A global wave parameter database for geophysical appli with improved source term parameterization

Ocean Modelling 70, 174-188 DOI: 10.1016/j.ocemod.2012.12.001

Citation Report

#	Article	IF	CITATIONS
1	Tide-surge interaction in the English Channel. Natural Hazards and Earth System Sciences, 2012, 12, 3709-3718.	1.5	66
2	Waves and the equilibrium range at Ocean Weather Station P. Journal of Geophysical Research: Oceans, 2013, 118, 5951-5962.	1.0	55
3	Climate-based Monte Carlo simulation of trivariate sea states. Coastal Engineering, 2013, 80, 107-121.	1.7	14
4	A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 2013, 67, 100-118.	1.9	31
5	Source directionality of ambient seismic noise inferred from threeâ€component beamforming. Journal of Geophysical Research: Solid Earth, 2013, 118, 240-248.	1.4	43
6	Swell dissipation by induced atmospheric shear stress. Journal of Geophysical Research: Oceans, 2014, 119, 6622-6630.	1.0	9
7	Spectral form and source term balance of short gravity wind waves. Journal of Geophysical Research: Oceans, 2014, 119, 7406-7419.	1.0	11
8	Extreme wave parameters under North Atlantic extratropical cyclones. Ocean Modelling, 2014, 81, 78-88.	1.0	44
9	Atmospheric storm surge modeling methodology along the French (Atlantic and English Channel) coast. Ocean Dynamics, 2014, 64, 1671-1692.	0.9	23
10	Infragravity waves across the oceans. Geophysical Research Letters, 2014, 41, 7957-7963.	1.5	32
11	Predicting Barrier Beach Breaching due to Extreme Water Levels at San QuntÃn, Baja California, Mexico. Journal of Coastal Research, 2014, 71, 100-106.	0.1	5
12	Wave characteristic analysis and wave energy resource evaluation in the China Sea. Journal of Renewable and Sustainable Energy, 2014, 6, .	0.8	25
13	Periodicity and patterns of ocean wind and wave climate. Journal of Geophysical Research: Oceans, 2014, 119, 5563-5584.	1.0	51
14	Global surface wave drift climate from ERA-40: the contributions from wind-sea and swell. Ocean Dynamics, 2014, 64, 1815-1829.	0.9	23
15	Stokes drift estimation for deep water waves based on short-term variation of wave conditions. Coastal Engineering, 2014, 88, 27-32.	1.7	14
16	A numerical model for free infragravity waves: Definition and validation at regional and global scales. Ocean Modelling, 2014, 77, 20-32.	1.0	63
17	Wave-induced current for long-crested and short-crested random waves. Ocean Engineering, 2014, 81, 105-110.	1.9	9
18	Errors in SMOS Sea Surface Salinity and their dependency on a priori wind speed. Remote Sensing of Environment, 2014, 146, 159-171.	4.6	26

#	Article	IF	CITATIONS
19	Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Modelling, 2014, 75, 65-83.	1.0	271
20	Impacts of Parameterized Langmuir Turbulence and Nonbreaking Wave Mixing in Global Climate Simulations. Journal of Climate, 2014, 27, 4752-4775.	1.2	82
21	Approximate Stokes Drift Profiles in Deep Water. Journal of Physical Oceanography, 2014, 44, 2433-2445.	0.7	88
22	A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979–2012). Ocean Dynamics, 2014, 64, 1163-1180.	0.9	48
23	On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dynamics, 2014, 64, 833-846.	0.9	97
24	A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dynamics, 2014, 64, 1025-1038.	0.9	39
25	ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dynamics, 2014, 64, 1181-1191.	0.9	52
26	Wave energy resource assessment with AltiKa satellite altimetry: A case study at a wave energy site. Geophysical Research Letters, 2015, 42, 5452-5459.	1.5	8
27	The fine structure of doubleâ€frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 2015, 120, 1677-1691.	1.4	69
28	Estimating wave orbital velocity through the azimuth cutoff from spaceâ€borne satellites. Journal of Geophysical Research: Oceans, 2015, 120, 7616-7634.	1.0	59
29	Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanologica Sinica, 2015, 34, 43-57.	0.4	39
30	Random wave-induced current on mild slopes. Ocean Modelling, 2015, 96, 221-225.	1.0	4
31	Stokes drift estimation based on long-term variation of wave conditions. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2015, 229, 141-146.	0.3	4
32	The sources of deep ocean infragravity waves observed in the North Atlantic Ocean. Journal of Geophysical Research: Oceans, 2015, 120, 5120-5133.	1.0	18
33	Performance assessment of the database downscaled ocean waves (DOW) on Santa Catarina coast, South Brazil. Anais Da Academia Brasileira De Ciencias, 2015, 87, 623-634.	0.3	9
34	Evolution of the Extreme Wave Region in the North Atlantic Using a 23 Year Hindcast. , 2015, , .		1
35	Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions. Journal of Marine Science and Engineering, 2015, 3, 674-698.	1.2	48
36	Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Modelling, 2015, 96, 161-170.	1.0	78

#	Article	IF	CITATIONS
37	Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 2015, 96, 2-25.	1.0	168
38	East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model. Ocean Dynamics, 2015, 65, 419-434.	0.9	21
39	Madden Julian Oscillation impacts on global ocean surface waves. Ocean Modelling, 2015, 96, 136-147.	1.0	24
40	Finding gaps on power production assessment on WECs: Wave definition analysis. Renewable Energy, 2015, 83, 171-187.	4.3	24
41	The German Bight: A validation of CryoSat-2 altimeter data in SAR mode. Advances in Space Research, 2015, 55, 2641-2656.	1.2	57
42	Assessment of SARAL/AltiKa Wave Height Measurements Relative to Buoy, Jason-2, and Cryosat-2 Data. Marine Geodesy, 2015, 38, 449-465.	0.9	69
43	Impacts of wave spreading and multidirectional waves on estimating Stokes drift. Ocean Modelling, 2015, 96, 49-64.	1.0	50
44	Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinelâ€IA. Geophysical Research Letters, 2015, 42, 2317-2325.	1.5	54
45	Mass mortality events in atoll lagoons: environmental control and increased future vulnerability. Global Change Biology, 2015, 21, 195-205.	4.2	50
46	Wave climate in the Arctic 1992–2014: seasonality and trends. Cryosphere, 2016, 10, 1605-1629.	1.5	114
47	A methodology to estimate waveâ€induced coastal flooding hazard maps in Spain. Journal of Flood Risk Management, 2016, 9, 289-305.	1.6	16
48	Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters, 2016, 43, 2135-2143.	1.5	248
49	The GNSS Reflectometry response to the ocean surface. , 2016, , .		0
50	Sea state conditions for marine structures' analysis and model tests. Ocean Engineering, 2016, 119, 309-322.	1.9	28
51	Effects of water depth and spectral bandwidth on Stokes drift estimation based on short-term variation of wave conditions. Coastal Engineering, 2016, 114, 169-176.	1.7	5
52	A Stokes drift approximation based on the Phillips spectrum. Ocean Modelling, 2016, 100, 49-56.	1.0	73
53	Calibration and Validation of HY-2 Altimeter Wave Height. Journal of Atmospheric and Oceanic Technology, 2016, 33, 919-936.	0.5	38
54	Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy, 2016, 94, 341-352.	4.3	40

#	Article	IF	Citations
55	The GNSS Reflectometry Response to the Ocean Surface Winds and Waves. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 4678-4699.	2.3	57
56	Ocean bottom pressure records from the Cascadia array and short surface gravity waves. Journal of Geophysical Research: Oceans, 2016, 121, 2862-2873.	1.0	10
57	The influence of waves on the tidal kinetic energy resource at a tidal stream energy site. Applied Energy, 2016, 180, 402-415.	5.1	54
58	Event-Based Validation of Swell Arrival Time. Journal of Physical Oceanography, 2016, 46, 3563-3569.	0.7	24
59	Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode. Geophysical Research Letters, 2016, 43, 3423-3430.	1.5	34
60	Ocean waves across the Arctic: Attenuation due to dissipation dominates over scattering for periods longer than 19Âs. Geophysical Research Letters, 2016, 43, 5775-5783.	1.5	57
61	The First Application of Stare Processing to Retrieve Mean Square Slope Using the SGR-ReSI GNSS-R Experiment on TDS-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 4669-4677.	2.3	28
62	Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis. Ocean Modelling, 2016, 100, 78-95.	1.0	51
63	Wind, Waves, and Fronts: Frictional Effects in a Generalized Ekman Model. Journal of Physical Oceanography, 2016, 46, 371-394.	0.7	59
64	Harnessing wave power in open seas. Journal of Ocean Engineering and Marine Energy, 2016, 2, 47-57.	0.9	3
65	Nearshore assessment of wave energy resources in central Chile (2009–2010). Renewable Energy, 2016, 90, 136-144.	4.3	34
66	An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea. Dynamics of Atmospheres and Oceans, 2016, 73, 61-75.	0.7	43
67	Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Modelling, 2016, 103, 2-17.	1.0	119
68	Significant wave heights from <scp>S</scp> entinelâ€1 <scp>SAR</scp> : Validation and applications. Journal of Geophysical Research: Oceans, 2017, 122, 1827-1848.	1.0	80
69	Wave-current interactions in the southern North Sea: The impact on salinity. Ocean Modelling, 2017, 111, 19-37.	1.0	23
70	Smallâ€scale open ocean currents have large effects on wind wave heights. Journal of Geophysical Research: Oceans, 2017, 122, 4500-4517.	1.0	128
71	Formation mechanisms for selfâ€organized kilometerâ€scale shoreline sand waves. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1121-1138.	1.0	20
72	Generation and validation of the Chilean Wave Atlas database. Ocean Modelling, 2017, 116, 16-32.	1.0	25

	Сітатіо	n Report	
#	Article	IF	CITATIONS
73	Statistical models of global Langmuir mixing. Ocean Modelling, 2017, 113, 95-114.	1.0	39
74	Assessing accuracy in the estimation of spectral content in wave energy resource on the French Atlantic test site SEMREV. Renewable Energy, 2017, 114, 145-153.	4.3	10
75	Surface Wave Effects on the Wind-Power Input to Mixed Layer Near-Inertial Motions. Journal of Physical Oceanography, 2017, 47, 1077-1093.	0.7	14
76	GOW2: A global wave hindcast for coastal applications. Coastal Engineering, 2017, 124, 1-11.	1.7	113
77	Assessment, sources and predictability of the swell wave power arriving to Chile. Renewable Energy, 2017, 114, 108-119.	4.3	11
78	Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophysical Research Letters, 2017, 44, 2416-2426.	1.5	135
79	Extreme sea levels on the rise along Europe's coasts. Earth's Future, 2017, 5, 304-323.	2.4	225
80	Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra. Journal of Geophysical Research: Oceans, 2017, 122, 1400-1415.	1.0	17
81	Impacts of category 5 tropical cyclone Fantala (April 2016) on Farquhar Atoll, Seychelles Islands, Indian Ocean. Geomorphology, 2017, 298, 41-62.	1.1	24
82	Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?. Estuarine, Coastal and Shelf Science, 2017, 199, 117-124.	0.9	20
83	A semiparametric method to simulate bivariate space–time extremes. Annals of Applied Statistics, 2017, 11, .	0.5	3
84	Selfâ€organized kilometerâ€scale shoreline sand wave generation: Sensitivity to model and physical parameters. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1678-1697.	1.0	6
85	Characterization of the Deep Water Surface Wave Variability in the California Current Region. Journal of Geophysical Research: Oceans, 2017, 122, 8753-8769.	1.0	12
86	The Effect of Water Column Resonance on the Spectra of Secondary Microseism <i>P</i> Waves. Journal of Geophysical Research: Solid Earth, 2017, 122, 8121-8142.	1.4	13
87	Seasonal morphodynamics of the subaerial and subtidal sections of an intermediate and mesotidal beach. Geomorphology, 2017, 295, 383-392.	1.1	17
88	Wind waves climatology of the Southeast Pacific Ocean. International Journal of Climatology, 2017, 37, 4288-4301.	1.5	14
89	Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011. Journal of Ocean University of China, 2017, 16, 717-726.	0.6	17
90	Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Modelling, 2017, 118, 73-93.	1.0	92

#	Article	IF	Citations
91	Shipboard Wave Measurements in the Southern Ocean. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2113-2126.	0.5	12
92	Machine learning approach for optimal determination of wave parameter relationships. IET Renewable Power Generation, 2017, 11, 1127-1135.	1.7	3
93	Bulk versus Spectral Wave Parameters: Implications on Stokes Drift Estimates, Regional Wave Modeling, and HF Radars Applications. Journal of Physical Oceanography, 2017, 47, 1413-1431.	0.7	26
94	Stokes Drift Estimation for Sea States Based on Long-Term Variation of Wind Statistics. Coastal Engineering Journal, 2017, 59, 1750008-1-1750008-8.	0.7	2
95	Sea Fetch Observed by Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 272-279.	2.7	8
96	A revised assessment of Australia's national wave energy resource. Renewable Energy, 2017, 114, 85-107.	4.3	96
97	Limitation of SAR Quasi-Linear Inversion Data on Swell Climate: An Example of Global Crossing Swells. Remote Sensing, 2017, 9, 107.	1.8	17
98	Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated. Nonlinear Processes in Geophysics, 2017, 24, 613-643.	0.6	33
99	Characteristics and Meteorology of Atlantic Swells Reaching the Caribbean. Journal of Coastal Research, 2018, 342, 400-412.	0.1	9
100	Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Modelling, 2018, 127, 55-69.	1.0	53
101	The response of the southwest Western Australian wave climate to Indian Ocean climate variability. Climate Dynamics, 2018, 50, 1533-1557.	1.7	18
102	Strong winds in a coupled wave–atmosphere model during a North Atlantic storm event: evaluation against observations. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 317-332.	1.0	26
103	Calibration and Validation of Hy-2A Derived Significant Wave Height Using Triple Collocation. , 2018, , .		0
104	Developing configuration of WRF model for long-term high-resolution wind wave hindcast over the North Atlantic with WAVEWATCH III. Ocean Dynamics, 2018, 68, 1593-1604.	0.9	11
105	Predictability of storm wave heights in the ice-free Beaufort Sea. Ocean Dynamics, 2018, 68, 1383-1402.	0.9	17
106	Multisensor, Microseismic Observations of a Hurricane Transit Near the ALOHA Cabled Observatory. Journal of Geophysical Research: Solid Earth, 2018, 123, 3027-3046.	1.4	7
107	The Earth's Hum Variations From a Global Model and Seismic Recordings Around the Indian Ocean. Geochemistry, Geophysics, Geosystems, 2018, 19, 4006-4020.	1.0	12
108	Directional correction of modeled sea and swell wave heights using satellite altimeter data. Ocean Modelling, 2018, 131, 103-114.	1.0	12

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
109	Extreme value analysis of wave climate in Chesapeake Bay. Ocean Engineering, 2018, 1	.59, 22-36.	1.9	31
110	An assessment of the impact of surface currents on wave modeling in the Southern Oc Dynamics, 2018, 68, 939-955.	ean. Ocean	0.9	28
111	The impact of climate change on the wave climate in the Gulf of St. Lawrence. Ocean N 128, 87-101.	1odelling, 2018,	1.0	10
112	Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provid Chinese Satellite Gaofen-3. Remote Sensing, 2018, 10, 363.	led by the	1.8	39
113	Antarctica's ecological isolation will be broken by storm-driven dispersal and warmi Climate Change, 2018, 8, 704-708.	ng. Nature	8.1	220
114	Application of numerical wave models at European coastlines: A review. Renewable and Energy Reviews, 2018, 92, 489-500.	Sustainable	8.2	32
115	Wave Attenuation Through an Arctic Marginal Ice Zone on 12 October 2015: 2. Numer Waves and Associated Ice Breakup. Journal of Geophysical Research: Oceans, 2018, 12	ical Modeling of 3, 5652-5668.	1.0	29
116	Surface Stokes drift in the Baltic Sea based on modelled wave spectra. Ocean Dynamic	s, 2018, 68, 17-33.	0.9	12
117	Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multist monitoring (SKIM) concept. Ocean Science, 2018, 14, 337-354.	cale	1.3	87
118	Development of waves under explosive cyclones in the Northwestern Pacific. Ocean Dy 68, 1403-1418.	namics, 2018,	0.9	17
119	Largeâ€Scale Forces Under Surface Gravity Waves at a Wavy Bottom: A Mechanism for Primary Microseisms. Geophysical Research Letters, 2018, 45, 8173-8181.	• the Generation of	1.5	28
120	Impact of long ocean waves on wave height retrieval from SAR altimetry data. Advance Research, 2018, 62, 1434-1444.	s in Space	1.2	26
121	An Assessment of CYGNSS Normalized Bistatic Radar Cross Section Calibration. IEEE Jo Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 50-65.	urnal of	2.3	25
122	Large impact of Stokes drift on the fate of surface floating debris in the South Indian B Pollution Bulletin, 2019, 148, 202-209.	asin. Marine	2.3	44
123	Morphological changes in a cuspate sandy beach under persistent high-energy swells: F (Chile). Marine Geology, 2019, 417, 105988.	≀eñaca Beach	0.9	5
124	Effect of the drag coefficient on a typhoon wave model. Journal of Oceanology and Lim 37, 1795-1804.	nology, 2019,	0.6	14
125	Wave transformation over a barrier reef. Continental Shelf Research, 2019, 184, 66-80		0.9	24
126	Spatially Tracking Wave Events in Partitioned Numerical Wave Model Outputs. Journal and Oceanic Technology, 2019, 36, 1933-1944.	of Atmospheric	0.5	7

#	Article	IF	CITATIONS
127	Prediction of ocean surface trajectories using satellite derived vs. modeled ocean currents. Remote Sensing of Environment, 2019, 223, 130-142.	4.6	35
128	Wave climate analysis in the ice-free waters of Kara Sea. Regional Studies in Marine Science, 2019, 30, 100719.	0.4	4
129	3-D environmental extreme value models for the tension in a mooring line of a semi-submersible. Ocean Engineering, 2019, 184, 23-31.	1.9	7
130	High-resolution wave climate hindcast around Japan and its spectral representation. Coastal Engineering, 2019, 151, 1-9.	1.7	33
131	A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Modelling, 2019, 137, 76-97.	1.0	14
132	Sea State Trends and Variability: Consistency Between Models, Altimeters, Buoys, and Seismic Data (1979–2016). Journal of Geophysical Research: Oceans, 2019, 124, 3923-3940.	1.0	29
133	Hazardous waves from winter trade winds?. Regional Studies in Marine Science, 2019, 28, 100590.	0.4	0
134	Global scale analysis and modelling of primary microseisms. Geophysical Journal International, 2019, 218, 560-572.	1.0	16
135	Plastics in sea surface waters around the Antarctic Peninsula. Scientific Reports, 2019, 9, 3977.	1.6	210
136	Observing Sea States. Frontiers in Marine Science, 2019, 6, .	1.2	105
136 137	Observing Sea States. Frontiers in Marine Science, 2019, 6, . Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and Low-Frequency Flow. Journal of Climate, 2019, 32, 5619-5638.	1.2	105 5
	Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and		
137	Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and Low-Frequency Flow. Journal of Climate, 2019, 32, 5619-5638. The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating	1.2	5
137 138	Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and Low-Frequency Flow. Journal of Climate, 2019, 32, 5619-5638. The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic. Journal of Geophysical Research: Oceans, 2019, 124, 1474-1490. Meteorological controls on big waves south of Africa. Regional Studies in Marine Science, 2019, 27,	1.2 1.0	5 159
137 138 139	Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and Low-Frequency Flow. Journal of Climate, 2019, 32, 5619-5638. The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic. Journal of Geophysical Research: Oceans, 2019, 124, 1474-1490. Meteorological controls on big waves south of Africa. Regional Studies in Marine Science, 2019, 27, 100538. Numerical simulation of the wave-induced Stokes drift effect on sea surface temperature in the North	1.2 1.0 0.4	5 159 2
137 138 139 140	Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and Low-Frequency Flow. Journal of Climate, 2019, 32, 5619-5638. The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic. Journal of Geophysical Research: Oceans, 2019, 124, 1474-1490. Meteorological controls on big waves south of Africa. Regional Studies in Marine Science, 2019, 27, 100538. Numerical simulation of the wave-induced Stokes drift effect on sea surface temperature in the North Pacific. Oceanological and Hydrobiological Studies, 2019, 48, 381-403.	1.2 1.0 0.4	5 159 2 1
137 138 139 140 141	Ocean Wind Wave Climate Responses to Wintertime North Atlantic Atmospheric Transient Eddies and Low-Frequency Flow. Journal of Climate, 2019, 32, 5619-5638. The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic. Journal of Geophysical Research: Oceans, 2019, 124, 1474-1490. Meteorological controls on big waves south of Africa. Regional Studies in Marine Science, 2019, 27, 100538. Numerical simulation of the wave-induced Stokes drift effect on sea surface temperature in the North Pacific. Oceanological and Hydrobiological Studies, 2019, 48, 381-403. Sentinel-1, WW3 and Buoy Spectral Comparisons in the Southern Ocean. , 2019, , . Climate Change Vulnerability of American Lobster Fishing Communities in Atlantic Canada. Frontiers	1.2 1.0 0.4 0.3	5 159 2 1 1

#	Article	IF	CITATIONS
145	A recent increase in global wave power as a consequence of oceanic warming. Nature Communications, 2019, 10, 205.	5.8	283
146	Characteristics of global waves based on the third-generation wave model SWAN. Marine Structures, 2019, 64, 35-53.	1.6	58
147	Marine climate variability based on weather patterns for a complicated island setting: The New Zealand case. International Journal of Climatology, 2019, 39, 1777-1786.	1.5	19
148	Observation-Based Source Terms in the Third-Generation Wave Model WAVEWATCH III: Updates and Verification. Journal of Physical Oceanography, 2019, 49, 489-517.	0.7	91
149	Climatology of Wind-Seas and Swells in the China Seas from Wave Hindcast. Journal of Ocean University of China, 2020, 19, 90-100.	0.6	10
150	Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects. Ocean Modelling, 2020, 145, 101526.	1.0	63
151	Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Applied Ocean Research, 2020, 104, 102339.	1.8	69
152	Spectral wave modelling of the extreme 2013/2014 winter storms in the North-East Atlantic. Ocean Engineering, 2020, 216, 108012.	1.9	4
153	Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Scientific Data, 2020, 7, 226.	2.4	19
154	Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean Engineering, 2020, 213, 107745.	1.9	31
155	Performance Evaluation of Parameterizations for Wind Input and Wave Dissipation in the Spectral Wave Model for the Northwest Atlantic Ocean. Atmosphere - Ocean, 2020, 58, 258-286.	0.6	13
156	A multivariate, stochastic, climate-based wave emulator for shoreline change modelling. Ocean Modelling, 2020, 154, 101695.	1.0	17
157	Identifying marine invasion hotspots using stacked species distribution models. Biological Invasions, 2020, 22, 3403-3423.	1.2	14
158	Indirect Validation of Ocean Remote Sensing Data via Numerical Model: An Example of Wave Heights from Altimeter. Remote Sensing, 2020, 12, 2627.	1.8	12
159	Spatiotemporal Correlation Analysis of Noiseâ€Derived Seismic Body Waves With Ocean Wave Climate and Microseism Sources. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009112.	1.0	6
160	Evaluation of altimeter undersampling in estimating global wind and wave climate using virtual observation. Remote Sensing of Environment, 2020, 245, 111840.	4.6	15
161	On the Extraction of Microseismic Ground Motion from Analog Seismograms for the Validation of Ocean-Climate Models. Seismological Research Letters, 2020, 91, 1518-1530.	0.8	11
162	Wave climates: deep water to shoaling zone. , 2020, , 39-59.		0

#	Article	IF	CITATIONS
163	Improvement of the high-resolution wave hindcast of the Uruguayan waters focusing on the RÃo de la Plata Estuary. Coastal Engineering, 2020, 161, 103724.	1.7	4
164	Enhanced formulation of wind energy input into waves in developing sea. Progress in Oceanography, 2020, 186, 102376.	1.5	7
165	A high-resolution, long-term wave resource assessment of Japan with wave–current effects. Renewable Energy, 2020, 161, 1341-1358.	4.3	12
166	Assessing swells in La Réunion Island from terrestrial seismic observations, oceanographic records and offshore wave models. Geophysical Journal International, 2020, 221, 1883-1895.	1.0	6
167	Wave Climate Patterns from Spatial Tracking of Global Long-Term Ocean Wave Spectra. Journal of Climate, 2020, 33, 3381-3393.	1.2	9
168	Atmospheric infrasound generation by ocean waves in finite depth: unified theory and application to radiation patterns. Geophysical Journal International, 2020, 221, 569-585.	1.0	20
169	Characterization of the air–sea exchange mechanisms during a Mediterranean heavy precipitation event using realistic sea state modelling. Atmospheric Chemistry and Physics, 2020, 20, 1675-1699.	1.9	11
170	Dynamics of the seasonal wave height variability in the South China Sea. International Journal of Climatology, 2021, 41, 934-951.	1.5	7
171	The wave regimes of the Central Pacific Ocean with a focus on pearl farming atolls. Marine Pollution Bulletin, 2021, 162, 111751.	2.3	7
172	Exploiting the Sentinel-3 tandem phase dataset and azimuth oversampling to better characterize the sensitivity of SAR altimeter sea surface height to long ocean waves. Advances in Space Research, 2021, 67, 253-265.	1.2	19
173	Towards a unified framework for extreme sea waves from spectral models: rationale and applications. Ocean Engineering, 2021, 219, 108263.	1.9	20
174	A Multiscale Approach to Shoreline Prediction. Geophysical Research Letters, 2021, 48, .	1.5	20
175	Global Ocean Windâ€Wave Model Hindcasts Forced by Different Reanalyzes: A Comparative Assessment. Journal of Geophysical Research: Oceans, 2021, 126, .	1.0	21
176	Global patterns for the spatial distribution of floating microfibers: Arctic Ocean as a potential accumulation zone. Journal of Hazardous Materials, 2021, 403, 123796.	6.5	54
177	Global wave hindcast with Australian and Pacific Island Focus: From past to present. Geoscience Data Journal, 2021, 8, 24-33.	1.8	35
178	Seasonality of wind speeds and wave heights from 30†years of satellite altimetry. Advances in Space Research, 2021, 68, 787-801.	1.2	11
179	Synergy between surface drifters and altimetry to increase the accuracy of sea level anomaly and geostrophic current maps in the Gulf of Mexico. Advances in Space Research, 2021, 68, 420-431.	1.2	9
180	Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network. Remote Sensing, 2021, 13, 195.	1.8	13

#	Article	IF	CITATIONS
181	The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-24.	2.7	26
182	Projected wave climate temporal variability due to climate change. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1741-1757.	1.9	7
183	Evaluating the Accuracy of ERA5 Wave Reanalysis in the Water Around China. Journal of Ocean University of China, 2021, 20, 1-9.	0.6	28
184	Altimeter Observations of Tropical Cyclone-generated Sea States: Spatial Analysis and Operational Hindcast Evaluation. Journal of Marine Science and Engineering, 2021, 9, 216.	1.2	14
185	Ocean Swell Comparisons Between Sentinelâ€1 and WAVEWATCH III Around Australia. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016265.	1.0	11
186	Modeled Stokes drift in the marginal ice zones of the Arctic Ocean. Ocean Dynamics, 2021, 71, 509-525.	0.9	1
187	WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan. Oceanologia, 2021, 63, 194-213.	1.1	27
188	How deep ocean-land coupling controls the generation of secondary microseism Love waves. Nature Communications, 2021, 12, 2332.	5.8	13
189	Quality of the ERA5 and CFSR winds and their contribution to wave modelling performance in a semi-closed sea. Journal of Operational Oceanography, 2023, 16, 106-130.	0.6	10
190	Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07. Geoscientific Model Development, 2021, 14, 2917-2938.	1.3	11
191	Global implications of surface current modulation of the wind-wave field. Ocean Modelling, 2021, 161, 101792.	1.0	6
192	Global simulations of marine plastic transport show plastic trapping in coastal zones. Environmental Research Letters, 2021, 16, 064053.	2.2	91
193	Infrasound signature of the post-tropical storm Ophelia at the Central and Eastern European Infrasound Network. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 217, 105603.	0.6	6
194	Evaluation of Wave-Ice Parameterization Models in WAVEWATCH III® Along the Coastal Area of the Sea of Okhotsk During Winter. Frontiers in Marine Science, 2021, 8, .	1.2	8
195	Global Wave Hindcasts Using the Observationâ€Based Source Terms: Description and Validation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002493.	1.3	19
196	Hydrodynamic Climate of Port Phillip Bay. Journal of Marine Science and Engineering, 2021, 9, 898.	1.2	4
197	The Seasonal Cycle of Significant Wave Height in the Ocean: Local Versus Remote Forcing. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017198.	1.0	10
198	North Atlantic Oscillation (NAO) Climate Index Hidden in Ocean Generated Secondary Microseisms. Geophysical Research Letters, 2021, 48, e2021GL093657.	1.5	Ο

#	Article	IF	CITATIONS
199	Towards kilometer-scale ocean–atmosphere–wave coupled forecast: a case study on a Mediterranean heavy precipitation event. Atmospheric Chemistry and Physics, 2021, 21, 11857-11887.	1.9	2
200	Global Wind and Wave Climate Based on Two Reanalysis Databases: ECMWF ERA5 and NCEP CFSR. Journal of Marine Science and Engineering, 2021, 9, 990.	1.2	6
201	Statistical model representing storm avoidance by merchant ships in the North Atlantic Ocean. Ocean Engineering, 2021, 235, 109163.	1.9	9
202	Shallow-water circulation on the northern coast of Rio Grande do Sul, Brazil: A wave-dominated system. Regional Studies in Marine Science, 2021, 47, 101973.	0.4	0
203	A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Modelling, 2021, 166, 101848.	1.0	25
204	Sensitivity analysis of wind input parametrizations in the WAVEWATCH III spectral wave model using the ST6 source term package for Ireland. Applied Ocean Research, 2021, 115, 102826.	1.8	6
205	Automatic calibration and uncertainty quantification in waves dynamical downscaling. Coastal Engineering, 2021, 169, 103944.	1.7	2
206	Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100. Applied Energy, 2021, 302, 117492.	5.1	41
207	Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast. Renewable Energy, 2021, 178, 79-95.	4.3	3
208	Biogeographic Processes Influencing Antarctic and sub-Antarctic Seaweeds. , 2020, , 43-57.		9
209	Is the Ocean Speeding Up? Ocean Surface Energy Trends. Journal of Physical Oceanography, 2020, 50, 3205-3217.	0.7	15
210	Evaluation on the Capability of Revealing Ocean Swells from Sentinel-1A Wave Spectra Measurements. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1289-1304.	0.5	5
211	Evaluating the Leeway Coefficient of Ocean Drifters Using Operational Marine Environmental Prediction Systems. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1943-1954.	0.5	15
212	The Relationship between Beach Grain Size and Intertidal Beach Face Slope. Journal of Coastal Research, 2019, 35, 1080.	0.1	20
213	The Role of Coral Reefs in Coastal Protection: Analysis of Beach Morphology. Journal of Coastal Research, 2019, 92, 157.	0.1	8
214	Review of winter storms 2013-2014 on shoreline retreat dynamic on Brittany coast. Geomorphologie Relief, Processus, Environnement, 2015, 21, 267-292.	0.7	35
215	How kilometric sandy shoreline undulations correlate with wave and morphology characteristics: preliminary analysis on the Atlantic coast of Africa. Advances in Geosciences, 0, 39, 55-60.	12.0	10
216	Geostrophic currents in the northern Nordic Seas from a combination of multi-mission satellite altimetry and ocean modeling. Earth System Science Data, 2019, 11, 1765-1781.	3.7	2

#	Article	IF	CITATIONS
217	The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations. Earth System Science Data, 2020, 12, 1929-1951.	3.7	60
218	Development of a two-way-coupled ocean–wave model: assessment on aÂglobal NEMO(v3.6)–WW3(v6.02) coupled configuration. Geoscientific Model Development, 2020, 13, 3067-3090.	1.3	13
219	Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations. Solid Earth, 2020, 11, 173-184.	1.2	14
220	Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones. Cryosphere, 2020, 14, 2029-2052.	1.5	19
221	CryoSat-2 Significant Wave Height in Polar Oceans Derived Using a Semi-Analytical Model of Synthetic Aperture Radar 2011–2019. Remote Sensing, 2021, 13, 4166.	1.8	3
222	Investigation of the Anisotropic Patterns in the Altimeter Backscatter Measurements Over Ocean Wave Surfaces. Frontiers in Earth Science, 2021, 9, .	0.8	2
223	Seas and swells throughout New Zealand: A new partitioned hindcast. Ocean Modelling, 2021, 168, 101897.	1.0	10
224	Time‣cales of a Duneâ€Beach System and Implications for Shoreline Modeling. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006169.	1.0	5
225	Étude de l'impact de la résolution horizontale sur la modélisation numérique de processus hydrodynamiques cÃ′tiers et des flux sédimentaires associés. , 2014, , .		0
226	Report of Committee I.1: Environment. , 2015, , 1-72.		0
227	Feasibility of Wind Power and Wave Power Generation in the South China Sea. Springer Oceanography, 2019, , 73-89.	0.2	0
229	Towards remote sensed wide-swath sea states from scatterometer: machine learning approach for ASCAT. , 2020, , .		0
230	Verification of Forecast Performance of a Rapid Refresh Wave Model Based on Wind–Wave Interaction Effect. Journal of Marine Science and Engineering, 2021, 9, 1230.	1.2	1
231	Wave Energy Resource Harnessing Assessment in a Subtropical Coastal Region of the Pacific. Journal of Marine Science and Engineering, 2021, 9, 1264.	1.2	5
232	Cyclonic Wave Simulations Based on WAVEWATCH-III Using a Sea Surface Drag Coefficient Derived from CFOSAT SWIM Data. Atmosphere, 2021, 12, 1610.	1.0	6
233	Southern Hemisphere Coastal Ecosystems are Biologically Connected by Frequent, Long-Distance Rafting Events. SSRN Electronic Journal, 0, , .	0.4	0
234	Focusing and Defocusing of Tropical Cyclone Generated Waves by Ocean Current Refraction. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	6
235	Development and Verification of a Rapid Refresh Wave Forecasting System. Journal of Korean Society of Coastal and Ocean Engineers, 2020, 32, 340-350.	0.1	2

#	Article	IF	CITATIONS
236	Morphodynamics of a Highly-Dynamic, Swell-Dominated, Enclosed Beach with Rip Currents in Nw Baja California. SSRN Electronic Journal, 0, , .	0.4	0
237	Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut. Continental Shelf Research, 2022, 233, 104645.	0.9	6
238	Assessment of CYGNSS Wind Speed Retrievals in Tropical Cyclones. Remote Sensing, 2021, 13, 5110.	1.8	12
239	Assessment of Ocean Swell Height Observations from Sentinel-1A/B Wave Mode against Buoy In Situ and Modeling Hindcasts. Remote Sensing, 2022, 14, 862.	1.8	11
240	Can Multi-Mission Altimeter Datasets Accurately Measure Long-Term Trends in Wave Height?. Remote Sensing, 2022, 14, 974.	1.8	14
241	The redistribution of air-sea momentum and turbulent kinetic energy fluxes by ocean surface gravity waves. Journal of Physical Oceanography, 2022, , .	0.7	1
242	Error Characterization of Significant Wave Heights in Multidecadal Satellite Altimeter Product, Model Hindcast, and In Situ Measurements Using the Triple Collocation Technique. Journal of Atmospheric and Oceanic Technology, 2022, 39, 887-901.	0.5	5
243	Quad-polarimetric SAR sea state retrieval algorithm from Chinese Gaofen-3 wave mode imagettes via deep learning. Remote Sensing of Environment, 2022, 273, 112969.	4.6	21
244	Wave modeling with unstructured mesh for hindcast, forecast and wave hazard applications in the Mediterranean Sea. Applied Ocean Research, 2022, 122, 103118.	1.8	11
245	Uncertainties in long-term wave modelling. Marine Structures, 2022, 84, 103217.	1.6	20
246	Wave urrent Interactions During Hurricanes Earl and Igor in the Northwest Atlantic. Journal of Geophysical Research: Oceans, 2021, 126, .	1.0	5
250	The role of the unsteady surface waveâ€driven Ekman–Stokes flow in the accumulation of floating marine litter. Journal of Geophysical Research: Oceans, 0, , .	1.0	4
251	Quantifying Uncertainties in the Partitioned Swell Heights Observed From CFOSAT SWIM and Sentinel-1 SAR via Triple Collocation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	4
252	Subaerial and upper-shoreface morphodynamics of a highly-dynamic enclosed beach in NW Baja California. Geomorphology, 2022, 413, 108336.	1.1	2
253	Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Engineering, 2022, 257, 111627.	1.9	19
254	Impacts in ports on a tectonically active coast for climate-driven projections under the RCP 8.5 scenario: 7 Chilean ports under scrutiny. Coastal Engineering Journal, 0, , 1-19.	0.7	2
255	The near future expected wave power in the coastal environment of the Iberian Peninsula. Renewable Energy, 2022, 195, 657-669.	4.3	10
256	Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Current Biology, 2022, 32, 3154-3160.e3.	1.8	13

#	Article	IF	CITATIONS
257	A Transformer-Based Regression Scheme for Forecasting Significant Wave Heights in Oceans. IEEE Journal of Oceanic Engineering, 2022, 47, 1010-1023.	2.1	8
258	Recent advances in wave energy converters based on nonlinear stiffness mechanisms. Applied Mathematics and Mechanics (English Edition), 2022, 43, 1081-1108.	1.9	24
259	Current interaction in large-scale wave models with an application to Ireland. Continental Shelf Research, 2022, 245, 104798.	0.9	3
260	Relative current effect on short wave growth. Ocean Dynamics, 2022, 72, 621-639.	0.9	1
261	A LOOK AT CYGNSS DEPENDENCE ON SEA SURFACE SALINITY AND SEA SURFACE TEMPERATURE. , 2022, , .		0
262	Modelling wave–ice interactions in three dimensions in the marginal ice zone. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	13
263	Future changes and seasonal variability of the directional wave spectra in the Mediterranean Sea for the 21st century. Environmental Research Letters, 2022, 17, 104015.	2.2	4
265	A quick and cost-effective method for modelling water renewal in shallow coral reef lagoons. Coral Reefs, 0, , .	0.9	0
266	Evaluation of ship operational effect based on long-term encountered sea states using wave hindcast combined with storm avoidance model. Marine Structures, 2022, 86, 103293.	1.6	4
267	On the projected changes in New Zealand's wave climate and its main drivers. New Zealand Journal of Marine and Freshwater Research, 2024, 58, 89-126.	0.8	1
268	Determining Errors in Directional Buoy-Derived Swell Heights via the Joint Analysis of Space-Borne Radars and WaveWatch III Simulations. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	0
269	Hindcast based global wave statistics. Applied Ocean Research, 2023, 130, 103438.	1.8	3
270	Understanding the impact of environmental variability and fisheries on the red sea urchin population in Baja California. Frontiers in Marine Science, 0, 9, .	1.2	2
271	Accuracy of numerical wave model results: application to the Atlantic coasts of Europe. Ocean Science, 2022, 18, 1665-1689.	1.3	4
272	Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble. Communications Earth & Environment, 2022, 3, .	2.6	20
273	The strategies preventing particle transportation into the inlets of nuclear power plants: Mechanisms of physical oceanography. Frontiers in Marine Science, 0, 10, .	1.2	0
274	Global Sea State Prediction Using OSCAT Winds: A Statistical Assessment of WAM and WWIII Hindcasts with NDBC-NOAA Buoys and Satellite Altimeter Data. Pure and Applied Geophysics, 2023, 180, 509-549.	0.8	0
275	Uncertainty in wave hindcasts in the North Atlantic Ocean. Marine Structures, 2023, 89, 103370.	1.6	1

ARTICLE IF CITATIONS # A changing wave climate in the Mediterranean Sea during 58-years using UERRA-MESCAN-SURFEX 276 1.9 7 high-resolution wind fields. Ocean Engineering, 2023, 271, 113689. Ocean oil spill detection from SAR images based on multi-channel deep learning semantic segmentation. Marine Pollution Bulletin, 2023, 188, 114651. 2.3 Validation and calibration of partitioned integral ocean wave parameters from co-polarized synthetic 278 4.6 0 aperture radar data. Remote Sensing of Environment, 2023, 287, 113463. Assessment of the forecasting potential of WAVEWATCH III model under different Indian Ocean wave 279 conditions. Journal of Earth System Science, 2023, 132, . Improving Waveâ€Based Airâ€Sea Momentum Flux Parameterization in Mixed Seas. Journal of Geophysical 281 1.0 2 Research: Oceans, 2023, 128, . Quantifying <i>P</i>-wave secondary microseisms events: a comparison of observed and modelled backprojection. Geophysical Journal International, 2023, 234, 933-947. 1.0 On the role of wave climate temporal variability in bias correction of GCM-RCM wave simulations. 283 1.7 9 Climate Dynamics, 2023, 61, 3541-3568. Projections of Beach Erosion and Associated Costs in Chile. Sustainability, 2023, 15, 5883. 284 1.6 Applicability evaluation of ERA5 wind and wave reanalysis data in the South China Sea. Journal of 285 0.6 12 Oceanology and Limnology, 2023, 41, 495-517. Near-shore and Regional Validation of the WAVEWATCH III and SWAN Wave Models through In situ and Satellite Observations in the Barcelona Bay and Algerian Coast. Russian Meteorology and Hydrology, 0.2 2023, 48, 267-279.