Thermal comfort and energy consumption in a UK educ

Building and Environment 68, 1-11 DOI: 10.1016/j.buildenv.2013.06.002

Citation Report

#	Article	IF	CITATIONS
1	Visualising the environmental conditions of buildings. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2014, 167, 56-64.	0.3	6
2	Development of the random simulation model for estimating the effective thermal conductivity of insulation materials. Building and Environment, 2014, 80, 221-227.	3.0	21
3	Optimizing Indoor Climate Conditions in a Sports Building Located in Continental Europe. Energy Procedia, 2015, 78, 2802-2807.	1.8	11
4	Experimental study of internally cooled liquid desiccant dehumidification: Application in Hong Kong and intensive analysis of influencing factors. Building and Environment, 2015, 93, 210-220.	3.0	43
5	Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue. Construction and Building Materials, 2015, 85, 119-126.	3.2	63
6	Natural ventilation of lower-level floors assisted by the mechanical ventilation of upper-level floors via a stack. Energy and Buildings, 2015, 92, 296-305.	3.1	29
7	Indoor air temperature monitoring: A method lending support toÂmanagement and design tested on a wine-aging room. Building and Environment, 2015, 86, 203-210.	3.0	25
8	Numerical optimisation of thermal comfort improvement for indoor environment with occupants and furniture. Energy and Buildings, 2015, 88, 303-315.	3.1	36
9	Implementation models for energy recovery measures of existing kindergarten facilities in Serbia. Tehnicki Vjesnik, 2016, 23, .	0.3	2
10	Predicting and characterizing indoor temperatures in residential buildings: Results from a monitoring campaign in Northern Portugal. Energy and Buildings, 2016, 119, 293-308.	3.1	37
11	Experimental study of plate type air cooler performances under four operating modes. Building and Environment, 2016, 104, 296-310.	3.0	26
12	Thermal comfort in educational buildings: A review article. Renewable and Sustainable Energy Reviews, 2016, 59, 895-906.	8.2	276
13	In-situ and real time measurements of thermal comfort and its determinants in thirty residential dwellings in the Netherlands. Energy and Buildings, 2017, 139, 487-505.	3.1	23
14	Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations. Energy and Buildings, 2017, 149, 1-15.	3.1	32
15	Optimization Tools for Building Energy Model Calibration. Energy Procedia, 2017, 111, 1060-1069.	1.8	35
16	Implications of Life Cycle Energy Assessment of a new school building, regarding the nearly Zero Energy Buildings targets in EU: A case of Study. Sustainable Cities and Society, 2017, 32, 142-152.	5.1	24
17	An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Building and Environment, 2017, 124, 369-387.	3.0	63
18	Balancing indoor thermal comfort and energy consumption of air-conditioning and mechanical ventilation systems via sparse Firefly algorithm optimization. , 2017, , .		4

#	Article	IF	Citations
19	Case Studies of Environmental Visualization. Energies, 2017, 10, 1459.	1.6	4
20	A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building. Energies, 2017, 10, 2000.	1.6	12
21	Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams. Ceramics International, 2018, 44, 6242-6249.	2.3	68
22	Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile. Energy and Buildings, 2018, 168, 67-75.	3.1	32
23	Artificial neural network analysis of teachers' performance against thermal comfort. International Journal of Building Pathology and Adaptation, 2018, 39, 20-32.	0.7	3
24	A new index combining thermal, acoustic, and visual comfort of moderate environments in temperate climates. Building and Environment, 2018, 139, 27-37.	3.0	83
25	Toward sustainable school building design: A case study in hot and humid climate. Cogent Engineering, 2018, 5, 1452665.	1.1	5
26	Thermal comfort and thermal adaptive behaviours in traditional dwellings: A case study in Nanjing, China. Building and Environment, 2018, 142, 153-170.	3.0	84
27	Identifying the feasibility of establishing a passive house school in central Europe: An energy performance and carbon emissions monitoring study in Germany. Renewable and Sustainable Energy Reviews, 2019, 113, 109256.	8.2	19
28	Application of the CPMV index to evaluating indoor thermal comfort in winter: Case study on an office building in Beijing. Building and Environment, 2019, 162, 106295.	3.0	15
29	ENVIRONMENTAL VARIABLES AND QUALITY TOOLS APPLIED TO THE OPERATOR OF AN AGRICULTURAL MICROTRACTOR. Engenharia Agricola, 2019, 39, 208-215.	0.2	1
30	Thermal comfort and energy-saving potential in university classrooms during the heating season. Energy and Buildings, 2019, 202, 109390.	3.1	43
31	Progress in thermal comfort studies in classrooms over last 50 years and way forward. Energy and Buildings, 2019, 188-189, 149-174.	3.1	105
32	UK building thermal performance from industrial and governmental perspectives. Applied Energy, 2019, 237, 270-282.	5.1	8
33	Effect of heat loads and furniture on the thermal comfort of an isolated family house under a naturally ventilated environment. International Journal of Ventilation, 2020, 19, 163-188.	0.2	2
34	Influence of long-term thermal history on thermal comfort and preference. Energy and Buildings, 2020, 210, 109685.	3.1	54
35	Evaluation of School Building Energy Performance and Classroom Indoor Environment. Energies, 2020, 13, 2489.	1.6	21
36	Experimental evaluation of different natural cold sinks integrated into a concrete façade. Energy and Buildings. 2020. 228. 110466.	3.1	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Thermal comfort in educational buildings: Future directions regarding the impact of environmental conditions on students' health and performance. , 2020, , .		6
38	Comfort temperature and preferred adaptive behaviour in various classroom types in the UK higher learning environments. Energy and Buildings, 2020, 211, 109814.	3.1	26
39	A Building Energy Management System Based on an Equivalent Electric Circuit Model. Energies, 2020, 13, 1689.	1.6	14
40	Comparative Analysis of Indoor Environmental Quality of Architectural Campus Buildings' Lecture Halls and its' Perception by Building Users, in Karachi, Pakistan. Sustainability, 2020, 12, 2995.	1.6	18
41	Evaluating the improvement effect of low-energy strategies on the summer indoor thermal environment and cooling energy consumption in a library building: A case study in a hot-humid and less-windy city of China. Building Simulation, 2021, 14, 1423-1437.	3.0	14
42	A Systematic Review on Indoor Environmental Quality in Naturally Ventilated School Classrooms: A Way Forward. Advances in Civil Engineering, 2021, 2021, 1-19.	0.4	28
43	The Energy-Saving Scheduling of Campus Classrooms: A Simulation Model. IEEE Systems, Man, and Cybernetics Magazine, 2021, 7, 22-34.	1.2	1
44	The outdoor pedestrian thermal comfort and behavior in a traditional residential settlement – A case study of the cave dwellings in cold winter of China. Solar Energy, 2021, 220, 130-143.	2.9	14
45	The impact of urban morphology and building's height diversity on energy consumption at urban scale. The case study of Dubai. Building and Environment, 2021, 194, 107675.	3.0	27
46	Seasonal comfort temperature and occupant's adaptive behaviour in a naturally ventilated university workshop building under the composite climate of India. Journal of Building Engineering, 2021, 40, 102701.	1.6	6
47	Improving indoor thermal environment in a traditional building of Danihe Village, China with additional solar house. AEJ - Alexandria Engineering Journal, 2022, 61, 3313-3321.	3.4	0
48	Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability, 2021, 13, 10315.	1.6	33
49	Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Building and Environment, 2021, 204, 108173.	3.0	55
50	Effect of operation modes on the thermal performance of EAHE systems with and without PCM in summer weather conditions. Energy and Buildings, 2021, 250, 111278.	3.1	9
51	Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building. Journal of Building Engineering, 2021, 44, 102697.	1.6	15
52	Analyzing the Effect of Water Body on the Thermal Environment and Comfort at Indoor and Outdoor Spaces in Tropical University Campus. International Journal of Environmental Science and Development, 2021, 12, 282-288.	0.2	0
54	ekirdağ İlinde Eğitim ve Biyoklimatik Konfor Arasındaki İlişkinin Değerlendirilmesi. Kastamonu Eğitim [0, , 161-170.	Dergisi, 0.1	1
55	Um panorama sobre os estudos relacionados ao conforto térmico em salas de aula. Revista Produção Online, 2018, 18, 901-919.	0.1	1

#	Article	IF	CITATIONS
56	Thermal comfort in university classrooms: analysis of simulated and real conditions. , 2021, , .		1
57	Thermal performance of energy-efficient buildings for sustainable development. Environmental Science and Pollution Research, 2022, 29, 51130-51142.	2.7	16
58	Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 2021, 11, 591.	1.4	36
59	Multi-Criteria Decision Making Optimisation Framework for Positive Energy Blocks for Cities. Sustainability, 2022, 14, 446.	1.6	10
60	A review on the porous geopolymer preparation for structural and functional materials applications. International Journal of Applied Ceramic Technology, 2022, 19, 1793-1813.	1.1	23
61	Effectiveness of interventions to convert the energy consumption of an educational building to zero energy. International Journal of Building Pathology and Adaptation, 2022, ahead-of-print, .	0.7	2
62	Effect of Architectural Building Design Parameters on Thermal Comfort and Energy Consumption in Higher Education Buildings. Buildings, 2022, 12, 329.	1.4	27
63	Urban block configuration and the impact on energy consumption: A case study of sinuous morphology. Renewable and Sustainable Energy Reviews, 2022, 163, 112507.	8.2	14
64	Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy. Energies, 2022, 15, 3735.	1.6	2
65	Thermal Comfort in the Design Classroom for Architecture in the Cold Area of China. Sustainability, 2022, 14, 8307.	1.6	5
66	Valorization of sugar beet waste as a foaming agent for metakaolin geopolymer activated with phosphoric acid. Construction and Building Materials, 2022, 344, 128240.	3.2	26
67	A methodology for generating a synthetic local urban climate weather profile for building energy simulations in hot arid areas. , 2021, , .		0
68	A Comparison Between Predicted and Actual Thermal Sensation in Non-air-conditioned Residential Buildings in a Tropical Climate: A Case Study. Lecture Notes in Civil Engineering, 2023, , 477-487.	0.3	0
69	Research on Design Framework of Middle School Teaching Building Based on Performance Optimization and Prediction in the Scheme Design Stage. Buildings, 2022, 12, 1897.	1.4	2
70	A Review Paper on Thermal Comfort and Ventilation Systems in Educational Buildings: Nano-Mechanical and Mathematical Aspects. Journal of Nanofluids, 2023, 12, 1-17.	1.4	3
71	A FIELD STUDY ON ADAPTIVE THERMAL COMFORT IN A NATURALLY VENTILATED DESIGN STUDIO CLASS IN THE POST-PANDEMIC PERIOD. , 2022, 2, 80-86.		0
72	Comparing energy profiles of different building types by determining their sensitivities. Architectural Engineering and Design Management, 0, , 1-22.	1.2	0
73	A machine learning led investigation to understand individual difference and the human-environment interactive effect on classroom thermal comfort. Building and Environment, 2023, 236, 110259.	3.0	10

CITATION REPORT

		CITATION REPORT	
		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
74	A novel method on the optimization problem of energy conservation in public buildings. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 3279-3296.	1.2	2
75	Energy, Thermal, and Economic Benefits of Aerogel Glazing Systems for Educational Buildings in Ho Arid Climates. Sustainability, 2023, 15, 6332.	t 1.6	1