Generation of electron Airy beams

Nature 494, 331-335 DOI: 10.1038/nature11840

Citation Report

#	Article	IF	CITATIONS
9	Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nature Communications, 2013, 4, 2622.	5.8	290
10	Optical diametric drive acceleration through action–reaction symmetry breaking. Nature Physics, 2013, 9, 780-784.	6.5	83
11	Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping. Physical Review A, 2013, 88, .	1.0	39
12	Defect-guided Airy beams in optically induced waveguide arrays. Physical Review A, 2013, 88, .	1.0	9
13	Invited Review Article: Methods for imaging weak-phase objects in electron microscopy. Review of Scientific Instruments, 2013, 84, 111101.	0.6	117
14	Quasi-periodic gratings: diffraction orders accelerate along curves. Optics Letters, 2013, 38, 2829.	1.7	14
15	Generation of arbitrary complex quasi-non-diffracting optical patterns. Optics Express, 2013, 21, 22221.	1.7	20
16	Analysis of excitation-intensity-dependent diffraction and acceleration characteristics of finite half-Bessel beams. , 2013, , .		1
17	Three-dimensional accelerating electromagnetic waves. Optics Express, 2013, 21, 13917.	1.7	49
18	Self-Accelerating Dirac Electrons in Free-Space. , 2014, , .		0
19	Beam wander of an Airy beam with a spiral phase. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 685.	0.8	21
20	Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves. Optics Letters, 2014, 39, 5539.	1.7	25
21	Self-Accelerating Beams of Photons and Electrons. , 2014, , .		0
22	Microparticles Manipulation by Nonparaxial Accelerating Beams. , 2014, , .		1
23	Coupled Airy breathers. Optics Letters, 2014, 39, 5523.	1.7	55
24	Coherent random walks in free space. Optica, 2014, 1, 268.	4.8	18
25	Dynamical deformed Airy beams with arbitrary angles between two wings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1468.	0.8	16
26	Generation of Airy beams by four-wave mixing in Rubidium vapor cell. Optics Letters, 2014, 39, 4557.	1.7	18

	CITATION	REPORT	
#	Article	IF	CITATIONS
27	Accelerating beam propagation in refractive-index potentials. Physical Review A, 2014, 89, .	1.0	29
28	Beam wander of partially coherent Airy beams. Journal of Modern Optics, 2014, 61, 379-384.	0.6	15
29	Relativistic Bessel cylinders. Journal of Mathematical Physics, 2014, 55, 102502.	0.5	0
30	Shape-Preserving Accelerating Electromagnetic Wave Packets in Curved Space. Physical Review X, 2014, 4, .	2.8	25
31	Holographic generation of non-diffractive beams. Proceedings of SPIE, 2014, , .	0.8	0
32	Electromagnetic Fields Produced by Self-Accelerating Shape-Preserving Electrons in Free-Space. , 2014, , .		0
33	Sculpturing the electron wave function using nanoscale phase masks. Ultramicroscopy, 2014, 144, 26-31.	0.8	88
34	Regeneration of Airy pulses in fiber-optic links with dispersion management of the two leading dispersion terms of opposite signs. Physical Review A, 2014, 89, .	1.0	18
35	Propagation of Airy beam passing through the misaligned optical system with hard aperture. Optics Communications, 2014, 313, 350-355.	1.0	19
36	Arbitrary Bending Plasmonic Light Waves. Physical Review Letters, 2014, 112, 023903.	2.9	98
37	Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles' trajectories. Nature Communications, 2014, 5, 5189.	5.8	89
38	Generalized Radially Self-Accelerating Helicon Beams. Physical Review Letters, 2014, 113, 183901.	2.9	53
39	Generation of Nondiffracting Electron Bessel Beams. Physical Review X, 2014, 4, .	2.8	71
40	Accelerating light beams with arbitrarily transverse shapes. Optics Express, 2014, 22, 3490.	1.7	21
41	Nonlinear Volume Holography for Wave-Front Engineering. Physical Review Letters, 2014, 113, 163902.	2.9	74
42	Dynamics of three-Airy beams carrying optical vortices. Applied Optics, 2014, 53, B248.	0.9	12
43	Propagation of symmetric tunable dual airy beam through ABCD optical system. Optics Communications, 2014, 333, 38-44.	1.0	9
44	Generation of acoustic self-bending and bottle beams by phase engineering. Nature Communications, 2014, 5, 4316.	5.8	189

#	Article	IF	CITATIONS
45	Shaping electron beams for the generation of innovative measurements in the (S)TEM. Comptes Rendus Physique, 2014, 15, 190-199.	0.3	24
46	Unveiling the OAM and Acceleration of Electron Beams. Microscopy and Microanalysis, 2015, 21, 21-22.	0.2	0
47	Scattering of wave packets on atoms in the Born approximation. Physical Review A, 2015, 92, .	1.0	33
48	Observation of shape-preserving accelerating underwater acoustic beams. Physical Review B, 2015, 92, .	1.1	47
49	Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses. Physical Review Letters, 2015, 115, 254501.	2.9	18
50	Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. Scientific Reports, 2015, 5, 17484.	1.6	55
51	Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus. Journal of Applied Physics, 2015, 118, .	1.1	35
52	Efficient Optical Energy Harvesting in Self-Accelerating Beams. Scientific Reports, 2015, 5, 13197.	1.6	15
53	Self-bending symmetric cusp beams. Applied Physics Letters, 2015, 107, .	1.5	11
54	Parallel axis theorem for free-space electron wavefunctions. New Journal of Physics, 2015, 17, 093015.	1.2	24
55	Self-accelerating matter waves. Modern Physics Letters B, 2015, 29, 1550171.	1.0	12
56	Spontaneously formed autofocusing caustics in a confined self-defocusing medium. Optica, 2015, 2, 1053.	4.8	12
57	Generalized photon sieves: fine control of complex fields with simple pinhole arrays. Optica, 2015, 2, 1028.	4.8	33
58	Improving Electron Microscopy by Shaping the Electron Beam Wavefunction. , 2015, , .		0
59	Incoherent self-accelerating beams. Optica, 2015, 2, 886.	4.8	38
60	Image signal transmission with Airy beams. Optics Letters, 2015, 40, 5686.	1.7	58
61	Generation of χ^2 solitons from the Airy wave through the parametric instability. Optics Letters, 2015, 40, 4947.	1.7	9
62	Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation. Optics Letters, 2015, 40, 5411.	1.7	15

		CITATION REPORT	
#	Article	IF	CITATIONS
63	Super-Airy beam: self-accelerating beam with intensified main lobe. Optics Letters, 2015, 40, 4703	. 1.7	37
64	Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nature Physics, 2015, 11, 261-267.	6.5	48
65	Gaussian and Airy wave packets of massive particles with orbital angular momentum. Physical Revi A, 2015, 91, .	ew 1.0	15
66	Holographic Generation of Highly Twisted Electron Beams. Physical Review Letters, 2015, 114, 034	ł801. 2.9	78
67	Unveiling the Orbital Angular Momentum and Acceleration of Electron Beams. Physical Review Letters, 2015, 114, 096102.	2.9	41
68	Tunable caustic phenomena in electron wavefields. Ultramicroscopy, 2015, 157, 57-64.	0.8	20
69	Curved singular beams for three-dimensional particle manipulation. Scientific Reports, 2015, 5, 120	086. 1.6	107
70	Propagation Dynamics of Airy Water-Wave Pulses. Physical Review Letters, 2015, 115, 034501.	2.9	56
71	Structured quantum waves. Nature Physics, 2015, 11, 629-634.	6.5	117
72	Specially shaped Bessel-like self-accelerating beams along predesigned trajectories. Science Bulleti 2015, 60, 1157-1169.	n, 4.3	18
73	Propagating Airy wavelet-related patterns. Journal of Optics (United Kingdom), 2015, 17, 075604.	1.0	8
74	Accelerating Self-Imaging: The Airy-Talbot Effect. Physical Review Letters, 2015, 115, 013901.	2.9	52
75	Accelerated rotation with orbital angular momentum modes. Physical Review A, 2015, 91, .	1.0	81
76	Acoustic non-diffracting Airy beam. Journal of Applied Physics, 2015, 117, .	1.1	58
77	Prospects for versatile phase manipulation in the TEM: Beyond aberration correction. Ultramicroscopy, 2015, 151, 85-93.	0.8	23
78	Closed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories. Optic Letters, 2015, 40, 1444.	CS 1.7	18
79	On the dynamics of Airy beams in nonlinear media with nonlinear losses. Optics Express, 2015, 23,	8918. 1.7	16
80	Shaping diffraction-free Lommel beams with digital binary amplitude masks. Applied Optics, 2015, 7553.	54, 2.1	25

	CITATIO	N REPORT	
#	Article	IF	CITATIONS
81	On the asymptotic evolution of finite energy Airy wave functions. Optics Letters, 2015, 40, 2850.	1.7	2
82	Three-wave electron vortex lattices for measuring nanofields. Ultramicroscopy, 2015, 148, 25-30.	0.8	5
83	Optimal compression and energy confinement of optical Airy bullets. Optics Express, 2016, 24, 26454.	1.7	20
84	Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media. Optica, 2016, 3, 15.	4.8	21
85	Holography with a neutron interferometer. Optics Express, 2016, 24, 22528.	1.7	28
86	3D-printed diffractive elements induced accelerating terahertz Airy beam. Optics Express, 2016, 24, 29342.	1.7	37
88	Unveiling the propagation dynamics of self-accelerating vector beams. Scientific Reports, 2016, 6, 34272.	1.6	7
89	Holographic free-electron light source. Nature Communications, 2016, 7, 13705.	5.8	66
90	Probing phase of a scattering amplitude beyond the plane-wave approximation. Europhysics Letters, 2016, 116, 31001.	0.7	12
91	Airy beam optical parametric oscillator. Scientific Reports, 2016, 6, 25245.	1.6	23
92	Wavefront shaping through emulated curved space in waveguide settings. Nature Communications, 2016, 7, 10747.	5.8	52
93	Singularities and internal rotational dynamics of electron beams. Physical Review A, 2016, 94, .	1.0	6
94	Chirp-Induced Channel of an Airy Pulse in an Optical Fiber Close to Its Zero-Dispersion Point. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	7
95	Airy-like electron plasma wave. Journal of Plasma Physics, 2016, 82, .	0.7	6
96	Multi-focus of modulated polarized Airy beam. Optics and Laser Technology, 2016, 81, 107-114.	2.2	7
97	Experimental demonstration of 3D accelerating beam arrays. Applied Optics, 2016, 55, 3090.	2.1	8
98	Light Modes of Free Space. Progress in Optics, 2016, , 237-281.	0.4	62
99	Self-accelerating parabolic cylinder waves in 1-D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3791-3795.	0.9	5

0	 	n	
		REPC	IDT
\sim		NLFU	

#	Article	IF	CITATIONS
100	Quantum–classical correspondence for a particle in a homogeneous field. European Journal of Physics, 2016, 37, 065405.	0.3	4
101	Generation of Electron Bessel Beams with Nondiffractive Spreading by a Nanofabricated Annular Slit. Journal of the Physical Society of Japan, 2016, 85, 043501.	0.7	18
102	Creating Airy beams employing a transmissive spatial light modulator. Applied Optics, 2016, 55, 6095.	2.1	27
103	Two-dimensional χ^2 solitons generated by the downconversion of Airy waves. Optics Letters, 2016, 41, 2919.	1.7	10
104	Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain. Scientific Reports, 2016, 6, 21143.	1.6	4
105	Self-oscillating beams in a photonic lattice. Europhysics Letters, 2016, 114, 64001.	0.7	3
106	Fractional nonparaxial accelerating Talbot effect. Optics Letters, 2016, 41, 3273.	1.7	18
107	Self-similar propagation of Hermite-Gauss water-wave pulses. Physical Review E, 2016, 93, 013127.	0.8	11
108	Self-Interfering Wave Packets. Physical Review Letters, 2016, 116, 026401.	2.9	20
109	Quantum ÄŒerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum. Physical Review X, 2016, 6, .	2.8	51
110	Coherent and Incoherent Nonparaxial Self-Accelerating Weber Beams. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	3
111	Ultrafast Airy beam optical parametric oscillator. Scientific Reports, 2016, 6, 30701.	1.6	5
112	Electron Beam Carrying Orbital Angular Momentum. Nihon Kessho Gakkaishi, 2016, 58, 79-84.	0.0	1
113	Control on the anomalous interactions of Airy beams in nematic liquid crystals. Optics Express, 2016, 24, 8501.	1.7	39
114	Generation and application of bessel beams in electron microscopy. Ultramicroscopy, 2016, 166, 48-60.	0.8	39
115	Non-diffracting super-airy beam with intensified main lobe. , 2016, , .		0
116	[INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams. Optics and Laser Technology, 2016, 80, 125-137.	2.2	88
117	Generation of vortex circular Airy beam through binary amplitude digital hologram. , 2016, , .		0

#	Article	IF	CITATIONS
118	Prospects for electron beam aberration correction using sculpted phase masks. Ultramicroscopy, 2016, 163, 69-74.	0.8	12
119	Discriminating the role of Raman effects in the propagation of decelerating and accelerating Airy pulses by time–frequency analysis. Journal of Optics (United Kingdom), 2016, 18, 015505.	1.0	6
120	Splitting and accelerating Gaussian beam modulated by Mittag Leffler function. Optik, 2016, 127, 1066-1070.	1.4	2
121	Tailoring accelerating beams in phase space. Physical Review A, 2017, 95, .	1.0	27
122	Flat polarization-controlled cylindrical lens based on the Pancharatnam–Berry geometric phase. European Journal of Physics, 2017, 38, 034007.	0.3	13
123	Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nature Communications, 2017, 8, 14999.	5.8	95
124	Self-acceleration in non-Hermitian systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2235-2238.	0.9	4
125	Aberration corrected STEM by means of diffraction gratings. Ultramicroscopy, 2017, 182, 36-43.	0.8	15
126	Timeâ€Ðependent Freeâ€Particle Salpeter Equation: Numerical and Asymptotic Analysis in the Light of the Fundamental Solution. Annalen Der Physik, 2017, 529, 1600231.	0.9	7
127	Theory and applications of free-electron vortex states. Physics Reports, 2017, 690, 1-70.	10.3	227
128	Nonparaxial Accelerating Electron Beams. IEEE Journal of Quantum Electronics, 2017, 53, 1-6.	1.0	0
129	Engineering and Optimization of Quasi-Nondiffracting Helicon-Like Beams With an Evolutionary Algorithm. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	0
130	Compact Generation of Airy Beams with Câ€Aperture Metasurface. Advanced Optical Materials, 2017, 5, 1601028.	3.6	81
131	3D shaping of electron beams using amplitude masks. Ultramicroscopy, 2017, 177, 30-35.	0.8	12
132	Superoscillating electron wave functions with subdiffraction spots. Physical Review A, 2017, 95, .	1.0	26
133	Complete solutions of finite Airy beams in free space and graded index media with fourier analysis. Optik, 2017, 138, 377-389.	1.4	1
134	Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms. Physical Review Letters, 2017, 119, 173601.	2.9	9
135	Observation of nanoscale magnetic fields using twisted electron beams. Nature Communications, 2017, 8, 689.	5.8	47

#	Article	IF	CITATIONS
136	Propagation and power flow of high-order three-Airy beams. Optics Communications, 2017, 405, 120-126.	1.0	5
137	Robust and adjustable C-shaped electron vortex beams. New Journal of Physics, 2017, 19, 063008.	1.2	7
138	Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. Journal of Optics (United Kingdom), 2017, 19, 103001.	1.0	60
139	Non-diffracting multi-electron vortex beams balancing their electron–electron interactions. Nature Communications, 2017, 8, 650.	5.8	7
140	Cherenkov Radiation Control via Self-accelerating Wave-packets. Scientific Reports, 2017, 7, 8695.	1.6	18
141	Tight focusing of radially polarized circular Airy vortex beams. Optics Communications, 2017, 402, 672-677.	1.0	20
142	Experimental study on the propagation characteristics of ring Airy Gaussian vortex beams. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	12
143	Dynamic computer-generated nonlinear-optical holograms. Physical Review A, 2017, 96, .	1.0	16
144	Axicon Lens for Electrons Using a Magnetic Vortex: The Efficient Generation of a Bessel Beam. Physical Review Letters, 2017, 119, 174801.	2.9	19
145	The interaction of Airy waves and solitons in a three-wave system. Journal of Optics (United Kingdom), 2017, 19, 085501.	1.0	12
146	Suppression of collapse for two-dimensional Airy beam in nonlocal nonlinear media. Scientific Reports, 2017, 7, 4198.	1.6	12
147	Matter-Wave Tractor Beams. Physical Review Letters, 2017, 118, 180401.	2.9	20
148	Hybrid Airy plasmons with dynamically steerable trajectories. Nanoscale, 2017, 9, 1449-1456.	2.8	23
149	Roadmap on structured light. Journal of Optics (United Kingdom), 2017, 19, 013001.	1.0	888
150	Nearly nondiffracting electron lattice beams generated by polygonal slits. Journal of Electron Microscopy, 2017, 66, 295-299.	0.9	6
151	Scattering of wave packets with phases. Journal of High Energy Physics, 2017, 2017, 1.	1.6	35
152	Towards a holographic approach to spherical aberration correction in scanning transmission electron microscopy. Optics Express, 2017, 25, 21851.	1.7	14
153	Generation of second-harmonic beams with switchable curved trajectories. Optica, 2017, 4, 153.	4.8	13

#	Article	IF	Citations
154	Polarization-dependent effects of an Airy beam due to the spin-orbit coupling. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1114.	0.8	12
155	Transmission characteristics of subpicosecond Airy pulses in silicon-on-insulator waveguides. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2295.	0.9	3
156	Anomalous interactions of nonparaxial accelerating beams in nonlocal nonlinear media. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1115.	0.9	4
157	Continuous cubic phase microplates for generating high-quality Airy beams with strong deflection. Optics Letters, 2017, 42, 2483.	1.7	18
158	Quantum scattering beyond the plane-wave approximation. Journal of Physics: Conference Series, 2017, 938, 012031.	0.3	1
159	Guided Self-Accelerating Airy Beams—A Mini-Review. Applied Sciences (Switzerland), 2017, 7, 341.	1.3	29
160	Trajectory and focal length of circular Airy beams in linear index potentials. Optik, 2018, 165, 356-361.	1.4	5
161	Airy Wave Packets Accelerating in Space-Time. Physical Review Letters, 2018, 120, 163901.	2.9	79
162	Interaction of Airy beams in a medium with parabolic potential. Optik, 2018, 161, 106-110.	1.4	3
163	Adjustable vector Airy light-sheet single optical tweezers: negative radiation forces on a subwavelength spheroid and spin torque reversal. European Physical Journal D, 2018, 72, 1.	0.6	30
164	â€~Twisted' electrons. Contemporary Physics, 2018, 59, 126-144.	0.8	40
165	Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers. Optics Communications, 2018, 413, 24-29.	1.0	7
166	Observation of Accelerating Wave Packets in Curved Space. Physical Review X, 2018, 8, .	2.8	18
167	Demonstration of a 2â€ [–] ×â€ [–] 2 programmable phase plate for electrons. Ultramicroscopy, 2018, 190, 58-65.	0.8	80
168	Properties of the finite Airy beam propagating in the misaligned slab system with a rectangular aperture. Results in Physics, 2018, 11, 1110-1118.	2.0	7
169	Relativistic motion of an Airy wave packet in a lattice potential. Physical Review A, 2018, 98, .	1.0	2
170	Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen. Nature Communications, 2018, 9, 5035.	5.8	36
171	Propagation Properties of Airy Beam through Periodic Slab System with Negative Index Materials. International Journal of Optics, 2018, 2018, 1-7.	0.6	7

#	Article	IF	CITATIONS
172	Tilted Electron Pulses. Physical Review Letters, 2018, 121, 094801.	2.9	23
173	Wavefronts, actions and caustics determined by the probability density of an Airy beam. Journal of Optics (United Kingdom), 2018, 20, 075602.	1.0	9
174	Extended Beam Approximation for High-Frequency Wave Propagation. IEEE Access, 2018, 6, 37214-37224.	2.6	10
175	Phase transition of cosh-Airy beams in inhomogeneous media. Optics Communications, 2018, 427, 147-151.	1.0	17
176	Accelerating polygon beam with peculiar features. Scientific Reports, 2018, 8, 8593.	1.6	10
177	Lorentz-boost eigenmodes. Physical Review A, 2018, 98, .	1.0	6
178	Generation of colorful Airy beams and Airy imaging of letters via two-photon processed cubic phase plates. Optics Letters, 2018, 43, 1151.	1.7	21
179	Dynamic control of cylindrical vector beams via anisotropy. Optics Express, 2018, 26, 18721.	1.7	6
180	Shaping Long-lived Electron Wavepackets to Create Customizable Optical Spectra. , 2018, , .		0
181	Optical amplification of Airy beams by photorefractive two-wave mixing. Optics Express, 2018, 26, 7281.	1.7	4
182	Simultaneous generation of high-power, ultrafast 1D and 2D Airy beams and their frequency-doubling characteristics. Optics Letters, 2018, 43, 3957.	1.7	3
183	Relativistic vortex electrons: Paraxial versus nonparaxial regimes. Physical Review A, 2018, 98, .	1.0	30
184	Efficient orbital angular momentum transfer between plasmons and free electrons. Physical Review B, 2018, 98, .	1.1	35
185	Conventional volume holography for unconventional Airy beam shapes. Optics Express, 2018, 26, 21979.	1.7	14
186	Evolution dynamics of vortex quasi-Airy beams. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 972.	0.9	2
187	Observing the Quantum Wave Nature of Free Electrons through Spontaneous Emission. Physical Review Letters, 2019, 123, 060401.	2.9	44
188	Recovery time of matter Airy beams using the path integral quantum trajectory model. Results in Physics, 2019, 13, 102253.	2.0	3
189	Non-spreading matter-wave packets in a ring. Physica Scripta, 2019, 94, 115402.	1.2	3

#	Article	IF	CITATIONS
190	Propagation of the chirped-Airy–Gaussian–Hermite–Laguerre–Gaussian wave packets in free space. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	0
191	Electron-beam spectroscopy for nanophotonics. Nature Materials, 2019, 18, 1158-1171.	13.3	193
192	Formation of nonlinear X -waves in condensed matter systems. Physical Review B, 2019, 99, .	1.1	5
193	Phase masks for electron microscopy fabricated by thermal scanning probe lithography. Micron, 2019, 127, 102753.	1.1	8
194	Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping. Beilstein Journal of Nanotechnology, 2019, 10, 1290-1302.	1.5	4
195	Transformation of frequency chirped two-dimensional finite Olver Gaussian beam through sandwich structured slab. Results in Physics, 2019, 14, 102508.	2.0	1
196	Relativistic quantum-mechanical description of twisted paraxial electron and photon beams. Physical Review A, 2019, 100, .	1.0	20
197	Trajectory and focal length of circular Airy beams with different launch angles in linear potentials. Optics Communications, 2019, 450, 269-275.	1.0	2
198	Multiple non-diffracting beams by reflective surface based on admittance superposition. Applied Physics Letters, 2019, 114, .	1.5	4
199	Generation of Spinâ€Dependent Accelerating Beam with Geometric Metasurface. Advanced Optical Materials, 2019, 7, 1900552.	3.6	23
200	Nanostructuring of electron beams. Physica Scripta, 2019, 94, 034004.	1.2	16
201	Large-scale sharply bending paraxial beams. APL Photonics, 2019, 4, 056101.	3.0	9
202	Ionization of hydrogen by electron vortex beam. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 094001.	0.6	16
203	Optical manipulation with electric and magnetic transverse spin through multilayered focused configuration. Applied Physics Express, 2019, 12, 032001.	1.1	5
204	Interactions of solitons with positive and negative masses: Shuttle motion and coacceleration. Physical Review E, 2019, 99, 022216.	0.8	15
205	Tail-free self-accelerating solitons and vortices. Physical Review A, 2019, 99, .	1.0	13
206	Quasi non-diffractive electron Bessel beams using direct phase masks with applications in electron microscopy. New Journal of Physics, 2019, 21, 033007.	1.2	7
207	Structured quantum projectiles. Physical Review A, 2019, 99, .	1.0	2

#	Article	IF	Citations
208	Generation of a vortex and helix with square arrays with high-efficiency by the use of a 2D binary phase mask. OSA Continuum, 2019, 2, 3482.	1.8	6
209	Transversely modulated wave packet. Journal of Physics: Conference Series, 2019, 1399, 022009.	0.3	0
210	Schwinger scattering of twisted neutrons by nuclei. Physical Review C, 2019, 100, .	1.1	20
211	On Wigner function of a vortex electron. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 05LT01.	0.7	2
212	Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. Nano Letters, 2019, 19, 1158-1165.	4.5	94
213	Interference effect of cosh-Airy beam in uniaxial crystals. Optik, 2020, 202, 163647.	1.4	3
214	Quantum particles that behave as free classical particles. Physical Review A, 2020, 102, .	1.0	7
215	Fabrication of low aspect ratio three-element Boersch phase shifters for voltage-controlled three electron beam interference. Journal of Applied Physics, 2020, 128, 134502.	1.1	7
216	Nearly non-dispersive propagation of Pearcey–Gaussian pulses in optical fibers close to the zero dispersion point. Optics Communications, 2020, 471, 125915.	1.0	6
217	Tailored radially self-accelerating beams. Journal of Optics (United Kingdom), 2020, 22, 075605.	1.0	3
218	Experimental Demonstration of Microwave Two-Dimensional Airy Beam Generation Based on Single-Layer Metasurface. IEEE Transactions on Antennas and Propagation, 2020, 68, 7507-7516.	3.1	33
219	Propagations of Airy beams with quadratic phase modulation, and their interaction in paraxial optical systems. Optics Communications, 2020, 474, 126156.	1.0	4
220	Recent Advances in Integrated Photonic Jet-Based Photonics. Photonics, 2020, 7, 41.	0.9	23
221	Nanostructured-membrane electron phase plates. Ultramicroscopy, 2020, 217, 113053.	0.8	2
222	Three-Airy autofocusing beams*. Chinese Physics B, 2020, 29, 064204.	0.7	5
223	Effects of the transverse coherence length in relativistic collisions. Physical Review D, 2020, 101, .	1.6	13
224	Double ionization of helium by twisted electron beam. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 155203.	0.6	9
225	Control of arrival time using structured wave packets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 388, 127038.	0.9	2

#	Article	IF	CITATIONS
226	Role of initial chirp and dispersion on Airy pulse propagation in an optical single-mode fiber. Applied Optics, 2021, 60, 635.	0.9	1
227	Nonlinear quantum effects in electromagnetic radiation of a vortex electron. Physical Review A, 2021, 103, .	1.0	18
228	2-D Airy Beam Generation and Manipulation Utilizing Metasurface. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	5
229	Accelerating polarization structures in vectorial fields. Optics Express, 2021, 29, 2727.	1.7	12
230	Nondiffracting gravitational waves. European Physical Journal C, 2021, 81, 1.	1.4	6
231	Dynamics of self-accelerating electron beams in a homogeneous magnetic field. Physical Review A, 2021, 103, .	1.0	8
232	Quantum correlations in electron microscopy. Optica, 2021, 8, 70.	4.8	18
233	Classical characterization of quantum waves: comparison between the caustic and the zeros of the Madelung–Bohm potential. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 303.	0.8	12
234	Partially Coherent Dual and Quad Airy‣ike Beams. Annalen Der Physik, 2021, 533, 2000618.	0.9	3
235	Control of quantum electrodynamical processes by shaping electron wavepackets. Nature Communications, 2021, 12, 1700.	5.8	34
236	Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories. Optics Letters, 2021, 46, 1494.	1.7	27
237	Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. Physical Review Letters, 2021, 126, 094802.	2.9	39
238	Bohm potential is real and its effects are measurable. Optik, 2021, 232, 166341.	1.4	10
239	Wavefront Modulation and Beam Shaping into Arbitrary Three-Dimensional Intensity Distributions. Photonics, 2021, 8, 179.	0.9	0
240	Controllable transmission of Airy-Gaussian beams in fractional Schrödinger equation under Gaussian potential. Optik, 2021, 235, 166627.	1.4	4
241	Quantum Wave-Particle Duality in Free-Electron–Bound-Electron Interaction. Physical Review Letters, 2021, 126, 244801.	2.9	16
242	1D Self-Healing Beams in Integrated Silicon Photonics. ACS Photonics, 2021, 8, 2139-2147.	3.2	8
243	Beam shaping and probe characterization in the scanning electron microscope. Ultramicroscopy, 2021, 225, 113268.	0.8	9

#	Article	IF	CITATIONS
244	Direct Generation of Airy Beams at Designed Fourier Planes Using Integrated Airy Phase Plates. IEEE Photonics Technology Letters, 2021, 33, 595-598.	1.3	4
245	Propagation of light in linear and quadratic GRIN media: The Bohm potential. Optics Communications, 2021, 490, 126947.	1.0	6
246	Meniscus-confined electrodeposition of metallic microstructures with in-process monitoring of surface qualities. Precision Engineering, 2021, 70, 34-43.	1.8	17
247	Anomalous Propagation Characteristics of Airy Beam in Nonlinear Kerr Media. Crystals, 2021, 11, 879.	1.0	0
248	Unveiling the Link between Airy-like Self-Acceleration and Diametric Drive Acceleration. Physical Review Letters, 2021, 127, 083901.	2.9	9
249	Tailored high-contrast attosecond electron pulses for coherent excitation and scattering. Physical Review Research, 2021, 3, .	1.3	30
250	Imprinting the quantum statistics of photons on free electrons. Science, 2021, 373, eabj7128.	6.0	75
251	Prospects in x-ray science emerging from quantum optics and nanomaterials. Applied Physics Letters, 2021, 119, .	1.5	18
252	Non-Diffracting Light Wave: Fundamentals and Biomedical Applications. Frontiers in Physics, 2021, 9, .	1.0	20
253	New control scheme for a class of two-dimensional Airy beams in free space. Optik, 2021, 245, 167612.	1.4	4
254	Realization and measurement of Airy transform of Gaussian vortex beams. Optics and Laser Technology, 2021, 143, 107334.	2.2	14
255	Flexible rotation of transverse optical field for 2D self-accelerating beams with a designated trajectory. Opto-Electronic Advances, 2021, 4, 200021-200021.	6.4	6
256	Projectile transverse momentum controls emission in electron vortex ionization collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 205205.	0.6	9
257	Intrinsic multipole moments of non-Gaussian wave packets. Physical Review A, 2019, 99, .	1.0	16
258	High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Physical Review Research, 2020, 2, .	1.3	48
259			
239	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288.	12.1	99
260	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288. Paraxial optical fields whose intensity pattern skeletons are stable caustics. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 1820.	12.1 0.8	99 13

#	Article	IF	CITATIONS
262	Storage of Airy wavepackets based on electromagnetically induced transparency. Optics Express, 2019, 27, 6370.	1.7	4
263	Transformation of a Hermite-Gaussian beam by an Airy transform optical system. Optics Express, 2020, 28, 28518.	1.7	18
264	Spatially entangled Airy photons. Optics Letters, 2020, 45, 1399.	1.7	10
265	Caustic beams from unusual powers of the spectral phase. Optics Letters, 2017, 42, 4008.	1.7	12
266	Ultra-broadband tunable continuous phase masks using optical aberrations. Optics Letters, 2018, 43, 5480.	1.7	6
267	Airy-beam tomographic microscopy. Optica, 2020, 7, 790.	4.8	38
268	Subwavelength generation of nondiffracting structured light beams. Optica, 2020, 7, 1261.	4.8	15
269	Airy beams and accelerating waves: an overview of recent advances. Optica, 2019, 6, 686.	4.8	326
270	Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing. Photonics Research, 2020, 8, 875.	3.4	20
271	Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics, 2020, 9, 2829-2837.	2.9	23
272	Low-loss Airy surface plasmon polaritons. Chinese Optics Letters, 2015, 13, 082401-82404.	1.3	3
273	Holographic Reconstruction of Finite Airy Beams with Self-Healed and Multiplexed Features. Journal of the Optical Society of Korea, 2014, 18, 793-798.	0.6	2
274	Design of accelerating beams based on caustic method. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 144210.	0.2	9
275	Twisted distorted wave Born approximation as a new tool to investigate collisional processes. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .	0.6	2
276	Coherent random walks in free space. , 2014, , .		0
277	Incoherent Nonparaxial Accelerating Beams. , 2014, , .		0
278	Prolonging the Lifetime of Relativistic Particles by Self-Accelerating Dirac Wavepackets. , 2015, , .		0
279	Frame Dragging in Optical Newton-SchrĶdinger System?. , 2016, , .		0

#	Article	IF	CITATIONS
280	Nondiffracting Accelerating Beams on Spherical Surfaces. , 2016, , .		0
281	Theoretical investigation on a kind of time-dependent Bessel beam. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 144201.	0.2	0
282	The Self-Healing Peculiarity of Airy Beams Propagation in Free-Space. IOSR Journal of Electronics and Communication Engineering, 2016, 11, 09-14.	0.1	0
283	Optical communications over obstacles by applying two-dimensional ballistic-trajectory Airy beams. , 2017, , .		1
284	Non-perfectly-matched Bragg Diffraction and the Realization of Airy Plasmon. Springer Theses, 2017, , 33-53.	0.0	0
285	Generation and applications of non-diffraction beam. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 214204.	0.2	3
286	Breathing Airy–Gaussian solitons and bound states in nonlocal nonlinear media: ranging from formation to arbitrary control. Optical Engineering, 2018, 57, 1.	0.5	1
287	Generation of a large-scale Airy beam at high altitudes by adaptive optics. OSA Continuum, 2018, 1, 1298.	1.8	0
288	Laser Interference Processing of Electron Phase Holograms by Using a Femtosecond Laser. , 2019, , .		1
289	Creating electron phase holograms using femtosecond laser interference processing. Optics Express, 2019, 27, 20958.	1.7	4
290	Shaping long-lived electron wavepackets for customizable optical spectra. Optica, 2019, 6, 1089.	4.8	0
291	Finite-energy accelerating beam dynamics in wavelet-based representations. Physical Review Research, 2020, 2, .	1.3	1
292	Ultrafast laser ablation of 10-nm self-supporting membranes by two-beam interference processing. Optics Express, 2020, 28, 26200.	1.7	4
293	Self-accelerating beam dynamics in the space fractional Schrödinger equation. Physical Review Research, 2020, 2, .	1.3	5
294	Intracycle interference in the interaction of laser and electron beams. Physical Review Research, 2020, 2, .	1.3	5
295	Principles of electron wave front modulation with two miniature electron mirrors. Ultramicroscopy, 2022, 233, 113424.	0.8	1
296	Shaping of Electron Beams Using Sculpted Thin Films. ACS Photonics, 2021, 8, 3394-3405.	3.2	8
297	Airy beam generation and manipulation utilizing metasurface. , 2020, , .		ο

#	Article	IF	CITATIONS
298	Propagation dynamics of the circular Airy Gaussian vortex beams with different polarization in the parabolic potential. Waves in Random and Complex Media, 0, , 1-17.	1.6	0
299	Generation of achromatic auto-focusing Airy beam for visible light by an all-dielectric metasurface. Journal of Applied Physics, 2022, 131, .	1.1	4

300 Two-dimensional Airy waves and three-wave solitons in quadratic media. Journal of Optics (United) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

301	Designing a self-accelerating beam by Wigner transform. Results in Physics, 2022, 34, 105288.	2.0	0
302	Collapse arrest in a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam in nonlocal nonlinear media. Communications in Theoretical Physics, 2022, 74, 025501.	1.1	7
303	Shaping autofocusing Airy beams through the modification of Fourier spectrum. Optics Express, 2022, 30, 232.	1.7	1
304	Light-like propagation of self-interacting Klein–Gordon fields in cosmology. European Physical Journal Plus, 2022, 137, 1.	1.2	0
305	Self-Healing of Non-Hermitian Topological Skin Modes. Physical Review Letters, 2022, 128, 157601.	2.9	48
307	Study on the propagation characteristics of elliptical Airy vortex beam. Optics Communications, 2022, 519, 128389.	1.0	5
308	Generation of Airy beams in Smith–Purcell radiation. Optics Letters, 2022, 47, 2790.	1.7	6
309	Linear and nonlinear nonparaxial loss-proof accelerating beams induced in a coherent atomic medium. Optik, 2022, 262, 169257.	1.4	1
310	Development of phase-shaped electron energy-loss spectroscopy for nano-optics. Advances in Imaging and Electron Physics, 2022, , .	0.1	0
311	Non-Paraxial Transformation of Finite Airy Gaussian Beam Array in Isotropic Space. SSRN Electronic Journal, 0, , .	0.4	0
312	Generation of 2D Airy beams with switchable metasurfaces. Optics Express, 2022, 30, 20389.	1.7	7
313	The interaction in nonlocal nonlinearity media under fractional effects. Optik, 2022, , 169497.	1.4	1
314	Flexible trajectory control of Bessel beams with pure phase modulation. Optics Express, 2022, 30, 25661.	1.7	6
315	Promises and challenges of high-energy vortex states collisions. Progress in Particle and Nuclear Physics, 2022, 127, 103987.	5.6	22
316	Self-accelerating wave packets in free space. Pramana - Journal of Physics, 2022, 96, .	0.6	1

#	ARTICLE	IF	CITATIONS
317	Spectral-envelope modulated double-phase method for computer-generated holography. Optics Express, 2022, 30, 30552.	1.7	16
318	Non-paraxial transformation of finite Airy Gaussian beam array in isotropic space. Results in Physics, 2022, 39, 105791.	2.0	1
319	Twisted-electron-impact single ionization of an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">O molecule by multicenter distorted-wave calculations. Physical Review A, 2022, 106, .</mml:mi </mml:math 	1.0	1
320	Periodic evolution of the Pearcey Gaussian beam under fractional effect. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 205401.	0.6	2
321	Coherent Excitation of Bound Electron Quantum State With Quantum Electron Wavepackets. Frontiers in Physics, 0, 10, .	1.0	3
322	Two-Dimensional Solitons in Nonlocal Media: A Brief Review. Symmetry, 2022, 14, 1565.	1.1	12
323	Quantum state interrogation using a preshaped free electron wavefunction. Physical Review Research, 2022, 4, .	1.3	7
324	Airy-Beam-Enabled Binary Acoustic Metasurfaces for Underwater Ultrasound-Beam Manipulation. Physical Review Applied, 2022, 18, .	1.5	7
325	Interference enhancement effect in a single Airyprime beam propagating in free space. Optics Express, 2022, 30, 32704.	1.7	10
326	Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical Fields. ACS Photonics, 2022, 9, 3215-3224.	3.2	18
327	Transverse Electron-Beam Shaping with Light. Physical Review X, 2022, 12, .	2.8	7
328	Model transformation from a hollow Gaussian beam to an Airy Gaussian beam. Physica Scripta, 2022, 97, 115502.	1.2	2
329	Extension of focal depth by electron quasi-Bessel beam in atomic-resolution scanning transmission electron microscopy. Applied Physics Express, 0, , .	1.1	0
330	Self-accelerating solitons. Europhysics Letters, 0, , .	0.7	1
331	A Global Phaseâ€Modulation Mechanism for Flat‣ens Design. Advanced Optical Materials, 2022, 10, .	3.6	3
332	Airy heat bullets. European Physical Journal Plus, 2022, 137, .	1.2	0
333	Manipulation of accelerating curved vortex beam modulated by inhomogeneous spiral phase. European Physical Journal Plus, 2022, 137, .	1.2	0
334	Partially coherent Airy beams: A cross-spectral-density approach. Physical Review A, 2022, 106, .	1.0	3

#	Article	IF	CITATIONS
335	Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging. , 2022, 2022, .		2
336	Pendulum-type light beams. Optica, 2023, 10, 90.	4.8	4
337	Generation and control of multiple optical bottles from chirped Airy–Gaussian vortex beams: theory and experiment. Waves in Random and Complex Media, 0, , 1-16.	1.6	2
338	Stabilization of Axisymmetric Airy Beams by Means of Diffraction and Nonlinearity Management in Two-Dimensional Fractional Nonlinear SchrĶdinger Equations. Symmetry, 2022, 14, 2664.	1.1	2
339	Study on the Influence of Nonlinearity and Chirp on Propagation Properties of Airy Pulse. Optoelectronics, 2022, 12, 139-146.	0.0	0
340	Observation of Bohm trajectories and quantum potentials of classical waves. Physica Scripta, 2023, 98, 044004.	1.2	5
341	Observation of optical de Broglie–Mackinnon wave packets. Nature Physics, 2023, 19, 435-444.	6.5	5
342	Spectral phase effects in above threshold ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2023, 56, 095601.	0.6	0
343	Generation of Perfect Electron Vortex Beam with a Customized Beam Size Independent of Orbital Angular Momentum. Nano Letters, 2023, 23, 2436-2441.	4.5	2
344	Strengthening of 3D printed Cu micropillar in Cu-Ni core-shell structure. Materials and Design, 2023, 227, 111717.	3.3	5
345	Modulating Airy vortex beam by Kerr nonlinear effect. Optical Materials, 2023, 137, 113626.	1.7	1
346	Investigation of the effect of chirped factors on the interference enhancement effect of an Airyprime beam propagating in free space. Optics Express, 2023, 31, 10820.	1.7	1
347	Controllable self-rotating array beam with an arc-shaped accelerating trajectory. Optics Express, 2023, 31, 12150.	1.7	4
348	Cyclotron radiation from shaped electron wavefunctions. New Journal of Physics, 2023, 25, 053006.	1.2	1