Concurrent activation of striatal direct and indirect pat

Nature 494, 238-242 DOI: 10.1038/nature11846

Citation Report

#	Article	IF	CITATIONS
1	Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nature Neuroscience, 2013, 16, 1275-1283.	14.8	60
2	Canceling actions involves a race between basal ganglia pathways. Nature Neuroscience, 2013, 16, 1118-1124.	14.8	351
3	Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum. Neurobiology of Learning and Memory, 2013, 105, 63-80.	1.9	54
4	A Comparison of the Subsecond Dynamics of Neurotransmission of Dopamine and Serotonin. ACS Chemical Neuroscience, 2013, 4, 704-714.	3.5	28
5	Optogenetic insights into striatal function and behavior. Behavioural Brain Research, 2013, 255, 44-54.	2.2	87
6	Relay catalysis at a boron centre. Nature, 2013, 494, 179-181.	27.8	2
7	Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons. Journal of Neuroscience, 2013, 33, 18531-18539.	3.6	326
8	Basal ganglia output to the thalamus: still a paradox. Trends in Neurosciences, 2013, 36, 695-705.	8.6	84
9	Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 2013, 501, 179-184.	27.8	960
10	Mechanisms of the influence of dopamine on the functioning of basal ganglia and movement choice (a) Tj ETQq1	1,0,78431 0.5	L4 rgBT /Ove
11	Stop 'n' go. Nature Reviews Neuroscience, 2013, 14, 159-159.	10.2	0
12	New genetic insights highlight â€~old' ideas on motor dysfunction in dystonia. Trends in Neurosciences, 2013, 36, 717-725.	8.6	51
13	Corticostriatal connectivity and its role in disease. Nature Reviews Neuroscience, 2013, 14, 278-291.	10.2	664
14	To go or not to go. Nature, 2013, 494, 178-179.	27.8	14
15	Decision Making: From Neuroscience to Psychiatry. Neuron, 2013, 78, 233-248.	8.1	129
16	Signals through the Striatopallidal <i>Indirect</i> Pathway Stop Movements by Phasic Excitation in the Substantia Nigra. Journal of Neuroscience, 2013, 33, 7583-7594.	3.6	110
17	Reward-Modulated Motor Information in Identified Striatum Neurons. Journal of Neuroscience, 2013, 33, 10209-10220.	3.6	144
10	Convergent cortical innervation of striatal projection neurons. Nature Neuroscience, 2013, 16,	14.8	137

#	Article	IF	CITATIONS
19	The potential roles of T-type Ca2+ channels in motor coordination. Frontiers in Neural Circuits, 2013, 7, 172.	2.8	14
20	ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 2013, 33, 18381-18395.	3.6	211
21	In vivo Photometry during Movement Changes Our Understanding of the Direct and Indirect Pathways. Frontiers in Neurology, 2013, 4, 118.	2.4	0
22	Preparing for Selective Inhibition within Frontostriatal Loops. Journal of Neuroscience, 2013, 33, 18087-18097.	3.6	73
23	Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice. Scientific Reports, 2013, 3, 3265.	3.3	43
24	Neural Circuit Modulation During Deep Brain Stimulation at the Subthalamic Nucleus for Parkinson's Disease: What Have We Learned from Neuroimaging Studies?. Brain Connectivity, 2013, 4, 131218075844008.	1.7	18
25	Journal Watch: Our panel of experts highlight the most important research articles across the spectrum of topics relevant to the field of neurodegenerative disease management Neurodegenerative Disease Management, 2013, 3, 203-205.	2.2	0
26	In-vivo Optical Measurement of Neural Activity in the Brain. Experimental Neurobiology, 2013, 22, 158-166.	1.6	34
27	The basal ganglia, the ideal machinery for the cost-benefit analysis of action plans. Frontiers in Neural Circuits, 2013, 7, 121.	2.8	17
28	Distinct roles of synaptic and extrasynaptic GABAAreceptors in striatal inhibition dynamics. Frontiers in Neural Circuits, 2013, 7, 186.	2.8	19
29	Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Frontiers in Systems Neuroscience, 2013, 7, 118.	2.5	73
30	Optogenetics: illuminating the neural bases of rodent behavior. Open Access Animal Physiology, 2014, , 33.	0.3	Ο
31	Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Frontiers in Pharmacology, 2014, 4, 172.	3.5	65
32	Striatal direct and indirect pathways control decision-making behavior. Frontiers in Psychology, 2014, 5, 1301.	2.1	80
33	Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum. Frontiers in Neuroanatomy, 2014, 8, 14.	1.7	46
34	Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Frontiers in Behavioral Neuroscience, 2014, 8, 111.	2.0	34
35	Function of basal ganglia in bridging cognitive and motor modules to perform an action. Frontiers in Neuroscience, 2014, 8, 187.	2.8	44
36	Dopamine systems adaptation during acquisition and consolidation of a skill. Frontiers in Integrative Neuroscience, 2014, 8, 87.	2.1	31

#	Article	IF	CITATIONS
37	Monitoring activity in neural circuits with genetically encoded indicators. Frontiers in Molecular Neuroscience, 2014, 7, 97.	2.9	121
38	Recent advances in understanding the role of the hypothalamic circuit during aggression. Frontiers in Systems Neuroscience, 2014, 8, 168.	2.5	44
39	Striatal firing rate reflects head movement velocity. European Journal of Neuroscience, 2014, 40, 3481-3490.	2.6	78
40	Frontal-Subcortical Circuits Involved in Reactive Control and Monitoring of Gaze. Journal of Neuroscience, 2014, 34, 8918-8929.	3.6	32
41	Cocaine Disrupts Histamine H ₃ Receptor Modulation of Dopamine D ₁ Receptor Signaling: σ ₁ -D ₁ -H ₃ Receptor Complexes as Key Targets for Reducing Cocaine's Effects. Journal of Neuroscience, 2014, 34, 3545-3558.	3.6	66
42	The reasons for the preferable use of A2A receptor antagonists for improvement of locomotor activity and learning. Neurochemical Journal, 2014, 8, 247-258.	0.5	2
43	Psychiatric disturbances regulate the innate immune system in CSF of conscious mice. Translational Psychiatry, 2014, 4, e367-e367.	4.8	18
44	Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of Neurophysiology, 2014, 111, 836-848.	1.8	47
45	δ-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice. Journal of Neuroscience, 2014, 34, 1358-1369.	3.6	48
46	The Use of PDE10A and PDE9 Inhibitors for Treating Schizophrenia. Topics in Medicinal Chemistry, 2014, , 255-316.	0.8	4
47	Long-term depression at distinct glutamatergic synapses in the basal ganglia. Reviews in the Neurosciences, 2014, 25, 741-54.	2.9	5
48	The Acquisition of Goal-Directed Actions Generates Opposing Plasticity in Direct and Indirect Pathways in Dorsomedial Striatum. Journal of Neuroscience, 2014, 34, 9196-9201.	3.6	105
49	Functional Connectivity of Primary Motor Cortex Is Dependent on Genetic Burden in Prodromal Huntington Disease. Brain Connectivity, 2014, 4, 535-546.	1.7	28
50	Contrasting actions of group I metabotropic glutamate receptors in distinct mouse striatal neurones. Journal of Physiology, 2014, 592, 2721-2733.	2.9	15
51	Neurophotonics applications to motor cortex research: a review. Neurophotonics, 2014, 1, 011008.	3.3	3
52	Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits. Current Topics in Developmental Biology, 2014, 109, 97-169.	2.2	35
53	Endocannabinoid-Dependent Modulation of Phasic Dopamine Signaling Encodes External and Internal Reward-Predictive Cues. Frontiers in Psychiatry, 2014, 5, 118.	2.6	17
54	Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nature Communications, 2014, 5, 4315.	12.8	167

#	Article	IF	CITATIONS
55	Working together: basal ganglia pathways in action selection. Trends in Neurosciences, 2014, 37, 301-303.	8.6	78
56	Phosphodiesterase 10A inhibitor MP-10 effects in primates: Comparison with risperidone and mechanistic implications. Neuropharmacology, 2014, 77, 257-267.	4.1	22
57	Tools for Resolving Functional Activity and Connectivity within Intact Neural Circuits. Current Biology, 2014, 24, R41-R50.	3.9	51
58	Mapping brain circuit function <i>in vivo</i> using twoâ€photon fluorescence microscopy. Microscopy Research and Technique, 2014, 77, 492-501.	2.2	17
59	Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiology of Learning and Memory, 2014, 108, 104-118.	1.9	145
60	The cognitive burden in Huntington's disease: Pathology, phenotype, and mechanisms of compensation. Movement Disorders, 2014, 29, 673-683.	3.9	116
61	Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release. Neuropsychopharmacology, 2014, 39, 1441-1452.	5.4	28
62	Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience, 2014, 282, 49-59.	2.3	84
63	Deep brain optical measurements of cell type–specific neural activity in behaving mice. Nature Protocols, 2014, 9, 1213-1228.	12.0	115
64	Treatment of Parkinson's Disease: What's in the Non-dopaminergic Pipeline?. Neurotherapeutics, 2014, 11, 34-46.	4.4	26
65	Olfactory maps, circuits and computations. Current Opinion in Neurobiology, 2014, 24, 120-132.	4.2	86
66	Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry. Neuron, 2014, 81, 153-164.	8.1	194
67	Diagnosing and treating PD—the earlier the better?. Nature Reviews Neurology, 2014, 10, 65-66.	10.1	7
68	Dopaminergic modulation of striatal networks in health and Parkinson's disease. Current Opinion in Neurobiology, 2014, 29, 109-117.	4.2	127
69	Mutual influence of serotonin and dopamine on the functioning of the dorsal striatum and motor activity (hypothetical mechanism). Neurochemical Journal, 2014, 8, 149-161.	0.5	3
70	Natural Neural Projection Dynamics Underlying Social Behavior. Cell, 2014, 157, 1535-1551.	28.9	1,121
71	Biological substrates of addiction. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 151-171.	2.8	28
72	Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models. Neurobiology of Disease, 2014, 71, 334-344.	4.4	71

#	Article	IF	Citations
73	Multisensory Integration in the Mouse Striatum. Neuron, 2014, 83, 1200-1212.	8.1	197
74	Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science, 2014, 345, 535-542.	12.6	233
75	Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546.	12.6	5,936
76	Imaging Activity in Neurons and Glia with a Polr2a-Based and Cre-Dependent GCaMP5G-IRES-tdTomato Reporter Mouse. Neuron, 2014, 83, 1058-1072.	8.1	120
77	Reassessing Models of Basal Ganglia Function and Dysfunction. Annual Review of Neuroscience, 2014, 37, 117-135.	10.7	249
78	The lamprey blueprint of the mammalian nervous system. Progress in Brain Research, 2014, 212, 337-349.	1.4	45
79	Two-phase model of the basal ganglia: implications for discontinuous control of the motor system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130489.	4.0	11
80	Action, time and the basal ganglia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120473.	4.0	76
81	Nucleus accumbens responses differentiate execution and restraint in reward-directed behavior. Journal of Neurophysiology, 2014, 111, 350-360.	1.8	13
82	Optical Neural Interfaces. Annual Review of Biomedical Engineering, 2014, 16, 103-129.	12.3	170
83	Pharmacogenetic and optical dissection for mechanistic understanding of Parkinson's disease: Potential utilities revealed through behavioural assessment. Neuroscience and Biobehavioral Reviews, 2014, 47, 87-100.	6.1	13
84	Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neuroscience, 2014, 17, 1022-1030.	14.8	598
85	Functional implications of dopamine D1 vs. D2 receptors: A †̃prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience, 2014, 282, 156-175.	2.3	111
86	Firing dynamics and LFP oscillatory patterns in the dopamine-depleted striatum during maze learning. Basal Ganglia, 2014, 3, 213-219.	0.3	3
87	Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 2014, 282, 86-100.	2.3	95
88	Fiber optic fluorescence microscopy for functional brain imaging in awake, mobile mice. , 2014, , .		2
89	Multi-channel fiber photometry for population neuronal activity recording. Biomedical Optics Express, 2015, 6, 3919.	2.9	87
90	Morphological elucidation of basal ganglia circuits contributing reward prediction. Frontiers in Neuroscience, 2015, 9, 6.	2.8	20

ARTICLE IF CITATIONS # Coordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons 6.4 43 91 Orchestrates Motor Control. Cell Reports, 2015, 13, 1353-1365. Quantifying Recording Quality in In Vivo Striatal Recordings. Current Protocols in Neuroscience, 2.6 2015, 70, 6.28.1-6.28.9 Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. 93 3.9 19 Movement Disorders, 2015, 30, 1306-1318. Zooming in on the small: The plasticity of striatal dendritic spines in <scp>l</scp>â€DOPA–Induced 94 3.9 dyskinesia. Movement Disorders, 2015, 30, 484-493. Balancing the basal ganglia circuitry: A possible new role for dopamine D2 receptors in health and 95 3.9 43 disease. Movement Disorders, 2015, 30, 895-903. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. 1.7 153 Frontiers in Neuroanatomy, 2015, 9, 5. The basal ganglia select the expected sensory input used for predictive coding. Frontiers in 97 2.1 26 Computational Neuroscience, 2015, 9, 119. Beyond reward prediction errors: the role of dopamine in movement kinematics. Frontiers in 2.1 Integrative Neuroscience, 2015, 9, 39. Differential organization of cortical inputs to striatal projection neurons of the matrix 99 2.5 40 compartment in rats. Frontiers in Systems Neuroscience, 2015, 9, 51. From Thought to Action: How the Interplay Between Neuroscience and Phenomenology Changed Our 2.1 Understanding of Obsessive-Compulsive Disorder. Frontiers in Psychology, 2015, 6, 1798. Neuromodulation of excitatory synaptogenesis in striatal development. ELife, 2015, 4, . 102 6.0 62 An integrated microprobe for the brain. Nature Biotechnology, 2015, 33, 259-260. The Challenge of Understanding the Brain: Where We Stand in 2015. Neuron, 2015, 86, 864-882. 104 8.1 78 Optical dissection of brain circuits with patterned illumination through the phase modulation of 2.5 light. Journal of Neuroscience Methods, 2015, 241, 66-77. Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and 106 8.1 95 Indirect Pathways. Neuron, 2015, 86, 1174-1181. Loss of the preferential control over the striato-nigral direct pathway by striatal NMDA receptors in a rat model of Parkinson's disease. Analyst, The, 2015, 140, 3830-3839. Deep brain stimulation in Huntington's disease: Assessment of potential targets. Journal of Clinical 108 1.518 Neuroscience, 2015, 22, 812-817. Altered PDE10A expression detectable early before symptomatic onset in Huntington's disease. Brain, 2015, 138, 3016-3029.

#	Article	IF	CITATIONS
110	Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei. FEBS Letters, 2015, 589, 3693-3701.	2.8	25
111	Learning and Motivational Processes Contributing to Pavlovian–Instrumental Transfer and Their Neural Bases: Dopamine and Beyond. Current Topics in Behavioral Neurosciences, 2015, 27, 259-289.	1.7	90
112	Activation of postsynaptic D2 dopamine receptors in the rat dorsolateral striatum prevents the amnestic effect of systemically administered neuroleptics. Behavioural Brain Research, 2015, 281, 283-289.	2.2	9
113	Cannabinoid <scp>CB</scp> 1 receptors activation and coactivation with <scp>D</scp> 2 receptors modulate <scp>GABA</scp> ergic neurotransmission in the globus pallidus and increase motor asymmetry. Synapse, 2015, 69, 103-114.	1.2	23
114	Dopamine-dependent corticostriatal synaptic filtering regulates sensorimotor behavior. Neuroscience, 2015, 290, 594-607.	2.3	12
115	The basal ganglia downstream control of brainstem motor centres—an evolutionarily conserved strategy. Current Opinion in Neurobiology, 2015, 33, 47-52.	4.2	70
117	Sensory Detection of Food Rapidly Modulates Arcuate Feeding Circuits. Cell, 2015, 160, 829-841.	28.9	489
118	Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neuroscience and Biobehavioral Reviews, 2015, 58, 186-210.	6.1	52
119	Intracortical Recording Interfaces: Current Challenges to Chronic Recording Function. ACS Chemical Neuroscience, 2015, 6, 68-83.	3.5	77
120	The striatum multiplexes contextual and kinematic information to constrain motor habits execution. Nature Neuroscience, 2015, 18, 453-460.	14.8	156
121	Between the primate and â€~reptilian' brain: Rodent models demonstrate the role of corticostriatal circuits in decision making. Neuroscience, 2015, 296, 66-74.	2.3	34
122	Linking neuroscience with modern concepts of impulse control disorders in Parkinson's disease. Movement Disorders, 2015, 30, 141-149.	3.9	84
123	Advances in Cognitive Neurodynamics (IV). Advances in Cognitive Neurodynamics, 2015, , .	0.1	3
124	Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior. Journal of Neuroscience, 2015, 35, 2703-2716.	3.6	81
125	Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Progress in Neurobiology, 2015, 127-128, 91-107.	5.7	136
126	Singling out blood development. Nature Biotechnology, 2015, 33, 260-261.	17.5	0
127	Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors. Frontiers in Pharmacology, 2015, 6, 42.	3.5	10
128	Multimodal Plasticity in Dorsal Striatum While Learning a Lateralized Navigation Task. Journal of Neuroscience, 2015, 35, 10535-10549.	3.6	43

		ATION REPORT	
#	Article	IF	CITATIONS
129	Shaping action sequences in basal ganglia circuits. Current Opinion in Neurobiology, 2015, 33, 188-196	6. 4.2	143
130	Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140210). 4.0	30
131	A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface. PLoS Biology, 2015, 13, e1002034.	5.6	102
132	Response Inhibition. , 2015, , 303-317.		1
133	Existence and Control of Go/No-Go Decision Transition Threshold in the Striatum. PLoS Computational Biology, 2015, 11, e1004233.	3.2	42
134	Spotlight on movement disorders: What optogenetics has to offer. Movement Disorders, 2015, 30, 624-631.	3.9	22
135	Oxytocin: Parallel Processing in the Social Brain?. Journal of Neuroendocrinology, 2015, 27, 516-535.	2.6	36
136	Optogenetic Evidence for Inhibitory Signaling from Orexin to MCH Neurons via Local Microcircuits. Journal of Neuroscience, 2015, 35, 5435-5441.	3.6	113
137	WONOEP appraisal: Molecular and cellular imaging in epilepsy. Epilepsia, 2015, 56, 505-513.		6
138	Selective Attentional Enhancement and Inhibition of Fronto-Posterior Connectivity by the Basal Ganglia During Attention Switching. Cerebral Cortex, 2015, 25, 1527-1534.	2.9	47
139	Upregulation of Dopamine D2 Receptors in the Nucleus Accumbens Indirect Pathway Increases Locomotion but Does Not Reduce Alcohol Consumption. Neuropsychopharmacology, 2015, 40, 1609-1618.	5.4	38
140	New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. Frontiers in Biology, 2015, 10, 230-238.	0.7	17
141	In Parkinson's disease pallidal deep brain stimulation speeds up response initiation but has no effec on reactive inhibition. Journal of Neurology, 2015, 262, 1741-1750.	t 3.6	11
142	Ventral Pallidal Projections to Mediodorsal Thalamus and Ventral Tegmental Area Play Distinct Roles in Outcome-Specific Pavlovian-Instrumental Transfer. Journal of Neuroscience, 2015, 35, 4953-4964.	3.6	59
143	Direct and indirect pathways of the basal ganglia: opponents or collaborators?. Frontiers in Neuroanatomy, 2015, 9, 20.	1.7	4
144	Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus. Neuron, 2015, 86, 501-513.	8.1	127
145	A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Frontiers in Integrative Neuroscience, 2015, 9, 8.	2.1	79
146	Dopamine signals and physiological origin of cognitive dysfunction in Parkinson's disease. Movement Disorders, 2015, 30, 472-483.	3.9	24

ARTICLE IF CITATIONS Lensed fiber-optic probe design for efficient photon collection in scattering media. Biomedical Optics 147 2.9 13 Express, 2015, 6, 191. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nature 148 10.2 Reviews Neuroscience, 2015, 16, 719-732. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in 149 6.4 98 Experimental Parkinsonism. Cell Reports, 2015, 13, 657-666. Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits. 8.1 108 Neuron, 2015, 88, 345-356. A Direct Path to Action Initiation. Neuron, 2015, 88, 240-241. 151 8.1 6 Neural mechanisms of response inhibition. Current Opinion in Behavioral Sciences, 2015, 1, 64-71. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science, 2015, 349, 153 12.6 251 730-734. The developmental dynamics of marmoset monkey vocal production. Science, 2015, 349, 734-738. 154 12.6 208 Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed 155 8.1 165 Behavior. Neuron, 2015, 88, 298-305. Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions. European 2.6 Journal of Neuroscience, 2015, 42, 2097-2104. Alcohol Elicits Functional and Structural Plasticity Selectively in Dopamine D1 Receptor-Expressing 157 3.6 83 Neurons of the Dorsomedial Striatum. Journal of Neuroscience, 2015, 35, 11634-11643. Dopamine Is Required for the Neural Representation and Control of Movement Vigor. Cell, 2015, 162, 28.9 241 1418-1430. Corticostriatal microRNAs in addiction. Brain Research, 2015, 1628, 2-16. 159 2.2 23 Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150053. 4.0 Our panel of experts highlight the most important research articles across the spectrum of topics 161 relevant to the field of neurodegenerative disease management. Neurodegenerative Disease 2.2 0 Management, 2015, 5, 279-281. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic 1.8 movement disorders. Journal of Neurophysiology, 2015, 114, 2090-2104. A Role for Phasic Dopamine Release within the Nucleus Accumbens in Encoding Aversion: A Review of 163 3.5104 the Neurochemical Literature. ACS Chemical Neuroscience, 2015, 6, 16-26. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in 164 2.3 behaving zebrafish. Neuroscience, 2015, 296, 26-38.

#	Article	IF	CITATIONS
165	In vivo Calcium Imaging to Illuminate Neurocircuit Activity Dynamics Underlying Naturalistic Behavior. Neuropsychopharmacology, 2015, 40, 238-239.	5.4	60
166	The role of δâ€opioid receptors in learning and memory underlying the development of addiction. British Journal of Pharmacology, 2015, 172, 297-310.	5.4	39
167	LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Human Molecular Genetics, 2015, 24, 1336-1349.	2.9	84
168	Origins of basal ganglia output signals in singing juvenile birds. Journal of Neurophysiology, 2015, 113, 843-855.	1.8	4
169	Multiple gates on working memory. Current Opinion in Behavioral Sciences, 2015, 1, 23-31.	3.9	171
170	Abnormal Activities in Cortico-Basal Ganglia Circuits in Movement Disorders. Handbook of Behavioral Neuroscience, 2016, 24, 741-754.	0.7	0
171	Morphological Plasticity in the Striatum Associated With Dopamine Dysfunction. Handbook of Behavioral Neuroscience, 2016, , 755-770.	0.7	4
172	Anterograde Viral Tracer Methods. , 2016, , 203-218.		1
173	The Neuroanatomical Organization of the Basal Ganglia. Handbook of Behavioral Neuroscience, 2016, 24, 3-32.	0.7	23
174	Cell Types in the Different Nuclei of the Basal Ganglia. Handbook of Behavioral Neuroscience, 2016, 24, 99-117.	0.7	4
175	The Striatal Skeleton: Medium Spiny Projection Neurons and Their Lateral Connections. Handbook of Behavioral Neuroscience, 2016, , 121-136.	0.7	3
176	Endocannabinoid Signaling in the Striatum. Handbook of Behavioral Neuroscience, 2016, 24, 197-215.	0.7	2
177	Investigating Basal Ganglia Function With Cell-Type-Specific Manipulations. Handbook of Behavioral Neuroscience, 2016, 24, 689-706.	0.7	0
178	Selective Increase of Auditory Cortico-Striatal Coherence during Auditory-Cued Go/NoGo Discrimination Learning. Frontiers in Behavioral Neuroscience, 2015, 9, 368.	2.0	10
179	Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Frontiers in Neural Circuits, 2016, 10, 53.	2.8	16
180	Maladaptive Synaptic Plasticity in L-DOPA-Induced Dyskinesia. Frontiers in Neural Circuits, 2016, 10, 105.	2.8	21
181	Corticostriatal Dysfunction in Huntington's Disease: The Basics. Frontiers in Human Neuroscience, 2016, 10, 317.	2.0	52
182	Striatal Circuits as a Common Node for Autism Pathophysiology. Frontiers in Neuroscience, 2016, 10, 27.	2.8	206

		CITATION R	EPORT	
#	Article		IF	CITATIONS
183	Micro- and Nanotechnologies for Optical Neural Interfaces. Frontiers in Neuroscience,	2016, 10, 70.	2.8	41
184	Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways dur Decision-Making and Reinforcement Learning. Frontiers in Neuroscience, 2016, 10, 10	ing 6.	2.8	34
185	Globus Pallidus Externus Neurons Expressing parvalbumin Interconnect the Subthalam Striatal Interneurons. PLoS ONE, 2016, 11, e0149798.	ic Nucleus and	2.5	88
186	Pathophysiology of Dystonia. Handbook of Behavioral Neuroscience, 2016, , 929-950.		0.7	5
187	In vivo two-photon imaging of striatal neuronal circuits in mice. Neurobiology of Learn Memory, 2016, 135, 146-151.	ing and	1.9	14
188	Dopamine increases <scp>NMDA</scp> â€stimulated calcium flux in striatopallidal neurons through a matrix metalloproteinaseâ€dependent mechanism. European Journal of Neuroscience, 2016, 43, 194-203.		2.6	10
189	Early synaptic dysfunction in Parkinson's disease: Insights from animal models. Movement Disorders, 2016, 31, 802-813.		3.9	127
190	Activation of Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide Responses. Neuron, 2016, 91, 412-424.		8.1	94
191	Striatonigral control of movement velocity in mice. European Journal of Neuroscience, 2016, 43, 1097-1110.		2.6	43
192	Cell-Type-Specific Optical Recording of Membrane Voltage Dynamics in Freely Moving Mice. Cell, 2016, 167, 1650-1662.e15.		28.9	90
193	Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive. Scientific Reports, 2016, 6, 23327.		3.3	15
194	The Sensory Neocortex and Associative Memory. Current Topics in Behavioral Neurosc 177-211.	iences, 2016, 37,	1.7	11
195	Roadmap on neurophotonics. Journal of Optics (United Kingdom), 2016, 18, 093007.		2.2	28
196	Evidence for subjective values guiding posture and movement coordination in a free-er whole-body reaching task. Scientific Reports, 2016, 6, 23868.	ndpoint	3.3	25
197	Advances in Fibre Microendoscopy for Neuronal Imaging. Optical Data Processing and .	Storage, 2016, 2,	3.3	10
198	Reappraising striatal D1- and D2-neurons in reward and aversion. Neuroscience and Bio Reviews, 2016, 68, 370-386.	obehavioral	6.1	125
199	Loss of Homeostasis in the Direct Pathway in a Mouse Model of Asymptomatic Parkins Journal of Neuroscience, 2016, 36, 5686-5698.	on's Disease.	3.6	43
200	Npas1 ⁺ Pallidal Neurons Target Striatal Projection Neurons. Journal of Neu 2016, 36, 5472-5488.	iroscience,	3.6	88

#	Article	IF	CITATIONS
201	Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. International Journal of Neuropsychopharmacology, 2016, 19, pyw030.	2.1	37
202	Direct and indirect dorsolateral striatum pathways reinforce different action strategies. Current Biology, 2016, 26, R267-R269.	3.9	106
203	The role of opponent basal ganglia outputs in behavior. Future Neurology, 2016, 11, 149-169.	0.5	5
204	Reinforcement learning with Marr. Current Opinion in Behavioral Sciences, 2016, 11, 67-73.	3.9	34
205	Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors. Journal of Neuroscience, 2016, 36, 4976-4992.	3.6	29
206	Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nature Neuroscience, 2016, 19, 845-854.	14.8	273
207	Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis. Trends in Neurosciences, 2016, 39, 63-73.	8.6	99
208	Single body parts are processed by individual neurons in the mouse dorsolateral striatum. Brain Research, 2016, 1636, 200-207.	2.2	13
209	<scp>l</scp> -DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements?. Synapse, 2016, 70, 479-500.	1.2	53
210	Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning. Neuroscience and Biobehavioral Reviews, 2016, 71, 633-656.	6.1	86
211	Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum. Cerebral Cortex, 2016, 26, 4405-4415.	2.9	36
212	Basal Ganglia Output Controls Active Avoidance Behavior. Journal of Neuroscience, 2016, 36, 10274-10284.	3.6	54
213	Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila. Cell, 2016, 167, 858-870.e19.	28.9	145
214	Hunger-Driven Motivational State Competition. Neuron, 2016, 92, 187-201.	8.1	215
215	Effects of a novel phosphodiesterase 10A inhibitor in non-human primates: A therapeutic approach for schizophrenia with improved side effect profile. Neuropharmacology, 2016, 110, 449-457.	4.1	7
216	Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9629-9634.	7.1	65
217	Neuroimaging correlates of blinking abnormalities in patients with progressive supranuclear palsy. Movement Disorders, 2016, 31, 138-143.	3.9	13
218	The external globus pallidus: progress and perspectives. European Journal of Neuroscience, 2016, 43, 1239-1265.	2.6	117

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
219	Inhibitory Interplay between Orexin Neurons and Eating. Current Biology, 2016, 26, 24	86-2491.	3.9	118
220	Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nature Commun 7, 10503.	ications, 2016,	12.8	299
221	Central Control Circuit for Context-Dependent Micturition. Cell, 2016, 167, 73-86.e12.		28.9	110
222	Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Rep 1126-1137.	orts, 2016, 16,	6.4	344
223	Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Neuron, 2016, 92, 202-213.	Information.	8.1	260
224	Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution. Cell, 2016, 166, 703-715.		28.9	284
225	A New Neuroanatomy of Basal Ganglia Circuitry. , 2016, , 301-315.			0
226	Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations. Movement Disorders, 2016, 31, 1591-1601.		3.9	29
227	The Basal Ganglia and Hierarchical Control in Voluntary Behavior. Innovations in Cognitive Neuroscience, 2016, , 513-566.		0.3	16
228	Homeostasis Meets Motivation in the Battle to Control Food Intake. Journal of Neuroscience, 2016, 36, 11469-11481.		3.6	183
229	Frontosubthalamic Circuits for Control of Action and Cognition. Journal of Neuroscience, 2016, 36, 11489-11495.		3.6	198
230	Anatomy and Function of the Direct and Indirect Striatal Pathways. Innovations in Cog Neuroscience, 2016, , 47-67.	nitive	0.3	2
231	The Basal Ganglia Over 500 Million Years. Current Biology, 2016, 26, R1088-R1100.		3.9	232
232	Using model systems to understand errant plasticity mechanisms in psychiatric disorde Neuroscience, 2016, 19, 1418-1425.	ers. Nature	14.8	20
233	DREADDS: Use and application in behavioral neuroscience Behavioral Neuroscience, 2	.016, 130, 137-155.	1.2	199
234	Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin network Communications, 2016, 7, 11395.	ks. Nature	12.8	152
235	Distinct roles for primate caudate dopamine D1 and D2 receptors in visual discrimination revealed using shRNA knockdown. Scientific Reports, 2016, 6, 35809.	on learning	3.3	22
236	Construction of Cell-based Neurotransmitter Fluorescent Engineered Reporters (CNiFE Detection of Neurotransmitters In Vivo . Journal of Visualized Exp	Rs) for Optical beriments, 2016, ,	0.3	11

		CITATION R	EPORT	
#	Article		IF	Citations
237	Safety out of control: dopamine and defence. Behavioral and Brain Functions, 2016, 12,	15.	3.3	43
238	Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens Motivated Behavior. Journal of Neuroscience, 2016, 36, 6011-6021.	s During	3.6	52
239	Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initia Goal-Directed Action. Journal of Neuroscience, 2016, 36, 5988-6001.	ation of	3.6	98
240	Central Amygdala Somatostatin Neurons Gate Passive and Active Defensive Behaviors. Jo Neuroscience, 2016, 36, 6488-6496.	urnal of	3.6	138
241	Separate circuitries encode the hedonic and nutritional values of sugar. Nature Neuroscie 19, 465-470.	ence, 2016,	14.8	190
242	Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell, 2016,	164, 526-537.	28.9	311
243	Pathway-Specific Striatal Substrates for Habitual Behavior. Neuron, 2016, 89, 472-479.		8.1	121
244	The Anatomy of the Basal Ganglia. , 2016, , 85-94.			5
245	Cortico–Basal Ganglia Circuit Function in Psychiatric Disease. Annual Review of Physiol 327-350.	ogy, 2016, 78,	13.1	111
246	Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell, 2016	, 164, 617-631.	28.9	294
247	Simultaneous fast measurement of circuit dynamics at multiple sites across the mammal Nature Methods, 2016, 13, 325-328.	ian brain.	19.0	359
248	Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Phil Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150109.	osophical	4.0	54
249	In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in coca Proceedings of the National Academy of Sciences of the United States of America, 2016,	aine reward. 113, 2726-2731.	7.1	258
250	Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning. Ne Research, 2016, 108, 1-5.	uroscience	1.9	64
251	Clues on the coding of reward cues by the nucleus accumbens. Proceedings of the Nation of Sciences of the United States of America, 2016, 113, 2560-2562.	nal Academy	7.1	4
252	Hypothalamic control of male aggression-seeking behavior. Nature Neuroscience, 2016,	19, 596-604.	14.8	201
253	Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell, 2016, 164	, 1136-1150.	28.9	143
254	Pathophysiological signatures of functional connectomics in parkinsonian and dyskinetic microcircuits. Neurobiology of Disease, 2016, 91, 347-361.	striatal	4.4	35

#	Article	IF	CITATIONS
255	A model of dopamine regulation of glutamatergic synapse on medium size spiny neurons. BioSystems, 2016, 142-143, 25-31.	2.0	3
256	An Emerging Technology Framework for the Neurobiology of Appetite. Cell Metabolism, 2016, 23, 234-253.	16.2	48
257	Learning From Animal Models of Obsessive-Compulsive Disorder. Biological Psychiatry, 2016, 79, 7-16.	1.3	63
258	Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene. Addiction Biology, 2016, 21, 530-546.	2.6	11
259	Are studies of motor cortex plasticity relevant in human patients with Parkinson's disease?. Clinical Neurophysiology, 2016, 127, 50-59.	1.5	23
260	An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biological Psychiatry, 2017, 81, 52-66.	1.3	220
261	The Basal Ganglia in Action. Neuroscientist, 2017, 23, 299-313.	3.5	73
262	Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage, 2017, 153, 382-398.	4.2	177
263	Dopaminergic dynamics underlying sex-specific cocaine reward. Nature Communications, 2017, 8, 13877.	12.8	256
264	Opioid system in L-DOPA-induced dyskinesia. Translational Neurodegeneration, 2017, 6, 1.	8.0	39
265	Modeling tics in rodents: Conceptual challenges and paths forward. Journal of Neuroscience Methods, 2017, 292, 12-19.	2.5	38
266	Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions. Handbook of Experimental Pharmacology, 2017, 241, 189-215.	1.8	31
267	Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity. Journal of Neuroscience, 2017, 37, 2723-2733.	3.6	99
268	Striatal activation by optogenetics induces dyskinesias in the 6â€hydroxydopamine rat model of Parkinson disease. Movement Disorders, 2017, 32, 530-537.	3.9	46
269	Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Movement Disorders, 2017, 32, 538-548.	3.9	50
270	Neural circuitry for behavioural arrest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160197.	4.0	40
271	Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition. European Journal of Neuroscience, 2017, 45, 901-911.	2.6	20
272	Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4525-4530.	7.1	73

#	Article	IF	CITATIONS
273	The influence of acetylcholine, dopamine, and GABA on the functioning of the corticostriatal neuronal network in Alzheimer's and Parkinson's diseases: A hypothetical mechanism. Neurochemical Journal, 2017, 11, 10-22.	0.5	1
274	Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects. Neuron, 2017, 94, 920-930.e3.	8.1	73
275	Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner. Neuron, 2017, 94, 855-865.e5.	8.1	75
277	Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology, 2017, 124, 13-24.	4.1	180
278	Substance P effects exclusively on prototypic neurons in mouse globus pallidus. Brain Structure and Function, 2017, 222, 4089-4110.	2.3	15
279	Sparse sampling image reconstruction in Lissajous trajectory beam-scanning multiphoton microscopy. Proceedings of SPIE, 2017, , .	0.8	3
280	Mapping brain structure and function: cellular resolution, global perspective. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 245-264.	1.6	4
281	Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017, 18, 222-235.	10.2	562
282	Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron, 2017, 93, 1451-1463.e4.	8.1	107
283	Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity. Cell Metabolism, 2017, 25, 312-321.	16.2	100
284	Axial levodopa-induced dyskinesias and neuronal activity in the dorsal striatum. Neuroscience, 2017, 343, 240-249.	2.3	24
285	Probing Deep Brain Circuitry: New Advances in in Vivo Calcium Measurement Strategies. ACS Chemical Neuroscience, 2017, 8, 243-251.	3.5	48
287	Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning. Neuron, 2017, 96, 476-489.e5.	8.1	149
288	Global and local excitation and inhibition shape the dynamics of the cortico-striatal-thalamo-cortical pathway. Scientific Reports, 2017, 7, 7608.	3.3	22
289	Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron, 2017, 96, 267-284.	8.1	170
290	Sensorimotor Processing in the Basal Ganglia Leads to Transient Beta Oscillations during Behavior. Journal of Neuroscience, 2017, 37, 11220-11232.	3.6	40
291	Motor cortex — to act or not to act?. Nature Reviews Neuroscience, 2017, 18, 694-705.	10.2	101
292	The Spatiotemporal Organization of the Striatum Encodes Action Space. Neuron, 2017, 95, 1171-1180.e7.	8.1	192

#	Article	IF	CITATIONS
293	Inhibitory Basal Ganglia Inputs Induce Excitatory Motor Signals in the Thalamus. Neuron, 2017, 95, 1181-1196.e8.	8.1	89
294	Esr1+ cells in the ventromedial hypothalamus control female aggression. Nature Neuroscience, 2017, 20, 1580-1590.	14.8	203
295	Homogeneous processing in the striatal direct and indirect pathways: single body part sensitive type <scp>II</scp> b neurons may express either dopamine receptor D1 or D2. European Journal of Neuroscience, 2017, 46, 2380-2391.	2.6	10
296	A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron, 2017, 95, 1420-1432.e5.	8.1	265
297	Inflammation alters AMPAâ€stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. European Journal of Neuroscience, 2017, 46, 2519-2533.	2.6	7
298	Striatal GPR88 Modulates Foraging Efficiency. Journal of Neuroscience, 2017, 37, 7939-7947.	3.6	14
299	Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies. Journal of Neuroscience, 2017, 37, 8315-8329.	3.6	84
300	Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors. , 2017, , .		0
301	Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking. Cell, 2017, 170, 1013-1027.e14.	28.9	129
302	Optogenetics and pharmacogenetics: principles and applications. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R633-R645.	1.8	22
303	The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 2017, 18, 741-752.	10.2	658
304	Illuminating Neural Circuits: From Molecules to MRI. Journal of Neuroscience, 2017, 37, 10817-10825.	3.6	16
306	Measuring G protein-coupled receptor signalling in the brain with resonance energy transfer based biosensors. Current Opinion in Pharmacology, 2017, 32, 44-48.	3.5	3
307	Implantable Optical Neural Interface. , 2017, , 209-236.		0
308	Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI. NeuroImage, 2017, 146, 1050-1061.	4.2	32
309	Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Molecular Psychiatry, 2017, 22, 595-604.	7.9	47
310	The functional logic of corticostriatal connections. Brain Structure and Function, 2017, 222, 669-706.	2.3	81
311	Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Progress in Neurobiology, 2017, 151, 237-253.	5.7	38

#	Article	IF	CITATIONS
315	Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. Journal of Physiology, 2017, 595, 7451-7475.	2.9	82
316	Interrogation of metabolic and oxygen states of tumors with fiber-based luminescence lifetime spectroscopy. Optics Letters, 2017, 42, 731.	3.3	26
317	Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Frontiers in Pharmacology, 2017, 8, 935.	3.5	16
318	Learning shapes the aversion and reward responses of lateral habenula neurons. ELife, 2017, 6, .	6.0	105
319	Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Frontiers in Aging Neuroscience, 2017, 9, 358.	3.4	64
320	Parsing Heterogeneous Striatal Activity. Frontiers in Neuroanatomy, 2017, 11, 43.	1.7	3
321	Bidirectional Control of Reversal in a Dual Action Task by Direct and Indirect Pathway Activation in the Dorsolateral Striatum in Mice. Frontiers in Behavioral Neuroscience, 2017, 11, 256.	2.0	6
322	Dopamine and Acetylcholine, a Circuit Point of View in Parkinson's Disease. Frontiers in Neural Circuits, 2017, 11, 110.	2.8	60
323	Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. ELife, 2017, 6, .	6.0	86
324	Impact of Early Consumption of High-Fat Diet on the Mesolimbic Dopaminergic System. ENeuro, 2017, 4, ENEURO.0120-17.2017.	1.9	45
325	Reward and Decision Encoding in Basal Ganglia. , 2017, , 59-69.		0
326	Coordinated Ramping of Dorsal Striatal Pathways preceding Food Approach and Consumption. Journal of Neuroscience, 2018, 38, 3547-3558.	3.6	63
327	Activation of Striatal Neurons Causes a Perceptual Decision Bias during Visual Change Detection in Mice. Neuron, 2018, 97, 1369-1381.e5.	8.1	46
328	Clonidine modulates the activity of the subthalamicâ€supplementary motor loop: evidence from a pharmacological study combining deep brain stimulation and electroencephalography recordings in Parkinsonian patients. Journal of Neurochemistry, 2018, 146, 333-347.	3.9	14
329	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	8.1	374
330	A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors. Neuron, 2018, 98, 192-207.e10.	8.1	158
331	A Proposed Circuit Computation in Basal Ganglia: Historyâ€Dependent Gain. Movement Disorders, 2018, 33, 704-716.	3.9	38
332	Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Reports, 2018, 22, 941-952.	6.4	15

#	Article	IF	Citations
333	Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nature Communications, 2018, 9, 404.	12.8	63
334	Medial preoptic circuit induces hunting-like actions to target objects and prey. Nature Neuroscience, 2018, 21, 364-372.	14.8	72
335	Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1374-E1383.	7.1	167
336	Neurobiology of habit formation. Current Opinion in Behavioral Sciences, 2018, 20, 145-152.	3.9	29
337	Corticostriatal foundations of habits. Current Opinion in Behavioral Sciences, 2018, 20, 153-160.	3.9	24
338	Dopamine's Effects on Corticostriatal Synapses during Reward-Based Behaviors. Neuron, 2018, 97, 494-510.	8.1	102
339	Mild Blast Injury Produces Acute Changes in Basal Intracellular Calcium Levels and Activity Patterns in Mouse Hippocampal Neurons. Journal of Neurotrauma, 2018, 35, 1523-1536.	3.4	13
340	Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders. Molecular Psychiatry, 2018, 23, 544-555.	7.9	68
341	A High-fat, High-sugar â€~Western' Diet Alters Dorsal Striatal Glutamate, Opioid, and Dopamine Transmission in Mice. Neuroscience, 2018, 372, 1-15.	2.3	61
342	Synaptic Plasticity in the Nucleus Accumbens: Lessons Learned from Experience. ACS Chemical Neuroscience, 2018, 9, 2114-2126.	3.5	34
343	Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease. Brain, 2018, 141, 177-190.	7.6	91
344	Interrogating the Spatiotemporal Landscape of Neuromodulatory CPCR Signaling by Real-Time Imaging of cAMP in Intact Neurons and Circuits. Cell Reports, 2018, 22, 255-268.	6.4	53
345	Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control. Cell Reports, 2018, 22, 84-95.	6.4	146
346	Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits. Neuron, 2018, 98, 707-717.e4.	8.1	128
347	Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature, 2018, 557, 177-182.	27.8	243
348	Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nature Protocols, 2018, 13, 840-855.	12.0	64
349	Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, 2018, ,	1.7	9
350	A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning. Neuron, 2018, 98, 208-221.e5.	8.1	93

# 351	ARTICLE Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nature Communications, 2018, 9, 1086	IF 12.8	CITATIONS
352	mGlu4 allosteric modulation for treating Parkinson's disease. Neuropharmacology, 2018, 135, 308-315.	4.1	26
353	Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Structure and Function, 2018, 223, 2733-2751.	2.3	7
354	Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates. Journal of Neural Transmission, 2018, 125, 547-563.	2.8	64
355	Dysregulation of striatal projection neurons in Parkinson's disease. Journal of Neural Transmission, 2018, 125, 449-460.	2.8	15
356	Recent insights into corticostriatal circuit mechanisms underlying habits. Current Opinion in Behavioral Sciences, 2018, 20, 40-46.	3.9	23
357	Drive and Reinforcement Circuitry in the Brain: Origins, Neurotransmitters, and Projection Fields. Neuropsychopharmacology, 2018, 43, 680-689.	5.4	28
358	Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Molecular Psychiatry, 2018, 23, 2078-2089.	7.9	119
359	Regulation of habit formation in the dorsal striatum. Current Opinion in Behavioral Sciences, 2018, 20, 67-74.	3.9	53
360	Protracted motivational dopamine-related deficits following adolescence sugar overconsumption. Neuropharmacology, 2018, 129, 16-25.	4.1	18
361	Principles of dynamic network reconfiguration across diverse brain states. Neurolmage, 2018, 180, 396-405.	4.2	181
362	Changes in the Striatal Network Connectivity in Parkinsonian and Dyskinetic Rodent Models. , 2018, , .		0
364	Response dynamics of midbrain dopamine neurons and serotonin neurons to heroin, nicotine, cocaine, and MDMA. Cell Discovery, 2018, 4, 60.	6.7	51
365	Synaptic Regulation of Metabolism. Advances in Experimental Medicine and Biology, 2018, 1090, 49-77.	1.6	2
366	Active intermixing of indirect and direct neurons builds the striatal mosaic. Nature Communications, 2018, 9, 4725.	12.8	28
367	Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nature Reviews Drug Discovery, 2018, 17, 804-822.	46.4	178
368	Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology, 2018, 159, 3822-3833.	2.8	12
369	Plastic Adaptation: A Neuronal Imperative Capable of Confounding the Goals of Stem Cell Replacement Therapy for either Huntington's or Parkinson's Disease. , 2018, , .		0

#	Article	IF	CITATIONS
370	Neural Circuit Motifs in Valence Processing. Neuron, 2018, 100, 436-452.	8.1	168
371	Connecting Circuits for Supraspinal Control of Locomotion. Neuron, 2018, 100, 361-374.	8.1	97
372	Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 2018, 362, 423-429.	12.6	133
373	Efficient cortical coding of 3D posture in freely behaving rats. Science, 2018, 362, 584-589.	12.6	109
374	The Enigmatic "Indirect Pathway―of the Basal Ganglia: A New Role. Neuron, 2018, 99, 1105-1107.	8.1	3
375	Dorsal BNST α _{2A} -Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors. Journal of Neuroscience, 2018, 38, 8922-8942.	3.6	31
376	The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection. Cell, 2018, 174, 44-58.e17.	28.9	290
377	Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 2018, 360, .	12.6	773
378	Belief state representation in the dopamine system. Nature Communications, 2018, 9, 1891.	12.8	75
379	Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell, 2018, 174, 32-43.e15.	28.9	124
380	Abnormal Effective Connectivity of the Anterior Forebrain Regions in Disorders of Consciousness. Neuroscience Bulletin, 2018, 34, 647-658.	2.9	15
381	The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions. Current Biology, 2018, 28, 2218-2229.e7.	3.9	83
382	Acute Aversive Stimuli Rapidly Increase the Activity of Ventral Tegmental Area Dopamine Neurons in Awake Mice. Neuroscience, 2018, 386, 16-23.	2.3	28
383	Response learning stimulates dendritic spine growth on dorsal striatal medium spiny neurons. Neurobiology of Learning and Memory, 2018, 155, 50-59.	1.9	8
384	Aberrant Striatal Activity in Parkinsonism and Levodopa-Induced Dyskinesia. Cell Reports, 2018, 23, 3438-3446.e5.	6.4	112
385	Opioidergic Modulation of Striatal Circuits, Implications in Parkinson's Disease and Levodopa Induced Dyskinesia. Frontiers in Neurology, 2018, 9, 524.	2.4	32
386	Functional segregation of basal ganglia pathways in Parkinson's disease. Brain, 2018, 141, 2655-2669.	7.6	62
387	Deep Brain Stimulation of the Internal Globus Pallidus Improves Response Initiation and Proactive Inhibition in Patients With Parkinson's Disease. Frontiers in Psychology, 2018, 9, 351.	2.1	9

#	Article	IF	Citations
388	Models of Parkinson's disease revisited. Nature, 2018, 557, 169-170.	27.8	9
389	Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nature Neuroscience, 2018, 21, 1072-1083.	14.8	286
390	Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats. PLoS ONE, 2018, 13, e0196515.	2.5	27
391	Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in Neural Circuits, 2018, 12, 3.	2.8	34
392	Reticulospinal Systems for Tuning Motor Commands. Frontiers in Neural Circuits, 2018, 12, 30.	2.8	83
393	Tonically Active α2 Subunit-Containing Glycine Receptors Regulate the Excitability of Striatal Medium Spiny Neurons. Frontiers in Molecular Neuroscience, 2017, 10, 442.	2.9	17
394	How can preclinical mouse models be used to gain insight into prefrontal cortex dysfunction in obsessive-compulsive disorder?. Brain and Neuroscience Advances, 2018, 2, 239821281878389.	3.4	7
395	Differential and Overlapping Pattern of Foxp1 and Foxp2 Expression in the Striatum of Adult Mouse Brain. Neuroscience, 2018, 388, 214-223.	2.3	21
396	Highâ€ŧhroughput light sheet tomography platform for automated fast imaging of whole mouse brain. Journal of Biophotonics, 2018, 11, e201800047.	2.3	34
397	Auto-FPFA: An Automated Microscope for Characterizing Genetically Encoded Biosensors. Scientific Reports, 2018, 8, 7374.	3.3	5
398	Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback. Neuron, 2018, 99, 1040-1054.e5.	8.1	76
399	Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. Neuron, 2018, 99, 1302-1314.e5.	8.1	131
400	Hyperactive Response of Direct Pathway Striatal Projection Neurons to L-dopa and D1 Agonism in Freely Moving Parkinsonian Mice. Frontiers in Neural Circuits, 2018, 12, 57.	2.8	14
401	High-density microfibers as a potential optical interface to reach deep brain regions. Journal of Neural Engineering, 2018, 15, 066002.	3.5	7
402	The BDNF Val66Met Prodomain Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior. Neuron, 2018, 99, 163-178.e6.	8.1	53
403	A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons. Neuron, 2018, 98, 905-917.e5.	8.1	68
404	To move or to sense? Incorporating somatosensory representation into striatal functions. Current Opinion in Neurobiology, 2018, 52, 123-130.	4.2	39
405	A Visual-Cue-Dependent Memory Circuit for Place Navigation. Neuron, 2018, 99, 47-55.e4.	8.1	53

	CHATOWR	LPORT	
#	Article	IF	CITATIONS
406	Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol, 2019, 74, 47-63.	1.7	43
407	Cholinergic control of striatal neurons to modulate Lâ€dopaâ€induced dyskinesias. European Journal of Neuroscience, 2019, 49, 859-868.	2.6	22
408	From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning. European Journal of Neuroscience, 2019, 49, 658-671.	2.6	60
409	Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia. European Journal of Neuroscience, 2019, 49, 712-725.	2.6	28
410	Early Downregulation of p75NTR by Genetic and Pharmacological Approaches Delays the Onset of Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice. Molecular Neurobiology, 2019, 56, 935-953.	4.0	21
411	Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Frontiers in Systems Neuroscience, 2019, 13, 28.	2.5	105
412	Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nature Biomedical Engineering, 2019, 3, 644-654.	22.5	98
413	Dysfunctional striatal dopamine signaling in Huntington's disease. Journal of Neuroscience Research, 2019, 97, 1636-1654.	2.9	39
414	Translational approach to apathyâ€like behavior in mice: From the practical point of view. Psychiatry and Clinical Neurosciences, 2019, 73, 685-689.	1.8	2
415	The neurobiological basis for novel experimental therapeutics in dystonia. Neurobiology of Disease, 2019, 130, 104526.	4.4	25
416	Nucleus Accumbens Fast-Spiking Interneurons Constrain Impulsive Action. Biological Psychiatry, 2019, 86, 836-847.	1.3	52
417	Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function. Journal of Neuroscience, 2019, 39, 8231-8238.	3.6	156
418	Narrowband Organic Lightâ€Emitting Diodes for Fluorescence Microscopy and Calcium Imaging. Advanced Materials, 2019, 31, 1903599.	21.0	20
420	NF1-cAMP signaling dissociates cell type–specific contributions of striatal medium spiny neurons to reward valuation and motor control. PLoS Biology, 2019, 17, e3000477.	5.6	14
421	The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron, 2019, 104, 47-62.	8.1	121
422	Aberrant features of <i>in vivo</i> striatal dynamics in Parkinson's disease. Journal of Neuroscience Research, 2019, 97, 1678-1688.	2.9	3
423	Allostatic Changes in the cAMP System Drive Opioid-Induced Adaptation in Striatal Dopamine Signaling. Cell Reports, 2019, 29, 946-960.e2.	6.4	14
424	Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons. Cell Reports, 2019, 29, 1419-1428.e5.	6.4	49

#	Article	IF	Citations
425	Direct pathway neurons in mouse dorsolateral striatum in vivo receive stronger synaptic input than indirect pathway neurons. Journal of Neurophysiology, 2019, 122, 2294-2303.	1.8	14
426	Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry. Frontiers in Neuroscience, 2019, 13, 766.	2.8	40
427	Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection?. Neurobiology of Disease, 2019, 132, 104579.	4.4	27
428	Indirect pathway from caudate tail mediates rejection of bad objects in periphery. Science Advances, 2019, 5, eaaw9297.	10.3	17
429	Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells, 2019, 8, 1005.	4.1	47
430	The Neuroscience of Drug Reward and Addiction. Physiological Reviews, 2019, 99, 2115-2140.	28.8	349
431	Cell type-specific modulation of sensory and affective components of itch in the periaqueductal gray. Nature Communications, 2019, 10, 4356.	12.8	51
432	Depth-resolved fiber photometry with a single tapered optical fiber implant. Nature Methods, 2019, 16, 1185-1192.	19.0	97
433	Contributions of the basal ganglia to action sequence learning and performance. Neuroscience and Biobehavioral Reviews, 2019, 107, 279-295.	6.1	17
434	Neuronal <i><scp>KIF</scp>5b</i> deletion induces <i>striatum</i> â€dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. Journal of Neurochemistry, 2019, 149, 362-380.	3.9	12
435	New Neuroscience of Homeostasis and Drives for Food, Water, and Salt. New England Journal of Medicine, 2019, 380, 459-471.	27.0	71
436	A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine. Frontiers in Neural Circuits, 2018, 12, 111.	2.8	13
437	Limbic Neurons Shape Sex Recognition and Social Behavior in Sexually Naive Males. Cell, 2019, 176, 1190-1205.e20.	28.9	88
438	Chemogenetic Targeting of Dorsomedial Direct-pathway Striatal Projection Neurons Selectively Elicits Rotational Behavior in Mice. Neuroscience, 2019, 401, 106-116.	2.3	13
439	Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochemistry International, 2019, 125, 35-46.	3.8	15
440	It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. Neurochemistry International, 2019, 124, 200-214.	3.8	9
441	Disinhibition of the Nucleus Accumbens Leads to Macro-Scale Hyperactivity Consisting of Micro-Scale Behavioral Segments Encoded by Striatal Activity. Journal of Neuroscience, 2019, 39, 5897-5909.	3.6	15
442	A striatal interneuron circuit for continuous target pursuit. Nature Communications, 2019, 10, 2715.	12.8	24

#	ARTICLE	IF	CITATIONS
443	Genetic tools to study complexity of striatal function. Journal of Neuroscience Research, 2019, 97, 1181-1193.	2.9	5
444	Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience, 2019, 20, 482-494.	10.2	337
445	The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons. Cell Reports, 2019, 27, 3182-3198.e9.	6.4	19
446	Measuring Sharp Waves and Oscillatory Population Activity With the Genetically Encoded Calcium Indicator GCaMP6f. Frontiers in Cellular Neuroscience, 2019, 13, 274.	3.7	34
447	Effective Dimensionality Reduction for Visualizing Neural Dynamics by Laplacian Eigenmaps. Neural Computation, 2019, 31, 1356-1379.	2.2	11
448	Reward-driven changes in striatal pathway competition shape evidence evaluation in decision-making. PLoS Computational Biology, 2019, 15, e1006998.	3.2	30
449	Long-term Fiber Photometry for Neuroscience Studies. Neuroscience Bulletin, 2019, 35, 425-433.	2.9	30
450	A wireless miniScope for deep brain imaging in freely moving mice. Journal of Neuroscience Methods, 2019, 323, 56-60.	2.5	53
451	Synergistic Nigral Output Pathways Shape Movement. Cell Reports, 2019, 27, 2184-2198.e4.	6.4	27
452	Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11038-11047.	7.1	54
453	Striatal Low-Threshold Spiking Interneurons Regulate Goal-Directed Learning. Neuron, 2019, 103, 92-101.e6.	8.1	50
454	High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nature Methods, 2019, 16, 553-560.	19.0	154
455	VIP Interneurons Contribute to Avoidance Behavior by Regulating Information Flow across Hippocampal-Prefrontal Networks. Neuron, 2019, 102, 1223-1234.e4.	8.1	70
456	Oscillations in cortico-basal ganglia circuits: implications for Parkinson's disease and other neurologic and psychiatric conditions. Journal of Neurophysiology, 2019, 122, 203-231.	1.8	27
457	Serotonin-mediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nature Neuroscience, 2019, 22, 770-777.	14.8	61
458	What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annual Review of Neuroscience, 2019, 42, 459-483.	10.7	184
459	Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after Lâ€ĐOPA in a mouse model of Parkinson's disease. British Journal of Pharmacology, 2019, 176, 2146-2161.	5.4	34
460	Pre-administration of low-dose methamphetamine enhances movement and neural activity after high-dose methamphetamine administration in the striatum. Neuroscience Letters, 2019, 703, 119-124.	2.1	4

#	Article	IF	Citations
461	Circuit Mechanisms of Parkinson's Disease. Neuron, 2019, 101, 1042-1056.	8.1	296
462	The influence of Parkinson's disease on the functional connectivity of the motor loop of human basal ganglia. Parkinsonism and Related Disorders, 2019, 63, 100-105.	2.2	13
463	pyPhotometry: Open source Python based hardware and software for fiber photometry data acquisition. Scientific Reports, 2019, 9, 3521.	3.3	28
464	Learning the payoffs and costs of actions. PLoS Computational Biology, 2019, 15, e1006285.	3.2	26
465	Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nature Neuroscience, 2019, 22, 576-585.	14.8	97
466	The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. Frontiers in Neuroscience, 2019, 13, 82.	2.8	62
467	Biased competition in the absence of input bias revealed through corticostriatal computation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8564-8569.	7.1	14
468	Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain, 2019, 142, 1365-1385.	7.6	82
469	Glutamatergic Innervation onto Striatal Neurons Potentiates GABAergic Synaptic Output. Journal of Neuroscience, 2019, 39, 4448-4460.	3.6	18
470	Spiny Projection Neuron Dynamics in Toxin and Transgenic Models of Parkinson's Disease. Frontiers in Neural Circuits, 2019, 13, 17.	2.8	3
471	Enhanced striatopallidal gammaâ€aminobutyric acid (GABA) _A receptor transmission in mouse models of huntington's disease. Movement Disorders, 2019, 34, 684-696.	3.9	13
472	Compensatory Relearning Following Stroke: Cellular and Plasticity Mechanisms in Rodents. Frontiers in Neuroscience, 2018, 12, 1023.	2.8	19
473	Alcohol intake enhances glutamatergic transmission from D2 receptor-expressing afferents onto D1 receptor-expressing medium spiny neurons in the dorsomedial striatum. Neuropsychopharmacology, 2019, 44, 1123-1131.	5.4	22
474	Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nature Neuroscience, 2019, 22, 586-597.	14.8	94
475	Hypothalamic Control of Conspecific Self-Defense. Cell Reports, 2019, 26, 1747-1758.e5.	6.4	61
476	The organization of the basal ganglia functional connectivity network is non-linear in Parkinson's disease. NeuroImage: Clinical, 2019, 22, 101708.	2.7	9
477	Multiple neuronal circuits for variable object–action choices based on short- and long-term memories. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26313-26320.	7.1	19
478	Periodic Remodeling in a Neural Circuit Governs Timing of Female Sexual Behavior. Cell, 2019, 179, 1393-1408.e16.	28.9	78

		CITATION R	EPORT	
#	Article		IF	CITATIONS
479	during scheduled fasting selectively in female mice. Molecular Psychiatry, 2021, 26, 3765-	ght loss 3777.	7.9	35
480	Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN na micro-LEDs. Applied Physics Reviews, 2019, 6, .	no- and	11.3	194
481	A Spatiomolecular Map of the Striatum. Cell Reports, 2019, 29, 4320-4333.e5.		6.4	85
482	Hippocampal Lnx1–NMDAR multiprotein complex mediates initial social memory. Molec 2021, 26, 3956-3969.	ular Psychiatry,	7.9	15
483	Short-term depression shapes information transmission in a constitutively active GABAerg Scientific Reports, 2019, 9, 18092.	ic synapse.	3.3	8
484	The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striat Neuropharmacology, 2019, 18, 34-50.	um. Current	2.9	18
485	The role of the dorsal striatum in choice impulsivity. Annals of the New York Academy of So 2019, 1451, 92-111.	ciences,	3.8	34
486	Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movemer Disorders. Neuroscientist, 2019, 25, 359-379.	nt	3.5	37
487	Differences in synaptic integration between direct and indirect striatal projection neurons: Ca _V 3 channels. Synapse, 2019, 73, e22079.	Role of	1.2	5
488	Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food (on Caloric State. Cell Metabolism, 2019, 29, 681-694.e5.	Contingent	16.2	92
489	Synchronized activation of striatal direct and indirect pathways underlies the behavior in u dopamineâ€depleted mice. European Journal of Neuroscience, 2019, 49, 1512-1528.	inilateral	2.6	20
490	Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends in Neurosc 42, 205-220.	ciences, 2019,	8.6	441
491	Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for the oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharma 2019, 148, 1-10.	ta cology,	4.1	15
492	Elevated Brain Iron in Cocaine Use Disorder as Indexed by Magnetic Field Correlation Imag Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 579-588.	ing.	1.5	5
493	A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Pa and Related Disorders, 2019, 59, 9-20.	rkinsonism	2.2	49
494	An open-source control system for in vivo fluorescence measurements from deep-brain str Journal of Neuroscience Methods, 2019, 311, 170-177.	uctures.	2.5	16
495	Bridging the gap between striatal plasticity and learning. Current Opinion in Neurobiology 104-112.	, 2019, 54,	4.2	52
496	An Aplysia-like synaptic switch for rapid protection against ethanol-induced synaptic inhibi mammalian habit circuit. Neuropharmacology, 2019, 144, 1-8.	tion in a	4.1	2

		CITATION R	EPORT	
#	Article		IF	CITATIONS
497	A competitive model for striatal action selection. Brain Research, 2019, 1713, 70-79.		2.2	69
498	Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light. Col Perspectives in Medicine, 2019, 9, a034371.	d Spring Harbor	6.2	29
499	An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Making. Annual Review of Psychology, 2019, 70, 53-76.	Decision	17.7	76
500	Direct and indirect pathways for choosing objects and actions. European Journal of Ne 2019, 49, 637-645.	uroscience,	2.6	42
501	Cortical stimulation relieves parkinsonian pathological activity <i>inÂvitro</i> . Europe Neuroscience, 2019, 49, 834-848.	an Journal of	2.6	14
502	Striatopallidal neurons control avoidance behavior in exploratory tasks. Molecular Psyc 25, 491-505.	hiatry, 2020,	7.9	29
503	How orexin signals bias action: Hypothalamic and accumbal circuits. Brain Research, 2	020, 1731, 145943.	2.2	19
504	Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications disorders. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 47-55.	for psychiatric	2.5	15
505	Corticostriatal synaptic weight evolution in a two-alternative forced choice task: a con study. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105	ıputational 048.	3.3	11
506	mGlu5 in GABAergic neurons modulates spontaneous and psychostimulant-induced lo activity. Psychopharmacology, 2020, 237, 345-361.	comotor	3.1	5
507	Muscimol injection into the substantia nigra but not globus pallidus affects prepulse ir startle reflex Neuropharmacology, 2020, 162, 107796.	hibition and	4.1	2
508	The estrous cycle modulates rat caudate–putamen medium spiny neuron physiology of Neuroscience, 2020, 52, 2737-2755.	v. European Journal	2.6	18
509	Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion Physiological Reviews, 2020, 100, 271-320.		28.8	314
510	Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Psychiatry, 2020, 25, 3241-3255.	Molecular	7.9	140
511	Heterogeneity of dopamine release sites in health and degeneration. Neurobiology of 1 134, 104633.	Disease, 2020,	4.4	15
512	Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent dystonia. Neurobiology of Disease, 2020, 134, 104634.	model for DYT25	4.4	22
513	Neural substrates of habit. Journal of Neuroscience Research, 2020, 98, 986-997.		2.9	16
514	Advances in adaptive optics–based two-photon fluorescence microscopy for brain ir Medical Science, 2020, 35, 317-328.	naging. Lasers in	2.1	17

ARTICLE IF CITATIONS Cortical endogenous opioids and their role in facilitating repetitive behaviors in deer mice. 515 2.2 10 Behavioural Brain Research, 2020, 379, 112317. Temporal dynamics of Arc/Arg3.1 expression in the dorsal striatum during acquisition and 1.9 consolidation of a motor skill in mice. Neurobiology of Learning and Memory, 2020, 168, 107156. 517 Dopamine and Addiction. Annual Review of Psychology, 2020, 71, 79-106. 17.7 180 Lesion of striatal patches disrupts habitual behaviors and increases behavioral variability. PLoS ONE, 518 2020, 15, e0224715. From Signaling Molecules to Circuits and Behaviors: Cell-Typeâ€"Specific Adaptations to 519 1.3 31 Psychostimulant Exposure in the Striatum. Biological Psychiatry, 2020, 87, 944-953. Evolving concepts on bradykinesia. Brain, 2020, 143, 727-750. Evidence that haloperidol impairs learning and motivation scores in a probabilistic task by reducing 521 2.2 1 the reward expectation. Behavioural Brain Research, 2020, 395, 112858. Dopamine Oppositely Modulates State Transitions in Striosome and Matrix Direct Pathway Striatal 8.1 28 Spiny Neurons. Neuron, 2020, 108, 1091-1102.e5. 523 The Dorsal Striatum Energizes Motor Routines. Current Biology, 2020, 30, 4362-4372.e6. 3.9 29 524 A Thalamic Orphan Receptor Drives Variability in Short-Term Memory. Cell, 2020, 183, 522-536.e19. 28.9 24 Spatial organization of functional clusters representing reward and movement information in the 525 striatal direct and indirect pathways. Proceedings of the National Academy of Sciences of the United 7.1 25 States of America, 2020, 117, 27004-27015. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement. Cell, 28.9 49 2020, 183, 211-227.e20. â€~Liking' and â€~wanting' in eating and food reward: Brain mechanisms and clinical implications. 527 2.1 147 Physiology and Behavior, 2020, 227, 113152. The dynamic of basal ganglia activity with a multiple covariance method: influences of Parkinson's 3.3 disease. Brain Communications, 2020, 2, fcz044 Cortico-basal ganglia circuits underlying dysfunctional control of motor behaviors in 529 3.3 23 neuropsychiatric disorders. Current Opinion in Genetics and Development, 2020, 65, 151-159. Orchestrating Opiate-Associated Memories in Thalamic Circuits. Neuron, 2020, 107, 1113-1123.e4. 8.1 531 Basal ganglia circuits., 2020, , 221-242. 2 Neurons under genetic control: What are the next steps towards the treatment of movement 4.1 disorders?. Computational and Structural Biotechnology Journal, 2020, 18, 3577-3589.

CITATION REPORT

#	Article	IF	CITATIONS
533	Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment. IScience, 2020, 23, 101409.	4.1	15
534	Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nature Communications, 2020, 11, 3996.	12.8	13
535	Transcriptomic approach predicts a major role for transforming growth factor beta type 1 pathway in <scp>Lâ€Dopa</scp> â€induced dyskinesia in parkinsonian rats. Genes, Brain and Behavior, 2020, 19, e12690.	2.2	4
536	Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nature Neuroscience, 2020, 23, 1111-1124.	14.8	61
537	Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron, 2020, 108, 659-675.e6.	8.1	52
538	Dorsal Striatum Dynamically Incorporates Velocity Adjustments during Locomotion. Journal of Neuroscience, 2020, 40, 6822-6824.	3.6	0
539	A non-linear deterministic model of action selection in the basal ganglia to simulate motor fluctuations in Parkinson's disease. Chaos, 2020, 30, 083139.	2.5	4
540	Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep–wake states. Communications Biology, 2020, 3, 491.	4.4	24
541	Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Scientific Reports, 2020, 10, 14426.	3.3	21
542	Continuous Dopaminergic Stimulation as a Treatment for Parkinson's Disease: Current Status and Future Opportunities. Movement Disorders, 2020, 35, 1731-1744.	3.9	47
543	Dopamine D2 receptor signaling on iMSNs is required for initiation and vigor of learned actions. Neuropsychopharmacology, 2020, 45, 2087-2097.	5.4	21
544	Basal Ganglia—A Motion Perspective. , 2020, 10, 1241-1275.		16
545	How do adenosine A2A receptors regulate motor function?. Parkinsonism and Related Disorders, 2020, 80, S13-S20.	2.2	31
546	An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nature Communications, 2020, 11, 6326.	12.8	56
547	Contribution of the Entopeduncular Nucleus and the Globus Pallidus to the Control of Locomotion and Visually Guided Gait Modifications in the Cat. Cerebral Cortex, 2020, 30, 5121-5146.	2.9	10
548	Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway. Journal of Neuroscience, 2020, 40, 5757-5768.	3.6	40
549	Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. Neurochemical Journal, 2020, 14, 150-166.	0.5	1
550	Targeting the cholinergic system in Parkinson's disease. Acta Pharmacologica Sinica, 2020, 41, 453-463.	6.1	25

#	Article	IF	CITATIONS
551	Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology, 2020, 170, 108024.	4.1	8
552	Dysregulation of external globus pallidusâ€subthalamic nucleus network dynamics in parkinsonian mice during cortical slowâ€wave activity and activation. Journal of Physiology, 2020, 598, 1897-1927.	2.9	36
553	Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development. Cell Reports, 2020, 30, 3051-3066.e7.	6.4	40
554	Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metabolism, 2020, 31, 773-790.e11.	16.2	52
555	Dopamine <scp>D1</scp> Receptors Regulate Spines in Striatal <scp>Directâ€Pathway</scp> and <scp>Indirectâ€Pathway</scp> Neurons. Movement Disorders, 2020, 35, 1810-1821.	3.9	24
556	Antiâ€dopamine D2 receptor antibodies in chronic tic disorders. Developmental Medicine and Child Neurology, 2020, 62, 1205-1212.	2.1	15
557	Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia. Cell Reports, 2020, 31, 107644.	6.4	16
558	Cortical and Striatal Circuits in Huntington's Disease. Frontiers in Neuroscience, 2020, 14, 82.	2.8	64
559	Synaptic and cellular plasticity in Parkinson's disease. Acta Pharmacologica Sinica, 2020, 41, 447-452.	6.1	17
560	Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons. Neuron, 2020, 106, 277-290.e6.	8.1	95
561	Variability in Action Selection Relates to Striatal Dopamine 2/3 Receptor Availability in Humans: A PET Neuroimaging Study Using Reinforcement Learning and Active Inference Models. Cerebral Cortex, 2020, 30, 3573-3589.	2.9	24
562	Immediate early gene fingerprints of multi-component behaviour. Scientific Reports, 2020, 10, 384.	3.3	7
563	Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states. PLoS ONE, 2020, 15, e0228081.	2.5	14
564	Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. Journal of Neuroscience Research, 2020, 98, 1046-1069.	2.9	65
565	Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Progress in Neurobiology, 2020, 187, 101771.	5.7	51
566	Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening. Neuron, 2020, 105, 1062-1076.e6.	8.1	62
567	A common hub for sleep and motor control in the substantia nigra. Science, 2020, 367, 440-445.	12.6	86
568	Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2835-2845.	7.1	94

	CITATION	n Report	
#	Article	IF	Citations
569	Layers of signals that regulate appetite. Current Opinion in Neurobiology, 2020, 64, 79-88.	4.2	27
570	The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand. Biological Psychiatry, 2020, 88, 719-726.	1.3	40
571	Directly to the Point: Dopamine Persistently Enhances Excitability of Direct Pathway Striatal Neurons. Neuron, 2020, 106, 201-203.	8.1	1
572	Basal Ganglia Circuits for Action Specification. Annual Review of Neuroscience, 2020, 43, 485-507.	10.7	55
573	The credit assignment problem in corticoâ€basal gangliaâ€thalamic networks: A review, a problem and a possible solution. European Journal of Neuroscience, 2021, 53, 2234-2253.	2.6	14
574	Shedding light on dyskinesias. European Journal of Neuroscience, 2021, 53, 2398-2413.	2.6	8
575	Bidirectional Optogenetic Control of Inhibitory Neurons in Freely-Moving Mice. IEEE Transactions on Biomedical Engineering, 2021, 68, 416-427.	4.2	17
576	A neural network model of basal ganglia's decision-making circuitry. Cognitive Neurodynamics, 2021, 15, 17-26.	4.0	8
577	Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Molecular Psychiatry, 2021, 26, 234-246.	7.9	38
579	A Disynaptic Circuit in the Globus Pallidus Controls Locomotion Inhibition. Current Biology, 2021, 31, 707-721.e7.	3.9	48
580	A spiking model of basal ganglia dynamics in stopping behavior supported by arkypallidal neurons. European Journal of Neuroscience, 2021, 53, 2296-2321.	2.6	12
581	Striatal bilateral control of skilled forelimb movement. Cell Reports, 2021, 34, 108651.	6.4	15
582	Restoration of KCC2 Membrane Localization in Striatal Dopamine D2 Receptor-Expressing Medium Spiny Neurons Rescues Locomotor Deficits in HIV Tat-Transgenic Mice. ASN Neuro, 2021, 13, 175909142110220.	2.7	9
583	Multimode Optical Fibers for Optical Neural Interfaces. Advances in Experimental Medicine and Biology, 2021, 1293, 565-583.	1.6	0
585	Subsecond Ensemble Dynamics of Orexin Neurons Link Sensation and Action. Frontiers of Neurology and Neuroscience, 2021, 45, 52-60.	2.8	4
588	PDE10A Inhibitors—Clinical Failure or Window Into Antipsychotic Drug Action?. Frontiers in Neuroscience, 2020, 14, 600178.	2.8	20
589	Comparative study of autofluorescence in flat and tapered optical fibers towards application in depth-resolved fluorescence lifetime photometry in brain tissue. Biomedical Optics Express, 2021, 12, 993.	2.9	13
590	Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis. Molecules and Cells, 2021, 44, 63-67.	2.6	14

#	Article	IF	CITATIONS
591	An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513.	4.1	2
593	Motor Control: A Basal Ganglia Feedback Circuit forÂAction Suppression. Current Biology, 2021, 31, R191-R193.	3.9	3
594	Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum. ELife, 2021, 10, .	6.0	17
595	Corticostriatal Plasticity Established by Initial Learning Persists after Behavioral Reversal. ENeuro, 2021, 8, ENEURO.0209-20.2021.	1.9	10
596	Istradefylline – a first generation adenosine A _{2A} antagonist for the treatment of Parkinson's disease. Expert Review of Neurotherapeutics, 2021, 21, 317-333.	2.8	51
597	Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Frontiers in Neuroscience, 2021, 15, 639313.	2.8	18
599	Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109, 918-937.	8.1	94
600	Altered Functional Connectivity of the Orbital Cortex and Striatum Associated with Catalepsy Induced by Dopamine D1 and D2 Antagonists. Biological and Pharmaceutical Bulletin, 2021, 44, 442-447.	1.4	1
601	Striatal Direct Pathway Targets Npas1 ⁺ Pallidal Neurons. Journal of Neuroscience, 2021, 41, 3966-3987.	3.6	31
603	Cerebellar 5HT-2A receptor mediates stress-induced onset of dystonia. Science Advances, 2021, 7, .	10.3	19
604	Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease. Frontiers in Neural Circuits, 2021, 15, 645287.	2.8	38
605	The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sciences, 2021, 11, 560.	2.3	11
606	Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon. Cell Reports, 2021, 35, 109041.	6.4	4
607	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	4.8	16
608	Spatial and temporal scales of dopamine transmission. Nature Reviews Neuroscience, 2021, 22, 345-358.	10.2	136
610	Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells, 2021, 10, 907.	4.1	21
612	Wireless and battery-free platforms for collection of biosignals. Biosensors and Bioelectronics, 2021, 178, 113007.	10.1	40
613	In vivo detection of GPCR-dependent signaling using fiber photometry and FRET-based biosensors. Methods, 2022, 203, 422-430.	3.8	7

#	Article	IF	CITATIONS
614	Early Sensory Deprivation Leads to Differential Inhibitory Changes in the Striatum During Learning. Frontiers in Neural Circuits, 2021, 15, 670858.	2.8	2
615	Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. ELife, 2021, 10, .	6.0	28
617	Optimal anticipatory control as a theory of motor preparation: A thalamo-cortical circuit model. Neuron, 2021, 109, 1567-1581.e12.	8.1	49
618	Interpreting the role of the striatum during multiple phases of motor learning. FEBS Journal, 2022, 289, 2263-2281.	4.7	25
619	Emerging concepts on bradykinesia in nonâ€parkinsonian conditions. European Journal of Neurology, 2021, 28, 2403-2422.	3.3	24
620	Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala. ELife, 2021, 10, .	6.0	22
622	BACHD Mice Recapitulate the Striatal Parvalbuminergic Interneuron Loss Found in Huntington's Disease. Frontiers in Neuroanatomy, 2021, 15, 673177.	1.7	4
623	The causal interaction in human basal ganglia. Scientific Reports, 2021, 11, 12989.	3.3	0
624	Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines, 2021, 9, 647.	3.2	23
625	Experienceâ€related enhancements in striatal temporal encoding. European Journal of Neuroscience, 2021, 54, 5063-5074.	2.6	11
626	Calcium-responsive contrast agents for functional magnetic resonance imaging. Chemical Physics Reviews, 2021, 2, 021301.	5.7	11
627	Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Frontiers in Systems Neuroscience, 2021, 15, 688673.	2.5	4
628	Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction. Molecular Psychiatry, 2022, 27, 640-651.	7.9	12
630	Complete representation of action space and value in all dorsal striatal pathways. Cell Reports, 2021, 36, 109437.	6.4	16
631	Striatal Control of Movement: A Role for New Neuronal (Sub-) Populations?. Frontiers in Human Neuroscience, 2021, 15, 697284.	2.0	11
632	The Role of the Medial Septum—Associated Networks in Controlling Locomotion and Motivation to Move. Frontiers in Neural Circuits, 2021, 15, 699798.	2.8	10
633	Transection of the Superior Sagittal Sinus Enables Bilateral Access to the Rodent Midline Brain Structures. ENeuro, 2021, 8, ENEURO.0146-21.2021.	1.9	1
635	Mechanisms of Antiparkinsonian Anticholinergic Therapy Revisited. Neuroscience, 2021, 467, 201-217.	2.3	12

#	Article	IF	CITATIONS
639	The Contribution of Premotor Cortico-Striatal Projections to the Execution of Serial Order Sequences. ENeuro, 2021, 8, ENEURO.0173-21.2021.	1.9	4
641	Optogenetic inhibition of indirect pathway neurons in the dorsomedial striatum reduces excessive grooming in Sapap3-knockout mice. Neuropsychopharmacology, 2022, 47, 477-487.	5.4	20
642	Dorsolateral Striatal Task-initiation Bursts Represent Past Experiences More than Future Action Plans. Journal of Neuroscience, 2021, 41, 8051-8064.	3.6	5
643	Involvement of Midbrain Dopamine Neuron Activity in Negative Reinforcement Learning in Mice. Molecular Neurobiology, 2021, 58, 5667-5681.	4.0	2
644	Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. Journal of Neuroscience Methods, 2021, 360, 109251.	2.5	17
645	Opposing roles for striatonigral and striatopallidal neurons in dorsolateral striatum in consolidating new instrumental actions. Nature Communications, 2021, 12, 5121.	12.8	25
646	Everything is connected: Inference and attractors in delusions. Schizophrenia Research, 2022, 245, 5-22.	2.0	36
647	Dorsal and ventral striatal neuronal subpopulations differentially disrupt male mouse copulatory behavior. European Neuropsychopharmacology, 2021, 49, 23-37.	0.7	3
648	Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology, 2022, 47, 147-162.	5.4	41
649	AgRP neurons: Regulators of feeding, energy expenditure, and behavior. FEBS Journal, 2022, 289, 2362-2381.	4.7	46
650	Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron, 2021, 109, 3421-3435.e5.	8.1	18
651	Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep, 2022, 45, .	1.1	1
652	Cross-species behavior analysis with attention-based domain-adversarial deep neural networks. Nature Communications, 2021, 12, 5519.	12.8	5
653	Cell type-specific membrane potential changes in dorsolateral striatum accompanying reward-based sensorimotor learning. Function, 2021, 2, zqab049.	2.3	4
654	Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biological Psychiatry, 2021, 90, 516-528.	1.3	7
655	Dopaminergic specializations for flexible behavioral control: linking levels of analysis and functional architectures. Current Opinion in Behavioral Sciences, 2021, 41, 175-184.	3.9	2
656	Cannabinoid type 1 receptors in A2a neurons contribute to cocaine-environment association. Psychopharmacology, 2021, 238, 1121-1131.	3.1	5
657	A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. Current Protocols in Neuroscience, 2020, 94, e108.	2.6	8

	Сітат	ion Report	
#	Article	IF	CITATIONS
658	Neural Computing with Concurrent Synchrony. Lecture Notes in Computer Science, 2014, , 304-311.	1.3	11
659	The Delta-Opioid System in the Brain: A Neglected Element in Parkinson's Disease?. , 2015, , 461-520		2
660	Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity. Cell Reports, 2017, 21, 2724-2736.	6.4	148
661	Local striatal reward signals can be predicted from corticostriatal connectivity. NeuroImage, 2017, 159, 9-17.	4.2	15
683	Exploring the role of striatal D1 and D2 medium spiny neurons in action selection using a virtual robotic framework. European Journal of Neuroscience, 2019, 49, 737-753.	2.6	14
684	Open-source, cost-effective system for low-light in vivo fiber photometry. Neurophotonics, 2018, 5, 1.	3.3	20
685	Multichannel fiber photometry for mapping axonal terminal activity in a restricted brain region in freely moving mice. Neurophotonics, 2019, 6, 1.	3.3	14
686	Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science, 2019, 364, .	12.6	412
687	Striatal Kir2 K+ channel inhibition mediates the antidyskinetic effects of amantadine. Journal of Clinical Investigation, 2020, 130, 2593-2601.	8.2	26
688	Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. Journal of Clinical Investigation, 2017, 127, 1978-1990.	8.2	151
689	Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. Journal of Clinical Investigation, 2017, 127, 720-734.	8.2	100
690	Deciphering the molecular mechanism responsible for GCaMP6m's Ca2+-dependent change in fluorescence. PLoS ONE, 2017, 12, e0170934.	2.5	116
691	Changes in striatal activity and functional connectivity in a mouse model of Huntington's disease. PLoS ONE, 2017, 12, e0184580.	2.5	7
692	Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. ENeuro, 2016, 3, ENEURO.0156-16.2016.	1.9	49
693	Knock-In Rat Lines with Cre Recombinase at the Dopamine D1 and Adenosine 2a Receptor Loci. ENeuro, 2019, 6, ENEURO.0163-19.2019.	1.9	14
694	Whole-Brain Mapping of Direct Inputs to Dopamine D1 and D2 Receptor-Expressing Medium Spiny Neurons in the Posterior Dorsomedial Striatum. ENeuro, 2021, 8, ENEURO.0348-20.2020.	1.9	28
695	Continuous Representations of Speed by Striatal Medium Spiny Neurons. Journal of Neuroscience, 2020, 40, 1679-1688.	3.6	44
697	Future State Prediction Errors Guide Active Avoidance Behavior by Adult Zebrafish. SSRN Electronic Journal, O, , .	0.4	3

#	ARTICLE	IF	CITATIONS
698	Role of Descending Dopaminergic Pathways in Pain Modulation. Current Neuropharmacology, 2019, 17, 1176-1182.	2.9	45
699	Habit formation. Dialogues in Clinical Neuroscience, 2016, 18, 33-43.	3.7	111
700	In Vitro Biocompatibility Test of Multi-layered Plasmonic Substrates with Flint Glasses and Adhesion Films. Journal of the Optical Society of Korea, 2014, 18, 174-179.	0.6	3
701	Competing basal ganglia pathways determine the difference between stopping and deciding not to go. ELife, 2015, 4, e08723.	6.0	72
702	DYT1 dystonia increases risk taking in humans. ELife, 2016, 5, .	6.0	12
703	Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. ELife, 2016, 5, .	6.0	91
704	Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. ELife, 2017, 6, .	6.0	192
705	Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. ELife, 2018, 7, .	6.0	125
706	Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement. ELife, 2019, 8, .	6.0	64
707	Distinct roles of striatal direct and indirect pathways in value-based decision making. ELife, 2019, 8, .	6.0	18
708	Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. ELife, 2019, 8, .	6.0	42
709	NINscope, a versatile miniscope for multi-region circuit investigations. ELife, 2020, 9, .	6.0	107
710	Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. ELife, 2020, 9, .	6.0	18
711	Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a decision-making task. ELife, 2020, 9, .	6.0	58
712	Merging the Pathophysiology and Pharmacotherapy of Tics. Tremor and Other Hyperkinetic Movements, 2018, 8, 595.	2.0	18
713	Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus. Neuron, 2021, 109, 3810-3822.e9.	8.1	39
714	Realâ€Time, In Vivo Measurement of Protein Kinase A Activity in Deep Brain Structures Using Fluorescence Lifetime Photometry (FLiP). Current Protocols, 2021, 1, e265.	2.9	5
715	Glutamatergic Neurons in the Caudal Zona Incerta Regulate Parkinsonian Motor Symptoms in Mice. Neuroscience Bulletin, 2022, 38, 1-15.	2.9	10

#	Article	IF	CITATIONS
716	Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Reports, 2021, 37, 109847.	6.4	13
717	Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. European Journal of Histochemistry, 2021, 65, .	1.5	7
719	Reward-Modulated Motor Information in Dorsolateral Striatum Neurons. Advances in Cognitive Neurodynamics, 2015, , 459-464.	0.1	0
723	Functional basal ganglia interconnection. Neurologie Pro Praxi, 2017, 18, 266-270.	0.1	0
742	Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening. SSRN Electronic Journal, 0, , .	0.4	0
744	Network Models of the Basal Ganglia in Parkinson's Disease: Advances in Deep Brain Stimulation Through Model-Based Optimization. Springer Series in Cognitive and Neural Systems, 2019, , 41-55.	0.1	0
754	Extracting individual neural activity recorded through splayed optical microfibers. Neurophotonics, 2019, 5, 1.	3.3	2
759	Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain. Journal of Neuroscience, 2021, 41, 1529-1552.	3.6	11
760	Fiber Photometry of Neural Activity in Specific Neural Circuit. Neuromethods, 2021, , 327-337.	0.3	0
761	Corticostriatal Projections of Macaque Area 44. Cerebral Cortex Communications, 2020, 1, tgaa079.	1.6	8
762	Exploring Tumor Metabolism with Time-Resolved Fluorescence Methods: from Single Cells to a Whole Tumor. , 2020, , 133-155.		3
770	Getting excited about learning. Function, 2021, 2, .	2.3	0
773	Corticospinal populations broadcast complex motor signals to coordinated spinal and striatal circuits. Nature Neuroscience, 2021, 24, 1721-1732.	14.8	25
774	Simultaneous Measurement of Striatal Dopamine and Hydrogen Peroxide Transients Associated with L-DOPA Induced Rotation in Hemiparkinsonian Rats. ACS Measurement Science Au, 2022, 2, 120-131.	4.4	2
776	A novel rat robot controlled by electrical stimulation of the nigrostriatal pathway. Neurosurgical Focus, 2020, 49, E11.	2.3	4
780	Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice. Molecules and Cells, 2020, 43, 360-372.	2.6	0
781	From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. Journal of Neuroscience, 2021, 41, 9483-9502.	3.6	18
782	Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Molecular Psychiatry, 2022, 27, 1502-1514.	7.9	18

#	Article	IF	CITATIONS
783	Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angewandte Chemie - International Edition, 2022, 61, e202111630.	13.8	18
784	Cell-type- and region-specific modulation of cocaine seeking by micro-RNA-1 in striatal projection neurons. Molecular Psychiatry, 2022, 27, 918-928.	7.9	6
785	Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angewandte Chemie, 0, , .	2.0	2
787	Susceptibility to express amphetamine locomotor sensitization correlates with dorsolateral striatum bursting activity and GABAergic synapses in the globus pallidus. Brain Research Bulletin, 2022, 179, 83-96.	3.0	3
788	The Role of the Striatum in Organizing Voluntary Behavior. Neuroscience and Behavioral Physiology, 2021, 51, 1098-1110.	0.4	0
789	Modulation of lateral septal and dorsomedial striatal neurons by hippocampal sharpâ€wave ripples, theta rhythm, and running speed. Hippocampus, 2022, 32, 153-178.	1.9	6
791	Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nature Communications, 2022, 13, 504.	12.8	32
792	Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic <i>Q175</i> Huntington's Disease Mice. Journal of Neuroscience, 2022, 42, 2080-2102.	3.6	6
793	Opposing Roles of the Dorsolateral and Dorsomedial Striatum in the Acquisition of Skilled Action Sequencing in Rats. Journal of Neuroscience, 2022, 42, 2039-2051.	3.6	28
796	Striatal D1 Dopamine Neuronal Population Dynamics in a Rat Model of Levodopa-Induced Dyskinesia. Frontiers in Aging Neuroscience, 2022, 14, 783893.	3.4	4
797	Animal models of action control and cognitive dysfunction in Parkinson's disease. Progress in Brain Research, 2022, 269, 227-255.	1.4	3
799	Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe. Nature Communications, 2022, 13, 839.	12.8	31
800	Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Experimental Neurology, 2022, 351, 114008.	4.1	4
802	Conservation of the Direct and Indirect Pathway Dichotomy in Mouse Caudal Striatum With Uneven Distribution of Dopamine Receptor D1- and D2-Expressing Neurons. Frontiers in Neuroanatomy, 2022, 16, 809446.	1.7	4
804	Striatal Synaptic Dysfunction in Dystonia and Levodopa-Induced Dyskinesia. Neurobiology of Disease, 2022, 166, 105650.	4.4	18
805	Striatal Indirect Pathway Dysfunction Underlies Motor Deficits in a Mouse Model of Paroxysmal Dyskinesia. Journal of Neuroscience, 2022, 42, 2835-2848.	3.6	8
806	Allosteric Modulation of Adenosine A2A Receptors as a New Therapeutic Avenue. International Journal of Molecular Sciences, 2022, 23, 2101.	4.1	12
807	Biophysical Modeling of Dopaminergic Denervation Landscapes in the Striatum Reveals New Therapeutic Strategy. ENeuro, 2022, 9, ENEURO.0458-21.2022.	1.9	1

#	Article	IF	CITATIONS
808	Translational profiling of mouse dopaminoceptive neurons reveals region-specific gene expression, exon usage, and striatal prostaglandin E2 modulatory effects. Molecular Psychiatry, 2022, 27, 2068-2079.	7.9	12
810	Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology. Frontiers in Network Physiology, 2022, 2, .	1.8	18
811	Opponent control of behavior by dorsomedial striatal pathways depends on task demands and internal state. Nature Neuroscience, 2022, 25, 345-357.	14.8	30
812	Connecting the dots between cell populations, whole-brain activity, and behavior. Neurophotonics, 2022, 9, 032208.	3.3	3
814	The Pharmacological Potential of Adenosine A2A Receptor Antagonists for Treating Parkinson's Disease. Molecules, 2022, 27, 2366.	3.8	19
815	Striatal synaptic adaptations in Parkinson's disease. Neurobiology of Disease, 2022, 167, 105686.	4.4	26
816	Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiology of Disease, 2022, 168, 105697.	4.4	26
818	Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia. Cell Reports, 2021, 37, 110161.	6.4	15
819	Cell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse. Frontiers in Synaptic Neuroscience, 2021, 13, 799274.	2.5	11
821	Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Movement Disorders, 2022, 37, 253-263.	3.9	16
822	Effects of Chemogenetic Inhibition of D1 or D2 Receptor-Containing Neurons of the Substantia Nigra and Striatum in Mice With Tourette Syndrome. Frontiers in Molecular Neuroscience, 2021, 14, 779436.	2.9	5
823	Dopamine Neuron Challenge Test for early detection of Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 116.	5.3	8
825	Dopamine, behavior, and addiction. Journal of Biomedical Science, 2021, 28, 83.	7.0	25
826	GuPPy, a Python toolbox for the analysis of fiber photometry data. Scientific Reports, 2021, 11, 24212.	3.3	31
827	Striatonigrostriatal Spirals in Addiction. Frontiers in Neural Circuits, 2021, 15, 803501.	2.8	0
828	Networking brainstem and basal ganglia circuits for movement. Nature Reviews Neuroscience, 2022, 23, 342-360.	10.2	71
830	Striatal direct pathway neurons play leading roles in accelerating rotarod motor skill learning. IScience, 2022, 25, 104245.	4.1	4
836	Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor–Receptor Interaction and Striatal Function. Current Topics in Behavioral Neurosciences, 2022, , 1.	1.7	1

#	Article	IF	CITATIONS
838	Adaptive changes in striatal projection neurons explain the long duration response and the emergence of dyskinesias in patients with Parkinson's disease. Journal of Neural Transmission, 2022, 129, 497-503.	2.8	3
840	Role of anterior insula cortex in context-induced relapse of nicotine-seeking. ELife, 2022, 11, .	6.0	11
844	Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Molecular Psychiatry, 2022, 27, 3479-3492.	7.9	7
846	Ca ²⁺ -based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomedical Research, 2022, 43, 81-89.	0.9	2
848	Pallidal activity related to posture and movement during reaching in the cat. Journal of Neuroscience, 0, , JN-RM-0467-22.	3.6	0
849	Identifying control ensembles for information processing within the cortico-basal ganglia-thalamic circuit. PLoS Computational Biology, 2022, 18, e1010255.	3.2	2
850	Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle. ELife, 0, 11, .	6.0	9
851	A blueprint for examining striatal control of cognition. Trends in Neurosciences, 2022, 45, 649-650.	8.6	1
852	Etiopathogenic Models of Psychosis Spectrum Illnesses Must Resolve Four Key Features. Biological Psychiatry, 2022, 92, 514-522.	1.3	6
853	Alterations of Dopamine Receptors and the Adaptive Changes of L-Type Calcium Channel Subtypes Regulate Cocaine-Seeking Habit in Tree Shrew. Life, 2022, 12, 984.	2.4	0
854	Spectral fiber photometry derives hemoglobin concentration changes for accurate measurement of fluorescent sensor activity. Cell Reports Methods, 2022, 2, 100243.	2.9	23
855	Neurophysiological assessment of juvenile parkinsonism due to primary monoamine neurotransmitter disorders. Journal of Neural Transmission, 2022, 129, 1011-1021.	2.8	1
857	Striatal mechanisms of turning behaviour following unilateral dopamine depletion in mice. European Journal of Neuroscience, 2022, 56, 4529-4545.	2.6	1
858	Action suppression reveals opponent parallel control via striatal circuits. Nature, 2022, 607, 521-526.	27.8	21
859	Early Changes in Striatal Activity and Motor Kinematics in a Huntington's Disease Mouse Model. Movement Disorders, 2022, 37, 2021-2032.	3.9	9
860	Activation, but not inhibition, of the indirect pathway disrupts choice rejection in a freely moving, multiple-choice foraging task. Cell Reports, 2022, 40, 111129.	6.4	1
861	A circuit from lateral septum neurotensin neurons to tuberal nucleus controls hedonic feeding. Molecular Psychiatry, 2022, 27, 4843-4860.	7.9	21
863	Front and center: Maturational dysregulation of frontal lobe functional neuroanatomic connections in attention deficit hyperactivity disorder. Frontiers in Neuroanatomy, 0, 16, .	1.7	4

#	Article	IF	CITATIONS
864	Brain-wide mapping of c-Fos expression with fluorescence micro-optical sectioning tomography in a chronic sleep deprivation mouse model. Neurobiology of Stress, 2022, 20, 100478.	4.0	5
865	Motor Thalamic Interactions with the Brainstem and Basal Ganglia. , 2022, , 269-283.		1
866	The orphan receptor GPR88 controls impulsivity and is a risk factor for Attention-Deficit/Hyperactivity Disorder. Molecular Psychiatry, 2022, 27, 4662-4672.	7.9	4
867	All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording. Opto-Electronic Advances, 2022, 5, 210081-210081.	13.3	5
868	Adaptations in Nucleus Accumbens Neuron Subtypes Mediate Negative Affective Behaviors in Fentanyl Abstinence. Biological Psychiatry, 2023, 93, 489-501.	1.3	8
869	Tonic activity in lateral habenula neurons acts as a neutral valence brake on reward-seeking behavior. Current Biology, 2022, 32, 4325-4336.e5.	3.9	3
870	Principles of gait encoding in the subthalamic nucleus of people with Parkinson's disease. Science Translational Medicine, 2022, 14, .	12.4	17
872	Differential Alterations in Striatal Direct and Indirect Pathways Mediate Two Autism-like Behaviors in Valproate-exposed Mice. Journal of Neuroscience, 0, , JN-RM-0623-22.	3.6	1
873	Molecular and cellular mechanisms leading to catatonia: an integrative approach from clinical and preclinical evidence. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	4
874	Multiregion neuronal activity: the forest and the trees. Nature Reviews Neuroscience, 2022, 23, 683-704.	10.2	21
875	Animal Models of Tic Disorders. , 2022, , 277-298.		0
876	Distinct Roles of Dopamine Receptor Subtypes in the Nucleus Accumbens during Itch Signal Processing. Journal of Neuroscience, 2022, 42, 8842-8854.	3.6	2
878	Neural Network Providing the Involvement of Voluntary Attention into the Processing and Conscious Perception of Sensory Information. Studies in Computational Intelligence, 2023, , 56-64.	0.9	0
879	Dissociable effects of oxycodone on behavior, calcium transient activity, and excitability of dorsolateral striatal neurons. Frontiers in Neural Circuits, 0, 16, .	2.8	3
880	Receptor and Ionic Mechanism of Histamine on Mouse Dorsolateral Striatal Neurons. Molecular Neurobiology, 2023, 60, 183-202.	4.0	6
882	Nucleus Accumbens D1 Receptor–Expressing Spiny Projection Neurons Control Food Motivation and Obesity. Biological Psychiatry, 2023, 93, 512-523.	1.3	9
886	Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature, 2022, 611, 762-768.	27.8	21
887	R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations. Communications Biology, 2022, 5, .	4.4	3

#	Article	IF	CITATIONS
888	Deconstruction of Vermal Cerebellum in Ramp Locomotion in Mice. Advanced Science, 2023, 10, .	11.2	3
889	Spectrally Resolved Fiber Photometry for <i>In Vivo</i> Multiâ€Color Fluorescence Measurements. Current Protocols, 2022, 2, .	2.9	0
890	Neuromodulation in the developing visual cortex after long-term monocular deprivation. Cerebral Cortex, 2023, 33, 5636-5645.	2.9	1
891	Selective activation of striatal indirect pathway suppresses levodopa induced-dyskinesias. Neurobiology of Disease, 2023, 176, 105930.	4.4	6
892	Modulation of striatal glutamatergic, dopaminergic and cholinergic neurotransmission pathways concomitant with motor disturbance in rats with kaolin-induced hydrocephalus. Fluids and Barriers of the CNS, 2022, 19, .	5.0	0
893	Cortex-wide response mode of VIP-expressing inhibitory neurons by reward and punishment. ELife, 0, 11, ·	6.0	18
894	Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson's Disease Therapy. Biomolecules, 2023, 13, 9.	4.0	8
895	Multi-circuit Recording in Animal Models of Parkinson's Disease. Neuromethods, 2023, , 283-297.	0.3	0
896	In vivo optogenetic inhibition of striatal parvalbuminâ€reactive interneurons induced genotypeâ€specific changes in neuronal activity without dystonic signs in male <scp>DYT1</scp> knockâ€in mice. Journal of Neuroscience Research, 2023, 101, 448-463.	2.9	2
897	Spinophilin Limits Metabotropic Glutamate Receptor 5 Scaffolding to the Postsynaptic Density and Cell Type Specifically Mediates Excessive Grooming. Biological Psychiatry, 2023, 93, 976-988.	1.3	2
898	Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues. Nature Communications, 2022, 13, .	12.8	9
899	Exercise improves behavioral dysfunction and inhibits the spontaneous excitatory postsynaptic current of D2-medium spiny neurons. Frontiers in Aging Neuroscience, 0, 14, .	3.4	4
900	Targeting C Protein-Coupled Receptors in the Treatment of Parkinson's Disease. Journal of Molecular Biology, 2023, 435, 167927.	4.2	2
901	Neuronal structures controlling locomotor behavior during active and inactive motor states. Neuroscience Research, 2023, 189, 83-93.	1.9	3
902	Mechanisms of Functioning of the Connectome Including the Neocortex, Hippocampus, Basal Ganglia, Cerebellum, and Thalamus. Neuroscience and Behavioral Physiology, 2022, 52, 1017-1029.	0.4	1
903	Unraveling the dynamics of dopamine release and its actions on target cells. Trends in Neurosciences, 2023, 46, 228-239.	8.6	13
904	Computational insights on asymmetrical \$\$D_{1}\$\$ and \$\$D_{2}\$\$ receptor-mediated chunking: implications for OCD and Schizophrenia. Cognitive Neurodynamics, 2024, 18, 217-232.	4.0	0
906	Opponent Learning with Different Representations in the Cortico-Basal Ganglia Circuits. ENeuro, 2023, 10, ENEURO.0422-22.2023.	1.9	0

#	Article	IF	CITATIONS
907	Striatal circuits. , 2023, , 73-124.		0
908	Segregation of D1 and D2 dopamine receptors in the striatal direct and indirect pathways: An historical perspective. Frontiers in Synaptic Neuroscience, 0, 14, .	2.5	17
910	Distinct cortico-striatal compartments drive competition between adaptive and automatized behavior. PLoS ONE, 2023, 18, e0279841.	2.5	0
911	The histamine H3 receptor modulates dopamine D2 receptor–dependent signaling pathways and mouse behaviors. Journal of Biological Chemistry, 2023, 299, 104583.	3.4	1
912	Exploration behavior after reversals is predicted by STN-GPe synaptic plasticity in a basal ganglia model. IScience, 2023, 26, 106599.	4.1	1
913	Bed nuclei of the stria terminalis: A key hub in the modulation of anxiety. European Journal of Neuroscience, 2023, 57, 900-917.	2.6	1
914	The Role of the Striatum in Motor Learning. Neuroscience and Behavioral Physiology, 2022, 52, 1218-1236.	0.4	0
915	Hypothalamic neurons that mirror aggression. Cell, 2023, 186, 1195-1211.e19.	28.9	13
916	Ongoing movement controls sensory integration in the dorsolateral striatum. Nature Communications, 2023, 14, .	12.8	4
918	Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection. Network: Computation in Neural Systems, 2023, 34, 84-121.	3.6	4
920	A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation. Cell Reports Methods, 2023, 3, 100418.	2.9	5
923	Highâ€Đensity Optophysiology for Recording Intracellular and Extracellular Signals across the Brain of Freeâ€Moving Animals. Angewandte Chemie, 0, , .	2.0	0
924	Highâ€Đensity Optophysiology for Recording Intracellular and Extracellular Signals across the Brain of Freeâ€Moving Animals. Angewandte Chemie - International Edition, 0, , .	13.8	0
925	A fresh look at propriospinal interneurons plasticity and intraspinal circuits remodeling after spinal cord injury. IBRO Neuroscience Reports, 2023, 14, 441-446.	1.6	0
926	Striosomes and Matrisomes: Scaffolds for Dynamic Coupling of Volition and Action. Annual Review of Neuroscience, 2023, 46, 359-380.	10.7	7
930	Computational Cognitive Models of Reinforcement Learning. , 2023, , 739-766.		0
931	Modulation of deep neural circuits with sonogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	12
932	Adenosine A2A receptors and sleep. International Review of Neurobiology, 2023, , .	2.0	0

#	Article	IF	CITATIONS
934	Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology, 2023, 48, 1309-1317.	5.4	1
935	The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior. Neuroscience Bulletin, 0, , .	2.9	0
936	Linking input- and cell-type-specific synaptic plasticity to the reinforcement of alcohol-seeking behavior. Neuropharmacology, 2023, 237, 109619.	4.1	0
937	Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. ELife, 0, 12, .	6.0	2
938	Cell and circuit complexity of the external globus pallidus. Nature Neuroscience, 2023, 26, 1147-1159.	14.8	7
939	Rethinking the network determinants of motor disability in Parkinson's disease. Frontiers in Synaptic Neuroscience, 0, 15, .	2.5	4
940	Advanced in vivo fluorescence microscopy of neural electronic interface. MRS Bulletin, 2023, 48, 506-517.	3.5	2
941	Gestational ethanol exposure impairs motor skills in female mice through dysregulated striatal dopamine and acetylcholine function. Neuropsychopharmacology, 2023, 48, 1808-1820.	5.4	1
942	The indirect pathway of the basal ganglia promotes transient punishment but not motor suppression. Neuron, 2023, 111, 2218-2231.e4.	8.1	9
943	Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nature Communications, 2023, 14, .	12.8	2
944	Reward contingency gates selective cholinergic suppression of amygdala neurons. ELife, 0, 12, .	6.0	0
945	Neuronal glutamate transporters control reciprocal inhibition and gain modulation in D1 medium spiny neurons. ELife, 0, 12, .	6.0	1
946	Role of the basal ganglia in innate and learned behavioural sequences. Reviews in the Neurosciences, 2023, .	2.9	0
947	Synaptic Dysfunction in Dystonia: Update From Experimental Models. Current Neuropharmacology, 2023, 21, 2310-2322.	2.9	1
950	Basal ganglia for beginners: the basic concepts you need to know and their role in movement control. Frontiers in Systems Neuroscience, 0, 17, .	2.5	7
952	Neural dynamics in the limbic system during male social behaviors. Neuron, 2023, 111, 3288-3306.e4.	8.1	8
953	Orbitofrontal cortex control of striatum leads economic decision-making. Nature Neuroscience, 2023, 26, 1566-1574.	14.8	5
954	The respective activation and silencing of striatal direct and indirect pathway neurons support behavior encoding. Nature Communications, 2023, 14, .	12.8	5

#	Article	IF	CITATIONS
955	Reversal of pathological motor behavior in a model of Parkinson's disease by striatal dopamine uncaging. PLoS ONE, 2023, 18, e0290317.	2.5	0
957	GCaMP, a Family of Single-Fluorophore Genetically Encoded Calcium Indicators. Journal of Evolutionary Biochemistry and Physiology, 2023, 59, 1195-1214.	0.6	0
958	Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor. Nature Communications, 2023, 14, .	12.8	4
959	Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Communications Biology, 2023, 6, .	4.4	1
960	Corticostriatal pathways for bilateral sensorimotor functions. Current Opinion in Neurobiology, 2023, 83, 102781.	4.2	1
962	Chronic alcohol exposure differentially alters calcium activity of striatal cell populations during actions Addiction Neuroscience, 2023, 8, 100128.	1.3	1
967	Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. ELife, 0, 12, .	6.0	0
968	Integrative neurocircuits that control metabolism and food intake. Science, 2023, 381, .	12.6	7
969	HABA: A High-Speed Animal Behavior Acquisition and Analysis System. , 2023, , .		0
971	Striatal Dopamine Signals and Reward Learning. Function, 2023, 4, .	2.3	0
972	Deep-brain optical recording of neural dynamics during behavior. Neuron, 2023, 111, 3716-3738.	8.1	1
974	Mechanisms for Contribution of Modifiable Inhibition to Increasing Signal-to-Noise Ratio and Contrasted Representations of Sensory Stimuli in the Neocortex. Studies in Computational Intelligence, 2023, , 179-187.	0.9	0
976	Striatopallidal cannabinoid type-1 receptors mediate amphetamine-induced sensitization. Current Biology, 2023, 33, 5011-5022.e6.	3.9	0
977	Striatum-projecting prefrontal cortex neurons support working memory maintenance. Nature Communications, 2023, 14, .	12.8	1
978	Pallidal circuits drive addiction behavior. Trends in Neurosciences, 2023, 46, 1042-1053.	8.6	0
979	Role of the substantia nigra pars reticulata in sleep-wakefulness: A review of research progress. Sleep Medicine, 2024, 113, 284-292.	1.6	0
980	Pathway-specific alterations in striatal excitability and cholinergic modulation in a SAPAP3 mouse model of compulsive motor behavior. Cell Reports, 2023, 42, 113384.	6.4	0
981	External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiology of Disease, 2024, 190, 106362.	4.4	0

#	Article	IF	CITATIONS
982	Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Current Opinion in Neurobiology, 2023, 83, 102798.	4.2	1
983	Arkypallidal neurons in basal ganglia circuits: Unveiling novel pallidostriatal loops?. Current Opinion in Neurobiology, 2024, 84, 102814.	4.2	1
985	How does apathy impact exploration-exploitation decision-making in older patients with neurocognitive disorders?. , 2023, 9, .		0
988	Fiber photometry-based investigation of brain function and dysfunction. Neurophotonics, 2023, 11, .	3.3	0
990	Updating the striatal–pallidal wiring diagram. Nature Neuroscience, 2024, 27, 15-27.	14.8	0
991	Striatal neurons are recruited dynamically into collective representations of self-initiated and learned actions in freely-moving mice. ENeuro, 0, , ENEURO.0315-23.2023.	1.9	0
993	<i>In vivo</i> measurement of NADH fluorescence lifetime in skeletal muscle via fiber-coupled time-correlated single photon counting. Journal of Innovative Optical Health Sciences, 0, , .	1.0	0
994	Lights, fiber, action! A primer on inÂvivo fiber photometry. Neuron, 2024, 112, 718-739.	8.1	1
995	Dynamic behaviour restructuring mediates dopamine-dependent credit assignment. Nature, 2024, 626, 583-592.	27.8	1
999	Dopaminergic reinforcement in the motor system: Implications for Parkinson's disease and deep brain stimulation. European Journal of Neuroscience, 2024, 59, 457-472.	2.6	0
1002	Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. Neuron, 2024, 112, 909-923.e9.	8.1	1
1003	Brain-wide multi-fiber recording of neuronal activity in freely moving mice. STAR Protocols, 2024, 5, 102882.	1.2	0
1004	Pathophysiology of synapses and circuits in Huntington disease. , 2024, , 311-336.		0
1005	Reward contingency gates selective cholinergic suppression of amygdala neurons. ELife, 0, 12, .	6.0	0
1006	Simulated Dopamine Modulation of a Neurorobotic Model of the Basal Ganglia. Biomimetics, 2024, 9, 139.	3.3	0
1008	Dopamine lesions alter the striatal encoding of single-limb gait. ELife, 0, 12, .	6.0	0