Translucency of dental ceramics with different thickness

Journal of Prosthetic Dentistry 110, 14-20 DOI: 10.1016/s0022-3913(13)60333-9

Citation Report

#	Article	IF	CITATIONS
1	Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics. Journal of Biomedical Optics, 2014, 19, 095002.	1.4	1
2	Effect of Lithium Disilicate Ceramic Thickness on the Color of Discromic Substate. Key Engineering Materials, 0, 614, 95-99.	0.4	0
3	Quantification of the amount of light passing through zirconia: The effect of material shade, thickness, and curing conditions. Journal of Dentistry, 2014, 42, 684-690.	1.7	47
4	Translucency of Ceramic Materials for <scp>CEREC CAD</scp> / <scp>CAM</scp> System. Journal of Esthetic and Restorative Dentistry, 2014, 26, 224-231.	1.8	79
5	Review of Translucency Determinations and Applications to Dental Materials. Journal of Esthetic and Restorative Dentistry, 2014, 26, 217-223.	1.8	96
6	Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dental Materials Journal, 2014, 33, 591-598.	0.8	68
7	Evaluating Residual Dentin Thickness Following Various Mandibular Anterior Tooth Preparations for Zirconia Full-Coverage Single Crowns: An In Vitro Analysis. International Journal of Periodontics and Restorative Dentistry, 2015, 35, 41-47.	0.4	7
8	Fracture strength of ceramic monolithic crown systems of different thickness. Journal of Oral Science, 2015, 57, 255-261.	0.7	60
9	Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dental Materials Journal, 2015, 34, 910-917.	0.8	66
10	The influence of colored zirconia on the optical properties of all-ceramic restorations. Dental Materials Journal, 2015, 34, 918-924.	0.8	18
11	Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: <i>in vitro</i> study of color masking ability. Journal of Advanced Prosthodontics, 2015, 7, 368.	1.1	50
12	LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic. Brazilian Dental Journal, 2015, 26, 648-653.	0.5	10
13	Clinical Advantages and Limitations of Monolithic Zirconia Restorations Full Arch Implant Supported Reconstruction: Case Series. International Journal of Dentistry, 2015, 2015, 1-7.	0.5	37
14	Analysis of Translucency Parameter of Glass-Ceramics Fabricated by Different Techniques. Acta Stomatologica Croatica, 2015, 49, 27-35.	0.4	7
15	Survival rate of lithium disilicate restorations at 4 years: A retrospective study. Journal of Prosthetic Dentistry, 2015, 114, 364-366.	1.1	63
16	The Translucency of Yttria-Stabilized Zirconia in Dental Crowns: A Review. Applied Mechanics and Materials, 0, 761, 436-440.	0.2	0
17	Contrast Investigation on Relative Translucency of Four Ultra-Transparent Dental Zirconia Materials after Veneered. Key Engineering Materials, 2015, 655, 118-121.	0.4	0
18	Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. Journal of Prosthetic Dentistry, 2015, 113, 114-121.	1.1	67

#	Article	IF	CITATIONS
19	Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dental Materials, 2015, 31, 1180-1187.	1.6	146
20	Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. Journal of Prosthetic Dentistry, 2015, 113, 534-540.	1.1	192
21	Critical influence of alumina content on the low temperature degradation of 2–3mol% yttria-stabilized TZP for dental restorations. Journal of the European Ceramic Society, 2015, 35, 741-750.	2.8	84
22	Translucency of ceramic material in different core-veneer combinations. Journal of Prosthetic Dentistry, 2015, 113, 48-53.	1.1	21
23	Color stability of adhesive resin cements after immersion in coffee. Clinical Oral Investigations, 2015, 19, 309-317.	1.4	45
24	Effect of cement type on the color attributes of a zirconia ceramic. Journal of Advanced Prosthodontics, 2016, 8, 449.	1.1	20
25	Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging. Brazilian Dental Journal, 2016, 27, 95-100.	0.5	35
26	Evaluation of translucency of monolithic zirconia and framework zirconia materials. Journal of Advanced Prosthodontics, 2016, 8, 181.	1.1	62
27	Shade Correspondence, Color, and Translucency Differences between Human Dentine and a CAD/CAM Hybrid Ceramic System. Journal of Esthetic and Restorative Dentistry, 2016, 28, S46-55.	1.8	38
28	The effect of amine-free initiator system and the polymerization type on color stability of resin cements. Journal of Oral Science, 2016, 58, 157-161.	0.7	26
29	Translucency and low-temperature degradation of silica-doped zirconia: A pilot study. Dental Materials Journal, 2016, 35, 571-577.	0.8	16
30	The effect of sodalite zeolite infiltrated material on the fracture toughness, elastic modulus and optical properties of all-ceramic dental prostheses. Ceramics International, 2016, 42, 18737-18746.	2.3	4
32	Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dental Materials, 2016, 32, e327-e337.	1.6	260
33	Reproducing Optical Properties of Anterior Teeth after Ultraâ€Conservative Preparation. Journal of Esthetic and Restorative Dentistry, 2016, 28, 267-276.	1.8	1
34	Blue-Light Transmittance of Esthetic Monolithic CAD/CAM Materials With Respect to Their Composition, Thickness, and Curing Conditions. Operative Dentistry, 2016, 41, 531-540.	0.6	27
35	Effect of accelerated aging on translucency of monolithic zirconia. Future Dental Journal, 2016, 2, 65-69.	0.1	26
36	Influence of type of cement on the color and translucency of monolithic zirconia. Journal of Prosthetic Dentistry, 2016, 116, 902-908.	1.1	45
37	Considerations Regarding the Influence of Layering Thickness on the Esthetics of a Metal Ceramic Restoration. Key Engineering Materials, 2016, 695, 25-30.	0.4	0

#	Article	IF	CITATIONS
38	An overview of monolithic zirconia in dentistry. Biotechnology and Biotechnological Equipment, 2016, 30, 644-652.	0.5	57
39	Color Stability of CAD/CAM Fabricated Inlays after Accelerated Artificial Aging. Journal of Prosthodontics, 2016, 25, 472-477.	1.7	23
40	Translucency of zirconia-based pressable ceramics with different core and veneer thicknesses. Journal of Prosthetic Dentistry, 2016, 115, 768-772.	1.1	23
41	Dentin translucency and color evaluation in human incisors, canines, and molars. Journal of Prosthetic Dentistry, 2016, 115, 475-481.	1.1	29
42	A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. Journal of Prosthetic Dentistry, 2016, 116, 257-263.	1.1	159
43	Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications. Dental Materials, 2016, 32, 660-667.	1.6	44
44	Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 128-138.	1.5	107
45	Characterization of three commercial Y-TZP ceramics produced for their High-Translucency, High-Strength and High-Surface Area. Ceramics International, 2016, 42, 1077-1085.	2.3	131
46	The effect of mechanical fatigue and accelerated ageing on fracture resistance of glazed monolithic zirconia dental bridges. Journal of the European Ceramic Society, 2017, 37, 4415-4422.	2.8	19
47	Discoloration of various CAD/CAM blocks after immersion in coffee. Restorative Dentistry & Endodontics, 2017, 42, 9.	0.6	34
48	Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion. Brazilian Dental Journal, 2017, 28, 97-104.	0.5	6
49	Translucency of IPS e.max and cubic zirconia monolithic crowns. Journal of Prosthetic Dentistry, 2018, 120, 269-275.	1.1	82
50	Effect of thickness of monolithic zirconia ceramic on final color. Journal of Prosthetic Dentistry, 2018, 120, 257-262.	1.1	34
51	Replicating a discolored tooth preparation: A technique for effective laboratory communication. Journal of Prosthetic Dentistry, 2018, 120, 335-337.	1.1	3
52	Effect of thickness on optical properties of monolithic CAD-CAM ceramics. Journal of Dentistry, 2018, 71, 38-42.	1.7	55
53	Translucency and masking properties of two ceramic materials for heatâ€press technology. Journal of Esthetic and Restorative Dentistry, 2018, 30, E18-E23.	1.8	11
54	Color in Zirconiaâ€Based Restorations and Related Factors: A Literature Review. Journal of Prosthodontics, 2018, 27, 201-211.	1.7	51
55	Fracture load of colored and non-colored high translucent zirconia three-unit fixed dental prosthesis frameworks. Acta Biomaterialia Odontologica Scandinavica, 2018, 4, 38-43.	4.0	4

#	Article	IF	CITATIONS
56	Effect of surface treatments and coffee thermocycling on the color and translucency of CAD-CAM monolithic glass-ceramic. Journal of Prosthetic Dentistry, 2018, 120, 263-268.	1.1	65
57	Effect of coping thickness and background type on the masking ability of a zirconia ceramic. Journal of Prosthetic Dentistry, 2018, 119, 159-165.	1.1	50
58	Effects of core and veneer thicknesses on the color of CAD-CAM lithium disilicate ceramics. Journal of Prosthetic Dentistry, 2018, 119, 461-466.	1.1	7
59	Impact of thermal shock cycles on mechanical properties and microstructure of lithium disilicate dental glass-ceramic. Ceramics International, 2018, 44, 1589-1593.	2.3	14
60	Effect of brushing and thermocycling on the shade and surface roughness of CAD-CAM ceramic restorations. Journal of Prosthetic Dentistry, 2018, 119, 1000-1006.	1.1	58
61	Influence of implant abutment material and ceramic thickness on optical properties. Journal of Prosthetic Dentistry, 2018, 119, 819-825.	1.1	25
62	The Use of the FEM to Identify the Optimal Groove Dimensions Ensuring the Least Stressed Connection between a Zirconia Coping and Veneering Ceramic. Materials, 2018, 11, 2360.	1.3	4
63	Influence of monolithic lithium disilicate and zirconia thickness on polymerization efficiency of dualâ€cure resin cements. Journal of Esthetic and Restorative Dentistry, 2018, 30, 360-368.	1.8	14
64	The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis. PLoS ONE, 2018, 13, e0190736.	1.1	34
65	Optical properties of contemporary monolithic CADâ€CAM restorative materials at different thicknesses. Journal of Esthetic and Restorative Dentistry, 2018, 30, 434-441.	1.8	41
66	Color Aspect of Monolithic Zirconia Restorations: A Review of the Literature. Journal of Prosthodontics, 2019, 28, 276-287.	1.7	103
67	Influence of coping and veneer thickness on the color of zirconia-based restorations on different implant abutment backgrounds. Journal of Prosthetic Dentistry, 2019, 121, 327-332.	1.1	10
68	Zirconia in dental prosthetics: A literature review. Journal of Materials Research and Technology, 2019, 8, 4956-4964.	2.6	89
69	Mechanical Behavior of Ceramic Monolithic Systems With Different Thicknesses. Operative Dentistry, 2019, 44, E244-E253.	0.6	12
70	The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. Journal of Esthetic and Restorative Dentistry, 2019, 31, 423-430.	1.8	49
71	Effect of glazing on translucency, color, and surface roughness of monolithic zirconia materials. Journal of Esthetic and Restorative Dentistry, 2019, 31, 478-485.	1.8	37
72	Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. Journal of Prosthetic Dentistry, 2019, 122, 396-403.	1.1	81
73	Effect of masticatory simulation on the translucency of different types of dental zirconia. Journal of Prosthetic Dentistry, 2019, 122, 404-409.	1.1	18

#	άρτιςι ε	IF	CITATIONS
 74	Effects of substrate, ceramic thickness, translucency, and cement shade on the color of CAD/CAM	1.8	43
75	Effect of UV aging on translucency of currently used esthetic CAD AM materials. Journal of Esthetic and Restorative Dentistry, 2019, 31, 147-152.	1.8	10
76	Choice of resin cement shades for a high-translucency zirconia product to mask dark, discolored or metal substrates. Journal of Advanced Prosthodontics, 2019, 11, 286.	1.1	12
77	Effect of indirect restorative material and thickness on light transmission at different wavelengths. Journal of Prosthodontic Research, 2019, 63, 232-238.	1.1	20
78	Fatigue failure load and finite element analysis of multilayer ceramic restorations. Dental Materials, 2019, 35, 64-73.	1.6	11
79	In vitro 3D and gravimetric analysis of removed tooth structure for complete and partial preparations. Journal of Prosthodontic Research, 2019, 63, 173-178.	1.1	7
80	Computable translucency as a function of thickness in a multi-layered zirconia. Journal of Prosthetic Dentistry, 2019, 121, 683-689.	1.1	28
81	Optical and Mechanical Properties of Newly Developed Monolithic Multilayer Zirconia. Journal of Prosthodontics, 2019, 28, e279-e284.	1.7	59
82	The colour of monolithic zirconia restorations determined by spectrophotometric examination. Advances in Applied Ceramics, 2019, 118, 3-8.	0.6	5
83	Effect of Thickness of Zirconia Ceramic on Its Masking Ability: An In Vitro Study. Journal of Prosthodontics, 2019, 28, 666-671.	1.7	36
84	Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dental Materials Journal, 2020, 39, 1-8.	0.8	43
85	Clinical factors affecting the translucency of monolithic Y-TZP ceramics. Odontology / the Society of the Nippon Dental University, 2020, 108, 526-531.	0.9	13
86	Does the application of surface treatments in different sintering stages affect flexural strength and optical properties of zirconia?. Journal of Esthetic and Restorative Dentistry, 2020, 32, 81-90.	1.8	15
87	Effects of the Thickness Ratio of Zirconia–Lithium Disilicate Bilayered Ceramics on the Translucency and Flexural Strength. Journal of Prosthodontics, 2020, 29, 334-340.	1.7	10
88	InÂvitro 2D and 3D roughness and spectrophotometric and gloss analyses of ceramic materials after polishing with different prophylactic pastes. Journal of Prosthetic Dentistry, 2020, 124, 787.e1-787.e8.	1.1	4
89	Mechanical and optical properties evaluation of rapid sintered dental zirconia. Ceramics International, 2020, 46, 26668-26674.	2.3	24
90	Highly translucent dental resin composites through refractive index adaption using zirconium dioxide nanoparticles and organic functionalization. Dental Materials, 2020, 36, 1332-1342.	1.6	21
91	Surface Characterization and Optical Properties of Reinforced Dental Glass-Ceramics Related to Artificial Aging. Molecules, 2020, 25, 3407.	1.7	17

#	Article	IF	CITATIONS
92	Effect of Pretreatment and Activation Mode on the Interfacial Adaptation of Nanoceramic Resin Inlay and Self-adhesive Resin Cement. Dental Materials, 2020, 36, 1170-1182.	1.6	10
93	Effect of Ceramic Thickness and Cement Type on the Color Match of High-Translucency Monolithic Zirconia Restorations. International Journal of Prosthodontics, 2020, 34, 334–340.	0.7	9
94	Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics. Materials, 2020, 13, 381.	1.3	45
95	Marginal and internal fit of three-unit zirconia fixed dental prostheses: Effects of prosthesis design, cement space, and zirconia type. Journal of Prosthodontic Research, 2020, 64, 460-467.	1.1	19
96	Effects of CAD/CAM ceramics and thicknesses on translucency and color masking of substrates. Saudi Dental Journal, 2020, 33, 761-768.	0.5	12
97	Cement opacity and color as influencing factors on the final shade of metal-free ceramic restorations. Journal of Esthetic and Restorative Dentistry, 2020, , .	1.8	9
98	Effect of home and over the contour bleaching on stainability of <scp>CAD</scp> / <scp>CAM</scp> esthetic restorative materials. Journal of Esthetic and Restorative Dentistry, 2021, 33, 303-313.	1.8	25
99	Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency. Dental Materials, 2021, 37, e140-e150.	1.6	32
100	Comparison of two curing protocols during adhesive cementation: can the step luting technique supersede the traditional one?. Odontology / the Society of the Nippon Dental University, 2021, 109, 433-439.	0.9	4
101	Effect of inÂvitro aging and acidic storage on color, translucency, and contrast ratio of monolithic zirconia and lithium disilicate ceramics. Journal of Prosthetic Dentistry, 2022, 127, 479-488.	1.1	4
102	Color and masking properties of translucent monolithic zirconia before and after glazing. Journal of Prosthodontic Research, 2021, 65, 303-310.	1.1	11
103	Edge chipping of translucent zirconia. Journal of Prosthetic Dentistry, 2022, 127, 793-800.	1.1	7
104	Retrospective clinical study of monolithic zirconia crowns fabricated with a straightforward completely digital workflow. Journal of Prosthetic Dentistry, 2022, 128, 913-918.	1.1	9
105	Effect of Staining and Aging on Translucency Parameter of CAD-CAM Materials. Acta Stomatologica Croatica, 2021, 55, 2-9.	0.4	8
106	Effect of green synthesized silver nanoparticles on optical behavior of feldspathic porcelain. Particulate Science and Technology, 0, , 1-8.	1.1	3
107	The effects of thickness and shade on translucency parameters of contemporary, esthetic dental ceramics. Journal of Esthetic and Restorative Dentistry, 2021, 33, 795-806.	1.8	11
108	Impact of resin composite cement on color of computerâ€aided design/computerâ€aided manufacturing ceramics. Journal of Esthetic and Restorative Dentistry, 2021, 33, 786-794.	1.8	5
109	Effects of shade and thickness on the translucency parameter of anatomic-contour zirconia, transmitted light intensity, and degree of conversion of the resin cement. Journal of Prosthetic Dentistry, 2023, 129, 213-219.	1.1	11

#	Article	IF	CITATIONS
110	Effect of Aging on the Microstructure and Optical Properties of Translucent ZrO 2 Ceramics. Acta Stomatologica Croatica, 2021, 55, 114-128.	0.4	1
111	Translucency and flexural strength of translucent zirconia ceramics. Journal of Prosthetic Dentistry, 2023, 129, 644-649.	1.1	9
112	Effect of lithium disilicate ceramic thickness, shade and translucency on transmitted irradiance and knoop microhardness of a light cured luting resin cement. Journal of Materials Science: Materials in Medicine, 2021, 32, 90.	1.7	4
113	Effect of thickness, cement shade, and coffee thermocycling on the optical properties of zirconia reinforced lithium silicate ceramic. Journal of Esthetic and Restorative Dentistry, 2021, 33, 1132-1138.	1.8	9
114	Optical properties of a novel glass–ceramic restorative material. Journal of Esthetic and Restorative Dentistry, 2021, 33, 1160-1165.	1.8	4
115	INVESTIGATION OF SINGLE SHADE COMPOSITE RESIN SURFACE ROUGHNESS AND COLOR STABILITY. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , 1-1.	0.0	2
116	Color Stability and Translucency of Polymer-Infiltrated Ceramic-Network Materials—A Systematic Review of the Literature. Journal of Biomaterials and Tissue Engineering, 2021, 11, 1865-1872.	0.0	1
117	Influence of thickness and background on the color changes of CAD/CAM dental ceramic restorative materials. Materials Research Express, 2020, 7, 055402.	0.8	5
118	Effect of shade and sintering temperature on the translucency parameter of a novel multiâ€layered monolithic zirconia in different thicknesses. Journal of Esthetic and Restorative Dentistry, 2020, 32, 607-614.	1.8	16
119	Evaluation of patient satisfaction and shade matching of Vita Suprinity versus lithium disilicate (E-max) ceramic crowns in the esthetic zone: a randomized controlled clinical trial. F1000Research, 0, 8, 371.	0.8	6
120	In Vitro Evaluation and Comparison of the Translucency of Two Different All-Ceramic Systems. Acta Stomatologica Croatica, 2015, 49, 195-203.	0.4	29
121	The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements. Journal of Advanced Prosthodontics, 2020, 12, 61.	1.1	10
122	Masking ability of a zirconia ceramic on composite resin substrate shades. Dental Research Journal, 2017, 14, 389.	0.2	9
123	Relative Translucency of a Multilayered Ultratranslucent Zirconia Material. Journal of Contemporary Dental Practice, 2017, 18, 1099-1106.	0.2	10
124	The comparisons of layers and the effect of additional firings on flexural strength and translucency of 5Y-ZP. Journal of Dental Rehabilitation and Applied Science, 2021, 37, 111-122.	0.1	0
125	Effect of Veneering and Hydrothermal Aging on the Translucency of Newly Introduced Extra Translucent and High Translucent Zirconia with Different Thicknesses. BioMed Research International, 2021, 2021, 1-6.	0.9	2
126	Optical properties of CAD-CAM monolithic systems compared: three multi-layered zirconia and one lithium disilicate system. Heliyon, 2021, 7, e08151.	1.4	19
128	Fabrication of Transparent Spinel for Esthetic Restoration. Korean Journal of Dental Materials, 2016, 43, 51-60.	0.2	0

		PORT	
#	Article	IF	CITATIONS
129	Fabrication of Composite Resin Block Using Lithium Disilicate Glass-Ceramics for Dental CAD/CAM Restoration. Korean Journal of Dental Materials, 2016, 43, 247-256.	0.2	1
130	FARKLI İćERİK VE KALINLIKTAKİ TAM SERAMİK RESTORASYONLARIN TRANSLUSENTLİK DEĞERLERİNİ KARŞILAŞTIRILMASI. Atatļrk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , 124-130.	N _{0.0}	0
131	MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE E Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , 263-270.	STETİK 0.0	ÖZELLÄ⁰KL 1
132	Effect of resin cement color on the color of commercially available zirconia crown. Korean Journal of Dental Materials, 2018, 45, 233-242.	0.2	2
133	Effect of Thermocycle Aging on Color Stability of Monolithic Zirconia. Open Journal of Stomatology, 2019, 09, 75-85.	0.1	5
134	KADEMELİ ćOK-TABAKALI/ćOK RENKLİ ANATOMİK KONTUR ZİRKONYA SERAMİK SİSTEMLERİ İLE S PROTEZ UYGULANMASI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , 112-116.	SABÄ⁰T D 0.0	ENTAL
135	Color Change of Different Dual-Cure Resin Cements After Thermocycling. Odovtos International Journal of Dental Sciences, 2019, 21, 53-62.	0.1	4
136	Effects of veneering porcelain thickness and background shade on the shade match of zirconia-based restorations. Journal of Dental Research, Dental Clinics, Dental Prospects, 2019, 13, 68-74.	0.4	2
137	Optical Properties of Novel Resin Matrix Ceramic Systems at Different Thicknesses. Cumhuriyet Dental Journal, 0, , 176-184.	0.1	1
138	Effect of Three Commonly Consumed Beverages on Surface Roughness of Polished and Glazed Zirconia-Reinforced Lithium Silicate Glass Ceramics. Frontiers in Dentistry, 2019, 16, 296-302.	0.6	5
139	EFFECTS OF THICKNESS AND BACKGROUND COLOR ON THE TRANSLUCENCY OF CAD/CAM CERAMIC MATERIALS. Ceramics - Silikaty, 2020, , 418-422.	0.2	3
140	Masking of High-Translucency Zirconia for Various Cores. Operative Dentistry, 2021, 46, 54-62.	0.6	3
142	The Effect of Thermocycling on the Translucency and Color Stability of Modified Glass Ceramic and Multilayer Zirconia Materials. Cureus, 2020, 12, e6968.	0.2	10
143	Effect of coloring and thickness on the color and translucency parameter of translucent zirconia. Korean Journal of Dental Materials, 2020, 47, 11-22.	0.2	1
145	Effect of Varying Thickness and Number of Coloring Liquid Applications on the Color of Anatomic Contour Monolithic Zirconia Ceramics. Journal of Dentistry, 2018, 19, 311-319.	0.1	2
150	Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material. Polymers, 2022, 14, 364.	2.0	8
151	İki Farklı CAD/CAM Materyallerinin Farklı Kalınlıklarda Translusensi Özelliğinin Değerlendirilmesi. , 0,	,.	0
152	Effect of partially stabilized zirconia thickness on the translucency and microhardness of resin cement. Journal of Prosthetic Dentistry, 2024, 131, 94-99.	1.1	0

#	Article	IF	CITATIONS
153	Effect of thickness on color appearance of multilayer CAD/CAM composite resin blocks. Odontology / the Society of the Nippon Dental University, 2022, 110, 664-672.	0.9	4
155	Effect of Cooling Rate during Glazing on the Mechanical and Optical Properties of Monolithic Zirconia with 3 mol% Yttria Content. Materials, 2021, 14, 7474.	1.3	5
156	Effect of CAD/CAM Ceramic Thickness on Shade Masking Ability of Discolored Teeth: In Vitro Study. International Journal of Environmental Research and Public Health, 2021, 18, 13359.	1.2	9
157	Review on factors affecting the optical properties of dental zirconia. Journal of Dental Rehabilitation and Applied Science, 2021, 37, 177-185.	0.1	0
158	Effect of Thickness on Fluorescence of Some Clinical Dental Ceramics. Frontiers in Dentistry, 0, , .	0.6	1
159	Effect of cooling rate during porcelain firing on the optical properties of 3 mol% yttria-stabilized zirconia. Korean Journal of Dental Materials, 2021, 48, 269-280.	0.2	0
160	Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers, 2022, 14, 58.	2.0	4
161	Effects of thickness and background on the masking ability of high-trasnlucent zirconias. Journal of Dental Rehabilitation and Applied Science, 2021, 37, 199-208.	0.1	0
163	Effects of Substrate and Cement Shade on the Translucency and Color of CAD/CAM Lithium-Disilicate and Zirconia Ceramic Materials. Polymers, 2022, 14, 1778.	2.0	26
164	An In Vitro Study to Evaluate the Effect of Artificial Aging on Translucency, Contrast Ratio, and Color of Zirconia Dental Ceramic at Different Sintering Levels. Coatings, 2022, 12, 642.	1.2	1
165	Effect of Wet and Dry Polishing Conditions by Two Finishing and Polishing Systems on the Surface Roughness and Color Changes of Two Composite Resin Restoratives: An In Vitro Comparative Study. Journal of Advanced Oral Research, 2022, 13, 127-134.	0.3	3
166	Load-to-Failure Resistance and Optical Characteristics of Nano-Lithium Disilicate Ceramic after Different Aging Processes. Materials, 2022, 15, 4011.	1.3	7
167	Effect of Cooling Rate on Mechanical Properties, Translucency, Opalescence, and Light Transmission Properties of Monolithic 4Y-TZP during Glazing. Materials, 2022, 15, 4357.	1.3	5
168	Influence of Arabic Qahwa Beverage on Optical and Mechanical Properties of Lithium Disilicate Glass Ceramics and Zirconia Restorative Materials. Journal of Contemporary Dental Practice, 2022, 23, 154-161.	0.2	2
169	Translucency of a Dental Porcelain Mixed by Two Ceramic Slurry Methods: A Bayesian Comparison. International Journal of Dentistry, 2022, 2022, 1-8.	0.5	1
170	Effects of background color and thickness on the optical properties of CAD-CAM resin-matrix ceramics. Journal of Prosthetic Dentistry, 2022, 128, 497.e1-497.e9.	1.1	3
171	Masking ability of implant abutment substrates by using different ceramic restorative systems. Journal of Prosthetic Dentistry, 2022, 128, 496.e1-496.e8.	1.1	2
172	Translucency parameter and color masking ability of CAD AM denture base materials against metal substrates. Journal of Prosthodontics, 2023, 32, 61-67.	1.7	1

#	Article	IF	CITATIONS
173	Translucency and mechanical behavior of Âpartially stabilized monolithic zirconia after staining, finishing procedures and artificial aging. Scientific Reports, 2022, 12, .	1.6	6
174	Spectrophotometric Evaluation of Translucency of Various Commercially Available Zirconium Oxide Ceramic Systems: An In Vitro Study. Journal of Contemporary Dental Practice, 2022, 23, 646-651.	0.2	0
175	Effect of thickness of externally characterized stains on optical properties of high-translucency zirconia. Clinical Oral Investigations, 2023, 27, 165-171.	1.4	4
176	Effects of Material Thickness and Pretreatment on the Interfacial Gap of Translucent Zirconia Restorations with Self-adhesive Resin Cement. Operative Dentistry, 2022, 47, 535-548.	0.6	1
177	Influence of Surface Type with Coffee Immersion on Surface Topography and Optical and Mechanical Properties of Selected Ceramic Materials. Medical Science Monitor, 0, 28, .	0.5	3
178	Effect of thickness on the translucency of resin-based composites and glass-ceramics. Dental Materials Journal, 2023, 42, 30-41.	0.8	5
179	Translucency and masking ability of translucent zirconia; comparison with conventional zirconia and lithium disilicate. Journal of Advanced Prosthodontics, 2022, 14, 324.	1.1	4
180	Optical Properties of Five Esthetic Ceramic Materials Used for Monolithic Restorations: A Comparative In Vitro Study. Ceramics, 2022, 5, 961-980.	1.0	2
181	Effect of the region of the CAD/CAM block on the flexural strength and structural reliability of restorative materials. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105597.	1.5	1
182	Implant Supported Full-Arch Zirconia-Based Restorations Manufactured (CAD/CAM) From Monolithic Zirconium Dioxide:6-Year Eight-Year Results Prospective Clinical Study. , 0, , 56-61.		0
184	The Effect of Polishing, Glazing, and Aging on Optical Characteristics of Multi-Layered Dental Zirconia with Different Degrees of Translucency. Journal of Functional Biomaterials, 2023, 14, 68.	1.8	4
185	Evaluation of the Translucency Properties for CAD/CAM Full Ceramic Crowns Fabricated From Glass Ceramics (E.max) or High Translucency Zirconia (Lava Plus): A Clinical Study. Cureus, 2023, , .	0.2	0
186	The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials?. Materials, 2023, 16, 1997.	1.3	2
187	The Light Reflection Changes of Monolithic Zirconia and Lithium Disilicate after Using Two External Staining Kits following by Thermocycling. Materials, 2023, 16, 2057.	1.3	0
188	Translucency of CAD/CAM and 3D Printable Composite Materials for Permanent Dental Restorations. Polymers, 2023, 15, 1443.	2.0	18
189	Ultra-Translucent Zirconia Laminate Veneers: The Influence of Restoration Thickness and Stump Tooth-Shade. Materials, 2023, 16, 3030.	1.3	5
190	Translucency and Radiopacity of Dental Resin Composites – Is There a Direct Relation?. Operative Dentistry, 2023, 48, E61-E69.	0.6	1