Microstructures and mechanical properties of hemp fak nanocomposites

Construction and Building Materials 49, 298-307 DOI: 10.1016/j.conbuildmat.2013.08.028

Citation Report

#	Article	IF	CITATIONS
1	Mechanical properties of cotton fabric reinforced geopolymer composites at 200–1000 °C. Journal of Advanced Ceramics, 2014, 3, 184-193.	8.9	40
2	Effect of nano-particles and aminosilane interaction on the performances of cement-based composites: An experimental study. Construction and Building Materials, 2014, 66, 113-124.	3.2	72
3	Mechanical and thermal properties of ambient cured cotton fabric-reinforced fly ash-based geopolymer composites. Ceramics International, 2014, 40, 14019-14028.	2.3	46
4	Cement substitution by organoclay – The role of organoclay type. Cement and Concrete Composites, 2015, 62, 90-96.	4.6	14
5	Energy and environmental assessment of industrial hemp for building applications: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 29-42.	8.2	166
6	Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Composites Part B: Engineering, 2015, 78, 174-184.	5.9	121
7	Thermal and mechanical properties of NaOH treated hemp fabric and calcined nanoclay-reinforced cement nanocomposites. Materials & Design, 2015, 80, 70-81.	5.1	30
8	Thermal stability of aluminum after friction stir processing with SiC nanoparticles. Materials & Design, 2015, 80, 41-50.	5.1	20
9	Effect of calcined nanoclay on microstructural and mechanical properties of chemically treated hemp fabric-reinforced cement nanocomposites. Construction and Building Materials, 2015, 95, 882-891.	3.2	40
10	Deflection hardening behaviour of jute strands reinforced lightweight cementitious composite. Construction and Building Materials, 2015, 96, 102-111.	3.2	14
11	Stability analyses of submicron-boron mineral prepared by mechanical milling process in concrete roads. Construction and Building Materials, 2016, 121, 255-264.	3.2	17
12	Nanoclay Reinforced Polymer Composites. Engineering Materials, 2016, , .	0.3	21
13	Nanoclay Based Natural Fibre Reinforced Polymer Composites: Mechanical and Thermal Properties. Engineering Materials, 2016, , 81-101.	0.3	1
14	A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering, 2016, 92, 94-132.	5.9	431
15	Young's modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy and Buildings, 2016, 129, 589-597.	3.1	33
16	Plain concrete cylinders and beams externally strengthened with natural flax fabric reinforced epoxy composites. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2083-2095.	1.3	45
17	Hydration, microstructure and phase composition of composite cements containing nano-clay. Construction and Building Materials, 2016, 112, 19-27.	3.2	59
18	Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Construction and Building Materials, 2016, 113, 188-201.	3.2	208

CITATION REPORT

#	Article	IF	CITATIONS
19	Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 2016, 68, 96-108.	4.6	400
20	Effects of nano-clay particles on the short-term properties of self-compacting concrete. European Journal of Environmental and Civil Engineering, 2017, 21, 127-147.	1.0	42
21	Waterproof ultra-high toughness cementitious composites containing nano reservoir silts. Construction and Building Materials, 2017, 155, 770-779.	3.2	12
22	A review of nanoclay applications in the pervious concrete pavement. AIP Conference Proceedings, 2017, , .	0.3	15
23	The effect of nano-MgO on the setting time, autogenous shrinkage, microstructure and mechanical properties of high performance cement paste and mortar. Construction and Building Materials, 2017, 156, 208-218.	3.2	65
24	Modifications of hemp twine for use as a fiber in cement composite: effects of hybrid treatments. Cellulose, 2018, 25, 2009-2020.	2.4	7
25	Influence of organoclay structural characteristics on properties and hydration of cement pastes. Construction and Building Materials, 2018, 166, 59-71.	3.2	15
26	Performance of nano materials in pervious concrete pavement: A review. AIP Conference Proceedings, 2018, , .	0.3	2
27	Properties of cement-based composites using nanoparticles: A comprehensive review. Construction and Building Materials, 2018, 189, 1019-1034.	3.2	133
28	Effects of nano and micro size of clay particles on the compressive and tensile strength properties of self-consolidating concrete. MATEC Web of Conferences, 2018, 162, 02030.	0.1	10
29	High-performance natural fiber–reinforced cement composites. , 2018, , 277-305.		2
30	Evaluation of mechanic damping properties of montmorillonite/organo-modified montmorillonite-reinforced cement paste. Construction and Building Materials, 2019, 203, 356-365.	3.2	36
31	Morphological and mechanical properties of treated kenaf fiber/MMT clay reinforced PLA hybrid biocomposites. AIP Conference Proceedings, 2019, , .	0.3	15
32	Flexural Strength and Thermal Conductivity of Fiber-Reinforced Calcium Silicate Boards Prepared from Fly Ash. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	14
33	From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fiber–Cement Nanohybrids. Applied Sciences (Switzerland), 2019, 9, 1938.	1.3	8
34	Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3). Journal of Building Engineering, 2019, 25, 100788.	1.6	36
35	Effect of nano-clay de-agglomeration on mechanical properties of concrete. Construction and Building Materials, 2019, 205, 245-256.	3.2	85
36	Mechanical and physical behavior of cement paste and mortar incorporating nano aO. Structural Concrete, 2019, 20, 361-370.	1.5	16

CITATION REPORT

#	Article	IF	CITATIONS
37	Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/ PLA-Hybrid Biocomposites. Silicon, 2020, 12, 1751-1760.	1.8	45
38	Laboratory evaluation of self-compacting fiber-reinforced concrete modified with hybrid of nanomaterials. Construction and Building Materials, 2020, 232, 117211.	3.2	45
39	Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials. Silicon, 2022, 14, 135-144.	1.8	11
40	Effect of Nano-Silica on the Autogenous Shrinkage, Strength, and Hydration Heat of Ultra-High Strength Concrete. Applied Sciences (Switzerland), 2020, 10, 5202.	1.3	17
41	Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite. Cellulose, 2020, 27, 6977-6993.	2.4	23
42	A DOE approach to optimize the strength properties of concrete incorporated with different ratios of PVA fibre and nano-Fe ₂ O ₃ . Advanced Composites Letters, 2020, 29, 2633366X2091388.	1.3	22
43	Influence of Montmorillonite Clay Content on Thermal, Mechanical, Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/ PLA-Hybrid Biocomposites. Silicon, 2021, 13, 109-118.	1.8	35
45	Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism. Acta Geotechnica, 2021, 16, 1401-1416.	2.9	39
46	Targeting functionalised carbon nanotubes at the interphase of Textile Reinforced Mortar (TRM) composites. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106330.	3.8	10
47	Mechanical behavior of cement composites reinforced by aligned Enset fibers. Construction and Building Materials, 2021, 304, 124607.	3.2	6
49	Carbon Nanotubes Strengthened Interphase in Textile Reinforced Mortar (TRM) Composites. Lecture Notes in Civil Engineering, 2022, , 2083-2095.	0.3	0
50	Flexural behavior analysis and strength prediction of steel fiber-and-nanosilica reinforced rubber concrete. Advances in Structural Engineering, 2022, 25, 864-876.	1.2	Ο
51	An anionic biopolymer Î ³ -polyglutamate enhanced the microbially induced carbonate precipitation for soil improvement: mechanical behaviors and underlying mechanism. Acta Geotechnica, 2022, 17, 4485-4496.	2.9	8
52	A Review of the Combined Effect of Fibers and Nano Materials on the Technical Performance of Mortar and Concrete. Sustainability, 2022, 14, 3464.	1.6	6
53	Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Construction and Building Materials, 2022, 340, 127729.	3.2	25
54	Effects of Cement and Nanoclay on the Characteristics of the Sand with Non-Plastic Fine Materials. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2022, 46, 4265-4280.	1.0	1
55	A state-of-the-art review on mechanical performance characterization and modelling of high-performance textile reinforced concretes. Construction and Building Materials, 2022, 347, 128521.	3.2	45
56	Investigation study of enhance the strength by using hybrid nano-composites on conventional cement concrete. Materials Today: Proceedings, 2022, , .	0.9	2

ARTICLE

IF CITATIONS