 11, 034101.	1.2	9
295	Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid. Sensors and Actuators B: Chemical, 2017, 252, 991-1002.	4.0	88
296	Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices and Microstructures, 2017, 101, 299-305.	1.4	26
297	Quantitative self-powered electrochromic biosensors. Chemical Science, 2017, 8, 1995-2002.	3.7	58
298	Interfacing Graphene for Electrochemical Biosensing. , 2017, , 105-122.		0

#	Article	IF	CITATIONS
299	Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 531-542.	0.7	19
300	Substrate‧pecific Amino Acid Sensing Using a Molecular d /  l â€Cysteine Probe for Comprehensive Stereochemical Analysis in Aqueous Solution. Angewandte Chemie - International Edition, 2017, 56, 7276-7281.	7.2	47
301	Functionalized polymer-based photonic devices for biosensing application. , 2017, , .		1
302	Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System. IOP Conference Series: Earth and Environmental Science, 2017, 58, 012011.	0.2	5
303	Recent build outs in electroanalytical biosensors based on carbon-nanomaterial modified screen printed electrode platforms. Analytical Methods, 2017, 9, 3895-3907.	1.3	41
304	Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29, 5426-5446.	3.2	308
305	Liposomes and lipid bilayers in biosensors. Advances in Colloid and Interface Science, 2017, 249, 88-99.	7.0	140
306	Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody. Biosensors and Bioelectronics, 2017, 97, 177-183.	5.3	37
307	Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application. Proceedings of SPIE, 2017, , .	0.8	0
308	Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient. ACS Applied Materials & Interfaces, 2017, 9, 12046-12053.	4.0	11
309	Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale. ACS Sensors, 2017, 2, 458-467.	4.0	110
310	A Dual-signal Amplification Method for DNA Detection Based on Exonuclease III and Fluorescence Quenching Ability of MoS 2 Nanosheet. Chinese Journal of Analytical Chemistry, 2017, 45, 303-308.	0.9	8
311	A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. Biosensors and Bioelectronics, 2017, 91, 380-387.	5.3	41
312	Nanoparticles Modified ITO Based Biosensor. Journal of Electronic Materials, 2017, 46, 2254-2268.	1.0	16
313	A Colorimetric CMOS-Based Platform for Rapid Total Serum Cholesterol Quantification. IEEE Sensors Journal, 2017, 17, 240-247.	2.4	21
314	Electrochemical detection of magnetically-entrapped DNA sequences from complex samples by multiplexed enzymatic labelling: Application to a transgenic food/feed quantitative survey. Talanta, 2017, 164, 261-267.	2.9	9
315	Coupling Sensitive Nucleic Acid Amplification with Commercial Pregnancy Test Strips. Angewandte Chemie, 2017, 129, 1012-1016.	1.6	21
316	Coupling Sensitive Nucleic Acid Amplification with Commercial Pregnancy Test Strips. Angewandte Chemie - International Edition, 2017, 56, 992-996.	7.2	135

ARTICLE IF CITATIONS Recent advances in Nanomaterial-mediated Bio and immune sensors for detection of aflatoxin in food 317 5.8 95 products. TrAC - Trends in Analytical Chemistry, 2017, 87, 112-128. Recent Progress of Selfâ€Powered Sensing Systems for Wearable Electronics. Small, 2017, 13, 1701791. 5.2 223 Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal 319 4.0 79 Amplification and Crystal Violet Dye. ACS Sensors, 2017, 2, 1713-1720. Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Applied Materials Today, 2017, 9, 387-401. Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by 323 4.0 7 Intermicroparticle Network. ACS Applied Materials & amp; Interfaces, 2017, 9, 33368-33376. Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum. ACS Sensors, 2017, 2, 1278-1286. 324 4.0 Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in 325 5.9 56 Food. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1188-1205. Introduction to Electrochemical Point-of-Care Devices. Bioanalysis, 2017, , 1-26. 0.1 326 327 Electrochemical Biosensors. Bioanalysis, 2017, , 27-66. 0.1 0 Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological 38 Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258. Smart applications of bionanosensors for BCR/ABL fusion gene detection in leukemia. Journal of King 329 12 1.6 Saud University - Science, 2017, 29, 413-423. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 258 2017, 117, 12942-13038. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective 331 4.5 111 Disease Biomarker Detection. Nano Letters, 2017, 17, 5938-5949. Development of Visible-Light Induced Photoelectrochemical Platform Based on Cyclometalated 3.2 Iridium (III) Complex for Bioanalysis. Analytical Chemistry, 2017, 89, 11098-11106. Core-shell heterostructured multiwalled carbon nanotubes@reduced graphene oxide 333 nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and 104 1.6 nitrite. Scientific Reports, 2017, 7, 11910. Electroactive Biofilms for Sensing: Reflections and Perspectives. ACS Sensors, 2017, 2, 1072-1085. 334 79 335 Dual-Mode Electro-photonic Silicon Biosensors. Springer Theses, 2017, , . 0.0 2 From 3D to 4D printing – design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 291-299.

#	Article	IF	CITATIONS
337	Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chemical Reviews, 2017, 117, 9973-10042.	23.0	518
338	Nanomaterial-based biosensors for measurement of lipids and lipoproteins towards point-of-care of cardiovascular disease. Analyst, The, 2017, 142, 3309-3321.	1.7	26
339	Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Scientific Reports, 2017, 7, 5715.	1.6	234
340	Developing aptasensors for forensic analysis. TrAC - Trends in Analytical Chemistry, 2017, 94, 150-160.	5.8	34
341	Substratspezifische Analyse von Aminosären mit Sensoren für d /  l â€Cystein: umfassende stereochemische Untersuchungen in wäsriger Lösung. Angewandte Chemie, 2017, 129, 7382-7387.	1.6	10
342	Single-step homogeneous immunoassay for detecting prostate-specific antigen using dual-color light scattering of metal nanoparticles. Analyst, The, 2017, 142, 3484-3491.	1.7	13
343	Facile longitudinal unzipped multiwalled carbon nanotubes incorporated overoxidized poly(p) Tj ETQq0 0 0 rgBT and tryptophan. Journal of Electroanalytical Chemistry, 2017, 801, 395-402.	/Overlock 1.9	10 Tf 50 507 12
344	Straightforward Immunosensing Platform Based on Graphene Oxideâ€Decorated Nanopaper: A Highly Sensitive and Fast Biosensing Approach. Advanced Functional Materials, 2017, 27, 1702741.	7.8	66
345	Screen-printed electrodes as versatile electrochemical sensors and biosensors. , 2017, , .		1
347	Improvement of amperometric transducer selectivity using nanosized phenylenediamine films. Nanoscale Research Letters, 2017, 12, 594.	3.1	16
349	A review on ZnO-based electrical biosensors for cardiac biomarker detection. Future Science OA, 2017, 3, FSO196.	0.9	61
350	Point-of-care testing: applications of 3D printing. Lab on A Chip, 2017, 17, 2713-2739.	3.1	122
351	A non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers. Chemical Communications, 2017, 53, 9055-9058.	2.2	25
352	Electrochromic Sensor for Multiplex Detection of Metabolites Enabled by Closed Bipolar Electrode Coupling. ACS Sensors, 2017, 2, 1020-1026.	4.0	59
353	Coupling electrochemistry with in situ fluorescence (confocal) microscopy. Current Opinion in Electrochemistry, 2017, 6, 31-37.	2.5	37
354	6.20 Skin Tissue Engineering â~†. , 2017, , 334-382.		3
355	Biosensors and Related Bioanalytical Tools. Comprehensive Analytical Chemistry, 2017, 77, 1-33.	0.7	23
356	Electrochemical reduction of Bicarbonate to Formate with Silver Nanoparticles and Silver Nanoclusters supported on Multiwalled Carbon Nanotubes. Electrochimica Acta, 2017, 246, 1082-1087.	2.6	18

#	Article	IF	CITATIONS
357	From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups. Langmuir, 2017, 33, 8829-8837.	1.6	10
358	Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosensors and Bioelectronics, 2017, 93, 46-51.	5.3	129
359	Nucleic Acid Biosensors: Recent Advances and Perspectives. Analytical Chemistry, 2017, 89, 189-215.	3.2	328
360	Highâ€Throughput Electrochemical Screening Assay for Free and Immobilized Oxidases: Electrochemiluminescence and Intermittent Pulse Amperometry. ChemElectroChem, 2017, 4, 957-966.	1.7	11
361	Trends in Bioelectroanalysis. Bioanalytical Reviews, 2017, , .	0.1	3
362	Recent advances in 2D bioelectronics. Biosensors and Bioelectronics, 2017, 89, 1-7.	5.3	12
363	Simplified immunoassay for rapid Dengue serotype diagnosis, revealing insensitivity to non-specific binding interference. Sensing and Bio-Sensing Research, 2017, 13, 96-103.	2.2	15
364	Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta, 2017, 162, 511-522.	2.9	132
365	Enzyme Stabilization and Immobilization. Methods in Molecular Biology, 2017, , .	0.4	18
366	Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes. Methods in Molecular Biology, 2017, 1504, 203-213.	0.4	3
367	Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor. Biosensors and Bioelectronics, 2017, 87, 25-30.	5.3	58
368	An SPR based sensor for allergens detection. Biosensors and Bioelectronics, 2017, 88, 109-113.	5.3	63
369	Fundamentals of MALDI-ToF-MS Analysis. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	11
370	Nanostructured screen-printed electrodes based on titanate nanowires for biosensing applications. Materials Science and Engineering C, 2017, 70, 15-20.	3.8	10
371	An array fluorescent biosensor based on planar waveguide for multi-analyte determination in water samples. Sensors and Actuators B: Chemical, 2017, 240, 107-113.	4.0	32
372	Fundamentals of Biosensors and Application of MALDI-ToF-MS in Bio-diagnostic Domain. SpringerBriefs in Applied Sciences and Technology, 2017, , 21-39.	0.2	0
373	Immunosensors for Biomarker Detection in Autoimmune Diseases. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 111-121.	1.0	31
374	Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosensors and Bioelectronics, 2017, 87, 764-771.	5.3	47

ARTICLE IF CITATIONS # Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing 375 5.3 165 applications. Biosensors and Bioelectronics, 2017, 89, 886-898. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives. Journal of 376 1.0 Dermatological Science, 2017, 85, 71-76. Low electro-synthesis potentials improve permselectivity of polymerized natural phenols in biosensor 377 2.9 21 applications. Talanta, 2017, 162, 151-158. Evaluation of Freshness of Fishes Using MWCNT/TiO2 Nanobiocomposites Based Biosensor. Food 378 Analytical Methods, 2017, 10, 522-528. Multifunctional graphene micro-islands: Rapid, low-temperature plasma-enabled synthesis and facile 379 integration for bioengineering and genosensing applications. Biosensors and Bioelectronics, 2017, 89, 5.3 11 437-443. 380 Sensing at the Surface of Graphene Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1603610. 11.1 230 381 Materials for Chemical Sensing., 2017, , . 7 Current advancement in electrochemical analysis of neurotransmitters in biological fluids. TrAC -5.8 78 Trends in Analytical Chemistry, 2017, 86, 107-121. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Materials Science and 383 3.8 44 Engineering C, 2017, 70, 564-571. Agricultural Nanotechnologies: Current Applications and Future Prospects. , 2017, , 3-28. Simulation of a model nanopore sensor: Ion competition underlies device behavior. Journal of 386 1.2 17 Chemical Physics, 2017, 147, 244702. Enzyme Immobilization on Nanoporous Gold: A Review. Biochemistry Insights, 2017, 10, 117862641774860. 3.3 30 Electrification of Biotechnology: Status quo. Advances in Biochemical Engineering/Biotechnology, 390 0.6 7 2017, 167, 1-14. Enzymes as Sensors. Methods in Enzymology, 2017, 589, 115-131. 0.4 Transistors as an Emerging Platform for Portable Amplified Biodetection in Preventive Personalized 392 1 Pointâ€ofâ€Care Testing., 2017, , . Development of an Ultrasensitive Electrochemical Method for Copeptin Content Determination. International Journal of Electrochemical Science, 2017, , 6694-6704. 394 Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers, 2017, 9, 364. 2.0 286 Genotyping and Bio-Sensing Chemosensory Proteins in Insects. Sensors, 2017, 17, 1801. 2.1

#	Article	IF	Citations
396	Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®. Sensors, 2017, 17, 2267.	2.1	52
397	Graphene-Based Materials for Biosensors: A Review. Sensors, 2017, 17, 2161.	2.1	351
398	Screen printing and other scalable point of care (POC) biosensor processing technologies. , 2017, , 69-98.		12
399	Polymeric Materials for Printed-Based Electroanalytical (Bio)Applications. Chemosensors, 2017, 5, 31.	1.8	15
400	3.29 Nanomaterials for Biological Sensing. , 2017, , 635-656.		2
401	Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.		3
402	Fundamentals of Enzymatic Electrochemical Systems. , 2017, , 3-50.		2
403	Bioelectrocatalytic Reaction of Glucose Oxidase Immobilized on Thiophene Copolymer Films—Influence of the Electrochemical Copolymerization Conditions. Kobunshi Ronbunshu, 2017, 74, 517-523.	0.2	0
404	>Main streams in the Construction of Biosensors and Their Applications. International Journal of Electrochemical Science, 2017, 12, 7386-7403.	0.5	65
405	A Signal-on Electrochemiluminescence Immunosensor for Detecting Alpha Fetoprotein Using Gold Nanoparticle- Graphite-Like Carbon Nitride Nanocomposite as Signal Probe. International Journal of Electrochemical Science, 2017, , 9784-9797.	0.5	6
406	Synthetic Lectins. , 2017, , 181-201.		1
407	Ion sensitive AlGaN/GaN field-effect transistors with monolithically integrated wheatstone bridge for temperature- and drift compensation in enzymatic biosensors. Sensors and Actuators B: Chemical, 2018, 263, 20-26.	4.0	12
408	Rational Design of Magnetic Micronanoelectrodes for Recognition and Ultrasensitive Quantification of Cysteine Enantiomers. Analytical Chemistry, 2018, 90, 3374-3381.	3.2	44
409	In vivo "real-time―monitoring of glucose in the brain with an amperometric enzyme-based biosensor based on gold coated tungsten (W-Au) microelectrodes. Sensors and Actuators B: Chemical, 2018, 263, 605-613.	4.0	27
410	Graphene-based aptasensors: from molecule–interface interactions to sensor design and biomedical diagnostics. Analyst, The, 2018, 143, 1526-1543.	1.7	82
411	Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics. 3 Biotech, 2018, 8, 149.	1.1	110
412	Interfacial Charge Contributions to Chemical Sensing by Electrolyte-Gated Transistors with Floating Gates. Journal of Physical Chemistry Letters, 2018, 9, 1335-1339.	2.1	19
413	Highly selective FET-type glucose sensor based on shape-controlled palladium nanoflower-decorated graphene. Sensors and Actuators B: Chemical, 2018, 264, 216-223.	4.0	37

#	Article	IF	CITATIONS
414	Influence of mesoporous defect induced mixed-valent NiO (Ni2+/Ni3+)-TiO2 nanocomposite for non-enzymatic glucose biosensors. Sensors and Actuators B: Chemical, 2018, 264, 27-37.	4.0	88
415	A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. Journal of the Iranian Chemical Society, 2018, 15, 1355-1363.	1.2	22
416	Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits validated with blood plasma assays. Electrochimica Acta, 2018, 274, 84-90.	2.6	31
417	Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Analytical Chemistry, 2018, 90, 5850-5856.	3.2	79
418	Online Electrochemical Monitoring of Glucose in Rat Brain with Acanthosphereâ€like CuOOH Nanospheresâ€based Electrochemical Sensor as Nonâ€enzymatic and O ₂ â€independent Detector. Electroanalysis, 2018, 30, 1033-1040.	1.5	9
419	Use of β-cyclodextrin as enhancer of ascorbic acid rejection in permselective films for amperometric biosensor applications. Talanta, 2018, 186, 53-59.	2.9	6
420	A comprehensive review on nano-molybdenum disulfide/DNA interfaces as emerging biosensing platforms. Biosensors and Bioelectronics, 2018, 107, 244-258.	5.3	40
421	Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Science China Materials, 2018, 61, 303-352.	3.5	184
422	Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosensors and Bioelectronics, 2018, 105, 188-210.	5.3	85
424	Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood. Biosensors and Bioelectronics, 2018, 105, 226-235.	5.3	27
425	A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosensors and Bioelectronics, 2018, 107, 1-9.	5.3	62
426	Carbon dots as analytical tools for sensing of thioredoxin reductase and screening of cancer cells. Analyst, The, 2018, 143, 1853-1861.	1.7	29
427	A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: Application to CEA determination. Biosensors and Bioelectronics, 2018, 107, 94-102.	5.3	21
428	Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. Journal of Materials Chemistry B, 2018, 6, 1149-1178.	2.9	78
429	A fluorescent wearable platform for sweat Cl ^{â^'} analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. Journal of Materials Chemistry C, 2018, 6, 1863-1869.	2.7	71
430	Synthesis of Highly Selective Magnetite (Fe ₃ O ₄) and Tyrosinase Immobilized on Chitosan Microspheres as Low Potential Electrochemical Biosensor. Journal of the Electrochemical Society, 2018, 165, G11-G17.	1.3	15
431	Nanostructured MoS ₂ -Based Advanced Biosensors: A Review. ACS Applied Nano Materials, 2018, 1, 2-25.	2.4	238
432	Chemical Vapor Deposition of Azidoalkylsilane Monolayer Films. Langmuir, 2018, 34, 1400-1409.	1.6	22

#	Article	IF	CITATIONS
433	Thickness dependence of polydopamine thin films on detection sensitivity of surface plasmon-enhanced fluorescence biosensors. Japanese Journal of Applied Physics, 2018, 57, 03EK01.	0.8	2
434	Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. International Journal of Biological Macromolecules, 2018, 110, 449-456.	3.6	73
435	Molecular antenna tailored organic thin-film transistors for sensing application. Materials Horizons, 2018, 5, 240-247.	6.4	48
436	Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosensors and Bioelectronics, 2018, 103, 104-112.	5.3	55
437	An Optical Biosensor-Based Quantification of the Microcystin Synthetase A Gene: Early Warning of Toxic Cyanobacterial Blooming. Analytical Chemistry, 2018, 90, 2362-2368.	3.2	28
438	Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. Talanta, 2018, 187, 59-64.	2.9	79
439	Merging Biology and Solidâ€State Lighting: Recent Advances in Lightâ€Emitting Diodes Based on Biological Materials. Advanced Functional Materials, 2018, 28, 1707011.	7.8	63
440	Amperometric Biosensor and Front-End Electronics for Remote Glucose Monitoring by Crosslinked PEDOT-Clucose Oxidase. IEEE Sensors Journal, 2018, 18, 4869-4878.	2.4	29
441	Enhanced resolution of a surface plasmon resonance sensor detecting C-reactive protein via a bimetallic waveguide-coupled mode approach. Sensors and Actuators B: Chemical, 2018, 266, 311-317.	4.0	28
442	<i>Post hoc</i> support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions. Analyst, The, 2018, 143, 2066-2075.	1.7	33
443	π–π Stacking Interaction: A Nondestructive and Facile Means in Material Engineering for Bioapplications. Crystal Growth and Design, 2018, 18, 2765-2783.	1.4	192
444	Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. Biosensors and Bioelectronics, 2018, 110, 71-77.	5.3	69
445	Assessment of peanut allergen Ara h1 in processed foods using a SWCNTs-based nanobiosensor. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1134-1142.	0.6	20
446	Switchable Hydrogel-Gated Organic Field-Effect Transistors. Langmuir, 2018, 34, 3686-3693.	1.6	30
447	Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosensors and Bioelectronics, 2018, 110, 23-37.	5.3	147
448	A nanoparticle-based method for culture-free bacterial DNA enrichment from whole blood. Biosensors and Bioelectronics, 2018, 99, 150-155.	5.3	23
449	ironPhone: Mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosensors and Bioelectronics, 2018, 99, 115-121.	5.3	54
450	Nanostructured indium tin oxide electrodes immobilized with toll-like receptor proteins for label-free electrochemical detection of pathogen markers. Sensors and Actuators B: Chemical, 2018, 257, 324-330.	4.0	27

#	Article	IF	CITATIONS
451	A Novel Enzymatic Biosensor for the Detection of Catechol Using Multi-walled Carbon Nanotubes and Gold Nanowires. Electrocatalysis, 2018, 9, 252-257.	1.5	24
452	Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosensors and Bioelectronics, 2018, 100, 312-325.	5.3	110
453	Silica-coated gold nanorod@CdSeTe ternary quantum dots core/shell structure for fluorescence detection and dual-modal imaging. Sensors and Actuators B: Chemical, 2018, 258, 508-516.	4.0	22
454	Organic Electronics for Point-of-Care Metabolite Monitoring. Trends in Biotechnology, 2018, 36, 45-59.	4.9	104
455	Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon, 2018, 129, 380-395.	5.4	135
456	Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. Journal of Materials Chemistry A, 2018, 6, 1219-1233.	5.2	96
457	Recent trends in rapid detection of influenza infections by bio and nanobiosensor. TrAC - Trends in Analytical Chemistry, 2018, 98, 201-215.	5.8	60
458	Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 185-210.	1.4	60
459	Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21. Biosensors and Bioelectronics, 2018, 99, 564-570.	5.3	120
460	Immobilization of glucose oxidase on ZnO nanorods decorated electrolyte-gated field effect transistor for glucose detection. Journal of Solid State Electrochemistry, 2018, 22, 61-67.	1.2	29
461	The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection. Plant Pathology Journal, 2018, 34, 85-92.	0.7	36
462	Organs-on-chip monitoring: sensors and other strategies. Microphysiological Systems, 0, 1, 1-1.	2.0	61
463	Integration of sample preparation and analysis into an optofluidic chip for multi-target disease detection. Lab on A Chip, 2018, 18, 3678-3686.	3.1	24
464	C-MEMS Derived Glassy Carbon Electrodes as Sensitive Electrochemical Biosensors. , 2018, , .		0
465	FRET-Based Enzyme Activity Reporter: Practical Hints for Kinases as Indicators of Virulence. , 2018, , .		0
466	Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Applied Materials & Interfaces, 2018, 10, 41089-41097.	4.0	38
467	Engineered Noble-Metal Nanostructures for <i>in Vitro</i> Diagnostics. Chemistry of Materials, 2018, 30, 8391-8414.	3.2	33
468	The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Advances, 2018, 8, 34012-34034.	1.7	97

#	Article	IF	CITATIONS
469	Metal Oxide Nanoparticle Based Electrochemical Sensor for Total Antioxidant Capacity (TAC) Detection in Wine Samples. Biosensors, 2018, 8, 108.	2.3	32
470	From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS Central Science, 2018, 4, 1600-1616.	5.3	140
471	Label-Free Biosensors Based onto Monolithically Integrated onto Silicon Optical Transducers. Chemosensors, 2018, 6, 52.	1.8	8
472	Amperometry. , 2018, , .		12
473	Enzyme Biosensing Based on Zinc Oxide Nanostructures as Active Surface. IOP Conference Series: Materials Science and Engineering, 2018, 374, 012070.	0.3	1
474	Current technological trends in biosensors, nanoparticle devices and biolabels: Hiâ€ŧech network sensing applications. Medical Devices & Sensors, 2018, 1, e10011.	2.7	16
475	Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection. ACS Sensors, 2018, 3, 2025-2044.	4.0	175
476	One Step Electrode Fabrication for Direct Electron Transfer Cholesterol Biosensor Based on Composite of Polypyrrole, Green Reduced Graphene Oxide and Cholesterol Oxidase. Electroanalysis, 2018, 30, 2719-2730.	1.5	32
478	Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase. Turkish Journal of Chemistry, 2018, 42, .	0.5	23
479	Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sensors and Actuators A: Physical, 2018, 283, 282-290.	2.0	46
480	Biosensors—Microelectrode Design and Operation. , 2018, , 72-80.		1
481	A Rapid and Ultrasensitive Tetraphenylethylene-Based Probe with Aggregation-Induced Emission for Direct Detection of α-Amylase in Human Body Fluids. Analytical Chemistry, 2018, 90, 13775-13782.	3.2	39
482	Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Analytical Chemistry, 2018, 90, 13680-13686.	3.2	64
483	Gated Single-Molecule Transport in Double-Barreled Nanopores. ACS Applied Materials & Interfaces, 2018, 10, 38621-38629.	4.0	21
484	Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chemistry, 2018, 29, 3231-3239.	1.8	265
485	Atomic layer deposition for biosensing applications. Biosensors and Bioelectronics, 2018, 122, 147-159.	5.3	86
486	Increase in detection sensitivity of surface acoustic wave biosensor using triple transit echo wave. Applied Physics Letters, 2018, 113, .	1.5	8
487	Label-Free Detection of Tear Biomarkers Using Hydrogel-Coated Gold Nanoshells in a Localized Surface Plasmon Resonance-Based Biosensor. ACS Nano, 2018, 12, 9342-9354.	7.3	79

#	Article	IF	CITATIONS
488	Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosensors and Bioelectronics, 2018, 121, 137-152.	5.3	69
489	Controlled grafting of molecularly imprinted films on gold microelectrodes using a self-assembled thiol iniferter. Electrochimica Acta, 2018, 279, 57-65.	2.6	8
490	Enzyme-Linked Immunoassays. , 2018, , 97-127.		10
491	Lab-on-a-Chip (LOC) Immunoassays. , 2018, , 415-431.		2
492	Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosensors and Bioelectronics, 2018, 117, 1-14.	5.3	52
493	Immunoassays. , 2018, , 1-18.		15
494	Superoxide Anion Biosensor Based on Bionic-Enzyme Hyperbranched Polyester Particles. Australian Journal of Chemistry, 2018, 71, 119.	0.5	1
495	Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab on A Chip, 2018, 18, 1812-1830.	3.1	110
496	An immunochromatographic dipstick as an alternate for monitoring of heroin metabolites in urine samples. RSC Advances, 2018, 8, 23163-23170.	1.7	36
497	An electrochemical biosensor for rapid detection of anti-dsDNA antibodies in absolute scale. Analyst, The, 2018, 143, 3874-3882.	1.7	13
498	Introduction to dielectrically modulated biological field effect transistor. , 2018, , .		7
499	Sensitive electrochemical detection of glucose based on Au-CuO nanocomposites. Journal of Physics and Chemistry of Solids, 2018, 122, 255-260.	1.9	32
500	Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles. Biosensors and Bioelectronics, 2018, 117, 546-561.	5.3	88
501	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	4.7	183
502	Integrated multichannel all-fiber optofluidic biosensing platform for sensitive and simultaneous detection of trace analytes. Analytica Chimica Acta, 2018, 1040, 112-119.	2.6	13
503	Development of a surface plasmon resonance acetone sensor for noninvasive screening and monitoring of diabetes. IOP Conference Series: Materials Science and Engineering, 2018, 383, 012024.	0.3	5
504	System-level integration of active silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care diagnostic testing. Sensors and Actuators B: Chemical, 2018, 273, 1610-1617.	4.0	27
505	Blueprints for Biosensors: Design, Limitations, and Applications. Genes, 2018, 9, 375.	1.0	99

ARTICLE IF CITATIONS # From radioactive ligands to biosensors: binding methods with olfactory proteins. Applied 506 1.7 24 Microbiology and Biotechnology, 2018, 102, 8213-8227. Flexible substrate sensors for multiplex biomarker monitoring. MRS Communications, 2018, 8, 627-641. 0.8 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing. 508 2.322 Biosensors, 2018, 8, 70. Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. 509 Electrochimica Acta, 2018, 284, 60-68. Implantable biosensors and their contribution to the future of precision medicine. Veterinary Journal, 510 0.6 101 2018, 239, 21-29. Enhancement of the Enzymatic Biosensor Response through Targeted Electrode Surface Roughness. Journal of the Electrochemical Society, 2018, 165, G3074-G3079. 1.3 Label-Free Bioanalyte Detection from Nanometer to Micrometer Dimensionsâ€"Molecular Imprinting 512 2.326 and OCMs â€. Biosensors, 2018, 8, 52. Enzyme based amperometric biosensors. Current Opinion in Electrochemistry, 2018, 10, 157-173. 2.5 Ultrasensitive quantitative detection of small molecules with rapid lateral-flow assay based on 514 2.6 48 high-affinity bifunctional ligand and magnetic nanolabels. Analytica Chimica Acta, 2018, 1034, 161-167. Trends and Advances in Electrochemiluminescence Nanobiosensors. Sensors, 2018, 18, 166. 2.1 Fluorescent Nanobiosensors for Sensing Glucose. Sensors, 2018, 18, 1440. 516 2.1 76 Cell detection by surface imprinted polymers (SIPs) â€" A study of the sensor surface by optical and dielectric relaxation spectroscopy. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 1.8 25,816-821 Label-Free QCM Immunosensor for the Detection of Ochratoxin A. Sensors, 2018, 18, 1161. 518 2.134 Peptide-based biosensors., 2018, 565-601. Variation of Carbon Based Materials on the Electropolymerization of Tyramine. Electroanalysis, 2018, 520 1.5 1 30, 1545-1555. Summary of ISO/TC 201 Technical Report: ISO/TR 19693 Surface chemical analysis-Characterization of functional glass substrates for biosensing applications. Surface and Interface Analysis, 2018, 50, 835-838. Hierarchically Assembled Twoâ€dimensional Hybrid Nanointerfaces: A Platform for Bioelectronic 522 1.513 Applications. Electroanalysis, 2018, 30, 2339-2348. Cell-Based Biosensors Based on Intein-Mediated Protein Engineering for Detection of Biologically 3.2 Active Signaling Molecules. Analytical Chemistry, 2018, 90, 9779-9786.

# 524	ARTICLE Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 2018, 4, eaar2904.	IF 4.7	Citations 395
525	Combined detection of C-reactive protein and PBMC quantification from whole blood in an integrated lab-on-a-disc microfluidic platform. Sensors and Actuators B: Chemical, 2018, 272, 634-642.	4.0	19
526	Current status of water environment and their microbial biosensor techniques – Part II: Recent trends in microbial biosensor development. Analytical and Bioanalytical Chemistry, 2018, 410, 3967-3989.	1.9	20
527	Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose. Materials Science and Engineering C. 2018. 90. 576-588.	3.8	19
528	Conclusions and Future Developments in Biosensors. , 2018, , 295-309.		0
529	Dynameric Frameworks with Aggregationâ€Induced Emission for Selective Detection of Adenosine Triphosphate. ChemPlusChem, 2018, 83, 506-513.	1.3	8
530	A novel mass spectrometry method based on competitive non-covalent interaction for the detection of biomarkers. Chemical Communications, 2018, 54, 10726-10729.	2.2	22
531	Interfacial Biosensing: Direct Biosensing of Biomolecules at the Bare Metal Interface. , 2018, , 269-277.		3
532	Long-term stability of screen-printed pseudo-reference electrodes for electrochemical biosensors. Electrochimica Acta, 2018, 287, 29-36.	2.6	17
533	Strategies Behind Biosensors for Food and Waterborne Pathogens. , 2018, , 107-141.		1
534	Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens. Nano Convergence, 2018, 5, 15.	6.3	35
535	Luminescent Metal–Organic Framework Thin Films: From Preparation to Biomedical Sensing Applications. Crystals, 2018, 8, 338.	1.0	30
536	Quorum Sensing and its Biotechnological Applications. , 2018, , .		6
537	Organic Bioelectronics: Materials and Biocompatibility. International Journal of Molecular Sciences, 2018, 19, 2382.	1.8	102
538	Organic Photoâ€Electrochemical Transistorâ€Based Biosensor: A Proofâ€ofâ€Concept Study toward Highly Sensitive DNA Detection. Advanced Healthcare Materials, 2018, 7, e1800536.	3.9	54
539	Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science and Technology, 2018, 80, 71-92.	7.8	125
540	Laccase assay based on electrochemistry and fluorescence detection via anthracene sequestered poly(amic acid) films. Reactive and Functional Polymers, 2018, 131, 36-43.	2.0	7
541	Advances in enzyme bioelectrochemistry. Anais Da Academia Brasileira De Ciencias, 2018, 90, 825-857.	0.3	29

#	Article	IF	CITATIONS
542	Nanofiberâ€Based Hydrogels: Controllable Synthesis and Multifunctional Applications. Macromolecular Rapid Communications, 2018, 39, e1800058.	2.0	46
543	Green synthesis of hydrophilic protein-imprinted resin with specific recognition of bovine serum albumin in aqueous matrix. Analytica Chimica Acta, 2018, 1033, 213-220.	2.6	24
544	Translational strategy: humanized mini-organs. Drug Discovery Today, 2018, 23, 1812-1817.	3.2	6
545	Tools for detecting insect semiochemicals: a review. Analytical and Bioanalytical Chemistry, 2018, 410, 4091-4108.	1.9	42
546	Electrochemical Biosensor Based on TiO 2 Nanomaterials for Cancer Diagnostics. Advances in Biomembranes and Lipid Self-Assembly, 2018, , 63-105.	0.3	25
547	Smartphoneâ€based clinical diagnostics: towards democratization of evidenceâ€based health care. Journal of Internal Medicine, 2019, 285, 19-39.	2.7	147
548	Single-molecule detection of proteins and toxins in food using atomic force microscopy. Trends in Food Science and Technology, 2019, 83, 277-284.	7.8	5
549	Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034249.	2.9	2
550	Emerging Considerations for the Future Development of Electrochemical Paperâ€Based Analytical Devices. ChemElectroChem, 2019, 6, 10-30.	1.7	70
551	Electrospun Nanofibers for Label-Free Sensor Applications. Sensors, 2019, 19, 3587.	2.1	60
552	Non-Invasive Optical Blood Glucose Measurement based on Discrete Fourier Transform and Fast Artificial Neural Network: Fasting Normal Glucose Participants Case Study. Journal of Medical Devices, Transactions of the ASME, 2019, , .	0.4	3
553	Emerging technologies for antibiotic susceptibility testing. Biosensors and Bioelectronics, 2019, 142, 111552.	5.3	85
554	Evaluation of Molecularly Imprinted Polymers for Point-of-Care Testing for Cardiovascular Disease. Sensors, 2019, 19, 3485.	2.1	27
555	Peptide–Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA. ACS Omega, 2019, 4, 13889-13895.	1.6	6
556	Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosensors and Bioelectronics, 2019, 142, 111549.	5.3	47
557	Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. Environment International, 2019, 132, 105091.	4.8	13
558	<i>In situ</i> formation of metal–organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. Journal of Materials Chemistry B, 2019, 7, 4990-4996.	2.9	44
559	Ultrasensitive Sniff-Cam for Biofluorometric-Imaging of Breath Ethanol Caused by Metabolism of Intestinal Flora. Analytical Chemistry, 2019, 91, 9458-9465.	3.2	13

#	Article	IF	CITATIONS
560	Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Analytica Chimica Acta, 2019, 1082, 126-135.	2.6	71
561	A Nucleic Acid Nanostructure Built through On-Electrode Ligation for Electrochemical Detection of a Broad Range of Analytes. Journal of the American Chemical Society, 2019, 141, 11721-11726.	6.6	33
562	A Conjugated Polymer and SWCNTs Transducer for an Effective Biosensing Tool. Journal of the Electrochemical Society, 2019, 166, B853-B858.	1.3	3
563	Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nature Protocols, 2019, 14, 2437-2451.	5.5	114
564	Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosensors and Bioelectronics, 2019, 142, 111484.	5.3	93
565	Recent advances in developing and applying biosensors for synthetic biology. Nano Futures, 2019, 3, 042002.	1.0	9
566	Probing DNA nucleobases with diamond (111) surfaces. Journal of Physics Communications, 2019, 3, 095007.	0.5	0
568	Synthesis of Magnetic Fe3O4 Nanorings for BSA Protein Adsorption. Clays and Clay Minerals, 2019, 67, 275-282.	0.6	2
569	Label-Free Detection of Chikungunya Non-Structural Protein 3ÂUsing Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2019, 166, B1356-B1363.	1.3	24
571	A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochimica Acta, 2019, 186, 773.	2.5	103
572	A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for theÂcarcinoembryonic antigen. Mikrochimica Acta, 2019, 186, 774.	2.5	23
573	Recent advances in environmental and clinical analysis using microring resonator–based sensors. Current Opinion in Environmental Science and Health, 2019, 10, 38-46.	2.1	19
574	Moldy Ghosts and Yeasty Invasions. , 2019, , .		7
575	Silver Nanoparticle-Enzyme Composite Films for Hydrogen Peroxide Detection. ACS Applied Nano Materials, 2019, 2, 5910-5921.	2.4	29
576	Carbon Nanomaterial-Based Biosensors: A Review of Design and Applications. IEEE Nanotechnology Magazine, 2019, 13, 4-14.	0.9	32
577	An Experimental Platform for Characterizing Cancer Biomarkers with Capabilities in Noninvasive and Continuous Screening. Critical Reviews in Biomedical Engineering, 2019, 47, 217-234.	0.5	3
578	Portable Immunosensor Based on Extended Gate—Field Effect Transistor for Rapid, Sensitive Detection of Cancer Markers. Proceedings (mdpi), 2019, 15, .	0.2	1
579	Tunable optical metamaterial-based sensors enabled by closed bipolar electrochemistry. Analyst, The, 2019, 144, 6240-6246.	1.7	8

#	Article	IF	CITATIONS
580	Ultrasensitive detection of miRNA-155 based on controlled fabrication of AuNPs@MoS2 nanostructures by atomic layer deposition. Biosensors and Bioelectronics, 2019, 144, 111660.	5.3	47
581	A rapid and sensitive biosensor for measuring plasmin activity in milk. Sensors and Actuators B: Chemical, 2019, 301, 127141.	4.0	14
582	Electrochemical-based biosensors for detection of <i>Mycobacterium tuberculosis</i> and tuberculosis biomarkers. Critical Reviews in Biotechnology, 2019, 39, 1056-1077.	5.1	35
583	Quantitative Chiroptical Sensing of Free Amino Acids, Biothiols, Amines, and Amino Alcohols with an Aryl Fluoride Probe. Journal of the American Chemical Society, 2019, 141, 16382-16387.	6.6	46
584	Optical biosensors based on refractometric sensing schemes: A review. Biosensors and Bioelectronics, 2019, 144, 111693.	5.3	130
585	Inductive Method for Evaluating RFID Security Protocols. Wireless Communications and Mobile Computing, 2019, 2019, 1-8.	0.8	2
586	Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Analytica Chimica Acta, 2019, 1055, 74-80.	2.6	42
587	Ultrasensitive electrochemical detection of alternative cleavage and polyadenylation of CCND2 gene at the single-cell level. Sensors and Actuators B: Chemical, 2019, 285, 553-561.	4.0	8
588	Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors, 2019, 19, 392.	2.1	204
589	A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chemistry, 2019, 21, 937-955.	4.6	48
590	DNAzymes at Work: A DFT Computational Investigation on the Mechanism of 9DB1. Journal of Chemical Information and Modeling, 2019, 59, 1547-1553.	2.5	10
591	Transistor-based immunosensing in human serum samples without on-site calibration. Sensors and Actuators B: Chemical, 2019, 295, 153-158.	4.0	8
592	UIISScan 1.1: A Field portable high-throughput platform tool for biomedical and agricultural applications. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 70-80.	1.4	4
593	Nucleic acids biosensors based on metal-organic framework (MOF): Paving the way to clinical laboratory diagnosis. Biosensors and Bioelectronics, 2019, 141, 111451.	5.3	90
594	Ultrasensitive and Highly Selective Ni ₃ Te ₂ as a Nonenzymatic Glucose Sensor at Extremely Low Working Potential. ACS Omega, 2019, 4, 11152-11162.	1.6	19
595	New DNA-sensor based on thiacalix[4]arene-modified polydiacetylene particles. Russian Chemical Bulletin, 2019, 68, 1067-1074.	0.4	9
596	Development of an Ultrasensitive Impedimetric Immunosensor Platform for Detection of Plasmodium Lactate Dehydrogenase. Sensors, 2019, 19, 2446.	2.1	12
597	Hybrid Silicon Nanowire Devices and Their Functional Diversity. Advanced Science, 2019, 6, 1900522.	5.6	54

# 598	ARTICLE Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC - Trends in Analytical Chemistry, 2019, 118, 73-88.	IF 5.8	CITATIONS
599	Modulating conformational stability of human serum albumin and implications for surface passivation applications. Colloids and Surfaces B: Biointerfaces, 2019, 180, 306-312.	2.5	11
600	A Novel Bioelectronic Reporter System in Living Cells Tested with a Synthetic Biological Comparator. Scientific Reports, 2019, 9, 7275.	1.6	7
601	Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Advances, 2019, 1, 2123-2138.	2.2	71
602	Oligonucleotide Analogs and Mimics for Sensing Macromolecular Biocompounds. Trends in Biotechnology, 2019, 37, 1051-1062.	4.9	9
603	Functionalized Carbon Materials for Electronic Devices: A Review. Micromachines, 2019, 10, 234.	1.4	81
604	Progress on the application of electrochemiluminescence biosensor based on nanomaterials. Chinese Chemical Letters, 2019, 30, 1600-1606.	4.8	41
605	Efficient double electrochemiluminescence quenching based label-free highly sensitive detection of haptoglobin on a novel nanocomposite modified carbon nanofibers interface. Sensing and Bio-Sensing Research, 2019, 24, 100284.	2.2	9
606	Smartphone with optical, physical, and electrochemical nanobiosensors. Journal of Industrial and Engineering Chemistry, 2019, 77, 1-11.	2.9	53
607	Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors, 2019, 19, 1279.	2.1	180
608	Nanomaterials as an Immobilizing Platform for Enzymatic Glucose Biosensors. Environmental Chemistry for A Sustainable World, 2019, , 229-251.	0.3	1
609	A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosensors and Bioelectronics, 2019, 134, 97-102.	5.3	21
610	Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-based biosensor for Kimchi product. LWT - Food Science and Technology, 2019, 108, 48-54.	2.5	37
611	Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS Applied Materials & Interfaces, 2019, 11, 13140-13146.	4.0	23
612	Imaging biosensor based on planar optical waveguide. Optics and Laser Technology, 2019, 115, 171-175.	2.2	17
613	High-Throughput 2D Heteroatom Graphene Bioelectronic Nanosculpture: A Combined Experimental and Theoretical Study. ACS Applied Materials & amp; Interfaces, 2019, 11, 11238-11250.	4.0	5
614	The imperative role of polymers in enzymatic cholesterol biosensors- an overview. Polymer-Plastics Technology and Materials, 2019, 58, 1713-1741.	0.6	5
615	A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS ONE, 2019, 14, e0210940.	1.1	87

#	Article	IF	CITATIONS
616	Development of label-free plasmonic Au-TiO2 thin film immunosensor devices. Materials Science and Engineering C, 2019, 100, 424-432.	3.8	27
617	DNA nanotechnology and bioassay development. TrAC - Trends in Analytical Chemistry, 2019, 114, 126-142.	5.8	19
618	Enzymatic Litmus Test for Selective Colorimetric Detection of C–C Single Nucleotide Polymorphisms. Analytical Chemistry, 2019, 91, 4735-4740.	3.2	24
619	Increased Refractive Index Sensitivity by Circular Dichroism Sensing through Reduced Substrate Effect. Journal of Physical Chemistry C, 2019, 123, 7347-7355.	1.5	28
620	Prêt-Ã-porter nanoYESα and nanoYESβ bioluminescent cell biosensors for ultrarapid and sensitive screening of endocrine-disrupting chemicals. Analytical and Bioanalytical Chemistry, 2019, 411, 4937-4949.	1.9	21
621	A Universal Paper-Based Electrochemical Sensor for Zero-Background Assay of Diverse Biomarkers. ACS Applied Materials & Interfaces, 2019, 11, 15381-15388.	4.0	103
622	Polymeric Nanobiosensors. , 2019, , 151-181.		1
623	Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polymer Chemistry, 2019, 10, 2925-2951.	1.9	45
624	Single-molecule detection of proteins and toxins in food using atomic force microscopy. Trends in Food Science and Technology, 2019, 87, 26-34.	7.8	16
625	Detection of the Enzymatic Cleavage of DNA through Supramolecular Chiral Induction to a Cationic Polythiophene. ACS Applied Bio Materials, 2019, 2, 2125-2136.	2.3	10
626	A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Mikrochimica Acta, 2019, 186, 267.	2.5	42
627	A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish. Biosensors and Bioelectronics, 2019, 132, 84-89.	5.3	32
628	Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. , 2019, ,		10
629	Magnetic One-Step Purification of His-Tagged Protein by Bare Iron Oxide Nanoparticles. ACS Omega, 2019, 4, 3790-3799.	1.6	54
630	Novel paper-based electroanalytical tools for food surveillance. Analytical and Bioanalytical Chemistry, 2019, 411, 4303-4311.	1.9	27
631	A novel method for classification of wine based on organic acids. Food Chemistry, 2019, 284, 296-302.	4.2	35
632	Paper Based Photoluminescent Sensing Platform with Recognition Sites for Tributyltin. ACS Sensors, 2019, 4, 645-653.	4.0	23
633	Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion. BioMed Research International, 2019, 2019, 1-15.	0.9	17

#	Article	IF	CITATIONS
634	Advances in Cell-Free Biosynthetic Technology. , 2019, , 23-45.		2
635	Biomolecular interfaces based on self-assembly and self-recognition form biosensors capable of recording molecular binding and release. Nanoscale, 2019, 11, 4987-4998.	2.8	5
636	An Overview of Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. , 2019, , 1-25.		5
637	Paper-Based Point-of-Care Immunoassays. , 2019, , 133-155.		2
638	Lab-on-a-Chip-Based Point-of-Care Immunoassays. , 2019, , 157-175.		0
639	Morphology-Dependent Luminescence in Complex Liquid Colloids. Journal of the American Chemical Society, 2019, 141, 3802-3806.	6.6	24
640	Nanoparticles as Biosensors for Food Quality and Safety Assessment. , 2019, , 147-202.		17
641	Printed Paper–Based Electrochemical Sensors for Low-Cost Point-of-Need Applications. Electrocatalysis, 2019, 10, 342-351.	1.5	23
642	A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry, 2019, 127, 136-144.	2.4	78
643	Development of an Ethanol Biosensor Based on Silver Nanoparticles/Polyaniline/Graphite/Epoxy Composite for Friendly Analytical Application. , 0, , .		1
644	Development of Capacitive Wearable Patches and Bands for Data Fusion in Complex Physical Activities. , 2019, , .		0
645	Review on wavelength for non-invasive blood hemoglobin level measurement optical device. AIP Conference Proceedings, 2019, , .	0.3	0
646	A Biosensor for the Detection of Acetylcholine and Diazinon. , 2019, 2019, 1159-1162.		7
647	SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. Sensors, 2019, 19, 4935.	2.1	17
648	Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications. Sensors, 2019, 19, 5130.	2.1	9
649	Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochimica Acta, 2019, 186, 838.	2.5	29
650	Biosensors in Animal Biotechnology. , 2019, , 75-95.		5
651	Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity. Biosensors and Bioelectronics, 2019, 123, 269-277.	5.3	44

#	Article	IF	CITATIONS
652	Hybrid electrochemical sensor platform for capsaicin determination using coarsely stepped cyclic squarewave voltammetry. Biosensors and Bioelectronics, 2019, 130, 374-381.	5.3	21
653	Improved Precision in Surface-Enhanced Raman Scattering Quantification of Analyte through Dual-Modality Multisite Sensing. Analytical Chemistry, 2019, 91, 4323-4330.	3.2	4
654	Switchable sniff-cam (gas-imaging system) based on redox reactions of alcohol dehydrogenase for ethanol and acetaldehyde in exhaled breath. Talanta, 2019, 197, 249-256.	2.9	12
655	Printed Functionalities on Paper Substrates Towards Fulfilment of the ASSURED Criteria. , 2019, , 123-170.		0
656	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
657	A review of optical methods for continuous glucose monitoring. Applied Spectroscopy Reviews, 2019, 54, 543-572.	3.4	74
658	Specific Biosensing Using DNA Aptamers and Nanopores. Advanced Functional Materials, 2019, 29, 1807555.	7.8	40
659	Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosensors and Bioelectronics, 2019, 126, 773-784.	5.3	146
660	Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coordination Chemistry Reviews, 2019, 380, 519-549.	9.5	21
661	An improved enzyme nanoparticles based amperometric pyruvate biosensor for detection of pyruvate in serum. Enzyme and Microbial Technology, 2019, 123, 30-38.	1.6	23
662	Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodeposition. Langmuir, 2019, 35, 862-869.	1.6	23
663	Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Critical Reviews in Analytical Chemistry, 2019, 49, 510-533.	1.8	74
664	Romantic Surfaces: A Systematic Overview of Stable, Biospecific, and Antifouling Zwitterionic Surfaces. Langmuir, 2019, 35, 1072-1084.	1.6	95
666	Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosensors and Bioelectronics, 2019, 130, 1-19.	5.3	103
667	Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Frontiers in Chemistry, 2018, 6, 645.	1.8	45
668	Electrochemical Glucose Biosensors: Whole Cell Microbial and Enzymatic Determination Based on 10-(4H-Dithieno[3,2-b:2′,3′-d]Pyrrol-4-yl)Decan-1-Amine Interfaced Glassy Carbon Electrodes. Analytical Letters, 2019, 52, 1138-1152.	1.0	15
669	Plasmonic nanoparticles: Photocatalysts with a bright future. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 60-66.	3.2	72
670	Paper-based Diagnostics. , 2019, , .		6

#	Article	IF	CITATIONS
671	REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nature Microbiology, 2019, 4, 46-54.	5.9	437
672	Energy harvesting from a bio cell. Nano Energy, 2019, 56, 823-827.	8.2	23
673	Novel grafted electrochemical interface for covalent glucose oxidase immobilization using reactive pentafluorophenyl methacrylate. Colloids and Surfaces B: Biointerfaces, 2019, 175, 1-9.	2.5	4
674	An Aggregationâ€induced Emission Probe Based on Host–Guest Inclusion Composed of the Tetraphenylethylene Motif and γâ€Cyclodextrin for the Detection of αâ€Amylase. Chemistry - an Asian Journal, 2019, 14, 847-852.	1.7	21
675	DNA-Based Scaffolds for Sensing Applications. Analytical Chemistry, 2019, 91, 44-59.	3.2	80
676	Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnology Advances, 2020, 39, 107358.	6.0	28
677	Soft and flexible material-based affinity sensors. Biotechnology Advances, 2020, 39, 107398.	6.0	60
678	Combination of Efficiency with Easiness, Speed, and Cheapness in Development of Sensitive Electrochemical Sensors. Critical Reviews in Analytical Chemistry, 2020, 50, 538-553.	1.8	23
679	Metallic Nanoparticles: Development, Applications, and Future Trends for Alcoholic and Nonalcoholic Beverages. , 2020, , 263-300.		1
680	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	5.2	75
681	Cell-Free Synthetic Biology. SpringerBriefs in Applied Sciences and Technology, 2020, , .	0.2	1
682	Synthetic Systems Powered by Biological Molecular Motors. Chemical Reviews, 2020, 120, 288-309.	23.0	100
683	Paperâ€Based Microfluidics for Electrochemical Applications. ChemElectroChem, 2020, 7, 10-30.	1.7	40
684	Chloride and pH Determination on a Wireless, Flexible Electrochemical Sensor Platform. IEEE Sensors Journal, 2020, 20, 599-609.	2.4	11
685	Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 2020, 120, 986-1041.	23.0	333
686	Recent applications of paperâ€based pointâ€ofâ€care devices for biomarker detection. Electrophoresis, 2020, 41, 287-305.	1.3	44
687	Optimization of atomic layer deposition temperature of ZrO2 protective coat for GalnAsP photonic crystal nanolaser sensor. Japanese Journal of Applied Physics, 2020, 59, 012001.	0.8	1
688	Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 2020, 12, 3535-3559.	2.8	318

#	Article	IF	CITATIONS
689	ZnO for performance enhancement of surface plasmon resonance biosensor: a review. Materials Research Express, 2020, 7, 012003.	0.8	69
690	Quantification of shellfish Arginine kinases by double-enhanced immunoassay employing magnetic beads and gold nanoparticles as carrier. LWT - Food Science and Technology, 2020, 122, 108916.	2.5	5
691	A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Applied Materials Today, 2020, 18, 100478.	2.3	45
692	Oligochitosanâ€modified threeâ€dimensional graphene freeâ€standing electrode for electrochemical detection of imidacloprid insecticide. Journal of the Chinese Chemical Society, 2020, 67, 1078-1088.	0.8	3
693	Critical Review—Approaches for the Electrochemical Interrogation of DNA-Based Sensors: A Critical Review. Journal of the Electrochemical Society, 2020, 167, 037529.	1.3	68
694	Recent advances in potentiometric biosensors. TrAC - Trends in Analytical Chemistry, 2020, 124, 115803.	5.8	185
695	Competition-Based Universal Photonic Crystal Biosensors by Using Antibody–Antigen Interaction. Journal of the American Chemical Society, 2020, 142, 417-423.	6.6	68
696	Optical sensors. , 2020, , 23-45.		10
697	Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sensors and Actuators B: Chemical, 2020, 305, 127553.	4.0	14
698	Water-Associated Infectious Diseases. , 2020, , .		2
699	Modulation of Cellular Reactivity for Enhanced Cell-Based Biosensing. Analytical Chemistry, 2020, 92, 806-814.	3.2	5
700	Energy Harvesting and Storage by Water Infiltration of Eggshell Membrane. Energy Technology, 2020, 8, 1901192.	1.8	6
701	Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors, 2020, 20, 5605.	2.1	55
702	Dynamic Bioâ€Barcode Assay Enables Electrochemical Detection of a Cancer Biomarker in Undiluted Human Plasma: A Sampleâ€Inâ€Answerâ€Out Approach. Angewandte Chemie - International Edition, 2020, 59, 22617-22622.	7.2	28
703	MEMS Biosensors and COVID-19: Missed Opportunity. ACS Sensors, 2020, 5, 3297-3305.	4.0	28
704	A polypyrrole-polydimethylsiloxane sponge-based compressible capacitance sensor with molecular recognition for point-of-care immunoassay. Analyst, The, 2020, 145, 7186-7190.	1.7	22
705	Current Advances in Electrochemical Biosensors and Nanobiosensors. Critical Reviews in Analytical Chemistry, 2022, 52, 519-534.	1.8	15
706	Nanotechnology-assisted liquid crystals-based biosensors: Towards fundamental to advanced applications. Biosensors and Bioelectronics, 2020, 168, 112562.	5.3	41

#	Article	IF	CITATIONS
707	Photonic crystal surface mode imaging for multiplexed and high-throughput label-free biosensing. Biosensors and Bioelectronics, 2020, 168, 112575.	5.3	18
708	Dynamic Bioâ€Barcode Assay Enables Electrochemical Detection of a Cancer Biomarker in Undiluted Human Plasma: A Sampleâ€Inâ€Answerâ€Out Approach. Angewandte Chemie, 2020, 132, 22806-22811.	1.6	11
709	Engineering Protein Switches for Rapid Diagnostic Tests. ACS Sensors, 2020, 5, 3001-3012.	4.0	31
710	Sensitive detection of microRNA using QCM biosensors: sandwich hybridization and signal amplification by TiO ₂ nanoparticles. Analytical Methods, 2020, 12, 5103-5109.	1.3	28
711	Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosensors and Bioelectronics, 2020, 168, 112559.	5.3	43
712	Endophytic fungi-based biosensors for environmental contaminants-A perspective. South African Journal of Botany, 2020, 134, 401-406.	1.2	15
713	Glucose oxidase-based biosensor for glucose detection from biological fluids. Sensor Review, 2020, 40, 497-511.	1.0	38
714	Coupling biology to electrochemistry—future trends and needs. Journal of Solid State Electrochemistry, 2020, 24, 2125-2127.	1.2	4
715	Bioremediation and Biotechnology, Vol 3. , 2020, , .		3
716	A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment. Sensors, 2020, 20, 6364.	2.1	18
717	Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules, 2020, 25, 3542.	1.7	16
718	Noninvasive biosensors for diagnostic biomarkers. , 2020, , 167-181.		1
719	Electronic Circuit Inspired Optimization of Nanogap Electrochemical Biosensors. IEEE Sensors Journal, 2020, 20, 14245-14252.	2.4	0
720	3D micro fractal pipettes for capillary based robotic liquid handling. Review of Scientific Instruments, 2020, 91, 086104.	0.6	2
721	Responsive principles and applications of smart materials in biosensing. Smart Materials in Medicine, 2020, 1, 54-65.	3.7	39
722	Sustainable Printed Electrochemical Platforms for Greener Analytics. Frontiers in Chemistry, 2020, 8, 644.	1.8	29
723	Electrochemical affinity biosensors for hormones and related biomarkers. , 2020, , 51-74.		1
724	Bi-directionally amplified ratiometric electrochemical aptasensor for the ultrasensitive detection of alpha-fetoprotein. Sensors and Actuators B: Chemical, 2020, 323, 128666.	4.0	32

#	Article	IF	Citations
725	The Current Trends of Biosensors in Tissue Engineering. Biosensors, 2020, 10, 88.	2.3	42
726	Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases forÂnanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochimica Acta, 2020, 187, 549.	2.5	33
727	Transcription Factor Based Smallâ€Molecule Sensing with a Rapid Cell Phone Enabled Fluorescent Bead Assay. Angewandte Chemie - International Edition, 2020, 59, 21597-21602.	7.2	15
728	Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules, 2020, 25, 3856.	1.7	155
729	Mesoporous gold–silver alloy films towards amplification-free ultra-sensitive microRNA detection. Journal of Materials Chemistry B, 2020, 8, 9512-9523.	2.9	27
730	Detection and beyond: challenges and advances in aptamer-based biosensors. Materials Advances, 2020, 1, 2663-2687.	2.6	133
731	Interdigitated Sensor Optimization for Blood Sample Analysis. Biosensors, 2020, 10, 208.	2.3	10
732	Transcription Factor Based Smallâ€Molecule Sensing with a Rapid Cell Phone Enabled Fluorescent Bead Assay. Angewandte Chemie, 2020, 132, 21781-21786.	1.6	2
733	Enantioselective electrochemical sensor of tyrosine isomers based on macroporous carbon embedded with sulfato-l²-Cyclodextrin. Microchemical Journal, 2020, 159, 105469.	2.3	12
734	Exploring fabrication methods to highly sensitive and selective InP nanowire biosensors. Journal of Physics: Conference Series, 2020, 1461, 012003.	0.3	2
735	One-pot, chemoselective synthesis of secondary amines from aryl nitriles using a PdPt–Fe ₃ O ₄ nanoparticle catalyst. Catalysis Science and Technology, 2020, 10, 4201-4209.	2.1	12
736	Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors, 2020, 10, 54.	2.3	29
737	A composite of imprinted polypyrrole beads and reduced graphene oxide for specific electrochemical sensing of atrazine in complex matrices. Monatshefte F¼r Chemie, 2020, 151, 1271-1282.	0.9	7
738	Bioelectronic protein nanowire sensors for ammonia detection. Nano Research, 2020, 13, 1479-1484.	5.8	41
739	Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. Nature Communications, 2020, 11, 2668.	5.8	198
740	Advances in Biomimetic Systems for Molecular Recognition and Biosensing. Biomimetics, 2020, 5, 20.	1.5	52
741	Nanoparticle-based biomedical sensors. Frontiers of Nanoscience, 2020, 15, 247-269.	0.3	6
742	Development of a fluorescence immunoassay based on X-Ti-Zn nanocomposite for the detection of MUC1 biomarker. Sensors and Actuators B: Chemical, 2020, 320, 128413.	4.0	7

	CITATION	CITATION REPORT	
# 743	ARTICLE Applicability of Agro-Industrial By-Products in Intelligent Food Packaging. Coatings, 2020, 10, 550.	IF 1.2	Citations 36
744	Promises of the "Nano-World―for electrochemical sensing and energy devices. Journal of Solid State Electrochemistry, 2020, 24, 2189-2191.	1.2	1
745	Organic matrix stabilized copper sulfide nanoparticles: Synthesis, characterization and application in glucose recognition. Materials Today Communications, 2020, 25, 101291.	0.9	4
746	C-MEMS Derived Glassy Carbon Electrodes-Based Sensitive Electrochemical Biosensors. IEEE Sensors Journal, 2020, 20, 12472-12478.	2.4	10
747	Novel bio-lab-on-a-tip for electrochemical glucose sensing in commercial beverages. Biosensors and Bioelectronics, 2020, 165, 112334.	5.3	18
748	Analytical errors in biosensors employing combined counter/pseudo-reference electrodes. Results in Chemistry, 2020, 2, 100028.	0.9	4
749	Vanadium‧ubstituted Tungstosulfate Polyoxometalates as Peroxidase Mimetics and Their Potential Application in Biosensing. ChemElectroChem, 2020, 7, 3943-3950.	1.7	12
750	Low-cost Point-of-Care Biosensors Using Common Electronic Components as Transducers. Biochip Journal, 2020, 14, 32-47.	2.5	27
751	Hierarchical 0D-2D bio-composite film based on enzyme-loaded polymeric nanoparticles decorating graphene nanosheets as a high-performance bio-sensing platform. Biosensors and Bioelectronics, 2020, 156, 112134.	5.3	25
752	Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC - Trends in Analytical Chemistry, 2020, 126, 115863.	5.8	138
753	Review—Towards Wearable Sensor Platforms for the Electrochemical Detection of Cortisol. Journal of the Electrochemical Society, 2020, 167, 067508.	1.3	53
754	Naphthalimide Dyes with Orthogonal Functional Groups for "Click―Chemistry: Attachment to Solid Supports and Applications in Drug Allergy Diagnosis. ChemPlusChem, 2020, 85, 689-693.	1.3	1
755	Fabrication of electrolyte-gate nanocrystalline diamond- based field effect transistor (NCD-EGFET) for HIV-1 Tat protein detection. IOP Conference Series: Materials Science and Engineering, 2020, 743, 012038.	0.3	1
756	Advancements in DNA-assisted Immunosensors. Biochip Journal, 2020, 14, 18-31.	2.5	21
757	Surface modification of TiO ₂ for photoelectrochemical DNA biosensors. Medical Devices & Sensors, 2020, 3, e10066.	2.7	17
758	Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS Applied Materials & Interfaces, 2020, 12, 15903-15910.	4.0	12
759	Graphene Quantum Dot-Based Nanocomposites for Diagnosing Cancer Biomarker APE1 in Living Cells. ACS Applied Materials & Interfaces, 2020, 12, 13634-13643.	4.0	58
760	Biosensors—Recent Advances and Future Challenges in Electrode Materials. Sensors, 2020, 20, 3561.	2.1	55

#	Article	IF	CITATIONS
761	Analysis of the Binding of Analyte-Receptor in a Micro-Fluidic Channel for a Biosensor Based on Brownian Motion. Micromachines, 2020, 11, 570.	1.4	3
762	Bacterial Sensing and Biofilm Monitoring for Infection Diagnostics. Macromolecular Bioscience, 2020, 20, e2000129.	2.1	19
763	Recent Advances in the Development of Biosensors for Malaria Diagnosis. Sensors, 2020, 20, 799.	2.1	39
764	Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry, 2020, 23, 16-20.	2.5	19
765	Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Materials Today Bio, 2020, 5, 100044.	2.6	18
766	DNA Tetrahedra-Cross-linked Hydrogel Functionalized Paper for Onsite Analysis of DNA Methyltransferase Activity Using a Personal Glucose Meter. Analytical Chemistry, 2020, 92, 4592-4599.	3.2	85
767	Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. Bulletin of the Chemical Society of Japan, 2020, 93, 637-646.	2.0	35
768	Wearable biosensors and sample handling strategies. , 2020, , 65-88.		10
769	Spherulitic Crystallization in Langmuir–Blodgett Films of the Ditetradecyldimethylammonium-Au(dmit) ₂ Salt. Langmuir, 2020, 36, 554-562.	1.6	2
770	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	18.7	261
771	Homogeneous and universal transduction of various nucleic acids to an off-shelf device based on programmable toehold switch sensing. Chemical Communications, 2020, 56, 2483-2486.	2.2	15
772	Review: Electrochemical DNA sensing – Principles, commercial systems, and applications. Biosensors and Bioelectronics, 2020, 154, 112069.	5.3	85
773	Self-powered microfluidic pump using evaporation from diatom biosilica thin films. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	7
774	Functionalized graphene and targeted applications – Highlighting the road from chemistry to applications. Progress in Materials Science, 2020, 114, 100683.	16.0	61
775	Detection and differential identification of typhoidal Salmonella using bacteriophages and resazurin. 3 Biotech, 2020, 10, 196.	1.1	5
776	Current progresses and trends in carbon nanomaterialsâ€based electrochemical and electrochemiluminescence biosensors. Journal of the Chinese Chemical Society, 2020, 67, 937-960.	0.8	32
777	Optimizing the Specificity Window of Biomolecular Receptors Using Structure-Switching and Allostery. ACS Sensors, 2020, 5, 1937-1942.	4.0	14
778	Liquid crystal elastomers as substrates for 3D, robust, implantable electronics. Journal of Materials Chemistry B, 2020, 8, 6286-6295.	2.9	16

ARTICLE IF CITATIONS Reviewâ€"Current Trends in Disposable Graphene-Based Printed Electrode for Electrochemical 779 1.3 16 Biosensors. Journal of the Electrochemical Society, 2020, 167, 067523. Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Analytical 3.2 Chemistry, 2021, 93, 198-214. SERS and electrochemical impedance spectroscopy immunoassay for carcinoembryonic antigen. 781 2.6 22 Electrochimica Acta, 2021, 366, 137377. Engineering of MoS2 nanoribbons as high-performance materials for biosensing applications. Applied 3.1 Surface Science, 2021, 540, 148349. DNA nanotechnology: A recent advancement in the monitoring of microcystin-LR. Journal of 783 6.5 27 Hazardous Materials, 2021, 403, 123418. Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review. Progress in Quantum Electronics, 2021, 77, 100298. 784 3.5 Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 785 4.0 303 patients using a smartphone. Sensors and Actuators B: Chemical, 2021, 327, 128899. Electroactive material-based biosensors for detection and drug delivery. Advanced Drug Delivery 6.6 47 Reviews, 2021, 170, 396-424. Development of a U-bent plastic optical fiber biosensor with plasmonic labels for the detection of 787 1.7 21 chikungunya non-structural protein 3. Analyst, The, 2021, 146, 244-252. Recent advances of medical biosensors for clinical applications. Medical Devices & Sensors, 2021, 4, 788 2.7 e10129. Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective 789 2.6 25 Transistors^{â€}. Chinese Journal of Chemistry, 2021, 39, 999-1008. Reusable, facile, and rapid aptasensor capable of online determination of trace mercury. Environment 790 4.8 International, 2021, 146, 106181. Recent progress in micro/nano biosensors for shellfish toxin detection. Biosensors and 791 5.3 33 Bioelectronics, 2021, 176, 112899. Light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor for Microcystin-LR. Biosensors and Bioelectronics, 2021, 176, 112902. 792 5.3 Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: 793 4.8 45 Current advancement and future breakthroughs. Journal of Controlled Release, 2021, 330, 257-283. The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the 794 109 rapid diagnostics of SARS-CoV-2. Biosensors and Bioelectronics, 2021, 176, 112905. Towards applications of bioentities@MOFs in biomedicine. Coordination Chemistry Reviews, 2021, 429, 795 9.5 121 213651. A rapid and sensitive method for chiroptical sensing of α-amino acids <i>via</i> click-like labeling with 796 <i>o</i>-phthalaldehyde and <i>p</i>-toluenethiol. Chemical Science, 2021, 12, 2504-2508.

	Сітат	fion Report	
#	Article	IF	CITATIONS
797	Recent progress and challenges on the bioassay of pathogenic bacteria. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 548-571.	1.6	9
798	Flexible Electrochemical Biosensors for Health Monitoring. ACS Applied Electronic Materials, 2021, 3, 53-67.	2.0	75
799	Molecular Imprinting-Based Sensing Platforms for Recognition of Microorganisms. , 2021, , 255-281.		0
800	Application of Biosensor for the Identification of Various Pathogens and Pests Mitigating Against the Agricultural Production: Recent Advances. Concepts and Strategies in Plant Sciences, 2021, , 169-189.	0.6	9
801	Electrochemical immunosensors based on quantum dots. , 2021, , 341-377.		1
802	Hydrogel-derived luminescent scaffolds for biomedical applications. Materials Chemistry Frontiers, 2021, 5, 3524-3548.	3.2	12
803	Graphene nanocomposites for transdermal biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1699.	3.3	16
804	Dielectrically Modulated Bio-FET for Label-Free Detection of Bio-molecules. Studies in Systems, Decision and Control, 2021, , 183-198.	0.8	2
805	Phosphorene-based intelligent nanosensor for wearable electronics applications. , 2021, , 347-369.		2
806	Recent Advancement in Nanostructured-Based Electrochemical Genosensors for Pathogen Detection. , 2021, , 339-358.		1
807	A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomaterials Science, 2021, 9, 3576-3602.	2.6	45
808	Molecular Imprinted Polymers for Mass Sensitive Sensors: Comparation of Performance Toward Immuno-Sensing Strategies. , 2021, , 335-365.		2
809	A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis. Journal of Biomedical Research, 2021, 35, 255.	0.7	10
810	Serological assays and host antibody detection in coronavirus-related disease diagnosis. Archives of Virology, 2021, 166, 715-731.	0.9	15
811	Sensitive, general and portable detection of RNAs combining duplex-specific nuclease transduction with an off-shelf signalling platform. Chemical Communications, 2021, 57, 5714-5717.	2.2	6
812	Leguminosae Lectins as Biological Tools in Medical Research: a Review. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	3
813	Mass Sensitivity Evaluation of Surface Acoustic Wave Biosensor. E3S Web of Conferences, 2021, 259, 04003.	0.2	2
814	Acylhydrazone Based on 2-N-Tosylaminobenzaldehyde and Girard T Reagent: Synthesis, Structure, and Coordination Ability. Russian Journal of General Chemistry, 2021, 91, 90-97.	0.3	2

#	Article	IF	CITATIONS
815	Quantum dot-based electrochemical molecularly imprinted polymer sensors: potentials and challenges. , 2021, , 121-153.		2
816	Sensitivity Enhancement of Electrochemical Biosensor for Point of Care (POC) Applications: Vi Antigen Detection as a Case Study. Journal of the Electrochemical Society, 2021, 168, 017505.	1.3	4
817	Advancements in Biosensors for Fungal Pathogen Detection in Plants. Concepts and Strategies in Plant Sciences, 2021, , 205-216.	0.6	1
818	Fluorescent Peptide Biosensors for Probing CDK Kinase Activity in Cell Extracts. Methods in Molecular Biology, 2021, 2329, 39-50.	0.4	3
819	A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 2021, 21, 1109.	2.1	672
820	Macrolide Biosensor Optimization through Cellular Substrate Sequestration. ACS Synthetic Biology, 2021, 10, 258-264.	1.9	14
821	Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. International Journal of Nanomedicine, 2021, Volume 16, 803-832.	3.3	57
822	Review—Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. Journal of the Electrochemical Society, 2021, 168, 027504.	1.3	10
823	Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Frontiers in Microbiology, 2021, 12, 643797.	1.5	15
824	Electrocatalysis by Heme Enzymes—Applications in Biosensing. Catalysts, 2021, 11, 218.	1.6	25
825	Amperometric detection of glucose and H2O2 using peroxide selective electrode based on carboxymethylcellulose/polypyrrole and Prussian Blue nanocomposite. Materials Today Communications, 2021, 26, 101839.	0.9	9
826	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 2021, 93, 5225-5233.	3.2	62
827	Quantitative Diffractometric Biosensing. Physical Review Applied, 2021, 15, .	1.5	2
828	Nanozymes "Artificial Peroxidase― Enzyme Oxidase Mixtures for Single‣tep Fabrication of Advanced Electrochemical Biosensors. ChemElectroChem, 2021, 8, 1117-1122.	1.7	10
829	Atomic layer deposition – state-of-the-art approach to nanoscale hetero-interfacial engineering of chemical sensors electrodes: A review. Sensors and Actuators B: Chemical, 2021, 331, 129403.	4.0	24
830	A review on designing biosensors for the detection of trace metals. Applied Geochemistry, 2021, 127, 104902.	1.4	20
831	High-Throughput Nanoparticle Chemisorption Printing of Chemical Sensors with High-Wiring-Density Electrodes. Electronic Materials, 2021, 2, 72-81.	0.9	0
832	Enzyme-based amperometric biosensors for malic acid – A review. Analytica Chimica Acta, 2021, 1156, 338218.	2.6	24

#	Article	IF	CITATIONS
833	Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2015-2042.	2.6	27
834	FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosensors and Bioelectronics, 2021, 178, 113011.	5.3	19
836	Glucose biosensors for clinical and personal use. Electrochemistry Communications, 2021, 125, 106973.	2.3	26
837	Current trends in planar Hall effect sensors: evolution, optimization, and applications. Journal Physics D: Applied Physics, 2021, 54, 353002.	1.3	17
838	Reagentless Affimer- and antibody-based impedimetric biosensors for CEA-detection using a novel non-conducting polymer. Biosensors and Bioelectronics, 2021, 178, 113013.	5.3	28
839	Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry, 2021, 138, 107733.	2.4	31
840	Ultrasensitive On-Field Luminescence Detection Using a Low-Cost Silicon Photomultiplier Device. Analytical Chemistry, 2021, 93, 7388-7393.	3.2	22
841	The Role of Biosensor in Climate Smart Organic Agriculture toward Agricultural and Environmental Sustainability. , 0, , .		9
842	Development of three-enzyme lactose amperometric biosensor modified by nanosized poly (meta-phenylenediamine) film. Applied Nanoscience (Switzerland), 2022, 12, 1267-1274.	1.6	12
843	Merging Biology and Photovoltaics: How Nature Helps Sunâ€Catching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
844	Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clinica Chimica Acta, 2021, 516, 111-135.	0.5	20
845	Biosensors: Design, Development and Applications. , 0, , .		24
846	Electrochemical biosensors for the quantification of streptomycin in food systems: an overview. International Journal of Environmental Analytical Chemistry, 0, , 1-16.	1.8	0
847	Advances in nucleic acid architectures for electrochemical sensing. Current Opinion in Electrochemistry, 2021, 27, 100695.	2.5	15
848	Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: A review. Applied Surface Science Advances, 2021, 4, 100064.	2.9	59
849	Distributed sensor and actuator networks for closed-loop bioelectronic medicine. Materials Today, 2021, 46, 125-135.	8.3	19
850	Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. Chemosensors, 2021, 9, 162.	1.8	5
851	DNA Nanotechnologyâ€Based Biosensors and Therapeutics. Advanced Healthcare Materials, 2021, 10, e2002205.	3.9	51

#	Article	IF	CITATIONS
852	Introduction to the theme issue: Measuring physiology in free-living animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200210.	1.8	12
853	Optimizing antimicrobial use: challenges, advances and opportunities. Nature Reviews Microbiology, 2021, 19, 747-758.	13.6	51
854	A Disposable Saliva Electrochemical MIP-Based Biosensor for Detection of the Stress Biomarker α-Amylase in Point-of-Care Applications. Electrochem, 2021, 2, 427-438.	1.7	16
855	Principles of odor coding in vertebrates and artificial chemosensory systems. Physiological Reviews, 2022, 102, 61-154.	13.1	34
856	Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules, 2021, 26, 4525.	1.7	32
857	Electrochemical Nanobiosensors as Pointâ€ofâ€Care Testing Solution to Cytokines Measurement Limitations. Electroanalysis, 2022, 34, 184-211.	1.5	7
858	Femtomolar Biodetection by a Compact Core–Shell 3D Chiral Metamaterial. Nano Letters, 2021, 21, 6179-6187.	4.5	26
859	Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes $\hat{a} \in A$ review. Analytica Chimica Acta, 2021, 1185, 338848.	2.6	45
860	Evaluation of PAMAM Dendrimers (G3, G4, and G5) in the Construction of a SPR-based Immunosensor for Cardiac Troponin T. Analytical Sciences, 2021, 37, 1007-1013.	0.8	11
861	A Review on Biosensors and Nanosensors Application in Agroecosystems. Nanoscale Research Letters, 2021, 16, 136.	3.1	123
862	Resonant Dielectric Metagratings for Response Intensified Optical Sensing. Advanced Functional Materials, 2022, 32, 2103143.	7.8	8
863	Emerging nanomaterials for improved biosensing. Measurement: Sensors, 2021, 16, 100050.	1.3	41
864	Phytomass-Derived Multifunctional Activated Carbon as a "Wonder-Material― A Paradigm Shift of Filth-to-Wealth. , 0, , .		1
865	Recent advances in potentiometric biosensing. Current Opinion in Electrochemistry, 2021, 28, 100735.	2.5	21
866	Enzyme-free detection of hydrogen peroxide with a hybrid transducing system based on sodium carboxymethyl cellulose, poly(3,4-ethylenedioxythiophene) and prussian blue nanoparticles. Analytica Chimica Acta, 2021, 1172, 338664.	2.6	12
867	Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Frontiers in Chemistry, 2021, 9, 723111.	1.8	9
868	Electrochemical biosensor for the detection of a sequence of theÂTP53 gene using a methylene blue labelled DNA probe. Electrochimica Acta, 2021, 388, 138642.	2.6	15
869	Recent Technological Advancement in Surrounding Gate MOSFET for Biosensing Applications - a Synoptic Study. Silicon, 2022, 14, 5133-5143.	1.8	21

#	Article	IF	CITATIONS
870	Facile synthesis of Cu/Co-ZIF nanoarrays for non-enzymatic glucose detection. Nanotechnology, 2021, 32, 475508.	1.3	4
871	Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustainable Materials and Technologies, 2021, 29, e00315.	1.7	5
872	On-site detection of food and waterborne bacteria – Current technologies, challenges, and future directions. Trends in Food Science and Technology, 2021, 115, 409-421.	7.8	17
873	Pathways to Translate the Biomedical Prototypes. Materials Horizons, 2022, , 29-56.	0.3	0
874	Electrodes for Cell Sensors Interfacing. , 2022, , 569-600.		0
875	Designing bimetallic Ni-based layered double hydroxides for enzyme-free electrochemical lactate biosensors. Sensors and Actuators B: Chemical, 2021, 346, 130505.	4.0	22
876	A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb(II) in water samples. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100497.	1.7	6
877	Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta, 2021, 235, 122726.	2.9	46
878	Comprehensive review of conventional and state-of-the-art detection methods of Cryptosporidium. Journal of Hazardous Materials, 2022, 421, 126714.	6.5	16
879	Innovative electrochemical biosensor for toxicological investigations on algae and cyanobacteria. Bioelectrochemistry, 2022, 143, 107926.	2.4	6
880	Potentialities of core@shell nanomaterials for biosensor technologies. Materials Letters, 2022, 306, 130912.	1.3	25
881	Challenges and future prospects and commercial viability of biosensor-based devices for disease diagnosis. , 2022, , 333-352.		3
882	MOFs and Biomacromolecules for Biomedical Applications. , 2021, , 379-432.		0
883	Nanobioelectrochemistry: Fundamentals and biosensor applications. Frontiers of Nanoscience, 2021, , 87-128.	0.3	Ο
884	A Vertically Stacked Nanosheet Gate-All-Around FET for Biosensing Application. IEEE Access, 2021, 9, 63602-63610.	2.6	18
885	Resonant Type RF Glucose Biosensors. , 2021, , .		2
886	Next-generation self-powered nanosensors. , 2021, , 487-515.		2
887	Relevance of Biosensor in Climate Smart Organic Agriculture and Their Role in Environmental Sustainability: What Has Been Done and What We Need to Do?. Concepts and Strategies in Plant Sciences, 2021, , 115-136.	0.6	15

#	Article	IF	CITATIONS
888	How Can Chemometrics Support the Development of Point of Need Devices?. Analytical Chemistry, 2021, 93, 2713-2722.	3.2	30
889	Endotoxin Entrapment on Glass via C-18 Self-Assembled Monolayers and Rapid Detection Using Drug-Nanoparticle Bioconjugate Probes. Methods in Molecular Biology, 2017, 1600, 133-142.	0.4	1
890	Self-Assembled Peptide Nanostructures for the Development of Electrochemical Biosensors. , 2015, , 1-15.		3
891	Emerging Biosensor for Pesticide Detection. Advanced Sciences and Technologies for Security Applications, 2016, , 431-442.	0.4	2
892	Biosensors Based on Odorant Binding Proteins. , 2014, , 171-190.		3
893	Novel Approaches for Detecting Water-Associated Pathogens. , 2020, , 73-95.		1
895	Synthetic Chemistry for Molecular Imprinting. RSC Polymer Chemistry Series, 2018, , 28-64.	0.1	5
896	CHAPTER 10. Water-compatible Molecularly Imprinted Polymers. RSC Polymer Chemistry Series, 2018, , 330-358.	0.1	2
897	Electrospun nanofibers: a promising horizon toward the detection and treatment of cancer. Analyst, The, 2020, 145, 2854-2872.	1.7	24
898	Investigation on the Effects of Substrate, Back-Gate Bias and Front-Gate Engineering on the Performance of DMTFET-Based Biosensors. IEEE Sensors Journal, 2020, 20, 10405-10414.	2.4	16
899	Artificial neural network to estimate the refractive index of a liquid infiltrating a chiral sculptured thin film. Journal of Nanophotonics, 2019, 13, 1.	0.4	4
900	The Use of Electrochemical Biosensors in Food Analysis. Current Research in Nutrition and Food Science, 2017, 5, 183-195.	0.3	61
901	Electrochemical biosensors for detection of avian influenza viruscurrent status and future trends Acta Biochimica Polonica, 2014, 61, .	0.3	40
902	Acceptability of Continuous Glucose Monitoring in Free-Living Healthy Individuals: Implications for the Use of Wearable Biosensors in Diet and Physical Activity Research. JMIR MHealth and UHealth, 2018, 6, e11181.	1.8	24
903	Nano-enabled medical devices based on biosensing principles: technology basis and new concepts. AIMS Materials Science, 2017, 4, 250-266.	0.7	5
904	Achieving Ultra-Low Detection Limit Using Nanofiber Labels for Rapid Disease Detection. Advances in Infectious Diseases, 2014, 04, 214-222.	0.0	2
905	Reliable Method for Steady-State Concentrations and Current over the Diagnostic Biosensor Transducers. American Journal of Analytical Chemistry, 2017, 08, 493-513.	0.3	2
906	Electrochemical Biosensing Strategies to Detect Serum Glycobiomarkers. Advances in Research, 2016, 6, 1-17.	0.3	4

# 907	ARTICLE Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Analytical and Bioanalytical Chemistry, 2022, 414, 3341-3348.	IF 1.9	CITATIONS
908	A porous molecularly imprinted nanofilm for selective and sensitive sensing of an anticancer drug ruxolitinib. Analytica Chimica Acta, 2021, 1187, 339143.	2.6	17
909	Plasmonic Sensors on 2D Ordered Structures. , 2015, , 359-373.		0
910	The use of enzymes for ethanol, methanol and formaldehyde determination in food products. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 393-397.	0.4	1
912	Self-Assembled Peptide Nanostructures for the Development of Electrochemical Biosensors. , 2016, , 1125-1142.		1
913	Development of Indigenous Bio-sensing Methodology for Rapid and Low Cost Endotoxin Detection System. Internatinoal Journal of Sensor Networks and Data Communications, 2016, 01, .	0.1	3
914	The Importance of the Troponin Biomarker in Myocardial Infarction. Journal of Biology and Today's World, 2016, 5, .	0.1	1
915	CHAPTER 6. An Evanescent Wave Fluorescent Immunosensor for Milk Quality Monitoring. Food Chemistry, Function and Analysis, 2016, , 131-160.	0.1	0
916	CHAPTER 19. Phage-Based Biosensors for Food Analysis. Food Chemistry, Function and Analysis, 2016, , 432-462.	0.1	0
917	Study on interactions of human IgG with immobilized anti-IgG or recombinant Staphylococcal protein A using surface plasmon resonance spectrometry. Biopolymers and Cell, 2016, 32, 54-60.	0.1	1
918	MISENS DEVICE AS A NEW AUTOMATED BIOSENSING PLATFORM BASED ON REAL-TIME ELECTROCHEMICAL PROFILING (REP). Journal of the Turkish Chemical Society, Section A: Chemistry, 2016, 3, .	0.4	0
919	Chapter 2 Monitoring and early warning in environmental management. , 2016, , 99-180.		0
920	Introduction to Label-Free Biosensing. Springer Theses, 2017, , 7-35.	0.0	0
921	Functional DNA in Ionic Liquids. RSC Smart Materials, 2017, , 423-444.	0.1	0
922	ADAPTATION OF THE PROCEDURE FOR POLYPHENILENE MEMBRANE DEPOSITION ON THE DISK PLATINUM TRANSDUCERS. Sensor Electronics and Microsystem Technologies, 2017, 14, 48-57.	0.1	0
923	ë¯,ؘ)f물학ì•모담í,,°ë§•ë¶,,ì,,방법 개발ì, ìœ,,한 ìf물학ì•ì¯`용체ë;œì,,œ ì,´ëª¨ë,,¬ë¾ì—•특ì•ì•़ë‹ﷺë; í•ì²ĵ	Ĭĵ 0, 2ë°•íŠ	¹ ì,œ ê²€í†. k
924	A Review of Surface Engineering of Graphene for Electrochemical Sensing Applications. International Journal of Engineering Technology and Sciences, 2018, 4, 1-31.	0.1	5
925	Improving Multivariate Analysis in Mid-Infrared Spectroscopy for Biosensing. , 2018, , .		0

	CITATION RE	PORT	
#	Article	IF	CITATIONS
926	Determination of Uncultured Microorganisms Based on Metagenomics Signature or Biomarkers at Fresh Water Reservoirs. Open Access Journal of Science, 2018, 2, .	0.3	0
927	ϴーϴϿϳϴͼϴϳϴͼϴͽϴϷ϶ϴϯϿͼϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;ϴ;	iðžððð~i	Ð¥œjÐ~ÐjÐ
928	Cell-Free Biosensing. SpringerBriefs in Applied Sciences and Technology, 2020, , 21-25.	0.2	0
929	Türkiye'de 2008-2018 Döneminde Yapılan Biyomedikal MühendisliÄŸindeki AraÅŸtırmaların Derlemes International Journal of Advances in Engineering and Pure Sciences, 0, , .	^{i.} 0.2	0
930	Electrodes for Cell Sensors Interfacing. , 2020, , 1-33.		0
931	Selective Enzymes at the Core of Advanced Electroanalytical Tools: The Bloom of Biosensors. , 2021, , 303-362.		2
932	Ultrasensitive electrochemical biosensors for dopamine and cholesterol: recent advances, challenges and strategies. Chemical Communications, 2021, 57, 13084-13113.	2.2	27
933	Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites. Talanta, 2022, 237, 122896.	2.9	26
934	Sensitive electrochemical detection of toxic nitro-phenol in real environmental samples using enzymeless oxidized-carboxymethyl cellulose-sulfate/sulfated polyaniline composite based electrode. Microchemical Journal, 2022, 172, 106902.	2.3	8
935	Current Status of Nanosensors in Biological Sciences. , 2020, , 15-41.		0
936	New Adsorption-Based Biosensors for Cancer Detections and Role of Nano-medicine in Its Prognosis and Inhibition. , 2020, , 107-140.		0
937	Biosensor of inflammation biomarkers based on electrical bioimpedance analysis on immobilized DNA without chemical modification. Journal of Electrical Bioimpedance, 2020, 11, 31-37.	0.5	1
938	Biosensor: An Approach Towards a Sustainable Environment. , 2020, , 43-62.		2
939	Research Insights on the Development of Biosensors. Nanotechnology in the Life Sciences, 2020, , 33-48.	0.4	1
940	Biosensors: A Biotechnological Tool for Monitoring Environmental Pollution. , 2020, , 331-348.		1
941	Functionalization of Oxideâ€Free Silicon Surfaces for Biosensing Applications. Advanced Materials Interfaces, 2021, 8, 2100927.	1.9	8
942	Wearable Electronic Tongue for Non-Invasive Assessment of Human Sweat. Sensors, 2021, 21, 7311.	2.1	4
943	Recent advances in the designÂof biosensors based on novel nanomaterials: An insight. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2021, 4, .	1.7	26

#	Article	IF	CITATIONS
944	Smartphone-Based Electrochemical System for Biosensors and Biodetection. Methods in Molecular Biology, 2022, 2393, 493-514.	0.4	6
945	Role of Bioanalytical Chemistry in the Twenty-First Century. , 2022, , 25-51.		0
946	Organic Semiconductors: Technology and Environment. Green Energy and Technology, 2022, , 1-19.	0.4	3
947	Biosensing Applications of Electrode Materials. Engineering Materials, 2022, , 187-231.	0.3	4
948	Scientific Developments and New Technological Trajectories in Sensor Research. Sensors, 2021, 21, 7803.	2.1	31
949	Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. Biomicrofluidics, 2021, 15, 061502.	1.2	8
950	Porous silicon-based sensors for protein detection. , 2021, , 359-395.		1
951	Silk fibroin-decorated with tunable Au/Ag nanodendrites: A plastic near-infrared SERS substrate with periodic microstructures for ultra-sensitive monitoring of lactic acid in human sweat. Vibrational Spectroscopy, 2022, 118, 103330.	1.2	8
952	Fluorescent nanoparticles for reliable communication among implantable medical devices. Carbon, 2022, 190, 262-275.	5.4	7
953	Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today, 2022, 26, 101350.	2.3	15
954	A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BioMed Research International, 2022, 2022, 1-20.	0.9	18
955	Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chemical Reviews, 2022, 122, 4636-4699.	23.0	43
956	Artificial Biomimetic Electrochemical Assemblies. Biosensors, 2022, 12, 44.	2.3	11
957	Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics, 2022, 12, 493-511.	4.6	52
958	Smartphone-based chemical sensors and biosensors for biomedical applications. , 2022, , 307-332.		0
959	Biosensors in tissue engineering. , 2022, , 431-448.		0
960	Portable and visual assays for the detection of SARS oVâ€2. View, 2022, 3, .	2.7	15
961	Functionalized carbon material-based electrochemical sensors for day-to-day applications. , 2022, , 97-111.		6

	CITA	ation Report	
#	Article	IF	Citations
962	Radical Polymer-Based Organic Electrochemical Transistors. ACS Macro Letters, 2022, 11, 243-250.	2.3	11
963	Sensing and biosensing with optically active metal-oxide nanomaterials. , 2022, , 487-521.		0
964	Nanostructured Luminescent Micelles: Efficient "Functional Materials―for Sensing Nitroaromatic and Nitramine Explosives. Photochem, 2022, 2, 32-57.	1.3	6
965	Ultrasensitive DNAâ€Biomacromolecule Sensor for the Detection Application of Clinical Cancer Samples. Advanced Science, 2022, 9, e2102804.	5.6	10
966	Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. Materials Science and Engineering C, 2022, 135, 112689.	3.8	17
967	An Overview on Recent Advances in Biosensor Technology and its Future Application. Archives of Pharmacy Practice, 2022, 13, 5-10.	0.2	8
968	Au Nanoparticle-Based Amplified DNA Detection on Poly-l-lysine Monolayer-Functionalized Electrodes. Nanomaterials, 2022, 12, 242.	1.9	3
969	Nicking enzyme-free strand displacement ampliï¬cation-assisted CRISPR-Cas-based colorimetric detection of prostate-specific antigen in serum samples. Analytica Chimica Acta, 2022, 1195, 339479.	2.6	13
970	Development of a biosensor for phosphorylated Tau 181 protein detection in Early-Stage Alzheimer' disease. Bioelectrochemistry, 2022, 145, 108057.	м _S 2.4	12
971	Organic Bio-Electronics: Bridging The Gap Between Natural and Artificial Materials for Bio-Electronics Applications. European Journal of Education and Pedagogy, 2019, 4, 85-91.	0.2	0
972	Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry, 2022, 109, 21-51.	2.9	94
973	Review—Prospects of Nanomaterial-Based Biosensors: A Smart Approach for Bisphenol-A Detection in Dental Sealants. Journal of the Electrochemical Society, 2022, 169, 027516.	1.3	8
974	3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors, 2022, 10, 65	5. 1.8	24
975	Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters. Analytical Chemistry, 2022, 94, 3408-3417.	3.2	34
976	Biorecognition elements. , 2022, , 41-70.		2
977	Selective chiroptical sensing of <scp>d</scp> / <scp>l</scp> -cysteine. Organic and Biomolecular Chemistry, 2022, 20, 3056-3060.	1.5	1
978	Multiplexed biosensors for virus detection. , 2022, , 219-239.		1
979	Low-cost and rapid prototyping of integrated electrochemical microfluidic platforms using consumer-grade off-the-shelf tools and materials. Lab on A Chip, 2022, 22, 1779-1792.	3.1	6

ARTICLE IF CITATIONS Nanomaterials-based biosensors., 2022, , 1-14. 980 0 Nanomaterials-based disposable electrochemical devices for point-of-care diagnosis., 2022, , 53-80. 982 Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors, 2022, 22, 1513. 2.1 47 Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS Applied Bio Materials, 2022, 5, 945-970. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using 984 2.8 9 Functional Nucleic Acids. Annual Review of Analytical Chemistry, 2022, 15, 151-171. A review on corona virus disease 2019 (COVID-19): current progress, clinical features and bioanalytical diagnostic methods. Mikrochimica Acta, 2022, 189, 103. 2.5 Impact of Malaria Diagnostic Technologies on the Disease Burden in the Sub-Saharan Africa. Journal of 986 0.6 7 Tropical Medicine, 2022, 2022, 1-8. Analysis of machine learning techniques for capture agent free biosensing with porous silicon 987 arrays., 2022,,. Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. 988 1.2 21 International Journal of Environmental Research and Public Health, 2022, 19, 4122. Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics, 2022, 14, 651. Characterising the biosensing interface. Analytica Chimica Acta, 2022, 1216, 339759. 990 2.6 13 Review for Device Compositions of Localized Surface Plasmon Resonance Sensors. Applied Science and 0.3 Convergence Technology, 2022, 31, 35-39. Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life, 2022, 12, 516. 992 1.1 1 Boron-Doped Diamond Electrode Outperforms the State-of-the-Art Electrochemiluminescence from 993 4.0 Microbeads Immunoassay. ACS Sensors, 2022, 7, 1145-1155. The importance of neopterin in COVID-19: The prognostic value and relation with the disease severity. 994 0.8 6 Clinical Biochemistry, 2022, , . Advanced diagnostic approaches developed for the global menace of rice diseases: a review. Canadian 995 Journal of Plant Pathology, 2022, 44, 627-651. Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. Molecules, 2022, 27, 996 1.7 24 100. Organic Bioelectronics for <i>In Vitro</i> Systems. Chemical Reviews, 2022, 122, 4700-4790.

	CITATION R	EPORT	
# 998	ARTICLE A Novel Power-Aware Task Scheduling for Energy Harvesting-Based Wearable Biomedical Devices Using FPA. , 2021, , .	IF	Citations
999	Nanomaterials as glucose sensors for diabetes monitoring. , 2022, , 59-95.		0
1000	A Nitrate Enzymatic Biosensor based on Optimized Machine Learning Techniques. , 2022, , .		0
1001	A Smartphone Operated Electrochemical Reader and Actuator that Streamlines the Operation of Electrochemical Biosensors. , 2022, 1, 014601.		88
1002	A Review on Flexible Electrochemical Biosensors to Monitor Alcohol in Sweat. Biosensors, 2022, 12, 252.	2.3	8
1003	Development of an Aptamer-Based Electrochemical Microfluidic Device for Viral Vaccine Quantitation. Analytical Chemistry, 2022, 94, 6146-6155.	3.2	4
1004	Chapter 5. Antifouling Surface Chemistries to Minimize Signal Interference from Biological Matrices in Biosensor Technology. RSC Detection Science, 0, , 184-265.	0.0	0
1007	Phosphate Glasses for Biophotonic Applications. Biomaterials Science Series, 2022, , 134-161.	0.1	0
1009	Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems. Acta Veterinaria Brno, 2022, 91, 163-170.	0.2	1
1010	Nucleic Acid-conjugated Carbohydrate Nanobiosensors: A Multimodal Tool for Disease Diagnosis. Current Pharmaceutical Design, 2022, 28, 2461-2477.	0.9	1
1011	Review of electrochemical and optical biosensors for testosterone measurement. Biotechnology and Applied Biochemistry, 2022, , .	1.4	1
1012	Advanced Electrochemical and Opto-Electrochemical Biosensors for Quantitative Analysis of Disease Markers and Viruses. Biosensors, 2022, 12, 296.	2.3	0
1013	Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chemical Research in Chinese Universities, 2022, 38, 866-878.	1.3	7
1014	CunO/Au heterostructure dendrimer anchored on Cu foam as dual functional catalytic nanozyme for glucose sensing by enzyme mimic cascade reaction. Analytical and Bioanalytical Chemistry, 2022, 414, 4655-4666.	1.9	5
1015	Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection. Scientific Reports, 2022, 12, 7507.	1.6	8
1016	Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chemical Reviews, 2022, 122, 14990-15030.	23.0	29
1017	An ultrafast ratiometric electrochemical biosensor based on potential-assisted hybridization for nucleic acids detection. Analytica Chimica Acta, 2022, 1211, 339915.	2.6	9

1018	Risk assessment of selected pharmaceuticals on wildlife with nanomaterials based aptasensors. Science of the Total Environment, 2022, 836, 155622.	3.9	5
------	---	-----	---

#	ARTICLE	IF	CITATIONS
1020	Paving the way to point of care (POC) devices for SARS-CoV-2 detection. Talanta, 2022, 247, 123542.	2.9	5
1021	Effects of Shelf Life and Storage Conditions on Physiological Characteristics and Mirna Concentrations of Tomatoes. SSRN Electronic Journal, 0, , .	0.4	0
1022	Recent Progress, Challenges, and Trends in Polymer-Based Sensors: A Review. Polymers, 2022, 14, 2164.	2.0	12
1023	Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta, 2022, 248, 123611.	2.9	18
1025	Fluorescent Sensors in Food Industry. , 2022, , .		0
1026	Smart Nano-Actuators for Electrochemical Sensing of Metformin in Human Plasma. SSRN Electronic Journal, 0, , .	0.4	0
1027	Overview on Advancement in Biosensing Technology including its applications in Healthcare. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	2
1028	Parallel Field-Effect Nanosensors Detect Trace Biomarkers Rapidly at Physiological High-Ionic-Strength Conditions. ACS Sensors, 0, , .	4.0	3
1029	Bioelectrochemistry as a Field of Analysis: Historical Aspects and Current Status. Journal of Analytical Chemistry, 2022, 77, 643-663.	0.4	1
1030	Biomedical Applications of MXeneâ€Integrated Composites: Regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing. Advanced Functional Materials, 2022, 32, .	7.8	62
1031	Selection and identification of a DNA aptamer for fluorescent detection of netilmicin. Talanta, 2022, 250, 123708.	2.9	7
1032	Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophysical Reviews, 2022, 14, 717-733.	1.5	24
1033	Current challenges and future perspectives on detection of geminiviruses. , 2022, , 3-24.		1
1034	An introduction to biosensors. , 2022, , 91-107.		3
1035	Diazonium Salts and the Related Compounds for the Design of Biosensors. Physical Chemistry in Action, 2022, , 359-378.	0.1	1
1036	Nanosensors for smartphone-enabled sensing devices. , 2022, , 85-104.		0
1037	Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. Biosensors, 2022, 12, 473.	2.3	18
1038	All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors, 2022, 12, 501.	2.3	9

#	Article	IF	CITATIONS
1039	Green synthesized plasmonic Pd–ZnO nanomaterials for visible lightâ€induced photobiogas production from industrial wastewater. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
1040	Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosensors and Bioelectronics, 2022, 217, 114577.	5.3	12
1041	Diagnostic and therapeutic approach of artificial intelligence in neuro-oncological diseases. Biosensors and Bioelectronics: X, 2022, 11, 100188.	0.9	2
1042	Biomaterial actuator of M13 bacteriophage in dynamically tunable plasmonic coupling structure. Sensors and Actuators B: Chemical, 2022, 369, 132326.	4.0	6
1043	Application of biosensors for detection of meat species: A short review. Food Control, 2022, 142, 109214.	2.8	10
1044	Giant Magnetoresistance Biosensors for Food Safety Applications. Sensors, 2022, 22, 5663.	2.1	6
1045	Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. Sensors, 2022, 22, 6232.	2.1	15
1046	CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant. Nano-Micro Letters, 2022, 14, .	14.4	39
1047	A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. , 2022, 140, 213049.		20
1048	Biosensor for heavy metals detection in wastewater: A review. Food and Chemical Toxicology, 2022, 168, 113307.	1.8	22
1049	Smartphone recognition-based immune microparticles for rapid on-site visual data-sharing detection of Newcastle disease virus. Talanta, 2023, 252, 123845.	2.9	2
1050	Electro-templating of prussian blue nanoparticles in PEDOT:PSS and soluble silkworm protein for hydrogen peroxide sensing. Talanta, 2023, 252, 123841.	2.9	3
1051	Topical advancements in electrochemical and optical signal amplification for biomolecules detection: A comparison. Materials Today Chemistry, 2022, 26, 101119.	1.7	6
1052	Smart plasmonic hydrogels based on gold and silver nanoparticles for biosensing application. Current Opinion in Biomedical Engineering, 2022, 24, 100413.	1.8	19
1053	The sequestration mechanism as a generalizable approach to improve the sensitivity of biosensors and bioassays. Chemical Science, 2022, 13, 12219-12228.	3.7	5
1054	QDs for Sensing of Microorganisms. Nanotechnology in the Life Sciences, 2022, , 137-159.	0.4	0
1055	Energy Aware Tikhonov-Regularized FPA Technique forÂTask Scheduling inÂWearable Biomedical Devices. Studies in Systems, Decision and Control, 2022, , 147-163.	0.8	1
1056	Graphene-Based Metasurface Refractive Index Biosensor for Hemoglobin Detection: Machine Learning Assisted Optimization. IEEE Transactions on Nanobioscience, 2023, 22, 430-437.	2.2	14

#	Article	IF	Citations
" 1057	General Methods for Fabrication of Sensing Devices. , 2022, , 51-75.	n	0
1007			0
1058	Biosensors: Types, features, and application in biomedicine. Asian Pacific Journal of Tropical Biomedicine, 2022, 12, 367.	0.5	4
1059	Development of biosensors for application in industrial biotechnology. , 2023, , 737-753.		0
1060	Nanomaterials for optical biosensors in forensic analysis. Talanta, 2023, 253, 123945.	2.9	13
1061	Molecularly Imprinted Surface Plasmon Resonance Sensor-Based Devices for Clinical Applications. , 0, , .		4
1062	Electrochemical Sensor for Meropenem Therapeutic Monitoring in Human Plasma Based on Carbon Nanotubes Modified Basal Pyrolytic Graphite Electrode. Journal of the Electrochemical Society, 2022, 169, 097504.	1.3	2
1063	Low-Cost High-Resolution Potentiostat for Electrochemical Detection of Nucleic Acids and Biomolecular Interactions. Micromachines, 2022, 13, 1610.	1.4	2
1064	Overview of Biofluids and Flow Sensing Techniques Applied in Clinical Practice. Sensors, 2022, 22, 6836.	2.1	5
1065	Recent Progress of Smart Nano-Based Biosensors and their Applications in Biomedicine. Nano, 2022, 17,	0.5	2
1066	Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Advances in Colloid and Interface Science, 2022, 309, 102795.	7.0	37
1067	A Pedagogical Introduction to Biomarker Detection in Surface-Based Biosensors. Journal of Chemical Education, 2022, 99, 3694-3701.	1.1	1
1068	A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Biosensors and Bioelectronics, 2022, 218, 114742.	5.3	18
1069	Microbial and Plant Cell Biosensors for Environmental Monitoring. , 2022, , 175-190.		0
1070	Sensors for the Food Industry: An Introduction. Food Chemistry, Function and Analysis, 2022, , 1-21.	0.1	0
1071	A qualitative study to explore the acceptability and usefulness of personalized biofeedback to motivate physical activity in cancer survivors. Digital Health, 2022, 8, 205520762211290.	0.9	0
1072	Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS Nanoscience Au, 2023, 3, 1-27.	2.0	30
1073	Stretchable Electrochemical Sensors: From Electrode Fabrication to Cell Mechanotransduction Monitoring ^{â€} . Chinese Journal of Chemistry, 2023, 41, 443-457.	2.6	4
1074	On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers, 2022, 14, 4448.	2.0	16

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1075	SARS-CoV-2-on-Chip for Long COVID Management. Biosensors, 2022, 12, 890.		2.3	19
1076	Optical weak measurement for the precise thickness determination of an ultra-thin film Optics, 2022, 61, 10065.	n. Applied	0.9	2
1077	Smart nano-actuators for electrochemical sensing of Metformin in human plasma. Sens Actuators B: Chemical, 2023, 376, 132928.	sors and	4.0	2
1078	Recent advances in the utilization of polyaniline in protein detection: a short review. RS 2022, 12, 32885-32897.	SC Advances,	1.7	0
1079	Printed microfluidic biosensors and their biomedical applications. , 2023, , 1-40.			0
1080	Introduction to sensors and types of biosensors. , 2023, , 1-12.			1
1081	Metallic Structures Based on Zinc Oxide Film for Enzyme Biorecognition. Micromachine 1997.	es, 2022, 13,	1.4	0
1082	Enzymatic biosensors. , 2023, , 341-363.			1
1083	Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and perspectives. Sensing and Bio-Sensing Research, 2022, 38, 100542.	future	2.2	10
1084	Microfluidic (bio)-sensors based on 2-D layered materials. TrAC - Trends in Analytical Ch 158, 116839.	iemistry, 2023,	5.8	5
1085	Characterization and application of porous PHBV-based bacterial polymers to realize no electroanalytical (bio)sensors. Sensors and Actuators B: Chemical, 2023, 379, 133178.		4.0	9
1086	Sustainable Electrochemical Sensors. , 2022, , 1-13.			0
1087	Proteins in Synthetic Biology with Agricultural and Environmental Applications. SynBio,	, 2022, 1, 77-88.	1.6	1
1088	Terahertz Biosensor Based on Mode Coupling between Defect Mode and Optical Tamn Semimetal. Biosensors, 2022, 12, 1050.	n State with Dirac	2.3	2
1089	Amplification Free Detection of SARS-CoV-2 Using Multi-Valent Binding. ACS Sensors, 2	2022, 7, 3692-3699.	4.0	4
1090	Smart Nanobiosensing for COVID-19 Diagnosis. , 2023, , 123-162.			0
1091	Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based or Nanomaterial-Modified Electrode. Biosensors, 2022, 12, 1136.	1	2.3	29
1092	Point-of-Care Biosensors for Healthcare Applications. , 2022, , 1-23.			0

#	Article	IF	CITATIONS
1093	Simultaneous noninvasive monitoring of diabetes and hypoxia using core-shell nanozyme – oxidase enzyme biosensors. Sensors and Actuators B: Chemical, 2023, 380, 133337.	4.0	4
1094	MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. Journal of Pharmaceutical and Biomedical Analysis, 2023, 226, 115257.	1.4	13
1095	Design and Performance Assessment of Graded Channel Gate-All-Around Silicon Nanowire FET for Biosensing Applications. Silicon, 2023, 15, 3535-3542.	1.8	5
1096	Investigation of the dielectrically modulated electron hole bilayer tunnel field effect transistor for biomolecule detections. Current Applied Physics, 2023, 47, 60-71.	1.1	4
1097	Future of Voltammetry. Macedonian Journal of Chemistry and Chemical Engineering, 2022, 41, .	0.2	3
1098	An Overview of Biosensors for the Detection of Patulin Focusing on Aptamer-Based Strategies. Critical Reviews in Analytical Chemistry, 0, , 1-13.	1.8	1
1099	Electrochemical and Optical Detection of MicroRNAs as Biomarkers for Cancer Diagnosis. , 2023, , 272-348.		0
1100	Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. Biosensors, 2023, 13, 192.	2.3	7
1101	Polymer composite sensors for biomedical applications. , 2023, , 501-520.		0
1102	Stimulus-Responsive Ultrathin Films for Bioapplications: A Concise Review. Molecules, 2023, 28, 1020.	1.7	1
1103	Monitoring Cardiac Biomarkers with Aptamerâ€Based Molecular Pendulum Sensors. Angewandte Chemie, 2023, 135, .	1.6	1
1104	Nanoâ€ S trategies for Lignin Biomaterials toward Cancer Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	4
1105	Nafion modified electrochemical sensor integrated with a feedback-loop indium-gallium-zinc oxide thin-film transistor for enhancing dopamine detection limit. Sensors and Actuators A: Physical, 2023, 354, 114287.	2.0	4
1106	Reservoir computing and photoelectrochemical sensors: A marriage of convenience. Coordination Chemistry Reviews, 2023, 487, 215155.	9.5	7
1107	Synthesis and characterization of a high-performance enzyme-free glucose sensor based on mesoporous copper oxide nanoparticles. Materials Research Bulletin, 2023, 164, 112240.	2.7	3
1108	Amplification-free electrochemical biosensor detection of circulating microRNA to identify drug-induced liver injury. Biosensors and Bioelectronics, 2023, 231, 115298.	5.3	5
1110	Disposable Electrochemical Sensors for Biomedical Applications. ACS Symposium Series, 0, , 157-191.	0.5	0
1111	Biotechnology for e-noses: types and biomaterials. , 2023, , 225-238.		Ο

#	Article	IF	CITATIONS
1112	Electrochemical Immunosensor for Diagnosis of COVID-19. , 2023, , 63-89.		0
1113	A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. Nanomaterials, 2023, 13, 867.	1.9	17
1114	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	11.1	21
1115	Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. Biosensors, 2023, 13, 326.	2.3	3
1116	Research on photocatalytic CO ₂ conversion to renewable synthetic fuels based on localized surface plasmon resonance: current progress and future perspectives. Catalysis Science and Technology, 2023, 13, 1932-1975.	2.1	5
1117	Monitoring Cardiac Biomarkers with Aptamerâ€Based Molecular Pendulum Sensors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1118	Synthesis of TiO2 nanostructures and their medical applications. , 2023, , 107-146.		0
1119	An emergent biotechnology hierarchy: Biosensors. Materials Today: Proceedings, 2023, , .	0.9	0
1120	A power-aware task scheduler for energy harvesting-based wearable biomedical systems using snake optimizer. Analog Integrated Circuits and Signal Processing, 2023, 115, 183-194.	0.9	6
1121	A Connected World: System-Level Support Through Biosensors. Annual Review of Analytical Chemistry, 2023, 16, .	2.8	0
1122	Preparation of Concanavalin A Imprinted Surface Plasmon Resonance Based Biosensors. IEEE Sensors Journal, 2023, 23, 11566-11573.	2.4	2
1123	Functionalized nanofibers as sensors for monitoring food quality. , 2023, , 401-436.		1
1127	Nanostructured photoelectrochemical biosensors. , 2023, , 265-284.		0
1129	Carbon Nanomaterials for Electrochemical Detection of SARS-CoV-2 Infections. , 2023, , 35-59.		0
1132	Data-driven intelligent Medical Internet of Things (MIoT) based healthcare solutions for secured smart cities. , 2023, , 247-278.		0
1139	Recent Advances in Plasmonic Enhanced Nanocatalyst for Oxidation of Alcohol. Topics in Catalysis, 2024, 67, 192-202.	1.3	4
1157	Disposable Electrochemical Nanobiosensors for Biomolecular Analysis. , 2023, , 569-598.		0
1165	Overview of sensor materials used in pollution control. , 2023, , .		0

		PORT	
# 1166	ARTICLE Additively Manufactured Electrochemical and Biosensors. Materials Horizons, 2024, , 191-204.	IF 0.3	CITATIONS
1167	Optimization of photoactive components of photoelectrochemical biosensors. , 2023, , 225-243.		0
1168	Carbon nanotube based biosensor: An update. AIP Conference Proceedings, 2023, , .	0.3	0
1170	Smartphone Interface and Wearable Biosensors for on-Site Diagnosis. , 2023, , 297-321.		0
1171	Electrochemical Biosensors for Metabolites Detection. , 2023, , 77-99.		0
1174	Functional Biosensors in Cell and Tissue Fabrication for Smart Life-Sciences Applications. , 2024, , 235-253.		0
1182	Biotechnological Techniques for Sustainable Waste Management. , 2023, , 689-712.		0
1186	Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. Nano-Micro Letters, 2024, 16, .	14.4	0
1190	Basic Principles and Applications of Biological Sensors Technology. , 2024, , 1-45.		0
1194	Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. Advances in Biochemical Engineering/Biotechnology, 2023, , .	0.6	0
1196	Role of 3D printing in microfluidics and applications. , 2024, , 67-107.		0
1197	Synthesis, Morphology and Environmental Applications of Iron Oxide-Based Nanoarchitectures. Nanostructure Science and Technology, 2024, , 169-184.	0.1	0
1201	Electrochemical biosensors for toxic gases monitoring. , 2024, , 287-329.		0
1202	Safety, health, and regulation issues of nanostructured biosensors. , 2024, , 525-539.		0
1203	Biological elements as important tools in the detection/monitoring of drug compounds in organic and environmental samples. , 2024, , 337-371.		0
1204	Developments in inorganic and organic based nanostructured materials for electrochemical biosensing applications. , 2024, , 37-56.		0
1205	Nanostructured materials-based electrochemical biosensor devices for quantification of antioxidants. , 2024, , 161-193.		0
1206	Commercialized Enzymatic Biosensors in Healthcare Against the Conventional Methods. , 2023, , 323-358.		0

		CHATION REPORT	
#	Article	IF	Citations
1207	Biosensor Applications and Principles of Agricultural and Aquacultural Sectors. Advances Environmental Engineering and Green Technologies Book Series, 2024, , 1-17.		0
1210	Conjugated and nonconjugated redox polymers for immobilization and charge transfer in oxidoreductase-based electrochemical enzymatic biosensors. , 2024, , 187-230.		0
1212	Overview of clinical applications of biosensors. , 2024, , 291-324.		0
1213	Nanomaterials in electrochemical biosensors. , 2024, , 483-511.		0
1217	Biosensors with green nanomaterials. Comprehensive Analytical Chemistry, 2024, , 235-2	249. 0.7	0
1221	Implications of Nano-Biosensors in the Early Detection of Neuroparasitic Diseases. , 2023	, , 43-83.	Ο
1227	Biorecognition receptors for biosensors used to detect foodborne pathogens. , 2024, , 5	7-74.	0