Epigenetic Reprogramming of Human Embryonic Stem Generation of Contractile Myospheres

Cell Reports 3, 661-670 DOI: 10.1016/j.celrep.2013.02.012

Citation Report

#	Article	IF	CITATIONS
1	Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes and Development, 2013, 27, 2332-2344.	2.7	54
2	Chromatin modulators as facilitating factors in cellular reprogramming. Current Opinion in Genetics and Development, 2013, 23, 556-561.	1.5	20
3	Epigenetic control of skeletal muscle regeneration. FEBS Journal, 2013, 280, 4014-4025.	2.2	38
4	Kinetic Analysis of npBAF to nBAF Switching Reveals Exchange of SS18 with CREST and Integration with Neural Developmental Pathways. Journal of Neuroscience, 2013, 33, 10348-10361.	1.7	89
5	The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus–Baf60c axis in embryonic stem cell cardiomyogenesis. Cardiovascular Research, 2013, 100, 95-104.	1.8	20
6	The SWI/SNF Subunit/Tumor Suppressor BAF47/INI1 Is Essential in Cell Cycle Arrest upon Skeletal Muscle Terminal Differentiation. PLoS ONE, 2014, 9, e108858.	1.1	22
7	Roles of chromatin remodeling BAF complex in neural differentiation and reprogramming. Cell and Tissue Research, 2014, 356, 575-584.	1.5	38
8	Myogenic Differentiation of Muscular Dystrophy-Specific Induced Pluripotent Stem Cells for Use in Drug Discovery. Stem Cells Translational Medicine, 2014, 3, 149-160.	1.6	100
10	Molecular and Cellular Regulation of Skeletal Myogenesis. Current Topics in Developmental Biology, 2014, 110, 1-73.	1.0	155
11	HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.	2.7	132
12	Molecular ties between the cell cycle and differentiation in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9503-9508.	3.3	67
13	Generation of Myospheres From hESCs by Epigenetic Reprogramming. Journal of Visualized Experiments, 2014, , e51243.	0.2	3
14	Derivation and Expansion of PAX7-Positive Muscle Progenitors from Human and Mouse Embryonic Stem Cells. Stem Cell Reports, 2014, 3, 516-529.	2.3	158
15	Muscle-specific microRNAs as biomarkers of Duchenne Muscular Dystrophy progression and response to therapies. Rare Diseases (Austin, Tex), 2014, 2, e974969.	1.8	14
16	Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Reports, 2015, 16, 1037-1050.	2.0	37
17	Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Frontiers in Cell and Developmental Biology, 2015, 3, 29.	1.8	18
18	Potential of adipose-derived stem cells in muscular regenerative therapies. Frontiers in Aging Neuroscience, 2015, 7, 123.	1.7	62
19	Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. Journal of Clinical Medicine, 2015, 4, 243-259.	1.0	26

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
20	New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015, 7, 945.	1.3	26
21	Enhanced MyoD-Induced Transdifferentiation to a Myogenic Lineage by Fusion to a Potent Transactivation Domain. ACS Synthetic Biology, 2015, 4, 689-699.	1.9	30
22	Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nature Biotechnology, 2015, 33, 962-969.	9.4	339
23	SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. Plant Cell, 2015, 27, 1889-1906.	3.1	42
24	Inducing Stem Cell Myogenesis Using NanoScript. ACS Nano, 2015, 9, 6909-6917.	7.3	24
25	Reprogramming of mesenchymal stem cells by oncogenes. Seminars in Cancer Biology, 2015, 32, 18-31.	4.3	17
26	Epigenetic control of adult skeletal muscle stem cell functions. FEBS Journal, 2015, 282, 1571-1588.	2.2	47
27	A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes. Stem Cells Translational Medicine, 2016, 5, 1461-1472.	1.6	38
28	Key regulators of skeletal myogenesis. Molecular Biology, 2016, 50, 169-192.	0.4	5
29	Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development (Cambridge), 2016, 143, 3674-3685.	1.2	41
30	Reversal of Defective Mitochondrial Biogenesis in Limb-Girdle Muscular Dystrophy 2D by Independent Modulation of Histone and PGC-1α Acetylation. Cell Reports, 2016, 17, 3010-3023.	2.9	30
31	Epigenetic Regulation of Stem Cells. , 2016, , 785-793.		0
32	SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis. Cellular and Molecular Life Sciences, 2016, 73, 3887-3896.	2.4	29
33	Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease. Molecular Endocrinology, 2016, 30, 575-586.	3.7	5
34	The Swi3 protein plays a unique role in regulating respiration in eukaryotes. Bioscience Reports, 2016, 36, .	1.1	1
35	Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nature Protocols, 2016, 11, 1833-1850.	5.5	215
36	ATP-dependent chromatin remodeling during mammalian development. Development (Cambridge), 2016 143, 2882-2897.	, 1.2	194
37	MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide <i>cis</i> -regulatory module analysis. Nucleic Acids Research, 2016, 44, 8621-8640.	6.5	27

#	Article	IF	Citations
38	Striated muscle function, regeneration, and repair. Cellular and Molecular Life Sciences, 2016, 73, 4175-4202.	2.4	71
39	Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Research, 2016, 17, 140-147.	0.3	31
40	The origin of chow chows in the light of the East Asian breeds. BMC Genomics, 2017, 18, 174.	1.2	8
41	Making muscle: skeletal myogenesis <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 2017, 144, 2104-2122.	1.2	577
42	Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports, 2017, 9, 12-22.	2.3	60
43	Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes. Stem Cell Reports, 2017, 8, 803-812.	2.3	115
44	Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA. Stem Cell Research, 2017, 23, 87-94.	0.3	11
45	Myogenic progenitor specification from pluripotent stem cells. Seminars in Cell and Developmental Biology, 2017, 72, 87-98.	2.3	28
46	Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells. Nature Communications, 2017, 8, 1616.	5.8	7
47	Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Research, 2017, 45, 11684-11699.	6.5	27
48	Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-16.	1.2	61
49	Epigenetic Manipulation Facilitates the Generation of Skeletal Muscle Cells from Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-8.	1.2	5
50	Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal, 2018, 132, 161-168.	1.8	96
51	BAFfling pathologies: Alterations of BAF complexes in cancer. Cancer Letters, 2018, 419, 266-279.	3.2	38
52	Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports, 2018, 8, 1189.	1.6	27
53	Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nature Communications, 2018, 9, 126.	5.8	239
54	In Vitro Tissueâ€Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Advanced Healthcare Materials, 2018, 7, e1701498.	3.9	84
55	Epigenetic control of gene regulation during development and disease: A view from the retina. Progress in Retinal and Eye Research, 2018, 65, 1-27.	7.3	105

CITATION REPORT

#	Article	IF	CITATIONS
56	Long noncoding RNA <i>SYISL</i> regulates myogenesis by interacting with polycomb repressive complex 2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9802-E9811.	3.3	106
57	Generation of Functional Myocytes from Equine Induced Pluripotent Stem Cells. Cellular Reprogramming, 2018, 20, 275-281.	0.5	15
58	Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Frontiers in Neurology, 2018, 9, 368.	1.1	51
59	Assessment of milk quality based on bovine <i>BAF60c</i> gene mutation. Journal of Agricultural Science, 2018, 156, 570-574.	0.6	0
60	Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Molecular Cell, 2018, 71, 375-388.	4.5	45
61	Skeletal Muscle Stem Cells. , 2019, , 273-293.		3
62	Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials, 2019, 221, 119416.	5.7	74
63	Master control: transcriptional regulation of mammalian Myod. Journal of Muscle Research and Cell Motility, 2019, 40, 211-226.	0.9	37
64	Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS ONE, 2019, 14, e0222946.	1.1	14
65	(Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells, 2019, 8, 429.	1.8	12
66	Assessment of different strategies for scalable production and proliferation of human myoblasts. Cell Proliferation, 2019, 52, e12602.	2.4	11
67	Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Science Advances, 2019, 5, eaau7887.	4.7	46
68	Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Frontiers in Cell and Developmental Biology, 2019, 7, 284.	1.8	22
69	Prmt7 promotes myoblast differentiation via methylation of p38MAPK on arginine residue 70. Cell Death and Differentiation, 2020, 27, 573-586.	5.0	24
70	A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e368.	5.9	27
71	Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports, 2020, 15, 80-94.	2.3	31
72	A long noncoding RNA, <i>LncMyoD</i> , modulates chromatin accessibility to regulate muscle stem cell myogenic lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32464-32475.	3.3	32
73	Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFÎ ² -dependent pro-fibrotic signaling. Skeletal Muscle, 2020, 10, 13.	1.9	25

CITATION REPORT

#	Article	IF	CITATIONS
74	Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. Journal of Neuromuscular Diseases, 2020, 7, 395-405.	1.1	6
75	Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells. Cells, 2020, 9, 1531.	1.8	34
76	PiggyBac vectors in pluripotent stem cell research and applications. , 2021, , 55-78.		0
77	Genomic Safe Harbor Expression of PAX7 for the Generation of Engraftable Myogenic Progenitors. Stem Cell Reports, 2021, 16, 10-19.	2.3	18
79	Human muscle production in vitro from pluripotent stem cells: Basic and clinical applications. Seminars in Cell and Developmental Biology, 2021, 119, 39-48.	2.3	9
80	MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. IScience, 2021, 24, 102432.	1.9	2
81	MYOD modified mRNA drives direct on-chip programming of human pluripotent stem cells into skeletal myocytes. Biochemical and Biophysical Research Communications, 2021, 560, 139-145.	1.0	6
82	The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Research, 2021, 49, 8060-8077.	6.5	18
84	Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Frontiers in Genetics, 2021, 12, 702547.	1.1	18
85	Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacological Research, 2021, 170, 105751.	3.1	19
86	Bioengineered optogenetic model of human neuromuscular junction. Biomaterials, 2021, 276, 121033.	5.7	20
87	Programmatic introduction of parenchymal cell types into blood vessel organoids. Stem Cell Reports, 2021, 16, 2432-2441.	2.3	11
88	Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regeneration, 2021, 10, 31.	1.1	26
89	Advanced models of human skeletal muscle differentiation, development and disease: Three-dimensional cultures, organoids and beyond. Current Opinion in Cell Biology, 2021, 73, 92-104.	2.6	30
90	Deciphering the chromatin organization and dynamics for muscle stem cell function. Current Opinion in Cell Biology, 2021, 73, 124-132.	2.6	5
91	Directed Differentiation of Pluripotent Stem Cells by Transcription Factors. Molecules and Cells, 2019, 42, 200-209.	1.0	27
92	Transâ€generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Molecular Medicine, 2020, 12, e12063.	3.3	11
93	Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases. Current Gene Therapy, 2015, 15, 364-380.	0.9	37

CITATION REPORT

#	Article	IF	CITATIONS
94	Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. ELife, 2020, 9, .	2.8	33
98	Recapitulating human myogenesis ex vivo using human pluripotent stem cells. Experimental Cell Research, 2022, 411, 112990.	1.2	2
99	Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. Npj Regenerative Medicine, 2022, 7, 23.	2.5	33
100	Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells, 2022, 11, 1493.	1.8	26
101	Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules, 2022, 12, 699.	1.8	9
102	An engineered multicellular stem cell niche for the 3D derivation of human myogenic progenitors from iPSCs. EMBO Journal, 0, , .	3.5	3
103	3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect?. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
104	BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. Journal of Clinical Investigation, 2022, 132, .	3.9	10
105	Assessing and enhancing migration of human myogenic progenitors using directed <scp>iPS</scp> cell differentiation and advanced tissue modelling. EMBO Molecular Medicine, 2022, 14, .	3.3	10
106	Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 3106-3121.	2.9	17
107	MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming. Cells, 2022, 11, 3435.	1.8	3
108	3D human induced pluripotent stem cell–derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nature Protocols, 2023, 18, 1337-1376.	5.5	13
113	Classes of Stem Cells: From Biology to Engineering. Regenerative Engineering and Translational Medicine, 0, , .	1.6	1